1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71 
72 #include <asm/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 #define MEM_CGROUP_RECLAIM_RETRIES	5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82 
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 static const char * const mem_cgroup_stat_names[] = {
91 	"cache",
92 	"rss",
93 	"rss_huge",
94 	"mapped_file",
95 	"dirty",
96 	"writeback",
97 	"swap",
98 };
99 
100 static const char * const mem_cgroup_events_names[] = {
101 	"pgpgin",
102 	"pgpgout",
103 	"pgfault",
104 	"pgmajfault",
105 };
106 
107 static const char * const mem_cgroup_lru_names[] = {
108 	"inactive_anon",
109 	"active_anon",
110 	"inactive_file",
111 	"active_file",
112 	"unevictable",
113 };
114 
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET	1024
118 
119 /*
120  * Cgroups above their limits are maintained in a RB-Tree, independent of
121  * their hierarchy representation
122  */
123 
124 struct mem_cgroup_tree_per_zone {
125 	struct rb_root rb_root;
126 	spinlock_t lock;
127 };
128 
129 struct mem_cgroup_tree_per_node {
130 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132 
133 struct mem_cgroup_tree {
134 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136 
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138 
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 	struct list_head list;
142 	struct eventfd_ctx *eventfd;
143 };
144 
145 /*
146  * cgroup_event represents events which userspace want to receive.
147  */
148 struct mem_cgroup_event {
149 	/*
150 	 * memcg which the event belongs to.
151 	 */
152 	struct mem_cgroup *memcg;
153 	/*
154 	 * eventfd to signal userspace about the event.
155 	 */
156 	struct eventfd_ctx *eventfd;
157 	/*
158 	 * Each of these stored in a list by the cgroup.
159 	 */
160 	struct list_head list;
161 	/*
162 	 * register_event() callback will be used to add new userspace
163 	 * waiter for changes related to this event.  Use eventfd_signal()
164 	 * on eventfd to send notification to userspace.
165 	 */
166 	int (*register_event)(struct mem_cgroup *memcg,
167 			      struct eventfd_ctx *eventfd, const char *args);
168 	/*
169 	 * unregister_event() callback will be called when userspace closes
170 	 * the eventfd or on cgroup removing.  This callback must be set,
171 	 * if you want provide notification functionality.
172 	 */
173 	void (*unregister_event)(struct mem_cgroup *memcg,
174 				 struct eventfd_ctx *eventfd);
175 	/*
176 	 * All fields below needed to unregister event when
177 	 * userspace closes eventfd.
178 	 */
179 	poll_table pt;
180 	wait_queue_head_t *wqh;
181 	wait_queue_t wait;
182 	struct work_struct remove;
183 };
184 
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187 
188 /* Stuffs for move charges at task migration. */
189 /*
190  * Types of charges to be moved.
191  */
192 #define MOVE_ANON	0x1U
193 #define MOVE_FILE	0x2U
194 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
195 
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 	spinlock_t	  lock; /* for from, to */
199 	struct mm_struct  *mm;
200 	struct mem_cgroup *from;
201 	struct mem_cgroup *to;
202 	unsigned long flags;
203 	unsigned long precharge;
204 	unsigned long moved_charge;
205 	unsigned long moved_swap;
206 	struct task_struct *moving_task;	/* a task moving charges */
207 	wait_queue_head_t waitq;		/* a waitq for other context */
208 } mc = {
209 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
210 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
211 };
212 
213 /*
214  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215  * limit reclaim to prevent infinite loops, if they ever occur.
216  */
217 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
218 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
219 
220 enum charge_type {
221 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
222 	MEM_CGROUP_CHARGE_TYPE_ANON,
223 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
224 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
225 	NR_CHARGE_TYPE,
226 };
227 
228 /* for encoding cft->private value on file */
229 enum res_type {
230 	_MEM,
231 	_MEMSWAP,
232 	_OOM_TYPE,
233 	_KMEM,
234 };
235 
236 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
237 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
238 #define MEMFILE_ATTR(val)	((val) & 0xffff)
239 /* Used for OOM nofiier */
240 #define OOM_CONTROL		(0)
241 
242 /*
243  * The memcg_create_mutex will be held whenever a new cgroup is created.
244  * As a consequence, any change that needs to protect against new child cgroups
245  * appearing has to hold it as well.
246  */
247 static DEFINE_MUTEX(memcg_create_mutex);
248 
249 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 	if (!memcg)
253 		memcg = root_mem_cgroup;
254 	return &memcg->vmpressure;
255 }
256 
vmpressure_to_css(struct vmpressure * vmpr)257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261 
mem_cgroup_is_root(struct mem_cgroup * memcg)262 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
263 {
264 	return (memcg == root_mem_cgroup);
265 }
266 
267 /*
268  * We restrict the id in the range of [1, 65535], so it can fit into
269  * an unsigned short.
270  */
271 #define MEM_CGROUP_ID_MAX	USHRT_MAX
272 
mem_cgroup_id(struct mem_cgroup * memcg)273 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
274 {
275 	return memcg->css.id;
276 }
277 
278 /*
279  * A helper function to get mem_cgroup from ID. must be called under
280  * rcu_read_lock().  The caller is responsible for calling
281  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
282  * refcnt from swap can be called against removed memcg.)
283  */
mem_cgroup_from_id(unsigned short id)284 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
285 {
286 	struct cgroup_subsys_state *css;
287 
288 	css = css_from_id(id, &memory_cgrp_subsys);
289 	return mem_cgroup_from_css(css);
290 }
291 
292 /* Writing them here to avoid exposing memcg's inner layout */
293 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
294 
sock_update_memcg(struct sock * sk)295 void sock_update_memcg(struct sock *sk)
296 {
297 	if (mem_cgroup_sockets_enabled) {
298 		struct mem_cgroup *memcg;
299 		struct cg_proto *cg_proto;
300 
301 		BUG_ON(!sk->sk_prot->proto_cgroup);
302 
303 		/* Socket cloning can throw us here with sk_cgrp already
304 		 * filled. It won't however, necessarily happen from
305 		 * process context. So the test for root memcg given
306 		 * the current task's memcg won't help us in this case.
307 		 *
308 		 * Respecting the original socket's memcg is a better
309 		 * decision in this case.
310 		 */
311 		if (sk->sk_cgrp) {
312 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
313 			css_get(&sk->sk_cgrp->memcg->css);
314 			return;
315 		}
316 
317 		rcu_read_lock();
318 		memcg = mem_cgroup_from_task(current);
319 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
320 		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
321 		    css_tryget_online(&memcg->css)) {
322 			sk->sk_cgrp = cg_proto;
323 		}
324 		rcu_read_unlock();
325 	}
326 }
327 EXPORT_SYMBOL(sock_update_memcg);
328 
sock_release_memcg(struct sock * sk)329 void sock_release_memcg(struct sock *sk)
330 {
331 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
332 		struct mem_cgroup *memcg;
333 		WARN_ON(!sk->sk_cgrp->memcg);
334 		memcg = sk->sk_cgrp->memcg;
335 		css_put(&sk->sk_cgrp->memcg->css);
336 	}
337 }
338 
tcp_proto_cgroup(struct mem_cgroup * memcg)339 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
340 {
341 	if (!memcg || mem_cgroup_is_root(memcg))
342 		return NULL;
343 
344 	return &memcg->tcp_mem;
345 }
346 EXPORT_SYMBOL(tcp_proto_cgroup);
347 
348 #endif
349 
350 #ifdef CONFIG_MEMCG_KMEM
351 /*
352  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
353  * The main reason for not using cgroup id for this:
354  *  this works better in sparse environments, where we have a lot of memcgs,
355  *  but only a few kmem-limited. Or also, if we have, for instance, 200
356  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
357  *  200 entry array for that.
358  *
359  * The current size of the caches array is stored in memcg_nr_cache_ids. It
360  * will double each time we have to increase it.
361  */
362 static DEFINE_IDA(memcg_cache_ida);
363 int memcg_nr_cache_ids;
364 
365 /* Protects memcg_nr_cache_ids */
366 static DECLARE_RWSEM(memcg_cache_ids_sem);
367 
memcg_get_cache_ids(void)368 void memcg_get_cache_ids(void)
369 {
370 	down_read(&memcg_cache_ids_sem);
371 }
372 
memcg_put_cache_ids(void)373 void memcg_put_cache_ids(void)
374 {
375 	up_read(&memcg_cache_ids_sem);
376 }
377 
378 /*
379  * MIN_SIZE is different than 1, because we would like to avoid going through
380  * the alloc/free process all the time. In a small machine, 4 kmem-limited
381  * cgroups is a reasonable guess. In the future, it could be a parameter or
382  * tunable, but that is strictly not necessary.
383  *
384  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
385  * this constant directly from cgroup, but it is understandable that this is
386  * better kept as an internal representation in cgroup.c. In any case, the
387  * cgrp_id space is not getting any smaller, and we don't have to necessarily
388  * increase ours as well if it increases.
389  */
390 #define MEMCG_CACHES_MIN_SIZE 4
391 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
392 
393 /*
394  * A lot of the calls to the cache allocation functions are expected to be
395  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
396  * conditional to this static branch, we'll have to allow modules that does
397  * kmem_cache_alloc and the such to see this symbol as well
398  */
399 struct static_key memcg_kmem_enabled_key;
400 EXPORT_SYMBOL(memcg_kmem_enabled_key);
401 
402 #endif /* CONFIG_MEMCG_KMEM */
403 
404 static struct mem_cgroup_per_zone *
mem_cgroup_zone_zoneinfo(struct mem_cgroup * memcg,struct zone * zone)405 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
406 {
407 	int nid = zone_to_nid(zone);
408 	int zid = zone_idx(zone);
409 
410 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
411 }
412 
413 /**
414  * mem_cgroup_css_from_page - css of the memcg associated with a page
415  * @page: page of interest
416  *
417  * If memcg is bound to the default hierarchy, css of the memcg associated
418  * with @page is returned.  The returned css remains associated with @page
419  * until it is released.
420  *
421  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
422  * is returned.
423  *
424  * XXX: The above description of behavior on the default hierarchy isn't
425  * strictly true yet as replace_page_cache_page() can modify the
426  * association before @page is released even on the default hierarchy;
427  * however, the current and planned usages don't mix the the two functions
428  * and replace_page_cache_page() will soon be updated to make the invariant
429  * actually true.
430  */
mem_cgroup_css_from_page(struct page * page)431 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
432 {
433 	struct mem_cgroup *memcg;
434 
435 	rcu_read_lock();
436 
437 	memcg = page->mem_cgroup;
438 
439 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
440 		memcg = root_mem_cgroup;
441 
442 	rcu_read_unlock();
443 	return &memcg->css;
444 }
445 
446 /**
447  * page_cgroup_ino - return inode number of the memcg a page is charged to
448  * @page: the page
449  *
450  * Look up the closest online ancestor of the memory cgroup @page is charged to
451  * and return its inode number or 0 if @page is not charged to any cgroup. It
452  * is safe to call this function without holding a reference to @page.
453  *
454  * Note, this function is inherently racy, because there is nothing to prevent
455  * the cgroup inode from getting torn down and potentially reallocated a moment
456  * after page_cgroup_ino() returns, so it only should be used by callers that
457  * do not care (such as procfs interfaces).
458  */
page_cgroup_ino(struct page * page)459 ino_t page_cgroup_ino(struct page *page)
460 {
461 	struct mem_cgroup *memcg;
462 	unsigned long ino = 0;
463 
464 	rcu_read_lock();
465 	memcg = READ_ONCE(page->mem_cgroup);
466 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
467 		memcg = parent_mem_cgroup(memcg);
468 	if (memcg)
469 		ino = cgroup_ino(memcg->css.cgroup);
470 	rcu_read_unlock();
471 	return ino;
472 }
473 
474 static struct mem_cgroup_per_zone *
mem_cgroup_page_zoneinfo(struct mem_cgroup * memcg,struct page * page)475 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
476 {
477 	int nid = page_to_nid(page);
478 	int zid = page_zonenum(page);
479 
480 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
481 }
482 
483 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid,int zid)484 soft_limit_tree_node_zone(int nid, int zid)
485 {
486 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
487 }
488 
489 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page * page)490 soft_limit_tree_from_page(struct page *page)
491 {
492 	int nid = page_to_nid(page);
493 	int zid = page_zonenum(page);
494 
495 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
496 }
497 
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz,unsigned long new_usage_in_excess)498 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
499 					 struct mem_cgroup_tree_per_zone *mctz,
500 					 unsigned long new_usage_in_excess)
501 {
502 	struct rb_node **p = &mctz->rb_root.rb_node;
503 	struct rb_node *parent = NULL;
504 	struct mem_cgroup_per_zone *mz_node;
505 
506 	if (mz->on_tree)
507 		return;
508 
509 	mz->usage_in_excess = new_usage_in_excess;
510 	if (!mz->usage_in_excess)
511 		return;
512 	while (*p) {
513 		parent = *p;
514 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
515 					tree_node);
516 		if (mz->usage_in_excess < mz_node->usage_in_excess)
517 			p = &(*p)->rb_left;
518 		/*
519 		 * We can't avoid mem cgroups that are over their soft
520 		 * limit by the same amount
521 		 */
522 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
523 			p = &(*p)->rb_right;
524 	}
525 	rb_link_node(&mz->tree_node, parent, p);
526 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
527 	mz->on_tree = true;
528 }
529 
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)530 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
531 					 struct mem_cgroup_tree_per_zone *mctz)
532 {
533 	if (!mz->on_tree)
534 		return;
535 	rb_erase(&mz->tree_node, &mctz->rb_root);
536 	mz->on_tree = false;
537 }
538 
mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)539 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
540 				       struct mem_cgroup_tree_per_zone *mctz)
541 {
542 	unsigned long flags;
543 
544 	spin_lock_irqsave(&mctz->lock, flags);
545 	__mem_cgroup_remove_exceeded(mz, mctz);
546 	spin_unlock_irqrestore(&mctz->lock, flags);
547 }
548 
soft_limit_excess(struct mem_cgroup * memcg)549 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
550 {
551 	unsigned long nr_pages = page_counter_read(&memcg->memory);
552 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
553 	unsigned long excess = 0;
554 
555 	if (nr_pages > soft_limit)
556 		excess = nr_pages - soft_limit;
557 
558 	return excess;
559 }
560 
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)561 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
562 {
563 	unsigned long excess;
564 	struct mem_cgroup_per_zone *mz;
565 	struct mem_cgroup_tree_per_zone *mctz;
566 
567 	mctz = soft_limit_tree_from_page(page);
568 	/*
569 	 * Necessary to update all ancestors when hierarchy is used.
570 	 * because their event counter is not touched.
571 	 */
572 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
573 		mz = mem_cgroup_page_zoneinfo(memcg, page);
574 		excess = soft_limit_excess(memcg);
575 		/*
576 		 * We have to update the tree if mz is on RB-tree or
577 		 * mem is over its softlimit.
578 		 */
579 		if (excess || mz->on_tree) {
580 			unsigned long flags;
581 
582 			spin_lock_irqsave(&mctz->lock, flags);
583 			/* if on-tree, remove it */
584 			if (mz->on_tree)
585 				__mem_cgroup_remove_exceeded(mz, mctz);
586 			/*
587 			 * Insert again. mz->usage_in_excess will be updated.
588 			 * If excess is 0, no tree ops.
589 			 */
590 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
591 			spin_unlock_irqrestore(&mctz->lock, flags);
592 		}
593 	}
594 }
595 
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)596 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
597 {
598 	struct mem_cgroup_tree_per_zone *mctz;
599 	struct mem_cgroup_per_zone *mz;
600 	int nid, zid;
601 
602 	for_each_node(nid) {
603 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
604 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
605 			mctz = soft_limit_tree_node_zone(nid, zid);
606 			mem_cgroup_remove_exceeded(mz, mctz);
607 		}
608 	}
609 }
610 
611 static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)612 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
613 {
614 	struct rb_node *rightmost = NULL;
615 	struct mem_cgroup_per_zone *mz;
616 
617 retry:
618 	mz = NULL;
619 	rightmost = rb_last(&mctz->rb_root);
620 	if (!rightmost)
621 		goto done;		/* Nothing to reclaim from */
622 
623 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
624 	/*
625 	 * Remove the node now but someone else can add it back,
626 	 * we will to add it back at the end of reclaim to its correct
627 	 * position in the tree.
628 	 */
629 	__mem_cgroup_remove_exceeded(mz, mctz);
630 	if (!soft_limit_excess(mz->memcg) ||
631 	    !css_tryget_online(&mz->memcg->css))
632 		goto retry;
633 done:
634 	return mz;
635 }
636 
637 static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)638 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
639 {
640 	struct mem_cgroup_per_zone *mz;
641 
642 	spin_lock_irq(&mctz->lock);
643 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
644 	spin_unlock_irq(&mctz->lock);
645 	return mz;
646 }
647 
648 /*
649  * Return page count for single (non recursive) @memcg.
650  *
651  * Implementation Note: reading percpu statistics for memcg.
652  *
653  * Both of vmstat[] and percpu_counter has threshold and do periodic
654  * synchronization to implement "quick" read. There are trade-off between
655  * reading cost and precision of value. Then, we may have a chance to implement
656  * a periodic synchronization of counter in memcg's counter.
657  *
658  * But this _read() function is used for user interface now. The user accounts
659  * memory usage by memory cgroup and he _always_ requires exact value because
660  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
661  * have to visit all online cpus and make sum. So, for now, unnecessary
662  * synchronization is not implemented. (just implemented for cpu hotplug)
663  *
664  * If there are kernel internal actions which can make use of some not-exact
665  * value, and reading all cpu value can be performance bottleneck in some
666  * common workload, threshold and synchronization as vmstat[] should be
667  * implemented.
668  */
669 static unsigned long
mem_cgroup_read_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)670 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
671 {
672 	long val = 0;
673 	int cpu;
674 
675 	/* Per-cpu values can be negative, use a signed accumulator */
676 	for_each_possible_cpu(cpu)
677 		val += per_cpu(memcg->stat->count[idx], cpu);
678 	/*
679 	 * Summing races with updates, so val may be negative.  Avoid exposing
680 	 * transient negative values.
681 	 */
682 	if (val < 0)
683 		val = 0;
684 	return val;
685 }
686 
mem_cgroup_read_events(struct mem_cgroup * memcg,enum mem_cgroup_events_index idx)687 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
688 					    enum mem_cgroup_events_index idx)
689 {
690 	unsigned long val = 0;
691 	int cpu;
692 
693 	for_each_possible_cpu(cpu)
694 		val += per_cpu(memcg->stat->events[idx], cpu);
695 	return val;
696 }
697 
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)698 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
699 					 struct page *page,
700 					 int nr_pages)
701 {
702 	/*
703 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 	 * counted as CACHE even if it's on ANON LRU.
705 	 */
706 	if (PageAnon(page))
707 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 				nr_pages);
709 	else
710 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 				nr_pages);
712 
713 	if (PageTransHuge(page))
714 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
715 				nr_pages);
716 
717 	/* pagein of a big page is an event. So, ignore page size */
718 	if (nr_pages > 0)
719 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
720 	else {
721 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
722 		nr_pages = -nr_pages; /* for event */
723 	}
724 
725 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
726 }
727 
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)728 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729 						  int nid,
730 						  unsigned int lru_mask)
731 {
732 	unsigned long nr = 0;
733 	int zid;
734 
735 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
736 
737 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
738 		struct mem_cgroup_per_zone *mz;
739 		enum lru_list lru;
740 
741 		for_each_lru(lru) {
742 			if (!(BIT(lru) & lru_mask))
743 				continue;
744 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
745 			nr += mz->lru_size[lru];
746 		}
747 	}
748 	return nr;
749 }
750 
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)751 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
752 			unsigned int lru_mask)
753 {
754 	unsigned long nr = 0;
755 	int nid;
756 
757 	for_each_node_state(nid, N_MEMORY)
758 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
759 	return nr;
760 }
761 
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)762 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
763 				       enum mem_cgroup_events_target target)
764 {
765 	unsigned long val, next;
766 
767 	val = __this_cpu_read(memcg->stat->nr_page_events);
768 	next = __this_cpu_read(memcg->stat->targets[target]);
769 	/* from time_after() in jiffies.h */
770 	if ((long)next - (long)val < 0) {
771 		switch (target) {
772 		case MEM_CGROUP_TARGET_THRESH:
773 			next = val + THRESHOLDS_EVENTS_TARGET;
774 			break;
775 		case MEM_CGROUP_TARGET_SOFTLIMIT:
776 			next = val + SOFTLIMIT_EVENTS_TARGET;
777 			break;
778 		case MEM_CGROUP_TARGET_NUMAINFO:
779 			next = val + NUMAINFO_EVENTS_TARGET;
780 			break;
781 		default:
782 			break;
783 		}
784 		__this_cpu_write(memcg->stat->targets[target], next);
785 		return true;
786 	}
787 	return false;
788 }
789 
790 /*
791  * Check events in order.
792  *
793  */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)794 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
795 {
796 	/* threshold event is triggered in finer grain than soft limit */
797 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
798 						MEM_CGROUP_TARGET_THRESH))) {
799 		bool do_softlimit;
800 		bool do_numainfo __maybe_unused;
801 
802 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
803 						MEM_CGROUP_TARGET_SOFTLIMIT);
804 #if MAX_NUMNODES > 1
805 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
806 						MEM_CGROUP_TARGET_NUMAINFO);
807 #endif
808 		mem_cgroup_threshold(memcg);
809 		if (unlikely(do_softlimit))
810 			mem_cgroup_update_tree(memcg, page);
811 #if MAX_NUMNODES > 1
812 		if (unlikely(do_numainfo))
813 			atomic_inc(&memcg->numainfo_events);
814 #endif
815 	}
816 }
817 
mem_cgroup_from_task(struct task_struct * p)818 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
819 {
820 	/*
821 	 * mm_update_next_owner() may clear mm->owner to NULL
822 	 * if it races with swapoff, page migration, etc.
823 	 * So this can be called with p == NULL.
824 	 */
825 	if (unlikely(!p))
826 		return NULL;
827 
828 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
829 }
830 EXPORT_SYMBOL(mem_cgroup_from_task);
831 
get_mem_cgroup_from_mm(struct mm_struct * mm)832 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
833 {
834 	struct mem_cgroup *memcg = NULL;
835 
836 	rcu_read_lock();
837 	do {
838 		/*
839 		 * Page cache insertions can happen withou an
840 		 * actual mm context, e.g. during disk probing
841 		 * on boot, loopback IO, acct() writes etc.
842 		 */
843 		if (unlikely(!mm))
844 			memcg = root_mem_cgroup;
845 		else {
846 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
847 			if (unlikely(!memcg))
848 				memcg = root_mem_cgroup;
849 		}
850 	} while (!css_tryget_online(&memcg->css));
851 	rcu_read_unlock();
852 	return memcg;
853 }
854 
855 /**
856  * mem_cgroup_iter - iterate over memory cgroup hierarchy
857  * @root: hierarchy root
858  * @prev: previously returned memcg, NULL on first invocation
859  * @reclaim: cookie for shared reclaim walks, NULL for full walks
860  *
861  * Returns references to children of the hierarchy below @root, or
862  * @root itself, or %NULL after a full round-trip.
863  *
864  * Caller must pass the return value in @prev on subsequent
865  * invocations for reference counting, or use mem_cgroup_iter_break()
866  * to cancel a hierarchy walk before the round-trip is complete.
867  *
868  * Reclaimers can specify a zone and a priority level in @reclaim to
869  * divide up the memcgs in the hierarchy among all concurrent
870  * reclaimers operating on the same zone and priority.
871  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)872 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
873 				   struct mem_cgroup *prev,
874 				   struct mem_cgroup_reclaim_cookie *reclaim)
875 {
876 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
877 	struct cgroup_subsys_state *css = NULL;
878 	struct mem_cgroup *memcg = NULL;
879 	struct mem_cgroup *pos = NULL;
880 
881 	if (mem_cgroup_disabled())
882 		return NULL;
883 
884 	if (!root)
885 		root = root_mem_cgroup;
886 
887 	if (prev && !reclaim)
888 		pos = prev;
889 
890 	if (!root->use_hierarchy && root != root_mem_cgroup) {
891 		if (prev)
892 			goto out;
893 		return root;
894 	}
895 
896 	rcu_read_lock();
897 
898 	if (reclaim) {
899 		struct mem_cgroup_per_zone *mz;
900 
901 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
902 		iter = &mz->iter[reclaim->priority];
903 
904 		if (prev && reclaim->generation != iter->generation)
905 			goto out_unlock;
906 
907 		while (1) {
908 			pos = READ_ONCE(iter->position);
909 			if (!pos || css_tryget(&pos->css))
910 				break;
911 			/*
912 			 * css reference reached zero, so iter->position will
913 			 * be cleared by ->css_released. However, we should not
914 			 * rely on this happening soon, because ->css_released
915 			 * is called from a work queue, and by busy-waiting we
916 			 * might block it. So we clear iter->position right
917 			 * away.
918 			 */
919 			(void)cmpxchg(&iter->position, pos, NULL);
920 		}
921 	}
922 
923 	if (pos)
924 		css = &pos->css;
925 
926 	for (;;) {
927 		css = css_next_descendant_pre(css, &root->css);
928 		if (!css) {
929 			/*
930 			 * Reclaimers share the hierarchy walk, and a
931 			 * new one might jump in right at the end of
932 			 * the hierarchy - make sure they see at least
933 			 * one group and restart from the beginning.
934 			 */
935 			if (!prev)
936 				continue;
937 			break;
938 		}
939 
940 		/*
941 		 * Verify the css and acquire a reference.  The root
942 		 * is provided by the caller, so we know it's alive
943 		 * and kicking, and don't take an extra reference.
944 		 */
945 		memcg = mem_cgroup_from_css(css);
946 
947 		if (css == &root->css)
948 			break;
949 
950 		if (css_tryget(css)) {
951 			/*
952 			 * Make sure the memcg is initialized:
953 			 * mem_cgroup_css_online() orders the the
954 			 * initialization against setting the flag.
955 			 */
956 			if (smp_load_acquire(&memcg->initialized))
957 				break;
958 
959 			css_put(css);
960 		}
961 
962 		memcg = NULL;
963 	}
964 
965 	if (reclaim) {
966 		/*
967 		 * The position could have already been updated by a competing
968 		 * thread, so check that the value hasn't changed since we read
969 		 * it to avoid reclaiming from the same cgroup twice.
970 		 */
971 		(void)cmpxchg(&iter->position, pos, memcg);
972 
973 		if (pos)
974 			css_put(&pos->css);
975 
976 		if (!memcg)
977 			iter->generation++;
978 		else if (!prev)
979 			reclaim->generation = iter->generation;
980 	}
981 
982 out_unlock:
983 	rcu_read_unlock();
984 out:
985 	if (prev && prev != root)
986 		css_put(&prev->css);
987 
988 	return memcg;
989 }
990 
991 /**
992  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
993  * @root: hierarchy root
994  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
995  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)996 void mem_cgroup_iter_break(struct mem_cgroup *root,
997 			   struct mem_cgroup *prev)
998 {
999 	if (!root)
1000 		root = root_mem_cgroup;
1001 	if (prev && prev != root)
1002 		css_put(&prev->css);
1003 }
1004 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1005 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1006 {
1007 	struct mem_cgroup *memcg = dead_memcg;
1008 	struct mem_cgroup_reclaim_iter *iter;
1009 	struct mem_cgroup_per_zone *mz;
1010 	int nid, zid;
1011 	int i;
1012 
1013 	while ((memcg = parent_mem_cgroup(memcg))) {
1014 		for_each_node(nid) {
1015 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1016 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1017 				for (i = 0; i <= DEF_PRIORITY; i++) {
1018 					iter = &mz->iter[i];
1019 					cmpxchg(&iter->position,
1020 						dead_memcg, NULL);
1021 				}
1022 			}
1023 		}
1024 	}
1025 }
1026 
1027 /*
1028  * Iteration constructs for visiting all cgroups (under a tree).  If
1029  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1030  * be used for reference counting.
1031  */
1032 #define for_each_mem_cgroup_tree(iter, root)		\
1033 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1034 	     iter != NULL;				\
1035 	     iter = mem_cgroup_iter(root, iter, NULL))
1036 
1037 #define for_each_mem_cgroup(iter)			\
1038 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1039 	     iter != NULL;				\
1040 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1041 
1042 /**
1043  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1044  * @zone: zone of the wanted lruvec
1045  * @memcg: memcg of the wanted lruvec
1046  *
1047  * Returns the lru list vector holding pages for the given @zone and
1048  * @mem.  This can be the global zone lruvec, if the memory controller
1049  * is disabled.
1050  */
mem_cgroup_zone_lruvec(struct zone * zone,struct mem_cgroup * memcg)1051 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1052 				      struct mem_cgroup *memcg)
1053 {
1054 	struct mem_cgroup_per_zone *mz;
1055 	struct lruvec *lruvec;
1056 
1057 	if (mem_cgroup_disabled()) {
1058 		lruvec = &zone->lruvec;
1059 		goto out;
1060 	}
1061 
1062 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1063 	lruvec = &mz->lruvec;
1064 out:
1065 	/*
1066 	 * Since a node can be onlined after the mem_cgroup was created,
1067 	 * we have to be prepared to initialize lruvec->zone here;
1068 	 * and if offlined then reonlined, we need to reinitialize it.
1069 	 */
1070 	if (unlikely(lruvec->zone != zone))
1071 		lruvec->zone = zone;
1072 	return lruvec;
1073 }
1074 
1075 /**
1076  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1077  * @page: the page
1078  * @zone: zone of the page
1079  *
1080  * This function is only safe when following the LRU page isolation
1081  * and putback protocol: the LRU lock must be held, and the page must
1082  * either be PageLRU() or the caller must have isolated/allocated it.
1083  */
mem_cgroup_page_lruvec(struct page * page,struct zone * zone)1084 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1085 {
1086 	struct mem_cgroup_per_zone *mz;
1087 	struct mem_cgroup *memcg;
1088 	struct lruvec *lruvec;
1089 
1090 	if (mem_cgroup_disabled()) {
1091 		lruvec = &zone->lruvec;
1092 		goto out;
1093 	}
1094 
1095 	memcg = page->mem_cgroup;
1096 	/*
1097 	 * Swapcache readahead pages are added to the LRU - and
1098 	 * possibly migrated - before they are charged.
1099 	 */
1100 	if (!memcg)
1101 		memcg = root_mem_cgroup;
1102 
1103 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1104 	lruvec = &mz->lruvec;
1105 out:
1106 	/*
1107 	 * Since a node can be onlined after the mem_cgroup was created,
1108 	 * we have to be prepared to initialize lruvec->zone here;
1109 	 * and if offlined then reonlined, we need to reinitialize it.
1110 	 */
1111 	if (unlikely(lruvec->zone != zone))
1112 		lruvec->zone = zone;
1113 	return lruvec;
1114 }
1115 
1116 /**
1117  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1118  * @lruvec: mem_cgroup per zone lru vector
1119  * @lru: index of lru list the page is sitting on
1120  * @nr_pages: positive when adding or negative when removing
1121  *
1122  * This function must be called when a page is added to or removed from an
1123  * lru list.
1124  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int nr_pages)1125 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1126 				int nr_pages)
1127 {
1128 	struct mem_cgroup_per_zone *mz;
1129 	unsigned long *lru_size;
1130 
1131 	if (mem_cgroup_disabled())
1132 		return;
1133 
1134 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1135 	lru_size = mz->lru_size + lru;
1136 	*lru_size += nr_pages;
1137 	VM_BUG_ON((long)(*lru_size) < 0);
1138 }
1139 
task_in_mem_cgroup(struct task_struct * task,struct mem_cgroup * memcg)1140 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1141 {
1142 	struct mem_cgroup *task_memcg;
1143 	struct task_struct *p;
1144 	bool ret;
1145 
1146 	p = find_lock_task_mm(task);
1147 	if (p) {
1148 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1149 		task_unlock(p);
1150 	} else {
1151 		/*
1152 		 * All threads may have already detached their mm's, but the oom
1153 		 * killer still needs to detect if they have already been oom
1154 		 * killed to prevent needlessly killing additional tasks.
1155 		 */
1156 		rcu_read_lock();
1157 		task_memcg = mem_cgroup_from_task(task);
1158 		css_get(&task_memcg->css);
1159 		rcu_read_unlock();
1160 	}
1161 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1162 	css_put(&task_memcg->css);
1163 	return ret;
1164 }
1165 
1166 #define mem_cgroup_from_counter(counter, member)	\
1167 	container_of(counter, struct mem_cgroup, member)
1168 
1169 /**
1170  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1171  * @memcg: the memory cgroup
1172  *
1173  * Returns the maximum amount of memory @mem can be charged with, in
1174  * pages.
1175  */
mem_cgroup_margin(struct mem_cgroup * memcg)1176 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1177 {
1178 	unsigned long margin = 0;
1179 	unsigned long count;
1180 	unsigned long limit;
1181 
1182 	count = page_counter_read(&memcg->memory);
1183 	limit = READ_ONCE(memcg->memory.limit);
1184 	if (count < limit)
1185 		margin = limit - count;
1186 
1187 	if (do_swap_account) {
1188 		count = page_counter_read(&memcg->memsw);
1189 		limit = READ_ONCE(memcg->memsw.limit);
1190 		if (count <= limit)
1191 			margin = min(margin, limit - count);
1192 	}
1193 
1194 	return margin;
1195 }
1196 
1197 /*
1198  * A routine for checking "mem" is under move_account() or not.
1199  *
1200  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1201  * moving cgroups. This is for waiting at high-memory pressure
1202  * caused by "move".
1203  */
mem_cgroup_under_move(struct mem_cgroup * memcg)1204 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1205 {
1206 	struct mem_cgroup *from;
1207 	struct mem_cgroup *to;
1208 	bool ret = false;
1209 	/*
1210 	 * Unlike task_move routines, we access mc.to, mc.from not under
1211 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1212 	 */
1213 	spin_lock(&mc.lock);
1214 	from = mc.from;
1215 	to = mc.to;
1216 	if (!from)
1217 		goto unlock;
1218 
1219 	ret = mem_cgroup_is_descendant(from, memcg) ||
1220 		mem_cgroup_is_descendant(to, memcg);
1221 unlock:
1222 	spin_unlock(&mc.lock);
1223 	return ret;
1224 }
1225 
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1226 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1227 {
1228 	if (mc.moving_task && current != mc.moving_task) {
1229 		if (mem_cgroup_under_move(memcg)) {
1230 			DEFINE_WAIT(wait);
1231 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1232 			/* moving charge context might have finished. */
1233 			if (mc.moving_task)
1234 				schedule();
1235 			finish_wait(&mc.waitq, &wait);
1236 			return true;
1237 		}
1238 	}
1239 	return false;
1240 }
1241 
1242 #define K(x) ((x) << (PAGE_SHIFT-10))
1243 /**
1244  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1245  * @memcg: The memory cgroup that went over limit
1246  * @p: Task that is going to be killed
1247  *
1248  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1249  * enabled
1250  */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1251 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1252 {
1253 	/* oom_info_lock ensures that parallel ooms do not interleave */
1254 	static DEFINE_MUTEX(oom_info_lock);
1255 	struct mem_cgroup *iter;
1256 	unsigned int i;
1257 
1258 	mutex_lock(&oom_info_lock);
1259 	rcu_read_lock();
1260 
1261 	if (p) {
1262 		pr_info("Task in ");
1263 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1264 		pr_cont(" killed as a result of limit of ");
1265 	} else {
1266 		pr_info("Memory limit reached of cgroup ");
1267 	}
1268 
1269 	pr_cont_cgroup_path(memcg->css.cgroup);
1270 	pr_cont("\n");
1271 
1272 	rcu_read_unlock();
1273 
1274 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1275 		K((u64)page_counter_read(&memcg->memory)),
1276 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1277 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1278 		K((u64)page_counter_read(&memcg->memsw)),
1279 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1280 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1281 		K((u64)page_counter_read(&memcg->kmem)),
1282 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1283 
1284 	for_each_mem_cgroup_tree(iter, memcg) {
1285 		pr_info("Memory cgroup stats for ");
1286 		pr_cont_cgroup_path(iter->css.cgroup);
1287 		pr_cont(":");
1288 
1289 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1290 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1291 				continue;
1292 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1293 				K(mem_cgroup_read_stat(iter, i)));
1294 		}
1295 
1296 		for (i = 0; i < NR_LRU_LISTS; i++)
1297 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1298 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1299 
1300 		pr_cont("\n");
1301 	}
1302 	mutex_unlock(&oom_info_lock);
1303 }
1304 
1305 /*
1306  * This function returns the number of memcg under hierarchy tree. Returns
1307  * 1(self count) if no children.
1308  */
mem_cgroup_count_children(struct mem_cgroup * memcg)1309 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1310 {
1311 	int num = 0;
1312 	struct mem_cgroup *iter;
1313 
1314 	for_each_mem_cgroup_tree(iter, memcg)
1315 		num++;
1316 	return num;
1317 }
1318 
1319 /*
1320  * Return the memory (and swap, if configured) limit for a memcg.
1321  */
mem_cgroup_get_limit(struct mem_cgroup * memcg)1322 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1323 {
1324 	unsigned long limit;
1325 
1326 	limit = memcg->memory.limit;
1327 	if (mem_cgroup_swappiness(memcg)) {
1328 		unsigned long memsw_limit;
1329 
1330 		memsw_limit = memcg->memsw.limit;
1331 		limit = min(limit + total_swap_pages, memsw_limit);
1332 	}
1333 	return limit;
1334 }
1335 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1336 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1337 				     int order)
1338 {
1339 	struct oom_control oc = {
1340 		.zonelist = NULL,
1341 		.nodemask = NULL,
1342 		.gfp_mask = gfp_mask,
1343 		.order = order,
1344 	};
1345 	struct mem_cgroup *iter;
1346 	unsigned long chosen_points = 0;
1347 	unsigned long totalpages;
1348 	unsigned int points = 0;
1349 	struct task_struct *chosen = NULL;
1350 
1351 	mutex_lock(&oom_lock);
1352 
1353 	/*
1354 	 * If current has a pending SIGKILL or is exiting, then automatically
1355 	 * select it.  The goal is to allow it to allocate so that it may
1356 	 * quickly exit and free its memory.
1357 	 */
1358 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1359 		mark_oom_victim(current);
1360 		goto unlock;
1361 	}
1362 
1363 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1364 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1365 	for_each_mem_cgroup_tree(iter, memcg) {
1366 		struct css_task_iter it;
1367 		struct task_struct *task;
1368 
1369 		css_task_iter_start(&iter->css, &it);
1370 		while ((task = css_task_iter_next(&it))) {
1371 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1372 			case OOM_SCAN_SELECT:
1373 				if (chosen)
1374 					put_task_struct(chosen);
1375 				chosen = task;
1376 				chosen_points = ULONG_MAX;
1377 				get_task_struct(chosen);
1378 				/* fall through */
1379 			case OOM_SCAN_CONTINUE:
1380 				continue;
1381 			case OOM_SCAN_ABORT:
1382 				css_task_iter_end(&it);
1383 				mem_cgroup_iter_break(memcg, iter);
1384 				if (chosen)
1385 					put_task_struct(chosen);
1386 				goto unlock;
1387 			case OOM_SCAN_OK:
1388 				break;
1389 			};
1390 			points = oom_badness(task, memcg, NULL, totalpages);
1391 			if (!points || points < chosen_points)
1392 				continue;
1393 			/* Prefer thread group leaders for display purposes */
1394 			if (points == chosen_points &&
1395 			    thread_group_leader(chosen))
1396 				continue;
1397 
1398 			if (chosen)
1399 				put_task_struct(chosen);
1400 			chosen = task;
1401 			chosen_points = points;
1402 			get_task_struct(chosen);
1403 		}
1404 		css_task_iter_end(&it);
1405 	}
1406 
1407 	if (chosen) {
1408 		points = chosen_points * 1000 / totalpages;
1409 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1410 				 "Memory cgroup out of memory");
1411 	}
1412 unlock:
1413 	mutex_unlock(&oom_lock);
1414 	return chosen;
1415 }
1416 
1417 #if MAX_NUMNODES > 1
1418 
1419 /**
1420  * test_mem_cgroup_node_reclaimable
1421  * @memcg: the target memcg
1422  * @nid: the node ID to be checked.
1423  * @noswap : specify true here if the user wants flle only information.
1424  *
1425  * This function returns whether the specified memcg contains any
1426  * reclaimable pages on a node. Returns true if there are any reclaimable
1427  * pages in the node.
1428  */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1429 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1430 		int nid, bool noswap)
1431 {
1432 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1433 		return true;
1434 	if (noswap || !total_swap_pages)
1435 		return false;
1436 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1437 		return true;
1438 	return false;
1439 
1440 }
1441 
1442 /*
1443  * Always updating the nodemask is not very good - even if we have an empty
1444  * list or the wrong list here, we can start from some node and traverse all
1445  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1446  *
1447  */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1448 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1449 {
1450 	int nid;
1451 	/*
1452 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1453 	 * pagein/pageout changes since the last update.
1454 	 */
1455 	if (!atomic_read(&memcg->numainfo_events))
1456 		return;
1457 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1458 		return;
1459 
1460 	/* make a nodemask where this memcg uses memory from */
1461 	memcg->scan_nodes = node_states[N_MEMORY];
1462 
1463 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1464 
1465 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1466 			node_clear(nid, memcg->scan_nodes);
1467 	}
1468 
1469 	atomic_set(&memcg->numainfo_events, 0);
1470 	atomic_set(&memcg->numainfo_updating, 0);
1471 }
1472 
1473 /*
1474  * Selecting a node where we start reclaim from. Because what we need is just
1475  * reducing usage counter, start from anywhere is O,K. Considering
1476  * memory reclaim from current node, there are pros. and cons.
1477  *
1478  * Freeing memory from current node means freeing memory from a node which
1479  * we'll use or we've used. So, it may make LRU bad. And if several threads
1480  * hit limits, it will see a contention on a node. But freeing from remote
1481  * node means more costs for memory reclaim because of memory latency.
1482  *
1483  * Now, we use round-robin. Better algorithm is welcomed.
1484  */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1485 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1486 {
1487 	int node;
1488 
1489 	mem_cgroup_may_update_nodemask(memcg);
1490 	node = memcg->last_scanned_node;
1491 
1492 	node = next_node(node, memcg->scan_nodes);
1493 	if (node == MAX_NUMNODES)
1494 		node = first_node(memcg->scan_nodes);
1495 	/*
1496 	 * We call this when we hit limit, not when pages are added to LRU.
1497 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1498 	 * memcg is too small and all pages are not on LRU. In that case,
1499 	 * we use curret node.
1500 	 */
1501 	if (unlikely(node == MAX_NUMNODES))
1502 		node = numa_node_id();
1503 
1504 	memcg->last_scanned_node = node;
1505 	return node;
1506 }
1507 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1508 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1509 {
1510 	return 0;
1511 }
1512 #endif
1513 
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,struct zone * zone,gfp_t gfp_mask,unsigned long * total_scanned)1514 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1515 				   struct zone *zone,
1516 				   gfp_t gfp_mask,
1517 				   unsigned long *total_scanned)
1518 {
1519 	struct mem_cgroup *victim = NULL;
1520 	int total = 0;
1521 	int loop = 0;
1522 	unsigned long excess;
1523 	unsigned long nr_scanned;
1524 	struct mem_cgroup_reclaim_cookie reclaim = {
1525 		.zone = zone,
1526 		.priority = 0,
1527 	};
1528 
1529 	excess = soft_limit_excess(root_memcg);
1530 
1531 	while (1) {
1532 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1533 		if (!victim) {
1534 			loop++;
1535 			if (loop >= 2) {
1536 				/*
1537 				 * If we have not been able to reclaim
1538 				 * anything, it might because there are
1539 				 * no reclaimable pages under this hierarchy
1540 				 */
1541 				if (!total)
1542 					break;
1543 				/*
1544 				 * We want to do more targeted reclaim.
1545 				 * excess >> 2 is not to excessive so as to
1546 				 * reclaim too much, nor too less that we keep
1547 				 * coming back to reclaim from this cgroup
1548 				 */
1549 				if (total >= (excess >> 2) ||
1550 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1551 					break;
1552 			}
1553 			continue;
1554 		}
1555 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1556 						     zone, &nr_scanned);
1557 		*total_scanned += nr_scanned;
1558 		if (!soft_limit_excess(root_memcg))
1559 			break;
1560 	}
1561 	mem_cgroup_iter_break(root_memcg, victim);
1562 	return total;
1563 }
1564 
1565 #ifdef CONFIG_LOCKDEP
1566 static struct lockdep_map memcg_oom_lock_dep_map = {
1567 	.name = "memcg_oom_lock",
1568 };
1569 #endif
1570 
1571 static DEFINE_SPINLOCK(memcg_oom_lock);
1572 
1573 /*
1574  * Check OOM-Killer is already running under our hierarchy.
1575  * If someone is running, return false.
1576  */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1577 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1578 {
1579 	struct mem_cgroup *iter, *failed = NULL;
1580 
1581 	spin_lock(&memcg_oom_lock);
1582 
1583 	for_each_mem_cgroup_tree(iter, memcg) {
1584 		if (iter->oom_lock) {
1585 			/*
1586 			 * this subtree of our hierarchy is already locked
1587 			 * so we cannot give a lock.
1588 			 */
1589 			failed = iter;
1590 			mem_cgroup_iter_break(memcg, iter);
1591 			break;
1592 		} else
1593 			iter->oom_lock = true;
1594 	}
1595 
1596 	if (failed) {
1597 		/*
1598 		 * OK, we failed to lock the whole subtree so we have
1599 		 * to clean up what we set up to the failing subtree
1600 		 */
1601 		for_each_mem_cgroup_tree(iter, memcg) {
1602 			if (iter == failed) {
1603 				mem_cgroup_iter_break(memcg, iter);
1604 				break;
1605 			}
1606 			iter->oom_lock = false;
1607 		}
1608 	} else
1609 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1610 
1611 	spin_unlock(&memcg_oom_lock);
1612 
1613 	return !failed;
1614 }
1615 
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1616 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1617 {
1618 	struct mem_cgroup *iter;
1619 
1620 	spin_lock(&memcg_oom_lock);
1621 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1622 	for_each_mem_cgroup_tree(iter, memcg)
1623 		iter->oom_lock = false;
1624 	spin_unlock(&memcg_oom_lock);
1625 }
1626 
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1627 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1628 {
1629 	struct mem_cgroup *iter;
1630 
1631 	spin_lock(&memcg_oom_lock);
1632 	for_each_mem_cgroup_tree(iter, memcg)
1633 		iter->under_oom++;
1634 	spin_unlock(&memcg_oom_lock);
1635 }
1636 
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1637 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1638 {
1639 	struct mem_cgroup *iter;
1640 
1641 	/*
1642 	 * When a new child is created while the hierarchy is under oom,
1643 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1644 	 */
1645 	spin_lock(&memcg_oom_lock);
1646 	for_each_mem_cgroup_tree(iter, memcg)
1647 		if (iter->under_oom > 0)
1648 			iter->under_oom--;
1649 	spin_unlock(&memcg_oom_lock);
1650 }
1651 
1652 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1653 
1654 struct oom_wait_info {
1655 	struct mem_cgroup *memcg;
1656 	wait_queue_t	wait;
1657 };
1658 
memcg_oom_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * arg)1659 static int memcg_oom_wake_function(wait_queue_t *wait,
1660 	unsigned mode, int sync, void *arg)
1661 {
1662 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1663 	struct mem_cgroup *oom_wait_memcg;
1664 	struct oom_wait_info *oom_wait_info;
1665 
1666 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1667 	oom_wait_memcg = oom_wait_info->memcg;
1668 
1669 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1670 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1671 		return 0;
1672 	return autoremove_wake_function(wait, mode, sync, arg);
1673 }
1674 
memcg_oom_recover(struct mem_cgroup * memcg)1675 static void memcg_oom_recover(struct mem_cgroup *memcg)
1676 {
1677 	/*
1678 	 * For the following lockless ->under_oom test, the only required
1679 	 * guarantee is that it must see the state asserted by an OOM when
1680 	 * this function is called as a result of userland actions
1681 	 * triggered by the notification of the OOM.  This is trivially
1682 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1683 	 * triggering notification.
1684 	 */
1685 	if (memcg && memcg->under_oom)
1686 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1687 }
1688 
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1689 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1690 {
1691 	if (!current->memcg_may_oom)
1692 		return;
1693 	/*
1694 	 * We are in the middle of the charge context here, so we
1695 	 * don't want to block when potentially sitting on a callstack
1696 	 * that holds all kinds of filesystem and mm locks.
1697 	 *
1698 	 * Also, the caller may handle a failed allocation gracefully
1699 	 * (like optional page cache readahead) and so an OOM killer
1700 	 * invocation might not even be necessary.
1701 	 *
1702 	 * That's why we don't do anything here except remember the
1703 	 * OOM context and then deal with it at the end of the page
1704 	 * fault when the stack is unwound, the locks are released,
1705 	 * and when we know whether the fault was overall successful.
1706 	 */
1707 	css_get(&memcg->css);
1708 	current->memcg_in_oom = memcg;
1709 	current->memcg_oom_gfp_mask = mask;
1710 	current->memcg_oom_order = order;
1711 }
1712 
1713 /**
1714  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1715  * @handle: actually kill/wait or just clean up the OOM state
1716  *
1717  * This has to be called at the end of a page fault if the memcg OOM
1718  * handler was enabled.
1719  *
1720  * Memcg supports userspace OOM handling where failed allocations must
1721  * sleep on a waitqueue until the userspace task resolves the
1722  * situation.  Sleeping directly in the charge context with all kinds
1723  * of locks held is not a good idea, instead we remember an OOM state
1724  * in the task and mem_cgroup_oom_synchronize() has to be called at
1725  * the end of the page fault to complete the OOM handling.
1726  *
1727  * Returns %true if an ongoing memcg OOM situation was detected and
1728  * completed, %false otherwise.
1729  */
mem_cgroup_oom_synchronize(bool handle)1730 bool mem_cgroup_oom_synchronize(bool handle)
1731 {
1732 	struct mem_cgroup *memcg = current->memcg_in_oom;
1733 	struct oom_wait_info owait;
1734 	bool locked;
1735 
1736 	/* OOM is global, do not handle */
1737 	if (!memcg)
1738 		return false;
1739 
1740 	if (!handle || oom_killer_disabled)
1741 		goto cleanup;
1742 
1743 	owait.memcg = memcg;
1744 	owait.wait.flags = 0;
1745 	owait.wait.func = memcg_oom_wake_function;
1746 	owait.wait.private = current;
1747 	INIT_LIST_HEAD(&owait.wait.task_list);
1748 
1749 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1750 	mem_cgroup_mark_under_oom(memcg);
1751 
1752 	locked = mem_cgroup_oom_trylock(memcg);
1753 
1754 	if (locked)
1755 		mem_cgroup_oom_notify(memcg);
1756 
1757 	if (locked && !memcg->oom_kill_disable) {
1758 		mem_cgroup_unmark_under_oom(memcg);
1759 		finish_wait(&memcg_oom_waitq, &owait.wait);
1760 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1761 					 current->memcg_oom_order);
1762 	} else {
1763 		schedule();
1764 		mem_cgroup_unmark_under_oom(memcg);
1765 		finish_wait(&memcg_oom_waitq, &owait.wait);
1766 	}
1767 
1768 	if (locked) {
1769 		mem_cgroup_oom_unlock(memcg);
1770 		/*
1771 		 * There is no guarantee that an OOM-lock contender
1772 		 * sees the wakeups triggered by the OOM kill
1773 		 * uncharges.  Wake any sleepers explicitely.
1774 		 */
1775 		memcg_oom_recover(memcg);
1776 	}
1777 cleanup:
1778 	current->memcg_in_oom = NULL;
1779 	css_put(&memcg->css);
1780 	return true;
1781 }
1782 
1783 /**
1784  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1785  * @page: page that is going to change accounted state
1786  *
1787  * This function must mark the beginning of an accounted page state
1788  * change to prevent double accounting when the page is concurrently
1789  * being moved to another memcg:
1790  *
1791  *   memcg = mem_cgroup_begin_page_stat(page);
1792  *   if (TestClearPageState(page))
1793  *     mem_cgroup_update_page_stat(memcg, state, -1);
1794  *   mem_cgroup_end_page_stat(memcg);
1795  */
mem_cgroup_begin_page_stat(struct page * page)1796 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1797 {
1798 	struct mem_cgroup *memcg;
1799 	unsigned long flags;
1800 
1801 	/*
1802 	 * The RCU lock is held throughout the transaction.  The fast
1803 	 * path can get away without acquiring the memcg->move_lock
1804 	 * because page moving starts with an RCU grace period.
1805 	 *
1806 	 * The RCU lock also protects the memcg from being freed when
1807 	 * the page state that is going to change is the only thing
1808 	 * preventing the page from being uncharged.
1809 	 * E.g. end-writeback clearing PageWriteback(), which allows
1810 	 * migration to go ahead and uncharge the page before the
1811 	 * account transaction might be complete.
1812 	 */
1813 	rcu_read_lock();
1814 
1815 	if (mem_cgroup_disabled())
1816 		return NULL;
1817 again:
1818 	memcg = page->mem_cgroup;
1819 	if (unlikely(!memcg))
1820 		return NULL;
1821 
1822 	if (atomic_read(&memcg->moving_account) <= 0)
1823 		return memcg;
1824 
1825 	spin_lock_irqsave(&memcg->move_lock, flags);
1826 	if (memcg != page->mem_cgroup) {
1827 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1828 		goto again;
1829 	}
1830 
1831 	/*
1832 	 * When charge migration first begins, we can have locked and
1833 	 * unlocked page stat updates happening concurrently.  Track
1834 	 * the task who has the lock for mem_cgroup_end_page_stat().
1835 	 */
1836 	memcg->move_lock_task = current;
1837 	memcg->move_lock_flags = flags;
1838 
1839 	return memcg;
1840 }
1841 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1842 
1843 /**
1844  * mem_cgroup_end_page_stat - finish a page state statistics transaction
1845  * @memcg: the memcg that was accounted against
1846  */
mem_cgroup_end_page_stat(struct mem_cgroup * memcg)1847 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1848 {
1849 	if (memcg && memcg->move_lock_task == current) {
1850 		unsigned long flags = memcg->move_lock_flags;
1851 
1852 		memcg->move_lock_task = NULL;
1853 		memcg->move_lock_flags = 0;
1854 
1855 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1856 	}
1857 
1858 	rcu_read_unlock();
1859 }
1860 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1861 
1862 /*
1863  * size of first charge trial. "32" comes from vmscan.c's magic value.
1864  * TODO: maybe necessary to use big numbers in big irons.
1865  */
1866 #define CHARGE_BATCH	32U
1867 struct memcg_stock_pcp {
1868 	struct mem_cgroup *cached; /* this never be root cgroup */
1869 	unsigned int nr_pages;
1870 	struct work_struct work;
1871 	unsigned long flags;
1872 #define FLUSHING_CACHED_CHARGE	0
1873 };
1874 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1875 static DEFINE_MUTEX(percpu_charge_mutex);
1876 
1877 /**
1878  * consume_stock: Try to consume stocked charge on this cpu.
1879  * @memcg: memcg to consume from.
1880  * @nr_pages: how many pages to charge.
1881  *
1882  * The charges will only happen if @memcg matches the current cpu's memcg
1883  * stock, and at least @nr_pages are available in that stock.  Failure to
1884  * service an allocation will refill the stock.
1885  *
1886  * returns true if successful, false otherwise.
1887  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1888 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1889 {
1890 	struct memcg_stock_pcp *stock;
1891 	bool ret = false;
1892 
1893 	if (nr_pages > CHARGE_BATCH)
1894 		return ret;
1895 
1896 	stock = &get_cpu_var(memcg_stock);
1897 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1898 		stock->nr_pages -= nr_pages;
1899 		ret = true;
1900 	}
1901 	put_cpu_var(memcg_stock);
1902 	return ret;
1903 }
1904 
1905 /*
1906  * Returns stocks cached in percpu and reset cached information.
1907  */
drain_stock(struct memcg_stock_pcp * stock)1908 static void drain_stock(struct memcg_stock_pcp *stock)
1909 {
1910 	struct mem_cgroup *old = stock->cached;
1911 
1912 	if (stock->nr_pages) {
1913 		page_counter_uncharge(&old->memory, stock->nr_pages);
1914 		if (do_swap_account)
1915 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1916 		css_put_many(&old->css, stock->nr_pages);
1917 		stock->nr_pages = 0;
1918 	}
1919 	stock->cached = NULL;
1920 }
1921 
1922 /*
1923  * This must be called under preempt disabled or must be called by
1924  * a thread which is pinned to local cpu.
1925  */
drain_local_stock(struct work_struct * dummy)1926 static void drain_local_stock(struct work_struct *dummy)
1927 {
1928 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1929 	drain_stock(stock);
1930 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1931 }
1932 
1933 /*
1934  * Cache charges(val) to local per_cpu area.
1935  * This will be consumed by consume_stock() function, later.
1936  */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1937 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1938 {
1939 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1940 
1941 	if (stock->cached != memcg) { /* reset if necessary */
1942 		drain_stock(stock);
1943 		stock->cached = memcg;
1944 	}
1945 	stock->nr_pages += nr_pages;
1946 	put_cpu_var(memcg_stock);
1947 }
1948 
1949 /*
1950  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1951  * of the hierarchy under it.
1952  */
drain_all_stock(struct mem_cgroup * root_memcg)1953 static void drain_all_stock(struct mem_cgroup *root_memcg)
1954 {
1955 	int cpu, curcpu;
1956 
1957 	/* If someone's already draining, avoid adding running more workers. */
1958 	if (!mutex_trylock(&percpu_charge_mutex))
1959 		return;
1960 	/* Notify other cpus that system-wide "drain" is running */
1961 	get_online_cpus();
1962 	curcpu = get_cpu();
1963 	for_each_online_cpu(cpu) {
1964 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1965 		struct mem_cgroup *memcg;
1966 
1967 		memcg = stock->cached;
1968 		if (!memcg || !stock->nr_pages)
1969 			continue;
1970 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1971 			continue;
1972 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1973 			if (cpu == curcpu)
1974 				drain_local_stock(&stock->work);
1975 			else
1976 				schedule_work_on(cpu, &stock->work);
1977 		}
1978 	}
1979 	put_cpu();
1980 	put_online_cpus();
1981 	mutex_unlock(&percpu_charge_mutex);
1982 }
1983 
memcg_cpu_hotplug_callback(struct notifier_block * nb,unsigned long action,void * hcpu)1984 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1985 					unsigned long action,
1986 					void *hcpu)
1987 {
1988 	int cpu = (unsigned long)hcpu;
1989 	struct memcg_stock_pcp *stock;
1990 
1991 	if (action == CPU_ONLINE)
1992 		return NOTIFY_OK;
1993 
1994 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1995 		return NOTIFY_OK;
1996 
1997 	stock = &per_cpu(memcg_stock, cpu);
1998 	drain_stock(stock);
1999 	return NOTIFY_OK;
2000 }
2001 
2002 /*
2003  * Scheduled by try_charge() to be executed from the userland return path
2004  * and reclaims memory over the high limit.
2005  */
mem_cgroup_handle_over_high(void)2006 void mem_cgroup_handle_over_high(void)
2007 {
2008 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2009 	struct mem_cgroup *memcg, *pos;
2010 
2011 	if (likely(!nr_pages))
2012 		return;
2013 
2014 	pos = memcg = get_mem_cgroup_from_mm(current->mm);
2015 
2016 	do {
2017 		if (page_counter_read(&pos->memory) <= pos->high)
2018 			continue;
2019 		mem_cgroup_events(pos, MEMCG_HIGH, 1);
2020 		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2021 	} while ((pos = parent_mem_cgroup(pos)));
2022 
2023 	css_put(&memcg->css);
2024 	current->memcg_nr_pages_over_high = 0;
2025 }
2026 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2027 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2028 		      unsigned int nr_pages)
2029 {
2030 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2031 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2032 	struct mem_cgroup *mem_over_limit;
2033 	struct page_counter *counter;
2034 	unsigned long nr_reclaimed;
2035 	bool may_swap = true;
2036 	bool drained = false;
2037 
2038 	if (mem_cgroup_is_root(memcg))
2039 		return 0;
2040 retry:
2041 	if (consume_stock(memcg, nr_pages))
2042 		return 0;
2043 
2044 	if (!do_swap_account ||
2045 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2046 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2047 			goto done_restock;
2048 		if (do_swap_account)
2049 			page_counter_uncharge(&memcg->memsw, batch);
2050 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2051 	} else {
2052 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2053 		may_swap = false;
2054 	}
2055 
2056 	if (batch > nr_pages) {
2057 		batch = nr_pages;
2058 		goto retry;
2059 	}
2060 
2061 	/*
2062 	 * Unlike in global OOM situations, memcg is not in a physical
2063 	 * memory shortage.  Allow dying and OOM-killed tasks to
2064 	 * bypass the last charges so that they can exit quickly and
2065 	 * free their memory.
2066 	 */
2067 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2068 		     fatal_signal_pending(current) ||
2069 		     current->flags & PF_EXITING))
2070 		goto force;
2071 
2072 	if (unlikely(task_in_memcg_oom(current)))
2073 		goto nomem;
2074 
2075 	if (!gfpflags_allow_blocking(gfp_mask))
2076 		goto nomem;
2077 
2078 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2079 
2080 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2081 						    gfp_mask, may_swap);
2082 
2083 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2084 		goto retry;
2085 
2086 	if (!drained) {
2087 		drain_all_stock(mem_over_limit);
2088 		drained = true;
2089 		goto retry;
2090 	}
2091 
2092 	if (gfp_mask & __GFP_NORETRY)
2093 		goto nomem;
2094 	/*
2095 	 * Even though the limit is exceeded at this point, reclaim
2096 	 * may have been able to free some pages.  Retry the charge
2097 	 * before killing the task.
2098 	 *
2099 	 * Only for regular pages, though: huge pages are rather
2100 	 * unlikely to succeed so close to the limit, and we fall back
2101 	 * to regular pages anyway in case of failure.
2102 	 */
2103 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2104 		goto retry;
2105 	/*
2106 	 * At task move, charge accounts can be doubly counted. So, it's
2107 	 * better to wait until the end of task_move if something is going on.
2108 	 */
2109 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2110 		goto retry;
2111 
2112 	if (nr_retries--)
2113 		goto retry;
2114 
2115 	if (gfp_mask & __GFP_NOFAIL)
2116 		goto force;
2117 
2118 	if (fatal_signal_pending(current))
2119 		goto force;
2120 
2121 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2122 
2123 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2124 		       get_order(nr_pages * PAGE_SIZE));
2125 nomem:
2126 	if (!(gfp_mask & __GFP_NOFAIL))
2127 		return -ENOMEM;
2128 force:
2129 	/*
2130 	 * The allocation either can't fail or will lead to more memory
2131 	 * being freed very soon.  Allow memory usage go over the limit
2132 	 * temporarily by force charging it.
2133 	 */
2134 	page_counter_charge(&memcg->memory, nr_pages);
2135 	if (do_swap_account)
2136 		page_counter_charge(&memcg->memsw, nr_pages);
2137 	css_get_many(&memcg->css, nr_pages);
2138 
2139 	return 0;
2140 
2141 done_restock:
2142 	css_get_many(&memcg->css, batch);
2143 	if (batch > nr_pages)
2144 		refill_stock(memcg, batch - nr_pages);
2145 
2146 	/*
2147 	 * If the hierarchy is above the normal consumption range, schedule
2148 	 * reclaim on returning to userland.  We can perform reclaim here
2149 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2150 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2151 	 * not recorded as it most likely matches current's and won't
2152 	 * change in the meantime.  As high limit is checked again before
2153 	 * reclaim, the cost of mismatch is negligible.
2154 	 */
2155 	do {
2156 		if (page_counter_read(&memcg->memory) > memcg->high) {
2157 			current->memcg_nr_pages_over_high += batch;
2158 			set_notify_resume(current);
2159 			break;
2160 		}
2161 	} while ((memcg = parent_mem_cgroup(memcg)));
2162 
2163 	return 0;
2164 }
2165 
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2166 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2167 {
2168 	if (mem_cgroup_is_root(memcg))
2169 		return;
2170 
2171 	page_counter_uncharge(&memcg->memory, nr_pages);
2172 	if (do_swap_account)
2173 		page_counter_uncharge(&memcg->memsw, nr_pages);
2174 
2175 	css_put_many(&memcg->css, nr_pages);
2176 }
2177 
lock_page_lru(struct page * page,int * isolated)2178 static void lock_page_lru(struct page *page, int *isolated)
2179 {
2180 	struct zone *zone = page_zone(page);
2181 
2182 	spin_lock_irq(&zone->lru_lock);
2183 	if (PageLRU(page)) {
2184 		struct lruvec *lruvec;
2185 
2186 		lruvec = mem_cgroup_page_lruvec(page, zone);
2187 		ClearPageLRU(page);
2188 		del_page_from_lru_list(page, lruvec, page_lru(page));
2189 		*isolated = 1;
2190 	} else
2191 		*isolated = 0;
2192 }
2193 
unlock_page_lru(struct page * page,int isolated)2194 static void unlock_page_lru(struct page *page, int isolated)
2195 {
2196 	struct zone *zone = page_zone(page);
2197 
2198 	if (isolated) {
2199 		struct lruvec *lruvec;
2200 
2201 		lruvec = mem_cgroup_page_lruvec(page, zone);
2202 		VM_BUG_ON_PAGE(PageLRU(page), page);
2203 		SetPageLRU(page);
2204 		add_page_to_lru_list(page, lruvec, page_lru(page));
2205 	}
2206 	spin_unlock_irq(&zone->lru_lock);
2207 }
2208 
commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)2209 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2210 			  bool lrucare)
2211 {
2212 	int isolated;
2213 
2214 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2215 
2216 	/*
2217 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2218 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2219 	 */
2220 	if (lrucare)
2221 		lock_page_lru(page, &isolated);
2222 
2223 	/*
2224 	 * Nobody should be changing or seriously looking at
2225 	 * page->mem_cgroup at this point:
2226 	 *
2227 	 * - the page is uncharged
2228 	 *
2229 	 * - the page is off-LRU
2230 	 *
2231 	 * - an anonymous fault has exclusive page access, except for
2232 	 *   a locked page table
2233 	 *
2234 	 * - a page cache insertion, a swapin fault, or a migration
2235 	 *   have the page locked
2236 	 */
2237 	page->mem_cgroup = memcg;
2238 
2239 	if (lrucare)
2240 		unlock_page_lru(page, isolated);
2241 }
2242 
2243 #ifdef CONFIG_MEMCG_KMEM
memcg_alloc_cache_id(void)2244 static int memcg_alloc_cache_id(void)
2245 {
2246 	int id, size;
2247 	int err;
2248 
2249 	id = ida_simple_get(&memcg_cache_ida,
2250 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2251 	if (id < 0)
2252 		return id;
2253 
2254 	if (id < memcg_nr_cache_ids)
2255 		return id;
2256 
2257 	/*
2258 	 * There's no space for the new id in memcg_caches arrays,
2259 	 * so we have to grow them.
2260 	 */
2261 	down_write(&memcg_cache_ids_sem);
2262 
2263 	size = 2 * (id + 1);
2264 	if (size < MEMCG_CACHES_MIN_SIZE)
2265 		size = MEMCG_CACHES_MIN_SIZE;
2266 	else if (size > MEMCG_CACHES_MAX_SIZE)
2267 		size = MEMCG_CACHES_MAX_SIZE;
2268 
2269 	err = memcg_update_all_caches(size);
2270 	if (!err)
2271 		err = memcg_update_all_list_lrus(size);
2272 	if (!err)
2273 		memcg_nr_cache_ids = size;
2274 
2275 	up_write(&memcg_cache_ids_sem);
2276 
2277 	if (err) {
2278 		ida_simple_remove(&memcg_cache_ida, id);
2279 		return err;
2280 	}
2281 	return id;
2282 }
2283 
memcg_free_cache_id(int id)2284 static void memcg_free_cache_id(int id)
2285 {
2286 	ida_simple_remove(&memcg_cache_ida, id);
2287 }
2288 
2289 struct memcg_kmem_cache_create_work {
2290 	struct mem_cgroup *memcg;
2291 	struct kmem_cache *cachep;
2292 	struct work_struct work;
2293 };
2294 
memcg_kmem_cache_create_func(struct work_struct * w)2295 static void memcg_kmem_cache_create_func(struct work_struct *w)
2296 {
2297 	struct memcg_kmem_cache_create_work *cw =
2298 		container_of(w, struct memcg_kmem_cache_create_work, work);
2299 	struct mem_cgroup *memcg = cw->memcg;
2300 	struct kmem_cache *cachep = cw->cachep;
2301 
2302 	memcg_create_kmem_cache(memcg, cachep);
2303 
2304 	css_put(&memcg->css);
2305 	kfree(cw);
2306 }
2307 
2308 /*
2309  * Enqueue the creation of a per-memcg kmem_cache.
2310  */
__memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2311 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2312 					       struct kmem_cache *cachep)
2313 {
2314 	struct memcg_kmem_cache_create_work *cw;
2315 
2316 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2317 	if (!cw)
2318 		return;
2319 
2320 	css_get(&memcg->css);
2321 
2322 	cw->memcg = memcg;
2323 	cw->cachep = cachep;
2324 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2325 
2326 	schedule_work(&cw->work);
2327 }
2328 
memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2329 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2330 					     struct kmem_cache *cachep)
2331 {
2332 	/*
2333 	 * We need to stop accounting when we kmalloc, because if the
2334 	 * corresponding kmalloc cache is not yet created, the first allocation
2335 	 * in __memcg_schedule_kmem_cache_create will recurse.
2336 	 *
2337 	 * However, it is better to enclose the whole function. Depending on
2338 	 * the debugging options enabled, INIT_WORK(), for instance, can
2339 	 * trigger an allocation. This too, will make us recurse. Because at
2340 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2341 	 * the safest choice is to do it like this, wrapping the whole function.
2342 	 */
2343 	current->memcg_kmem_skip_account = 1;
2344 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2345 	current->memcg_kmem_skip_account = 0;
2346 }
2347 
2348 /*
2349  * Return the kmem_cache we're supposed to use for a slab allocation.
2350  * We try to use the current memcg's version of the cache.
2351  *
2352  * If the cache does not exist yet, if we are the first user of it,
2353  * we either create it immediately, if possible, or create it asynchronously
2354  * in a workqueue.
2355  * In the latter case, we will let the current allocation go through with
2356  * the original cache.
2357  *
2358  * Can't be called in interrupt context or from kernel threads.
2359  * This function needs to be called with rcu_read_lock() held.
2360  */
__memcg_kmem_get_cache(struct kmem_cache * cachep)2361 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2362 {
2363 	struct mem_cgroup *memcg;
2364 	struct kmem_cache *memcg_cachep;
2365 	int kmemcg_id;
2366 
2367 	VM_BUG_ON(!is_root_cache(cachep));
2368 
2369 	if (current->memcg_kmem_skip_account)
2370 		return cachep;
2371 
2372 	memcg = get_mem_cgroup_from_mm(current->mm);
2373 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2374 	if (kmemcg_id < 0)
2375 		goto out;
2376 
2377 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2378 	if (likely(memcg_cachep))
2379 		return memcg_cachep;
2380 
2381 	/*
2382 	 * If we are in a safe context (can wait, and not in interrupt
2383 	 * context), we could be be predictable and return right away.
2384 	 * This would guarantee that the allocation being performed
2385 	 * already belongs in the new cache.
2386 	 *
2387 	 * However, there are some clashes that can arrive from locking.
2388 	 * For instance, because we acquire the slab_mutex while doing
2389 	 * memcg_create_kmem_cache, this means no further allocation
2390 	 * could happen with the slab_mutex held. So it's better to
2391 	 * defer everything.
2392 	 */
2393 	memcg_schedule_kmem_cache_create(memcg, cachep);
2394 out:
2395 	css_put(&memcg->css);
2396 	return cachep;
2397 }
2398 
__memcg_kmem_put_cache(struct kmem_cache * cachep)2399 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2400 {
2401 	if (!is_root_cache(cachep))
2402 		css_put(&cachep->memcg_params.memcg->css);
2403 }
2404 
__memcg_kmem_charge_memcg(struct page * page,gfp_t gfp,int order,struct mem_cgroup * memcg)2405 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2406 			      struct mem_cgroup *memcg)
2407 {
2408 	unsigned int nr_pages = 1 << order;
2409 	struct page_counter *counter;
2410 	int ret;
2411 
2412 	if (!memcg_kmem_is_active(memcg))
2413 		return 0;
2414 
2415 	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2416 		return -ENOMEM;
2417 
2418 	ret = try_charge(memcg, gfp, nr_pages);
2419 	if (ret) {
2420 		page_counter_uncharge(&memcg->kmem, nr_pages);
2421 		return ret;
2422 	}
2423 
2424 	page->mem_cgroup = memcg;
2425 
2426 	return 0;
2427 }
2428 
__memcg_kmem_charge(struct page * page,gfp_t gfp,int order)2429 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2430 {
2431 	struct mem_cgroup *memcg;
2432 	int ret;
2433 
2434 	memcg = get_mem_cgroup_from_mm(current->mm);
2435 	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2436 	css_put(&memcg->css);
2437 	return ret;
2438 }
2439 
__memcg_kmem_uncharge(struct page * page,int order)2440 void __memcg_kmem_uncharge(struct page *page, int order)
2441 {
2442 	struct mem_cgroup *memcg = page->mem_cgroup;
2443 	unsigned int nr_pages = 1 << order;
2444 
2445 	if (!memcg)
2446 		return;
2447 
2448 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2449 
2450 	page_counter_uncharge(&memcg->kmem, nr_pages);
2451 	page_counter_uncharge(&memcg->memory, nr_pages);
2452 	if (do_swap_account)
2453 		page_counter_uncharge(&memcg->memsw, nr_pages);
2454 
2455 	page->mem_cgroup = NULL;
2456 	css_put_many(&memcg->css, nr_pages);
2457 }
2458 #endif /* CONFIG_MEMCG_KMEM */
2459 
2460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2461 
2462 /*
2463  * Because tail pages are not marked as "used", set it. We're under
2464  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2465  * charge/uncharge will be never happen and move_account() is done under
2466  * compound_lock(), so we don't have to take care of races.
2467  */
mem_cgroup_split_huge_fixup(struct page * head)2468 void mem_cgroup_split_huge_fixup(struct page *head)
2469 {
2470 	int i;
2471 
2472 	if (mem_cgroup_disabled())
2473 		return;
2474 
2475 	for (i = 1; i < HPAGE_PMD_NR; i++)
2476 		head[i].mem_cgroup = head->mem_cgroup;
2477 
2478 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2479 		       HPAGE_PMD_NR);
2480 }
2481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2482 
2483 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_swap_statistics(struct mem_cgroup * memcg,bool charge)2484 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2485 					 bool charge)
2486 {
2487 	int val = (charge) ? 1 : -1;
2488 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2489 }
2490 
2491 /**
2492  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2493  * @entry: swap entry to be moved
2494  * @from:  mem_cgroup which the entry is moved from
2495  * @to:  mem_cgroup which the entry is moved to
2496  *
2497  * It succeeds only when the swap_cgroup's record for this entry is the same
2498  * as the mem_cgroup's id of @from.
2499  *
2500  * Returns 0 on success, -EINVAL on failure.
2501  *
2502  * The caller must have charged to @to, IOW, called page_counter_charge() about
2503  * both res and memsw, and called css_get().
2504  */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2505 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2506 				struct mem_cgroup *from, struct mem_cgroup *to)
2507 {
2508 	unsigned short old_id, new_id;
2509 
2510 	old_id = mem_cgroup_id(from);
2511 	new_id = mem_cgroup_id(to);
2512 
2513 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2514 		mem_cgroup_swap_statistics(from, false);
2515 		mem_cgroup_swap_statistics(to, true);
2516 		return 0;
2517 	}
2518 	return -EINVAL;
2519 }
2520 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2521 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2522 				struct mem_cgroup *from, struct mem_cgroup *to)
2523 {
2524 	return -EINVAL;
2525 }
2526 #endif
2527 
2528 static DEFINE_MUTEX(memcg_limit_mutex);
2529 
mem_cgroup_resize_limit(struct mem_cgroup * memcg,unsigned long limit)2530 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2531 				   unsigned long limit)
2532 {
2533 	unsigned long curusage;
2534 	unsigned long oldusage;
2535 	bool enlarge = false;
2536 	int retry_count;
2537 	int ret;
2538 
2539 	/*
2540 	 * For keeping hierarchical_reclaim simple, how long we should retry
2541 	 * is depends on callers. We set our retry-count to be function
2542 	 * of # of children which we should visit in this loop.
2543 	 */
2544 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2545 		      mem_cgroup_count_children(memcg);
2546 
2547 	oldusage = page_counter_read(&memcg->memory);
2548 
2549 	do {
2550 		if (signal_pending(current)) {
2551 			ret = -EINTR;
2552 			break;
2553 		}
2554 
2555 		mutex_lock(&memcg_limit_mutex);
2556 		if (limit > memcg->memsw.limit) {
2557 			mutex_unlock(&memcg_limit_mutex);
2558 			ret = -EINVAL;
2559 			break;
2560 		}
2561 		if (limit > memcg->memory.limit)
2562 			enlarge = true;
2563 		ret = page_counter_limit(&memcg->memory, limit);
2564 		mutex_unlock(&memcg_limit_mutex);
2565 
2566 		if (!ret)
2567 			break;
2568 
2569 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2570 
2571 		curusage = page_counter_read(&memcg->memory);
2572 		/* Usage is reduced ? */
2573 		if (curusage >= oldusage)
2574 			retry_count--;
2575 		else
2576 			oldusage = curusage;
2577 	} while (retry_count);
2578 
2579 	if (!ret && enlarge)
2580 		memcg_oom_recover(memcg);
2581 
2582 	return ret;
2583 }
2584 
mem_cgroup_resize_memsw_limit(struct mem_cgroup * memcg,unsigned long limit)2585 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2586 					 unsigned long limit)
2587 {
2588 	unsigned long curusage;
2589 	unsigned long oldusage;
2590 	bool enlarge = false;
2591 	int retry_count;
2592 	int ret;
2593 
2594 	/* see mem_cgroup_resize_res_limit */
2595 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2596 		      mem_cgroup_count_children(memcg);
2597 
2598 	oldusage = page_counter_read(&memcg->memsw);
2599 
2600 	do {
2601 		if (signal_pending(current)) {
2602 			ret = -EINTR;
2603 			break;
2604 		}
2605 
2606 		mutex_lock(&memcg_limit_mutex);
2607 		if (limit < memcg->memory.limit) {
2608 			mutex_unlock(&memcg_limit_mutex);
2609 			ret = -EINVAL;
2610 			break;
2611 		}
2612 		if (limit > memcg->memsw.limit)
2613 			enlarge = true;
2614 		ret = page_counter_limit(&memcg->memsw, limit);
2615 		mutex_unlock(&memcg_limit_mutex);
2616 
2617 		if (!ret)
2618 			break;
2619 
2620 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2621 
2622 		curusage = page_counter_read(&memcg->memsw);
2623 		/* Usage is reduced ? */
2624 		if (curusage >= oldusage)
2625 			retry_count--;
2626 		else
2627 			oldusage = curusage;
2628 	} while (retry_count);
2629 
2630 	if (!ret && enlarge)
2631 		memcg_oom_recover(memcg);
2632 
2633 	return ret;
2634 }
2635 
mem_cgroup_soft_limit_reclaim(struct zone * zone,int order,gfp_t gfp_mask,unsigned long * total_scanned)2636 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2637 					    gfp_t gfp_mask,
2638 					    unsigned long *total_scanned)
2639 {
2640 	unsigned long nr_reclaimed = 0;
2641 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2642 	unsigned long reclaimed;
2643 	int loop = 0;
2644 	struct mem_cgroup_tree_per_zone *mctz;
2645 	unsigned long excess;
2646 	unsigned long nr_scanned;
2647 
2648 	if (order > 0)
2649 		return 0;
2650 
2651 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2652 	/*
2653 	 * This loop can run a while, specially if mem_cgroup's continuously
2654 	 * keep exceeding their soft limit and putting the system under
2655 	 * pressure
2656 	 */
2657 	do {
2658 		if (next_mz)
2659 			mz = next_mz;
2660 		else
2661 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2662 		if (!mz)
2663 			break;
2664 
2665 		nr_scanned = 0;
2666 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2667 						    gfp_mask, &nr_scanned);
2668 		nr_reclaimed += reclaimed;
2669 		*total_scanned += nr_scanned;
2670 		spin_lock_irq(&mctz->lock);
2671 		__mem_cgroup_remove_exceeded(mz, mctz);
2672 
2673 		/*
2674 		 * If we failed to reclaim anything from this memory cgroup
2675 		 * it is time to move on to the next cgroup
2676 		 */
2677 		next_mz = NULL;
2678 		if (!reclaimed)
2679 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2680 
2681 		excess = soft_limit_excess(mz->memcg);
2682 		/*
2683 		 * One school of thought says that we should not add
2684 		 * back the node to the tree if reclaim returns 0.
2685 		 * But our reclaim could return 0, simply because due
2686 		 * to priority we are exposing a smaller subset of
2687 		 * memory to reclaim from. Consider this as a longer
2688 		 * term TODO.
2689 		 */
2690 		/* If excess == 0, no tree ops */
2691 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2692 		spin_unlock_irq(&mctz->lock);
2693 		css_put(&mz->memcg->css);
2694 		loop++;
2695 		/*
2696 		 * Could not reclaim anything and there are no more
2697 		 * mem cgroups to try or we seem to be looping without
2698 		 * reclaiming anything.
2699 		 */
2700 		if (!nr_reclaimed &&
2701 			(next_mz == NULL ||
2702 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2703 			break;
2704 	} while (!nr_reclaimed);
2705 	if (next_mz)
2706 		css_put(&next_mz->memcg->css);
2707 	return nr_reclaimed;
2708 }
2709 
2710 /*
2711  * Test whether @memcg has children, dead or alive.  Note that this
2712  * function doesn't care whether @memcg has use_hierarchy enabled and
2713  * returns %true if there are child csses according to the cgroup
2714  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2715  */
memcg_has_children(struct mem_cgroup * memcg)2716 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2717 {
2718 	bool ret;
2719 
2720 	/*
2721 	 * The lock does not prevent addition or deletion of children, but
2722 	 * it prevents a new child from being initialized based on this
2723 	 * parent in css_online(), so it's enough to decide whether
2724 	 * hierarchically inherited attributes can still be changed or not.
2725 	 */
2726 	lockdep_assert_held(&memcg_create_mutex);
2727 
2728 	rcu_read_lock();
2729 	ret = css_next_child(NULL, &memcg->css);
2730 	rcu_read_unlock();
2731 	return ret;
2732 }
2733 
2734 /*
2735  * Reclaims as many pages from the given memcg as possible and moves
2736  * the rest to the parent.
2737  *
2738  * Caller is responsible for holding css reference for memcg.
2739  */
mem_cgroup_force_empty(struct mem_cgroup * memcg)2740 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2741 {
2742 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2743 
2744 	/* we call try-to-free pages for make this cgroup empty */
2745 	lru_add_drain_all();
2746 	/* try to free all pages in this cgroup */
2747 	while (nr_retries && page_counter_read(&memcg->memory)) {
2748 		int progress;
2749 
2750 		if (signal_pending(current))
2751 			return -EINTR;
2752 
2753 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2754 							GFP_KERNEL, true);
2755 		if (!progress) {
2756 			nr_retries--;
2757 			/* maybe some writeback is necessary */
2758 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2759 		}
2760 
2761 	}
2762 
2763 	return 0;
2764 }
2765 
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2766 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2767 					    char *buf, size_t nbytes,
2768 					    loff_t off)
2769 {
2770 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2771 
2772 	if (mem_cgroup_is_root(memcg))
2773 		return -EINVAL;
2774 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2775 }
2776 
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)2777 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2778 				     struct cftype *cft)
2779 {
2780 	return mem_cgroup_from_css(css)->use_hierarchy;
2781 }
2782 
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2783 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2784 				      struct cftype *cft, u64 val)
2785 {
2786 	int retval = 0;
2787 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2788 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2789 
2790 	mutex_lock(&memcg_create_mutex);
2791 
2792 	if (memcg->use_hierarchy == val)
2793 		goto out;
2794 
2795 	/*
2796 	 * If parent's use_hierarchy is set, we can't make any modifications
2797 	 * in the child subtrees. If it is unset, then the change can
2798 	 * occur, provided the current cgroup has no children.
2799 	 *
2800 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2801 	 * set if there are no children.
2802 	 */
2803 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2804 				(val == 1 || val == 0)) {
2805 		if (!memcg_has_children(memcg))
2806 			memcg->use_hierarchy = val;
2807 		else
2808 			retval = -EBUSY;
2809 	} else
2810 		retval = -EINVAL;
2811 
2812 out:
2813 	mutex_unlock(&memcg_create_mutex);
2814 
2815 	return retval;
2816 }
2817 
tree_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)2818 static unsigned long tree_stat(struct mem_cgroup *memcg,
2819 			       enum mem_cgroup_stat_index idx)
2820 {
2821 	struct mem_cgroup *iter;
2822 	unsigned long val = 0;
2823 
2824 	for_each_mem_cgroup_tree(iter, memcg)
2825 		val += mem_cgroup_read_stat(iter, idx);
2826 
2827 	return val;
2828 }
2829 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)2830 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2831 {
2832 	unsigned long val;
2833 
2834 	if (mem_cgroup_is_root(memcg)) {
2835 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2836 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2837 		if (swap)
2838 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2839 	} else {
2840 		if (!swap)
2841 			val = page_counter_read(&memcg->memory);
2842 		else
2843 			val = page_counter_read(&memcg->memsw);
2844 	}
2845 	return val;
2846 }
2847 
2848 enum {
2849 	RES_USAGE,
2850 	RES_LIMIT,
2851 	RES_MAX_USAGE,
2852 	RES_FAILCNT,
2853 	RES_SOFT_LIMIT,
2854 };
2855 
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2856 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2857 			       struct cftype *cft)
2858 {
2859 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2860 	struct page_counter *counter;
2861 
2862 	switch (MEMFILE_TYPE(cft->private)) {
2863 	case _MEM:
2864 		counter = &memcg->memory;
2865 		break;
2866 	case _MEMSWAP:
2867 		counter = &memcg->memsw;
2868 		break;
2869 	case _KMEM:
2870 		counter = &memcg->kmem;
2871 		break;
2872 	default:
2873 		BUG();
2874 	}
2875 
2876 	switch (MEMFILE_ATTR(cft->private)) {
2877 	case RES_USAGE:
2878 		if (counter == &memcg->memory)
2879 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2880 		if (counter == &memcg->memsw)
2881 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2882 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2883 	case RES_LIMIT:
2884 		return (u64)counter->limit * PAGE_SIZE;
2885 	case RES_MAX_USAGE:
2886 		return (u64)counter->watermark * PAGE_SIZE;
2887 	case RES_FAILCNT:
2888 		return counter->failcnt;
2889 	case RES_SOFT_LIMIT:
2890 		return (u64)memcg->soft_limit * PAGE_SIZE;
2891 	default:
2892 		BUG();
2893 	}
2894 }
2895 
2896 #ifdef CONFIG_MEMCG_KMEM
memcg_activate_kmem(struct mem_cgroup * memcg,unsigned long nr_pages)2897 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2898 			       unsigned long nr_pages)
2899 {
2900 	int err = 0;
2901 	int memcg_id;
2902 
2903 	BUG_ON(memcg->kmemcg_id >= 0);
2904 	BUG_ON(memcg->kmem_acct_activated);
2905 	BUG_ON(memcg->kmem_acct_active);
2906 
2907 	/*
2908 	 * For simplicity, we won't allow this to be disabled.  It also can't
2909 	 * be changed if the cgroup has children already, or if tasks had
2910 	 * already joined.
2911 	 *
2912 	 * If tasks join before we set the limit, a person looking at
2913 	 * kmem.usage_in_bytes will have no way to determine when it took
2914 	 * place, which makes the value quite meaningless.
2915 	 *
2916 	 * After it first became limited, changes in the value of the limit are
2917 	 * of course permitted.
2918 	 */
2919 	mutex_lock(&memcg_create_mutex);
2920 	if (cgroup_is_populated(memcg->css.cgroup) ||
2921 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2922 		err = -EBUSY;
2923 	mutex_unlock(&memcg_create_mutex);
2924 	if (err)
2925 		goto out;
2926 
2927 	memcg_id = memcg_alloc_cache_id();
2928 	if (memcg_id < 0) {
2929 		err = memcg_id;
2930 		goto out;
2931 	}
2932 
2933 	/*
2934 	 * We couldn't have accounted to this cgroup, because it hasn't got
2935 	 * activated yet, so this should succeed.
2936 	 */
2937 	err = page_counter_limit(&memcg->kmem, nr_pages);
2938 	VM_BUG_ON(err);
2939 
2940 	static_key_slow_inc(&memcg_kmem_enabled_key);
2941 	/*
2942 	 * A memory cgroup is considered kmem-active as soon as it gets
2943 	 * kmemcg_id. Setting the id after enabling static branching will
2944 	 * guarantee no one starts accounting before all call sites are
2945 	 * patched.
2946 	 */
2947 	memcg->kmemcg_id = memcg_id;
2948 	memcg->kmem_acct_activated = true;
2949 	memcg->kmem_acct_active = true;
2950 out:
2951 	return err;
2952 }
2953 
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long limit)2954 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2955 				   unsigned long limit)
2956 {
2957 	int ret;
2958 
2959 	mutex_lock(&memcg_limit_mutex);
2960 	if (!memcg_kmem_is_active(memcg))
2961 		ret = memcg_activate_kmem(memcg, limit);
2962 	else
2963 		ret = page_counter_limit(&memcg->kmem, limit);
2964 	mutex_unlock(&memcg_limit_mutex);
2965 	return ret;
2966 }
2967 
memcg_propagate_kmem(struct mem_cgroup * memcg)2968 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2969 {
2970 	int ret = 0;
2971 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2972 
2973 	if (!parent)
2974 		return 0;
2975 
2976 	mutex_lock(&memcg_limit_mutex);
2977 	/*
2978 	 * If the parent cgroup is not kmem-active now, it cannot be activated
2979 	 * after this point, because it has at least one child already.
2980 	 */
2981 	if (memcg_kmem_is_active(parent))
2982 		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2983 	mutex_unlock(&memcg_limit_mutex);
2984 	return ret;
2985 }
2986 #else
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long limit)2987 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2988 				   unsigned long limit)
2989 {
2990 	return -EINVAL;
2991 }
2992 #endif /* CONFIG_MEMCG_KMEM */
2993 
2994 /*
2995  * The user of this function is...
2996  * RES_LIMIT.
2997  */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2998 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2999 				char *buf, size_t nbytes, loff_t off)
3000 {
3001 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3002 	unsigned long nr_pages;
3003 	int ret;
3004 
3005 	buf = strstrip(buf);
3006 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3007 	if (ret)
3008 		return ret;
3009 
3010 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3011 	case RES_LIMIT:
3012 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3013 			ret = -EINVAL;
3014 			break;
3015 		}
3016 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 		case _MEM:
3018 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3019 			break;
3020 		case _MEMSWAP:
3021 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3022 			break;
3023 		case _KMEM:
3024 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3025 			break;
3026 		}
3027 		break;
3028 	case RES_SOFT_LIMIT:
3029 		memcg->soft_limit = nr_pages;
3030 		ret = 0;
3031 		break;
3032 	}
3033 	return ret ?: nbytes;
3034 }
3035 
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3036 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3037 				size_t nbytes, loff_t off)
3038 {
3039 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3040 	struct page_counter *counter;
3041 
3042 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3043 	case _MEM:
3044 		counter = &memcg->memory;
3045 		break;
3046 	case _MEMSWAP:
3047 		counter = &memcg->memsw;
3048 		break;
3049 	case _KMEM:
3050 		counter = &memcg->kmem;
3051 		break;
3052 	default:
3053 		BUG();
3054 	}
3055 
3056 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3057 	case RES_MAX_USAGE:
3058 		page_counter_reset_watermark(counter);
3059 		break;
3060 	case RES_FAILCNT:
3061 		counter->failcnt = 0;
3062 		break;
3063 	default:
3064 		BUG();
3065 	}
3066 
3067 	return nbytes;
3068 }
3069 
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3070 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3071 					struct cftype *cft)
3072 {
3073 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3074 }
3075 
3076 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3077 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3078 					struct cftype *cft, u64 val)
3079 {
3080 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3081 
3082 	if (val & ~MOVE_MASK)
3083 		return -EINVAL;
3084 
3085 	/*
3086 	 * No kind of locking is needed in here, because ->can_attach() will
3087 	 * check this value once in the beginning of the process, and then carry
3088 	 * on with stale data. This means that changes to this value will only
3089 	 * affect task migrations starting after the change.
3090 	 */
3091 	memcg->move_charge_at_immigrate = val;
3092 	return 0;
3093 }
3094 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3095 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3096 					struct cftype *cft, u64 val)
3097 {
3098 	return -ENOSYS;
3099 }
3100 #endif
3101 
3102 #ifdef CONFIG_NUMA
memcg_numa_stat_show(struct seq_file * m,void * v)3103 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3104 {
3105 	struct numa_stat {
3106 		const char *name;
3107 		unsigned int lru_mask;
3108 	};
3109 
3110 	static const struct numa_stat stats[] = {
3111 		{ "total", LRU_ALL },
3112 		{ "file", LRU_ALL_FILE },
3113 		{ "anon", LRU_ALL_ANON },
3114 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3115 	};
3116 	const struct numa_stat *stat;
3117 	int nid;
3118 	unsigned long nr;
3119 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3120 
3121 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3122 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3123 		seq_printf(m, "%s=%lu", stat->name, nr);
3124 		for_each_node_state(nid, N_MEMORY) {
3125 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3126 							  stat->lru_mask);
3127 			seq_printf(m, " N%d=%lu", nid, nr);
3128 		}
3129 		seq_putc(m, '\n');
3130 	}
3131 
3132 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3133 		struct mem_cgroup *iter;
3134 
3135 		nr = 0;
3136 		for_each_mem_cgroup_tree(iter, memcg)
3137 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3138 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3139 		for_each_node_state(nid, N_MEMORY) {
3140 			nr = 0;
3141 			for_each_mem_cgroup_tree(iter, memcg)
3142 				nr += mem_cgroup_node_nr_lru_pages(
3143 					iter, nid, stat->lru_mask);
3144 			seq_printf(m, " N%d=%lu", nid, nr);
3145 		}
3146 		seq_putc(m, '\n');
3147 	}
3148 
3149 	return 0;
3150 }
3151 #endif /* CONFIG_NUMA */
3152 
memcg_stat_show(struct seq_file * m,void * v)3153 static int memcg_stat_show(struct seq_file *m, void *v)
3154 {
3155 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3156 	unsigned long memory, memsw;
3157 	struct mem_cgroup *mi;
3158 	unsigned int i;
3159 
3160 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3161 		     MEM_CGROUP_STAT_NSTATS);
3162 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3163 		     MEM_CGROUP_EVENTS_NSTATS);
3164 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3165 
3166 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3167 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3168 			continue;
3169 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3170 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3171 	}
3172 
3173 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3174 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3175 			   mem_cgroup_read_events(memcg, i));
3176 
3177 	for (i = 0; i < NR_LRU_LISTS; i++)
3178 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3179 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3180 
3181 	/* Hierarchical information */
3182 	memory = memsw = PAGE_COUNTER_MAX;
3183 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3184 		memory = min(memory, mi->memory.limit);
3185 		memsw = min(memsw, mi->memsw.limit);
3186 	}
3187 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3188 		   (u64)memory * PAGE_SIZE);
3189 	if (do_swap_account)
3190 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3191 			   (u64)memsw * PAGE_SIZE);
3192 
3193 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3194 		unsigned long long val = 0;
3195 
3196 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3197 			continue;
3198 		for_each_mem_cgroup_tree(mi, memcg)
3199 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3200 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3201 	}
3202 
3203 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3204 		unsigned long long val = 0;
3205 
3206 		for_each_mem_cgroup_tree(mi, memcg)
3207 			val += mem_cgroup_read_events(mi, i);
3208 		seq_printf(m, "total_%s %llu\n",
3209 			   mem_cgroup_events_names[i], val);
3210 	}
3211 
3212 	for (i = 0; i < NR_LRU_LISTS; i++) {
3213 		unsigned long long val = 0;
3214 
3215 		for_each_mem_cgroup_tree(mi, memcg)
3216 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3217 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3218 	}
3219 
3220 #ifdef CONFIG_DEBUG_VM
3221 	{
3222 		int nid, zid;
3223 		struct mem_cgroup_per_zone *mz;
3224 		struct zone_reclaim_stat *rstat;
3225 		unsigned long recent_rotated[2] = {0, 0};
3226 		unsigned long recent_scanned[2] = {0, 0};
3227 
3228 		for_each_online_node(nid)
3229 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3230 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3231 				rstat = &mz->lruvec.reclaim_stat;
3232 
3233 				recent_rotated[0] += rstat->recent_rotated[0];
3234 				recent_rotated[1] += rstat->recent_rotated[1];
3235 				recent_scanned[0] += rstat->recent_scanned[0];
3236 				recent_scanned[1] += rstat->recent_scanned[1];
3237 			}
3238 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3239 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3240 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3241 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3242 	}
3243 #endif
3244 
3245 	return 0;
3246 }
3247 
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)3248 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3249 				      struct cftype *cft)
3250 {
3251 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3252 
3253 	return mem_cgroup_swappiness(memcg);
3254 }
3255 
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3256 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3257 				       struct cftype *cft, u64 val)
3258 {
3259 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3260 
3261 	if (val > 100)
3262 		return -EINVAL;
3263 
3264 	if (css->parent)
3265 		memcg->swappiness = val;
3266 	else
3267 		vm_swappiness = val;
3268 
3269 	return 0;
3270 }
3271 
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)3272 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3273 {
3274 	struct mem_cgroup_threshold_ary *t;
3275 	unsigned long usage;
3276 	int i;
3277 
3278 	rcu_read_lock();
3279 	if (!swap)
3280 		t = rcu_dereference(memcg->thresholds.primary);
3281 	else
3282 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3283 
3284 	if (!t)
3285 		goto unlock;
3286 
3287 	usage = mem_cgroup_usage(memcg, swap);
3288 
3289 	/*
3290 	 * current_threshold points to threshold just below or equal to usage.
3291 	 * If it's not true, a threshold was crossed after last
3292 	 * call of __mem_cgroup_threshold().
3293 	 */
3294 	i = t->current_threshold;
3295 
3296 	/*
3297 	 * Iterate backward over array of thresholds starting from
3298 	 * current_threshold and check if a threshold is crossed.
3299 	 * If none of thresholds below usage is crossed, we read
3300 	 * only one element of the array here.
3301 	 */
3302 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3303 		eventfd_signal(t->entries[i].eventfd, 1);
3304 
3305 	/* i = current_threshold + 1 */
3306 	i++;
3307 
3308 	/*
3309 	 * Iterate forward over array of thresholds starting from
3310 	 * current_threshold+1 and check if a threshold is crossed.
3311 	 * If none of thresholds above usage is crossed, we read
3312 	 * only one element of the array here.
3313 	 */
3314 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3315 		eventfd_signal(t->entries[i].eventfd, 1);
3316 
3317 	/* Update current_threshold */
3318 	t->current_threshold = i - 1;
3319 unlock:
3320 	rcu_read_unlock();
3321 }
3322 
mem_cgroup_threshold(struct mem_cgroup * memcg)3323 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3324 {
3325 	while (memcg) {
3326 		__mem_cgroup_threshold(memcg, false);
3327 		if (do_swap_account)
3328 			__mem_cgroup_threshold(memcg, true);
3329 
3330 		memcg = parent_mem_cgroup(memcg);
3331 	}
3332 }
3333 
compare_thresholds(const void * a,const void * b)3334 static int compare_thresholds(const void *a, const void *b)
3335 {
3336 	const struct mem_cgroup_threshold *_a = a;
3337 	const struct mem_cgroup_threshold *_b = b;
3338 
3339 	if (_a->threshold > _b->threshold)
3340 		return 1;
3341 
3342 	if (_a->threshold < _b->threshold)
3343 		return -1;
3344 
3345 	return 0;
3346 }
3347 
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)3348 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3349 {
3350 	struct mem_cgroup_eventfd_list *ev;
3351 
3352 	spin_lock(&memcg_oom_lock);
3353 
3354 	list_for_each_entry(ev, &memcg->oom_notify, list)
3355 		eventfd_signal(ev->eventfd, 1);
3356 
3357 	spin_unlock(&memcg_oom_lock);
3358 	return 0;
3359 }
3360 
mem_cgroup_oom_notify(struct mem_cgroup * memcg)3361 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3362 {
3363 	struct mem_cgroup *iter;
3364 
3365 	for_each_mem_cgroup_tree(iter, memcg)
3366 		mem_cgroup_oom_notify_cb(iter);
3367 }
3368 
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)3369 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3370 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3371 {
3372 	struct mem_cgroup_thresholds *thresholds;
3373 	struct mem_cgroup_threshold_ary *new;
3374 	unsigned long threshold;
3375 	unsigned long usage;
3376 	int i, size, ret;
3377 
3378 	ret = page_counter_memparse(args, "-1", &threshold);
3379 	if (ret)
3380 		return ret;
3381 
3382 	mutex_lock(&memcg->thresholds_lock);
3383 
3384 	if (type == _MEM) {
3385 		thresholds = &memcg->thresholds;
3386 		usage = mem_cgroup_usage(memcg, false);
3387 	} else if (type == _MEMSWAP) {
3388 		thresholds = &memcg->memsw_thresholds;
3389 		usage = mem_cgroup_usage(memcg, true);
3390 	} else
3391 		BUG();
3392 
3393 	/* Check if a threshold crossed before adding a new one */
3394 	if (thresholds->primary)
3395 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3396 
3397 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3398 
3399 	/* Allocate memory for new array of thresholds */
3400 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3401 			GFP_KERNEL);
3402 	if (!new) {
3403 		ret = -ENOMEM;
3404 		goto unlock;
3405 	}
3406 	new->size = size;
3407 
3408 	/* Copy thresholds (if any) to new array */
3409 	if (thresholds->primary) {
3410 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3411 				sizeof(struct mem_cgroup_threshold));
3412 	}
3413 
3414 	/* Add new threshold */
3415 	new->entries[size - 1].eventfd = eventfd;
3416 	new->entries[size - 1].threshold = threshold;
3417 
3418 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3419 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3420 			compare_thresholds, NULL);
3421 
3422 	/* Find current threshold */
3423 	new->current_threshold = -1;
3424 	for (i = 0; i < size; i++) {
3425 		if (new->entries[i].threshold <= usage) {
3426 			/*
3427 			 * new->current_threshold will not be used until
3428 			 * rcu_assign_pointer(), so it's safe to increment
3429 			 * it here.
3430 			 */
3431 			++new->current_threshold;
3432 		} else
3433 			break;
3434 	}
3435 
3436 	/* Free old spare buffer and save old primary buffer as spare */
3437 	kfree(thresholds->spare);
3438 	thresholds->spare = thresholds->primary;
3439 
3440 	rcu_assign_pointer(thresholds->primary, new);
3441 
3442 	/* To be sure that nobody uses thresholds */
3443 	synchronize_rcu();
3444 
3445 unlock:
3446 	mutex_unlock(&memcg->thresholds_lock);
3447 
3448 	return ret;
3449 }
3450 
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3451 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3452 	struct eventfd_ctx *eventfd, const char *args)
3453 {
3454 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3455 }
3456 
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3457 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3458 	struct eventfd_ctx *eventfd, const char *args)
3459 {
3460 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3461 }
3462 
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)3463 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3464 	struct eventfd_ctx *eventfd, enum res_type type)
3465 {
3466 	struct mem_cgroup_thresholds *thresholds;
3467 	struct mem_cgroup_threshold_ary *new;
3468 	unsigned long usage;
3469 	int i, j, size;
3470 
3471 	mutex_lock(&memcg->thresholds_lock);
3472 
3473 	if (type == _MEM) {
3474 		thresholds = &memcg->thresholds;
3475 		usage = mem_cgroup_usage(memcg, false);
3476 	} else if (type == _MEMSWAP) {
3477 		thresholds = &memcg->memsw_thresholds;
3478 		usage = mem_cgroup_usage(memcg, true);
3479 	} else
3480 		BUG();
3481 
3482 	if (!thresholds->primary)
3483 		goto unlock;
3484 
3485 	/* Check if a threshold crossed before removing */
3486 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3487 
3488 	/* Calculate new number of threshold */
3489 	size = 0;
3490 	for (i = 0; i < thresholds->primary->size; i++) {
3491 		if (thresholds->primary->entries[i].eventfd != eventfd)
3492 			size++;
3493 	}
3494 
3495 	new = thresholds->spare;
3496 
3497 	/* Set thresholds array to NULL if we don't have thresholds */
3498 	if (!size) {
3499 		kfree(new);
3500 		new = NULL;
3501 		goto swap_buffers;
3502 	}
3503 
3504 	new->size = size;
3505 
3506 	/* Copy thresholds and find current threshold */
3507 	new->current_threshold = -1;
3508 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3509 		if (thresholds->primary->entries[i].eventfd == eventfd)
3510 			continue;
3511 
3512 		new->entries[j] = thresholds->primary->entries[i];
3513 		if (new->entries[j].threshold <= usage) {
3514 			/*
3515 			 * new->current_threshold will not be used
3516 			 * until rcu_assign_pointer(), so it's safe to increment
3517 			 * it here.
3518 			 */
3519 			++new->current_threshold;
3520 		}
3521 		j++;
3522 	}
3523 
3524 swap_buffers:
3525 	/* Swap primary and spare array */
3526 	thresholds->spare = thresholds->primary;
3527 
3528 	rcu_assign_pointer(thresholds->primary, new);
3529 
3530 	/* To be sure that nobody uses thresholds */
3531 	synchronize_rcu();
3532 
3533 	/* If all events are unregistered, free the spare array */
3534 	if (!new) {
3535 		kfree(thresholds->spare);
3536 		thresholds->spare = NULL;
3537 	}
3538 unlock:
3539 	mutex_unlock(&memcg->thresholds_lock);
3540 }
3541 
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3542 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3543 	struct eventfd_ctx *eventfd)
3544 {
3545 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3546 }
3547 
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3548 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3549 	struct eventfd_ctx *eventfd)
3550 {
3551 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3552 }
3553 
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3554 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3555 	struct eventfd_ctx *eventfd, const char *args)
3556 {
3557 	struct mem_cgroup_eventfd_list *event;
3558 
3559 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3560 	if (!event)
3561 		return -ENOMEM;
3562 
3563 	spin_lock(&memcg_oom_lock);
3564 
3565 	event->eventfd = eventfd;
3566 	list_add(&event->list, &memcg->oom_notify);
3567 
3568 	/* already in OOM ? */
3569 	if (memcg->under_oom)
3570 		eventfd_signal(eventfd, 1);
3571 	spin_unlock(&memcg_oom_lock);
3572 
3573 	return 0;
3574 }
3575 
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3576 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3577 	struct eventfd_ctx *eventfd)
3578 {
3579 	struct mem_cgroup_eventfd_list *ev, *tmp;
3580 
3581 	spin_lock(&memcg_oom_lock);
3582 
3583 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3584 		if (ev->eventfd == eventfd) {
3585 			list_del(&ev->list);
3586 			kfree(ev);
3587 		}
3588 	}
3589 
3590 	spin_unlock(&memcg_oom_lock);
3591 }
3592 
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)3593 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3594 {
3595 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3596 
3597 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3598 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3599 	return 0;
3600 }
3601 
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3602 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3603 	struct cftype *cft, u64 val)
3604 {
3605 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606 
3607 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3608 	if (!css->parent || !((val == 0) || (val == 1)))
3609 		return -EINVAL;
3610 
3611 	memcg->oom_kill_disable = val;
3612 	if (!val)
3613 		memcg_oom_recover(memcg);
3614 
3615 	return 0;
3616 }
3617 
3618 #ifdef CONFIG_MEMCG_KMEM
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)3619 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3620 {
3621 	int ret;
3622 
3623 	ret = memcg_propagate_kmem(memcg);
3624 	if (ret)
3625 		return ret;
3626 
3627 	return mem_cgroup_sockets_init(memcg, ss);
3628 }
3629 
memcg_deactivate_kmem(struct mem_cgroup * memcg)3630 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3631 {
3632 	struct cgroup_subsys_state *css;
3633 	struct mem_cgroup *parent, *child;
3634 	int kmemcg_id;
3635 
3636 	if (!memcg->kmem_acct_active)
3637 		return;
3638 
3639 	/*
3640 	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3641 	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3642 	 * guarantees no cache will be created for this cgroup after we are
3643 	 * done (see memcg_create_kmem_cache()).
3644 	 */
3645 	memcg->kmem_acct_active = false;
3646 
3647 	memcg_deactivate_kmem_caches(memcg);
3648 
3649 	kmemcg_id = memcg->kmemcg_id;
3650 	BUG_ON(kmemcg_id < 0);
3651 
3652 	parent = parent_mem_cgroup(memcg);
3653 	if (!parent)
3654 		parent = root_mem_cgroup;
3655 
3656 	/*
3657 	 * Change kmemcg_id of this cgroup and all its descendants to the
3658 	 * parent's id, and then move all entries from this cgroup's list_lrus
3659 	 * to ones of the parent. After we have finished, all list_lrus
3660 	 * corresponding to this cgroup are guaranteed to remain empty. The
3661 	 * ordering is imposed by list_lru_node->lock taken by
3662 	 * memcg_drain_all_list_lrus().
3663 	 */
3664 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3665 	css_for_each_descendant_pre(css, &memcg->css) {
3666 		child = mem_cgroup_from_css(css);
3667 		BUG_ON(child->kmemcg_id != kmemcg_id);
3668 		child->kmemcg_id = parent->kmemcg_id;
3669 		if (!memcg->use_hierarchy)
3670 			break;
3671 	}
3672 	rcu_read_unlock();
3673 
3674 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3675 
3676 	memcg_free_cache_id(kmemcg_id);
3677 }
3678 
memcg_destroy_kmem(struct mem_cgroup * memcg)3679 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3680 {
3681 	if (memcg->kmem_acct_activated) {
3682 		memcg_destroy_kmem_caches(memcg);
3683 		static_key_slow_dec(&memcg_kmem_enabled_key);
3684 		WARN_ON(page_counter_read(&memcg->kmem));
3685 	}
3686 	mem_cgroup_sockets_destroy(memcg);
3687 }
3688 #else
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)3689 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3690 {
3691 	return 0;
3692 }
3693 
memcg_deactivate_kmem(struct mem_cgroup * memcg)3694 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3695 {
3696 }
3697 
memcg_destroy_kmem(struct mem_cgroup * memcg)3698 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3699 {
3700 }
3701 #endif
3702 
3703 #ifdef CONFIG_CGROUP_WRITEBACK
3704 
mem_cgroup_cgwb_list(struct mem_cgroup * memcg)3705 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3706 {
3707 	return &memcg->cgwb_list;
3708 }
3709 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3710 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3711 {
3712 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3713 }
3714 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3715 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3716 {
3717 	wb_domain_exit(&memcg->cgwb_domain);
3718 }
3719 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3720 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3721 {
3722 	wb_domain_size_changed(&memcg->cgwb_domain);
3723 }
3724 
mem_cgroup_wb_domain(struct bdi_writeback * wb)3725 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3726 {
3727 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3728 
3729 	if (!memcg->css.parent)
3730 		return NULL;
3731 
3732 	return &memcg->cgwb_domain;
3733 }
3734 
3735 /**
3736  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3737  * @wb: bdi_writeback in question
3738  * @pfilepages: out parameter for number of file pages
3739  * @pheadroom: out parameter for number of allocatable pages according to memcg
3740  * @pdirty: out parameter for number of dirty pages
3741  * @pwriteback: out parameter for number of pages under writeback
3742  *
3743  * Determine the numbers of file, headroom, dirty, and writeback pages in
3744  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3745  * is a bit more involved.
3746  *
3747  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3748  * headroom is calculated as the lowest headroom of itself and the
3749  * ancestors.  Note that this doesn't consider the actual amount of
3750  * available memory in the system.  The caller should further cap
3751  * *@pheadroom accordingly.
3752  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3753 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3754 			 unsigned long *pheadroom, unsigned long *pdirty,
3755 			 unsigned long *pwriteback)
3756 {
3757 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3758 	struct mem_cgroup *parent;
3759 
3760 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3761 
3762 	/* this should eventually include NR_UNSTABLE_NFS */
3763 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3764 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3765 						     (1 << LRU_ACTIVE_FILE));
3766 	*pheadroom = PAGE_COUNTER_MAX;
3767 
3768 	while ((parent = parent_mem_cgroup(memcg))) {
3769 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3770 		unsigned long used = page_counter_read(&memcg->memory);
3771 
3772 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3773 		memcg = parent;
3774 	}
3775 }
3776 
3777 #else	/* CONFIG_CGROUP_WRITEBACK */
3778 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3779 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3780 {
3781 	return 0;
3782 }
3783 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3784 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3785 {
3786 }
3787 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3788 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3789 {
3790 }
3791 
3792 #endif	/* CONFIG_CGROUP_WRITEBACK */
3793 
3794 /*
3795  * DO NOT USE IN NEW FILES.
3796  *
3797  * "cgroup.event_control" implementation.
3798  *
3799  * This is way over-engineered.  It tries to support fully configurable
3800  * events for each user.  Such level of flexibility is completely
3801  * unnecessary especially in the light of the planned unified hierarchy.
3802  *
3803  * Please deprecate this and replace with something simpler if at all
3804  * possible.
3805  */
3806 
3807 /*
3808  * Unregister event and free resources.
3809  *
3810  * Gets called from workqueue.
3811  */
memcg_event_remove(struct work_struct * work)3812 static void memcg_event_remove(struct work_struct *work)
3813 {
3814 	struct mem_cgroup_event *event =
3815 		container_of(work, struct mem_cgroup_event, remove);
3816 	struct mem_cgroup *memcg = event->memcg;
3817 
3818 	remove_wait_queue(event->wqh, &event->wait);
3819 
3820 	event->unregister_event(memcg, event->eventfd);
3821 
3822 	/* Notify userspace the event is going away. */
3823 	eventfd_signal(event->eventfd, 1);
3824 
3825 	eventfd_ctx_put(event->eventfd);
3826 	kfree(event);
3827 	css_put(&memcg->css);
3828 }
3829 
3830 /*
3831  * Gets called on POLLHUP on eventfd when user closes it.
3832  *
3833  * Called with wqh->lock held and interrupts disabled.
3834  */
memcg_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3835 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3836 			    int sync, void *key)
3837 {
3838 	struct mem_cgroup_event *event =
3839 		container_of(wait, struct mem_cgroup_event, wait);
3840 	struct mem_cgroup *memcg = event->memcg;
3841 	unsigned long flags = (unsigned long)key;
3842 
3843 	if (flags & POLLHUP) {
3844 		/*
3845 		 * If the event has been detached at cgroup removal, we
3846 		 * can simply return knowing the other side will cleanup
3847 		 * for us.
3848 		 *
3849 		 * We can't race against event freeing since the other
3850 		 * side will require wqh->lock via remove_wait_queue(),
3851 		 * which we hold.
3852 		 */
3853 		spin_lock(&memcg->event_list_lock);
3854 		if (!list_empty(&event->list)) {
3855 			list_del_init(&event->list);
3856 			/*
3857 			 * We are in atomic context, but cgroup_event_remove()
3858 			 * may sleep, so we have to call it in workqueue.
3859 			 */
3860 			schedule_work(&event->remove);
3861 		}
3862 		spin_unlock(&memcg->event_list_lock);
3863 	}
3864 
3865 	return 0;
3866 }
3867 
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3868 static void memcg_event_ptable_queue_proc(struct file *file,
3869 		wait_queue_head_t *wqh, poll_table *pt)
3870 {
3871 	struct mem_cgroup_event *event =
3872 		container_of(pt, struct mem_cgroup_event, pt);
3873 
3874 	event->wqh = wqh;
3875 	add_wait_queue(wqh, &event->wait);
3876 }
3877 
3878 /*
3879  * DO NOT USE IN NEW FILES.
3880  *
3881  * Parse input and register new cgroup event handler.
3882  *
3883  * Input must be in format '<event_fd> <control_fd> <args>'.
3884  * Interpretation of args is defined by control file implementation.
3885  */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3886 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3887 					 char *buf, size_t nbytes, loff_t off)
3888 {
3889 	struct cgroup_subsys_state *css = of_css(of);
3890 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3891 	struct mem_cgroup_event *event;
3892 	struct cgroup_subsys_state *cfile_css;
3893 	unsigned int efd, cfd;
3894 	struct fd efile;
3895 	struct fd cfile;
3896 	const char *name;
3897 	char *endp;
3898 	int ret;
3899 
3900 	buf = strstrip(buf);
3901 
3902 	efd = simple_strtoul(buf, &endp, 10);
3903 	if (*endp != ' ')
3904 		return -EINVAL;
3905 	buf = endp + 1;
3906 
3907 	cfd = simple_strtoul(buf, &endp, 10);
3908 	if ((*endp != ' ') && (*endp != '\0'))
3909 		return -EINVAL;
3910 	buf = endp + 1;
3911 
3912 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3913 	if (!event)
3914 		return -ENOMEM;
3915 
3916 	event->memcg = memcg;
3917 	INIT_LIST_HEAD(&event->list);
3918 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3919 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3920 	INIT_WORK(&event->remove, memcg_event_remove);
3921 
3922 	efile = fdget(efd);
3923 	if (!efile.file) {
3924 		ret = -EBADF;
3925 		goto out_kfree;
3926 	}
3927 
3928 	event->eventfd = eventfd_ctx_fileget(efile.file);
3929 	if (IS_ERR(event->eventfd)) {
3930 		ret = PTR_ERR(event->eventfd);
3931 		goto out_put_efile;
3932 	}
3933 
3934 	cfile = fdget(cfd);
3935 	if (!cfile.file) {
3936 		ret = -EBADF;
3937 		goto out_put_eventfd;
3938 	}
3939 
3940 	/* the process need read permission on control file */
3941 	/* AV: shouldn't we check that it's been opened for read instead? */
3942 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3943 	if (ret < 0)
3944 		goto out_put_cfile;
3945 
3946 	/*
3947 	 * Determine the event callbacks and set them in @event.  This used
3948 	 * to be done via struct cftype but cgroup core no longer knows
3949 	 * about these events.  The following is crude but the whole thing
3950 	 * is for compatibility anyway.
3951 	 *
3952 	 * DO NOT ADD NEW FILES.
3953 	 */
3954 	name = cfile.file->f_path.dentry->d_name.name;
3955 
3956 	if (!strcmp(name, "memory.usage_in_bytes")) {
3957 		event->register_event = mem_cgroup_usage_register_event;
3958 		event->unregister_event = mem_cgroup_usage_unregister_event;
3959 	} else if (!strcmp(name, "memory.oom_control")) {
3960 		event->register_event = mem_cgroup_oom_register_event;
3961 		event->unregister_event = mem_cgroup_oom_unregister_event;
3962 	} else if (!strcmp(name, "memory.pressure_level")) {
3963 		event->register_event = vmpressure_register_event;
3964 		event->unregister_event = vmpressure_unregister_event;
3965 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3966 		event->register_event = memsw_cgroup_usage_register_event;
3967 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3968 	} else {
3969 		ret = -EINVAL;
3970 		goto out_put_cfile;
3971 	}
3972 
3973 	/*
3974 	 * Verify @cfile should belong to @css.  Also, remaining events are
3975 	 * automatically removed on cgroup destruction but the removal is
3976 	 * asynchronous, so take an extra ref on @css.
3977 	 */
3978 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3979 					       &memory_cgrp_subsys);
3980 	ret = -EINVAL;
3981 	if (IS_ERR(cfile_css))
3982 		goto out_put_cfile;
3983 	if (cfile_css != css) {
3984 		css_put(cfile_css);
3985 		goto out_put_cfile;
3986 	}
3987 
3988 	ret = event->register_event(memcg, event->eventfd, buf);
3989 	if (ret)
3990 		goto out_put_css;
3991 
3992 	efile.file->f_op->poll(efile.file, &event->pt);
3993 
3994 	spin_lock(&memcg->event_list_lock);
3995 	list_add(&event->list, &memcg->event_list);
3996 	spin_unlock(&memcg->event_list_lock);
3997 
3998 	fdput(cfile);
3999 	fdput(efile);
4000 
4001 	return nbytes;
4002 
4003 out_put_css:
4004 	css_put(css);
4005 out_put_cfile:
4006 	fdput(cfile);
4007 out_put_eventfd:
4008 	eventfd_ctx_put(event->eventfd);
4009 out_put_efile:
4010 	fdput(efile);
4011 out_kfree:
4012 	kfree(event);
4013 
4014 	return ret;
4015 }
4016 
4017 static struct cftype mem_cgroup_legacy_files[] = {
4018 	{
4019 		.name = "usage_in_bytes",
4020 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4021 		.read_u64 = mem_cgroup_read_u64,
4022 	},
4023 	{
4024 		.name = "max_usage_in_bytes",
4025 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4026 		.write = mem_cgroup_reset,
4027 		.read_u64 = mem_cgroup_read_u64,
4028 	},
4029 	{
4030 		.name = "limit_in_bytes",
4031 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4032 		.write = mem_cgroup_write,
4033 		.read_u64 = mem_cgroup_read_u64,
4034 	},
4035 	{
4036 		.name = "soft_limit_in_bytes",
4037 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4038 		.write = mem_cgroup_write,
4039 		.read_u64 = mem_cgroup_read_u64,
4040 	},
4041 	{
4042 		.name = "failcnt",
4043 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4044 		.write = mem_cgroup_reset,
4045 		.read_u64 = mem_cgroup_read_u64,
4046 	},
4047 	{
4048 		.name = "stat",
4049 		.seq_show = memcg_stat_show,
4050 	},
4051 	{
4052 		.name = "force_empty",
4053 		.write = mem_cgroup_force_empty_write,
4054 	},
4055 	{
4056 		.name = "use_hierarchy",
4057 		.write_u64 = mem_cgroup_hierarchy_write,
4058 		.read_u64 = mem_cgroup_hierarchy_read,
4059 	},
4060 	{
4061 		.name = "cgroup.event_control",		/* XXX: for compat */
4062 		.write = memcg_write_event_control,
4063 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4064 	},
4065 	{
4066 		.name = "swappiness",
4067 		.read_u64 = mem_cgroup_swappiness_read,
4068 		.write_u64 = mem_cgroup_swappiness_write,
4069 	},
4070 	{
4071 		.name = "move_charge_at_immigrate",
4072 		.read_u64 = mem_cgroup_move_charge_read,
4073 		.write_u64 = mem_cgroup_move_charge_write,
4074 	},
4075 	{
4076 		.name = "oom_control",
4077 		.seq_show = mem_cgroup_oom_control_read,
4078 		.write_u64 = mem_cgroup_oom_control_write,
4079 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4080 	},
4081 	{
4082 		.name = "pressure_level",
4083 	},
4084 #ifdef CONFIG_NUMA
4085 	{
4086 		.name = "numa_stat",
4087 		.seq_show = memcg_numa_stat_show,
4088 	},
4089 #endif
4090 #ifdef CONFIG_MEMCG_KMEM
4091 	{
4092 		.name = "kmem.limit_in_bytes",
4093 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4094 		.write = mem_cgroup_write,
4095 		.read_u64 = mem_cgroup_read_u64,
4096 	},
4097 	{
4098 		.name = "kmem.usage_in_bytes",
4099 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4100 		.read_u64 = mem_cgroup_read_u64,
4101 	},
4102 	{
4103 		.name = "kmem.failcnt",
4104 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4105 		.write = mem_cgroup_reset,
4106 		.read_u64 = mem_cgroup_read_u64,
4107 	},
4108 	{
4109 		.name = "kmem.max_usage_in_bytes",
4110 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4111 		.write = mem_cgroup_reset,
4112 		.read_u64 = mem_cgroup_read_u64,
4113 	},
4114 #ifdef CONFIG_SLABINFO
4115 	{
4116 		.name = "kmem.slabinfo",
4117 		.seq_start = slab_start,
4118 		.seq_next = slab_next,
4119 		.seq_stop = slab_stop,
4120 		.seq_show = memcg_slab_show,
4121 	},
4122 #endif
4123 #endif
4124 	{ },	/* terminate */
4125 };
4126 
alloc_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4127 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4128 {
4129 	struct mem_cgroup_per_node *pn;
4130 	struct mem_cgroup_per_zone *mz;
4131 	int zone, tmp = node;
4132 	/*
4133 	 * This routine is called against possible nodes.
4134 	 * But it's BUG to call kmalloc() against offline node.
4135 	 *
4136 	 * TODO: this routine can waste much memory for nodes which will
4137 	 *       never be onlined. It's better to use memory hotplug callback
4138 	 *       function.
4139 	 */
4140 	if (!node_state(node, N_NORMAL_MEMORY))
4141 		tmp = -1;
4142 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4143 	if (!pn)
4144 		return 1;
4145 
4146 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4147 		mz = &pn->zoneinfo[zone];
4148 		lruvec_init(&mz->lruvec);
4149 		mz->usage_in_excess = 0;
4150 		mz->on_tree = false;
4151 		mz->memcg = memcg;
4152 	}
4153 	memcg->nodeinfo[node] = pn;
4154 	return 0;
4155 }
4156 
free_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4157 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4158 {
4159 	kfree(memcg->nodeinfo[node]);
4160 }
4161 
mem_cgroup_alloc(void)4162 static struct mem_cgroup *mem_cgroup_alloc(void)
4163 {
4164 	struct mem_cgroup *memcg;
4165 	size_t size;
4166 
4167 	size = sizeof(struct mem_cgroup);
4168 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4169 
4170 	memcg = kzalloc(size, GFP_KERNEL);
4171 	if (!memcg)
4172 		return NULL;
4173 
4174 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175 	if (!memcg->stat)
4176 		goto out_free;
4177 
4178 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4179 		goto out_free_stat;
4180 
4181 	return memcg;
4182 
4183 out_free_stat:
4184 	free_percpu(memcg->stat);
4185 out_free:
4186 	kfree(memcg);
4187 	return NULL;
4188 }
4189 
4190 /*
4191  * At destroying mem_cgroup, references from swap_cgroup can remain.
4192  * (scanning all at force_empty is too costly...)
4193  *
4194  * Instead of clearing all references at force_empty, we remember
4195  * the number of reference from swap_cgroup and free mem_cgroup when
4196  * it goes down to 0.
4197  *
4198  * Removal of cgroup itself succeeds regardless of refs from swap.
4199  */
4200 
__mem_cgroup_free(struct mem_cgroup * memcg)4201 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4202 {
4203 	int node;
4204 
4205 	mem_cgroup_remove_from_trees(memcg);
4206 
4207 	for_each_node(node)
4208 		free_mem_cgroup_per_zone_info(memcg, node);
4209 
4210 	free_percpu(memcg->stat);
4211 	memcg_wb_domain_exit(memcg);
4212 	kfree(memcg);
4213 }
4214 
4215 /*
4216  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4217  */
parent_mem_cgroup(struct mem_cgroup * memcg)4218 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4219 {
4220 	if (!memcg->memory.parent)
4221 		return NULL;
4222 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4223 }
4224 EXPORT_SYMBOL(parent_mem_cgroup);
4225 
4226 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)4227 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4228 {
4229 	struct mem_cgroup *memcg;
4230 	long error = -ENOMEM;
4231 	int node;
4232 
4233 	memcg = mem_cgroup_alloc();
4234 	if (!memcg)
4235 		return ERR_PTR(error);
4236 
4237 	for_each_node(node)
4238 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4239 			goto free_out;
4240 
4241 	/* root ? */
4242 	if (parent_css == NULL) {
4243 		root_mem_cgroup = memcg;
4244 		mem_cgroup_root_css = &memcg->css;
4245 		page_counter_init(&memcg->memory, NULL);
4246 		memcg->high = PAGE_COUNTER_MAX;
4247 		memcg->soft_limit = PAGE_COUNTER_MAX;
4248 		page_counter_init(&memcg->memsw, NULL);
4249 		page_counter_init(&memcg->kmem, NULL);
4250 	}
4251 
4252 	memcg->last_scanned_node = MAX_NUMNODES;
4253 	INIT_LIST_HEAD(&memcg->oom_notify);
4254 	memcg->move_charge_at_immigrate = 0;
4255 	mutex_init(&memcg->thresholds_lock);
4256 	spin_lock_init(&memcg->move_lock);
4257 	vmpressure_init(&memcg->vmpressure);
4258 	INIT_LIST_HEAD(&memcg->event_list);
4259 	spin_lock_init(&memcg->event_list_lock);
4260 #ifdef CONFIG_MEMCG_KMEM
4261 	memcg->kmemcg_id = -1;
4262 #endif
4263 #ifdef CONFIG_CGROUP_WRITEBACK
4264 	INIT_LIST_HEAD(&memcg->cgwb_list);
4265 #endif
4266 	return &memcg->css;
4267 
4268 free_out:
4269 	__mem_cgroup_free(memcg);
4270 	return ERR_PTR(error);
4271 }
4272 
4273 static int
mem_cgroup_css_online(struct cgroup_subsys_state * css)4274 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4275 {
4276 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4277 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4278 	int ret;
4279 
4280 	if (css->id > MEM_CGROUP_ID_MAX)
4281 		return -ENOSPC;
4282 
4283 	if (!parent)
4284 		return 0;
4285 
4286 	mutex_lock(&memcg_create_mutex);
4287 
4288 	memcg->use_hierarchy = parent->use_hierarchy;
4289 	memcg->oom_kill_disable = parent->oom_kill_disable;
4290 	memcg->swappiness = mem_cgroup_swappiness(parent);
4291 
4292 	if (parent->use_hierarchy) {
4293 		page_counter_init(&memcg->memory, &parent->memory);
4294 		memcg->high = PAGE_COUNTER_MAX;
4295 		memcg->soft_limit = PAGE_COUNTER_MAX;
4296 		page_counter_init(&memcg->memsw, &parent->memsw);
4297 		page_counter_init(&memcg->kmem, &parent->kmem);
4298 
4299 		/*
4300 		 * No need to take a reference to the parent because cgroup
4301 		 * core guarantees its existence.
4302 		 */
4303 	} else {
4304 		page_counter_init(&memcg->memory, NULL);
4305 		memcg->high = PAGE_COUNTER_MAX;
4306 		memcg->soft_limit = PAGE_COUNTER_MAX;
4307 		page_counter_init(&memcg->memsw, NULL);
4308 		page_counter_init(&memcg->kmem, NULL);
4309 		/*
4310 		 * Deeper hierachy with use_hierarchy == false doesn't make
4311 		 * much sense so let cgroup subsystem know about this
4312 		 * unfortunate state in our controller.
4313 		 */
4314 		if (parent != root_mem_cgroup)
4315 			memory_cgrp_subsys.broken_hierarchy = true;
4316 	}
4317 	mutex_unlock(&memcg_create_mutex);
4318 
4319 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4320 	if (ret)
4321 		return ret;
4322 
4323 	/*
4324 	 * Make sure the memcg is initialized: mem_cgroup_iter()
4325 	 * orders reading memcg->initialized against its callers
4326 	 * reading the memcg members.
4327 	 */
4328 	smp_store_release(&memcg->initialized, 1);
4329 
4330 	return 0;
4331 }
4332 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)4333 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4334 {
4335 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4336 	struct mem_cgroup_event *event, *tmp;
4337 
4338 	/*
4339 	 * Unregister events and notify userspace.
4340 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4341 	 * directory to avoid race between userspace and kernelspace.
4342 	 */
4343 	spin_lock(&memcg->event_list_lock);
4344 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4345 		list_del_init(&event->list);
4346 		schedule_work(&event->remove);
4347 	}
4348 	spin_unlock(&memcg->event_list_lock);
4349 
4350 	vmpressure_cleanup(&memcg->vmpressure);
4351 
4352 	memcg_deactivate_kmem(memcg);
4353 
4354 	wb_memcg_offline(memcg);
4355 }
4356 
mem_cgroup_css_released(struct cgroup_subsys_state * css)4357 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4358 {
4359 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4360 
4361 	invalidate_reclaim_iterators(memcg);
4362 }
4363 
mem_cgroup_css_free(struct cgroup_subsys_state * css)4364 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4365 {
4366 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4367 
4368 	memcg_destroy_kmem(memcg);
4369 	__mem_cgroup_free(memcg);
4370 }
4371 
4372 /**
4373  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4374  * @css: the target css
4375  *
4376  * Reset the states of the mem_cgroup associated with @css.  This is
4377  * invoked when the userland requests disabling on the default hierarchy
4378  * but the memcg is pinned through dependency.  The memcg should stop
4379  * applying policies and should revert to the vanilla state as it may be
4380  * made visible again.
4381  *
4382  * The current implementation only resets the essential configurations.
4383  * This needs to be expanded to cover all the visible parts.
4384  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)4385 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4386 {
4387 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388 
4389 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4390 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4391 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4392 	memcg->low = 0;
4393 	memcg->high = PAGE_COUNTER_MAX;
4394 	memcg->soft_limit = PAGE_COUNTER_MAX;
4395 	memcg_wb_domain_size_changed(memcg);
4396 }
4397 
4398 #ifdef CONFIG_MMU
4399 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)4400 static int mem_cgroup_do_precharge(unsigned long count)
4401 {
4402 	int ret;
4403 
4404 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4405 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4406 	if (!ret) {
4407 		mc.precharge += count;
4408 		return ret;
4409 	}
4410 
4411 	/* Try charges one by one with reclaim */
4412 	while (count--) {
4413 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4414 		if (ret)
4415 			return ret;
4416 		mc.precharge++;
4417 		cond_resched();
4418 	}
4419 	return 0;
4420 }
4421 
4422 /**
4423  * get_mctgt_type - get target type of moving charge
4424  * @vma: the vma the pte to be checked belongs
4425  * @addr: the address corresponding to the pte to be checked
4426  * @ptent: the pte to be checked
4427  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4428  *
4429  * Returns
4430  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4431  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4432  *     move charge. if @target is not NULL, the page is stored in target->page
4433  *     with extra refcnt got(Callers should handle it).
4434  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4435  *     target for charge migration. if @target is not NULL, the entry is stored
4436  *     in target->ent.
4437  *
4438  * Called with pte lock held.
4439  */
4440 union mc_target {
4441 	struct page	*page;
4442 	swp_entry_t	ent;
4443 };
4444 
4445 enum mc_target_type {
4446 	MC_TARGET_NONE = 0,
4447 	MC_TARGET_PAGE,
4448 	MC_TARGET_SWAP,
4449 };
4450 
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)4451 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4452 						unsigned long addr, pte_t ptent)
4453 {
4454 	struct page *page = vm_normal_page(vma, addr, ptent);
4455 
4456 	if (!page || !page_mapped(page))
4457 		return NULL;
4458 	if (PageAnon(page)) {
4459 		if (!(mc.flags & MOVE_ANON))
4460 			return NULL;
4461 	} else {
4462 		if (!(mc.flags & MOVE_FILE))
4463 			return NULL;
4464 	}
4465 	if (!get_page_unless_zero(page))
4466 		return NULL;
4467 
4468 	return page;
4469 }
4470 
4471 #ifdef CONFIG_SWAP
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4472 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4473 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4474 {
4475 	struct page *page = NULL;
4476 	swp_entry_t ent = pte_to_swp_entry(ptent);
4477 
4478 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4479 		return NULL;
4480 	/*
4481 	 * Because lookup_swap_cache() updates some statistics counter,
4482 	 * we call find_get_page() with swapper_space directly.
4483 	 */
4484 	page = find_get_page(swap_address_space(ent), ent.val);
4485 	if (do_swap_account)
4486 		entry->val = ent.val;
4487 
4488 	return page;
4489 }
4490 #else
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4491 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4492 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4493 {
4494 	return NULL;
4495 }
4496 #endif
4497 
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4498 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4499 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4500 {
4501 	struct page *page = NULL;
4502 	struct address_space *mapping;
4503 	pgoff_t pgoff;
4504 
4505 	if (!vma->vm_file) /* anonymous vma */
4506 		return NULL;
4507 	if (!(mc.flags & MOVE_FILE))
4508 		return NULL;
4509 
4510 	mapping = vma->vm_file->f_mapping;
4511 	pgoff = linear_page_index(vma, addr);
4512 
4513 	/* page is moved even if it's not RSS of this task(page-faulted). */
4514 #ifdef CONFIG_SWAP
4515 	/* shmem/tmpfs may report page out on swap: account for that too. */
4516 	if (shmem_mapping(mapping)) {
4517 		page = find_get_entry(mapping, pgoff);
4518 		if (radix_tree_exceptional_entry(page)) {
4519 			swp_entry_t swp = radix_to_swp_entry(page);
4520 			if (do_swap_account)
4521 				*entry = swp;
4522 			page = find_get_page(swap_address_space(swp), swp.val);
4523 		}
4524 	} else
4525 		page = find_get_page(mapping, pgoff);
4526 #else
4527 	page = find_get_page(mapping, pgoff);
4528 #endif
4529 	return page;
4530 }
4531 
4532 /**
4533  * mem_cgroup_move_account - move account of the page
4534  * @page: the page
4535  * @nr_pages: number of regular pages (>1 for huge pages)
4536  * @from: mem_cgroup which the page is moved from.
4537  * @to:	mem_cgroup which the page is moved to. @from != @to.
4538  *
4539  * The caller must confirm following.
4540  * - page is not on LRU (isolate_page() is useful.)
4541  * - compound_lock is held when nr_pages > 1
4542  *
4543  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4544  * from old cgroup.
4545  */
mem_cgroup_move_account(struct page * page,unsigned int nr_pages,struct mem_cgroup * from,struct mem_cgroup * to)4546 static int mem_cgroup_move_account(struct page *page,
4547 				   unsigned int nr_pages,
4548 				   struct mem_cgroup *from,
4549 				   struct mem_cgroup *to)
4550 {
4551 	unsigned long flags;
4552 	int ret;
4553 	bool anon;
4554 
4555 	VM_BUG_ON(from == to);
4556 	VM_BUG_ON_PAGE(PageLRU(page), page);
4557 	/*
4558 	 * The page is isolated from LRU. So, collapse function
4559 	 * will not handle this page. But page splitting can happen.
4560 	 * Do this check under compound_page_lock(). The caller should
4561 	 * hold it.
4562 	 */
4563 	ret = -EBUSY;
4564 	if (nr_pages > 1 && !PageTransHuge(page))
4565 		goto out;
4566 
4567 	/*
4568 	 * Prevent mem_cgroup_replace_page() from looking at
4569 	 * page->mem_cgroup of its source page while we change it.
4570 	 */
4571 	if (!trylock_page(page))
4572 		goto out;
4573 
4574 	ret = -EINVAL;
4575 	if (page->mem_cgroup != from)
4576 		goto out_unlock;
4577 
4578 	anon = PageAnon(page);
4579 
4580 	spin_lock_irqsave(&from->move_lock, flags);
4581 
4582 	if (!anon && page_mapped(page)) {
4583 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4584 			       nr_pages);
4585 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4586 			       nr_pages);
4587 	}
4588 
4589 	/*
4590 	 * move_lock grabbed above and caller set from->moving_account, so
4591 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4592 	 * So mapping should be stable for dirty pages.
4593 	 */
4594 	if (!anon && PageDirty(page)) {
4595 		struct address_space *mapping = page_mapping(page);
4596 
4597 		if (mapping_cap_account_dirty(mapping)) {
4598 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4599 				       nr_pages);
4600 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4601 				       nr_pages);
4602 		}
4603 	}
4604 
4605 	if (PageWriteback(page)) {
4606 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4607 			       nr_pages);
4608 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4609 			       nr_pages);
4610 	}
4611 
4612 	/*
4613 	 * It is safe to change page->mem_cgroup here because the page
4614 	 * is referenced, charged, and isolated - we can't race with
4615 	 * uncharging, charging, migration, or LRU putback.
4616 	 */
4617 
4618 	/* caller should have done css_get */
4619 	page->mem_cgroup = to;
4620 	spin_unlock_irqrestore(&from->move_lock, flags);
4621 
4622 	ret = 0;
4623 
4624 	local_irq_disable();
4625 	mem_cgroup_charge_statistics(to, page, nr_pages);
4626 	memcg_check_events(to, page);
4627 	mem_cgroup_charge_statistics(from, page, -nr_pages);
4628 	memcg_check_events(from, page);
4629 	local_irq_enable();
4630 out_unlock:
4631 	unlock_page(page);
4632 out:
4633 	return ret;
4634 }
4635 
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)4636 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4637 		unsigned long addr, pte_t ptent, union mc_target *target)
4638 {
4639 	struct page *page = NULL;
4640 	enum mc_target_type ret = MC_TARGET_NONE;
4641 	swp_entry_t ent = { .val = 0 };
4642 
4643 	if (pte_present(ptent))
4644 		page = mc_handle_present_pte(vma, addr, ptent);
4645 	else if (is_swap_pte(ptent))
4646 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4647 	else if (pte_none(ptent))
4648 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4649 
4650 	if (!page && !ent.val)
4651 		return ret;
4652 	if (page) {
4653 		/*
4654 		 * Do only loose check w/o serialization.
4655 		 * mem_cgroup_move_account() checks the page is valid or
4656 		 * not under LRU exclusion.
4657 		 */
4658 		if (page->mem_cgroup == mc.from) {
4659 			ret = MC_TARGET_PAGE;
4660 			if (target)
4661 				target->page = page;
4662 		}
4663 		if (!ret || !target)
4664 			put_page(page);
4665 	}
4666 	/* There is a swap entry and a page doesn't exist or isn't charged */
4667 	if (ent.val && !ret &&
4668 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4669 		ret = MC_TARGET_SWAP;
4670 		if (target)
4671 			target->ent = ent;
4672 	}
4673 	return ret;
4674 }
4675 
4676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4677 /*
4678  * We don't consider swapping or file mapped pages because THP does not
4679  * support them for now.
4680  * Caller should make sure that pmd_trans_huge(pmd) is true.
4681  */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4682 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4683 		unsigned long addr, pmd_t pmd, union mc_target *target)
4684 {
4685 	struct page *page = NULL;
4686 	enum mc_target_type ret = MC_TARGET_NONE;
4687 
4688 	page = pmd_page(pmd);
4689 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4690 	if (!(mc.flags & MOVE_ANON))
4691 		return ret;
4692 	if (page->mem_cgroup == mc.from) {
4693 		ret = MC_TARGET_PAGE;
4694 		if (target) {
4695 			get_page(page);
4696 			target->page = page;
4697 		}
4698 	}
4699 	return ret;
4700 }
4701 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4702 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4703 		unsigned long addr, pmd_t pmd, union mc_target *target)
4704 {
4705 	return MC_TARGET_NONE;
4706 }
4707 #endif
4708 
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4709 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4710 					unsigned long addr, unsigned long end,
4711 					struct mm_walk *walk)
4712 {
4713 	struct vm_area_struct *vma = walk->vma;
4714 	pte_t *pte;
4715 	spinlock_t *ptl;
4716 
4717 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4718 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4719 			mc.precharge += HPAGE_PMD_NR;
4720 		spin_unlock(ptl);
4721 		return 0;
4722 	}
4723 
4724 	if (pmd_trans_unstable(pmd))
4725 		return 0;
4726 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4727 	for (; addr != end; pte++, addr += PAGE_SIZE)
4728 		if (get_mctgt_type(vma, addr, *pte, NULL))
4729 			mc.precharge++;	/* increment precharge temporarily */
4730 	pte_unmap_unlock(pte - 1, ptl);
4731 	cond_resched();
4732 
4733 	return 0;
4734 }
4735 
mem_cgroup_count_precharge(struct mm_struct * mm)4736 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4737 {
4738 	unsigned long precharge;
4739 
4740 	struct mm_walk mem_cgroup_count_precharge_walk = {
4741 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4742 		.mm = mm,
4743 	};
4744 	down_read(&mm->mmap_sem);
4745 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4746 	up_read(&mm->mmap_sem);
4747 
4748 	precharge = mc.precharge;
4749 	mc.precharge = 0;
4750 
4751 	return precharge;
4752 }
4753 
mem_cgroup_precharge_mc(struct mm_struct * mm)4754 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4755 {
4756 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4757 
4758 	VM_BUG_ON(mc.moving_task);
4759 	mc.moving_task = current;
4760 	return mem_cgroup_do_precharge(precharge);
4761 }
4762 
4763 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)4764 static void __mem_cgroup_clear_mc(void)
4765 {
4766 	struct mem_cgroup *from = mc.from;
4767 	struct mem_cgroup *to = mc.to;
4768 
4769 	/* we must uncharge all the leftover precharges from mc.to */
4770 	if (mc.precharge) {
4771 		cancel_charge(mc.to, mc.precharge);
4772 		mc.precharge = 0;
4773 	}
4774 	/*
4775 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4776 	 * we must uncharge here.
4777 	 */
4778 	if (mc.moved_charge) {
4779 		cancel_charge(mc.from, mc.moved_charge);
4780 		mc.moved_charge = 0;
4781 	}
4782 	/* we must fixup refcnts and charges */
4783 	if (mc.moved_swap) {
4784 		/* uncharge swap account from the old cgroup */
4785 		if (!mem_cgroup_is_root(mc.from))
4786 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4787 
4788 		/*
4789 		 * we charged both to->memory and to->memsw, so we
4790 		 * should uncharge to->memory.
4791 		 */
4792 		if (!mem_cgroup_is_root(mc.to))
4793 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4794 
4795 		css_put_many(&mc.from->css, mc.moved_swap);
4796 
4797 		/* we've already done css_get(mc.to) */
4798 		mc.moved_swap = 0;
4799 	}
4800 	memcg_oom_recover(from);
4801 	memcg_oom_recover(to);
4802 	wake_up_all(&mc.waitq);
4803 }
4804 
mem_cgroup_clear_mc(void)4805 static void mem_cgroup_clear_mc(void)
4806 {
4807 	struct mm_struct *mm = mc.mm;
4808 
4809 	/*
4810 	 * we must clear moving_task before waking up waiters at the end of
4811 	 * task migration.
4812 	 */
4813 	mc.moving_task = NULL;
4814 	__mem_cgroup_clear_mc();
4815 	spin_lock(&mc.lock);
4816 	mc.from = NULL;
4817 	mc.to = NULL;
4818 	mc.mm = NULL;
4819 	spin_unlock(&mc.lock);
4820 
4821 	mmput(mm);
4822 }
4823 
mem_cgroup_can_attach(struct cgroup_taskset * tset)4824 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4825 {
4826 	struct cgroup_subsys_state *css;
4827 	struct mem_cgroup *memcg;
4828 	struct mem_cgroup *from;
4829 	struct task_struct *leader, *p;
4830 	struct mm_struct *mm;
4831 	unsigned long move_flags;
4832 	int ret = 0;
4833 
4834 	/* charge immigration isn't supported on the default hierarchy */
4835 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4836 		return 0;
4837 
4838 	/*
4839 	 * Multi-process migrations only happen on the default hierarchy
4840 	 * where charge immigration is not used.  Perform charge
4841 	 * immigration if @tset contains a leader and whine if there are
4842 	 * multiple.
4843 	 */
4844 	p = NULL;
4845 	cgroup_taskset_for_each_leader(leader, css, tset) {
4846 		WARN_ON_ONCE(p);
4847 		p = leader;
4848 		memcg = mem_cgroup_from_css(css);
4849 	}
4850 	if (!p)
4851 		return 0;
4852 
4853 	/*
4854 	 * We are now commited to this value whatever it is. Changes in this
4855 	 * tunable will only affect upcoming migrations, not the current one.
4856 	 * So we need to save it, and keep it going.
4857 	 */
4858 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4859 	if (!move_flags)
4860 		return 0;
4861 
4862 	from = mem_cgroup_from_task(p);
4863 
4864 	VM_BUG_ON(from == memcg);
4865 
4866 	mm = get_task_mm(p);
4867 	if (!mm)
4868 		return 0;
4869 	/* We move charges only when we move a owner of the mm */
4870 	if (mm->owner == p) {
4871 		VM_BUG_ON(mc.from);
4872 		VM_BUG_ON(mc.to);
4873 		VM_BUG_ON(mc.precharge);
4874 		VM_BUG_ON(mc.moved_charge);
4875 		VM_BUG_ON(mc.moved_swap);
4876 
4877 		spin_lock(&mc.lock);
4878 		mc.mm = mm;
4879 		mc.from = from;
4880 		mc.to = memcg;
4881 		mc.flags = move_flags;
4882 		spin_unlock(&mc.lock);
4883 		/* We set mc.moving_task later */
4884 
4885 		ret = mem_cgroup_precharge_mc(mm);
4886 		if (ret)
4887 			mem_cgroup_clear_mc();
4888 	} else {
4889 		mmput(mm);
4890 	}
4891 	return ret;
4892 }
4893 
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)4894 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4895 {
4896 	if (mc.to)
4897 		mem_cgroup_clear_mc();
4898 }
4899 
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4900 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4901 				unsigned long addr, unsigned long end,
4902 				struct mm_walk *walk)
4903 {
4904 	int ret = 0;
4905 	struct vm_area_struct *vma = walk->vma;
4906 	pte_t *pte;
4907 	spinlock_t *ptl;
4908 	enum mc_target_type target_type;
4909 	union mc_target target;
4910 	struct page *page;
4911 
4912 	/*
4913 	 * We don't take compound_lock() here but no race with splitting thp
4914 	 * happens because:
4915 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4916 	 *    under splitting, which means there's no concurrent thp split,
4917 	 *  - if another thread runs into split_huge_page() just after we
4918 	 *    entered this if-block, the thread must wait for page table lock
4919 	 *    to be unlocked in __split_huge_page_splitting(), where the main
4920 	 *    part of thp split is not executed yet.
4921 	 */
4922 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4923 		if (mc.precharge < HPAGE_PMD_NR) {
4924 			spin_unlock(ptl);
4925 			return 0;
4926 		}
4927 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4928 		if (target_type == MC_TARGET_PAGE) {
4929 			page = target.page;
4930 			if (!isolate_lru_page(page)) {
4931 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4932 							     mc.from, mc.to)) {
4933 					mc.precharge -= HPAGE_PMD_NR;
4934 					mc.moved_charge += HPAGE_PMD_NR;
4935 				}
4936 				putback_lru_page(page);
4937 			}
4938 			put_page(page);
4939 		}
4940 		spin_unlock(ptl);
4941 		return 0;
4942 	}
4943 
4944 	if (pmd_trans_unstable(pmd))
4945 		return 0;
4946 retry:
4947 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4948 	for (; addr != end; addr += PAGE_SIZE) {
4949 		pte_t ptent = *(pte++);
4950 		swp_entry_t ent;
4951 
4952 		if (!mc.precharge)
4953 			break;
4954 
4955 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4956 		case MC_TARGET_PAGE:
4957 			page = target.page;
4958 			if (isolate_lru_page(page))
4959 				goto put;
4960 			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4961 				mc.precharge--;
4962 				/* we uncharge from mc.from later. */
4963 				mc.moved_charge++;
4964 			}
4965 			putback_lru_page(page);
4966 put:			/* get_mctgt_type() gets the page */
4967 			put_page(page);
4968 			break;
4969 		case MC_TARGET_SWAP:
4970 			ent = target.ent;
4971 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4972 				mc.precharge--;
4973 				/* we fixup refcnts and charges later. */
4974 				mc.moved_swap++;
4975 			}
4976 			break;
4977 		default:
4978 			break;
4979 		}
4980 	}
4981 	pte_unmap_unlock(pte - 1, ptl);
4982 	cond_resched();
4983 
4984 	if (addr != end) {
4985 		/*
4986 		 * We have consumed all precharges we got in can_attach().
4987 		 * We try charge one by one, but don't do any additional
4988 		 * charges to mc.to if we have failed in charge once in attach()
4989 		 * phase.
4990 		 */
4991 		ret = mem_cgroup_do_precharge(1);
4992 		if (!ret)
4993 			goto retry;
4994 	}
4995 
4996 	return ret;
4997 }
4998 
mem_cgroup_move_charge(void)4999 static void mem_cgroup_move_charge(void)
5000 {
5001 	struct mm_walk mem_cgroup_move_charge_walk = {
5002 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5003 		.mm = mc.mm,
5004 	};
5005 
5006 	lru_add_drain_all();
5007 	/*
5008 	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5009 	 * move_lock while we're moving its pages to another memcg.
5010 	 * Then wait for already started RCU-only updates to finish.
5011 	 */
5012 	atomic_inc(&mc.from->moving_account);
5013 	synchronize_rcu();
5014 retry:
5015 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5016 		/*
5017 		 * Someone who are holding the mmap_sem might be waiting in
5018 		 * waitq. So we cancel all extra charges, wake up all waiters,
5019 		 * and retry. Because we cancel precharges, we might not be able
5020 		 * to move enough charges, but moving charge is a best-effort
5021 		 * feature anyway, so it wouldn't be a big problem.
5022 		 */
5023 		__mem_cgroup_clear_mc();
5024 		cond_resched();
5025 		goto retry;
5026 	}
5027 	/*
5028 	 * When we have consumed all precharges and failed in doing
5029 	 * additional charge, the page walk just aborts.
5030 	 */
5031 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5032 	up_read(&mc.mm->mmap_sem);
5033 	atomic_dec(&mc.from->moving_account);
5034 }
5035 
mem_cgroup_move_task(void)5036 static void mem_cgroup_move_task(void)
5037 {
5038 	if (mc.to) {
5039 		mem_cgroup_move_charge();
5040 		mem_cgroup_clear_mc();
5041 	}
5042 }
5043 #else	/* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)5044 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5045 {
5046 	return 0;
5047 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5048 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5049 {
5050 }
mem_cgroup_move_task(void)5051 static void mem_cgroup_move_task(void)
5052 {
5053 }
5054 #endif
5055 
5056 /*
5057  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5058  * to verify whether we're attached to the default hierarchy on each mount
5059  * attempt.
5060  */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)5061 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5062 {
5063 	/*
5064 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5065 	 * guarantees that @root doesn't have any children, so turning it
5066 	 * on for the root memcg is enough.
5067 	 */
5068 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5069 		root_mem_cgroup->use_hierarchy = true;
5070 	else
5071 		root_mem_cgroup->use_hierarchy = false;
5072 }
5073 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5074 static u64 memory_current_read(struct cgroup_subsys_state *css,
5075 			       struct cftype *cft)
5076 {
5077 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5078 
5079 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5080 }
5081 
memory_low_show(struct seq_file * m,void * v)5082 static int memory_low_show(struct seq_file *m, void *v)
5083 {
5084 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5085 	unsigned long low = READ_ONCE(memcg->low);
5086 
5087 	if (low == PAGE_COUNTER_MAX)
5088 		seq_puts(m, "max\n");
5089 	else
5090 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5091 
5092 	return 0;
5093 }
5094 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5095 static ssize_t memory_low_write(struct kernfs_open_file *of,
5096 				char *buf, size_t nbytes, loff_t off)
5097 {
5098 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5099 	unsigned long low;
5100 	int err;
5101 
5102 	buf = strstrip(buf);
5103 	err = page_counter_memparse(buf, "max", &low);
5104 	if (err)
5105 		return err;
5106 
5107 	memcg->low = low;
5108 
5109 	return nbytes;
5110 }
5111 
memory_high_show(struct seq_file * m,void * v)5112 static int memory_high_show(struct seq_file *m, void *v)
5113 {
5114 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5115 	unsigned long high = READ_ONCE(memcg->high);
5116 
5117 	if (high == PAGE_COUNTER_MAX)
5118 		seq_puts(m, "max\n");
5119 	else
5120 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5121 
5122 	return 0;
5123 }
5124 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5125 static ssize_t memory_high_write(struct kernfs_open_file *of,
5126 				 char *buf, size_t nbytes, loff_t off)
5127 {
5128 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5129 	unsigned long nr_pages;
5130 	unsigned long high;
5131 	int err;
5132 
5133 	buf = strstrip(buf);
5134 	err = page_counter_memparse(buf, "max", &high);
5135 	if (err)
5136 		return err;
5137 
5138 	memcg->high = high;
5139 
5140 	nr_pages = page_counter_read(&memcg->memory);
5141 	if (nr_pages > high)
5142 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5143 					     GFP_KERNEL, true);
5144 
5145 	memcg_wb_domain_size_changed(memcg);
5146 	return nbytes;
5147 }
5148 
memory_max_show(struct seq_file * m,void * v)5149 static int memory_max_show(struct seq_file *m, void *v)
5150 {
5151 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5152 	unsigned long max = READ_ONCE(memcg->memory.limit);
5153 
5154 	if (max == PAGE_COUNTER_MAX)
5155 		seq_puts(m, "max\n");
5156 	else
5157 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5158 
5159 	return 0;
5160 }
5161 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5162 static ssize_t memory_max_write(struct kernfs_open_file *of,
5163 				char *buf, size_t nbytes, loff_t off)
5164 {
5165 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5166 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5167 	bool drained = false;
5168 	unsigned long max;
5169 	int err;
5170 
5171 	buf = strstrip(buf);
5172 	err = page_counter_memparse(buf, "max", &max);
5173 	if (err)
5174 		return err;
5175 
5176 	xchg(&memcg->memory.limit, max);
5177 
5178 	for (;;) {
5179 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5180 
5181 		if (nr_pages <= max)
5182 			break;
5183 
5184 		if (signal_pending(current)) {
5185 			err = -EINTR;
5186 			break;
5187 		}
5188 
5189 		if (!drained) {
5190 			drain_all_stock(memcg);
5191 			drained = true;
5192 			continue;
5193 		}
5194 
5195 		if (nr_reclaims) {
5196 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5197 							  GFP_KERNEL, true))
5198 				nr_reclaims--;
5199 			continue;
5200 		}
5201 
5202 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5203 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5204 			break;
5205 	}
5206 
5207 	memcg_wb_domain_size_changed(memcg);
5208 	return nbytes;
5209 }
5210 
memory_events_show(struct seq_file * m,void * v)5211 static int memory_events_show(struct seq_file *m, void *v)
5212 {
5213 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5214 
5215 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5216 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5217 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5218 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5219 
5220 	return 0;
5221 }
5222 
5223 static struct cftype memory_files[] = {
5224 	{
5225 		.name = "current",
5226 		.flags = CFTYPE_NOT_ON_ROOT,
5227 		.read_u64 = memory_current_read,
5228 	},
5229 	{
5230 		.name = "low",
5231 		.flags = CFTYPE_NOT_ON_ROOT,
5232 		.seq_show = memory_low_show,
5233 		.write = memory_low_write,
5234 	},
5235 	{
5236 		.name = "high",
5237 		.flags = CFTYPE_NOT_ON_ROOT,
5238 		.seq_show = memory_high_show,
5239 		.write = memory_high_write,
5240 	},
5241 	{
5242 		.name = "max",
5243 		.flags = CFTYPE_NOT_ON_ROOT,
5244 		.seq_show = memory_max_show,
5245 		.write = memory_max_write,
5246 	},
5247 	{
5248 		.name = "events",
5249 		.flags = CFTYPE_NOT_ON_ROOT,
5250 		.file_offset = offsetof(struct mem_cgroup, events_file),
5251 		.seq_show = memory_events_show,
5252 	},
5253 	{ }	/* terminate */
5254 };
5255 
5256 struct cgroup_subsys memory_cgrp_subsys = {
5257 	.css_alloc = mem_cgroup_css_alloc,
5258 	.css_online = mem_cgroup_css_online,
5259 	.css_offline = mem_cgroup_css_offline,
5260 	.css_released = mem_cgroup_css_released,
5261 	.css_free = mem_cgroup_css_free,
5262 	.css_reset = mem_cgroup_css_reset,
5263 	.can_attach = mem_cgroup_can_attach,
5264 	.cancel_attach = mem_cgroup_cancel_attach,
5265 	.post_attach = mem_cgroup_move_task,
5266 	.bind = mem_cgroup_bind,
5267 	.dfl_cftypes = memory_files,
5268 	.legacy_cftypes = mem_cgroup_legacy_files,
5269 	.early_init = 0,
5270 };
5271 
5272 /**
5273  * mem_cgroup_low - check if memory consumption is below the normal range
5274  * @root: the highest ancestor to consider
5275  * @memcg: the memory cgroup to check
5276  *
5277  * Returns %true if memory consumption of @memcg, and that of all
5278  * configurable ancestors up to @root, is below the normal range.
5279  */
mem_cgroup_low(struct mem_cgroup * root,struct mem_cgroup * memcg)5280 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5281 {
5282 	if (mem_cgroup_disabled())
5283 		return false;
5284 
5285 	/*
5286 	 * The toplevel group doesn't have a configurable range, so
5287 	 * it's never low when looked at directly, and it is not
5288 	 * considered an ancestor when assessing the hierarchy.
5289 	 */
5290 
5291 	if (memcg == root_mem_cgroup)
5292 		return false;
5293 
5294 	if (page_counter_read(&memcg->memory) >= memcg->low)
5295 		return false;
5296 
5297 	while (memcg != root) {
5298 		memcg = parent_mem_cgroup(memcg);
5299 
5300 		if (memcg == root_mem_cgroup)
5301 			break;
5302 
5303 		if (page_counter_read(&memcg->memory) >= memcg->low)
5304 			return false;
5305 	}
5306 	return true;
5307 }
5308 
5309 /**
5310  * mem_cgroup_try_charge - try charging a page
5311  * @page: page to charge
5312  * @mm: mm context of the victim
5313  * @gfp_mask: reclaim mode
5314  * @memcgp: charged memcg return
5315  *
5316  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5317  * pages according to @gfp_mask if necessary.
5318  *
5319  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5320  * Otherwise, an error code is returned.
5321  *
5322  * After page->mapping has been set up, the caller must finalize the
5323  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5324  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5325  */
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp)5326 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5327 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5328 {
5329 	struct mem_cgroup *memcg = NULL;
5330 	unsigned int nr_pages = 1;
5331 	int ret = 0;
5332 
5333 	if (mem_cgroup_disabled())
5334 		goto out;
5335 
5336 	if (PageSwapCache(page)) {
5337 		/*
5338 		 * Every swap fault against a single page tries to charge the
5339 		 * page, bail as early as possible.  shmem_unuse() encounters
5340 		 * already charged pages, too.  The USED bit is protected by
5341 		 * the page lock, which serializes swap cache removal, which
5342 		 * in turn serializes uncharging.
5343 		 */
5344 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5345 		if (page->mem_cgroup)
5346 			goto out;
5347 
5348 		if (do_swap_account) {
5349 			swp_entry_t ent = { .val = page_private(page), };
5350 			unsigned short id = lookup_swap_cgroup_id(ent);
5351 
5352 			rcu_read_lock();
5353 			memcg = mem_cgroup_from_id(id);
5354 			if (memcg && !css_tryget_online(&memcg->css))
5355 				memcg = NULL;
5356 			rcu_read_unlock();
5357 		}
5358 	}
5359 
5360 	if (PageTransHuge(page)) {
5361 		nr_pages <<= compound_order(page);
5362 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5363 	}
5364 
5365 	if (!memcg)
5366 		memcg = get_mem_cgroup_from_mm(mm);
5367 
5368 	ret = try_charge(memcg, gfp_mask, nr_pages);
5369 
5370 	css_put(&memcg->css);
5371 out:
5372 	*memcgp = memcg;
5373 	return ret;
5374 }
5375 
5376 /**
5377  * mem_cgroup_commit_charge - commit a page charge
5378  * @page: page to charge
5379  * @memcg: memcg to charge the page to
5380  * @lrucare: page might be on LRU already
5381  *
5382  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5383  * after page->mapping has been set up.  This must happen atomically
5384  * as part of the page instantiation, i.e. under the page table lock
5385  * for anonymous pages, under the page lock for page and swap cache.
5386  *
5387  * In addition, the page must not be on the LRU during the commit, to
5388  * prevent racing with task migration.  If it might be, use @lrucare.
5389  *
5390  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5391  */
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)5392 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5393 			      bool lrucare)
5394 {
5395 	unsigned int nr_pages = 1;
5396 
5397 	VM_BUG_ON_PAGE(!page->mapping, page);
5398 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5399 
5400 	if (mem_cgroup_disabled())
5401 		return;
5402 	/*
5403 	 * Swap faults will attempt to charge the same page multiple
5404 	 * times.  But reuse_swap_page() might have removed the page
5405 	 * from swapcache already, so we can't check PageSwapCache().
5406 	 */
5407 	if (!memcg)
5408 		return;
5409 
5410 	commit_charge(page, memcg, lrucare);
5411 
5412 	if (PageTransHuge(page)) {
5413 		nr_pages <<= compound_order(page);
5414 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5415 	}
5416 
5417 	local_irq_disable();
5418 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5419 	memcg_check_events(memcg, page);
5420 	local_irq_enable();
5421 
5422 	if (do_swap_account && PageSwapCache(page)) {
5423 		swp_entry_t entry = { .val = page_private(page) };
5424 		/*
5425 		 * The swap entry might not get freed for a long time,
5426 		 * let's not wait for it.  The page already received a
5427 		 * memory+swap charge, drop the swap entry duplicate.
5428 		 */
5429 		mem_cgroup_uncharge_swap(entry);
5430 	}
5431 }
5432 
5433 /**
5434  * mem_cgroup_cancel_charge - cancel a page charge
5435  * @page: page to charge
5436  * @memcg: memcg to charge the page to
5437  *
5438  * Cancel a charge transaction started by mem_cgroup_try_charge().
5439  */
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg)5440 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5441 {
5442 	unsigned int nr_pages = 1;
5443 
5444 	if (mem_cgroup_disabled())
5445 		return;
5446 	/*
5447 	 * Swap faults will attempt to charge the same page multiple
5448 	 * times.  But reuse_swap_page() might have removed the page
5449 	 * from swapcache already, so we can't check PageSwapCache().
5450 	 */
5451 	if (!memcg)
5452 		return;
5453 
5454 	if (PageTransHuge(page)) {
5455 		nr_pages <<= compound_order(page);
5456 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5457 	}
5458 
5459 	cancel_charge(memcg, nr_pages);
5460 }
5461 
uncharge_batch(struct mem_cgroup * memcg,unsigned long pgpgout,unsigned long nr_anon,unsigned long nr_file,unsigned long nr_huge,struct page * dummy_page)5462 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5463 			   unsigned long nr_anon, unsigned long nr_file,
5464 			   unsigned long nr_huge, struct page *dummy_page)
5465 {
5466 	unsigned long nr_pages = nr_anon + nr_file;
5467 	unsigned long flags;
5468 
5469 	if (!mem_cgroup_is_root(memcg)) {
5470 		page_counter_uncharge(&memcg->memory, nr_pages);
5471 		if (do_swap_account)
5472 			page_counter_uncharge(&memcg->memsw, nr_pages);
5473 		memcg_oom_recover(memcg);
5474 	}
5475 
5476 	local_irq_save(flags);
5477 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5478 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5479 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5480 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5481 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5482 	memcg_check_events(memcg, dummy_page);
5483 	local_irq_restore(flags);
5484 
5485 	if (!mem_cgroup_is_root(memcg))
5486 		css_put_many(&memcg->css, nr_pages);
5487 }
5488 
uncharge_list(struct list_head * page_list)5489 static void uncharge_list(struct list_head *page_list)
5490 {
5491 	struct mem_cgroup *memcg = NULL;
5492 	unsigned long nr_anon = 0;
5493 	unsigned long nr_file = 0;
5494 	unsigned long nr_huge = 0;
5495 	unsigned long pgpgout = 0;
5496 	struct list_head *next;
5497 	struct page *page;
5498 
5499 	next = page_list->next;
5500 	do {
5501 		unsigned int nr_pages = 1;
5502 
5503 		page = list_entry(next, struct page, lru);
5504 		next = page->lru.next;
5505 
5506 		VM_BUG_ON_PAGE(PageLRU(page), page);
5507 		VM_BUG_ON_PAGE(page_count(page), page);
5508 
5509 		if (!page->mem_cgroup)
5510 			continue;
5511 
5512 		/*
5513 		 * Nobody should be changing or seriously looking at
5514 		 * page->mem_cgroup at this point, we have fully
5515 		 * exclusive access to the page.
5516 		 */
5517 
5518 		if (memcg != page->mem_cgroup) {
5519 			if (memcg) {
5520 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5521 					       nr_huge, page);
5522 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5523 			}
5524 			memcg = page->mem_cgroup;
5525 		}
5526 
5527 		if (PageTransHuge(page)) {
5528 			nr_pages <<= compound_order(page);
5529 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5530 			nr_huge += nr_pages;
5531 		}
5532 
5533 		if (PageAnon(page))
5534 			nr_anon += nr_pages;
5535 		else
5536 			nr_file += nr_pages;
5537 
5538 		page->mem_cgroup = NULL;
5539 
5540 		pgpgout++;
5541 	} while (next != page_list);
5542 
5543 	if (memcg)
5544 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5545 			       nr_huge, page);
5546 }
5547 
5548 /**
5549  * mem_cgroup_uncharge - uncharge a page
5550  * @page: page to uncharge
5551  *
5552  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5553  * mem_cgroup_commit_charge().
5554  */
mem_cgroup_uncharge(struct page * page)5555 void mem_cgroup_uncharge(struct page *page)
5556 {
5557 	if (mem_cgroup_disabled())
5558 		return;
5559 
5560 	/* Don't touch page->lru of any random page, pre-check: */
5561 	if (!page->mem_cgroup)
5562 		return;
5563 
5564 	INIT_LIST_HEAD(&page->lru);
5565 	uncharge_list(&page->lru);
5566 }
5567 
5568 /**
5569  * mem_cgroup_uncharge_list - uncharge a list of page
5570  * @page_list: list of pages to uncharge
5571  *
5572  * Uncharge a list of pages previously charged with
5573  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5574  */
mem_cgroup_uncharge_list(struct list_head * page_list)5575 void mem_cgroup_uncharge_list(struct list_head *page_list)
5576 {
5577 	if (mem_cgroup_disabled())
5578 		return;
5579 
5580 	if (!list_empty(page_list))
5581 		uncharge_list(page_list);
5582 }
5583 
5584 /**
5585  * mem_cgroup_replace_page - migrate a charge to another page
5586  * @oldpage: currently charged page
5587  * @newpage: page to transfer the charge to
5588  *
5589  * Migrate the charge from @oldpage to @newpage.
5590  *
5591  * Both pages must be locked, @newpage->mapping must be set up.
5592  * Either or both pages might be on the LRU already.
5593  */
mem_cgroup_replace_page(struct page * oldpage,struct page * newpage)5594 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5595 {
5596 	struct mem_cgroup *memcg;
5597 	int isolated;
5598 
5599 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5600 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5601 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5602 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5603 		       newpage);
5604 
5605 	if (mem_cgroup_disabled())
5606 		return;
5607 
5608 	/* Page cache replacement: new page already charged? */
5609 	if (newpage->mem_cgroup)
5610 		return;
5611 
5612 	/* Swapcache readahead pages can get replaced before being charged */
5613 	memcg = oldpage->mem_cgroup;
5614 	if (!memcg)
5615 		return;
5616 
5617 	lock_page_lru(oldpage, &isolated);
5618 	oldpage->mem_cgroup = NULL;
5619 	unlock_page_lru(oldpage, isolated);
5620 
5621 	commit_charge(newpage, memcg, true);
5622 }
5623 
5624 /*
5625  * subsys_initcall() for memory controller.
5626  *
5627  * Some parts like hotcpu_notifier() have to be initialized from this context
5628  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5629  * everything that doesn't depend on a specific mem_cgroup structure should
5630  * be initialized from here.
5631  */
mem_cgroup_init(void)5632 static int __init mem_cgroup_init(void)
5633 {
5634 	int cpu, node;
5635 
5636 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5637 
5638 	for_each_possible_cpu(cpu)
5639 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5640 			  drain_local_stock);
5641 
5642 	for_each_node(node) {
5643 		struct mem_cgroup_tree_per_node *rtpn;
5644 		int zone;
5645 
5646 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5647 				    node_online(node) ? node : NUMA_NO_NODE);
5648 
5649 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5650 			struct mem_cgroup_tree_per_zone *rtpz;
5651 
5652 			rtpz = &rtpn->rb_tree_per_zone[zone];
5653 			rtpz->rb_root = RB_ROOT;
5654 			spin_lock_init(&rtpz->lock);
5655 		}
5656 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5657 	}
5658 
5659 	return 0;
5660 }
5661 subsys_initcall(mem_cgroup_init);
5662 
5663 #ifdef CONFIG_MEMCG_SWAP
5664 /**
5665  * mem_cgroup_swapout - transfer a memsw charge to swap
5666  * @page: page whose memsw charge to transfer
5667  * @entry: swap entry to move the charge to
5668  *
5669  * Transfer the memsw charge of @page to @entry.
5670  */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)5671 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5672 {
5673 	struct mem_cgroup *memcg;
5674 	unsigned short oldid;
5675 
5676 	VM_BUG_ON_PAGE(PageLRU(page), page);
5677 	VM_BUG_ON_PAGE(page_count(page), page);
5678 
5679 	if (!do_swap_account)
5680 		return;
5681 
5682 	memcg = page->mem_cgroup;
5683 
5684 	/* Readahead page, never charged */
5685 	if (!memcg)
5686 		return;
5687 
5688 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5689 	VM_BUG_ON_PAGE(oldid, page);
5690 	mem_cgroup_swap_statistics(memcg, true);
5691 
5692 	page->mem_cgroup = NULL;
5693 
5694 	if (!mem_cgroup_is_root(memcg))
5695 		page_counter_uncharge(&memcg->memory, 1);
5696 
5697 	/*
5698 	 * Interrupts should be disabled here because the caller holds the
5699 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5700 	 * important here to have the interrupts disabled because it is the
5701 	 * only synchronisation we have for udpating the per-CPU variables.
5702 	 */
5703 	VM_BUG_ON(!irqs_disabled());
5704 	mem_cgroup_charge_statistics(memcg, page, -1);
5705 	memcg_check_events(memcg, page);
5706 }
5707 
5708 /**
5709  * mem_cgroup_uncharge_swap - uncharge a swap entry
5710  * @entry: swap entry to uncharge
5711  *
5712  * Drop the memsw charge associated with @entry.
5713  */
mem_cgroup_uncharge_swap(swp_entry_t entry)5714 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5715 {
5716 	struct mem_cgroup *memcg;
5717 	unsigned short id;
5718 
5719 	if (!do_swap_account)
5720 		return;
5721 
5722 	id = swap_cgroup_record(entry, 0);
5723 	rcu_read_lock();
5724 	memcg = mem_cgroup_from_id(id);
5725 	if (memcg) {
5726 		if (!mem_cgroup_is_root(memcg))
5727 			page_counter_uncharge(&memcg->memsw, 1);
5728 		mem_cgroup_swap_statistics(memcg, false);
5729 		css_put(&memcg->css);
5730 	}
5731 	rcu_read_unlock();
5732 }
5733 
5734 /* for remember boot option*/
5735 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5736 static int really_do_swap_account __initdata = 1;
5737 #else
5738 static int really_do_swap_account __initdata;
5739 #endif
5740 
enable_swap_account(char * s)5741 static int __init enable_swap_account(char *s)
5742 {
5743 	if (!strcmp(s, "1"))
5744 		really_do_swap_account = 1;
5745 	else if (!strcmp(s, "0"))
5746 		really_do_swap_account = 0;
5747 	return 1;
5748 }
5749 __setup("swapaccount=", enable_swap_account);
5750 
5751 static struct cftype memsw_cgroup_files[] = {
5752 	{
5753 		.name = "memsw.usage_in_bytes",
5754 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5755 		.read_u64 = mem_cgroup_read_u64,
5756 	},
5757 	{
5758 		.name = "memsw.max_usage_in_bytes",
5759 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5760 		.write = mem_cgroup_reset,
5761 		.read_u64 = mem_cgroup_read_u64,
5762 	},
5763 	{
5764 		.name = "memsw.limit_in_bytes",
5765 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5766 		.write = mem_cgroup_write,
5767 		.read_u64 = mem_cgroup_read_u64,
5768 	},
5769 	{
5770 		.name = "memsw.failcnt",
5771 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5772 		.write = mem_cgroup_reset,
5773 		.read_u64 = mem_cgroup_read_u64,
5774 	},
5775 	{ },	/* terminate */
5776 };
5777 
mem_cgroup_swap_init(void)5778 static int __init mem_cgroup_swap_init(void)
5779 {
5780 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5781 		do_swap_account = 1;
5782 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5783 						  memsw_cgroup_files));
5784 	}
5785 	return 0;
5786 }
5787 subsys_initcall(mem_cgroup_swap_init);
5788 
5789 #endif /* CONFIG_MEMCG_SWAP */
5790