1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 #define MEM_CGROUP_RECLAIM_RETRIES 5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
93 "rss_huge",
94 "mapped_file",
95 "dirty",
96 "writeback",
97 "swap",
98 };
99
100 static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105 };
106
107 static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113 };
114
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
118
119 /*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124 struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127 };
128
129 struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132
133 struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143 };
144
145 /*
146 * cgroup_event represents events which userspace want to receive.
147 */
148 struct mem_cgroup_event {
149 /*
150 * memcg which the event belongs to.
151 */
152 struct mem_cgroup *memcg;
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
166 int (*register_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd, const char *args);
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
173 void (*unregister_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd);
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183 };
184
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187
188 /* Stuffs for move charges at task migration. */
189 /*
190 * Types of charges to be moved.
191 */
192 #define MOVE_ANON 0x1U
193 #define MOVE_FILE 0x2U
194 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
195
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 spinlock_t lock; /* for from, to */
199 struct mm_struct *mm;
200 struct mem_cgroup *from;
201 struct mem_cgroup *to;
202 unsigned long flags;
203 unsigned long precharge;
204 unsigned long moved_charge;
205 unsigned long moved_swap;
206 struct task_struct *moving_task; /* a task moving charges */
207 wait_queue_head_t waitq; /* a waitq for other context */
208 } mc = {
209 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
210 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
211 };
212
213 /*
214 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215 * limit reclaim to prevent infinite loops, if they ever occur.
216 */
217 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
218 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
219
220 enum charge_type {
221 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
222 MEM_CGROUP_CHARGE_TYPE_ANON,
223 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
224 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
225 NR_CHARGE_TYPE,
226 };
227
228 /* for encoding cft->private value on file */
229 enum res_type {
230 _MEM,
231 _MEMSWAP,
232 _OOM_TYPE,
233 _KMEM,
234 };
235
236 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
237 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
238 #define MEMFILE_ATTR(val) ((val) & 0xffff)
239 /* Used for OOM nofiier */
240 #define OOM_CONTROL (0)
241
242 /*
243 * The memcg_create_mutex will be held whenever a new cgroup is created.
244 * As a consequence, any change that needs to protect against new child cgroups
245 * appearing has to hold it as well.
246 */
247 static DEFINE_MUTEX(memcg_create_mutex);
248
249 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 if (!memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
255 }
256
vmpressure_to_css(struct vmpressure * vmpr)257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261
mem_cgroup_is_root(struct mem_cgroup * memcg)262 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
263 {
264 return (memcg == root_mem_cgroup);
265 }
266
267 /*
268 * We restrict the id in the range of [1, 65535], so it can fit into
269 * an unsigned short.
270 */
271 #define MEM_CGROUP_ID_MAX USHRT_MAX
272
mem_cgroup_id(struct mem_cgroup * memcg)273 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
274 {
275 return memcg->css.id;
276 }
277
278 /*
279 * A helper function to get mem_cgroup from ID. must be called under
280 * rcu_read_lock(). The caller is responsible for calling
281 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
282 * refcnt from swap can be called against removed memcg.)
283 */
mem_cgroup_from_id(unsigned short id)284 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
285 {
286 struct cgroup_subsys_state *css;
287
288 css = css_from_id(id, &memory_cgrp_subsys);
289 return mem_cgroup_from_css(css);
290 }
291
292 /* Writing them here to avoid exposing memcg's inner layout */
293 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
294
sock_update_memcg(struct sock * sk)295 void sock_update_memcg(struct sock *sk)
296 {
297 if (mem_cgroup_sockets_enabled) {
298 struct mem_cgroup *memcg;
299 struct cg_proto *cg_proto;
300
301 BUG_ON(!sk->sk_prot->proto_cgroup);
302
303 /* Socket cloning can throw us here with sk_cgrp already
304 * filled. It won't however, necessarily happen from
305 * process context. So the test for root memcg given
306 * the current task's memcg won't help us in this case.
307 *
308 * Respecting the original socket's memcg is a better
309 * decision in this case.
310 */
311 if (sk->sk_cgrp) {
312 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
313 css_get(&sk->sk_cgrp->memcg->css);
314 return;
315 }
316
317 rcu_read_lock();
318 memcg = mem_cgroup_from_task(current);
319 cg_proto = sk->sk_prot->proto_cgroup(memcg);
320 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
321 css_tryget_online(&memcg->css)) {
322 sk->sk_cgrp = cg_proto;
323 }
324 rcu_read_unlock();
325 }
326 }
327 EXPORT_SYMBOL(sock_update_memcg);
328
sock_release_memcg(struct sock * sk)329 void sock_release_memcg(struct sock *sk)
330 {
331 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
332 struct mem_cgroup *memcg;
333 WARN_ON(!sk->sk_cgrp->memcg);
334 memcg = sk->sk_cgrp->memcg;
335 css_put(&sk->sk_cgrp->memcg->css);
336 }
337 }
338
tcp_proto_cgroup(struct mem_cgroup * memcg)339 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
340 {
341 if (!memcg || mem_cgroup_is_root(memcg))
342 return NULL;
343
344 return &memcg->tcp_mem;
345 }
346 EXPORT_SYMBOL(tcp_proto_cgroup);
347
348 #endif
349
350 #ifdef CONFIG_MEMCG_KMEM
351 /*
352 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
353 * The main reason for not using cgroup id for this:
354 * this works better in sparse environments, where we have a lot of memcgs,
355 * but only a few kmem-limited. Or also, if we have, for instance, 200
356 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
357 * 200 entry array for that.
358 *
359 * The current size of the caches array is stored in memcg_nr_cache_ids. It
360 * will double each time we have to increase it.
361 */
362 static DEFINE_IDA(memcg_cache_ida);
363 int memcg_nr_cache_ids;
364
365 /* Protects memcg_nr_cache_ids */
366 static DECLARE_RWSEM(memcg_cache_ids_sem);
367
memcg_get_cache_ids(void)368 void memcg_get_cache_ids(void)
369 {
370 down_read(&memcg_cache_ids_sem);
371 }
372
memcg_put_cache_ids(void)373 void memcg_put_cache_ids(void)
374 {
375 up_read(&memcg_cache_ids_sem);
376 }
377
378 /*
379 * MIN_SIZE is different than 1, because we would like to avoid going through
380 * the alloc/free process all the time. In a small machine, 4 kmem-limited
381 * cgroups is a reasonable guess. In the future, it could be a parameter or
382 * tunable, but that is strictly not necessary.
383 *
384 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
385 * this constant directly from cgroup, but it is understandable that this is
386 * better kept as an internal representation in cgroup.c. In any case, the
387 * cgrp_id space is not getting any smaller, and we don't have to necessarily
388 * increase ours as well if it increases.
389 */
390 #define MEMCG_CACHES_MIN_SIZE 4
391 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
392
393 /*
394 * A lot of the calls to the cache allocation functions are expected to be
395 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
396 * conditional to this static branch, we'll have to allow modules that does
397 * kmem_cache_alloc and the such to see this symbol as well
398 */
399 struct static_key memcg_kmem_enabled_key;
400 EXPORT_SYMBOL(memcg_kmem_enabled_key);
401
402 #endif /* CONFIG_MEMCG_KMEM */
403
404 static struct mem_cgroup_per_zone *
mem_cgroup_zone_zoneinfo(struct mem_cgroup * memcg,struct zone * zone)405 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
406 {
407 int nid = zone_to_nid(zone);
408 int zid = zone_idx(zone);
409
410 return &memcg->nodeinfo[nid]->zoneinfo[zid];
411 }
412
413 /**
414 * mem_cgroup_css_from_page - css of the memcg associated with a page
415 * @page: page of interest
416 *
417 * If memcg is bound to the default hierarchy, css of the memcg associated
418 * with @page is returned. The returned css remains associated with @page
419 * until it is released.
420 *
421 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
422 * is returned.
423 *
424 * XXX: The above description of behavior on the default hierarchy isn't
425 * strictly true yet as replace_page_cache_page() can modify the
426 * association before @page is released even on the default hierarchy;
427 * however, the current and planned usages don't mix the the two functions
428 * and replace_page_cache_page() will soon be updated to make the invariant
429 * actually true.
430 */
mem_cgroup_css_from_page(struct page * page)431 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
432 {
433 struct mem_cgroup *memcg;
434
435 rcu_read_lock();
436
437 memcg = page->mem_cgroup;
438
439 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
440 memcg = root_mem_cgroup;
441
442 rcu_read_unlock();
443 return &memcg->css;
444 }
445
446 /**
447 * page_cgroup_ino - return inode number of the memcg a page is charged to
448 * @page: the page
449 *
450 * Look up the closest online ancestor of the memory cgroup @page is charged to
451 * and return its inode number or 0 if @page is not charged to any cgroup. It
452 * is safe to call this function without holding a reference to @page.
453 *
454 * Note, this function is inherently racy, because there is nothing to prevent
455 * the cgroup inode from getting torn down and potentially reallocated a moment
456 * after page_cgroup_ino() returns, so it only should be used by callers that
457 * do not care (such as procfs interfaces).
458 */
page_cgroup_ino(struct page * page)459 ino_t page_cgroup_ino(struct page *page)
460 {
461 struct mem_cgroup *memcg;
462 unsigned long ino = 0;
463
464 rcu_read_lock();
465 memcg = READ_ONCE(page->mem_cgroup);
466 while (memcg && !(memcg->css.flags & CSS_ONLINE))
467 memcg = parent_mem_cgroup(memcg);
468 if (memcg)
469 ino = cgroup_ino(memcg->css.cgroup);
470 rcu_read_unlock();
471 return ino;
472 }
473
474 static struct mem_cgroup_per_zone *
mem_cgroup_page_zoneinfo(struct mem_cgroup * memcg,struct page * page)475 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
476 {
477 int nid = page_to_nid(page);
478 int zid = page_zonenum(page);
479
480 return &memcg->nodeinfo[nid]->zoneinfo[zid];
481 }
482
483 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid,int zid)484 soft_limit_tree_node_zone(int nid, int zid)
485 {
486 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
487 }
488
489 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page * page)490 soft_limit_tree_from_page(struct page *page)
491 {
492 int nid = page_to_nid(page);
493 int zid = page_zonenum(page);
494
495 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
496 }
497
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz,unsigned long new_usage_in_excess)498 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
499 struct mem_cgroup_tree_per_zone *mctz,
500 unsigned long new_usage_in_excess)
501 {
502 struct rb_node **p = &mctz->rb_root.rb_node;
503 struct rb_node *parent = NULL;
504 struct mem_cgroup_per_zone *mz_node;
505
506 if (mz->on_tree)
507 return;
508
509 mz->usage_in_excess = new_usage_in_excess;
510 if (!mz->usage_in_excess)
511 return;
512 while (*p) {
513 parent = *p;
514 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
515 tree_node);
516 if (mz->usage_in_excess < mz_node->usage_in_excess)
517 p = &(*p)->rb_left;
518 /*
519 * We can't avoid mem cgroups that are over their soft
520 * limit by the same amount
521 */
522 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
523 p = &(*p)->rb_right;
524 }
525 rb_link_node(&mz->tree_node, parent, p);
526 rb_insert_color(&mz->tree_node, &mctz->rb_root);
527 mz->on_tree = true;
528 }
529
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)530 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532 {
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537 }
538
mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)539 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
540 struct mem_cgroup_tree_per_zone *mctz)
541 {
542 unsigned long flags;
543
544 spin_lock_irqsave(&mctz->lock, flags);
545 __mem_cgroup_remove_exceeded(mz, mctz);
546 spin_unlock_irqrestore(&mctz->lock, flags);
547 }
548
soft_limit_excess(struct mem_cgroup * memcg)549 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
550 {
551 unsigned long nr_pages = page_counter_read(&memcg->memory);
552 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
553 unsigned long excess = 0;
554
555 if (nr_pages > soft_limit)
556 excess = nr_pages - soft_limit;
557
558 return excess;
559 }
560
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)561 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
562 {
563 unsigned long excess;
564 struct mem_cgroup_per_zone *mz;
565 struct mem_cgroup_tree_per_zone *mctz;
566
567 mctz = soft_limit_tree_from_page(page);
568 /*
569 * Necessary to update all ancestors when hierarchy is used.
570 * because their event counter is not touched.
571 */
572 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
573 mz = mem_cgroup_page_zoneinfo(memcg, page);
574 excess = soft_limit_excess(memcg);
575 /*
576 * We have to update the tree if mz is on RB-tree or
577 * mem is over its softlimit.
578 */
579 if (excess || mz->on_tree) {
580 unsigned long flags;
581
582 spin_lock_irqsave(&mctz->lock, flags);
583 /* if on-tree, remove it */
584 if (mz->on_tree)
585 __mem_cgroup_remove_exceeded(mz, mctz);
586 /*
587 * Insert again. mz->usage_in_excess will be updated.
588 * If excess is 0, no tree ops.
589 */
590 __mem_cgroup_insert_exceeded(mz, mctz, excess);
591 spin_unlock_irqrestore(&mctz->lock, flags);
592 }
593 }
594 }
595
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)596 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
597 {
598 struct mem_cgroup_tree_per_zone *mctz;
599 struct mem_cgroup_per_zone *mz;
600 int nid, zid;
601
602 for_each_node(nid) {
603 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
604 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
605 mctz = soft_limit_tree_node_zone(nid, zid);
606 mem_cgroup_remove_exceeded(mz, mctz);
607 }
608 }
609 }
610
611 static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)612 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
613 {
614 struct rb_node *rightmost = NULL;
615 struct mem_cgroup_per_zone *mz;
616
617 retry:
618 mz = NULL;
619 rightmost = rb_last(&mctz->rb_root);
620 if (!rightmost)
621 goto done; /* Nothing to reclaim from */
622
623 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
624 /*
625 * Remove the node now but someone else can add it back,
626 * we will to add it back at the end of reclaim to its correct
627 * position in the tree.
628 */
629 __mem_cgroup_remove_exceeded(mz, mctz);
630 if (!soft_limit_excess(mz->memcg) ||
631 !css_tryget_online(&mz->memcg->css))
632 goto retry;
633 done:
634 return mz;
635 }
636
637 static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)638 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
639 {
640 struct mem_cgroup_per_zone *mz;
641
642 spin_lock_irq(&mctz->lock);
643 mz = __mem_cgroup_largest_soft_limit_node(mctz);
644 spin_unlock_irq(&mctz->lock);
645 return mz;
646 }
647
648 /*
649 * Return page count for single (non recursive) @memcg.
650 *
651 * Implementation Note: reading percpu statistics for memcg.
652 *
653 * Both of vmstat[] and percpu_counter has threshold and do periodic
654 * synchronization to implement "quick" read. There are trade-off between
655 * reading cost and precision of value. Then, we may have a chance to implement
656 * a periodic synchronization of counter in memcg's counter.
657 *
658 * But this _read() function is used for user interface now. The user accounts
659 * memory usage by memory cgroup and he _always_ requires exact value because
660 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
661 * have to visit all online cpus and make sum. So, for now, unnecessary
662 * synchronization is not implemented. (just implemented for cpu hotplug)
663 *
664 * If there are kernel internal actions which can make use of some not-exact
665 * value, and reading all cpu value can be performance bottleneck in some
666 * common workload, threshold and synchronization as vmstat[] should be
667 * implemented.
668 */
669 static unsigned long
mem_cgroup_read_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)670 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
671 {
672 long val = 0;
673 int cpu;
674
675 /* Per-cpu values can be negative, use a signed accumulator */
676 for_each_possible_cpu(cpu)
677 val += per_cpu(memcg->stat->count[idx], cpu);
678 /*
679 * Summing races with updates, so val may be negative. Avoid exposing
680 * transient negative values.
681 */
682 if (val < 0)
683 val = 0;
684 return val;
685 }
686
mem_cgroup_read_events(struct mem_cgroup * memcg,enum mem_cgroup_events_index idx)687 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
688 enum mem_cgroup_events_index idx)
689 {
690 unsigned long val = 0;
691 int cpu;
692
693 for_each_possible_cpu(cpu)
694 val += per_cpu(memcg->stat->events[idx], cpu);
695 return val;
696 }
697
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)698 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
699 struct page *page,
700 int nr_pages)
701 {
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (PageAnon(page))
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 nr_pages);
709 else
710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 nr_pages);
712
713 if (PageTransHuge(page))
714 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
715 nr_pages);
716
717 /* pagein of a big page is an event. So, ignore page size */
718 if (nr_pages > 0)
719 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
720 else {
721 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
722 nr_pages = -nr_pages; /* for event */
723 }
724
725 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
726 }
727
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)728 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729 int nid,
730 unsigned int lru_mask)
731 {
732 unsigned long nr = 0;
733 int zid;
734
735 VM_BUG_ON((unsigned)nid >= nr_node_ids);
736
737 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
738 struct mem_cgroup_per_zone *mz;
739 enum lru_list lru;
740
741 for_each_lru(lru) {
742 if (!(BIT(lru) & lru_mask))
743 continue;
744 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
745 nr += mz->lru_size[lru];
746 }
747 }
748 return nr;
749 }
750
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)751 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
752 unsigned int lru_mask)
753 {
754 unsigned long nr = 0;
755 int nid;
756
757 for_each_node_state(nid, N_MEMORY)
758 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
759 return nr;
760 }
761
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)762 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
763 enum mem_cgroup_events_target target)
764 {
765 unsigned long val, next;
766
767 val = __this_cpu_read(memcg->stat->nr_page_events);
768 next = __this_cpu_read(memcg->stat->targets[target]);
769 /* from time_after() in jiffies.h */
770 if ((long)next - (long)val < 0) {
771 switch (target) {
772 case MEM_CGROUP_TARGET_THRESH:
773 next = val + THRESHOLDS_EVENTS_TARGET;
774 break;
775 case MEM_CGROUP_TARGET_SOFTLIMIT:
776 next = val + SOFTLIMIT_EVENTS_TARGET;
777 break;
778 case MEM_CGROUP_TARGET_NUMAINFO:
779 next = val + NUMAINFO_EVENTS_TARGET;
780 break;
781 default:
782 break;
783 }
784 __this_cpu_write(memcg->stat->targets[target], next);
785 return true;
786 }
787 return false;
788 }
789
790 /*
791 * Check events in order.
792 *
793 */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)794 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
795 {
796 /* threshold event is triggered in finer grain than soft limit */
797 if (unlikely(mem_cgroup_event_ratelimit(memcg,
798 MEM_CGROUP_TARGET_THRESH))) {
799 bool do_softlimit;
800 bool do_numainfo __maybe_unused;
801
802 do_softlimit = mem_cgroup_event_ratelimit(memcg,
803 MEM_CGROUP_TARGET_SOFTLIMIT);
804 #if MAX_NUMNODES > 1
805 do_numainfo = mem_cgroup_event_ratelimit(memcg,
806 MEM_CGROUP_TARGET_NUMAINFO);
807 #endif
808 mem_cgroup_threshold(memcg);
809 if (unlikely(do_softlimit))
810 mem_cgroup_update_tree(memcg, page);
811 #if MAX_NUMNODES > 1
812 if (unlikely(do_numainfo))
813 atomic_inc(&memcg->numainfo_events);
814 #endif
815 }
816 }
817
mem_cgroup_from_task(struct task_struct * p)818 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
819 {
820 /*
821 * mm_update_next_owner() may clear mm->owner to NULL
822 * if it races with swapoff, page migration, etc.
823 * So this can be called with p == NULL.
824 */
825 if (unlikely(!p))
826 return NULL;
827
828 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
829 }
830 EXPORT_SYMBOL(mem_cgroup_from_task);
831
get_mem_cgroup_from_mm(struct mm_struct * mm)832 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
833 {
834 struct mem_cgroup *memcg = NULL;
835
836 rcu_read_lock();
837 do {
838 /*
839 * Page cache insertions can happen withou an
840 * actual mm context, e.g. during disk probing
841 * on boot, loopback IO, acct() writes etc.
842 */
843 if (unlikely(!mm))
844 memcg = root_mem_cgroup;
845 else {
846 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
847 if (unlikely(!memcg))
848 memcg = root_mem_cgroup;
849 }
850 } while (!css_tryget_online(&memcg->css));
851 rcu_read_unlock();
852 return memcg;
853 }
854
855 /**
856 * mem_cgroup_iter - iterate over memory cgroup hierarchy
857 * @root: hierarchy root
858 * @prev: previously returned memcg, NULL on first invocation
859 * @reclaim: cookie for shared reclaim walks, NULL for full walks
860 *
861 * Returns references to children of the hierarchy below @root, or
862 * @root itself, or %NULL after a full round-trip.
863 *
864 * Caller must pass the return value in @prev on subsequent
865 * invocations for reference counting, or use mem_cgroup_iter_break()
866 * to cancel a hierarchy walk before the round-trip is complete.
867 *
868 * Reclaimers can specify a zone and a priority level in @reclaim to
869 * divide up the memcgs in the hierarchy among all concurrent
870 * reclaimers operating on the same zone and priority.
871 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)872 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
873 struct mem_cgroup *prev,
874 struct mem_cgroup_reclaim_cookie *reclaim)
875 {
876 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
877 struct cgroup_subsys_state *css = NULL;
878 struct mem_cgroup *memcg = NULL;
879 struct mem_cgroup *pos = NULL;
880
881 if (mem_cgroup_disabled())
882 return NULL;
883
884 if (!root)
885 root = root_mem_cgroup;
886
887 if (prev && !reclaim)
888 pos = prev;
889
890 if (!root->use_hierarchy && root != root_mem_cgroup) {
891 if (prev)
892 goto out;
893 return root;
894 }
895
896 rcu_read_lock();
897
898 if (reclaim) {
899 struct mem_cgroup_per_zone *mz;
900
901 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
902 iter = &mz->iter[reclaim->priority];
903
904 if (prev && reclaim->generation != iter->generation)
905 goto out_unlock;
906
907 while (1) {
908 pos = READ_ONCE(iter->position);
909 if (!pos || css_tryget(&pos->css))
910 break;
911 /*
912 * css reference reached zero, so iter->position will
913 * be cleared by ->css_released. However, we should not
914 * rely on this happening soon, because ->css_released
915 * is called from a work queue, and by busy-waiting we
916 * might block it. So we clear iter->position right
917 * away.
918 */
919 (void)cmpxchg(&iter->position, pos, NULL);
920 }
921 }
922
923 if (pos)
924 css = &pos->css;
925
926 for (;;) {
927 css = css_next_descendant_pre(css, &root->css);
928 if (!css) {
929 /*
930 * Reclaimers share the hierarchy walk, and a
931 * new one might jump in right at the end of
932 * the hierarchy - make sure they see at least
933 * one group and restart from the beginning.
934 */
935 if (!prev)
936 continue;
937 break;
938 }
939
940 /*
941 * Verify the css and acquire a reference. The root
942 * is provided by the caller, so we know it's alive
943 * and kicking, and don't take an extra reference.
944 */
945 memcg = mem_cgroup_from_css(css);
946
947 if (css == &root->css)
948 break;
949
950 if (css_tryget(css)) {
951 /*
952 * Make sure the memcg is initialized:
953 * mem_cgroup_css_online() orders the the
954 * initialization against setting the flag.
955 */
956 if (smp_load_acquire(&memcg->initialized))
957 break;
958
959 css_put(css);
960 }
961
962 memcg = NULL;
963 }
964
965 if (reclaim) {
966 /*
967 * The position could have already been updated by a competing
968 * thread, so check that the value hasn't changed since we read
969 * it to avoid reclaiming from the same cgroup twice.
970 */
971 (void)cmpxchg(&iter->position, pos, memcg);
972
973 if (pos)
974 css_put(&pos->css);
975
976 if (!memcg)
977 iter->generation++;
978 else if (!prev)
979 reclaim->generation = iter->generation;
980 }
981
982 out_unlock:
983 rcu_read_unlock();
984 out:
985 if (prev && prev != root)
986 css_put(&prev->css);
987
988 return memcg;
989 }
990
991 /**
992 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
993 * @root: hierarchy root
994 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
995 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)996 void mem_cgroup_iter_break(struct mem_cgroup *root,
997 struct mem_cgroup *prev)
998 {
999 if (!root)
1000 root = root_mem_cgroup;
1001 if (prev && prev != root)
1002 css_put(&prev->css);
1003 }
1004
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1005 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1006 {
1007 struct mem_cgroup *memcg = dead_memcg;
1008 struct mem_cgroup_reclaim_iter *iter;
1009 struct mem_cgroup_per_zone *mz;
1010 int nid, zid;
1011 int i;
1012
1013 while ((memcg = parent_mem_cgroup(memcg))) {
1014 for_each_node(nid) {
1015 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1016 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1017 for (i = 0; i <= DEF_PRIORITY; i++) {
1018 iter = &mz->iter[i];
1019 cmpxchg(&iter->position,
1020 dead_memcg, NULL);
1021 }
1022 }
1023 }
1024 }
1025 }
1026
1027 /*
1028 * Iteration constructs for visiting all cgroups (under a tree). If
1029 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1030 * be used for reference counting.
1031 */
1032 #define for_each_mem_cgroup_tree(iter, root) \
1033 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1034 iter != NULL; \
1035 iter = mem_cgroup_iter(root, iter, NULL))
1036
1037 #define for_each_mem_cgroup(iter) \
1038 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1039 iter != NULL; \
1040 iter = mem_cgroup_iter(NULL, iter, NULL))
1041
1042 /**
1043 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1044 * @zone: zone of the wanted lruvec
1045 * @memcg: memcg of the wanted lruvec
1046 *
1047 * Returns the lru list vector holding pages for the given @zone and
1048 * @mem. This can be the global zone lruvec, if the memory controller
1049 * is disabled.
1050 */
mem_cgroup_zone_lruvec(struct zone * zone,struct mem_cgroup * memcg)1051 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1052 struct mem_cgroup *memcg)
1053 {
1054 struct mem_cgroup_per_zone *mz;
1055 struct lruvec *lruvec;
1056
1057 if (mem_cgroup_disabled()) {
1058 lruvec = &zone->lruvec;
1059 goto out;
1060 }
1061
1062 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1063 lruvec = &mz->lruvec;
1064 out:
1065 /*
1066 * Since a node can be onlined after the mem_cgroup was created,
1067 * we have to be prepared to initialize lruvec->zone here;
1068 * and if offlined then reonlined, we need to reinitialize it.
1069 */
1070 if (unlikely(lruvec->zone != zone))
1071 lruvec->zone = zone;
1072 return lruvec;
1073 }
1074
1075 /**
1076 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1077 * @page: the page
1078 * @zone: zone of the page
1079 *
1080 * This function is only safe when following the LRU page isolation
1081 * and putback protocol: the LRU lock must be held, and the page must
1082 * either be PageLRU() or the caller must have isolated/allocated it.
1083 */
mem_cgroup_page_lruvec(struct page * page,struct zone * zone)1084 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1085 {
1086 struct mem_cgroup_per_zone *mz;
1087 struct mem_cgroup *memcg;
1088 struct lruvec *lruvec;
1089
1090 if (mem_cgroup_disabled()) {
1091 lruvec = &zone->lruvec;
1092 goto out;
1093 }
1094
1095 memcg = page->mem_cgroup;
1096 /*
1097 * Swapcache readahead pages are added to the LRU - and
1098 * possibly migrated - before they are charged.
1099 */
1100 if (!memcg)
1101 memcg = root_mem_cgroup;
1102
1103 mz = mem_cgroup_page_zoneinfo(memcg, page);
1104 lruvec = &mz->lruvec;
1105 out:
1106 /*
1107 * Since a node can be onlined after the mem_cgroup was created,
1108 * we have to be prepared to initialize lruvec->zone here;
1109 * and if offlined then reonlined, we need to reinitialize it.
1110 */
1111 if (unlikely(lruvec->zone != zone))
1112 lruvec->zone = zone;
1113 return lruvec;
1114 }
1115
1116 /**
1117 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1118 * @lruvec: mem_cgroup per zone lru vector
1119 * @lru: index of lru list the page is sitting on
1120 * @nr_pages: positive when adding or negative when removing
1121 *
1122 * This function must be called when a page is added to or removed from an
1123 * lru list.
1124 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int nr_pages)1125 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1126 int nr_pages)
1127 {
1128 struct mem_cgroup_per_zone *mz;
1129 unsigned long *lru_size;
1130
1131 if (mem_cgroup_disabled())
1132 return;
1133
1134 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1135 lru_size = mz->lru_size + lru;
1136 *lru_size += nr_pages;
1137 VM_BUG_ON((long)(*lru_size) < 0);
1138 }
1139
task_in_mem_cgroup(struct task_struct * task,struct mem_cgroup * memcg)1140 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1141 {
1142 struct mem_cgroup *task_memcg;
1143 struct task_struct *p;
1144 bool ret;
1145
1146 p = find_lock_task_mm(task);
1147 if (p) {
1148 task_memcg = get_mem_cgroup_from_mm(p->mm);
1149 task_unlock(p);
1150 } else {
1151 /*
1152 * All threads may have already detached their mm's, but the oom
1153 * killer still needs to detect if they have already been oom
1154 * killed to prevent needlessly killing additional tasks.
1155 */
1156 rcu_read_lock();
1157 task_memcg = mem_cgroup_from_task(task);
1158 css_get(&task_memcg->css);
1159 rcu_read_unlock();
1160 }
1161 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1162 css_put(&task_memcg->css);
1163 return ret;
1164 }
1165
1166 #define mem_cgroup_from_counter(counter, member) \
1167 container_of(counter, struct mem_cgroup, member)
1168
1169 /**
1170 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1171 * @memcg: the memory cgroup
1172 *
1173 * Returns the maximum amount of memory @mem can be charged with, in
1174 * pages.
1175 */
mem_cgroup_margin(struct mem_cgroup * memcg)1176 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1177 {
1178 unsigned long margin = 0;
1179 unsigned long count;
1180 unsigned long limit;
1181
1182 count = page_counter_read(&memcg->memory);
1183 limit = READ_ONCE(memcg->memory.limit);
1184 if (count < limit)
1185 margin = limit - count;
1186
1187 if (do_swap_account) {
1188 count = page_counter_read(&memcg->memsw);
1189 limit = READ_ONCE(memcg->memsw.limit);
1190 if (count <= limit)
1191 margin = min(margin, limit - count);
1192 }
1193
1194 return margin;
1195 }
1196
1197 /*
1198 * A routine for checking "mem" is under move_account() or not.
1199 *
1200 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1201 * moving cgroups. This is for waiting at high-memory pressure
1202 * caused by "move".
1203 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1204 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1205 {
1206 struct mem_cgroup *from;
1207 struct mem_cgroup *to;
1208 bool ret = false;
1209 /*
1210 * Unlike task_move routines, we access mc.to, mc.from not under
1211 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1212 */
1213 spin_lock(&mc.lock);
1214 from = mc.from;
1215 to = mc.to;
1216 if (!from)
1217 goto unlock;
1218
1219 ret = mem_cgroup_is_descendant(from, memcg) ||
1220 mem_cgroup_is_descendant(to, memcg);
1221 unlock:
1222 spin_unlock(&mc.lock);
1223 return ret;
1224 }
1225
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1226 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1227 {
1228 if (mc.moving_task && current != mc.moving_task) {
1229 if (mem_cgroup_under_move(memcg)) {
1230 DEFINE_WAIT(wait);
1231 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1232 /* moving charge context might have finished. */
1233 if (mc.moving_task)
1234 schedule();
1235 finish_wait(&mc.waitq, &wait);
1236 return true;
1237 }
1238 }
1239 return false;
1240 }
1241
1242 #define K(x) ((x) << (PAGE_SHIFT-10))
1243 /**
1244 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1245 * @memcg: The memory cgroup that went over limit
1246 * @p: Task that is going to be killed
1247 *
1248 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1249 * enabled
1250 */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1251 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1252 {
1253 /* oom_info_lock ensures that parallel ooms do not interleave */
1254 static DEFINE_MUTEX(oom_info_lock);
1255 struct mem_cgroup *iter;
1256 unsigned int i;
1257
1258 mutex_lock(&oom_info_lock);
1259 rcu_read_lock();
1260
1261 if (p) {
1262 pr_info("Task in ");
1263 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1264 pr_cont(" killed as a result of limit of ");
1265 } else {
1266 pr_info("Memory limit reached of cgroup ");
1267 }
1268
1269 pr_cont_cgroup_path(memcg->css.cgroup);
1270 pr_cont("\n");
1271
1272 rcu_read_unlock();
1273
1274 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1275 K((u64)page_counter_read(&memcg->memory)),
1276 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1277 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1278 K((u64)page_counter_read(&memcg->memsw)),
1279 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1280 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1281 K((u64)page_counter_read(&memcg->kmem)),
1282 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1283
1284 for_each_mem_cgroup_tree(iter, memcg) {
1285 pr_info("Memory cgroup stats for ");
1286 pr_cont_cgroup_path(iter->css.cgroup);
1287 pr_cont(":");
1288
1289 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1290 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1291 continue;
1292 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1293 K(mem_cgroup_read_stat(iter, i)));
1294 }
1295
1296 for (i = 0; i < NR_LRU_LISTS; i++)
1297 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1298 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1299
1300 pr_cont("\n");
1301 }
1302 mutex_unlock(&oom_info_lock);
1303 }
1304
1305 /*
1306 * This function returns the number of memcg under hierarchy tree. Returns
1307 * 1(self count) if no children.
1308 */
mem_cgroup_count_children(struct mem_cgroup * memcg)1309 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1310 {
1311 int num = 0;
1312 struct mem_cgroup *iter;
1313
1314 for_each_mem_cgroup_tree(iter, memcg)
1315 num++;
1316 return num;
1317 }
1318
1319 /*
1320 * Return the memory (and swap, if configured) limit for a memcg.
1321 */
mem_cgroup_get_limit(struct mem_cgroup * memcg)1322 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1323 {
1324 unsigned long limit;
1325
1326 limit = memcg->memory.limit;
1327 if (mem_cgroup_swappiness(memcg)) {
1328 unsigned long memsw_limit;
1329
1330 memsw_limit = memcg->memsw.limit;
1331 limit = min(limit + total_swap_pages, memsw_limit);
1332 }
1333 return limit;
1334 }
1335
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1336 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1337 int order)
1338 {
1339 struct oom_control oc = {
1340 .zonelist = NULL,
1341 .nodemask = NULL,
1342 .gfp_mask = gfp_mask,
1343 .order = order,
1344 };
1345 struct mem_cgroup *iter;
1346 unsigned long chosen_points = 0;
1347 unsigned long totalpages;
1348 unsigned int points = 0;
1349 struct task_struct *chosen = NULL;
1350
1351 mutex_lock(&oom_lock);
1352
1353 /*
1354 * If current has a pending SIGKILL or is exiting, then automatically
1355 * select it. The goal is to allow it to allocate so that it may
1356 * quickly exit and free its memory.
1357 */
1358 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1359 mark_oom_victim(current);
1360 goto unlock;
1361 }
1362
1363 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1364 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1365 for_each_mem_cgroup_tree(iter, memcg) {
1366 struct css_task_iter it;
1367 struct task_struct *task;
1368
1369 css_task_iter_start(&iter->css, &it);
1370 while ((task = css_task_iter_next(&it))) {
1371 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1372 case OOM_SCAN_SELECT:
1373 if (chosen)
1374 put_task_struct(chosen);
1375 chosen = task;
1376 chosen_points = ULONG_MAX;
1377 get_task_struct(chosen);
1378 /* fall through */
1379 case OOM_SCAN_CONTINUE:
1380 continue;
1381 case OOM_SCAN_ABORT:
1382 css_task_iter_end(&it);
1383 mem_cgroup_iter_break(memcg, iter);
1384 if (chosen)
1385 put_task_struct(chosen);
1386 goto unlock;
1387 case OOM_SCAN_OK:
1388 break;
1389 };
1390 points = oom_badness(task, memcg, NULL, totalpages);
1391 if (!points || points < chosen_points)
1392 continue;
1393 /* Prefer thread group leaders for display purposes */
1394 if (points == chosen_points &&
1395 thread_group_leader(chosen))
1396 continue;
1397
1398 if (chosen)
1399 put_task_struct(chosen);
1400 chosen = task;
1401 chosen_points = points;
1402 get_task_struct(chosen);
1403 }
1404 css_task_iter_end(&it);
1405 }
1406
1407 if (chosen) {
1408 points = chosen_points * 1000 / totalpages;
1409 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1410 "Memory cgroup out of memory");
1411 }
1412 unlock:
1413 mutex_unlock(&oom_lock);
1414 return chosen;
1415 }
1416
1417 #if MAX_NUMNODES > 1
1418
1419 /**
1420 * test_mem_cgroup_node_reclaimable
1421 * @memcg: the target memcg
1422 * @nid: the node ID to be checked.
1423 * @noswap : specify true here if the user wants flle only information.
1424 *
1425 * This function returns whether the specified memcg contains any
1426 * reclaimable pages on a node. Returns true if there are any reclaimable
1427 * pages in the node.
1428 */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1429 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1430 int nid, bool noswap)
1431 {
1432 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1433 return true;
1434 if (noswap || !total_swap_pages)
1435 return false;
1436 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1437 return true;
1438 return false;
1439
1440 }
1441
1442 /*
1443 * Always updating the nodemask is not very good - even if we have an empty
1444 * list or the wrong list here, we can start from some node and traverse all
1445 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1446 *
1447 */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1448 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1449 {
1450 int nid;
1451 /*
1452 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1453 * pagein/pageout changes since the last update.
1454 */
1455 if (!atomic_read(&memcg->numainfo_events))
1456 return;
1457 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1458 return;
1459
1460 /* make a nodemask where this memcg uses memory from */
1461 memcg->scan_nodes = node_states[N_MEMORY];
1462
1463 for_each_node_mask(nid, node_states[N_MEMORY]) {
1464
1465 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1466 node_clear(nid, memcg->scan_nodes);
1467 }
1468
1469 atomic_set(&memcg->numainfo_events, 0);
1470 atomic_set(&memcg->numainfo_updating, 0);
1471 }
1472
1473 /*
1474 * Selecting a node where we start reclaim from. Because what we need is just
1475 * reducing usage counter, start from anywhere is O,K. Considering
1476 * memory reclaim from current node, there are pros. and cons.
1477 *
1478 * Freeing memory from current node means freeing memory from a node which
1479 * we'll use or we've used. So, it may make LRU bad. And if several threads
1480 * hit limits, it will see a contention on a node. But freeing from remote
1481 * node means more costs for memory reclaim because of memory latency.
1482 *
1483 * Now, we use round-robin. Better algorithm is welcomed.
1484 */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1485 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1486 {
1487 int node;
1488
1489 mem_cgroup_may_update_nodemask(memcg);
1490 node = memcg->last_scanned_node;
1491
1492 node = next_node(node, memcg->scan_nodes);
1493 if (node == MAX_NUMNODES)
1494 node = first_node(memcg->scan_nodes);
1495 /*
1496 * We call this when we hit limit, not when pages are added to LRU.
1497 * No LRU may hold pages because all pages are UNEVICTABLE or
1498 * memcg is too small and all pages are not on LRU. In that case,
1499 * we use curret node.
1500 */
1501 if (unlikely(node == MAX_NUMNODES))
1502 node = numa_node_id();
1503
1504 memcg->last_scanned_node = node;
1505 return node;
1506 }
1507 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1508 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1509 {
1510 return 0;
1511 }
1512 #endif
1513
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,struct zone * zone,gfp_t gfp_mask,unsigned long * total_scanned)1514 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1515 struct zone *zone,
1516 gfp_t gfp_mask,
1517 unsigned long *total_scanned)
1518 {
1519 struct mem_cgroup *victim = NULL;
1520 int total = 0;
1521 int loop = 0;
1522 unsigned long excess;
1523 unsigned long nr_scanned;
1524 struct mem_cgroup_reclaim_cookie reclaim = {
1525 .zone = zone,
1526 .priority = 0,
1527 };
1528
1529 excess = soft_limit_excess(root_memcg);
1530
1531 while (1) {
1532 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1533 if (!victim) {
1534 loop++;
1535 if (loop >= 2) {
1536 /*
1537 * If we have not been able to reclaim
1538 * anything, it might because there are
1539 * no reclaimable pages under this hierarchy
1540 */
1541 if (!total)
1542 break;
1543 /*
1544 * We want to do more targeted reclaim.
1545 * excess >> 2 is not to excessive so as to
1546 * reclaim too much, nor too less that we keep
1547 * coming back to reclaim from this cgroup
1548 */
1549 if (total >= (excess >> 2) ||
1550 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1551 break;
1552 }
1553 continue;
1554 }
1555 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1556 zone, &nr_scanned);
1557 *total_scanned += nr_scanned;
1558 if (!soft_limit_excess(root_memcg))
1559 break;
1560 }
1561 mem_cgroup_iter_break(root_memcg, victim);
1562 return total;
1563 }
1564
1565 #ifdef CONFIG_LOCKDEP
1566 static struct lockdep_map memcg_oom_lock_dep_map = {
1567 .name = "memcg_oom_lock",
1568 };
1569 #endif
1570
1571 static DEFINE_SPINLOCK(memcg_oom_lock);
1572
1573 /*
1574 * Check OOM-Killer is already running under our hierarchy.
1575 * If someone is running, return false.
1576 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1577 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1578 {
1579 struct mem_cgroup *iter, *failed = NULL;
1580
1581 spin_lock(&memcg_oom_lock);
1582
1583 for_each_mem_cgroup_tree(iter, memcg) {
1584 if (iter->oom_lock) {
1585 /*
1586 * this subtree of our hierarchy is already locked
1587 * so we cannot give a lock.
1588 */
1589 failed = iter;
1590 mem_cgroup_iter_break(memcg, iter);
1591 break;
1592 } else
1593 iter->oom_lock = true;
1594 }
1595
1596 if (failed) {
1597 /*
1598 * OK, we failed to lock the whole subtree so we have
1599 * to clean up what we set up to the failing subtree
1600 */
1601 for_each_mem_cgroup_tree(iter, memcg) {
1602 if (iter == failed) {
1603 mem_cgroup_iter_break(memcg, iter);
1604 break;
1605 }
1606 iter->oom_lock = false;
1607 }
1608 } else
1609 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1610
1611 spin_unlock(&memcg_oom_lock);
1612
1613 return !failed;
1614 }
1615
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1616 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1617 {
1618 struct mem_cgroup *iter;
1619
1620 spin_lock(&memcg_oom_lock);
1621 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1622 for_each_mem_cgroup_tree(iter, memcg)
1623 iter->oom_lock = false;
1624 spin_unlock(&memcg_oom_lock);
1625 }
1626
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1627 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1628 {
1629 struct mem_cgroup *iter;
1630
1631 spin_lock(&memcg_oom_lock);
1632 for_each_mem_cgroup_tree(iter, memcg)
1633 iter->under_oom++;
1634 spin_unlock(&memcg_oom_lock);
1635 }
1636
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1637 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1638 {
1639 struct mem_cgroup *iter;
1640
1641 /*
1642 * When a new child is created while the hierarchy is under oom,
1643 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1644 */
1645 spin_lock(&memcg_oom_lock);
1646 for_each_mem_cgroup_tree(iter, memcg)
1647 if (iter->under_oom > 0)
1648 iter->under_oom--;
1649 spin_unlock(&memcg_oom_lock);
1650 }
1651
1652 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1653
1654 struct oom_wait_info {
1655 struct mem_cgroup *memcg;
1656 wait_queue_t wait;
1657 };
1658
memcg_oom_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * arg)1659 static int memcg_oom_wake_function(wait_queue_t *wait,
1660 unsigned mode, int sync, void *arg)
1661 {
1662 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1663 struct mem_cgroup *oom_wait_memcg;
1664 struct oom_wait_info *oom_wait_info;
1665
1666 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1667 oom_wait_memcg = oom_wait_info->memcg;
1668
1669 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1670 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1671 return 0;
1672 return autoremove_wake_function(wait, mode, sync, arg);
1673 }
1674
memcg_oom_recover(struct mem_cgroup * memcg)1675 static void memcg_oom_recover(struct mem_cgroup *memcg)
1676 {
1677 /*
1678 * For the following lockless ->under_oom test, the only required
1679 * guarantee is that it must see the state asserted by an OOM when
1680 * this function is called as a result of userland actions
1681 * triggered by the notification of the OOM. This is trivially
1682 * achieved by invoking mem_cgroup_mark_under_oom() before
1683 * triggering notification.
1684 */
1685 if (memcg && memcg->under_oom)
1686 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1687 }
1688
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1689 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1690 {
1691 if (!current->memcg_may_oom)
1692 return;
1693 /*
1694 * We are in the middle of the charge context here, so we
1695 * don't want to block when potentially sitting on a callstack
1696 * that holds all kinds of filesystem and mm locks.
1697 *
1698 * Also, the caller may handle a failed allocation gracefully
1699 * (like optional page cache readahead) and so an OOM killer
1700 * invocation might not even be necessary.
1701 *
1702 * That's why we don't do anything here except remember the
1703 * OOM context and then deal with it at the end of the page
1704 * fault when the stack is unwound, the locks are released,
1705 * and when we know whether the fault was overall successful.
1706 */
1707 css_get(&memcg->css);
1708 current->memcg_in_oom = memcg;
1709 current->memcg_oom_gfp_mask = mask;
1710 current->memcg_oom_order = order;
1711 }
1712
1713 /**
1714 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1715 * @handle: actually kill/wait or just clean up the OOM state
1716 *
1717 * This has to be called at the end of a page fault if the memcg OOM
1718 * handler was enabled.
1719 *
1720 * Memcg supports userspace OOM handling where failed allocations must
1721 * sleep on a waitqueue until the userspace task resolves the
1722 * situation. Sleeping directly in the charge context with all kinds
1723 * of locks held is not a good idea, instead we remember an OOM state
1724 * in the task and mem_cgroup_oom_synchronize() has to be called at
1725 * the end of the page fault to complete the OOM handling.
1726 *
1727 * Returns %true if an ongoing memcg OOM situation was detected and
1728 * completed, %false otherwise.
1729 */
mem_cgroup_oom_synchronize(bool handle)1730 bool mem_cgroup_oom_synchronize(bool handle)
1731 {
1732 struct mem_cgroup *memcg = current->memcg_in_oom;
1733 struct oom_wait_info owait;
1734 bool locked;
1735
1736 /* OOM is global, do not handle */
1737 if (!memcg)
1738 return false;
1739
1740 if (!handle || oom_killer_disabled)
1741 goto cleanup;
1742
1743 owait.memcg = memcg;
1744 owait.wait.flags = 0;
1745 owait.wait.func = memcg_oom_wake_function;
1746 owait.wait.private = current;
1747 INIT_LIST_HEAD(&owait.wait.task_list);
1748
1749 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1750 mem_cgroup_mark_under_oom(memcg);
1751
1752 locked = mem_cgroup_oom_trylock(memcg);
1753
1754 if (locked)
1755 mem_cgroup_oom_notify(memcg);
1756
1757 if (locked && !memcg->oom_kill_disable) {
1758 mem_cgroup_unmark_under_oom(memcg);
1759 finish_wait(&memcg_oom_waitq, &owait.wait);
1760 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1761 current->memcg_oom_order);
1762 } else {
1763 schedule();
1764 mem_cgroup_unmark_under_oom(memcg);
1765 finish_wait(&memcg_oom_waitq, &owait.wait);
1766 }
1767
1768 if (locked) {
1769 mem_cgroup_oom_unlock(memcg);
1770 /*
1771 * There is no guarantee that an OOM-lock contender
1772 * sees the wakeups triggered by the OOM kill
1773 * uncharges. Wake any sleepers explicitely.
1774 */
1775 memcg_oom_recover(memcg);
1776 }
1777 cleanup:
1778 current->memcg_in_oom = NULL;
1779 css_put(&memcg->css);
1780 return true;
1781 }
1782
1783 /**
1784 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1785 * @page: page that is going to change accounted state
1786 *
1787 * This function must mark the beginning of an accounted page state
1788 * change to prevent double accounting when the page is concurrently
1789 * being moved to another memcg:
1790 *
1791 * memcg = mem_cgroup_begin_page_stat(page);
1792 * if (TestClearPageState(page))
1793 * mem_cgroup_update_page_stat(memcg, state, -1);
1794 * mem_cgroup_end_page_stat(memcg);
1795 */
mem_cgroup_begin_page_stat(struct page * page)1796 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1797 {
1798 struct mem_cgroup *memcg;
1799 unsigned long flags;
1800
1801 /*
1802 * The RCU lock is held throughout the transaction. The fast
1803 * path can get away without acquiring the memcg->move_lock
1804 * because page moving starts with an RCU grace period.
1805 *
1806 * The RCU lock also protects the memcg from being freed when
1807 * the page state that is going to change is the only thing
1808 * preventing the page from being uncharged.
1809 * E.g. end-writeback clearing PageWriteback(), which allows
1810 * migration to go ahead and uncharge the page before the
1811 * account transaction might be complete.
1812 */
1813 rcu_read_lock();
1814
1815 if (mem_cgroup_disabled())
1816 return NULL;
1817 again:
1818 memcg = page->mem_cgroup;
1819 if (unlikely(!memcg))
1820 return NULL;
1821
1822 if (atomic_read(&memcg->moving_account) <= 0)
1823 return memcg;
1824
1825 spin_lock_irqsave(&memcg->move_lock, flags);
1826 if (memcg != page->mem_cgroup) {
1827 spin_unlock_irqrestore(&memcg->move_lock, flags);
1828 goto again;
1829 }
1830
1831 /*
1832 * When charge migration first begins, we can have locked and
1833 * unlocked page stat updates happening concurrently. Track
1834 * the task who has the lock for mem_cgroup_end_page_stat().
1835 */
1836 memcg->move_lock_task = current;
1837 memcg->move_lock_flags = flags;
1838
1839 return memcg;
1840 }
1841 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1842
1843 /**
1844 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1845 * @memcg: the memcg that was accounted against
1846 */
mem_cgroup_end_page_stat(struct mem_cgroup * memcg)1847 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1848 {
1849 if (memcg && memcg->move_lock_task == current) {
1850 unsigned long flags = memcg->move_lock_flags;
1851
1852 memcg->move_lock_task = NULL;
1853 memcg->move_lock_flags = 0;
1854
1855 spin_unlock_irqrestore(&memcg->move_lock, flags);
1856 }
1857
1858 rcu_read_unlock();
1859 }
1860 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1861
1862 /*
1863 * size of first charge trial. "32" comes from vmscan.c's magic value.
1864 * TODO: maybe necessary to use big numbers in big irons.
1865 */
1866 #define CHARGE_BATCH 32U
1867 struct memcg_stock_pcp {
1868 struct mem_cgroup *cached; /* this never be root cgroup */
1869 unsigned int nr_pages;
1870 struct work_struct work;
1871 unsigned long flags;
1872 #define FLUSHING_CACHED_CHARGE 0
1873 };
1874 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1875 static DEFINE_MUTEX(percpu_charge_mutex);
1876
1877 /**
1878 * consume_stock: Try to consume stocked charge on this cpu.
1879 * @memcg: memcg to consume from.
1880 * @nr_pages: how many pages to charge.
1881 *
1882 * The charges will only happen if @memcg matches the current cpu's memcg
1883 * stock, and at least @nr_pages are available in that stock. Failure to
1884 * service an allocation will refill the stock.
1885 *
1886 * returns true if successful, false otherwise.
1887 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1888 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1889 {
1890 struct memcg_stock_pcp *stock;
1891 bool ret = false;
1892
1893 if (nr_pages > CHARGE_BATCH)
1894 return ret;
1895
1896 stock = &get_cpu_var(memcg_stock);
1897 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1898 stock->nr_pages -= nr_pages;
1899 ret = true;
1900 }
1901 put_cpu_var(memcg_stock);
1902 return ret;
1903 }
1904
1905 /*
1906 * Returns stocks cached in percpu and reset cached information.
1907 */
drain_stock(struct memcg_stock_pcp * stock)1908 static void drain_stock(struct memcg_stock_pcp *stock)
1909 {
1910 struct mem_cgroup *old = stock->cached;
1911
1912 if (stock->nr_pages) {
1913 page_counter_uncharge(&old->memory, stock->nr_pages);
1914 if (do_swap_account)
1915 page_counter_uncharge(&old->memsw, stock->nr_pages);
1916 css_put_many(&old->css, stock->nr_pages);
1917 stock->nr_pages = 0;
1918 }
1919 stock->cached = NULL;
1920 }
1921
1922 /*
1923 * This must be called under preempt disabled or must be called by
1924 * a thread which is pinned to local cpu.
1925 */
drain_local_stock(struct work_struct * dummy)1926 static void drain_local_stock(struct work_struct *dummy)
1927 {
1928 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1929 drain_stock(stock);
1930 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1931 }
1932
1933 /*
1934 * Cache charges(val) to local per_cpu area.
1935 * This will be consumed by consume_stock() function, later.
1936 */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1937 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1938 {
1939 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1940
1941 if (stock->cached != memcg) { /* reset if necessary */
1942 drain_stock(stock);
1943 stock->cached = memcg;
1944 }
1945 stock->nr_pages += nr_pages;
1946 put_cpu_var(memcg_stock);
1947 }
1948
1949 /*
1950 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1951 * of the hierarchy under it.
1952 */
drain_all_stock(struct mem_cgroup * root_memcg)1953 static void drain_all_stock(struct mem_cgroup *root_memcg)
1954 {
1955 int cpu, curcpu;
1956
1957 /* If someone's already draining, avoid adding running more workers. */
1958 if (!mutex_trylock(&percpu_charge_mutex))
1959 return;
1960 /* Notify other cpus that system-wide "drain" is running */
1961 get_online_cpus();
1962 curcpu = get_cpu();
1963 for_each_online_cpu(cpu) {
1964 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1965 struct mem_cgroup *memcg;
1966
1967 memcg = stock->cached;
1968 if (!memcg || !stock->nr_pages)
1969 continue;
1970 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1971 continue;
1972 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1973 if (cpu == curcpu)
1974 drain_local_stock(&stock->work);
1975 else
1976 schedule_work_on(cpu, &stock->work);
1977 }
1978 }
1979 put_cpu();
1980 put_online_cpus();
1981 mutex_unlock(&percpu_charge_mutex);
1982 }
1983
memcg_cpu_hotplug_callback(struct notifier_block * nb,unsigned long action,void * hcpu)1984 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1985 unsigned long action,
1986 void *hcpu)
1987 {
1988 int cpu = (unsigned long)hcpu;
1989 struct memcg_stock_pcp *stock;
1990
1991 if (action == CPU_ONLINE)
1992 return NOTIFY_OK;
1993
1994 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1995 return NOTIFY_OK;
1996
1997 stock = &per_cpu(memcg_stock, cpu);
1998 drain_stock(stock);
1999 return NOTIFY_OK;
2000 }
2001
2002 /*
2003 * Scheduled by try_charge() to be executed from the userland return path
2004 * and reclaims memory over the high limit.
2005 */
mem_cgroup_handle_over_high(void)2006 void mem_cgroup_handle_over_high(void)
2007 {
2008 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2009 struct mem_cgroup *memcg, *pos;
2010
2011 if (likely(!nr_pages))
2012 return;
2013
2014 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2015
2016 do {
2017 if (page_counter_read(&pos->memory) <= pos->high)
2018 continue;
2019 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2020 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2021 } while ((pos = parent_mem_cgroup(pos)));
2022
2023 css_put(&memcg->css);
2024 current->memcg_nr_pages_over_high = 0;
2025 }
2026
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2027 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2028 unsigned int nr_pages)
2029 {
2030 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2031 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2032 struct mem_cgroup *mem_over_limit;
2033 struct page_counter *counter;
2034 unsigned long nr_reclaimed;
2035 bool may_swap = true;
2036 bool drained = false;
2037
2038 if (mem_cgroup_is_root(memcg))
2039 return 0;
2040 retry:
2041 if (consume_stock(memcg, nr_pages))
2042 return 0;
2043
2044 if (!do_swap_account ||
2045 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2046 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2047 goto done_restock;
2048 if (do_swap_account)
2049 page_counter_uncharge(&memcg->memsw, batch);
2050 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2051 } else {
2052 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2053 may_swap = false;
2054 }
2055
2056 if (batch > nr_pages) {
2057 batch = nr_pages;
2058 goto retry;
2059 }
2060
2061 /*
2062 * Unlike in global OOM situations, memcg is not in a physical
2063 * memory shortage. Allow dying and OOM-killed tasks to
2064 * bypass the last charges so that they can exit quickly and
2065 * free their memory.
2066 */
2067 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2068 fatal_signal_pending(current) ||
2069 current->flags & PF_EXITING))
2070 goto force;
2071
2072 if (unlikely(task_in_memcg_oom(current)))
2073 goto nomem;
2074
2075 if (!gfpflags_allow_blocking(gfp_mask))
2076 goto nomem;
2077
2078 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2079
2080 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2081 gfp_mask, may_swap);
2082
2083 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2084 goto retry;
2085
2086 if (!drained) {
2087 drain_all_stock(mem_over_limit);
2088 drained = true;
2089 goto retry;
2090 }
2091
2092 if (gfp_mask & __GFP_NORETRY)
2093 goto nomem;
2094 /*
2095 * Even though the limit is exceeded at this point, reclaim
2096 * may have been able to free some pages. Retry the charge
2097 * before killing the task.
2098 *
2099 * Only for regular pages, though: huge pages are rather
2100 * unlikely to succeed so close to the limit, and we fall back
2101 * to regular pages anyway in case of failure.
2102 */
2103 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2104 goto retry;
2105 /*
2106 * At task move, charge accounts can be doubly counted. So, it's
2107 * better to wait until the end of task_move if something is going on.
2108 */
2109 if (mem_cgroup_wait_acct_move(mem_over_limit))
2110 goto retry;
2111
2112 if (nr_retries--)
2113 goto retry;
2114
2115 if (gfp_mask & __GFP_NOFAIL)
2116 goto force;
2117
2118 if (fatal_signal_pending(current))
2119 goto force;
2120
2121 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2122
2123 mem_cgroup_oom(mem_over_limit, gfp_mask,
2124 get_order(nr_pages * PAGE_SIZE));
2125 nomem:
2126 if (!(gfp_mask & __GFP_NOFAIL))
2127 return -ENOMEM;
2128 force:
2129 /*
2130 * The allocation either can't fail or will lead to more memory
2131 * being freed very soon. Allow memory usage go over the limit
2132 * temporarily by force charging it.
2133 */
2134 page_counter_charge(&memcg->memory, nr_pages);
2135 if (do_swap_account)
2136 page_counter_charge(&memcg->memsw, nr_pages);
2137 css_get_many(&memcg->css, nr_pages);
2138
2139 return 0;
2140
2141 done_restock:
2142 css_get_many(&memcg->css, batch);
2143 if (batch > nr_pages)
2144 refill_stock(memcg, batch - nr_pages);
2145
2146 /*
2147 * If the hierarchy is above the normal consumption range, schedule
2148 * reclaim on returning to userland. We can perform reclaim here
2149 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2150 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2151 * not recorded as it most likely matches current's and won't
2152 * change in the meantime. As high limit is checked again before
2153 * reclaim, the cost of mismatch is negligible.
2154 */
2155 do {
2156 if (page_counter_read(&memcg->memory) > memcg->high) {
2157 current->memcg_nr_pages_over_high += batch;
2158 set_notify_resume(current);
2159 break;
2160 }
2161 } while ((memcg = parent_mem_cgroup(memcg)));
2162
2163 return 0;
2164 }
2165
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2166 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2167 {
2168 if (mem_cgroup_is_root(memcg))
2169 return;
2170
2171 page_counter_uncharge(&memcg->memory, nr_pages);
2172 if (do_swap_account)
2173 page_counter_uncharge(&memcg->memsw, nr_pages);
2174
2175 css_put_many(&memcg->css, nr_pages);
2176 }
2177
lock_page_lru(struct page * page,int * isolated)2178 static void lock_page_lru(struct page *page, int *isolated)
2179 {
2180 struct zone *zone = page_zone(page);
2181
2182 spin_lock_irq(&zone->lru_lock);
2183 if (PageLRU(page)) {
2184 struct lruvec *lruvec;
2185
2186 lruvec = mem_cgroup_page_lruvec(page, zone);
2187 ClearPageLRU(page);
2188 del_page_from_lru_list(page, lruvec, page_lru(page));
2189 *isolated = 1;
2190 } else
2191 *isolated = 0;
2192 }
2193
unlock_page_lru(struct page * page,int isolated)2194 static void unlock_page_lru(struct page *page, int isolated)
2195 {
2196 struct zone *zone = page_zone(page);
2197
2198 if (isolated) {
2199 struct lruvec *lruvec;
2200
2201 lruvec = mem_cgroup_page_lruvec(page, zone);
2202 VM_BUG_ON_PAGE(PageLRU(page), page);
2203 SetPageLRU(page);
2204 add_page_to_lru_list(page, lruvec, page_lru(page));
2205 }
2206 spin_unlock_irq(&zone->lru_lock);
2207 }
2208
commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)2209 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2210 bool lrucare)
2211 {
2212 int isolated;
2213
2214 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2215
2216 /*
2217 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2218 * may already be on some other mem_cgroup's LRU. Take care of it.
2219 */
2220 if (lrucare)
2221 lock_page_lru(page, &isolated);
2222
2223 /*
2224 * Nobody should be changing or seriously looking at
2225 * page->mem_cgroup at this point:
2226 *
2227 * - the page is uncharged
2228 *
2229 * - the page is off-LRU
2230 *
2231 * - an anonymous fault has exclusive page access, except for
2232 * a locked page table
2233 *
2234 * - a page cache insertion, a swapin fault, or a migration
2235 * have the page locked
2236 */
2237 page->mem_cgroup = memcg;
2238
2239 if (lrucare)
2240 unlock_page_lru(page, isolated);
2241 }
2242
2243 #ifdef CONFIG_MEMCG_KMEM
memcg_alloc_cache_id(void)2244 static int memcg_alloc_cache_id(void)
2245 {
2246 int id, size;
2247 int err;
2248
2249 id = ida_simple_get(&memcg_cache_ida,
2250 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2251 if (id < 0)
2252 return id;
2253
2254 if (id < memcg_nr_cache_ids)
2255 return id;
2256
2257 /*
2258 * There's no space for the new id in memcg_caches arrays,
2259 * so we have to grow them.
2260 */
2261 down_write(&memcg_cache_ids_sem);
2262
2263 size = 2 * (id + 1);
2264 if (size < MEMCG_CACHES_MIN_SIZE)
2265 size = MEMCG_CACHES_MIN_SIZE;
2266 else if (size > MEMCG_CACHES_MAX_SIZE)
2267 size = MEMCG_CACHES_MAX_SIZE;
2268
2269 err = memcg_update_all_caches(size);
2270 if (!err)
2271 err = memcg_update_all_list_lrus(size);
2272 if (!err)
2273 memcg_nr_cache_ids = size;
2274
2275 up_write(&memcg_cache_ids_sem);
2276
2277 if (err) {
2278 ida_simple_remove(&memcg_cache_ida, id);
2279 return err;
2280 }
2281 return id;
2282 }
2283
memcg_free_cache_id(int id)2284 static void memcg_free_cache_id(int id)
2285 {
2286 ida_simple_remove(&memcg_cache_ida, id);
2287 }
2288
2289 struct memcg_kmem_cache_create_work {
2290 struct mem_cgroup *memcg;
2291 struct kmem_cache *cachep;
2292 struct work_struct work;
2293 };
2294
memcg_kmem_cache_create_func(struct work_struct * w)2295 static void memcg_kmem_cache_create_func(struct work_struct *w)
2296 {
2297 struct memcg_kmem_cache_create_work *cw =
2298 container_of(w, struct memcg_kmem_cache_create_work, work);
2299 struct mem_cgroup *memcg = cw->memcg;
2300 struct kmem_cache *cachep = cw->cachep;
2301
2302 memcg_create_kmem_cache(memcg, cachep);
2303
2304 css_put(&memcg->css);
2305 kfree(cw);
2306 }
2307
2308 /*
2309 * Enqueue the creation of a per-memcg kmem_cache.
2310 */
__memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2311 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2312 struct kmem_cache *cachep)
2313 {
2314 struct memcg_kmem_cache_create_work *cw;
2315
2316 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2317 if (!cw)
2318 return;
2319
2320 css_get(&memcg->css);
2321
2322 cw->memcg = memcg;
2323 cw->cachep = cachep;
2324 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2325
2326 schedule_work(&cw->work);
2327 }
2328
memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2329 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2330 struct kmem_cache *cachep)
2331 {
2332 /*
2333 * We need to stop accounting when we kmalloc, because if the
2334 * corresponding kmalloc cache is not yet created, the first allocation
2335 * in __memcg_schedule_kmem_cache_create will recurse.
2336 *
2337 * However, it is better to enclose the whole function. Depending on
2338 * the debugging options enabled, INIT_WORK(), for instance, can
2339 * trigger an allocation. This too, will make us recurse. Because at
2340 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2341 * the safest choice is to do it like this, wrapping the whole function.
2342 */
2343 current->memcg_kmem_skip_account = 1;
2344 __memcg_schedule_kmem_cache_create(memcg, cachep);
2345 current->memcg_kmem_skip_account = 0;
2346 }
2347
2348 /*
2349 * Return the kmem_cache we're supposed to use for a slab allocation.
2350 * We try to use the current memcg's version of the cache.
2351 *
2352 * If the cache does not exist yet, if we are the first user of it,
2353 * we either create it immediately, if possible, or create it asynchronously
2354 * in a workqueue.
2355 * In the latter case, we will let the current allocation go through with
2356 * the original cache.
2357 *
2358 * Can't be called in interrupt context or from kernel threads.
2359 * This function needs to be called with rcu_read_lock() held.
2360 */
__memcg_kmem_get_cache(struct kmem_cache * cachep)2361 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2362 {
2363 struct mem_cgroup *memcg;
2364 struct kmem_cache *memcg_cachep;
2365 int kmemcg_id;
2366
2367 VM_BUG_ON(!is_root_cache(cachep));
2368
2369 if (current->memcg_kmem_skip_account)
2370 return cachep;
2371
2372 memcg = get_mem_cgroup_from_mm(current->mm);
2373 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2374 if (kmemcg_id < 0)
2375 goto out;
2376
2377 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2378 if (likely(memcg_cachep))
2379 return memcg_cachep;
2380
2381 /*
2382 * If we are in a safe context (can wait, and not in interrupt
2383 * context), we could be be predictable and return right away.
2384 * This would guarantee that the allocation being performed
2385 * already belongs in the new cache.
2386 *
2387 * However, there are some clashes that can arrive from locking.
2388 * For instance, because we acquire the slab_mutex while doing
2389 * memcg_create_kmem_cache, this means no further allocation
2390 * could happen with the slab_mutex held. So it's better to
2391 * defer everything.
2392 */
2393 memcg_schedule_kmem_cache_create(memcg, cachep);
2394 out:
2395 css_put(&memcg->css);
2396 return cachep;
2397 }
2398
__memcg_kmem_put_cache(struct kmem_cache * cachep)2399 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2400 {
2401 if (!is_root_cache(cachep))
2402 css_put(&cachep->memcg_params.memcg->css);
2403 }
2404
__memcg_kmem_charge_memcg(struct page * page,gfp_t gfp,int order,struct mem_cgroup * memcg)2405 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2406 struct mem_cgroup *memcg)
2407 {
2408 unsigned int nr_pages = 1 << order;
2409 struct page_counter *counter;
2410 int ret;
2411
2412 if (!memcg_kmem_is_active(memcg))
2413 return 0;
2414
2415 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2416 return -ENOMEM;
2417
2418 ret = try_charge(memcg, gfp, nr_pages);
2419 if (ret) {
2420 page_counter_uncharge(&memcg->kmem, nr_pages);
2421 return ret;
2422 }
2423
2424 page->mem_cgroup = memcg;
2425
2426 return 0;
2427 }
2428
__memcg_kmem_charge(struct page * page,gfp_t gfp,int order)2429 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2430 {
2431 struct mem_cgroup *memcg;
2432 int ret;
2433
2434 memcg = get_mem_cgroup_from_mm(current->mm);
2435 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2436 css_put(&memcg->css);
2437 return ret;
2438 }
2439
__memcg_kmem_uncharge(struct page * page,int order)2440 void __memcg_kmem_uncharge(struct page *page, int order)
2441 {
2442 struct mem_cgroup *memcg = page->mem_cgroup;
2443 unsigned int nr_pages = 1 << order;
2444
2445 if (!memcg)
2446 return;
2447
2448 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2449
2450 page_counter_uncharge(&memcg->kmem, nr_pages);
2451 page_counter_uncharge(&memcg->memory, nr_pages);
2452 if (do_swap_account)
2453 page_counter_uncharge(&memcg->memsw, nr_pages);
2454
2455 page->mem_cgroup = NULL;
2456 css_put_many(&memcg->css, nr_pages);
2457 }
2458 #endif /* CONFIG_MEMCG_KMEM */
2459
2460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2461
2462 /*
2463 * Because tail pages are not marked as "used", set it. We're under
2464 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2465 * charge/uncharge will be never happen and move_account() is done under
2466 * compound_lock(), so we don't have to take care of races.
2467 */
mem_cgroup_split_huge_fixup(struct page * head)2468 void mem_cgroup_split_huge_fixup(struct page *head)
2469 {
2470 int i;
2471
2472 if (mem_cgroup_disabled())
2473 return;
2474
2475 for (i = 1; i < HPAGE_PMD_NR; i++)
2476 head[i].mem_cgroup = head->mem_cgroup;
2477
2478 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2479 HPAGE_PMD_NR);
2480 }
2481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2482
2483 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_swap_statistics(struct mem_cgroup * memcg,bool charge)2484 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2485 bool charge)
2486 {
2487 int val = (charge) ? 1 : -1;
2488 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2489 }
2490
2491 /**
2492 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2493 * @entry: swap entry to be moved
2494 * @from: mem_cgroup which the entry is moved from
2495 * @to: mem_cgroup which the entry is moved to
2496 *
2497 * It succeeds only when the swap_cgroup's record for this entry is the same
2498 * as the mem_cgroup's id of @from.
2499 *
2500 * Returns 0 on success, -EINVAL on failure.
2501 *
2502 * The caller must have charged to @to, IOW, called page_counter_charge() about
2503 * both res and memsw, and called css_get().
2504 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2505 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2506 struct mem_cgroup *from, struct mem_cgroup *to)
2507 {
2508 unsigned short old_id, new_id;
2509
2510 old_id = mem_cgroup_id(from);
2511 new_id = mem_cgroup_id(to);
2512
2513 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2514 mem_cgroup_swap_statistics(from, false);
2515 mem_cgroup_swap_statistics(to, true);
2516 return 0;
2517 }
2518 return -EINVAL;
2519 }
2520 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2521 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2522 struct mem_cgroup *from, struct mem_cgroup *to)
2523 {
2524 return -EINVAL;
2525 }
2526 #endif
2527
2528 static DEFINE_MUTEX(memcg_limit_mutex);
2529
mem_cgroup_resize_limit(struct mem_cgroup * memcg,unsigned long limit)2530 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2531 unsigned long limit)
2532 {
2533 unsigned long curusage;
2534 unsigned long oldusage;
2535 bool enlarge = false;
2536 int retry_count;
2537 int ret;
2538
2539 /*
2540 * For keeping hierarchical_reclaim simple, how long we should retry
2541 * is depends on callers. We set our retry-count to be function
2542 * of # of children which we should visit in this loop.
2543 */
2544 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2545 mem_cgroup_count_children(memcg);
2546
2547 oldusage = page_counter_read(&memcg->memory);
2548
2549 do {
2550 if (signal_pending(current)) {
2551 ret = -EINTR;
2552 break;
2553 }
2554
2555 mutex_lock(&memcg_limit_mutex);
2556 if (limit > memcg->memsw.limit) {
2557 mutex_unlock(&memcg_limit_mutex);
2558 ret = -EINVAL;
2559 break;
2560 }
2561 if (limit > memcg->memory.limit)
2562 enlarge = true;
2563 ret = page_counter_limit(&memcg->memory, limit);
2564 mutex_unlock(&memcg_limit_mutex);
2565
2566 if (!ret)
2567 break;
2568
2569 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2570
2571 curusage = page_counter_read(&memcg->memory);
2572 /* Usage is reduced ? */
2573 if (curusage >= oldusage)
2574 retry_count--;
2575 else
2576 oldusage = curusage;
2577 } while (retry_count);
2578
2579 if (!ret && enlarge)
2580 memcg_oom_recover(memcg);
2581
2582 return ret;
2583 }
2584
mem_cgroup_resize_memsw_limit(struct mem_cgroup * memcg,unsigned long limit)2585 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2586 unsigned long limit)
2587 {
2588 unsigned long curusage;
2589 unsigned long oldusage;
2590 bool enlarge = false;
2591 int retry_count;
2592 int ret;
2593
2594 /* see mem_cgroup_resize_res_limit */
2595 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2596 mem_cgroup_count_children(memcg);
2597
2598 oldusage = page_counter_read(&memcg->memsw);
2599
2600 do {
2601 if (signal_pending(current)) {
2602 ret = -EINTR;
2603 break;
2604 }
2605
2606 mutex_lock(&memcg_limit_mutex);
2607 if (limit < memcg->memory.limit) {
2608 mutex_unlock(&memcg_limit_mutex);
2609 ret = -EINVAL;
2610 break;
2611 }
2612 if (limit > memcg->memsw.limit)
2613 enlarge = true;
2614 ret = page_counter_limit(&memcg->memsw, limit);
2615 mutex_unlock(&memcg_limit_mutex);
2616
2617 if (!ret)
2618 break;
2619
2620 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2621
2622 curusage = page_counter_read(&memcg->memsw);
2623 /* Usage is reduced ? */
2624 if (curusage >= oldusage)
2625 retry_count--;
2626 else
2627 oldusage = curusage;
2628 } while (retry_count);
2629
2630 if (!ret && enlarge)
2631 memcg_oom_recover(memcg);
2632
2633 return ret;
2634 }
2635
mem_cgroup_soft_limit_reclaim(struct zone * zone,int order,gfp_t gfp_mask,unsigned long * total_scanned)2636 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2637 gfp_t gfp_mask,
2638 unsigned long *total_scanned)
2639 {
2640 unsigned long nr_reclaimed = 0;
2641 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2642 unsigned long reclaimed;
2643 int loop = 0;
2644 struct mem_cgroup_tree_per_zone *mctz;
2645 unsigned long excess;
2646 unsigned long nr_scanned;
2647
2648 if (order > 0)
2649 return 0;
2650
2651 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2652 /*
2653 * This loop can run a while, specially if mem_cgroup's continuously
2654 * keep exceeding their soft limit and putting the system under
2655 * pressure
2656 */
2657 do {
2658 if (next_mz)
2659 mz = next_mz;
2660 else
2661 mz = mem_cgroup_largest_soft_limit_node(mctz);
2662 if (!mz)
2663 break;
2664
2665 nr_scanned = 0;
2666 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2667 gfp_mask, &nr_scanned);
2668 nr_reclaimed += reclaimed;
2669 *total_scanned += nr_scanned;
2670 spin_lock_irq(&mctz->lock);
2671 __mem_cgroup_remove_exceeded(mz, mctz);
2672
2673 /*
2674 * If we failed to reclaim anything from this memory cgroup
2675 * it is time to move on to the next cgroup
2676 */
2677 next_mz = NULL;
2678 if (!reclaimed)
2679 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2680
2681 excess = soft_limit_excess(mz->memcg);
2682 /*
2683 * One school of thought says that we should not add
2684 * back the node to the tree if reclaim returns 0.
2685 * But our reclaim could return 0, simply because due
2686 * to priority we are exposing a smaller subset of
2687 * memory to reclaim from. Consider this as a longer
2688 * term TODO.
2689 */
2690 /* If excess == 0, no tree ops */
2691 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2692 spin_unlock_irq(&mctz->lock);
2693 css_put(&mz->memcg->css);
2694 loop++;
2695 /*
2696 * Could not reclaim anything and there are no more
2697 * mem cgroups to try or we seem to be looping without
2698 * reclaiming anything.
2699 */
2700 if (!nr_reclaimed &&
2701 (next_mz == NULL ||
2702 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2703 break;
2704 } while (!nr_reclaimed);
2705 if (next_mz)
2706 css_put(&next_mz->memcg->css);
2707 return nr_reclaimed;
2708 }
2709
2710 /*
2711 * Test whether @memcg has children, dead or alive. Note that this
2712 * function doesn't care whether @memcg has use_hierarchy enabled and
2713 * returns %true if there are child csses according to the cgroup
2714 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2715 */
memcg_has_children(struct mem_cgroup * memcg)2716 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2717 {
2718 bool ret;
2719
2720 /*
2721 * The lock does not prevent addition or deletion of children, but
2722 * it prevents a new child from being initialized based on this
2723 * parent in css_online(), so it's enough to decide whether
2724 * hierarchically inherited attributes can still be changed or not.
2725 */
2726 lockdep_assert_held(&memcg_create_mutex);
2727
2728 rcu_read_lock();
2729 ret = css_next_child(NULL, &memcg->css);
2730 rcu_read_unlock();
2731 return ret;
2732 }
2733
2734 /*
2735 * Reclaims as many pages from the given memcg as possible and moves
2736 * the rest to the parent.
2737 *
2738 * Caller is responsible for holding css reference for memcg.
2739 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)2740 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2741 {
2742 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2743
2744 /* we call try-to-free pages for make this cgroup empty */
2745 lru_add_drain_all();
2746 /* try to free all pages in this cgroup */
2747 while (nr_retries && page_counter_read(&memcg->memory)) {
2748 int progress;
2749
2750 if (signal_pending(current))
2751 return -EINTR;
2752
2753 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2754 GFP_KERNEL, true);
2755 if (!progress) {
2756 nr_retries--;
2757 /* maybe some writeback is necessary */
2758 congestion_wait(BLK_RW_ASYNC, HZ/10);
2759 }
2760
2761 }
2762
2763 return 0;
2764 }
2765
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2766 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2767 char *buf, size_t nbytes,
2768 loff_t off)
2769 {
2770 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2771
2772 if (mem_cgroup_is_root(memcg))
2773 return -EINVAL;
2774 return mem_cgroup_force_empty(memcg) ?: nbytes;
2775 }
2776
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)2777 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2778 struct cftype *cft)
2779 {
2780 return mem_cgroup_from_css(css)->use_hierarchy;
2781 }
2782
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2783 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2784 struct cftype *cft, u64 val)
2785 {
2786 int retval = 0;
2787 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2788 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2789
2790 mutex_lock(&memcg_create_mutex);
2791
2792 if (memcg->use_hierarchy == val)
2793 goto out;
2794
2795 /*
2796 * If parent's use_hierarchy is set, we can't make any modifications
2797 * in the child subtrees. If it is unset, then the change can
2798 * occur, provided the current cgroup has no children.
2799 *
2800 * For the root cgroup, parent_mem is NULL, we allow value to be
2801 * set if there are no children.
2802 */
2803 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2804 (val == 1 || val == 0)) {
2805 if (!memcg_has_children(memcg))
2806 memcg->use_hierarchy = val;
2807 else
2808 retval = -EBUSY;
2809 } else
2810 retval = -EINVAL;
2811
2812 out:
2813 mutex_unlock(&memcg_create_mutex);
2814
2815 return retval;
2816 }
2817
tree_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)2818 static unsigned long tree_stat(struct mem_cgroup *memcg,
2819 enum mem_cgroup_stat_index idx)
2820 {
2821 struct mem_cgroup *iter;
2822 unsigned long val = 0;
2823
2824 for_each_mem_cgroup_tree(iter, memcg)
2825 val += mem_cgroup_read_stat(iter, idx);
2826
2827 return val;
2828 }
2829
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)2830 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2831 {
2832 unsigned long val;
2833
2834 if (mem_cgroup_is_root(memcg)) {
2835 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2836 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2837 if (swap)
2838 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2839 } else {
2840 if (!swap)
2841 val = page_counter_read(&memcg->memory);
2842 else
2843 val = page_counter_read(&memcg->memsw);
2844 }
2845 return val;
2846 }
2847
2848 enum {
2849 RES_USAGE,
2850 RES_LIMIT,
2851 RES_MAX_USAGE,
2852 RES_FAILCNT,
2853 RES_SOFT_LIMIT,
2854 };
2855
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2856 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2857 struct cftype *cft)
2858 {
2859 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2860 struct page_counter *counter;
2861
2862 switch (MEMFILE_TYPE(cft->private)) {
2863 case _MEM:
2864 counter = &memcg->memory;
2865 break;
2866 case _MEMSWAP:
2867 counter = &memcg->memsw;
2868 break;
2869 case _KMEM:
2870 counter = &memcg->kmem;
2871 break;
2872 default:
2873 BUG();
2874 }
2875
2876 switch (MEMFILE_ATTR(cft->private)) {
2877 case RES_USAGE:
2878 if (counter == &memcg->memory)
2879 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2880 if (counter == &memcg->memsw)
2881 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2882 return (u64)page_counter_read(counter) * PAGE_SIZE;
2883 case RES_LIMIT:
2884 return (u64)counter->limit * PAGE_SIZE;
2885 case RES_MAX_USAGE:
2886 return (u64)counter->watermark * PAGE_SIZE;
2887 case RES_FAILCNT:
2888 return counter->failcnt;
2889 case RES_SOFT_LIMIT:
2890 return (u64)memcg->soft_limit * PAGE_SIZE;
2891 default:
2892 BUG();
2893 }
2894 }
2895
2896 #ifdef CONFIG_MEMCG_KMEM
memcg_activate_kmem(struct mem_cgroup * memcg,unsigned long nr_pages)2897 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2898 unsigned long nr_pages)
2899 {
2900 int err = 0;
2901 int memcg_id;
2902
2903 BUG_ON(memcg->kmemcg_id >= 0);
2904 BUG_ON(memcg->kmem_acct_activated);
2905 BUG_ON(memcg->kmem_acct_active);
2906
2907 /*
2908 * For simplicity, we won't allow this to be disabled. It also can't
2909 * be changed if the cgroup has children already, or if tasks had
2910 * already joined.
2911 *
2912 * If tasks join before we set the limit, a person looking at
2913 * kmem.usage_in_bytes will have no way to determine when it took
2914 * place, which makes the value quite meaningless.
2915 *
2916 * After it first became limited, changes in the value of the limit are
2917 * of course permitted.
2918 */
2919 mutex_lock(&memcg_create_mutex);
2920 if (cgroup_is_populated(memcg->css.cgroup) ||
2921 (memcg->use_hierarchy && memcg_has_children(memcg)))
2922 err = -EBUSY;
2923 mutex_unlock(&memcg_create_mutex);
2924 if (err)
2925 goto out;
2926
2927 memcg_id = memcg_alloc_cache_id();
2928 if (memcg_id < 0) {
2929 err = memcg_id;
2930 goto out;
2931 }
2932
2933 /*
2934 * We couldn't have accounted to this cgroup, because it hasn't got
2935 * activated yet, so this should succeed.
2936 */
2937 err = page_counter_limit(&memcg->kmem, nr_pages);
2938 VM_BUG_ON(err);
2939
2940 static_key_slow_inc(&memcg_kmem_enabled_key);
2941 /*
2942 * A memory cgroup is considered kmem-active as soon as it gets
2943 * kmemcg_id. Setting the id after enabling static branching will
2944 * guarantee no one starts accounting before all call sites are
2945 * patched.
2946 */
2947 memcg->kmemcg_id = memcg_id;
2948 memcg->kmem_acct_activated = true;
2949 memcg->kmem_acct_active = true;
2950 out:
2951 return err;
2952 }
2953
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long limit)2954 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2955 unsigned long limit)
2956 {
2957 int ret;
2958
2959 mutex_lock(&memcg_limit_mutex);
2960 if (!memcg_kmem_is_active(memcg))
2961 ret = memcg_activate_kmem(memcg, limit);
2962 else
2963 ret = page_counter_limit(&memcg->kmem, limit);
2964 mutex_unlock(&memcg_limit_mutex);
2965 return ret;
2966 }
2967
memcg_propagate_kmem(struct mem_cgroup * memcg)2968 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2969 {
2970 int ret = 0;
2971 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2972
2973 if (!parent)
2974 return 0;
2975
2976 mutex_lock(&memcg_limit_mutex);
2977 /*
2978 * If the parent cgroup is not kmem-active now, it cannot be activated
2979 * after this point, because it has at least one child already.
2980 */
2981 if (memcg_kmem_is_active(parent))
2982 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2983 mutex_unlock(&memcg_limit_mutex);
2984 return ret;
2985 }
2986 #else
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long limit)2987 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2988 unsigned long limit)
2989 {
2990 return -EINVAL;
2991 }
2992 #endif /* CONFIG_MEMCG_KMEM */
2993
2994 /*
2995 * The user of this function is...
2996 * RES_LIMIT.
2997 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2998 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2999 char *buf, size_t nbytes, loff_t off)
3000 {
3001 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3002 unsigned long nr_pages;
3003 int ret;
3004
3005 buf = strstrip(buf);
3006 ret = page_counter_memparse(buf, "-1", &nr_pages);
3007 if (ret)
3008 return ret;
3009
3010 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3011 case RES_LIMIT:
3012 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3013 ret = -EINVAL;
3014 break;
3015 }
3016 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 case _MEM:
3018 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3019 break;
3020 case _MEMSWAP:
3021 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3022 break;
3023 case _KMEM:
3024 ret = memcg_update_kmem_limit(memcg, nr_pages);
3025 break;
3026 }
3027 break;
3028 case RES_SOFT_LIMIT:
3029 memcg->soft_limit = nr_pages;
3030 ret = 0;
3031 break;
3032 }
3033 return ret ?: nbytes;
3034 }
3035
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3036 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3037 size_t nbytes, loff_t off)
3038 {
3039 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3040 struct page_counter *counter;
3041
3042 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3043 case _MEM:
3044 counter = &memcg->memory;
3045 break;
3046 case _MEMSWAP:
3047 counter = &memcg->memsw;
3048 break;
3049 case _KMEM:
3050 counter = &memcg->kmem;
3051 break;
3052 default:
3053 BUG();
3054 }
3055
3056 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3057 case RES_MAX_USAGE:
3058 page_counter_reset_watermark(counter);
3059 break;
3060 case RES_FAILCNT:
3061 counter->failcnt = 0;
3062 break;
3063 default:
3064 BUG();
3065 }
3066
3067 return nbytes;
3068 }
3069
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3070 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3071 struct cftype *cft)
3072 {
3073 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3074 }
3075
3076 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3077 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3078 struct cftype *cft, u64 val)
3079 {
3080 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3081
3082 if (val & ~MOVE_MASK)
3083 return -EINVAL;
3084
3085 /*
3086 * No kind of locking is needed in here, because ->can_attach() will
3087 * check this value once in the beginning of the process, and then carry
3088 * on with stale data. This means that changes to this value will only
3089 * affect task migrations starting after the change.
3090 */
3091 memcg->move_charge_at_immigrate = val;
3092 return 0;
3093 }
3094 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3095 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3096 struct cftype *cft, u64 val)
3097 {
3098 return -ENOSYS;
3099 }
3100 #endif
3101
3102 #ifdef CONFIG_NUMA
memcg_numa_stat_show(struct seq_file * m,void * v)3103 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3104 {
3105 struct numa_stat {
3106 const char *name;
3107 unsigned int lru_mask;
3108 };
3109
3110 static const struct numa_stat stats[] = {
3111 { "total", LRU_ALL },
3112 { "file", LRU_ALL_FILE },
3113 { "anon", LRU_ALL_ANON },
3114 { "unevictable", BIT(LRU_UNEVICTABLE) },
3115 };
3116 const struct numa_stat *stat;
3117 int nid;
3118 unsigned long nr;
3119 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3120
3121 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3122 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3123 seq_printf(m, "%s=%lu", stat->name, nr);
3124 for_each_node_state(nid, N_MEMORY) {
3125 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3126 stat->lru_mask);
3127 seq_printf(m, " N%d=%lu", nid, nr);
3128 }
3129 seq_putc(m, '\n');
3130 }
3131
3132 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3133 struct mem_cgroup *iter;
3134
3135 nr = 0;
3136 for_each_mem_cgroup_tree(iter, memcg)
3137 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3138 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3139 for_each_node_state(nid, N_MEMORY) {
3140 nr = 0;
3141 for_each_mem_cgroup_tree(iter, memcg)
3142 nr += mem_cgroup_node_nr_lru_pages(
3143 iter, nid, stat->lru_mask);
3144 seq_printf(m, " N%d=%lu", nid, nr);
3145 }
3146 seq_putc(m, '\n');
3147 }
3148
3149 return 0;
3150 }
3151 #endif /* CONFIG_NUMA */
3152
memcg_stat_show(struct seq_file * m,void * v)3153 static int memcg_stat_show(struct seq_file *m, void *v)
3154 {
3155 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3156 unsigned long memory, memsw;
3157 struct mem_cgroup *mi;
3158 unsigned int i;
3159
3160 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3161 MEM_CGROUP_STAT_NSTATS);
3162 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3163 MEM_CGROUP_EVENTS_NSTATS);
3164 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3165
3166 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3167 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3168 continue;
3169 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3170 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3171 }
3172
3173 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3174 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3175 mem_cgroup_read_events(memcg, i));
3176
3177 for (i = 0; i < NR_LRU_LISTS; i++)
3178 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3179 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3180
3181 /* Hierarchical information */
3182 memory = memsw = PAGE_COUNTER_MAX;
3183 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3184 memory = min(memory, mi->memory.limit);
3185 memsw = min(memsw, mi->memsw.limit);
3186 }
3187 seq_printf(m, "hierarchical_memory_limit %llu\n",
3188 (u64)memory * PAGE_SIZE);
3189 if (do_swap_account)
3190 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3191 (u64)memsw * PAGE_SIZE);
3192
3193 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3194 unsigned long long val = 0;
3195
3196 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3197 continue;
3198 for_each_mem_cgroup_tree(mi, memcg)
3199 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3200 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3201 }
3202
3203 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3204 unsigned long long val = 0;
3205
3206 for_each_mem_cgroup_tree(mi, memcg)
3207 val += mem_cgroup_read_events(mi, i);
3208 seq_printf(m, "total_%s %llu\n",
3209 mem_cgroup_events_names[i], val);
3210 }
3211
3212 for (i = 0; i < NR_LRU_LISTS; i++) {
3213 unsigned long long val = 0;
3214
3215 for_each_mem_cgroup_tree(mi, memcg)
3216 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3217 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3218 }
3219
3220 #ifdef CONFIG_DEBUG_VM
3221 {
3222 int nid, zid;
3223 struct mem_cgroup_per_zone *mz;
3224 struct zone_reclaim_stat *rstat;
3225 unsigned long recent_rotated[2] = {0, 0};
3226 unsigned long recent_scanned[2] = {0, 0};
3227
3228 for_each_online_node(nid)
3229 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3230 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3231 rstat = &mz->lruvec.reclaim_stat;
3232
3233 recent_rotated[0] += rstat->recent_rotated[0];
3234 recent_rotated[1] += rstat->recent_rotated[1];
3235 recent_scanned[0] += rstat->recent_scanned[0];
3236 recent_scanned[1] += rstat->recent_scanned[1];
3237 }
3238 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3239 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3240 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3241 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3242 }
3243 #endif
3244
3245 return 0;
3246 }
3247
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)3248 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3249 struct cftype *cft)
3250 {
3251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3252
3253 return mem_cgroup_swappiness(memcg);
3254 }
3255
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3256 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3257 struct cftype *cft, u64 val)
3258 {
3259 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3260
3261 if (val > 100)
3262 return -EINVAL;
3263
3264 if (css->parent)
3265 memcg->swappiness = val;
3266 else
3267 vm_swappiness = val;
3268
3269 return 0;
3270 }
3271
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)3272 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3273 {
3274 struct mem_cgroup_threshold_ary *t;
3275 unsigned long usage;
3276 int i;
3277
3278 rcu_read_lock();
3279 if (!swap)
3280 t = rcu_dereference(memcg->thresholds.primary);
3281 else
3282 t = rcu_dereference(memcg->memsw_thresholds.primary);
3283
3284 if (!t)
3285 goto unlock;
3286
3287 usage = mem_cgroup_usage(memcg, swap);
3288
3289 /*
3290 * current_threshold points to threshold just below or equal to usage.
3291 * If it's not true, a threshold was crossed after last
3292 * call of __mem_cgroup_threshold().
3293 */
3294 i = t->current_threshold;
3295
3296 /*
3297 * Iterate backward over array of thresholds starting from
3298 * current_threshold and check if a threshold is crossed.
3299 * If none of thresholds below usage is crossed, we read
3300 * only one element of the array here.
3301 */
3302 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3303 eventfd_signal(t->entries[i].eventfd, 1);
3304
3305 /* i = current_threshold + 1 */
3306 i++;
3307
3308 /*
3309 * Iterate forward over array of thresholds starting from
3310 * current_threshold+1 and check if a threshold is crossed.
3311 * If none of thresholds above usage is crossed, we read
3312 * only one element of the array here.
3313 */
3314 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3315 eventfd_signal(t->entries[i].eventfd, 1);
3316
3317 /* Update current_threshold */
3318 t->current_threshold = i - 1;
3319 unlock:
3320 rcu_read_unlock();
3321 }
3322
mem_cgroup_threshold(struct mem_cgroup * memcg)3323 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3324 {
3325 while (memcg) {
3326 __mem_cgroup_threshold(memcg, false);
3327 if (do_swap_account)
3328 __mem_cgroup_threshold(memcg, true);
3329
3330 memcg = parent_mem_cgroup(memcg);
3331 }
3332 }
3333
compare_thresholds(const void * a,const void * b)3334 static int compare_thresholds(const void *a, const void *b)
3335 {
3336 const struct mem_cgroup_threshold *_a = a;
3337 const struct mem_cgroup_threshold *_b = b;
3338
3339 if (_a->threshold > _b->threshold)
3340 return 1;
3341
3342 if (_a->threshold < _b->threshold)
3343 return -1;
3344
3345 return 0;
3346 }
3347
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)3348 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3349 {
3350 struct mem_cgroup_eventfd_list *ev;
3351
3352 spin_lock(&memcg_oom_lock);
3353
3354 list_for_each_entry(ev, &memcg->oom_notify, list)
3355 eventfd_signal(ev->eventfd, 1);
3356
3357 spin_unlock(&memcg_oom_lock);
3358 return 0;
3359 }
3360
mem_cgroup_oom_notify(struct mem_cgroup * memcg)3361 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3362 {
3363 struct mem_cgroup *iter;
3364
3365 for_each_mem_cgroup_tree(iter, memcg)
3366 mem_cgroup_oom_notify_cb(iter);
3367 }
3368
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)3369 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3370 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3371 {
3372 struct mem_cgroup_thresholds *thresholds;
3373 struct mem_cgroup_threshold_ary *new;
3374 unsigned long threshold;
3375 unsigned long usage;
3376 int i, size, ret;
3377
3378 ret = page_counter_memparse(args, "-1", &threshold);
3379 if (ret)
3380 return ret;
3381
3382 mutex_lock(&memcg->thresholds_lock);
3383
3384 if (type == _MEM) {
3385 thresholds = &memcg->thresholds;
3386 usage = mem_cgroup_usage(memcg, false);
3387 } else if (type == _MEMSWAP) {
3388 thresholds = &memcg->memsw_thresholds;
3389 usage = mem_cgroup_usage(memcg, true);
3390 } else
3391 BUG();
3392
3393 /* Check if a threshold crossed before adding a new one */
3394 if (thresholds->primary)
3395 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3396
3397 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3398
3399 /* Allocate memory for new array of thresholds */
3400 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3401 GFP_KERNEL);
3402 if (!new) {
3403 ret = -ENOMEM;
3404 goto unlock;
3405 }
3406 new->size = size;
3407
3408 /* Copy thresholds (if any) to new array */
3409 if (thresholds->primary) {
3410 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3411 sizeof(struct mem_cgroup_threshold));
3412 }
3413
3414 /* Add new threshold */
3415 new->entries[size - 1].eventfd = eventfd;
3416 new->entries[size - 1].threshold = threshold;
3417
3418 /* Sort thresholds. Registering of new threshold isn't time-critical */
3419 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3420 compare_thresholds, NULL);
3421
3422 /* Find current threshold */
3423 new->current_threshold = -1;
3424 for (i = 0; i < size; i++) {
3425 if (new->entries[i].threshold <= usage) {
3426 /*
3427 * new->current_threshold will not be used until
3428 * rcu_assign_pointer(), so it's safe to increment
3429 * it here.
3430 */
3431 ++new->current_threshold;
3432 } else
3433 break;
3434 }
3435
3436 /* Free old spare buffer and save old primary buffer as spare */
3437 kfree(thresholds->spare);
3438 thresholds->spare = thresholds->primary;
3439
3440 rcu_assign_pointer(thresholds->primary, new);
3441
3442 /* To be sure that nobody uses thresholds */
3443 synchronize_rcu();
3444
3445 unlock:
3446 mutex_unlock(&memcg->thresholds_lock);
3447
3448 return ret;
3449 }
3450
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3451 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3452 struct eventfd_ctx *eventfd, const char *args)
3453 {
3454 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3455 }
3456
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3457 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3458 struct eventfd_ctx *eventfd, const char *args)
3459 {
3460 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3461 }
3462
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)3463 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3464 struct eventfd_ctx *eventfd, enum res_type type)
3465 {
3466 struct mem_cgroup_thresholds *thresholds;
3467 struct mem_cgroup_threshold_ary *new;
3468 unsigned long usage;
3469 int i, j, size;
3470
3471 mutex_lock(&memcg->thresholds_lock);
3472
3473 if (type == _MEM) {
3474 thresholds = &memcg->thresholds;
3475 usage = mem_cgroup_usage(memcg, false);
3476 } else if (type == _MEMSWAP) {
3477 thresholds = &memcg->memsw_thresholds;
3478 usage = mem_cgroup_usage(memcg, true);
3479 } else
3480 BUG();
3481
3482 if (!thresholds->primary)
3483 goto unlock;
3484
3485 /* Check if a threshold crossed before removing */
3486 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3487
3488 /* Calculate new number of threshold */
3489 size = 0;
3490 for (i = 0; i < thresholds->primary->size; i++) {
3491 if (thresholds->primary->entries[i].eventfd != eventfd)
3492 size++;
3493 }
3494
3495 new = thresholds->spare;
3496
3497 /* Set thresholds array to NULL if we don't have thresholds */
3498 if (!size) {
3499 kfree(new);
3500 new = NULL;
3501 goto swap_buffers;
3502 }
3503
3504 new->size = size;
3505
3506 /* Copy thresholds and find current threshold */
3507 new->current_threshold = -1;
3508 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3509 if (thresholds->primary->entries[i].eventfd == eventfd)
3510 continue;
3511
3512 new->entries[j] = thresholds->primary->entries[i];
3513 if (new->entries[j].threshold <= usage) {
3514 /*
3515 * new->current_threshold will not be used
3516 * until rcu_assign_pointer(), so it's safe to increment
3517 * it here.
3518 */
3519 ++new->current_threshold;
3520 }
3521 j++;
3522 }
3523
3524 swap_buffers:
3525 /* Swap primary and spare array */
3526 thresholds->spare = thresholds->primary;
3527
3528 rcu_assign_pointer(thresholds->primary, new);
3529
3530 /* To be sure that nobody uses thresholds */
3531 synchronize_rcu();
3532
3533 /* If all events are unregistered, free the spare array */
3534 if (!new) {
3535 kfree(thresholds->spare);
3536 thresholds->spare = NULL;
3537 }
3538 unlock:
3539 mutex_unlock(&memcg->thresholds_lock);
3540 }
3541
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3542 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3543 struct eventfd_ctx *eventfd)
3544 {
3545 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3546 }
3547
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3548 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3549 struct eventfd_ctx *eventfd)
3550 {
3551 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3552 }
3553
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3554 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3555 struct eventfd_ctx *eventfd, const char *args)
3556 {
3557 struct mem_cgroup_eventfd_list *event;
3558
3559 event = kmalloc(sizeof(*event), GFP_KERNEL);
3560 if (!event)
3561 return -ENOMEM;
3562
3563 spin_lock(&memcg_oom_lock);
3564
3565 event->eventfd = eventfd;
3566 list_add(&event->list, &memcg->oom_notify);
3567
3568 /* already in OOM ? */
3569 if (memcg->under_oom)
3570 eventfd_signal(eventfd, 1);
3571 spin_unlock(&memcg_oom_lock);
3572
3573 return 0;
3574 }
3575
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3576 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3577 struct eventfd_ctx *eventfd)
3578 {
3579 struct mem_cgroup_eventfd_list *ev, *tmp;
3580
3581 spin_lock(&memcg_oom_lock);
3582
3583 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3584 if (ev->eventfd == eventfd) {
3585 list_del(&ev->list);
3586 kfree(ev);
3587 }
3588 }
3589
3590 spin_unlock(&memcg_oom_lock);
3591 }
3592
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)3593 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3594 {
3595 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3596
3597 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3598 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3599 return 0;
3600 }
3601
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3602 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3603 struct cftype *cft, u64 val)
3604 {
3605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606
3607 /* cannot set to root cgroup and only 0 and 1 are allowed */
3608 if (!css->parent || !((val == 0) || (val == 1)))
3609 return -EINVAL;
3610
3611 memcg->oom_kill_disable = val;
3612 if (!val)
3613 memcg_oom_recover(memcg);
3614
3615 return 0;
3616 }
3617
3618 #ifdef CONFIG_MEMCG_KMEM
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)3619 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3620 {
3621 int ret;
3622
3623 ret = memcg_propagate_kmem(memcg);
3624 if (ret)
3625 return ret;
3626
3627 return mem_cgroup_sockets_init(memcg, ss);
3628 }
3629
memcg_deactivate_kmem(struct mem_cgroup * memcg)3630 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3631 {
3632 struct cgroup_subsys_state *css;
3633 struct mem_cgroup *parent, *child;
3634 int kmemcg_id;
3635
3636 if (!memcg->kmem_acct_active)
3637 return;
3638
3639 /*
3640 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3641 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3642 * guarantees no cache will be created for this cgroup after we are
3643 * done (see memcg_create_kmem_cache()).
3644 */
3645 memcg->kmem_acct_active = false;
3646
3647 memcg_deactivate_kmem_caches(memcg);
3648
3649 kmemcg_id = memcg->kmemcg_id;
3650 BUG_ON(kmemcg_id < 0);
3651
3652 parent = parent_mem_cgroup(memcg);
3653 if (!parent)
3654 parent = root_mem_cgroup;
3655
3656 /*
3657 * Change kmemcg_id of this cgroup and all its descendants to the
3658 * parent's id, and then move all entries from this cgroup's list_lrus
3659 * to ones of the parent. After we have finished, all list_lrus
3660 * corresponding to this cgroup are guaranteed to remain empty. The
3661 * ordering is imposed by list_lru_node->lock taken by
3662 * memcg_drain_all_list_lrus().
3663 */
3664 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3665 css_for_each_descendant_pre(css, &memcg->css) {
3666 child = mem_cgroup_from_css(css);
3667 BUG_ON(child->kmemcg_id != kmemcg_id);
3668 child->kmemcg_id = parent->kmemcg_id;
3669 if (!memcg->use_hierarchy)
3670 break;
3671 }
3672 rcu_read_unlock();
3673
3674 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3675
3676 memcg_free_cache_id(kmemcg_id);
3677 }
3678
memcg_destroy_kmem(struct mem_cgroup * memcg)3679 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3680 {
3681 if (memcg->kmem_acct_activated) {
3682 memcg_destroy_kmem_caches(memcg);
3683 static_key_slow_dec(&memcg_kmem_enabled_key);
3684 WARN_ON(page_counter_read(&memcg->kmem));
3685 }
3686 mem_cgroup_sockets_destroy(memcg);
3687 }
3688 #else
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)3689 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3690 {
3691 return 0;
3692 }
3693
memcg_deactivate_kmem(struct mem_cgroup * memcg)3694 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3695 {
3696 }
3697
memcg_destroy_kmem(struct mem_cgroup * memcg)3698 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3699 {
3700 }
3701 #endif
3702
3703 #ifdef CONFIG_CGROUP_WRITEBACK
3704
mem_cgroup_cgwb_list(struct mem_cgroup * memcg)3705 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3706 {
3707 return &memcg->cgwb_list;
3708 }
3709
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3710 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3711 {
3712 return wb_domain_init(&memcg->cgwb_domain, gfp);
3713 }
3714
memcg_wb_domain_exit(struct mem_cgroup * memcg)3715 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3716 {
3717 wb_domain_exit(&memcg->cgwb_domain);
3718 }
3719
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3720 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3721 {
3722 wb_domain_size_changed(&memcg->cgwb_domain);
3723 }
3724
mem_cgroup_wb_domain(struct bdi_writeback * wb)3725 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3726 {
3727 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3728
3729 if (!memcg->css.parent)
3730 return NULL;
3731
3732 return &memcg->cgwb_domain;
3733 }
3734
3735 /**
3736 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3737 * @wb: bdi_writeback in question
3738 * @pfilepages: out parameter for number of file pages
3739 * @pheadroom: out parameter for number of allocatable pages according to memcg
3740 * @pdirty: out parameter for number of dirty pages
3741 * @pwriteback: out parameter for number of pages under writeback
3742 *
3743 * Determine the numbers of file, headroom, dirty, and writeback pages in
3744 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3745 * is a bit more involved.
3746 *
3747 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3748 * headroom is calculated as the lowest headroom of itself and the
3749 * ancestors. Note that this doesn't consider the actual amount of
3750 * available memory in the system. The caller should further cap
3751 * *@pheadroom accordingly.
3752 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3753 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3754 unsigned long *pheadroom, unsigned long *pdirty,
3755 unsigned long *pwriteback)
3756 {
3757 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3758 struct mem_cgroup *parent;
3759
3760 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3761
3762 /* this should eventually include NR_UNSTABLE_NFS */
3763 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3764 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3765 (1 << LRU_ACTIVE_FILE));
3766 *pheadroom = PAGE_COUNTER_MAX;
3767
3768 while ((parent = parent_mem_cgroup(memcg))) {
3769 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3770 unsigned long used = page_counter_read(&memcg->memory);
3771
3772 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3773 memcg = parent;
3774 }
3775 }
3776
3777 #else /* CONFIG_CGROUP_WRITEBACK */
3778
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3779 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3780 {
3781 return 0;
3782 }
3783
memcg_wb_domain_exit(struct mem_cgroup * memcg)3784 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3785 {
3786 }
3787
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3788 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3789 {
3790 }
3791
3792 #endif /* CONFIG_CGROUP_WRITEBACK */
3793
3794 /*
3795 * DO NOT USE IN NEW FILES.
3796 *
3797 * "cgroup.event_control" implementation.
3798 *
3799 * This is way over-engineered. It tries to support fully configurable
3800 * events for each user. Such level of flexibility is completely
3801 * unnecessary especially in the light of the planned unified hierarchy.
3802 *
3803 * Please deprecate this and replace with something simpler if at all
3804 * possible.
3805 */
3806
3807 /*
3808 * Unregister event and free resources.
3809 *
3810 * Gets called from workqueue.
3811 */
memcg_event_remove(struct work_struct * work)3812 static void memcg_event_remove(struct work_struct *work)
3813 {
3814 struct mem_cgroup_event *event =
3815 container_of(work, struct mem_cgroup_event, remove);
3816 struct mem_cgroup *memcg = event->memcg;
3817
3818 remove_wait_queue(event->wqh, &event->wait);
3819
3820 event->unregister_event(memcg, event->eventfd);
3821
3822 /* Notify userspace the event is going away. */
3823 eventfd_signal(event->eventfd, 1);
3824
3825 eventfd_ctx_put(event->eventfd);
3826 kfree(event);
3827 css_put(&memcg->css);
3828 }
3829
3830 /*
3831 * Gets called on POLLHUP on eventfd when user closes it.
3832 *
3833 * Called with wqh->lock held and interrupts disabled.
3834 */
memcg_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3835 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3836 int sync, void *key)
3837 {
3838 struct mem_cgroup_event *event =
3839 container_of(wait, struct mem_cgroup_event, wait);
3840 struct mem_cgroup *memcg = event->memcg;
3841 unsigned long flags = (unsigned long)key;
3842
3843 if (flags & POLLHUP) {
3844 /*
3845 * If the event has been detached at cgroup removal, we
3846 * can simply return knowing the other side will cleanup
3847 * for us.
3848 *
3849 * We can't race against event freeing since the other
3850 * side will require wqh->lock via remove_wait_queue(),
3851 * which we hold.
3852 */
3853 spin_lock(&memcg->event_list_lock);
3854 if (!list_empty(&event->list)) {
3855 list_del_init(&event->list);
3856 /*
3857 * We are in atomic context, but cgroup_event_remove()
3858 * may sleep, so we have to call it in workqueue.
3859 */
3860 schedule_work(&event->remove);
3861 }
3862 spin_unlock(&memcg->event_list_lock);
3863 }
3864
3865 return 0;
3866 }
3867
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3868 static void memcg_event_ptable_queue_proc(struct file *file,
3869 wait_queue_head_t *wqh, poll_table *pt)
3870 {
3871 struct mem_cgroup_event *event =
3872 container_of(pt, struct mem_cgroup_event, pt);
3873
3874 event->wqh = wqh;
3875 add_wait_queue(wqh, &event->wait);
3876 }
3877
3878 /*
3879 * DO NOT USE IN NEW FILES.
3880 *
3881 * Parse input and register new cgroup event handler.
3882 *
3883 * Input must be in format '<event_fd> <control_fd> <args>'.
3884 * Interpretation of args is defined by control file implementation.
3885 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3886 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3887 char *buf, size_t nbytes, loff_t off)
3888 {
3889 struct cgroup_subsys_state *css = of_css(of);
3890 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3891 struct mem_cgroup_event *event;
3892 struct cgroup_subsys_state *cfile_css;
3893 unsigned int efd, cfd;
3894 struct fd efile;
3895 struct fd cfile;
3896 const char *name;
3897 char *endp;
3898 int ret;
3899
3900 buf = strstrip(buf);
3901
3902 efd = simple_strtoul(buf, &endp, 10);
3903 if (*endp != ' ')
3904 return -EINVAL;
3905 buf = endp + 1;
3906
3907 cfd = simple_strtoul(buf, &endp, 10);
3908 if ((*endp != ' ') && (*endp != '\0'))
3909 return -EINVAL;
3910 buf = endp + 1;
3911
3912 event = kzalloc(sizeof(*event), GFP_KERNEL);
3913 if (!event)
3914 return -ENOMEM;
3915
3916 event->memcg = memcg;
3917 INIT_LIST_HEAD(&event->list);
3918 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3919 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3920 INIT_WORK(&event->remove, memcg_event_remove);
3921
3922 efile = fdget(efd);
3923 if (!efile.file) {
3924 ret = -EBADF;
3925 goto out_kfree;
3926 }
3927
3928 event->eventfd = eventfd_ctx_fileget(efile.file);
3929 if (IS_ERR(event->eventfd)) {
3930 ret = PTR_ERR(event->eventfd);
3931 goto out_put_efile;
3932 }
3933
3934 cfile = fdget(cfd);
3935 if (!cfile.file) {
3936 ret = -EBADF;
3937 goto out_put_eventfd;
3938 }
3939
3940 /* the process need read permission on control file */
3941 /* AV: shouldn't we check that it's been opened for read instead? */
3942 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3943 if (ret < 0)
3944 goto out_put_cfile;
3945
3946 /*
3947 * Determine the event callbacks and set them in @event. This used
3948 * to be done via struct cftype but cgroup core no longer knows
3949 * about these events. The following is crude but the whole thing
3950 * is for compatibility anyway.
3951 *
3952 * DO NOT ADD NEW FILES.
3953 */
3954 name = cfile.file->f_path.dentry->d_name.name;
3955
3956 if (!strcmp(name, "memory.usage_in_bytes")) {
3957 event->register_event = mem_cgroup_usage_register_event;
3958 event->unregister_event = mem_cgroup_usage_unregister_event;
3959 } else if (!strcmp(name, "memory.oom_control")) {
3960 event->register_event = mem_cgroup_oom_register_event;
3961 event->unregister_event = mem_cgroup_oom_unregister_event;
3962 } else if (!strcmp(name, "memory.pressure_level")) {
3963 event->register_event = vmpressure_register_event;
3964 event->unregister_event = vmpressure_unregister_event;
3965 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3966 event->register_event = memsw_cgroup_usage_register_event;
3967 event->unregister_event = memsw_cgroup_usage_unregister_event;
3968 } else {
3969 ret = -EINVAL;
3970 goto out_put_cfile;
3971 }
3972
3973 /*
3974 * Verify @cfile should belong to @css. Also, remaining events are
3975 * automatically removed on cgroup destruction but the removal is
3976 * asynchronous, so take an extra ref on @css.
3977 */
3978 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3979 &memory_cgrp_subsys);
3980 ret = -EINVAL;
3981 if (IS_ERR(cfile_css))
3982 goto out_put_cfile;
3983 if (cfile_css != css) {
3984 css_put(cfile_css);
3985 goto out_put_cfile;
3986 }
3987
3988 ret = event->register_event(memcg, event->eventfd, buf);
3989 if (ret)
3990 goto out_put_css;
3991
3992 efile.file->f_op->poll(efile.file, &event->pt);
3993
3994 spin_lock(&memcg->event_list_lock);
3995 list_add(&event->list, &memcg->event_list);
3996 spin_unlock(&memcg->event_list_lock);
3997
3998 fdput(cfile);
3999 fdput(efile);
4000
4001 return nbytes;
4002
4003 out_put_css:
4004 css_put(css);
4005 out_put_cfile:
4006 fdput(cfile);
4007 out_put_eventfd:
4008 eventfd_ctx_put(event->eventfd);
4009 out_put_efile:
4010 fdput(efile);
4011 out_kfree:
4012 kfree(event);
4013
4014 return ret;
4015 }
4016
4017 static struct cftype mem_cgroup_legacy_files[] = {
4018 {
4019 .name = "usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "max_usage_in_bytes",
4025 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "limit_in_bytes",
4031 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4032 .write = mem_cgroup_write,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 {
4036 .name = "soft_limit_in_bytes",
4037 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4038 .write = mem_cgroup_write,
4039 .read_u64 = mem_cgroup_read_u64,
4040 },
4041 {
4042 .name = "failcnt",
4043 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4044 .write = mem_cgroup_reset,
4045 .read_u64 = mem_cgroup_read_u64,
4046 },
4047 {
4048 .name = "stat",
4049 .seq_show = memcg_stat_show,
4050 },
4051 {
4052 .name = "force_empty",
4053 .write = mem_cgroup_force_empty_write,
4054 },
4055 {
4056 .name = "use_hierarchy",
4057 .write_u64 = mem_cgroup_hierarchy_write,
4058 .read_u64 = mem_cgroup_hierarchy_read,
4059 },
4060 {
4061 .name = "cgroup.event_control", /* XXX: for compat */
4062 .write = memcg_write_event_control,
4063 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4064 },
4065 {
4066 .name = "swappiness",
4067 .read_u64 = mem_cgroup_swappiness_read,
4068 .write_u64 = mem_cgroup_swappiness_write,
4069 },
4070 {
4071 .name = "move_charge_at_immigrate",
4072 .read_u64 = mem_cgroup_move_charge_read,
4073 .write_u64 = mem_cgroup_move_charge_write,
4074 },
4075 {
4076 .name = "oom_control",
4077 .seq_show = mem_cgroup_oom_control_read,
4078 .write_u64 = mem_cgroup_oom_control_write,
4079 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4080 },
4081 {
4082 .name = "pressure_level",
4083 },
4084 #ifdef CONFIG_NUMA
4085 {
4086 .name = "numa_stat",
4087 .seq_show = memcg_numa_stat_show,
4088 },
4089 #endif
4090 #ifdef CONFIG_MEMCG_KMEM
4091 {
4092 .name = "kmem.limit_in_bytes",
4093 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4094 .write = mem_cgroup_write,
4095 .read_u64 = mem_cgroup_read_u64,
4096 },
4097 {
4098 .name = "kmem.usage_in_bytes",
4099 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4100 .read_u64 = mem_cgroup_read_u64,
4101 },
4102 {
4103 .name = "kmem.failcnt",
4104 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4105 .write = mem_cgroup_reset,
4106 .read_u64 = mem_cgroup_read_u64,
4107 },
4108 {
4109 .name = "kmem.max_usage_in_bytes",
4110 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4111 .write = mem_cgroup_reset,
4112 .read_u64 = mem_cgroup_read_u64,
4113 },
4114 #ifdef CONFIG_SLABINFO
4115 {
4116 .name = "kmem.slabinfo",
4117 .seq_start = slab_start,
4118 .seq_next = slab_next,
4119 .seq_stop = slab_stop,
4120 .seq_show = memcg_slab_show,
4121 },
4122 #endif
4123 #endif
4124 { }, /* terminate */
4125 };
4126
alloc_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4127 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4128 {
4129 struct mem_cgroup_per_node *pn;
4130 struct mem_cgroup_per_zone *mz;
4131 int zone, tmp = node;
4132 /*
4133 * This routine is called against possible nodes.
4134 * But it's BUG to call kmalloc() against offline node.
4135 *
4136 * TODO: this routine can waste much memory for nodes which will
4137 * never be onlined. It's better to use memory hotplug callback
4138 * function.
4139 */
4140 if (!node_state(node, N_NORMAL_MEMORY))
4141 tmp = -1;
4142 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4143 if (!pn)
4144 return 1;
4145
4146 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4147 mz = &pn->zoneinfo[zone];
4148 lruvec_init(&mz->lruvec);
4149 mz->usage_in_excess = 0;
4150 mz->on_tree = false;
4151 mz->memcg = memcg;
4152 }
4153 memcg->nodeinfo[node] = pn;
4154 return 0;
4155 }
4156
free_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4157 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4158 {
4159 kfree(memcg->nodeinfo[node]);
4160 }
4161
mem_cgroup_alloc(void)4162 static struct mem_cgroup *mem_cgroup_alloc(void)
4163 {
4164 struct mem_cgroup *memcg;
4165 size_t size;
4166
4167 size = sizeof(struct mem_cgroup);
4168 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4169
4170 memcg = kzalloc(size, GFP_KERNEL);
4171 if (!memcg)
4172 return NULL;
4173
4174 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175 if (!memcg->stat)
4176 goto out_free;
4177
4178 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4179 goto out_free_stat;
4180
4181 return memcg;
4182
4183 out_free_stat:
4184 free_percpu(memcg->stat);
4185 out_free:
4186 kfree(memcg);
4187 return NULL;
4188 }
4189
4190 /*
4191 * At destroying mem_cgroup, references from swap_cgroup can remain.
4192 * (scanning all at force_empty is too costly...)
4193 *
4194 * Instead of clearing all references at force_empty, we remember
4195 * the number of reference from swap_cgroup and free mem_cgroup when
4196 * it goes down to 0.
4197 *
4198 * Removal of cgroup itself succeeds regardless of refs from swap.
4199 */
4200
__mem_cgroup_free(struct mem_cgroup * memcg)4201 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4202 {
4203 int node;
4204
4205 mem_cgroup_remove_from_trees(memcg);
4206
4207 for_each_node(node)
4208 free_mem_cgroup_per_zone_info(memcg, node);
4209
4210 free_percpu(memcg->stat);
4211 memcg_wb_domain_exit(memcg);
4212 kfree(memcg);
4213 }
4214
4215 /*
4216 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4217 */
parent_mem_cgroup(struct mem_cgroup * memcg)4218 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4219 {
4220 if (!memcg->memory.parent)
4221 return NULL;
4222 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4223 }
4224 EXPORT_SYMBOL(parent_mem_cgroup);
4225
4226 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)4227 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4228 {
4229 struct mem_cgroup *memcg;
4230 long error = -ENOMEM;
4231 int node;
4232
4233 memcg = mem_cgroup_alloc();
4234 if (!memcg)
4235 return ERR_PTR(error);
4236
4237 for_each_node(node)
4238 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4239 goto free_out;
4240
4241 /* root ? */
4242 if (parent_css == NULL) {
4243 root_mem_cgroup = memcg;
4244 mem_cgroup_root_css = &memcg->css;
4245 page_counter_init(&memcg->memory, NULL);
4246 memcg->high = PAGE_COUNTER_MAX;
4247 memcg->soft_limit = PAGE_COUNTER_MAX;
4248 page_counter_init(&memcg->memsw, NULL);
4249 page_counter_init(&memcg->kmem, NULL);
4250 }
4251
4252 memcg->last_scanned_node = MAX_NUMNODES;
4253 INIT_LIST_HEAD(&memcg->oom_notify);
4254 memcg->move_charge_at_immigrate = 0;
4255 mutex_init(&memcg->thresholds_lock);
4256 spin_lock_init(&memcg->move_lock);
4257 vmpressure_init(&memcg->vmpressure);
4258 INIT_LIST_HEAD(&memcg->event_list);
4259 spin_lock_init(&memcg->event_list_lock);
4260 #ifdef CONFIG_MEMCG_KMEM
4261 memcg->kmemcg_id = -1;
4262 #endif
4263 #ifdef CONFIG_CGROUP_WRITEBACK
4264 INIT_LIST_HEAD(&memcg->cgwb_list);
4265 #endif
4266 return &memcg->css;
4267
4268 free_out:
4269 __mem_cgroup_free(memcg);
4270 return ERR_PTR(error);
4271 }
4272
4273 static int
mem_cgroup_css_online(struct cgroup_subsys_state * css)4274 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4275 {
4276 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4277 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4278 int ret;
4279
4280 if (css->id > MEM_CGROUP_ID_MAX)
4281 return -ENOSPC;
4282
4283 if (!parent)
4284 return 0;
4285
4286 mutex_lock(&memcg_create_mutex);
4287
4288 memcg->use_hierarchy = parent->use_hierarchy;
4289 memcg->oom_kill_disable = parent->oom_kill_disable;
4290 memcg->swappiness = mem_cgroup_swappiness(parent);
4291
4292 if (parent->use_hierarchy) {
4293 page_counter_init(&memcg->memory, &parent->memory);
4294 memcg->high = PAGE_COUNTER_MAX;
4295 memcg->soft_limit = PAGE_COUNTER_MAX;
4296 page_counter_init(&memcg->memsw, &parent->memsw);
4297 page_counter_init(&memcg->kmem, &parent->kmem);
4298
4299 /*
4300 * No need to take a reference to the parent because cgroup
4301 * core guarantees its existence.
4302 */
4303 } else {
4304 page_counter_init(&memcg->memory, NULL);
4305 memcg->high = PAGE_COUNTER_MAX;
4306 memcg->soft_limit = PAGE_COUNTER_MAX;
4307 page_counter_init(&memcg->memsw, NULL);
4308 page_counter_init(&memcg->kmem, NULL);
4309 /*
4310 * Deeper hierachy with use_hierarchy == false doesn't make
4311 * much sense so let cgroup subsystem know about this
4312 * unfortunate state in our controller.
4313 */
4314 if (parent != root_mem_cgroup)
4315 memory_cgrp_subsys.broken_hierarchy = true;
4316 }
4317 mutex_unlock(&memcg_create_mutex);
4318
4319 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4320 if (ret)
4321 return ret;
4322
4323 /*
4324 * Make sure the memcg is initialized: mem_cgroup_iter()
4325 * orders reading memcg->initialized against its callers
4326 * reading the memcg members.
4327 */
4328 smp_store_release(&memcg->initialized, 1);
4329
4330 return 0;
4331 }
4332
mem_cgroup_css_offline(struct cgroup_subsys_state * css)4333 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4334 {
4335 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4336 struct mem_cgroup_event *event, *tmp;
4337
4338 /*
4339 * Unregister events and notify userspace.
4340 * Notify userspace about cgroup removing only after rmdir of cgroup
4341 * directory to avoid race between userspace and kernelspace.
4342 */
4343 spin_lock(&memcg->event_list_lock);
4344 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4345 list_del_init(&event->list);
4346 schedule_work(&event->remove);
4347 }
4348 spin_unlock(&memcg->event_list_lock);
4349
4350 vmpressure_cleanup(&memcg->vmpressure);
4351
4352 memcg_deactivate_kmem(memcg);
4353
4354 wb_memcg_offline(memcg);
4355 }
4356
mem_cgroup_css_released(struct cgroup_subsys_state * css)4357 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4358 {
4359 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4360
4361 invalidate_reclaim_iterators(memcg);
4362 }
4363
mem_cgroup_css_free(struct cgroup_subsys_state * css)4364 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4365 {
4366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4367
4368 memcg_destroy_kmem(memcg);
4369 __mem_cgroup_free(memcg);
4370 }
4371
4372 /**
4373 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4374 * @css: the target css
4375 *
4376 * Reset the states of the mem_cgroup associated with @css. This is
4377 * invoked when the userland requests disabling on the default hierarchy
4378 * but the memcg is pinned through dependency. The memcg should stop
4379 * applying policies and should revert to the vanilla state as it may be
4380 * made visible again.
4381 *
4382 * The current implementation only resets the essential configurations.
4383 * This needs to be expanded to cover all the visible parts.
4384 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)4385 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4386 {
4387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388
4389 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4390 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4391 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4392 memcg->low = 0;
4393 memcg->high = PAGE_COUNTER_MAX;
4394 memcg->soft_limit = PAGE_COUNTER_MAX;
4395 memcg_wb_domain_size_changed(memcg);
4396 }
4397
4398 #ifdef CONFIG_MMU
4399 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)4400 static int mem_cgroup_do_precharge(unsigned long count)
4401 {
4402 int ret;
4403
4404 /* Try a single bulk charge without reclaim first, kswapd may wake */
4405 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4406 if (!ret) {
4407 mc.precharge += count;
4408 return ret;
4409 }
4410
4411 /* Try charges one by one with reclaim */
4412 while (count--) {
4413 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4414 if (ret)
4415 return ret;
4416 mc.precharge++;
4417 cond_resched();
4418 }
4419 return 0;
4420 }
4421
4422 /**
4423 * get_mctgt_type - get target type of moving charge
4424 * @vma: the vma the pte to be checked belongs
4425 * @addr: the address corresponding to the pte to be checked
4426 * @ptent: the pte to be checked
4427 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4428 *
4429 * Returns
4430 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4431 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4432 * move charge. if @target is not NULL, the page is stored in target->page
4433 * with extra refcnt got(Callers should handle it).
4434 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4435 * target for charge migration. if @target is not NULL, the entry is stored
4436 * in target->ent.
4437 *
4438 * Called with pte lock held.
4439 */
4440 union mc_target {
4441 struct page *page;
4442 swp_entry_t ent;
4443 };
4444
4445 enum mc_target_type {
4446 MC_TARGET_NONE = 0,
4447 MC_TARGET_PAGE,
4448 MC_TARGET_SWAP,
4449 };
4450
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)4451 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4452 unsigned long addr, pte_t ptent)
4453 {
4454 struct page *page = vm_normal_page(vma, addr, ptent);
4455
4456 if (!page || !page_mapped(page))
4457 return NULL;
4458 if (PageAnon(page)) {
4459 if (!(mc.flags & MOVE_ANON))
4460 return NULL;
4461 } else {
4462 if (!(mc.flags & MOVE_FILE))
4463 return NULL;
4464 }
4465 if (!get_page_unless_zero(page))
4466 return NULL;
4467
4468 return page;
4469 }
4470
4471 #ifdef CONFIG_SWAP
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4472 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4473 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4474 {
4475 struct page *page = NULL;
4476 swp_entry_t ent = pte_to_swp_entry(ptent);
4477
4478 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4479 return NULL;
4480 /*
4481 * Because lookup_swap_cache() updates some statistics counter,
4482 * we call find_get_page() with swapper_space directly.
4483 */
4484 page = find_get_page(swap_address_space(ent), ent.val);
4485 if (do_swap_account)
4486 entry->val = ent.val;
4487
4488 return page;
4489 }
4490 #else
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4491 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4492 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4493 {
4494 return NULL;
4495 }
4496 #endif
4497
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4498 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4499 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4500 {
4501 struct page *page = NULL;
4502 struct address_space *mapping;
4503 pgoff_t pgoff;
4504
4505 if (!vma->vm_file) /* anonymous vma */
4506 return NULL;
4507 if (!(mc.flags & MOVE_FILE))
4508 return NULL;
4509
4510 mapping = vma->vm_file->f_mapping;
4511 pgoff = linear_page_index(vma, addr);
4512
4513 /* page is moved even if it's not RSS of this task(page-faulted). */
4514 #ifdef CONFIG_SWAP
4515 /* shmem/tmpfs may report page out on swap: account for that too. */
4516 if (shmem_mapping(mapping)) {
4517 page = find_get_entry(mapping, pgoff);
4518 if (radix_tree_exceptional_entry(page)) {
4519 swp_entry_t swp = radix_to_swp_entry(page);
4520 if (do_swap_account)
4521 *entry = swp;
4522 page = find_get_page(swap_address_space(swp), swp.val);
4523 }
4524 } else
4525 page = find_get_page(mapping, pgoff);
4526 #else
4527 page = find_get_page(mapping, pgoff);
4528 #endif
4529 return page;
4530 }
4531
4532 /**
4533 * mem_cgroup_move_account - move account of the page
4534 * @page: the page
4535 * @nr_pages: number of regular pages (>1 for huge pages)
4536 * @from: mem_cgroup which the page is moved from.
4537 * @to: mem_cgroup which the page is moved to. @from != @to.
4538 *
4539 * The caller must confirm following.
4540 * - page is not on LRU (isolate_page() is useful.)
4541 * - compound_lock is held when nr_pages > 1
4542 *
4543 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4544 * from old cgroup.
4545 */
mem_cgroup_move_account(struct page * page,unsigned int nr_pages,struct mem_cgroup * from,struct mem_cgroup * to)4546 static int mem_cgroup_move_account(struct page *page,
4547 unsigned int nr_pages,
4548 struct mem_cgroup *from,
4549 struct mem_cgroup *to)
4550 {
4551 unsigned long flags;
4552 int ret;
4553 bool anon;
4554
4555 VM_BUG_ON(from == to);
4556 VM_BUG_ON_PAGE(PageLRU(page), page);
4557 /*
4558 * The page is isolated from LRU. So, collapse function
4559 * will not handle this page. But page splitting can happen.
4560 * Do this check under compound_page_lock(). The caller should
4561 * hold it.
4562 */
4563 ret = -EBUSY;
4564 if (nr_pages > 1 && !PageTransHuge(page))
4565 goto out;
4566
4567 /*
4568 * Prevent mem_cgroup_replace_page() from looking at
4569 * page->mem_cgroup of its source page while we change it.
4570 */
4571 if (!trylock_page(page))
4572 goto out;
4573
4574 ret = -EINVAL;
4575 if (page->mem_cgroup != from)
4576 goto out_unlock;
4577
4578 anon = PageAnon(page);
4579
4580 spin_lock_irqsave(&from->move_lock, flags);
4581
4582 if (!anon && page_mapped(page)) {
4583 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4584 nr_pages);
4585 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4586 nr_pages);
4587 }
4588
4589 /*
4590 * move_lock grabbed above and caller set from->moving_account, so
4591 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4592 * So mapping should be stable for dirty pages.
4593 */
4594 if (!anon && PageDirty(page)) {
4595 struct address_space *mapping = page_mapping(page);
4596
4597 if (mapping_cap_account_dirty(mapping)) {
4598 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4599 nr_pages);
4600 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4601 nr_pages);
4602 }
4603 }
4604
4605 if (PageWriteback(page)) {
4606 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4607 nr_pages);
4608 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4609 nr_pages);
4610 }
4611
4612 /*
4613 * It is safe to change page->mem_cgroup here because the page
4614 * is referenced, charged, and isolated - we can't race with
4615 * uncharging, charging, migration, or LRU putback.
4616 */
4617
4618 /* caller should have done css_get */
4619 page->mem_cgroup = to;
4620 spin_unlock_irqrestore(&from->move_lock, flags);
4621
4622 ret = 0;
4623
4624 local_irq_disable();
4625 mem_cgroup_charge_statistics(to, page, nr_pages);
4626 memcg_check_events(to, page);
4627 mem_cgroup_charge_statistics(from, page, -nr_pages);
4628 memcg_check_events(from, page);
4629 local_irq_enable();
4630 out_unlock:
4631 unlock_page(page);
4632 out:
4633 return ret;
4634 }
4635
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)4636 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4637 unsigned long addr, pte_t ptent, union mc_target *target)
4638 {
4639 struct page *page = NULL;
4640 enum mc_target_type ret = MC_TARGET_NONE;
4641 swp_entry_t ent = { .val = 0 };
4642
4643 if (pte_present(ptent))
4644 page = mc_handle_present_pte(vma, addr, ptent);
4645 else if (is_swap_pte(ptent))
4646 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4647 else if (pte_none(ptent))
4648 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4649
4650 if (!page && !ent.val)
4651 return ret;
4652 if (page) {
4653 /*
4654 * Do only loose check w/o serialization.
4655 * mem_cgroup_move_account() checks the page is valid or
4656 * not under LRU exclusion.
4657 */
4658 if (page->mem_cgroup == mc.from) {
4659 ret = MC_TARGET_PAGE;
4660 if (target)
4661 target->page = page;
4662 }
4663 if (!ret || !target)
4664 put_page(page);
4665 }
4666 /* There is a swap entry and a page doesn't exist or isn't charged */
4667 if (ent.val && !ret &&
4668 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4669 ret = MC_TARGET_SWAP;
4670 if (target)
4671 target->ent = ent;
4672 }
4673 return ret;
4674 }
4675
4676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4677 /*
4678 * We don't consider swapping or file mapped pages because THP does not
4679 * support them for now.
4680 * Caller should make sure that pmd_trans_huge(pmd) is true.
4681 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4682 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4683 unsigned long addr, pmd_t pmd, union mc_target *target)
4684 {
4685 struct page *page = NULL;
4686 enum mc_target_type ret = MC_TARGET_NONE;
4687
4688 page = pmd_page(pmd);
4689 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4690 if (!(mc.flags & MOVE_ANON))
4691 return ret;
4692 if (page->mem_cgroup == mc.from) {
4693 ret = MC_TARGET_PAGE;
4694 if (target) {
4695 get_page(page);
4696 target->page = page;
4697 }
4698 }
4699 return ret;
4700 }
4701 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4702 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4703 unsigned long addr, pmd_t pmd, union mc_target *target)
4704 {
4705 return MC_TARGET_NONE;
4706 }
4707 #endif
4708
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4709 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4710 unsigned long addr, unsigned long end,
4711 struct mm_walk *walk)
4712 {
4713 struct vm_area_struct *vma = walk->vma;
4714 pte_t *pte;
4715 spinlock_t *ptl;
4716
4717 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4718 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4719 mc.precharge += HPAGE_PMD_NR;
4720 spin_unlock(ptl);
4721 return 0;
4722 }
4723
4724 if (pmd_trans_unstable(pmd))
4725 return 0;
4726 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4727 for (; addr != end; pte++, addr += PAGE_SIZE)
4728 if (get_mctgt_type(vma, addr, *pte, NULL))
4729 mc.precharge++; /* increment precharge temporarily */
4730 pte_unmap_unlock(pte - 1, ptl);
4731 cond_resched();
4732
4733 return 0;
4734 }
4735
mem_cgroup_count_precharge(struct mm_struct * mm)4736 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4737 {
4738 unsigned long precharge;
4739
4740 struct mm_walk mem_cgroup_count_precharge_walk = {
4741 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4742 .mm = mm,
4743 };
4744 down_read(&mm->mmap_sem);
4745 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4746 up_read(&mm->mmap_sem);
4747
4748 precharge = mc.precharge;
4749 mc.precharge = 0;
4750
4751 return precharge;
4752 }
4753
mem_cgroup_precharge_mc(struct mm_struct * mm)4754 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4755 {
4756 unsigned long precharge = mem_cgroup_count_precharge(mm);
4757
4758 VM_BUG_ON(mc.moving_task);
4759 mc.moving_task = current;
4760 return mem_cgroup_do_precharge(precharge);
4761 }
4762
4763 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)4764 static void __mem_cgroup_clear_mc(void)
4765 {
4766 struct mem_cgroup *from = mc.from;
4767 struct mem_cgroup *to = mc.to;
4768
4769 /* we must uncharge all the leftover precharges from mc.to */
4770 if (mc.precharge) {
4771 cancel_charge(mc.to, mc.precharge);
4772 mc.precharge = 0;
4773 }
4774 /*
4775 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4776 * we must uncharge here.
4777 */
4778 if (mc.moved_charge) {
4779 cancel_charge(mc.from, mc.moved_charge);
4780 mc.moved_charge = 0;
4781 }
4782 /* we must fixup refcnts and charges */
4783 if (mc.moved_swap) {
4784 /* uncharge swap account from the old cgroup */
4785 if (!mem_cgroup_is_root(mc.from))
4786 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4787
4788 /*
4789 * we charged both to->memory and to->memsw, so we
4790 * should uncharge to->memory.
4791 */
4792 if (!mem_cgroup_is_root(mc.to))
4793 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4794
4795 css_put_many(&mc.from->css, mc.moved_swap);
4796
4797 /* we've already done css_get(mc.to) */
4798 mc.moved_swap = 0;
4799 }
4800 memcg_oom_recover(from);
4801 memcg_oom_recover(to);
4802 wake_up_all(&mc.waitq);
4803 }
4804
mem_cgroup_clear_mc(void)4805 static void mem_cgroup_clear_mc(void)
4806 {
4807 struct mm_struct *mm = mc.mm;
4808
4809 /*
4810 * we must clear moving_task before waking up waiters at the end of
4811 * task migration.
4812 */
4813 mc.moving_task = NULL;
4814 __mem_cgroup_clear_mc();
4815 spin_lock(&mc.lock);
4816 mc.from = NULL;
4817 mc.to = NULL;
4818 mc.mm = NULL;
4819 spin_unlock(&mc.lock);
4820
4821 mmput(mm);
4822 }
4823
mem_cgroup_can_attach(struct cgroup_taskset * tset)4824 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4825 {
4826 struct cgroup_subsys_state *css;
4827 struct mem_cgroup *memcg;
4828 struct mem_cgroup *from;
4829 struct task_struct *leader, *p;
4830 struct mm_struct *mm;
4831 unsigned long move_flags;
4832 int ret = 0;
4833
4834 /* charge immigration isn't supported on the default hierarchy */
4835 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4836 return 0;
4837
4838 /*
4839 * Multi-process migrations only happen on the default hierarchy
4840 * where charge immigration is not used. Perform charge
4841 * immigration if @tset contains a leader and whine if there are
4842 * multiple.
4843 */
4844 p = NULL;
4845 cgroup_taskset_for_each_leader(leader, css, tset) {
4846 WARN_ON_ONCE(p);
4847 p = leader;
4848 memcg = mem_cgroup_from_css(css);
4849 }
4850 if (!p)
4851 return 0;
4852
4853 /*
4854 * We are now commited to this value whatever it is. Changes in this
4855 * tunable will only affect upcoming migrations, not the current one.
4856 * So we need to save it, and keep it going.
4857 */
4858 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4859 if (!move_flags)
4860 return 0;
4861
4862 from = mem_cgroup_from_task(p);
4863
4864 VM_BUG_ON(from == memcg);
4865
4866 mm = get_task_mm(p);
4867 if (!mm)
4868 return 0;
4869 /* We move charges only when we move a owner of the mm */
4870 if (mm->owner == p) {
4871 VM_BUG_ON(mc.from);
4872 VM_BUG_ON(mc.to);
4873 VM_BUG_ON(mc.precharge);
4874 VM_BUG_ON(mc.moved_charge);
4875 VM_BUG_ON(mc.moved_swap);
4876
4877 spin_lock(&mc.lock);
4878 mc.mm = mm;
4879 mc.from = from;
4880 mc.to = memcg;
4881 mc.flags = move_flags;
4882 spin_unlock(&mc.lock);
4883 /* We set mc.moving_task later */
4884
4885 ret = mem_cgroup_precharge_mc(mm);
4886 if (ret)
4887 mem_cgroup_clear_mc();
4888 } else {
4889 mmput(mm);
4890 }
4891 return ret;
4892 }
4893
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)4894 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4895 {
4896 if (mc.to)
4897 mem_cgroup_clear_mc();
4898 }
4899
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4900 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4901 unsigned long addr, unsigned long end,
4902 struct mm_walk *walk)
4903 {
4904 int ret = 0;
4905 struct vm_area_struct *vma = walk->vma;
4906 pte_t *pte;
4907 spinlock_t *ptl;
4908 enum mc_target_type target_type;
4909 union mc_target target;
4910 struct page *page;
4911
4912 /*
4913 * We don't take compound_lock() here but no race with splitting thp
4914 * happens because:
4915 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4916 * under splitting, which means there's no concurrent thp split,
4917 * - if another thread runs into split_huge_page() just after we
4918 * entered this if-block, the thread must wait for page table lock
4919 * to be unlocked in __split_huge_page_splitting(), where the main
4920 * part of thp split is not executed yet.
4921 */
4922 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4923 if (mc.precharge < HPAGE_PMD_NR) {
4924 spin_unlock(ptl);
4925 return 0;
4926 }
4927 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4928 if (target_type == MC_TARGET_PAGE) {
4929 page = target.page;
4930 if (!isolate_lru_page(page)) {
4931 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4932 mc.from, mc.to)) {
4933 mc.precharge -= HPAGE_PMD_NR;
4934 mc.moved_charge += HPAGE_PMD_NR;
4935 }
4936 putback_lru_page(page);
4937 }
4938 put_page(page);
4939 }
4940 spin_unlock(ptl);
4941 return 0;
4942 }
4943
4944 if (pmd_trans_unstable(pmd))
4945 return 0;
4946 retry:
4947 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4948 for (; addr != end; addr += PAGE_SIZE) {
4949 pte_t ptent = *(pte++);
4950 swp_entry_t ent;
4951
4952 if (!mc.precharge)
4953 break;
4954
4955 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4956 case MC_TARGET_PAGE:
4957 page = target.page;
4958 if (isolate_lru_page(page))
4959 goto put;
4960 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4961 mc.precharge--;
4962 /* we uncharge from mc.from later. */
4963 mc.moved_charge++;
4964 }
4965 putback_lru_page(page);
4966 put: /* get_mctgt_type() gets the page */
4967 put_page(page);
4968 break;
4969 case MC_TARGET_SWAP:
4970 ent = target.ent;
4971 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4972 mc.precharge--;
4973 /* we fixup refcnts and charges later. */
4974 mc.moved_swap++;
4975 }
4976 break;
4977 default:
4978 break;
4979 }
4980 }
4981 pte_unmap_unlock(pte - 1, ptl);
4982 cond_resched();
4983
4984 if (addr != end) {
4985 /*
4986 * We have consumed all precharges we got in can_attach().
4987 * We try charge one by one, but don't do any additional
4988 * charges to mc.to if we have failed in charge once in attach()
4989 * phase.
4990 */
4991 ret = mem_cgroup_do_precharge(1);
4992 if (!ret)
4993 goto retry;
4994 }
4995
4996 return ret;
4997 }
4998
mem_cgroup_move_charge(void)4999 static void mem_cgroup_move_charge(void)
5000 {
5001 struct mm_walk mem_cgroup_move_charge_walk = {
5002 .pmd_entry = mem_cgroup_move_charge_pte_range,
5003 .mm = mc.mm,
5004 };
5005
5006 lru_add_drain_all();
5007 /*
5008 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5009 * move_lock while we're moving its pages to another memcg.
5010 * Then wait for already started RCU-only updates to finish.
5011 */
5012 atomic_inc(&mc.from->moving_account);
5013 synchronize_rcu();
5014 retry:
5015 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5016 /*
5017 * Someone who are holding the mmap_sem might be waiting in
5018 * waitq. So we cancel all extra charges, wake up all waiters,
5019 * and retry. Because we cancel precharges, we might not be able
5020 * to move enough charges, but moving charge is a best-effort
5021 * feature anyway, so it wouldn't be a big problem.
5022 */
5023 __mem_cgroup_clear_mc();
5024 cond_resched();
5025 goto retry;
5026 }
5027 /*
5028 * When we have consumed all precharges and failed in doing
5029 * additional charge, the page walk just aborts.
5030 */
5031 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5032 up_read(&mc.mm->mmap_sem);
5033 atomic_dec(&mc.from->moving_account);
5034 }
5035
mem_cgroup_move_task(void)5036 static void mem_cgroup_move_task(void)
5037 {
5038 if (mc.to) {
5039 mem_cgroup_move_charge();
5040 mem_cgroup_clear_mc();
5041 }
5042 }
5043 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)5044 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5045 {
5046 return 0;
5047 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5048 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5049 {
5050 }
mem_cgroup_move_task(void)5051 static void mem_cgroup_move_task(void)
5052 {
5053 }
5054 #endif
5055
5056 /*
5057 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5058 * to verify whether we're attached to the default hierarchy on each mount
5059 * attempt.
5060 */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)5061 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5062 {
5063 /*
5064 * use_hierarchy is forced on the default hierarchy. cgroup core
5065 * guarantees that @root doesn't have any children, so turning it
5066 * on for the root memcg is enough.
5067 */
5068 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5069 root_mem_cgroup->use_hierarchy = true;
5070 else
5071 root_mem_cgroup->use_hierarchy = false;
5072 }
5073
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5074 static u64 memory_current_read(struct cgroup_subsys_state *css,
5075 struct cftype *cft)
5076 {
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5078
5079 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5080 }
5081
memory_low_show(struct seq_file * m,void * v)5082 static int memory_low_show(struct seq_file *m, void *v)
5083 {
5084 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5085 unsigned long low = READ_ONCE(memcg->low);
5086
5087 if (low == PAGE_COUNTER_MAX)
5088 seq_puts(m, "max\n");
5089 else
5090 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5091
5092 return 0;
5093 }
5094
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5095 static ssize_t memory_low_write(struct kernfs_open_file *of,
5096 char *buf, size_t nbytes, loff_t off)
5097 {
5098 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5099 unsigned long low;
5100 int err;
5101
5102 buf = strstrip(buf);
5103 err = page_counter_memparse(buf, "max", &low);
5104 if (err)
5105 return err;
5106
5107 memcg->low = low;
5108
5109 return nbytes;
5110 }
5111
memory_high_show(struct seq_file * m,void * v)5112 static int memory_high_show(struct seq_file *m, void *v)
5113 {
5114 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5115 unsigned long high = READ_ONCE(memcg->high);
5116
5117 if (high == PAGE_COUNTER_MAX)
5118 seq_puts(m, "max\n");
5119 else
5120 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5121
5122 return 0;
5123 }
5124
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5125 static ssize_t memory_high_write(struct kernfs_open_file *of,
5126 char *buf, size_t nbytes, loff_t off)
5127 {
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5129 unsigned long nr_pages;
5130 unsigned long high;
5131 int err;
5132
5133 buf = strstrip(buf);
5134 err = page_counter_memparse(buf, "max", &high);
5135 if (err)
5136 return err;
5137
5138 memcg->high = high;
5139
5140 nr_pages = page_counter_read(&memcg->memory);
5141 if (nr_pages > high)
5142 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5143 GFP_KERNEL, true);
5144
5145 memcg_wb_domain_size_changed(memcg);
5146 return nbytes;
5147 }
5148
memory_max_show(struct seq_file * m,void * v)5149 static int memory_max_show(struct seq_file *m, void *v)
5150 {
5151 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5152 unsigned long max = READ_ONCE(memcg->memory.limit);
5153
5154 if (max == PAGE_COUNTER_MAX)
5155 seq_puts(m, "max\n");
5156 else
5157 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5158
5159 return 0;
5160 }
5161
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5162 static ssize_t memory_max_write(struct kernfs_open_file *of,
5163 char *buf, size_t nbytes, loff_t off)
5164 {
5165 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5166 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5167 bool drained = false;
5168 unsigned long max;
5169 int err;
5170
5171 buf = strstrip(buf);
5172 err = page_counter_memparse(buf, "max", &max);
5173 if (err)
5174 return err;
5175
5176 xchg(&memcg->memory.limit, max);
5177
5178 for (;;) {
5179 unsigned long nr_pages = page_counter_read(&memcg->memory);
5180
5181 if (nr_pages <= max)
5182 break;
5183
5184 if (signal_pending(current)) {
5185 err = -EINTR;
5186 break;
5187 }
5188
5189 if (!drained) {
5190 drain_all_stock(memcg);
5191 drained = true;
5192 continue;
5193 }
5194
5195 if (nr_reclaims) {
5196 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5197 GFP_KERNEL, true))
5198 nr_reclaims--;
5199 continue;
5200 }
5201
5202 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5203 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5204 break;
5205 }
5206
5207 memcg_wb_domain_size_changed(memcg);
5208 return nbytes;
5209 }
5210
memory_events_show(struct seq_file * m,void * v)5211 static int memory_events_show(struct seq_file *m, void *v)
5212 {
5213 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5214
5215 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5216 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5217 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5218 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5219
5220 return 0;
5221 }
5222
5223 static struct cftype memory_files[] = {
5224 {
5225 .name = "current",
5226 .flags = CFTYPE_NOT_ON_ROOT,
5227 .read_u64 = memory_current_read,
5228 },
5229 {
5230 .name = "low",
5231 .flags = CFTYPE_NOT_ON_ROOT,
5232 .seq_show = memory_low_show,
5233 .write = memory_low_write,
5234 },
5235 {
5236 .name = "high",
5237 .flags = CFTYPE_NOT_ON_ROOT,
5238 .seq_show = memory_high_show,
5239 .write = memory_high_write,
5240 },
5241 {
5242 .name = "max",
5243 .flags = CFTYPE_NOT_ON_ROOT,
5244 .seq_show = memory_max_show,
5245 .write = memory_max_write,
5246 },
5247 {
5248 .name = "events",
5249 .flags = CFTYPE_NOT_ON_ROOT,
5250 .file_offset = offsetof(struct mem_cgroup, events_file),
5251 .seq_show = memory_events_show,
5252 },
5253 { } /* terminate */
5254 };
5255
5256 struct cgroup_subsys memory_cgrp_subsys = {
5257 .css_alloc = mem_cgroup_css_alloc,
5258 .css_online = mem_cgroup_css_online,
5259 .css_offline = mem_cgroup_css_offline,
5260 .css_released = mem_cgroup_css_released,
5261 .css_free = mem_cgroup_css_free,
5262 .css_reset = mem_cgroup_css_reset,
5263 .can_attach = mem_cgroup_can_attach,
5264 .cancel_attach = mem_cgroup_cancel_attach,
5265 .post_attach = mem_cgroup_move_task,
5266 .bind = mem_cgroup_bind,
5267 .dfl_cftypes = memory_files,
5268 .legacy_cftypes = mem_cgroup_legacy_files,
5269 .early_init = 0,
5270 };
5271
5272 /**
5273 * mem_cgroup_low - check if memory consumption is below the normal range
5274 * @root: the highest ancestor to consider
5275 * @memcg: the memory cgroup to check
5276 *
5277 * Returns %true if memory consumption of @memcg, and that of all
5278 * configurable ancestors up to @root, is below the normal range.
5279 */
mem_cgroup_low(struct mem_cgroup * root,struct mem_cgroup * memcg)5280 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5281 {
5282 if (mem_cgroup_disabled())
5283 return false;
5284
5285 /*
5286 * The toplevel group doesn't have a configurable range, so
5287 * it's never low when looked at directly, and it is not
5288 * considered an ancestor when assessing the hierarchy.
5289 */
5290
5291 if (memcg == root_mem_cgroup)
5292 return false;
5293
5294 if (page_counter_read(&memcg->memory) >= memcg->low)
5295 return false;
5296
5297 while (memcg != root) {
5298 memcg = parent_mem_cgroup(memcg);
5299
5300 if (memcg == root_mem_cgroup)
5301 break;
5302
5303 if (page_counter_read(&memcg->memory) >= memcg->low)
5304 return false;
5305 }
5306 return true;
5307 }
5308
5309 /**
5310 * mem_cgroup_try_charge - try charging a page
5311 * @page: page to charge
5312 * @mm: mm context of the victim
5313 * @gfp_mask: reclaim mode
5314 * @memcgp: charged memcg return
5315 *
5316 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5317 * pages according to @gfp_mask if necessary.
5318 *
5319 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5320 * Otherwise, an error code is returned.
5321 *
5322 * After page->mapping has been set up, the caller must finalize the
5323 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5324 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5325 */
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp)5326 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5327 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5328 {
5329 struct mem_cgroup *memcg = NULL;
5330 unsigned int nr_pages = 1;
5331 int ret = 0;
5332
5333 if (mem_cgroup_disabled())
5334 goto out;
5335
5336 if (PageSwapCache(page)) {
5337 /*
5338 * Every swap fault against a single page tries to charge the
5339 * page, bail as early as possible. shmem_unuse() encounters
5340 * already charged pages, too. The USED bit is protected by
5341 * the page lock, which serializes swap cache removal, which
5342 * in turn serializes uncharging.
5343 */
5344 VM_BUG_ON_PAGE(!PageLocked(page), page);
5345 if (page->mem_cgroup)
5346 goto out;
5347
5348 if (do_swap_account) {
5349 swp_entry_t ent = { .val = page_private(page), };
5350 unsigned short id = lookup_swap_cgroup_id(ent);
5351
5352 rcu_read_lock();
5353 memcg = mem_cgroup_from_id(id);
5354 if (memcg && !css_tryget_online(&memcg->css))
5355 memcg = NULL;
5356 rcu_read_unlock();
5357 }
5358 }
5359
5360 if (PageTransHuge(page)) {
5361 nr_pages <<= compound_order(page);
5362 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5363 }
5364
5365 if (!memcg)
5366 memcg = get_mem_cgroup_from_mm(mm);
5367
5368 ret = try_charge(memcg, gfp_mask, nr_pages);
5369
5370 css_put(&memcg->css);
5371 out:
5372 *memcgp = memcg;
5373 return ret;
5374 }
5375
5376 /**
5377 * mem_cgroup_commit_charge - commit a page charge
5378 * @page: page to charge
5379 * @memcg: memcg to charge the page to
5380 * @lrucare: page might be on LRU already
5381 *
5382 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5383 * after page->mapping has been set up. This must happen atomically
5384 * as part of the page instantiation, i.e. under the page table lock
5385 * for anonymous pages, under the page lock for page and swap cache.
5386 *
5387 * In addition, the page must not be on the LRU during the commit, to
5388 * prevent racing with task migration. If it might be, use @lrucare.
5389 *
5390 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5391 */
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)5392 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5393 bool lrucare)
5394 {
5395 unsigned int nr_pages = 1;
5396
5397 VM_BUG_ON_PAGE(!page->mapping, page);
5398 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5399
5400 if (mem_cgroup_disabled())
5401 return;
5402 /*
5403 * Swap faults will attempt to charge the same page multiple
5404 * times. But reuse_swap_page() might have removed the page
5405 * from swapcache already, so we can't check PageSwapCache().
5406 */
5407 if (!memcg)
5408 return;
5409
5410 commit_charge(page, memcg, lrucare);
5411
5412 if (PageTransHuge(page)) {
5413 nr_pages <<= compound_order(page);
5414 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5415 }
5416
5417 local_irq_disable();
5418 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5419 memcg_check_events(memcg, page);
5420 local_irq_enable();
5421
5422 if (do_swap_account && PageSwapCache(page)) {
5423 swp_entry_t entry = { .val = page_private(page) };
5424 /*
5425 * The swap entry might not get freed for a long time,
5426 * let's not wait for it. The page already received a
5427 * memory+swap charge, drop the swap entry duplicate.
5428 */
5429 mem_cgroup_uncharge_swap(entry);
5430 }
5431 }
5432
5433 /**
5434 * mem_cgroup_cancel_charge - cancel a page charge
5435 * @page: page to charge
5436 * @memcg: memcg to charge the page to
5437 *
5438 * Cancel a charge transaction started by mem_cgroup_try_charge().
5439 */
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg)5440 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5441 {
5442 unsigned int nr_pages = 1;
5443
5444 if (mem_cgroup_disabled())
5445 return;
5446 /*
5447 * Swap faults will attempt to charge the same page multiple
5448 * times. But reuse_swap_page() might have removed the page
5449 * from swapcache already, so we can't check PageSwapCache().
5450 */
5451 if (!memcg)
5452 return;
5453
5454 if (PageTransHuge(page)) {
5455 nr_pages <<= compound_order(page);
5456 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5457 }
5458
5459 cancel_charge(memcg, nr_pages);
5460 }
5461
uncharge_batch(struct mem_cgroup * memcg,unsigned long pgpgout,unsigned long nr_anon,unsigned long nr_file,unsigned long nr_huge,struct page * dummy_page)5462 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5463 unsigned long nr_anon, unsigned long nr_file,
5464 unsigned long nr_huge, struct page *dummy_page)
5465 {
5466 unsigned long nr_pages = nr_anon + nr_file;
5467 unsigned long flags;
5468
5469 if (!mem_cgroup_is_root(memcg)) {
5470 page_counter_uncharge(&memcg->memory, nr_pages);
5471 if (do_swap_account)
5472 page_counter_uncharge(&memcg->memsw, nr_pages);
5473 memcg_oom_recover(memcg);
5474 }
5475
5476 local_irq_save(flags);
5477 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5478 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5479 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5480 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5481 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5482 memcg_check_events(memcg, dummy_page);
5483 local_irq_restore(flags);
5484
5485 if (!mem_cgroup_is_root(memcg))
5486 css_put_many(&memcg->css, nr_pages);
5487 }
5488
uncharge_list(struct list_head * page_list)5489 static void uncharge_list(struct list_head *page_list)
5490 {
5491 struct mem_cgroup *memcg = NULL;
5492 unsigned long nr_anon = 0;
5493 unsigned long nr_file = 0;
5494 unsigned long nr_huge = 0;
5495 unsigned long pgpgout = 0;
5496 struct list_head *next;
5497 struct page *page;
5498
5499 next = page_list->next;
5500 do {
5501 unsigned int nr_pages = 1;
5502
5503 page = list_entry(next, struct page, lru);
5504 next = page->lru.next;
5505
5506 VM_BUG_ON_PAGE(PageLRU(page), page);
5507 VM_BUG_ON_PAGE(page_count(page), page);
5508
5509 if (!page->mem_cgroup)
5510 continue;
5511
5512 /*
5513 * Nobody should be changing or seriously looking at
5514 * page->mem_cgroup at this point, we have fully
5515 * exclusive access to the page.
5516 */
5517
5518 if (memcg != page->mem_cgroup) {
5519 if (memcg) {
5520 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5521 nr_huge, page);
5522 pgpgout = nr_anon = nr_file = nr_huge = 0;
5523 }
5524 memcg = page->mem_cgroup;
5525 }
5526
5527 if (PageTransHuge(page)) {
5528 nr_pages <<= compound_order(page);
5529 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5530 nr_huge += nr_pages;
5531 }
5532
5533 if (PageAnon(page))
5534 nr_anon += nr_pages;
5535 else
5536 nr_file += nr_pages;
5537
5538 page->mem_cgroup = NULL;
5539
5540 pgpgout++;
5541 } while (next != page_list);
5542
5543 if (memcg)
5544 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5545 nr_huge, page);
5546 }
5547
5548 /**
5549 * mem_cgroup_uncharge - uncharge a page
5550 * @page: page to uncharge
5551 *
5552 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5553 * mem_cgroup_commit_charge().
5554 */
mem_cgroup_uncharge(struct page * page)5555 void mem_cgroup_uncharge(struct page *page)
5556 {
5557 if (mem_cgroup_disabled())
5558 return;
5559
5560 /* Don't touch page->lru of any random page, pre-check: */
5561 if (!page->mem_cgroup)
5562 return;
5563
5564 INIT_LIST_HEAD(&page->lru);
5565 uncharge_list(&page->lru);
5566 }
5567
5568 /**
5569 * mem_cgroup_uncharge_list - uncharge a list of page
5570 * @page_list: list of pages to uncharge
5571 *
5572 * Uncharge a list of pages previously charged with
5573 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5574 */
mem_cgroup_uncharge_list(struct list_head * page_list)5575 void mem_cgroup_uncharge_list(struct list_head *page_list)
5576 {
5577 if (mem_cgroup_disabled())
5578 return;
5579
5580 if (!list_empty(page_list))
5581 uncharge_list(page_list);
5582 }
5583
5584 /**
5585 * mem_cgroup_replace_page - migrate a charge to another page
5586 * @oldpage: currently charged page
5587 * @newpage: page to transfer the charge to
5588 *
5589 * Migrate the charge from @oldpage to @newpage.
5590 *
5591 * Both pages must be locked, @newpage->mapping must be set up.
5592 * Either or both pages might be on the LRU already.
5593 */
mem_cgroup_replace_page(struct page * oldpage,struct page * newpage)5594 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5595 {
5596 struct mem_cgroup *memcg;
5597 int isolated;
5598
5599 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5600 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5601 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5602 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5603 newpage);
5604
5605 if (mem_cgroup_disabled())
5606 return;
5607
5608 /* Page cache replacement: new page already charged? */
5609 if (newpage->mem_cgroup)
5610 return;
5611
5612 /* Swapcache readahead pages can get replaced before being charged */
5613 memcg = oldpage->mem_cgroup;
5614 if (!memcg)
5615 return;
5616
5617 lock_page_lru(oldpage, &isolated);
5618 oldpage->mem_cgroup = NULL;
5619 unlock_page_lru(oldpage, isolated);
5620
5621 commit_charge(newpage, memcg, true);
5622 }
5623
5624 /*
5625 * subsys_initcall() for memory controller.
5626 *
5627 * Some parts like hotcpu_notifier() have to be initialized from this context
5628 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5629 * everything that doesn't depend on a specific mem_cgroup structure should
5630 * be initialized from here.
5631 */
mem_cgroup_init(void)5632 static int __init mem_cgroup_init(void)
5633 {
5634 int cpu, node;
5635
5636 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5637
5638 for_each_possible_cpu(cpu)
5639 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5640 drain_local_stock);
5641
5642 for_each_node(node) {
5643 struct mem_cgroup_tree_per_node *rtpn;
5644 int zone;
5645
5646 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5647 node_online(node) ? node : NUMA_NO_NODE);
5648
5649 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5650 struct mem_cgroup_tree_per_zone *rtpz;
5651
5652 rtpz = &rtpn->rb_tree_per_zone[zone];
5653 rtpz->rb_root = RB_ROOT;
5654 spin_lock_init(&rtpz->lock);
5655 }
5656 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5657 }
5658
5659 return 0;
5660 }
5661 subsys_initcall(mem_cgroup_init);
5662
5663 #ifdef CONFIG_MEMCG_SWAP
5664 /**
5665 * mem_cgroup_swapout - transfer a memsw charge to swap
5666 * @page: page whose memsw charge to transfer
5667 * @entry: swap entry to move the charge to
5668 *
5669 * Transfer the memsw charge of @page to @entry.
5670 */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)5671 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5672 {
5673 struct mem_cgroup *memcg;
5674 unsigned short oldid;
5675
5676 VM_BUG_ON_PAGE(PageLRU(page), page);
5677 VM_BUG_ON_PAGE(page_count(page), page);
5678
5679 if (!do_swap_account)
5680 return;
5681
5682 memcg = page->mem_cgroup;
5683
5684 /* Readahead page, never charged */
5685 if (!memcg)
5686 return;
5687
5688 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5689 VM_BUG_ON_PAGE(oldid, page);
5690 mem_cgroup_swap_statistics(memcg, true);
5691
5692 page->mem_cgroup = NULL;
5693
5694 if (!mem_cgroup_is_root(memcg))
5695 page_counter_uncharge(&memcg->memory, 1);
5696
5697 /*
5698 * Interrupts should be disabled here because the caller holds the
5699 * mapping->tree_lock lock which is taken with interrupts-off. It is
5700 * important here to have the interrupts disabled because it is the
5701 * only synchronisation we have for udpating the per-CPU variables.
5702 */
5703 VM_BUG_ON(!irqs_disabled());
5704 mem_cgroup_charge_statistics(memcg, page, -1);
5705 memcg_check_events(memcg, page);
5706 }
5707
5708 /**
5709 * mem_cgroup_uncharge_swap - uncharge a swap entry
5710 * @entry: swap entry to uncharge
5711 *
5712 * Drop the memsw charge associated with @entry.
5713 */
mem_cgroup_uncharge_swap(swp_entry_t entry)5714 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5715 {
5716 struct mem_cgroup *memcg;
5717 unsigned short id;
5718
5719 if (!do_swap_account)
5720 return;
5721
5722 id = swap_cgroup_record(entry, 0);
5723 rcu_read_lock();
5724 memcg = mem_cgroup_from_id(id);
5725 if (memcg) {
5726 if (!mem_cgroup_is_root(memcg))
5727 page_counter_uncharge(&memcg->memsw, 1);
5728 mem_cgroup_swap_statistics(memcg, false);
5729 css_put(&memcg->css);
5730 }
5731 rcu_read_unlock();
5732 }
5733
5734 /* for remember boot option*/
5735 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5736 static int really_do_swap_account __initdata = 1;
5737 #else
5738 static int really_do_swap_account __initdata;
5739 #endif
5740
enable_swap_account(char * s)5741 static int __init enable_swap_account(char *s)
5742 {
5743 if (!strcmp(s, "1"))
5744 really_do_swap_account = 1;
5745 else if (!strcmp(s, "0"))
5746 really_do_swap_account = 0;
5747 return 1;
5748 }
5749 __setup("swapaccount=", enable_swap_account);
5750
5751 static struct cftype memsw_cgroup_files[] = {
5752 {
5753 .name = "memsw.usage_in_bytes",
5754 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5755 .read_u64 = mem_cgroup_read_u64,
5756 },
5757 {
5758 .name = "memsw.max_usage_in_bytes",
5759 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5760 .write = mem_cgroup_reset,
5761 .read_u64 = mem_cgroup_read_u64,
5762 },
5763 {
5764 .name = "memsw.limit_in_bytes",
5765 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5766 .write = mem_cgroup_write,
5767 .read_u64 = mem_cgroup_read_u64,
5768 },
5769 {
5770 .name = "memsw.failcnt",
5771 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5772 .write = mem_cgroup_reset,
5773 .read_u64 = mem_cgroup_read_u64,
5774 },
5775 { }, /* terminate */
5776 };
5777
mem_cgroup_swap_init(void)5778 static int __init mem_cgroup_swap_init(void)
5779 {
5780 if (!mem_cgroup_disabled() && really_do_swap_account) {
5781 do_swap_account = 1;
5782 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5783 memsw_cgroup_files));
5784 }
5785 return 0;
5786 }
5787 subsys_initcall(mem_cgroup_swap_init);
5788
5789 #endif /* CONFIG_MEMCG_SWAP */
5790