1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203 };
204
205 struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208 };
209
210 #define SLAB_OBJ_PFMEMALLOC 1
is_obj_pfmemalloc(void * objp)211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215
set_obj_pfmemalloc(void ** objp)216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220 }
221
clear_obj_pfmemalloc(void ** objp)222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226
227 /*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236
237 /*
238 * Need this for bootstrapping a per node allocator.
239 */
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_NODE (MAX_NUMNODES)
244
245 static int drain_freelist(struct kmem_cache *cache,
246 struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
252
253 static int slab_early_init = 1;
254
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
kmem_cache_node_init(struct kmem_cache_node * parent)257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 {
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
264 parent->colour_next = 0;
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268 }
269
270 #define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
274 } while (0)
275
276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
282
283 #define CFLGS_OFF_SLAB (0x80000000UL)
284 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285
286 #define BATCHREFILL_LIMIT 16
287 /*
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
290 *
291 * OTOH the cpuarrays can contain lots of objects,
292 * which could lock up otherwise freeable slabs.
293 */
294 #define REAPTIMEOUT_AC (2*HZ)
295 #define REAPTIMEOUT_NODE (4*HZ)
296
297 #if STATS
298 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
299 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301 #define STATS_INC_GROWN(x) ((x)->grown++)
302 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
303 #define STATS_SET_HIGH(x) \
304 do { \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
307 } while (0)
308 #define STATS_INC_ERR(x) ((x)->errors++)
309 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
310 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
311 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
312 #define STATS_SET_FREEABLE(x, i) \
313 do { \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
316 } while (0)
317 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
321 #else
322 #define STATS_INC_ACTIVE(x) do { } while (0)
323 #define STATS_DEC_ACTIVE(x) do { } while (0)
324 #define STATS_INC_ALLOCED(x) do { } while (0)
325 #define STATS_INC_GROWN(x) do { } while (0)
326 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
327 #define STATS_SET_HIGH(x) do { } while (0)
328 #define STATS_INC_ERR(x) do { } while (0)
329 #define STATS_INC_NODEALLOCS(x) do { } while (0)
330 #define STATS_INC_NODEFREES(x) do { } while (0)
331 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
332 #define STATS_SET_FREEABLE(x, i) do { } while (0)
333 #define STATS_INC_ALLOCHIT(x) do { } while (0)
334 #define STATS_INC_ALLOCMISS(x) do { } while (0)
335 #define STATS_INC_FREEHIT(x) do { } while (0)
336 #define STATS_INC_FREEMISS(x) do { } while (0)
337 #endif
338
339 #if DEBUG
340
341 /*
342 * memory layout of objects:
343 * 0 : objp
344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345 * the end of an object is aligned with the end of the real
346 * allocation. Catches writes behind the end of the allocation.
347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
348 * redzone word.
349 * cachep->obj_offset: The real object.
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
352 * [BYTES_PER_WORD long]
353 */
obj_offset(struct kmem_cache * cachep)354 static int obj_offset(struct kmem_cache *cachep)
355 {
356 return cachep->obj_offset;
357 }
358
dbg_redzone1(struct kmem_cache * cachep,void * objp)359 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
360 {
361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 return (unsigned long long*) (objp + obj_offset(cachep) -
363 sizeof(unsigned long long));
364 }
365
dbg_redzone2(struct kmem_cache * cachep,void * objp)366 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
367 {
368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 if (cachep->flags & SLAB_STORE_USER)
370 return (unsigned long long *)(objp + cachep->size -
371 sizeof(unsigned long long) -
372 REDZONE_ALIGN);
373 return (unsigned long long *) (objp + cachep->size -
374 sizeof(unsigned long long));
375 }
376
dbg_userword(struct kmem_cache * cachep,void * objp)377 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
378 {
379 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380 return (void **)(objp + cachep->size - BYTES_PER_WORD);
381 }
382
383 #else
384
385 #define obj_offset(x) 0
386 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
389
390 #endif
391
392 #define OBJECT_FREE (0)
393 #define OBJECT_ACTIVE (1)
394
395 #ifdef CONFIG_DEBUG_SLAB_LEAK
396
set_obj_status(struct page * page,int idx,int val)397 static void set_obj_status(struct page *page, int idx, int val)
398 {
399 int freelist_size;
400 char *status;
401 struct kmem_cache *cachep = page->slab_cache;
402
403 freelist_size = cachep->num * sizeof(freelist_idx_t);
404 status = (char *)page->freelist + freelist_size;
405 status[idx] = val;
406 }
407
get_obj_status(struct page * page,int idx)408 static inline unsigned int get_obj_status(struct page *page, int idx)
409 {
410 int freelist_size;
411 char *status;
412 struct kmem_cache *cachep = page->slab_cache;
413
414 freelist_size = cachep->num * sizeof(freelist_idx_t);
415 status = (char *)page->freelist + freelist_size;
416
417 return status[idx];
418 }
419
420 #else
set_obj_status(struct page * page,int idx,int val)421 static inline void set_obj_status(struct page *page, int idx, int val) {}
422
423 #endif
424
425 /*
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
428 */
429 #define SLAB_MAX_ORDER_HI 1
430 #define SLAB_MAX_ORDER_LO 0
431 static int slab_max_order = SLAB_MAX_ORDER_LO;
432 static bool slab_max_order_set __initdata;
433
virt_to_cache(const void * obj)434 static inline struct kmem_cache *virt_to_cache(const void *obj)
435 {
436 struct page *page = virt_to_head_page(obj);
437 return page->slab_cache;
438 }
439
index_to_obj(struct kmem_cache * cache,struct page * page,unsigned int idx)440 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 unsigned int idx)
442 {
443 return page->s_mem + cache->size * idx;
444 }
445
446 /*
447 * We want to avoid an expensive divide : (offset / cache->size)
448 * Using the fact that size is a constant for a particular cache,
449 * we can replace (offset / cache->size) by
450 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
451 */
obj_to_index(const struct kmem_cache * cache,const struct page * page,void * obj)452 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453 const struct page *page, void *obj)
454 {
455 u32 offset = (obj - page->s_mem);
456 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457 }
458
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot = {
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
464 .size = sizeof(struct kmem_cache),
465 .name = "kmem_cache",
466 };
467
468 #define BAD_ALIEN_MAGIC 0x01020304ul
469
470 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
471
cpu_cache_get(struct kmem_cache * cachep)472 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
473 {
474 return this_cpu_ptr(cachep->cpu_cache);
475 }
476
calculate_freelist_size(int nr_objs,size_t align)477 static size_t calculate_freelist_size(int nr_objs, size_t align)
478 {
479 size_t freelist_size;
480
481 freelist_size = nr_objs * sizeof(freelist_idx_t);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 freelist_size += nr_objs * sizeof(char);
484
485 if (align)
486 freelist_size = ALIGN(freelist_size, align);
487
488 return freelist_size;
489 }
490
calculate_nr_objs(size_t slab_size,size_t buffer_size,size_t idx_size,size_t align)491 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 size_t idx_size, size_t align)
493 {
494 int nr_objs;
495 size_t remained_size;
496 size_t freelist_size;
497 int extra_space = 0;
498
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 extra_space = sizeof(char);
501 /*
502 * Ignore padding for the initial guess. The padding
503 * is at most @align-1 bytes, and @buffer_size is at
504 * least @align. In the worst case, this result will
505 * be one greater than the number of objects that fit
506 * into the memory allocation when taking the padding
507 * into account.
508 */
509 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510
511 /*
512 * This calculated number will be either the right
513 * amount, or one greater than what we want.
514 */
515 remained_size = slab_size - nr_objs * buffer_size;
516 freelist_size = calculate_freelist_size(nr_objs, align);
517 if (remained_size < freelist_size)
518 nr_objs--;
519
520 return nr_objs;
521 }
522
523 /*
524 * Calculate the number of objects and left-over bytes for a given buffer size.
525 */
cache_estimate(unsigned long gfporder,size_t buffer_size,size_t align,int flags,size_t * left_over,unsigned int * num)526 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 size_t align, int flags, size_t *left_over,
528 unsigned int *num)
529 {
530 int nr_objs;
531 size_t mgmt_size;
532 size_t slab_size = PAGE_SIZE << gfporder;
533
534 /*
535 * The slab management structure can be either off the slab or
536 * on it. For the latter case, the memory allocated for a
537 * slab is used for:
538 *
539 * - One unsigned int for each object
540 * - Padding to respect alignment of @align
541 * - @buffer_size bytes for each object
542 *
543 * If the slab management structure is off the slab, then the
544 * alignment will already be calculated into the size. Because
545 * the slabs are all pages aligned, the objects will be at the
546 * correct alignment when allocated.
547 */
548 if (flags & CFLGS_OFF_SLAB) {
549 mgmt_size = 0;
550 nr_objs = slab_size / buffer_size;
551
552 } else {
553 nr_objs = calculate_nr_objs(slab_size, buffer_size,
554 sizeof(freelist_idx_t), align);
555 mgmt_size = calculate_freelist_size(nr_objs, align);
556 }
557 *num = nr_objs;
558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
559 }
560
561 #if DEBUG
562 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
563
__slab_error(const char * function,struct kmem_cache * cachep,char * msg)564 static void __slab_error(const char *function, struct kmem_cache *cachep,
565 char *msg)
566 {
567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568 function, cachep->name, msg);
569 dump_stack();
570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571 }
572 #endif
573
574 /*
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
579 * line
580 */
581
582 static int use_alien_caches __read_mostly = 1;
noaliencache_setup(char * s)583 static int __init noaliencache_setup(char *s)
584 {
585 use_alien_caches = 0;
586 return 1;
587 }
588 __setup("noaliencache", noaliencache_setup);
589
slab_max_order_setup(char * str)590 static int __init slab_max_order_setup(char *str)
591 {
592 get_option(&str, &slab_max_order);
593 slab_max_order = slab_max_order < 0 ? 0 :
594 min(slab_max_order, MAX_ORDER - 1);
595 slab_max_order_set = true;
596
597 return 1;
598 }
599 __setup("slab_max_order=", slab_max_order_setup);
600
601 #ifdef CONFIG_NUMA
602 /*
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
607 */
608 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609
init_reap_node(int cpu)610 static void init_reap_node(int cpu)
611 {
612 int node;
613
614 node = next_node(cpu_to_mem(cpu), node_online_map);
615 if (node == MAX_NUMNODES)
616 node = first_node(node_online_map);
617
618 per_cpu(slab_reap_node, cpu) = node;
619 }
620
next_reap_node(void)621 static void next_reap_node(void)
622 {
623 int node = __this_cpu_read(slab_reap_node);
624
625 node = next_node(node, node_online_map);
626 if (unlikely(node >= MAX_NUMNODES))
627 node = first_node(node_online_map);
628 __this_cpu_write(slab_reap_node, node);
629 }
630
631 #else
632 #define init_reap_node(cpu) do { } while (0)
633 #define next_reap_node(void) do { } while (0)
634 #endif
635
636 /*
637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
641 * lock.
642 */
start_cpu_timer(int cpu)643 static void start_cpu_timer(int cpu)
644 {
645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
646
647 /*
648 * When this gets called from do_initcalls via cpucache_init(),
649 * init_workqueues() has already run, so keventd will be setup
650 * at that time.
651 */
652 if (keventd_up() && reap_work->work.func == NULL) {
653 init_reap_node(cpu);
654 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 schedule_delayed_work_on(cpu, reap_work,
656 __round_jiffies_relative(HZ, cpu));
657 }
658 }
659
init_arraycache(struct array_cache * ac,int limit,int batch)660 static void init_arraycache(struct array_cache *ac, int limit, int batch)
661 {
662 /*
663 * The array_cache structures contain pointers to free object.
664 * However, when such objects are allocated or transferred to another
665 * cache the pointers are not cleared and they could be counted as
666 * valid references during a kmemleak scan. Therefore, kmemleak must
667 * not scan such objects.
668 */
669 kmemleak_no_scan(ac);
670 if (ac) {
671 ac->avail = 0;
672 ac->limit = limit;
673 ac->batchcount = batch;
674 ac->touched = 0;
675 }
676 }
677
alloc_arraycache(int node,int entries,int batchcount,gfp_t gfp)678 static struct array_cache *alloc_arraycache(int node, int entries,
679 int batchcount, gfp_t gfp)
680 {
681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 struct array_cache *ac = NULL;
683
684 ac = kmalloc_node(memsize, gfp, node);
685 init_arraycache(ac, entries, batchcount);
686 return ac;
687 }
688
is_slab_pfmemalloc(struct page * page)689 static inline bool is_slab_pfmemalloc(struct page *page)
690 {
691 return PageSlabPfmemalloc(page);
692 }
693
694 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
recheck_pfmemalloc_active(struct kmem_cache * cachep,struct array_cache * ac)695 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 struct array_cache *ac)
697 {
698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699 struct page *page;
700 unsigned long flags;
701
702 if (!pfmemalloc_active)
703 return;
704
705 spin_lock_irqsave(&n->list_lock, flags);
706 list_for_each_entry(page, &n->slabs_full, lru)
707 if (is_slab_pfmemalloc(page))
708 goto out;
709
710 list_for_each_entry(page, &n->slabs_partial, lru)
711 if (is_slab_pfmemalloc(page))
712 goto out;
713
714 list_for_each_entry(page, &n->slabs_free, lru)
715 if (is_slab_pfmemalloc(page))
716 goto out;
717
718 pfmemalloc_active = false;
719 out:
720 spin_unlock_irqrestore(&n->list_lock, flags);
721 }
722
__ac_get_obj(struct kmem_cache * cachep,struct array_cache * ac,gfp_t flags,bool force_refill)723 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 gfp_t flags, bool force_refill)
725 {
726 int i;
727 void *objp = ac->entry[--ac->avail];
728
729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 if (unlikely(is_obj_pfmemalloc(objp))) {
731 struct kmem_cache_node *n;
732
733 if (gfp_pfmemalloc_allowed(flags)) {
734 clear_obj_pfmemalloc(&objp);
735 return objp;
736 }
737
738 /* The caller cannot use PFMEMALLOC objects, find another one */
739 for (i = 0; i < ac->avail; i++) {
740 /* If a !PFMEMALLOC object is found, swap them */
741 if (!is_obj_pfmemalloc(ac->entry[i])) {
742 objp = ac->entry[i];
743 ac->entry[i] = ac->entry[ac->avail];
744 ac->entry[ac->avail] = objp;
745 return objp;
746 }
747 }
748
749 /*
750 * If there are empty slabs on the slabs_free list and we are
751 * being forced to refill the cache, mark this one !pfmemalloc.
752 */
753 n = get_node(cachep, numa_mem_id());
754 if (!list_empty(&n->slabs_free) && force_refill) {
755 struct page *page = virt_to_head_page(objp);
756 ClearPageSlabPfmemalloc(page);
757 clear_obj_pfmemalloc(&objp);
758 recheck_pfmemalloc_active(cachep, ac);
759 return objp;
760 }
761
762 /* No !PFMEMALLOC objects available */
763 ac->avail++;
764 objp = NULL;
765 }
766
767 return objp;
768 }
769
ac_get_obj(struct kmem_cache * cachep,struct array_cache * ac,gfp_t flags,bool force_refill)770 static inline void *ac_get_obj(struct kmem_cache *cachep,
771 struct array_cache *ac, gfp_t flags, bool force_refill)
772 {
773 void *objp;
774
775 if (unlikely(sk_memalloc_socks()))
776 objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 else
778 objp = ac->entry[--ac->avail];
779
780 return objp;
781 }
782
__ac_put_obj(struct kmem_cache * cachep,struct array_cache * ac,void * objp)783 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 struct array_cache *ac, void *objp)
785 {
786 if (unlikely(pfmemalloc_active)) {
787 /* Some pfmemalloc slabs exist, check if this is one */
788 struct page *page = virt_to_head_page(objp);
789 if (PageSlabPfmemalloc(page))
790 set_obj_pfmemalloc(&objp);
791 }
792
793 return objp;
794 }
795
ac_put_obj(struct kmem_cache * cachep,struct array_cache * ac,void * objp)796 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 void *objp)
798 {
799 if (unlikely(sk_memalloc_socks()))
800 objp = __ac_put_obj(cachep, ac, objp);
801
802 ac->entry[ac->avail++] = objp;
803 }
804
805 /*
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
808 *
809 * Return the number of entries transferred.
810 */
transfer_objects(struct array_cache * to,struct array_cache * from,unsigned int max)811 static int transfer_objects(struct array_cache *to,
812 struct array_cache *from, unsigned int max)
813 {
814 /* Figure out how many entries to transfer */
815 int nr = min3(from->avail, max, to->limit - to->avail);
816
817 if (!nr)
818 return 0;
819
820 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 sizeof(void *) *nr);
822
823 from->avail -= nr;
824 to->avail += nr;
825 return nr;
826 }
827
828 #ifndef CONFIG_NUMA
829
830 #define drain_alien_cache(cachep, alien) do { } while (0)
831 #define reap_alien(cachep, n) do { } while (0)
832
alloc_alien_cache(int node,int limit,gfp_t gfp)833 static inline struct alien_cache **alloc_alien_cache(int node,
834 int limit, gfp_t gfp)
835 {
836 return (struct alien_cache **)BAD_ALIEN_MAGIC;
837 }
838
free_alien_cache(struct alien_cache ** ac_ptr)839 static inline void free_alien_cache(struct alien_cache **ac_ptr)
840 {
841 }
842
cache_free_alien(struct kmem_cache * cachep,void * objp)843 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844 {
845 return 0;
846 }
847
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)848 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 gfp_t flags)
850 {
851 return NULL;
852 }
853
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)854 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 gfp_t flags, int nodeid)
856 {
857 return NULL;
858 }
859
gfp_exact_node(gfp_t flags)860 static inline gfp_t gfp_exact_node(gfp_t flags)
861 {
862 return flags;
863 }
864
865 #else /* CONFIG_NUMA */
866
867 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
869
__alloc_alien_cache(int node,int entries,int batch,gfp_t gfp)870 static struct alien_cache *__alloc_alien_cache(int node, int entries,
871 int batch, gfp_t gfp)
872 {
873 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
874 struct alien_cache *alc = NULL;
875
876 alc = kmalloc_node(memsize, gfp, node);
877 init_arraycache(&alc->ac, entries, batch);
878 spin_lock_init(&alc->lock);
879 return alc;
880 }
881
alloc_alien_cache(int node,int limit,gfp_t gfp)882 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
883 {
884 struct alien_cache **alc_ptr;
885 size_t memsize = sizeof(void *) * nr_node_ids;
886 int i;
887
888 if (limit > 1)
889 limit = 12;
890 alc_ptr = kzalloc_node(memsize, gfp, node);
891 if (!alc_ptr)
892 return NULL;
893
894 for_each_node(i) {
895 if (i == node || !node_online(i))
896 continue;
897 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
898 if (!alc_ptr[i]) {
899 for (i--; i >= 0; i--)
900 kfree(alc_ptr[i]);
901 kfree(alc_ptr);
902 return NULL;
903 }
904 }
905 return alc_ptr;
906 }
907
free_alien_cache(struct alien_cache ** alc_ptr)908 static void free_alien_cache(struct alien_cache **alc_ptr)
909 {
910 int i;
911
912 if (!alc_ptr)
913 return;
914 for_each_node(i)
915 kfree(alc_ptr[i]);
916 kfree(alc_ptr);
917 }
918
__drain_alien_cache(struct kmem_cache * cachep,struct array_cache * ac,int node,struct list_head * list)919 static void __drain_alien_cache(struct kmem_cache *cachep,
920 struct array_cache *ac, int node,
921 struct list_head *list)
922 {
923 struct kmem_cache_node *n = get_node(cachep, node);
924
925 if (ac->avail) {
926 spin_lock(&n->list_lock);
927 /*
928 * Stuff objects into the remote nodes shared array first.
929 * That way we could avoid the overhead of putting the objects
930 * into the free lists and getting them back later.
931 */
932 if (n->shared)
933 transfer_objects(n->shared, ac, ac->limit);
934
935 free_block(cachep, ac->entry, ac->avail, node, list);
936 ac->avail = 0;
937 spin_unlock(&n->list_lock);
938 }
939 }
940
941 /*
942 * Called from cache_reap() to regularly drain alien caches round robin.
943 */
reap_alien(struct kmem_cache * cachep,struct kmem_cache_node * n)944 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
945 {
946 int node = __this_cpu_read(slab_reap_node);
947
948 if (n->alien) {
949 struct alien_cache *alc = n->alien[node];
950 struct array_cache *ac;
951
952 if (alc) {
953 ac = &alc->ac;
954 if (ac->avail && spin_trylock_irq(&alc->lock)) {
955 LIST_HEAD(list);
956
957 __drain_alien_cache(cachep, ac, node, &list);
958 spin_unlock_irq(&alc->lock);
959 slabs_destroy(cachep, &list);
960 }
961 }
962 }
963 }
964
drain_alien_cache(struct kmem_cache * cachep,struct alien_cache ** alien)965 static void drain_alien_cache(struct kmem_cache *cachep,
966 struct alien_cache **alien)
967 {
968 int i = 0;
969 struct alien_cache *alc;
970 struct array_cache *ac;
971 unsigned long flags;
972
973 for_each_online_node(i) {
974 alc = alien[i];
975 if (alc) {
976 LIST_HEAD(list);
977
978 ac = &alc->ac;
979 spin_lock_irqsave(&alc->lock, flags);
980 __drain_alien_cache(cachep, ac, i, &list);
981 spin_unlock_irqrestore(&alc->lock, flags);
982 slabs_destroy(cachep, &list);
983 }
984 }
985 }
986
__cache_free_alien(struct kmem_cache * cachep,void * objp,int node,int page_node)987 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
988 int node, int page_node)
989 {
990 struct kmem_cache_node *n;
991 struct alien_cache *alien = NULL;
992 struct array_cache *ac;
993 LIST_HEAD(list);
994
995 n = get_node(cachep, node);
996 STATS_INC_NODEFREES(cachep);
997 if (n->alien && n->alien[page_node]) {
998 alien = n->alien[page_node];
999 ac = &alien->ac;
1000 spin_lock(&alien->lock);
1001 if (unlikely(ac->avail == ac->limit)) {
1002 STATS_INC_ACOVERFLOW(cachep);
1003 __drain_alien_cache(cachep, ac, page_node, &list);
1004 }
1005 ac_put_obj(cachep, ac, objp);
1006 spin_unlock(&alien->lock);
1007 slabs_destroy(cachep, &list);
1008 } else {
1009 n = get_node(cachep, page_node);
1010 spin_lock(&n->list_lock);
1011 free_block(cachep, &objp, 1, page_node, &list);
1012 spin_unlock(&n->list_lock);
1013 slabs_destroy(cachep, &list);
1014 }
1015 return 1;
1016 }
1017
cache_free_alien(struct kmem_cache * cachep,void * objp)1018 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019 {
1020 int page_node = page_to_nid(virt_to_page(objp));
1021 int node = numa_mem_id();
1022 /*
1023 * Make sure we are not freeing a object from another node to the array
1024 * cache on this cpu.
1025 */
1026 if (likely(node == page_node))
1027 return 0;
1028
1029 return __cache_free_alien(cachep, objp, node, page_node);
1030 }
1031
1032 /*
1033 * Construct gfp mask to allocate from a specific node but do not invoke reclaim
1034 * or warn about failures.
1035 */
gfp_exact_node(gfp_t flags)1036 static inline gfp_t gfp_exact_node(gfp_t flags)
1037 {
1038 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
1039 }
1040 #endif
1041
1042 /*
1043 * Allocates and initializes node for a node on each slab cache, used for
1044 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1045 * will be allocated off-node since memory is not yet online for the new node.
1046 * When hotplugging memory or a cpu, existing node are not replaced if
1047 * already in use.
1048 *
1049 * Must hold slab_mutex.
1050 */
init_cache_node_node(int node)1051 static int init_cache_node_node(int node)
1052 {
1053 struct kmem_cache *cachep;
1054 struct kmem_cache_node *n;
1055 const size_t memsize = sizeof(struct kmem_cache_node);
1056
1057 list_for_each_entry(cachep, &slab_caches, list) {
1058 /*
1059 * Set up the kmem_cache_node for cpu before we can
1060 * begin anything. Make sure some other cpu on this
1061 * node has not already allocated this
1062 */
1063 n = get_node(cachep, node);
1064 if (!n) {
1065 n = kmalloc_node(memsize, GFP_KERNEL, node);
1066 if (!n)
1067 return -ENOMEM;
1068 kmem_cache_node_init(n);
1069 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1070 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1071
1072 /*
1073 * The kmem_cache_nodes don't come and go as CPUs
1074 * come and go. slab_mutex is sufficient
1075 * protection here.
1076 */
1077 cachep->node[node] = n;
1078 }
1079
1080 spin_lock_irq(&n->list_lock);
1081 n->free_limit =
1082 (1 + nr_cpus_node(node)) *
1083 cachep->batchcount + cachep->num;
1084 spin_unlock_irq(&n->list_lock);
1085 }
1086 return 0;
1087 }
1088
slabs_tofree(struct kmem_cache * cachep,struct kmem_cache_node * n)1089 static inline int slabs_tofree(struct kmem_cache *cachep,
1090 struct kmem_cache_node *n)
1091 {
1092 return (n->free_objects + cachep->num - 1) / cachep->num;
1093 }
1094
cpuup_canceled(long cpu)1095 static void cpuup_canceled(long cpu)
1096 {
1097 struct kmem_cache *cachep;
1098 struct kmem_cache_node *n = NULL;
1099 int node = cpu_to_mem(cpu);
1100 const struct cpumask *mask = cpumask_of_node(node);
1101
1102 list_for_each_entry(cachep, &slab_caches, list) {
1103 struct array_cache *nc;
1104 struct array_cache *shared;
1105 struct alien_cache **alien;
1106 LIST_HEAD(list);
1107
1108 n = get_node(cachep, node);
1109 if (!n)
1110 continue;
1111
1112 spin_lock_irq(&n->list_lock);
1113
1114 /* Free limit for this kmem_cache_node */
1115 n->free_limit -= cachep->batchcount;
1116
1117 /* cpu is dead; no one can alloc from it. */
1118 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1119 if (nc) {
1120 free_block(cachep, nc->entry, nc->avail, node, &list);
1121 nc->avail = 0;
1122 }
1123
1124 if (!cpumask_empty(mask)) {
1125 spin_unlock_irq(&n->list_lock);
1126 goto free_slab;
1127 }
1128
1129 shared = n->shared;
1130 if (shared) {
1131 free_block(cachep, shared->entry,
1132 shared->avail, node, &list);
1133 n->shared = NULL;
1134 }
1135
1136 alien = n->alien;
1137 n->alien = NULL;
1138
1139 spin_unlock_irq(&n->list_lock);
1140
1141 kfree(shared);
1142 if (alien) {
1143 drain_alien_cache(cachep, alien);
1144 free_alien_cache(alien);
1145 }
1146
1147 free_slab:
1148 slabs_destroy(cachep, &list);
1149 }
1150 /*
1151 * In the previous loop, all the objects were freed to
1152 * the respective cache's slabs, now we can go ahead and
1153 * shrink each nodelist to its limit.
1154 */
1155 list_for_each_entry(cachep, &slab_caches, list) {
1156 n = get_node(cachep, node);
1157 if (!n)
1158 continue;
1159 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1160 }
1161 }
1162
cpuup_prepare(long cpu)1163 static int cpuup_prepare(long cpu)
1164 {
1165 struct kmem_cache *cachep;
1166 struct kmem_cache_node *n = NULL;
1167 int node = cpu_to_mem(cpu);
1168 int err;
1169
1170 /*
1171 * We need to do this right in the beginning since
1172 * alloc_arraycache's are going to use this list.
1173 * kmalloc_node allows us to add the slab to the right
1174 * kmem_cache_node and not this cpu's kmem_cache_node
1175 */
1176 err = init_cache_node_node(node);
1177 if (err < 0)
1178 goto bad;
1179
1180 /*
1181 * Now we can go ahead with allocating the shared arrays and
1182 * array caches
1183 */
1184 list_for_each_entry(cachep, &slab_caches, list) {
1185 struct array_cache *shared = NULL;
1186 struct alien_cache **alien = NULL;
1187
1188 if (cachep->shared) {
1189 shared = alloc_arraycache(node,
1190 cachep->shared * cachep->batchcount,
1191 0xbaadf00d, GFP_KERNEL);
1192 if (!shared)
1193 goto bad;
1194 }
1195 if (use_alien_caches) {
1196 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1197 if (!alien) {
1198 kfree(shared);
1199 goto bad;
1200 }
1201 }
1202 n = get_node(cachep, node);
1203 BUG_ON(!n);
1204
1205 spin_lock_irq(&n->list_lock);
1206 if (!n->shared) {
1207 /*
1208 * We are serialised from CPU_DEAD or
1209 * CPU_UP_CANCELLED by the cpucontrol lock
1210 */
1211 n->shared = shared;
1212 shared = NULL;
1213 }
1214 #ifdef CONFIG_NUMA
1215 if (!n->alien) {
1216 n->alien = alien;
1217 alien = NULL;
1218 }
1219 #endif
1220 spin_unlock_irq(&n->list_lock);
1221 kfree(shared);
1222 free_alien_cache(alien);
1223 }
1224
1225 return 0;
1226 bad:
1227 cpuup_canceled(cpu);
1228 return -ENOMEM;
1229 }
1230
cpuup_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)1231 static int cpuup_callback(struct notifier_block *nfb,
1232 unsigned long action, void *hcpu)
1233 {
1234 long cpu = (long)hcpu;
1235 int err = 0;
1236
1237 switch (action) {
1238 case CPU_UP_PREPARE:
1239 case CPU_UP_PREPARE_FROZEN:
1240 mutex_lock(&slab_mutex);
1241 err = cpuup_prepare(cpu);
1242 mutex_unlock(&slab_mutex);
1243 break;
1244 case CPU_ONLINE:
1245 case CPU_ONLINE_FROZEN:
1246 start_cpu_timer(cpu);
1247 break;
1248 #ifdef CONFIG_HOTPLUG_CPU
1249 case CPU_DOWN_PREPARE:
1250 case CPU_DOWN_PREPARE_FROZEN:
1251 /*
1252 * Shutdown cache reaper. Note that the slab_mutex is
1253 * held so that if cache_reap() is invoked it cannot do
1254 * anything expensive but will only modify reap_work
1255 * and reschedule the timer.
1256 */
1257 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1258 /* Now the cache_reaper is guaranteed to be not running. */
1259 per_cpu(slab_reap_work, cpu).work.func = NULL;
1260 break;
1261 case CPU_DOWN_FAILED:
1262 case CPU_DOWN_FAILED_FROZEN:
1263 start_cpu_timer(cpu);
1264 break;
1265 case CPU_DEAD:
1266 case CPU_DEAD_FROZEN:
1267 /*
1268 * Even if all the cpus of a node are down, we don't free the
1269 * kmem_cache_node of any cache. This to avoid a race between
1270 * cpu_down, and a kmalloc allocation from another cpu for
1271 * memory from the node of the cpu going down. The node
1272 * structure is usually allocated from kmem_cache_create() and
1273 * gets destroyed at kmem_cache_destroy().
1274 */
1275 /* fall through */
1276 #endif
1277 case CPU_UP_CANCELED:
1278 case CPU_UP_CANCELED_FROZEN:
1279 mutex_lock(&slab_mutex);
1280 cpuup_canceled(cpu);
1281 mutex_unlock(&slab_mutex);
1282 break;
1283 }
1284 return notifier_from_errno(err);
1285 }
1286
1287 static struct notifier_block cpucache_notifier = {
1288 &cpuup_callback, NULL, 0
1289 };
1290
1291 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1292 /*
1293 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1294 * Returns -EBUSY if all objects cannot be drained so that the node is not
1295 * removed.
1296 *
1297 * Must hold slab_mutex.
1298 */
drain_cache_node_node(int node)1299 static int __meminit drain_cache_node_node(int node)
1300 {
1301 struct kmem_cache *cachep;
1302 int ret = 0;
1303
1304 list_for_each_entry(cachep, &slab_caches, list) {
1305 struct kmem_cache_node *n;
1306
1307 n = get_node(cachep, node);
1308 if (!n)
1309 continue;
1310
1311 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1312
1313 if (!list_empty(&n->slabs_full) ||
1314 !list_empty(&n->slabs_partial)) {
1315 ret = -EBUSY;
1316 break;
1317 }
1318 }
1319 return ret;
1320 }
1321
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)1322 static int __meminit slab_memory_callback(struct notifier_block *self,
1323 unsigned long action, void *arg)
1324 {
1325 struct memory_notify *mnb = arg;
1326 int ret = 0;
1327 int nid;
1328
1329 nid = mnb->status_change_nid;
1330 if (nid < 0)
1331 goto out;
1332
1333 switch (action) {
1334 case MEM_GOING_ONLINE:
1335 mutex_lock(&slab_mutex);
1336 ret = init_cache_node_node(nid);
1337 mutex_unlock(&slab_mutex);
1338 break;
1339 case MEM_GOING_OFFLINE:
1340 mutex_lock(&slab_mutex);
1341 ret = drain_cache_node_node(nid);
1342 mutex_unlock(&slab_mutex);
1343 break;
1344 case MEM_ONLINE:
1345 case MEM_OFFLINE:
1346 case MEM_CANCEL_ONLINE:
1347 case MEM_CANCEL_OFFLINE:
1348 break;
1349 }
1350 out:
1351 return notifier_from_errno(ret);
1352 }
1353 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1354
1355 /*
1356 * swap the static kmem_cache_node with kmalloced memory
1357 */
init_list(struct kmem_cache * cachep,struct kmem_cache_node * list,int nodeid)1358 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1359 int nodeid)
1360 {
1361 struct kmem_cache_node *ptr;
1362
1363 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1364 BUG_ON(!ptr);
1365
1366 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1367 /*
1368 * Do not assume that spinlocks can be initialized via memcpy:
1369 */
1370 spin_lock_init(&ptr->list_lock);
1371
1372 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1373 cachep->node[nodeid] = ptr;
1374 }
1375
1376 /*
1377 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1378 * size of kmem_cache_node.
1379 */
set_up_node(struct kmem_cache * cachep,int index)1380 static void __init set_up_node(struct kmem_cache *cachep, int index)
1381 {
1382 int node;
1383
1384 for_each_online_node(node) {
1385 cachep->node[node] = &init_kmem_cache_node[index + node];
1386 cachep->node[node]->next_reap = jiffies +
1387 REAPTIMEOUT_NODE +
1388 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1389 }
1390 }
1391
1392 /*
1393 * Initialisation. Called after the page allocator have been initialised and
1394 * before smp_init().
1395 */
kmem_cache_init(void)1396 void __init kmem_cache_init(void)
1397 {
1398 int i;
1399
1400 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1401 sizeof(struct rcu_head));
1402 kmem_cache = &kmem_cache_boot;
1403
1404 if (num_possible_nodes() == 1)
1405 use_alien_caches = 0;
1406
1407 for (i = 0; i < NUM_INIT_LISTS; i++)
1408 kmem_cache_node_init(&init_kmem_cache_node[i]);
1409
1410 /*
1411 * Fragmentation resistance on low memory - only use bigger
1412 * page orders on machines with more than 32MB of memory if
1413 * not overridden on the command line.
1414 */
1415 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1416 slab_max_order = SLAB_MAX_ORDER_HI;
1417
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
1420 * 1) initialize the kmem_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except kmem_cache itself:
1422 * kmem_cache is statically allocated.
1423 * Initially an __init data area is used for the head array and the
1424 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
1426 * 2) Create the first kmalloc cache.
1427 * The struct kmem_cache for the new cache is allocated normally.
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * head arrays.
1431 * 4) Replace the __init data head arrays for kmem_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
1433 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1436 */
1437
1438 /* 1) create the kmem_cache */
1439
1440 /*
1441 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1442 */
1443 create_boot_cache(kmem_cache, "kmem_cache",
1444 offsetof(struct kmem_cache, node) +
1445 nr_node_ids * sizeof(struct kmem_cache_node *),
1446 SLAB_HWCACHE_ALIGN);
1447 list_add(&kmem_cache->list, &slab_caches);
1448 slab_state = PARTIAL;
1449
1450 /*
1451 * Initialize the caches that provide memory for the kmem_cache_node
1452 * structures first. Without this, further allocations will bug.
1453 */
1454 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1455 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1456 slab_state = PARTIAL_NODE;
1457
1458 slab_early_init = 0;
1459
1460 /* 5) Replace the bootstrap kmem_cache_node */
1461 {
1462 int nid;
1463
1464 for_each_online_node(nid) {
1465 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1466
1467 init_list(kmalloc_caches[INDEX_NODE],
1468 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1469 }
1470 }
1471
1472 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1473 }
1474
kmem_cache_init_late(void)1475 void __init kmem_cache_init_late(void)
1476 {
1477 struct kmem_cache *cachep;
1478
1479 slab_state = UP;
1480
1481 /* 6) resize the head arrays to their final sizes */
1482 mutex_lock(&slab_mutex);
1483 list_for_each_entry(cachep, &slab_caches, list)
1484 if (enable_cpucache(cachep, GFP_NOWAIT))
1485 BUG();
1486 mutex_unlock(&slab_mutex);
1487
1488 /* Done! */
1489 slab_state = FULL;
1490
1491 /*
1492 * Register a cpu startup notifier callback that initializes
1493 * cpu_cache_get for all new cpus
1494 */
1495 register_cpu_notifier(&cpucache_notifier);
1496
1497 #ifdef CONFIG_NUMA
1498 /*
1499 * Register a memory hotplug callback that initializes and frees
1500 * node.
1501 */
1502 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1503 #endif
1504
1505 /*
1506 * The reap timers are started later, with a module init call: That part
1507 * of the kernel is not yet operational.
1508 */
1509 }
1510
cpucache_init(void)1511 static int __init cpucache_init(void)
1512 {
1513 int cpu;
1514
1515 /*
1516 * Register the timers that return unneeded pages to the page allocator
1517 */
1518 for_each_online_cpu(cpu)
1519 start_cpu_timer(cpu);
1520
1521 /* Done! */
1522 slab_state = FULL;
1523 return 0;
1524 }
1525 __initcall(cpucache_init);
1526
1527 static noinline void
slab_out_of_memory(struct kmem_cache * cachep,gfp_t gfpflags,int nodeid)1528 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1529 {
1530 #if DEBUG
1531 struct kmem_cache_node *n;
1532 struct page *page;
1533 unsigned long flags;
1534 int node;
1535 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1536 DEFAULT_RATELIMIT_BURST);
1537
1538 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1539 return;
1540
1541 printk(KERN_WARNING
1542 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1543 nodeid, gfpflags);
1544 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1545 cachep->name, cachep->size, cachep->gfporder);
1546
1547 for_each_kmem_cache_node(cachep, node, n) {
1548 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1549 unsigned long active_slabs = 0, num_slabs = 0;
1550
1551 spin_lock_irqsave(&n->list_lock, flags);
1552 list_for_each_entry(page, &n->slabs_full, lru) {
1553 active_objs += cachep->num;
1554 active_slabs++;
1555 }
1556 list_for_each_entry(page, &n->slabs_partial, lru) {
1557 active_objs += page->active;
1558 active_slabs++;
1559 }
1560 list_for_each_entry(page, &n->slabs_free, lru)
1561 num_slabs++;
1562
1563 free_objects += n->free_objects;
1564 spin_unlock_irqrestore(&n->list_lock, flags);
1565
1566 num_slabs += active_slabs;
1567 num_objs = num_slabs * cachep->num;
1568 printk(KERN_WARNING
1569 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1570 node, active_slabs, num_slabs, active_objs, num_objs,
1571 free_objects);
1572 }
1573 #endif
1574 }
1575
1576 /*
1577 * Interface to system's page allocator. No need to hold the
1578 * kmem_cache_node ->list_lock.
1579 *
1580 * If we requested dmaable memory, we will get it. Even if we
1581 * did not request dmaable memory, we might get it, but that
1582 * would be relatively rare and ignorable.
1583 */
kmem_getpages(struct kmem_cache * cachep,gfp_t flags,int nodeid)1584 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1585 int nodeid)
1586 {
1587 struct page *page;
1588 int nr_pages;
1589
1590 flags |= cachep->allocflags;
1591 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1592 flags |= __GFP_RECLAIMABLE;
1593
1594 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1595 return NULL;
1596
1597 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1598 if (!page) {
1599 memcg_uncharge_slab(cachep, cachep->gfporder);
1600 slab_out_of_memory(cachep, flags, nodeid);
1601 return NULL;
1602 }
1603
1604 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1605 if (page_is_pfmemalloc(page))
1606 pfmemalloc_active = true;
1607
1608 nr_pages = (1 << cachep->gfporder);
1609 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1610 add_zone_page_state(page_zone(page),
1611 NR_SLAB_RECLAIMABLE, nr_pages);
1612 else
1613 add_zone_page_state(page_zone(page),
1614 NR_SLAB_UNRECLAIMABLE, nr_pages);
1615 __SetPageSlab(page);
1616 if (page_is_pfmemalloc(page))
1617 SetPageSlabPfmemalloc(page);
1618
1619 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1620 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1621
1622 if (cachep->ctor)
1623 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1624 else
1625 kmemcheck_mark_unallocated_pages(page, nr_pages);
1626 }
1627
1628 return page;
1629 }
1630
1631 /*
1632 * Interface to system's page release.
1633 */
kmem_freepages(struct kmem_cache * cachep,struct page * page)1634 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1635 {
1636 const unsigned long nr_freed = (1 << cachep->gfporder);
1637
1638 kmemcheck_free_shadow(page, cachep->gfporder);
1639
1640 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1641 sub_zone_page_state(page_zone(page),
1642 NR_SLAB_RECLAIMABLE, nr_freed);
1643 else
1644 sub_zone_page_state(page_zone(page),
1645 NR_SLAB_UNRECLAIMABLE, nr_freed);
1646
1647 BUG_ON(!PageSlab(page));
1648 __ClearPageSlabPfmemalloc(page);
1649 __ClearPageSlab(page);
1650 page_mapcount_reset(page);
1651 page->mapping = NULL;
1652
1653 if (current->reclaim_state)
1654 current->reclaim_state->reclaimed_slab += nr_freed;
1655 __free_pages(page, cachep->gfporder);
1656 memcg_uncharge_slab(cachep, cachep->gfporder);
1657 }
1658
kmem_rcu_free(struct rcu_head * head)1659 static void kmem_rcu_free(struct rcu_head *head)
1660 {
1661 struct kmem_cache *cachep;
1662 struct page *page;
1663
1664 page = container_of(head, struct page, rcu_head);
1665 cachep = page->slab_cache;
1666
1667 kmem_freepages(cachep, page);
1668 }
1669
1670 #if DEBUG
1671
1672 #ifdef CONFIG_DEBUG_PAGEALLOC
store_stackinfo(struct kmem_cache * cachep,unsigned long * addr,unsigned long caller)1673 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1674 unsigned long caller)
1675 {
1676 int size = cachep->object_size;
1677
1678 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1679
1680 if (size < 5 * sizeof(unsigned long))
1681 return;
1682
1683 *addr++ = 0x12345678;
1684 *addr++ = caller;
1685 *addr++ = smp_processor_id();
1686 size -= 3 * sizeof(unsigned long);
1687 {
1688 unsigned long *sptr = &caller;
1689 unsigned long svalue;
1690
1691 while (!kstack_end(sptr)) {
1692 svalue = *sptr++;
1693 if (kernel_text_address(svalue)) {
1694 *addr++ = svalue;
1695 size -= sizeof(unsigned long);
1696 if (size <= sizeof(unsigned long))
1697 break;
1698 }
1699 }
1700
1701 }
1702 *addr++ = 0x87654321;
1703 }
1704 #endif
1705
poison_obj(struct kmem_cache * cachep,void * addr,unsigned char val)1706 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1707 {
1708 int size = cachep->object_size;
1709 addr = &((char *)addr)[obj_offset(cachep)];
1710
1711 memset(addr, val, size);
1712 *(unsigned char *)(addr + size - 1) = POISON_END;
1713 }
1714
dump_line(char * data,int offset,int limit)1715 static void dump_line(char *data, int offset, int limit)
1716 {
1717 int i;
1718 unsigned char error = 0;
1719 int bad_count = 0;
1720
1721 printk(KERN_ERR "%03x: ", offset);
1722 for (i = 0; i < limit; i++) {
1723 if (data[offset + i] != POISON_FREE) {
1724 error = data[offset + i];
1725 bad_count++;
1726 }
1727 }
1728 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1729 &data[offset], limit, 1);
1730
1731 if (bad_count == 1) {
1732 error ^= POISON_FREE;
1733 if (!(error & (error - 1))) {
1734 printk(KERN_ERR "Single bit error detected. Probably "
1735 "bad RAM.\n");
1736 #ifdef CONFIG_X86
1737 printk(KERN_ERR "Run memtest86+ or a similar memory "
1738 "test tool.\n");
1739 #else
1740 printk(KERN_ERR "Run a memory test tool.\n");
1741 #endif
1742 }
1743 }
1744 }
1745 #endif
1746
1747 #if DEBUG
1748
print_objinfo(struct kmem_cache * cachep,void * objp,int lines)1749 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1750 {
1751 int i, size;
1752 char *realobj;
1753
1754 if (cachep->flags & SLAB_RED_ZONE) {
1755 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1756 *dbg_redzone1(cachep, objp),
1757 *dbg_redzone2(cachep, objp));
1758 }
1759
1760 if (cachep->flags & SLAB_STORE_USER) {
1761 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1762 *dbg_userword(cachep, objp),
1763 *dbg_userword(cachep, objp));
1764 }
1765 realobj = (char *)objp + obj_offset(cachep);
1766 size = cachep->object_size;
1767 for (i = 0; i < size && lines; i += 16, lines--) {
1768 int limit;
1769 limit = 16;
1770 if (i + limit > size)
1771 limit = size - i;
1772 dump_line(realobj, i, limit);
1773 }
1774 }
1775
check_poison_obj(struct kmem_cache * cachep,void * objp)1776 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1777 {
1778 char *realobj;
1779 int size, i;
1780 int lines = 0;
1781
1782 realobj = (char *)objp + obj_offset(cachep);
1783 size = cachep->object_size;
1784
1785 for (i = 0; i < size; i++) {
1786 char exp = POISON_FREE;
1787 if (i == size - 1)
1788 exp = POISON_END;
1789 if (realobj[i] != exp) {
1790 int limit;
1791 /* Mismatch ! */
1792 /* Print header */
1793 if (lines == 0) {
1794 printk(KERN_ERR
1795 "Slab corruption (%s): %s start=%p, len=%d\n",
1796 print_tainted(), cachep->name, realobj, size);
1797 print_objinfo(cachep, objp, 0);
1798 }
1799 /* Hexdump the affected line */
1800 i = (i / 16) * 16;
1801 limit = 16;
1802 if (i + limit > size)
1803 limit = size - i;
1804 dump_line(realobj, i, limit);
1805 i += 16;
1806 lines++;
1807 /* Limit to 5 lines */
1808 if (lines > 5)
1809 break;
1810 }
1811 }
1812 if (lines != 0) {
1813 /* Print some data about the neighboring objects, if they
1814 * exist:
1815 */
1816 struct page *page = virt_to_head_page(objp);
1817 unsigned int objnr;
1818
1819 objnr = obj_to_index(cachep, page, objp);
1820 if (objnr) {
1821 objp = index_to_obj(cachep, page, objnr - 1);
1822 realobj = (char *)objp + obj_offset(cachep);
1823 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1824 realobj, size);
1825 print_objinfo(cachep, objp, 2);
1826 }
1827 if (objnr + 1 < cachep->num) {
1828 objp = index_to_obj(cachep, page, objnr + 1);
1829 realobj = (char *)objp + obj_offset(cachep);
1830 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1831 realobj, size);
1832 print_objinfo(cachep, objp, 2);
1833 }
1834 }
1835 }
1836 #endif
1837
1838 #if DEBUG
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1839 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1840 struct page *page)
1841 {
1842 int i;
1843 for (i = 0; i < cachep->num; i++) {
1844 void *objp = index_to_obj(cachep, page, i);
1845
1846 if (cachep->flags & SLAB_POISON) {
1847 #ifdef CONFIG_DEBUG_PAGEALLOC
1848 if (cachep->size % PAGE_SIZE == 0 &&
1849 OFF_SLAB(cachep))
1850 kernel_map_pages(virt_to_page(objp),
1851 cachep->size / PAGE_SIZE, 1);
1852 else
1853 check_poison_obj(cachep, objp);
1854 #else
1855 check_poison_obj(cachep, objp);
1856 #endif
1857 }
1858 if (cachep->flags & SLAB_RED_ZONE) {
1859 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1860 slab_error(cachep, "start of a freed object "
1861 "was overwritten");
1862 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1863 slab_error(cachep, "end of a freed object "
1864 "was overwritten");
1865 }
1866 }
1867 }
1868 #else
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1869 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1870 struct page *page)
1871 {
1872 }
1873 #endif
1874
1875 /**
1876 * slab_destroy - destroy and release all objects in a slab
1877 * @cachep: cache pointer being destroyed
1878 * @page: page pointer being destroyed
1879 *
1880 * Destroy all the objs in a slab page, and release the mem back to the system.
1881 * Before calling the slab page must have been unlinked from the cache. The
1882 * kmem_cache_node ->list_lock is not held/needed.
1883 */
slab_destroy(struct kmem_cache * cachep,struct page * page)1884 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1885 {
1886 void *freelist;
1887
1888 freelist = page->freelist;
1889 slab_destroy_debugcheck(cachep, page);
1890 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1891 struct rcu_head *head;
1892
1893 /*
1894 * RCU free overloads the RCU head over the LRU.
1895 * slab_page has been overloeaded over the LRU,
1896 * however it is not used from now on so that
1897 * we can use it safely.
1898 */
1899 head = (void *)&page->rcu_head;
1900 call_rcu(head, kmem_rcu_free);
1901
1902 } else {
1903 kmem_freepages(cachep, page);
1904 }
1905
1906 /*
1907 * From now on, we don't use freelist
1908 * although actual page can be freed in rcu context
1909 */
1910 if (OFF_SLAB(cachep))
1911 kmem_cache_free(cachep->freelist_cache, freelist);
1912 }
1913
slabs_destroy(struct kmem_cache * cachep,struct list_head * list)1914 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1915 {
1916 struct page *page, *n;
1917
1918 list_for_each_entry_safe(page, n, list, lru) {
1919 list_del(&page->lru);
1920 slab_destroy(cachep, page);
1921 }
1922 }
1923
1924 /**
1925 * calculate_slab_order - calculate size (page order) of slabs
1926 * @cachep: pointer to the cache that is being created
1927 * @size: size of objects to be created in this cache.
1928 * @align: required alignment for the objects.
1929 * @flags: slab allocation flags
1930 *
1931 * Also calculates the number of objects per slab.
1932 *
1933 * This could be made much more intelligent. For now, try to avoid using
1934 * high order pages for slabs. When the gfp() functions are more friendly
1935 * towards high-order requests, this should be changed.
1936 */
calculate_slab_order(struct kmem_cache * cachep,size_t size,size_t align,unsigned long flags)1937 static size_t calculate_slab_order(struct kmem_cache *cachep,
1938 size_t size, size_t align, unsigned long flags)
1939 {
1940 unsigned long offslab_limit;
1941 size_t left_over = 0;
1942 int gfporder;
1943
1944 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1945 unsigned int num;
1946 size_t remainder;
1947
1948 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1949 if (!num)
1950 continue;
1951
1952 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1953 if (num > SLAB_OBJ_MAX_NUM)
1954 break;
1955
1956 if (flags & CFLGS_OFF_SLAB) {
1957 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1958 /*
1959 * Max number of objs-per-slab for caches which
1960 * use off-slab slabs. Needed to avoid a possible
1961 * looping condition in cache_grow().
1962 */
1963 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1964 freelist_size_per_obj += sizeof(char);
1965 offslab_limit = size;
1966 offslab_limit /= freelist_size_per_obj;
1967
1968 if (num > offslab_limit)
1969 break;
1970 }
1971
1972 /* Found something acceptable - save it away */
1973 cachep->num = num;
1974 cachep->gfporder = gfporder;
1975 left_over = remainder;
1976
1977 /*
1978 * A VFS-reclaimable slab tends to have most allocations
1979 * as GFP_NOFS and we really don't want to have to be allocating
1980 * higher-order pages when we are unable to shrink dcache.
1981 */
1982 if (flags & SLAB_RECLAIM_ACCOUNT)
1983 break;
1984
1985 /*
1986 * Large number of objects is good, but very large slabs are
1987 * currently bad for the gfp()s.
1988 */
1989 if (gfporder >= slab_max_order)
1990 break;
1991
1992 /*
1993 * Acceptable internal fragmentation?
1994 */
1995 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1996 break;
1997 }
1998 return left_over;
1999 }
2000
alloc_kmem_cache_cpus(struct kmem_cache * cachep,int entries,int batchcount)2001 static struct array_cache __percpu *alloc_kmem_cache_cpus(
2002 struct kmem_cache *cachep, int entries, int batchcount)
2003 {
2004 int cpu;
2005 size_t size;
2006 struct array_cache __percpu *cpu_cache;
2007
2008 size = sizeof(void *) * entries + sizeof(struct array_cache);
2009 cpu_cache = __alloc_percpu(size, sizeof(void *));
2010
2011 if (!cpu_cache)
2012 return NULL;
2013
2014 for_each_possible_cpu(cpu) {
2015 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2016 entries, batchcount);
2017 }
2018
2019 return cpu_cache;
2020 }
2021
setup_cpu_cache(struct kmem_cache * cachep,gfp_t gfp)2022 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2023 {
2024 if (slab_state >= FULL)
2025 return enable_cpucache(cachep, gfp);
2026
2027 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2028 if (!cachep->cpu_cache)
2029 return 1;
2030
2031 if (slab_state == DOWN) {
2032 /* Creation of first cache (kmem_cache). */
2033 set_up_node(kmem_cache, CACHE_CACHE);
2034 } else if (slab_state == PARTIAL) {
2035 /* For kmem_cache_node */
2036 set_up_node(cachep, SIZE_NODE);
2037 } else {
2038 int node;
2039
2040 for_each_online_node(node) {
2041 cachep->node[node] = kmalloc_node(
2042 sizeof(struct kmem_cache_node), gfp, node);
2043 BUG_ON(!cachep->node[node]);
2044 kmem_cache_node_init(cachep->node[node]);
2045 }
2046 }
2047
2048 cachep->node[numa_mem_id()]->next_reap =
2049 jiffies + REAPTIMEOUT_NODE +
2050 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2051
2052 cpu_cache_get(cachep)->avail = 0;
2053 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2054 cpu_cache_get(cachep)->batchcount = 1;
2055 cpu_cache_get(cachep)->touched = 0;
2056 cachep->batchcount = 1;
2057 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2058 return 0;
2059 }
2060
kmem_cache_flags(unsigned long object_size,unsigned long flags,const char * name,void (* ctor)(void *))2061 unsigned long kmem_cache_flags(unsigned long object_size,
2062 unsigned long flags, const char *name,
2063 void (*ctor)(void *))
2064 {
2065 return flags;
2066 }
2067
2068 struct kmem_cache *
__kmem_cache_alias(const char * name,size_t size,size_t align,unsigned long flags,void (* ctor)(void *))2069 __kmem_cache_alias(const char *name, size_t size, size_t align,
2070 unsigned long flags, void (*ctor)(void *))
2071 {
2072 struct kmem_cache *cachep;
2073
2074 cachep = find_mergeable(size, align, flags, name, ctor);
2075 if (cachep) {
2076 cachep->refcount++;
2077
2078 /*
2079 * Adjust the object sizes so that we clear
2080 * the complete object on kzalloc.
2081 */
2082 cachep->object_size = max_t(int, cachep->object_size, size);
2083 }
2084 return cachep;
2085 }
2086
2087 /**
2088 * __kmem_cache_create - Create a cache.
2089 * @cachep: cache management descriptor
2090 * @flags: SLAB flags
2091 *
2092 * Returns a ptr to the cache on success, NULL on failure.
2093 * Cannot be called within a int, but can be interrupted.
2094 * The @ctor is run when new pages are allocated by the cache.
2095 *
2096 * The flags are
2097 *
2098 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2099 * to catch references to uninitialised memory.
2100 *
2101 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2102 * for buffer overruns.
2103 *
2104 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2105 * cacheline. This can be beneficial if you're counting cycles as closely
2106 * as davem.
2107 */
2108 int
__kmem_cache_create(struct kmem_cache * cachep,unsigned long flags)2109 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2110 {
2111 size_t left_over, freelist_size;
2112 size_t ralign = BYTES_PER_WORD;
2113 gfp_t gfp;
2114 int err;
2115 size_t size = cachep->size;
2116
2117 #if DEBUG
2118 #if FORCED_DEBUG
2119 /*
2120 * Enable redzoning and last user accounting, except for caches with
2121 * large objects, if the increased size would increase the object size
2122 * above the next power of two: caches with object sizes just above a
2123 * power of two have a significant amount of internal fragmentation.
2124 */
2125 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2126 2 * sizeof(unsigned long long)))
2127 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2128 if (!(flags & SLAB_DESTROY_BY_RCU))
2129 flags |= SLAB_POISON;
2130 #endif
2131 if (flags & SLAB_DESTROY_BY_RCU)
2132 BUG_ON(flags & SLAB_POISON);
2133 #endif
2134
2135 /*
2136 * Check that size is in terms of words. This is needed to avoid
2137 * unaligned accesses for some archs when redzoning is used, and makes
2138 * sure any on-slab bufctl's are also correctly aligned.
2139 */
2140 if (size & (BYTES_PER_WORD - 1)) {
2141 size += (BYTES_PER_WORD - 1);
2142 size &= ~(BYTES_PER_WORD - 1);
2143 }
2144
2145 if (flags & SLAB_RED_ZONE) {
2146 ralign = REDZONE_ALIGN;
2147 /* If redzoning, ensure that the second redzone is suitably
2148 * aligned, by adjusting the object size accordingly. */
2149 size += REDZONE_ALIGN - 1;
2150 size &= ~(REDZONE_ALIGN - 1);
2151 }
2152
2153 /* 3) caller mandated alignment */
2154 if (ralign < cachep->align) {
2155 ralign = cachep->align;
2156 }
2157 /* disable debug if necessary */
2158 if (ralign > __alignof__(unsigned long long))
2159 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2160 /*
2161 * 4) Store it.
2162 */
2163 cachep->align = ralign;
2164
2165 if (slab_is_available())
2166 gfp = GFP_KERNEL;
2167 else
2168 gfp = GFP_NOWAIT;
2169
2170 #if DEBUG
2171
2172 /*
2173 * Both debugging options require word-alignment which is calculated
2174 * into align above.
2175 */
2176 if (flags & SLAB_RED_ZONE) {
2177 /* add space for red zone words */
2178 cachep->obj_offset += sizeof(unsigned long long);
2179 size += 2 * sizeof(unsigned long long);
2180 }
2181 if (flags & SLAB_STORE_USER) {
2182 /* user store requires one word storage behind the end of
2183 * the real object. But if the second red zone needs to be
2184 * aligned to 64 bits, we must allow that much space.
2185 */
2186 if (flags & SLAB_RED_ZONE)
2187 size += REDZONE_ALIGN;
2188 else
2189 size += BYTES_PER_WORD;
2190 }
2191 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2192 /*
2193 * To activate debug pagealloc, off-slab management is necessary
2194 * requirement. In early phase of initialization, small sized slab
2195 * doesn't get initialized so it would not be possible. So, we need
2196 * to check size >= 256. It guarantees that all necessary small
2197 * sized slab is initialized in current slab initialization sequence.
2198 */
2199 if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2200 size >= 256 && cachep->object_size > cache_line_size() &&
2201 ALIGN(size, cachep->align) < PAGE_SIZE) {
2202 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2203 size = PAGE_SIZE;
2204 }
2205 #endif
2206 #endif
2207
2208 /*
2209 * Determine if the slab management is 'on' or 'off' slab.
2210 * (bootstrapping cannot cope with offslab caches so don't do
2211 * it too early on. Always use on-slab management when
2212 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2213 */
2214 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2215 !(flags & SLAB_NOLEAKTRACE))
2216 /*
2217 * Size is large, assume best to place the slab management obj
2218 * off-slab (should allow better packing of objs).
2219 */
2220 flags |= CFLGS_OFF_SLAB;
2221
2222 size = ALIGN(size, cachep->align);
2223 /*
2224 * We should restrict the number of objects in a slab to implement
2225 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2226 */
2227 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2228 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2229
2230 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2231
2232 if (!cachep->num)
2233 return -E2BIG;
2234
2235 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2236
2237 /*
2238 * If the slab has been placed off-slab, and we have enough space then
2239 * move it on-slab. This is at the expense of any extra colouring.
2240 */
2241 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2242 flags &= ~CFLGS_OFF_SLAB;
2243 left_over -= freelist_size;
2244 }
2245
2246 if (flags & CFLGS_OFF_SLAB) {
2247 /* really off slab. No need for manual alignment */
2248 freelist_size = calculate_freelist_size(cachep->num, 0);
2249
2250 #ifdef CONFIG_PAGE_POISONING
2251 /* If we're going to use the generic kernel_map_pages()
2252 * poisoning, then it's going to smash the contents of
2253 * the redzone and userword anyhow, so switch them off.
2254 */
2255 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2256 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2257 #endif
2258 }
2259
2260 cachep->colour_off = cache_line_size();
2261 /* Offset must be a multiple of the alignment. */
2262 if (cachep->colour_off < cachep->align)
2263 cachep->colour_off = cachep->align;
2264 cachep->colour = left_over / cachep->colour_off;
2265 cachep->freelist_size = freelist_size;
2266 cachep->flags = flags;
2267 cachep->allocflags = __GFP_COMP;
2268 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2269 cachep->allocflags |= GFP_DMA;
2270 cachep->size = size;
2271 cachep->reciprocal_buffer_size = reciprocal_value(size);
2272
2273 if (flags & CFLGS_OFF_SLAB) {
2274 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2275 /*
2276 * This is a possibility for one of the kmalloc_{dma,}_caches.
2277 * But since we go off slab only for object size greater than
2278 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2279 * in ascending order,this should not happen at all.
2280 * But leave a BUG_ON for some lucky dude.
2281 */
2282 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2283 }
2284
2285 err = setup_cpu_cache(cachep, gfp);
2286 if (err) {
2287 __kmem_cache_shutdown(cachep);
2288 return err;
2289 }
2290
2291 return 0;
2292 }
2293
2294 #if DEBUG
check_irq_off(void)2295 static void check_irq_off(void)
2296 {
2297 BUG_ON(!irqs_disabled());
2298 }
2299
check_irq_on(void)2300 static void check_irq_on(void)
2301 {
2302 BUG_ON(irqs_disabled());
2303 }
2304
check_spinlock_acquired(struct kmem_cache * cachep)2305 static void check_spinlock_acquired(struct kmem_cache *cachep)
2306 {
2307 #ifdef CONFIG_SMP
2308 check_irq_off();
2309 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2310 #endif
2311 }
2312
check_spinlock_acquired_node(struct kmem_cache * cachep,int node)2313 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2314 {
2315 #ifdef CONFIG_SMP
2316 check_irq_off();
2317 assert_spin_locked(&get_node(cachep, node)->list_lock);
2318 #endif
2319 }
2320
2321 #else
2322 #define check_irq_off() do { } while(0)
2323 #define check_irq_on() do { } while(0)
2324 #define check_spinlock_acquired(x) do { } while(0)
2325 #define check_spinlock_acquired_node(x, y) do { } while(0)
2326 #endif
2327
2328 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2329 struct array_cache *ac,
2330 int force, int node);
2331
do_drain(void * arg)2332 static void do_drain(void *arg)
2333 {
2334 struct kmem_cache *cachep = arg;
2335 struct array_cache *ac;
2336 int node = numa_mem_id();
2337 struct kmem_cache_node *n;
2338 LIST_HEAD(list);
2339
2340 check_irq_off();
2341 ac = cpu_cache_get(cachep);
2342 n = get_node(cachep, node);
2343 spin_lock(&n->list_lock);
2344 free_block(cachep, ac->entry, ac->avail, node, &list);
2345 spin_unlock(&n->list_lock);
2346 slabs_destroy(cachep, &list);
2347 ac->avail = 0;
2348 }
2349
drain_cpu_caches(struct kmem_cache * cachep)2350 static void drain_cpu_caches(struct kmem_cache *cachep)
2351 {
2352 struct kmem_cache_node *n;
2353 int node;
2354
2355 on_each_cpu(do_drain, cachep, 1);
2356 check_irq_on();
2357 for_each_kmem_cache_node(cachep, node, n)
2358 if (n->alien)
2359 drain_alien_cache(cachep, n->alien);
2360
2361 for_each_kmem_cache_node(cachep, node, n)
2362 drain_array(cachep, n, n->shared, 1, node);
2363 }
2364
2365 /*
2366 * Remove slabs from the list of free slabs.
2367 * Specify the number of slabs to drain in tofree.
2368 *
2369 * Returns the actual number of slabs released.
2370 */
drain_freelist(struct kmem_cache * cache,struct kmem_cache_node * n,int tofree)2371 static int drain_freelist(struct kmem_cache *cache,
2372 struct kmem_cache_node *n, int tofree)
2373 {
2374 struct list_head *p;
2375 int nr_freed;
2376 struct page *page;
2377
2378 nr_freed = 0;
2379 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2380
2381 spin_lock_irq(&n->list_lock);
2382 p = n->slabs_free.prev;
2383 if (p == &n->slabs_free) {
2384 spin_unlock_irq(&n->list_lock);
2385 goto out;
2386 }
2387
2388 page = list_entry(p, struct page, lru);
2389 #if DEBUG
2390 BUG_ON(page->active);
2391 #endif
2392 list_del(&page->lru);
2393 /*
2394 * Safe to drop the lock. The slab is no longer linked
2395 * to the cache.
2396 */
2397 n->free_objects -= cache->num;
2398 spin_unlock_irq(&n->list_lock);
2399 slab_destroy(cache, page);
2400 nr_freed++;
2401 }
2402 out:
2403 return nr_freed;
2404 }
2405
__kmem_cache_shrink(struct kmem_cache * cachep,bool deactivate)2406 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2407 {
2408 int ret = 0;
2409 int node;
2410 struct kmem_cache_node *n;
2411
2412 drain_cpu_caches(cachep);
2413
2414 check_irq_on();
2415 for_each_kmem_cache_node(cachep, node, n) {
2416 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2417
2418 ret += !list_empty(&n->slabs_full) ||
2419 !list_empty(&n->slabs_partial);
2420 }
2421 return (ret ? 1 : 0);
2422 }
2423
__kmem_cache_shutdown(struct kmem_cache * cachep)2424 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2425 {
2426 int i;
2427 struct kmem_cache_node *n;
2428 int rc = __kmem_cache_shrink(cachep, false);
2429
2430 if (rc)
2431 return rc;
2432
2433 free_percpu(cachep->cpu_cache);
2434
2435 /* NUMA: free the node structures */
2436 for_each_kmem_cache_node(cachep, i, n) {
2437 kfree(n->shared);
2438 free_alien_cache(n->alien);
2439 kfree(n);
2440 cachep->node[i] = NULL;
2441 }
2442 return 0;
2443 }
2444
2445 /*
2446 * Get the memory for a slab management obj.
2447 *
2448 * For a slab cache when the slab descriptor is off-slab, the
2449 * slab descriptor can't come from the same cache which is being created,
2450 * Because if it is the case, that means we defer the creation of
2451 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2452 * And we eventually call down to __kmem_cache_create(), which
2453 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2454 * This is a "chicken-and-egg" problem.
2455 *
2456 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2457 * which are all initialized during kmem_cache_init().
2458 */
alloc_slabmgmt(struct kmem_cache * cachep,struct page * page,int colour_off,gfp_t local_flags,int nodeid)2459 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2460 struct page *page, int colour_off,
2461 gfp_t local_flags, int nodeid)
2462 {
2463 void *freelist;
2464 void *addr = page_address(page);
2465
2466 if (OFF_SLAB(cachep)) {
2467 /* Slab management obj is off-slab. */
2468 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2469 local_flags, nodeid);
2470 if (!freelist)
2471 return NULL;
2472 } else {
2473 freelist = addr + colour_off;
2474 colour_off += cachep->freelist_size;
2475 }
2476 page->active = 0;
2477 page->s_mem = addr + colour_off;
2478 return freelist;
2479 }
2480
get_free_obj(struct page * page,unsigned int idx)2481 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2482 {
2483 return ((freelist_idx_t *)page->freelist)[idx];
2484 }
2485
set_free_obj(struct page * page,unsigned int idx,freelist_idx_t val)2486 static inline void set_free_obj(struct page *page,
2487 unsigned int idx, freelist_idx_t val)
2488 {
2489 ((freelist_idx_t *)(page->freelist))[idx] = val;
2490 }
2491
cache_init_objs(struct kmem_cache * cachep,struct page * page)2492 static void cache_init_objs(struct kmem_cache *cachep,
2493 struct page *page)
2494 {
2495 int i;
2496
2497 for (i = 0; i < cachep->num; i++) {
2498 void *objp = index_to_obj(cachep, page, i);
2499 #if DEBUG
2500 /* need to poison the objs? */
2501 if (cachep->flags & SLAB_POISON)
2502 poison_obj(cachep, objp, POISON_FREE);
2503 if (cachep->flags & SLAB_STORE_USER)
2504 *dbg_userword(cachep, objp) = NULL;
2505
2506 if (cachep->flags & SLAB_RED_ZONE) {
2507 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2508 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2509 }
2510 /*
2511 * Constructors are not allowed to allocate memory from the same
2512 * cache which they are a constructor for. Otherwise, deadlock.
2513 * They must also be threaded.
2514 */
2515 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2516 cachep->ctor(objp + obj_offset(cachep));
2517
2518 if (cachep->flags & SLAB_RED_ZONE) {
2519 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2520 slab_error(cachep, "constructor overwrote the"
2521 " end of an object");
2522 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2523 slab_error(cachep, "constructor overwrote the"
2524 " start of an object");
2525 }
2526 if ((cachep->size % PAGE_SIZE) == 0 &&
2527 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2528 kernel_map_pages(virt_to_page(objp),
2529 cachep->size / PAGE_SIZE, 0);
2530 #else
2531 if (cachep->ctor)
2532 cachep->ctor(objp);
2533 #endif
2534 set_obj_status(page, i, OBJECT_FREE);
2535 set_free_obj(page, i, i);
2536 }
2537 }
2538
kmem_flagcheck(struct kmem_cache * cachep,gfp_t flags)2539 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2540 {
2541 if (CONFIG_ZONE_DMA_FLAG) {
2542 if (flags & GFP_DMA)
2543 BUG_ON(!(cachep->allocflags & GFP_DMA));
2544 else
2545 BUG_ON(cachep->allocflags & GFP_DMA);
2546 }
2547 }
2548
slab_get_obj(struct kmem_cache * cachep,struct page * page,int nodeid)2549 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2550 int nodeid)
2551 {
2552 void *objp;
2553
2554 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2555 page->active++;
2556 #if DEBUG
2557 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2558 #endif
2559
2560 return objp;
2561 }
2562
slab_put_obj(struct kmem_cache * cachep,struct page * page,void * objp,int nodeid)2563 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2564 void *objp, int nodeid)
2565 {
2566 unsigned int objnr = obj_to_index(cachep, page, objp);
2567 #if DEBUG
2568 unsigned int i;
2569
2570 /* Verify that the slab belongs to the intended node */
2571 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2572
2573 /* Verify double free bug */
2574 for (i = page->active; i < cachep->num; i++) {
2575 if (get_free_obj(page, i) == objnr) {
2576 printk(KERN_ERR "slab: double free detected in cache "
2577 "'%s', objp %p\n", cachep->name, objp);
2578 BUG();
2579 }
2580 }
2581 #endif
2582 page->active--;
2583 set_free_obj(page, page->active, objnr);
2584 }
2585
2586 /*
2587 * Map pages beginning at addr to the given cache and slab. This is required
2588 * for the slab allocator to be able to lookup the cache and slab of a
2589 * virtual address for kfree, ksize, and slab debugging.
2590 */
slab_map_pages(struct kmem_cache * cache,struct page * page,void * freelist)2591 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2592 void *freelist)
2593 {
2594 page->slab_cache = cache;
2595 page->freelist = freelist;
2596 }
2597
2598 /*
2599 * Grow (by 1) the number of slabs within a cache. This is called by
2600 * kmem_cache_alloc() when there are no active objs left in a cache.
2601 */
cache_grow(struct kmem_cache * cachep,gfp_t flags,int nodeid,struct page * page)2602 static int cache_grow(struct kmem_cache *cachep,
2603 gfp_t flags, int nodeid, struct page *page)
2604 {
2605 void *freelist;
2606 size_t offset;
2607 gfp_t local_flags;
2608 struct kmem_cache_node *n;
2609
2610 /*
2611 * Be lazy and only check for valid flags here, keeping it out of the
2612 * critical path in kmem_cache_alloc().
2613 */
2614 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2615 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2616 BUG();
2617 }
2618 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2619
2620 /* Take the node list lock to change the colour_next on this node */
2621 check_irq_off();
2622 n = get_node(cachep, nodeid);
2623 spin_lock(&n->list_lock);
2624
2625 /* Get colour for the slab, and cal the next value. */
2626 offset = n->colour_next;
2627 n->colour_next++;
2628 if (n->colour_next >= cachep->colour)
2629 n->colour_next = 0;
2630 spin_unlock(&n->list_lock);
2631
2632 offset *= cachep->colour_off;
2633
2634 if (local_flags & __GFP_WAIT)
2635 local_irq_enable();
2636
2637 /*
2638 * The test for missing atomic flag is performed here, rather than
2639 * the more obvious place, simply to reduce the critical path length
2640 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2641 * will eventually be caught here (where it matters).
2642 */
2643 kmem_flagcheck(cachep, flags);
2644
2645 /*
2646 * Get mem for the objs. Attempt to allocate a physical page from
2647 * 'nodeid'.
2648 */
2649 if (!page)
2650 page = kmem_getpages(cachep, local_flags, nodeid);
2651 if (!page)
2652 goto failed;
2653
2654 /* Get slab management. */
2655 freelist = alloc_slabmgmt(cachep, page, offset,
2656 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2657 if (!freelist)
2658 goto opps1;
2659
2660 slab_map_pages(cachep, page, freelist);
2661
2662 cache_init_objs(cachep, page);
2663
2664 if (local_flags & __GFP_WAIT)
2665 local_irq_disable();
2666 check_irq_off();
2667 spin_lock(&n->list_lock);
2668
2669 /* Make slab active. */
2670 list_add_tail(&page->lru, &(n->slabs_free));
2671 STATS_INC_GROWN(cachep);
2672 n->free_objects += cachep->num;
2673 spin_unlock(&n->list_lock);
2674 return 1;
2675 opps1:
2676 kmem_freepages(cachep, page);
2677 failed:
2678 if (local_flags & __GFP_WAIT)
2679 local_irq_disable();
2680 return 0;
2681 }
2682
2683 #if DEBUG
2684
2685 /*
2686 * Perform extra freeing checks:
2687 * - detect bad pointers.
2688 * - POISON/RED_ZONE checking
2689 */
kfree_debugcheck(const void * objp)2690 static void kfree_debugcheck(const void *objp)
2691 {
2692 if (!virt_addr_valid(objp)) {
2693 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2694 (unsigned long)objp);
2695 BUG();
2696 }
2697 }
2698
verify_redzone_free(struct kmem_cache * cache,void * obj)2699 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2700 {
2701 unsigned long long redzone1, redzone2;
2702
2703 redzone1 = *dbg_redzone1(cache, obj);
2704 redzone2 = *dbg_redzone2(cache, obj);
2705
2706 /*
2707 * Redzone is ok.
2708 */
2709 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2710 return;
2711
2712 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2713 slab_error(cache, "double free detected");
2714 else
2715 slab_error(cache, "memory outside object was overwritten");
2716
2717 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2718 obj, redzone1, redzone2);
2719 }
2720
cache_free_debugcheck(struct kmem_cache * cachep,void * objp,unsigned long caller)2721 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2722 unsigned long caller)
2723 {
2724 unsigned int objnr;
2725 struct page *page;
2726
2727 BUG_ON(virt_to_cache(objp) != cachep);
2728
2729 objp -= obj_offset(cachep);
2730 kfree_debugcheck(objp);
2731 page = virt_to_head_page(objp);
2732
2733 if (cachep->flags & SLAB_RED_ZONE) {
2734 verify_redzone_free(cachep, objp);
2735 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2736 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2737 }
2738 if (cachep->flags & SLAB_STORE_USER)
2739 *dbg_userword(cachep, objp) = (void *)caller;
2740
2741 objnr = obj_to_index(cachep, page, objp);
2742
2743 BUG_ON(objnr >= cachep->num);
2744 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2745
2746 set_obj_status(page, objnr, OBJECT_FREE);
2747 if (cachep->flags & SLAB_POISON) {
2748 #ifdef CONFIG_DEBUG_PAGEALLOC
2749 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2750 store_stackinfo(cachep, objp, caller);
2751 kernel_map_pages(virt_to_page(objp),
2752 cachep->size / PAGE_SIZE, 0);
2753 } else {
2754 poison_obj(cachep, objp, POISON_FREE);
2755 }
2756 #else
2757 poison_obj(cachep, objp, POISON_FREE);
2758 #endif
2759 }
2760 return objp;
2761 }
2762
2763 #else
2764 #define kfree_debugcheck(x) do { } while(0)
2765 #define cache_free_debugcheck(x,objp,z) (objp)
2766 #endif
2767
cache_alloc_refill(struct kmem_cache * cachep,gfp_t flags,bool force_refill)2768 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2769 bool force_refill)
2770 {
2771 int batchcount;
2772 struct kmem_cache_node *n;
2773 struct array_cache *ac;
2774 int node;
2775
2776 check_irq_off();
2777 node = numa_mem_id();
2778 if (unlikely(force_refill))
2779 goto force_grow;
2780 retry:
2781 ac = cpu_cache_get(cachep);
2782 batchcount = ac->batchcount;
2783 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2784 /*
2785 * If there was little recent activity on this cache, then
2786 * perform only a partial refill. Otherwise we could generate
2787 * refill bouncing.
2788 */
2789 batchcount = BATCHREFILL_LIMIT;
2790 }
2791 n = get_node(cachep, node);
2792
2793 BUG_ON(ac->avail > 0 || !n);
2794 spin_lock(&n->list_lock);
2795
2796 /* See if we can refill from the shared array */
2797 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2798 n->shared->touched = 1;
2799 goto alloc_done;
2800 }
2801
2802 while (batchcount > 0) {
2803 struct list_head *entry;
2804 struct page *page;
2805 /* Get slab alloc is to come from. */
2806 entry = n->slabs_partial.next;
2807 if (entry == &n->slabs_partial) {
2808 n->free_touched = 1;
2809 entry = n->slabs_free.next;
2810 if (entry == &n->slabs_free)
2811 goto must_grow;
2812 }
2813
2814 page = list_entry(entry, struct page, lru);
2815 check_spinlock_acquired(cachep);
2816
2817 /*
2818 * The slab was either on partial or free list so
2819 * there must be at least one object available for
2820 * allocation.
2821 */
2822 BUG_ON(page->active >= cachep->num);
2823
2824 while (page->active < cachep->num && batchcount--) {
2825 STATS_INC_ALLOCED(cachep);
2826 STATS_INC_ACTIVE(cachep);
2827 STATS_SET_HIGH(cachep);
2828
2829 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2830 node));
2831 }
2832
2833 /* move slabp to correct slabp list: */
2834 list_del(&page->lru);
2835 if (page->active == cachep->num)
2836 list_add(&page->lru, &n->slabs_full);
2837 else
2838 list_add(&page->lru, &n->slabs_partial);
2839 }
2840
2841 must_grow:
2842 n->free_objects -= ac->avail;
2843 alloc_done:
2844 spin_unlock(&n->list_lock);
2845
2846 if (unlikely(!ac->avail)) {
2847 int x;
2848 force_grow:
2849 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2850
2851 /* cache_grow can reenable interrupts, then ac could change. */
2852 ac = cpu_cache_get(cachep);
2853 node = numa_mem_id();
2854
2855 /* no objects in sight? abort */
2856 if (!x && (ac->avail == 0 || force_refill))
2857 return NULL;
2858
2859 if (!ac->avail) /* objects refilled by interrupt? */
2860 goto retry;
2861 }
2862 ac->touched = 1;
2863
2864 return ac_get_obj(cachep, ac, flags, force_refill);
2865 }
2866
cache_alloc_debugcheck_before(struct kmem_cache * cachep,gfp_t flags)2867 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2868 gfp_t flags)
2869 {
2870 might_sleep_if(flags & __GFP_WAIT);
2871 #if DEBUG
2872 kmem_flagcheck(cachep, flags);
2873 #endif
2874 }
2875
2876 #if DEBUG
cache_alloc_debugcheck_after(struct kmem_cache * cachep,gfp_t flags,void * objp,unsigned long caller)2877 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2878 gfp_t flags, void *objp, unsigned long caller)
2879 {
2880 struct page *page;
2881
2882 if (!objp)
2883 return objp;
2884 if (cachep->flags & SLAB_POISON) {
2885 #ifdef CONFIG_DEBUG_PAGEALLOC
2886 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2887 kernel_map_pages(virt_to_page(objp),
2888 cachep->size / PAGE_SIZE, 1);
2889 else
2890 check_poison_obj(cachep, objp);
2891 #else
2892 check_poison_obj(cachep, objp);
2893 #endif
2894 poison_obj(cachep, objp, POISON_INUSE);
2895 }
2896 if (cachep->flags & SLAB_STORE_USER)
2897 *dbg_userword(cachep, objp) = (void *)caller;
2898
2899 if (cachep->flags & SLAB_RED_ZONE) {
2900 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2901 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2902 slab_error(cachep, "double free, or memory outside"
2903 " object was overwritten");
2904 printk(KERN_ERR
2905 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2906 objp, *dbg_redzone1(cachep, objp),
2907 *dbg_redzone2(cachep, objp));
2908 }
2909 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2910 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2911 }
2912
2913 page = virt_to_head_page(objp);
2914 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2915 objp += obj_offset(cachep);
2916 if (cachep->ctor && cachep->flags & SLAB_POISON)
2917 cachep->ctor(objp);
2918 if (ARCH_SLAB_MINALIGN &&
2919 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2920 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2921 objp, (int)ARCH_SLAB_MINALIGN);
2922 }
2923 return objp;
2924 }
2925 #else
2926 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2927 #endif
2928
slab_should_failslab(struct kmem_cache * cachep,gfp_t flags)2929 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2930 {
2931 if (unlikely(cachep == kmem_cache))
2932 return false;
2933
2934 return should_failslab(cachep->object_size, flags, cachep->flags);
2935 }
2936
____cache_alloc(struct kmem_cache * cachep,gfp_t flags)2937 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2938 {
2939 void *objp;
2940 struct array_cache *ac;
2941 bool force_refill = false;
2942
2943 check_irq_off();
2944
2945 ac = cpu_cache_get(cachep);
2946 if (likely(ac->avail)) {
2947 ac->touched = 1;
2948 objp = ac_get_obj(cachep, ac, flags, false);
2949
2950 /*
2951 * Allow for the possibility all avail objects are not allowed
2952 * by the current flags
2953 */
2954 if (objp) {
2955 STATS_INC_ALLOCHIT(cachep);
2956 goto out;
2957 }
2958 force_refill = true;
2959 }
2960
2961 STATS_INC_ALLOCMISS(cachep);
2962 objp = cache_alloc_refill(cachep, flags, force_refill);
2963 /*
2964 * the 'ac' may be updated by cache_alloc_refill(),
2965 * and kmemleak_erase() requires its correct value.
2966 */
2967 ac = cpu_cache_get(cachep);
2968
2969 out:
2970 /*
2971 * To avoid a false negative, if an object that is in one of the
2972 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2973 * treat the array pointers as a reference to the object.
2974 */
2975 if (objp)
2976 kmemleak_erase(&ac->entry[ac->avail]);
2977 return objp;
2978 }
2979
2980 #ifdef CONFIG_NUMA
2981 /*
2982 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2983 *
2984 * If we are in_interrupt, then process context, including cpusets and
2985 * mempolicy, may not apply and should not be used for allocation policy.
2986 */
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)2987 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2988 {
2989 int nid_alloc, nid_here;
2990
2991 if (in_interrupt() || (flags & __GFP_THISNODE))
2992 return NULL;
2993 nid_alloc = nid_here = numa_mem_id();
2994 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2995 nid_alloc = cpuset_slab_spread_node();
2996 else if (current->mempolicy)
2997 nid_alloc = mempolicy_slab_node();
2998 if (nid_alloc != nid_here)
2999 return ____cache_alloc_node(cachep, flags, nid_alloc);
3000 return NULL;
3001 }
3002
3003 /*
3004 * Fallback function if there was no memory available and no objects on a
3005 * certain node and fall back is permitted. First we scan all the
3006 * available node for available objects. If that fails then we
3007 * perform an allocation without specifying a node. This allows the page
3008 * allocator to do its reclaim / fallback magic. We then insert the
3009 * slab into the proper nodelist and then allocate from it.
3010 */
fallback_alloc(struct kmem_cache * cache,gfp_t flags)3011 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3012 {
3013 struct zonelist *zonelist;
3014 gfp_t local_flags;
3015 struct zoneref *z;
3016 struct zone *zone;
3017 enum zone_type high_zoneidx = gfp_zone(flags);
3018 void *obj = NULL;
3019 int nid;
3020 unsigned int cpuset_mems_cookie;
3021
3022 if (flags & __GFP_THISNODE)
3023 return NULL;
3024
3025 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3026
3027 retry_cpuset:
3028 cpuset_mems_cookie = read_mems_allowed_begin();
3029 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3030
3031 retry:
3032 /*
3033 * Look through allowed nodes for objects available
3034 * from existing per node queues.
3035 */
3036 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3037 nid = zone_to_nid(zone);
3038
3039 if (cpuset_zone_allowed(zone, flags) &&
3040 get_node(cache, nid) &&
3041 get_node(cache, nid)->free_objects) {
3042 obj = ____cache_alloc_node(cache,
3043 gfp_exact_node(flags), nid);
3044 if (obj)
3045 break;
3046 }
3047 }
3048
3049 if (!obj) {
3050 /*
3051 * This allocation will be performed within the constraints
3052 * of the current cpuset / memory policy requirements.
3053 * We may trigger various forms of reclaim on the allowed
3054 * set and go into memory reserves if necessary.
3055 */
3056 struct page *page;
3057
3058 if (local_flags & __GFP_WAIT)
3059 local_irq_enable();
3060 kmem_flagcheck(cache, flags);
3061 page = kmem_getpages(cache, local_flags, numa_mem_id());
3062 if (local_flags & __GFP_WAIT)
3063 local_irq_disable();
3064 if (page) {
3065 /*
3066 * Insert into the appropriate per node queues
3067 */
3068 nid = page_to_nid(page);
3069 if (cache_grow(cache, flags, nid, page)) {
3070 obj = ____cache_alloc_node(cache,
3071 gfp_exact_node(flags), nid);
3072 if (!obj)
3073 /*
3074 * Another processor may allocate the
3075 * objects in the slab since we are
3076 * not holding any locks.
3077 */
3078 goto retry;
3079 } else {
3080 /* cache_grow already freed obj */
3081 obj = NULL;
3082 }
3083 }
3084 }
3085
3086 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3087 goto retry_cpuset;
3088 return obj;
3089 }
3090
3091 /*
3092 * A interface to enable slab creation on nodeid
3093 */
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3094 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3095 int nodeid)
3096 {
3097 struct list_head *entry;
3098 struct page *page;
3099 struct kmem_cache_node *n;
3100 void *obj;
3101 int x;
3102
3103 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3104 n = get_node(cachep, nodeid);
3105 BUG_ON(!n);
3106
3107 retry:
3108 check_irq_off();
3109 spin_lock(&n->list_lock);
3110 entry = n->slabs_partial.next;
3111 if (entry == &n->slabs_partial) {
3112 n->free_touched = 1;
3113 entry = n->slabs_free.next;
3114 if (entry == &n->slabs_free)
3115 goto must_grow;
3116 }
3117
3118 page = list_entry(entry, struct page, lru);
3119 check_spinlock_acquired_node(cachep, nodeid);
3120
3121 STATS_INC_NODEALLOCS(cachep);
3122 STATS_INC_ACTIVE(cachep);
3123 STATS_SET_HIGH(cachep);
3124
3125 BUG_ON(page->active == cachep->num);
3126
3127 obj = slab_get_obj(cachep, page, nodeid);
3128 n->free_objects--;
3129 /* move slabp to correct slabp list: */
3130 list_del(&page->lru);
3131
3132 if (page->active == cachep->num)
3133 list_add(&page->lru, &n->slabs_full);
3134 else
3135 list_add(&page->lru, &n->slabs_partial);
3136
3137 spin_unlock(&n->list_lock);
3138 goto done;
3139
3140 must_grow:
3141 spin_unlock(&n->list_lock);
3142 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3143 if (x)
3144 goto retry;
3145
3146 return fallback_alloc(cachep, flags);
3147
3148 done:
3149 return obj;
3150 }
3151
3152 static __always_inline void *
slab_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid,unsigned long caller)3153 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3154 unsigned long caller)
3155 {
3156 unsigned long save_flags;
3157 void *ptr;
3158 int slab_node = numa_mem_id();
3159
3160 flags &= gfp_allowed_mask;
3161
3162 lockdep_trace_alloc(flags);
3163
3164 if (slab_should_failslab(cachep, flags))
3165 return NULL;
3166
3167 cachep = memcg_kmem_get_cache(cachep, flags);
3168
3169 cache_alloc_debugcheck_before(cachep, flags);
3170 local_irq_save(save_flags);
3171
3172 if (nodeid == NUMA_NO_NODE)
3173 nodeid = slab_node;
3174
3175 if (unlikely(!get_node(cachep, nodeid))) {
3176 /* Node not bootstrapped yet */
3177 ptr = fallback_alloc(cachep, flags);
3178 goto out;
3179 }
3180
3181 if (nodeid == slab_node) {
3182 /*
3183 * Use the locally cached objects if possible.
3184 * However ____cache_alloc does not allow fallback
3185 * to other nodes. It may fail while we still have
3186 * objects on other nodes available.
3187 */
3188 ptr = ____cache_alloc(cachep, flags);
3189 if (ptr)
3190 goto out;
3191 }
3192 /* ___cache_alloc_node can fall back to other nodes */
3193 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3194 out:
3195 local_irq_restore(save_flags);
3196 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3197 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3198 flags);
3199
3200 if (likely(ptr)) {
3201 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3202 if (unlikely(flags & __GFP_ZERO))
3203 memset(ptr, 0, cachep->object_size);
3204 }
3205
3206 memcg_kmem_put_cache(cachep);
3207 return ptr;
3208 }
3209
3210 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cache,gfp_t flags)3211 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3212 {
3213 void *objp;
3214
3215 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3216 objp = alternate_node_alloc(cache, flags);
3217 if (objp)
3218 goto out;
3219 }
3220 objp = ____cache_alloc(cache, flags);
3221
3222 /*
3223 * We may just have run out of memory on the local node.
3224 * ____cache_alloc_node() knows how to locate memory on other nodes
3225 */
3226 if (!objp)
3227 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3228
3229 out:
3230 return objp;
3231 }
3232 #else
3233
3234 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3235 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3236 {
3237 return ____cache_alloc(cachep, flags);
3238 }
3239
3240 #endif /* CONFIG_NUMA */
3241
3242 static __always_inline void *
slab_alloc(struct kmem_cache * cachep,gfp_t flags,unsigned long caller)3243 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3244 {
3245 unsigned long save_flags;
3246 void *objp;
3247
3248 flags &= gfp_allowed_mask;
3249
3250 lockdep_trace_alloc(flags);
3251
3252 if (slab_should_failslab(cachep, flags))
3253 return NULL;
3254
3255 cachep = memcg_kmem_get_cache(cachep, flags);
3256
3257 cache_alloc_debugcheck_before(cachep, flags);
3258 local_irq_save(save_flags);
3259 objp = __do_cache_alloc(cachep, flags);
3260 local_irq_restore(save_flags);
3261 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3262 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3263 flags);
3264 prefetchw(objp);
3265
3266 if (likely(objp)) {
3267 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3268 if (unlikely(flags & __GFP_ZERO))
3269 memset(objp, 0, cachep->object_size);
3270 }
3271
3272 memcg_kmem_put_cache(cachep);
3273 return objp;
3274 }
3275
3276 /*
3277 * Caller needs to acquire correct kmem_cache_node's list_lock
3278 * @list: List of detached free slabs should be freed by caller
3279 */
free_block(struct kmem_cache * cachep,void ** objpp,int nr_objects,int node,struct list_head * list)3280 static void free_block(struct kmem_cache *cachep, void **objpp,
3281 int nr_objects, int node, struct list_head *list)
3282 {
3283 int i;
3284 struct kmem_cache_node *n = get_node(cachep, node);
3285
3286 for (i = 0; i < nr_objects; i++) {
3287 void *objp;
3288 struct page *page;
3289
3290 clear_obj_pfmemalloc(&objpp[i]);
3291 objp = objpp[i];
3292
3293 page = virt_to_head_page(objp);
3294 list_del(&page->lru);
3295 check_spinlock_acquired_node(cachep, node);
3296 slab_put_obj(cachep, page, objp, node);
3297 STATS_DEC_ACTIVE(cachep);
3298 n->free_objects++;
3299
3300 /* fixup slab chains */
3301 if (page->active == 0) {
3302 if (n->free_objects > n->free_limit) {
3303 n->free_objects -= cachep->num;
3304 list_add_tail(&page->lru, list);
3305 } else {
3306 list_add(&page->lru, &n->slabs_free);
3307 }
3308 } else {
3309 /* Unconditionally move a slab to the end of the
3310 * partial list on free - maximum time for the
3311 * other objects to be freed, too.
3312 */
3313 list_add_tail(&page->lru, &n->slabs_partial);
3314 }
3315 }
3316 }
3317
cache_flusharray(struct kmem_cache * cachep,struct array_cache * ac)3318 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3319 {
3320 int batchcount;
3321 struct kmem_cache_node *n;
3322 int node = numa_mem_id();
3323 LIST_HEAD(list);
3324
3325 batchcount = ac->batchcount;
3326 #if DEBUG
3327 BUG_ON(!batchcount || batchcount > ac->avail);
3328 #endif
3329 check_irq_off();
3330 n = get_node(cachep, node);
3331 spin_lock(&n->list_lock);
3332 if (n->shared) {
3333 struct array_cache *shared_array = n->shared;
3334 int max = shared_array->limit - shared_array->avail;
3335 if (max) {
3336 if (batchcount > max)
3337 batchcount = max;
3338 memcpy(&(shared_array->entry[shared_array->avail]),
3339 ac->entry, sizeof(void *) * batchcount);
3340 shared_array->avail += batchcount;
3341 goto free_done;
3342 }
3343 }
3344
3345 free_block(cachep, ac->entry, batchcount, node, &list);
3346 free_done:
3347 #if STATS
3348 {
3349 int i = 0;
3350 struct list_head *p;
3351
3352 p = n->slabs_free.next;
3353 while (p != &(n->slabs_free)) {
3354 struct page *page;
3355
3356 page = list_entry(p, struct page, lru);
3357 BUG_ON(page->active);
3358
3359 i++;
3360 p = p->next;
3361 }
3362 STATS_SET_FREEABLE(cachep, i);
3363 }
3364 #endif
3365 spin_unlock(&n->list_lock);
3366 slabs_destroy(cachep, &list);
3367 ac->avail -= batchcount;
3368 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3369 }
3370
3371 /*
3372 * Release an obj back to its cache. If the obj has a constructed state, it must
3373 * be in this state _before_ it is released. Called with disabled ints.
3374 */
__cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3375 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3376 unsigned long caller)
3377 {
3378 struct array_cache *ac = cpu_cache_get(cachep);
3379
3380 check_irq_off();
3381 kmemleak_free_recursive(objp, cachep->flags);
3382 objp = cache_free_debugcheck(cachep, objp, caller);
3383
3384 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3385
3386 /*
3387 * Skip calling cache_free_alien() when the platform is not numa.
3388 * This will avoid cache misses that happen while accessing slabp (which
3389 * is per page memory reference) to get nodeid. Instead use a global
3390 * variable to skip the call, which is mostly likely to be present in
3391 * the cache.
3392 */
3393 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3394 return;
3395
3396 if (ac->avail < ac->limit) {
3397 STATS_INC_FREEHIT(cachep);
3398 } else {
3399 STATS_INC_FREEMISS(cachep);
3400 cache_flusharray(cachep, ac);
3401 }
3402
3403 ac_put_obj(cachep, ac, objp);
3404 }
3405
3406 /**
3407 * kmem_cache_alloc - Allocate an object
3408 * @cachep: The cache to allocate from.
3409 * @flags: See kmalloc().
3410 *
3411 * Allocate an object from this cache. The flags are only relevant
3412 * if the cache has no available objects.
3413 */
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3414 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3415 {
3416 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3417
3418 trace_kmem_cache_alloc(_RET_IP_, ret,
3419 cachep->object_size, cachep->size, flags);
3420
3421 return ret;
3422 }
3423 EXPORT_SYMBOL(kmem_cache_alloc);
3424
3425 #ifdef CONFIG_TRACING
3426 void *
kmem_cache_alloc_trace(struct kmem_cache * cachep,gfp_t flags,size_t size)3427 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3428 {
3429 void *ret;
3430
3431 ret = slab_alloc(cachep, flags, _RET_IP_);
3432
3433 trace_kmalloc(_RET_IP_, ret,
3434 size, cachep->size, flags);
3435 return ret;
3436 }
3437 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3438 #endif
3439
3440 #ifdef CONFIG_NUMA
3441 /**
3442 * kmem_cache_alloc_node - Allocate an object on the specified node
3443 * @cachep: The cache to allocate from.
3444 * @flags: See kmalloc().
3445 * @nodeid: node number of the target node.
3446 *
3447 * Identical to kmem_cache_alloc but it will allocate memory on the given
3448 * node, which can improve the performance for cpu bound structures.
3449 *
3450 * Fallback to other node is possible if __GFP_THISNODE is not set.
3451 */
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3452 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3453 {
3454 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3455
3456 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3457 cachep->object_size, cachep->size,
3458 flags, nodeid);
3459
3460 return ret;
3461 }
3462 EXPORT_SYMBOL(kmem_cache_alloc_node);
3463
3464 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * cachep,gfp_t flags,int nodeid,size_t size)3465 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3466 gfp_t flags,
3467 int nodeid,
3468 size_t size)
3469 {
3470 void *ret;
3471
3472 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3473
3474 trace_kmalloc_node(_RET_IP_, ret,
3475 size, cachep->size,
3476 flags, nodeid);
3477 return ret;
3478 }
3479 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3480 #endif
3481
3482 static __always_inline void *
__do_kmalloc_node(size_t size,gfp_t flags,int node,unsigned long caller)3483 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3484 {
3485 struct kmem_cache *cachep;
3486
3487 cachep = kmalloc_slab(size, flags);
3488 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3489 return cachep;
3490 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3491 }
3492
__kmalloc_node(size_t size,gfp_t flags,int node)3493 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3494 {
3495 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3496 }
3497 EXPORT_SYMBOL(__kmalloc_node);
3498
__kmalloc_node_track_caller(size_t size,gfp_t flags,int node,unsigned long caller)3499 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3500 int node, unsigned long caller)
3501 {
3502 return __do_kmalloc_node(size, flags, node, caller);
3503 }
3504 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3505 #endif /* CONFIG_NUMA */
3506
3507 /**
3508 * __do_kmalloc - allocate memory
3509 * @size: how many bytes of memory are required.
3510 * @flags: the type of memory to allocate (see kmalloc).
3511 * @caller: function caller for debug tracking of the caller
3512 */
__do_kmalloc(size_t size,gfp_t flags,unsigned long caller)3513 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3514 unsigned long caller)
3515 {
3516 struct kmem_cache *cachep;
3517 void *ret;
3518
3519 cachep = kmalloc_slab(size, flags);
3520 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3521 return cachep;
3522 ret = slab_alloc(cachep, flags, caller);
3523
3524 trace_kmalloc(caller, ret,
3525 size, cachep->size, flags);
3526
3527 return ret;
3528 }
3529
__kmalloc(size_t size,gfp_t flags)3530 void *__kmalloc(size_t size, gfp_t flags)
3531 {
3532 return __do_kmalloc(size, flags, _RET_IP_);
3533 }
3534 EXPORT_SYMBOL(__kmalloc);
3535
__kmalloc_track_caller(size_t size,gfp_t flags,unsigned long caller)3536 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3537 {
3538 return __do_kmalloc(size, flags, caller);
3539 }
3540 EXPORT_SYMBOL(__kmalloc_track_caller);
3541
3542 /**
3543 * kmem_cache_free - Deallocate an object
3544 * @cachep: The cache the allocation was from.
3545 * @objp: The previously allocated object.
3546 *
3547 * Free an object which was previously allocated from this
3548 * cache.
3549 */
kmem_cache_free(struct kmem_cache * cachep,void * objp)3550 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3551 {
3552 unsigned long flags;
3553 cachep = cache_from_obj(cachep, objp);
3554 if (!cachep)
3555 return;
3556
3557 local_irq_save(flags);
3558 debug_check_no_locks_freed(objp, cachep->object_size);
3559 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3560 debug_check_no_obj_freed(objp, cachep->object_size);
3561 __cache_free(cachep, objp, _RET_IP_);
3562 local_irq_restore(flags);
3563
3564 trace_kmem_cache_free(_RET_IP_, objp);
3565 }
3566 EXPORT_SYMBOL(kmem_cache_free);
3567
3568 /**
3569 * kfree - free previously allocated memory
3570 * @objp: pointer returned by kmalloc.
3571 *
3572 * If @objp is NULL, no operation is performed.
3573 *
3574 * Don't free memory not originally allocated by kmalloc()
3575 * or you will run into trouble.
3576 */
kfree(const void * objp)3577 void kfree(const void *objp)
3578 {
3579 struct kmem_cache *c;
3580 unsigned long flags;
3581
3582 trace_kfree(_RET_IP_, objp);
3583
3584 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3585 return;
3586 local_irq_save(flags);
3587 kfree_debugcheck(objp);
3588 c = virt_to_cache(objp);
3589 debug_check_no_locks_freed(objp, c->object_size);
3590
3591 debug_check_no_obj_freed(objp, c->object_size);
3592 __cache_free(c, (void *)objp, _RET_IP_);
3593 local_irq_restore(flags);
3594 }
3595 EXPORT_SYMBOL(kfree);
3596
3597 /*
3598 * This initializes kmem_cache_node or resizes various caches for all nodes.
3599 */
alloc_kmem_cache_node(struct kmem_cache * cachep,gfp_t gfp)3600 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3601 {
3602 int node;
3603 struct kmem_cache_node *n;
3604 struct array_cache *new_shared;
3605 struct alien_cache **new_alien = NULL;
3606
3607 for_each_online_node(node) {
3608
3609 if (use_alien_caches) {
3610 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3611 if (!new_alien)
3612 goto fail;
3613 }
3614
3615 new_shared = NULL;
3616 if (cachep->shared) {
3617 new_shared = alloc_arraycache(node,
3618 cachep->shared*cachep->batchcount,
3619 0xbaadf00d, gfp);
3620 if (!new_shared) {
3621 free_alien_cache(new_alien);
3622 goto fail;
3623 }
3624 }
3625
3626 n = get_node(cachep, node);
3627 if (n) {
3628 struct array_cache *shared = n->shared;
3629 LIST_HEAD(list);
3630
3631 spin_lock_irq(&n->list_lock);
3632
3633 if (shared)
3634 free_block(cachep, shared->entry,
3635 shared->avail, node, &list);
3636
3637 n->shared = new_shared;
3638 if (!n->alien) {
3639 n->alien = new_alien;
3640 new_alien = NULL;
3641 }
3642 n->free_limit = (1 + nr_cpus_node(node)) *
3643 cachep->batchcount + cachep->num;
3644 spin_unlock_irq(&n->list_lock);
3645 slabs_destroy(cachep, &list);
3646 kfree(shared);
3647 free_alien_cache(new_alien);
3648 continue;
3649 }
3650 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3651 if (!n) {
3652 free_alien_cache(new_alien);
3653 kfree(new_shared);
3654 goto fail;
3655 }
3656
3657 kmem_cache_node_init(n);
3658 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3659 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3660 n->shared = new_shared;
3661 n->alien = new_alien;
3662 n->free_limit = (1 + nr_cpus_node(node)) *
3663 cachep->batchcount + cachep->num;
3664 cachep->node[node] = n;
3665 }
3666 return 0;
3667
3668 fail:
3669 if (!cachep->list.next) {
3670 /* Cache is not active yet. Roll back what we did */
3671 node--;
3672 while (node >= 0) {
3673 n = get_node(cachep, node);
3674 if (n) {
3675 kfree(n->shared);
3676 free_alien_cache(n->alien);
3677 kfree(n);
3678 cachep->node[node] = NULL;
3679 }
3680 node--;
3681 }
3682 }
3683 return -ENOMEM;
3684 }
3685
3686 /* Always called with the slab_mutex held */
__do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3687 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3688 int batchcount, int shared, gfp_t gfp)
3689 {
3690 struct array_cache __percpu *cpu_cache, *prev;
3691 int cpu;
3692
3693 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3694 if (!cpu_cache)
3695 return -ENOMEM;
3696
3697 prev = cachep->cpu_cache;
3698 cachep->cpu_cache = cpu_cache;
3699 kick_all_cpus_sync();
3700
3701 check_irq_on();
3702 cachep->batchcount = batchcount;
3703 cachep->limit = limit;
3704 cachep->shared = shared;
3705
3706 if (!prev)
3707 goto alloc_node;
3708
3709 for_each_online_cpu(cpu) {
3710 LIST_HEAD(list);
3711 int node;
3712 struct kmem_cache_node *n;
3713 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3714
3715 node = cpu_to_mem(cpu);
3716 n = get_node(cachep, node);
3717 spin_lock_irq(&n->list_lock);
3718 free_block(cachep, ac->entry, ac->avail, node, &list);
3719 spin_unlock_irq(&n->list_lock);
3720 slabs_destroy(cachep, &list);
3721 }
3722 free_percpu(prev);
3723
3724 alloc_node:
3725 return alloc_kmem_cache_node(cachep, gfp);
3726 }
3727
do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3728 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3729 int batchcount, int shared, gfp_t gfp)
3730 {
3731 int ret;
3732 struct kmem_cache *c;
3733
3734 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3735
3736 if (slab_state < FULL)
3737 return ret;
3738
3739 if ((ret < 0) || !is_root_cache(cachep))
3740 return ret;
3741
3742 lockdep_assert_held(&slab_mutex);
3743 for_each_memcg_cache(c, cachep) {
3744 /* return value determined by the root cache only */
3745 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3746 }
3747
3748 return ret;
3749 }
3750
3751 /* Called with slab_mutex held always */
enable_cpucache(struct kmem_cache * cachep,gfp_t gfp)3752 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3753 {
3754 int err;
3755 int limit = 0;
3756 int shared = 0;
3757 int batchcount = 0;
3758
3759 if (!is_root_cache(cachep)) {
3760 struct kmem_cache *root = memcg_root_cache(cachep);
3761 limit = root->limit;
3762 shared = root->shared;
3763 batchcount = root->batchcount;
3764 }
3765
3766 if (limit && shared && batchcount)
3767 goto skip_setup;
3768 /*
3769 * The head array serves three purposes:
3770 * - create a LIFO ordering, i.e. return objects that are cache-warm
3771 * - reduce the number of spinlock operations.
3772 * - reduce the number of linked list operations on the slab and
3773 * bufctl chains: array operations are cheaper.
3774 * The numbers are guessed, we should auto-tune as described by
3775 * Bonwick.
3776 */
3777 if (cachep->size > 131072)
3778 limit = 1;
3779 else if (cachep->size > PAGE_SIZE)
3780 limit = 8;
3781 else if (cachep->size > 1024)
3782 limit = 24;
3783 else if (cachep->size > 256)
3784 limit = 54;
3785 else
3786 limit = 120;
3787
3788 /*
3789 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3790 * allocation behaviour: Most allocs on one cpu, most free operations
3791 * on another cpu. For these cases, an efficient object passing between
3792 * cpus is necessary. This is provided by a shared array. The array
3793 * replaces Bonwick's magazine layer.
3794 * On uniprocessor, it's functionally equivalent (but less efficient)
3795 * to a larger limit. Thus disabled by default.
3796 */
3797 shared = 0;
3798 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3799 shared = 8;
3800
3801 #if DEBUG
3802 /*
3803 * With debugging enabled, large batchcount lead to excessively long
3804 * periods with disabled local interrupts. Limit the batchcount
3805 */
3806 if (limit > 32)
3807 limit = 32;
3808 #endif
3809 batchcount = (limit + 1) / 2;
3810 skip_setup:
3811 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3812 if (err)
3813 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3814 cachep->name, -err);
3815 return err;
3816 }
3817
3818 /*
3819 * Drain an array if it contains any elements taking the node lock only if
3820 * necessary. Note that the node listlock also protects the array_cache
3821 * if drain_array() is used on the shared array.
3822 */
drain_array(struct kmem_cache * cachep,struct kmem_cache_node * n,struct array_cache * ac,int force,int node)3823 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3824 struct array_cache *ac, int force, int node)
3825 {
3826 LIST_HEAD(list);
3827 int tofree;
3828
3829 if (!ac || !ac->avail)
3830 return;
3831 if (ac->touched && !force) {
3832 ac->touched = 0;
3833 } else {
3834 spin_lock_irq(&n->list_lock);
3835 if (ac->avail) {
3836 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3837 if (tofree > ac->avail)
3838 tofree = (ac->avail + 1) / 2;
3839 free_block(cachep, ac->entry, tofree, node, &list);
3840 ac->avail -= tofree;
3841 memmove(ac->entry, &(ac->entry[tofree]),
3842 sizeof(void *) * ac->avail);
3843 }
3844 spin_unlock_irq(&n->list_lock);
3845 slabs_destroy(cachep, &list);
3846 }
3847 }
3848
3849 /**
3850 * cache_reap - Reclaim memory from caches.
3851 * @w: work descriptor
3852 *
3853 * Called from workqueue/eventd every few seconds.
3854 * Purpose:
3855 * - clear the per-cpu caches for this CPU.
3856 * - return freeable pages to the main free memory pool.
3857 *
3858 * If we cannot acquire the cache chain mutex then just give up - we'll try
3859 * again on the next iteration.
3860 */
cache_reap(struct work_struct * w)3861 static void cache_reap(struct work_struct *w)
3862 {
3863 struct kmem_cache *searchp;
3864 struct kmem_cache_node *n;
3865 int node = numa_mem_id();
3866 struct delayed_work *work = to_delayed_work(w);
3867
3868 if (!mutex_trylock(&slab_mutex))
3869 /* Give up. Setup the next iteration. */
3870 goto out;
3871
3872 list_for_each_entry(searchp, &slab_caches, list) {
3873 check_irq_on();
3874
3875 /*
3876 * We only take the node lock if absolutely necessary and we
3877 * have established with reasonable certainty that
3878 * we can do some work if the lock was obtained.
3879 */
3880 n = get_node(searchp, node);
3881
3882 reap_alien(searchp, n);
3883
3884 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3885
3886 /*
3887 * These are racy checks but it does not matter
3888 * if we skip one check or scan twice.
3889 */
3890 if (time_after(n->next_reap, jiffies))
3891 goto next;
3892
3893 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3894
3895 drain_array(searchp, n, n->shared, 0, node);
3896
3897 if (n->free_touched)
3898 n->free_touched = 0;
3899 else {
3900 int freed;
3901
3902 freed = drain_freelist(searchp, n, (n->free_limit +
3903 5 * searchp->num - 1) / (5 * searchp->num));
3904 STATS_ADD_REAPED(searchp, freed);
3905 }
3906 next:
3907 cond_resched();
3908 }
3909 check_irq_on();
3910 mutex_unlock(&slab_mutex);
3911 next_reap_node();
3912 out:
3913 /* Set up the next iteration */
3914 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3915 }
3916
3917 #ifdef CONFIG_SLABINFO
get_slabinfo(struct kmem_cache * cachep,struct slabinfo * sinfo)3918 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3919 {
3920 struct page *page;
3921 unsigned long active_objs;
3922 unsigned long num_objs;
3923 unsigned long active_slabs = 0;
3924 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3925 const char *name;
3926 char *error = NULL;
3927 int node;
3928 struct kmem_cache_node *n;
3929
3930 active_objs = 0;
3931 num_slabs = 0;
3932 for_each_kmem_cache_node(cachep, node, n) {
3933
3934 check_irq_on();
3935 spin_lock_irq(&n->list_lock);
3936
3937 list_for_each_entry(page, &n->slabs_full, lru) {
3938 if (page->active != cachep->num && !error)
3939 error = "slabs_full accounting error";
3940 active_objs += cachep->num;
3941 active_slabs++;
3942 }
3943 list_for_each_entry(page, &n->slabs_partial, lru) {
3944 if (page->active == cachep->num && !error)
3945 error = "slabs_partial accounting error";
3946 if (!page->active && !error)
3947 error = "slabs_partial accounting error";
3948 active_objs += page->active;
3949 active_slabs++;
3950 }
3951 list_for_each_entry(page, &n->slabs_free, lru) {
3952 if (page->active && !error)
3953 error = "slabs_free accounting error";
3954 num_slabs++;
3955 }
3956 free_objects += n->free_objects;
3957 if (n->shared)
3958 shared_avail += n->shared->avail;
3959
3960 spin_unlock_irq(&n->list_lock);
3961 }
3962 num_slabs += active_slabs;
3963 num_objs = num_slabs * cachep->num;
3964 if (num_objs - active_objs != free_objects && !error)
3965 error = "free_objects accounting error";
3966
3967 name = cachep->name;
3968 if (error)
3969 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3970
3971 sinfo->active_objs = active_objs;
3972 sinfo->num_objs = num_objs;
3973 sinfo->active_slabs = active_slabs;
3974 sinfo->num_slabs = num_slabs;
3975 sinfo->shared_avail = shared_avail;
3976 sinfo->limit = cachep->limit;
3977 sinfo->batchcount = cachep->batchcount;
3978 sinfo->shared = cachep->shared;
3979 sinfo->objects_per_slab = cachep->num;
3980 sinfo->cache_order = cachep->gfporder;
3981 }
3982
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * cachep)3983 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3984 {
3985 #if STATS
3986 { /* node stats */
3987 unsigned long high = cachep->high_mark;
3988 unsigned long allocs = cachep->num_allocations;
3989 unsigned long grown = cachep->grown;
3990 unsigned long reaped = cachep->reaped;
3991 unsigned long errors = cachep->errors;
3992 unsigned long max_freeable = cachep->max_freeable;
3993 unsigned long node_allocs = cachep->node_allocs;
3994 unsigned long node_frees = cachep->node_frees;
3995 unsigned long overflows = cachep->node_overflow;
3996
3997 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3998 "%4lu %4lu %4lu %4lu %4lu",
3999 allocs, high, grown,
4000 reaped, errors, max_freeable, node_allocs,
4001 node_frees, overflows);
4002 }
4003 /* cpu stats */
4004 {
4005 unsigned long allochit = atomic_read(&cachep->allochit);
4006 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4007 unsigned long freehit = atomic_read(&cachep->freehit);
4008 unsigned long freemiss = atomic_read(&cachep->freemiss);
4009
4010 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4011 allochit, allocmiss, freehit, freemiss);
4012 }
4013 #endif
4014 }
4015
4016 #define MAX_SLABINFO_WRITE 128
4017 /**
4018 * slabinfo_write - Tuning for the slab allocator
4019 * @file: unused
4020 * @buffer: user buffer
4021 * @count: data length
4022 * @ppos: unused
4023 */
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)4024 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4025 size_t count, loff_t *ppos)
4026 {
4027 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4028 int limit, batchcount, shared, res;
4029 struct kmem_cache *cachep;
4030
4031 if (count > MAX_SLABINFO_WRITE)
4032 return -EINVAL;
4033 if (copy_from_user(&kbuf, buffer, count))
4034 return -EFAULT;
4035 kbuf[MAX_SLABINFO_WRITE] = '\0';
4036
4037 tmp = strchr(kbuf, ' ');
4038 if (!tmp)
4039 return -EINVAL;
4040 *tmp = '\0';
4041 tmp++;
4042 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4043 return -EINVAL;
4044
4045 /* Find the cache in the chain of caches. */
4046 mutex_lock(&slab_mutex);
4047 res = -EINVAL;
4048 list_for_each_entry(cachep, &slab_caches, list) {
4049 if (!strcmp(cachep->name, kbuf)) {
4050 if (limit < 1 || batchcount < 1 ||
4051 batchcount > limit || shared < 0) {
4052 res = 0;
4053 } else {
4054 res = do_tune_cpucache(cachep, limit,
4055 batchcount, shared,
4056 GFP_KERNEL);
4057 }
4058 break;
4059 }
4060 }
4061 mutex_unlock(&slab_mutex);
4062 if (res >= 0)
4063 res = count;
4064 return res;
4065 }
4066
4067 #ifdef CONFIG_DEBUG_SLAB_LEAK
4068
add_caller(unsigned long * n,unsigned long v)4069 static inline int add_caller(unsigned long *n, unsigned long v)
4070 {
4071 unsigned long *p;
4072 int l;
4073 if (!v)
4074 return 1;
4075 l = n[1];
4076 p = n + 2;
4077 while (l) {
4078 int i = l/2;
4079 unsigned long *q = p + 2 * i;
4080 if (*q == v) {
4081 q[1]++;
4082 return 1;
4083 }
4084 if (*q > v) {
4085 l = i;
4086 } else {
4087 p = q + 2;
4088 l -= i + 1;
4089 }
4090 }
4091 if (++n[1] == n[0])
4092 return 0;
4093 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4094 p[0] = v;
4095 p[1] = 1;
4096 return 1;
4097 }
4098
handle_slab(unsigned long * n,struct kmem_cache * c,struct page * page)4099 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4100 struct page *page)
4101 {
4102 void *p;
4103 int i;
4104
4105 if (n[0] == n[1])
4106 return;
4107 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4108 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4109 continue;
4110
4111 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4112 return;
4113 }
4114 }
4115
show_symbol(struct seq_file * m,unsigned long address)4116 static void show_symbol(struct seq_file *m, unsigned long address)
4117 {
4118 #ifdef CONFIG_KALLSYMS
4119 unsigned long offset, size;
4120 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4121
4122 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4123 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4124 if (modname[0])
4125 seq_printf(m, " [%s]", modname);
4126 return;
4127 }
4128 #endif
4129 seq_printf(m, "%p", (void *)address);
4130 }
4131
leaks_show(struct seq_file * m,void * p)4132 static int leaks_show(struct seq_file *m, void *p)
4133 {
4134 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4135 struct page *page;
4136 struct kmem_cache_node *n;
4137 const char *name;
4138 unsigned long *x = m->private;
4139 int node;
4140 int i;
4141
4142 if (!(cachep->flags & SLAB_STORE_USER))
4143 return 0;
4144 if (!(cachep->flags & SLAB_RED_ZONE))
4145 return 0;
4146
4147 /* OK, we can do it */
4148
4149 x[1] = 0;
4150
4151 for_each_kmem_cache_node(cachep, node, n) {
4152
4153 check_irq_on();
4154 spin_lock_irq(&n->list_lock);
4155
4156 list_for_each_entry(page, &n->slabs_full, lru)
4157 handle_slab(x, cachep, page);
4158 list_for_each_entry(page, &n->slabs_partial, lru)
4159 handle_slab(x, cachep, page);
4160 spin_unlock_irq(&n->list_lock);
4161 }
4162 name = cachep->name;
4163 if (x[0] == x[1]) {
4164 /* Increase the buffer size */
4165 mutex_unlock(&slab_mutex);
4166 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4167 if (!m->private) {
4168 /* Too bad, we are really out */
4169 m->private = x;
4170 mutex_lock(&slab_mutex);
4171 return -ENOMEM;
4172 }
4173 *(unsigned long *)m->private = x[0] * 2;
4174 kfree(x);
4175 mutex_lock(&slab_mutex);
4176 /* Now make sure this entry will be retried */
4177 m->count = m->size;
4178 return 0;
4179 }
4180 for (i = 0; i < x[1]; i++) {
4181 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4182 show_symbol(m, x[2*i+2]);
4183 seq_putc(m, '\n');
4184 }
4185
4186 return 0;
4187 }
4188
4189 static const struct seq_operations slabstats_op = {
4190 .start = slab_start,
4191 .next = slab_next,
4192 .stop = slab_stop,
4193 .show = leaks_show,
4194 };
4195
slabstats_open(struct inode * inode,struct file * file)4196 static int slabstats_open(struct inode *inode, struct file *file)
4197 {
4198 unsigned long *n;
4199
4200 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4201 if (!n)
4202 return -ENOMEM;
4203
4204 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4205
4206 return 0;
4207 }
4208
4209 static const struct file_operations proc_slabstats_operations = {
4210 .open = slabstats_open,
4211 .read = seq_read,
4212 .llseek = seq_lseek,
4213 .release = seq_release_private,
4214 };
4215 #endif
4216
slab_proc_init(void)4217 static int __init slab_proc_init(void)
4218 {
4219 #ifdef CONFIG_DEBUG_SLAB_LEAK
4220 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4221 #endif
4222 return 0;
4223 }
4224 module_init(slab_proc_init);
4225 #endif
4226
4227 /**
4228 * ksize - get the actual amount of memory allocated for a given object
4229 * @objp: Pointer to the object
4230 *
4231 * kmalloc may internally round up allocations and return more memory
4232 * than requested. ksize() can be used to determine the actual amount of
4233 * memory allocated. The caller may use this additional memory, even though
4234 * a smaller amount of memory was initially specified with the kmalloc call.
4235 * The caller must guarantee that objp points to a valid object previously
4236 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4237 * must not be freed during the duration of the call.
4238 */
ksize(const void * objp)4239 size_t ksize(const void *objp)
4240 {
4241 BUG_ON(!objp);
4242 if (unlikely(objp == ZERO_SIZE_PTR))
4243 return 0;
4244
4245 return virt_to_cache(objp)->object_size;
4246 }
4247 EXPORT_SYMBOL(ksize);
4248