1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
49 
50 /* Name of this kernel module. */
51 #define DRV_NAME		"ib_srpt"
52 #define DRV_VERSION		"2.0.0"
53 #define DRV_RELDATE		"2011-02-14"
54 
55 #define SRPT_ID_STRING	"Linux SRP target"
56 
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59 
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
64 
65 /*
66  * Global Variables
67  */
68 
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 		 "Maximum size of SRP request messages in bytes.");
77 
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 		 "Shared receive queue (SRQ) size.");
82 
srpt_get_u64_x(char * buffer,struct kernel_param * kp)83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
84 {
85 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86 }
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 		  0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 		 " instead of using the node_guid of the first HCA.");
92 
93 static struct ib_client srpt_client;
94 static void srpt_release_channel(struct srpt_rdma_ch *ch);
95 static int srpt_queue_status(struct se_cmd *cmd);
96 
97 /**
98  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
99  */
100 static inline
opposite_dma_dir(enum dma_data_direction dir)101 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
102 {
103 	switch (dir) {
104 	case DMA_TO_DEVICE:	return DMA_FROM_DEVICE;
105 	case DMA_FROM_DEVICE:	return DMA_TO_DEVICE;
106 	default:		return dir;
107 	}
108 }
109 
110 /**
111  * srpt_sdev_name() - Return the name associated with the HCA.
112  *
113  * Examples are ib0, ib1, ...
114  */
srpt_sdev_name(struct srpt_device * sdev)115 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
116 {
117 	return sdev->device->name;
118 }
119 
srpt_get_ch_state(struct srpt_rdma_ch * ch)120 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
121 {
122 	unsigned long flags;
123 	enum rdma_ch_state state;
124 
125 	spin_lock_irqsave(&ch->spinlock, flags);
126 	state = ch->state;
127 	spin_unlock_irqrestore(&ch->spinlock, flags);
128 	return state;
129 }
130 
131 static enum rdma_ch_state
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new_state)132 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
133 {
134 	unsigned long flags;
135 	enum rdma_ch_state prev;
136 
137 	spin_lock_irqsave(&ch->spinlock, flags);
138 	prev = ch->state;
139 	ch->state = new_state;
140 	spin_unlock_irqrestore(&ch->spinlock, flags);
141 	return prev;
142 }
143 
144 /**
145  * srpt_test_and_set_ch_state() - Test and set the channel state.
146  *
147  * Returns true if and only if the channel state has been set to the new state.
148  */
149 static bool
srpt_test_and_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state old,enum rdma_ch_state new)150 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
151 			   enum rdma_ch_state new)
152 {
153 	unsigned long flags;
154 	enum rdma_ch_state prev;
155 
156 	spin_lock_irqsave(&ch->spinlock, flags);
157 	prev = ch->state;
158 	if (prev == old)
159 		ch->state = new;
160 	spin_unlock_irqrestore(&ch->spinlock, flags);
161 	return prev == old;
162 }
163 
164 /**
165  * srpt_event_handler() - Asynchronous IB event callback function.
166  *
167  * Callback function called by the InfiniBand core when an asynchronous IB
168  * event occurs. This callback may occur in interrupt context. See also
169  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
170  * Architecture Specification.
171  */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)172 static void srpt_event_handler(struct ib_event_handler *handler,
173 			       struct ib_event *event)
174 {
175 	struct srpt_device *sdev;
176 	struct srpt_port *sport;
177 
178 	sdev = ib_get_client_data(event->device, &srpt_client);
179 	if (!sdev || sdev->device != event->device)
180 		return;
181 
182 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
183 		 srpt_sdev_name(sdev));
184 
185 	switch (event->event) {
186 	case IB_EVENT_PORT_ERR:
187 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
188 			sport = &sdev->port[event->element.port_num - 1];
189 			sport->lid = 0;
190 			sport->sm_lid = 0;
191 		}
192 		break;
193 	case IB_EVENT_PORT_ACTIVE:
194 	case IB_EVENT_LID_CHANGE:
195 	case IB_EVENT_PKEY_CHANGE:
196 	case IB_EVENT_SM_CHANGE:
197 	case IB_EVENT_CLIENT_REREGISTER:
198 	case IB_EVENT_GID_CHANGE:
199 		/* Refresh port data asynchronously. */
200 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
201 			sport = &sdev->port[event->element.port_num - 1];
202 			if (!sport->lid && !sport->sm_lid)
203 				schedule_work(&sport->work);
204 		}
205 		break;
206 	default:
207 		pr_err("received unrecognized IB event %d\n",
208 		       event->event);
209 		break;
210 	}
211 }
212 
213 /**
214  * srpt_srq_event() - SRQ event callback function.
215  */
srpt_srq_event(struct ib_event * event,void * ctx)216 static void srpt_srq_event(struct ib_event *event, void *ctx)
217 {
218 	pr_info("SRQ event %d\n", event->event);
219 }
220 
221 /**
222  * srpt_qp_event() - QP event callback function.
223  */
srpt_qp_event(struct ib_event * event,struct srpt_rdma_ch * ch)224 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
225 {
226 	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
227 		 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
228 
229 	switch (event->event) {
230 	case IB_EVENT_COMM_EST:
231 		ib_cm_notify(ch->cm_id, event->event);
232 		break;
233 	case IB_EVENT_QP_LAST_WQE_REACHED:
234 		if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
235 					       CH_RELEASING))
236 			srpt_release_channel(ch);
237 		else
238 			pr_debug("%s: state %d - ignored LAST_WQE.\n",
239 				 ch->sess_name, srpt_get_ch_state(ch));
240 		break;
241 	default:
242 		pr_err("received unrecognized IB QP event %d\n", event->event);
243 		break;
244 	}
245 }
246 
247 /**
248  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
249  *
250  * @slot: one-based slot number.
251  * @value: four-bit value.
252  *
253  * Copies the lowest four bits of value in element slot of the array of four
254  * bit elements called c_list (controller list). The index slot is one-based.
255  */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)256 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
257 {
258 	u16 id;
259 	u8 tmp;
260 
261 	id = (slot - 1) / 2;
262 	if (slot & 0x1) {
263 		tmp = c_list[id] & 0xf;
264 		c_list[id] = (value << 4) | tmp;
265 	} else {
266 		tmp = c_list[id] & 0xf0;
267 		c_list[id] = (value & 0xf) | tmp;
268 	}
269 }
270 
271 /**
272  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
273  *
274  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
275  * Specification.
276  */
srpt_get_class_port_info(struct ib_dm_mad * mad)277 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
278 {
279 	struct ib_class_port_info *cif;
280 
281 	cif = (struct ib_class_port_info *)mad->data;
282 	memset(cif, 0, sizeof *cif);
283 	cif->base_version = 1;
284 	cif->class_version = 1;
285 	cif->resp_time_value = 20;
286 
287 	mad->mad_hdr.status = 0;
288 }
289 
290 /**
291  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
292  *
293  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294  * Specification. See also section B.7, table B.6 in the SRP r16a document.
295  */
srpt_get_iou(struct ib_dm_mad * mad)296 static void srpt_get_iou(struct ib_dm_mad *mad)
297 {
298 	struct ib_dm_iou_info *ioui;
299 	u8 slot;
300 	int i;
301 
302 	ioui = (struct ib_dm_iou_info *)mad->data;
303 	ioui->change_id = cpu_to_be16(1);
304 	ioui->max_controllers = 16;
305 
306 	/* set present for slot 1 and empty for the rest */
307 	srpt_set_ioc(ioui->controller_list, 1, 1);
308 	for (i = 1, slot = 2; i < 16; i++, slot++)
309 		srpt_set_ioc(ioui->controller_list, slot, 0);
310 
311 	mad->mad_hdr.status = 0;
312 }
313 
314 /**
315  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
316  *
317  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
318  * Architecture Specification. See also section B.7, table B.7 in the SRP
319  * r16a document.
320  */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)321 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
322 			 struct ib_dm_mad *mad)
323 {
324 	struct srpt_device *sdev = sport->sdev;
325 	struct ib_dm_ioc_profile *iocp;
326 
327 	iocp = (struct ib_dm_ioc_profile *)mad->data;
328 
329 	if (!slot || slot > 16) {
330 		mad->mad_hdr.status
331 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
332 		return;
333 	}
334 
335 	if (slot > 2) {
336 		mad->mad_hdr.status
337 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
338 		return;
339 	}
340 
341 	memset(iocp, 0, sizeof *iocp);
342 	strcpy(iocp->id_string, SRPT_ID_STRING);
343 	iocp->guid = cpu_to_be64(srpt_service_guid);
344 	iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
345 	iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
346 	iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
347 	iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 	iocp->subsys_device_id = 0x0;
349 	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
350 	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
351 	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
352 	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353 	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
354 	iocp->rdma_read_depth = 4;
355 	iocp->send_size = cpu_to_be32(srp_max_req_size);
356 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
357 					  1U << 24));
358 	iocp->num_svc_entries = 1;
359 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
360 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
361 
362 	mad->mad_hdr.status = 0;
363 }
364 
365 /**
366  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
367  *
368  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
369  * Specification. See also section B.7, table B.8 in the SRP r16a document.
370  */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)371 static void srpt_get_svc_entries(u64 ioc_guid,
372 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
373 {
374 	struct ib_dm_svc_entries *svc_entries;
375 
376 	WARN_ON(!ioc_guid);
377 
378 	if (!slot || slot > 16) {
379 		mad->mad_hdr.status
380 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
381 		return;
382 	}
383 
384 	if (slot > 2 || lo > hi || hi > 1) {
385 		mad->mad_hdr.status
386 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
387 		return;
388 	}
389 
390 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
391 	memset(svc_entries, 0, sizeof *svc_entries);
392 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
393 	snprintf(svc_entries->service_entries[0].name,
394 		 sizeof(svc_entries->service_entries[0].name),
395 		 "%s%016llx",
396 		 SRP_SERVICE_NAME_PREFIX,
397 		 ioc_guid);
398 
399 	mad->mad_hdr.status = 0;
400 }
401 
402 /**
403  * srpt_mgmt_method_get() - Process a received management datagram.
404  * @sp:      source port through which the MAD has been received.
405  * @rq_mad:  received MAD.
406  * @rsp_mad: response MAD.
407  */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)408 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
409 				 struct ib_dm_mad *rsp_mad)
410 {
411 	u16 attr_id;
412 	u32 slot;
413 	u8 hi, lo;
414 
415 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
416 	switch (attr_id) {
417 	case DM_ATTR_CLASS_PORT_INFO:
418 		srpt_get_class_port_info(rsp_mad);
419 		break;
420 	case DM_ATTR_IOU_INFO:
421 		srpt_get_iou(rsp_mad);
422 		break;
423 	case DM_ATTR_IOC_PROFILE:
424 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
425 		srpt_get_ioc(sp, slot, rsp_mad);
426 		break;
427 	case DM_ATTR_SVC_ENTRIES:
428 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429 		hi = (u8) ((slot >> 8) & 0xff);
430 		lo = (u8) (slot & 0xff);
431 		slot = (u16) ((slot >> 16) & 0xffff);
432 		srpt_get_svc_entries(srpt_service_guid,
433 				     slot, hi, lo, rsp_mad);
434 		break;
435 	default:
436 		rsp_mad->mad_hdr.status =
437 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
438 		break;
439 	}
440 }
441 
442 /**
443  * srpt_mad_send_handler() - Post MAD-send callback function.
444  */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)445 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
446 				  struct ib_mad_send_wc *mad_wc)
447 {
448 	ib_destroy_ah(mad_wc->send_buf->ah);
449 	ib_free_send_mad(mad_wc->send_buf);
450 }
451 
452 /**
453  * srpt_mad_recv_handler() - MAD reception callback function.
454  */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_recv_wc * mad_wc)455 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
456 				  struct ib_mad_recv_wc *mad_wc)
457 {
458 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
459 	struct ib_ah *ah;
460 	struct ib_mad_send_buf *rsp;
461 	struct ib_dm_mad *dm_mad;
462 
463 	if (!mad_wc || !mad_wc->recv_buf.mad)
464 		return;
465 
466 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
467 				  mad_wc->recv_buf.grh, mad_agent->port_num);
468 	if (IS_ERR(ah))
469 		goto err;
470 
471 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
472 
473 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
474 				 mad_wc->wc->pkey_index, 0,
475 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
476 				 GFP_KERNEL,
477 				 IB_MGMT_BASE_VERSION);
478 	if (IS_ERR(rsp))
479 		goto err_rsp;
480 
481 	rsp->ah = ah;
482 
483 	dm_mad = rsp->mad;
484 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
485 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
486 	dm_mad->mad_hdr.status = 0;
487 
488 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
489 	case IB_MGMT_METHOD_GET:
490 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
491 		break;
492 	case IB_MGMT_METHOD_SET:
493 		dm_mad->mad_hdr.status =
494 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
495 		break;
496 	default:
497 		dm_mad->mad_hdr.status =
498 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
499 		break;
500 	}
501 
502 	if (!ib_post_send_mad(rsp, NULL)) {
503 		ib_free_recv_mad(mad_wc);
504 		/* will destroy_ah & free_send_mad in send completion */
505 		return;
506 	}
507 
508 	ib_free_send_mad(rsp);
509 
510 err_rsp:
511 	ib_destroy_ah(ah);
512 err:
513 	ib_free_recv_mad(mad_wc);
514 }
515 
516 /**
517  * srpt_refresh_port() - Configure a HCA port.
518  *
519  * Enable InfiniBand management datagram processing, update the cached sm_lid,
520  * lid and gid values, and register a callback function for processing MADs
521  * on the specified port.
522  *
523  * Note: It is safe to call this function more than once for the same port.
524  */
srpt_refresh_port(struct srpt_port * sport)525 static int srpt_refresh_port(struct srpt_port *sport)
526 {
527 	struct ib_mad_reg_req reg_req;
528 	struct ib_port_modify port_modify;
529 	struct ib_port_attr port_attr;
530 	int ret;
531 
532 	memset(&port_modify, 0, sizeof port_modify);
533 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
534 	port_modify.clr_port_cap_mask = 0;
535 
536 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
537 	if (ret)
538 		goto err_mod_port;
539 
540 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
541 	if (ret)
542 		goto err_query_port;
543 
544 	sport->sm_lid = port_attr.sm_lid;
545 	sport->lid = port_attr.lid;
546 
547 	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
548 			   NULL);
549 	if (ret)
550 		goto err_query_port;
551 
552 	if (!sport->mad_agent) {
553 		memset(&reg_req, 0, sizeof reg_req);
554 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
555 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
556 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
557 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
558 
559 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
560 							 sport->port,
561 							 IB_QPT_GSI,
562 							 &reg_req, 0,
563 							 srpt_mad_send_handler,
564 							 srpt_mad_recv_handler,
565 							 sport, 0);
566 		if (IS_ERR(sport->mad_agent)) {
567 			ret = PTR_ERR(sport->mad_agent);
568 			sport->mad_agent = NULL;
569 			goto err_query_port;
570 		}
571 	}
572 
573 	return 0;
574 
575 err_query_port:
576 
577 	port_modify.set_port_cap_mask = 0;
578 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
579 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
580 
581 err_mod_port:
582 
583 	return ret;
584 }
585 
586 /**
587  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
588  *
589  * Note: It is safe to call this function more than once for the same device.
590  */
srpt_unregister_mad_agent(struct srpt_device * sdev)591 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
592 {
593 	struct ib_port_modify port_modify = {
594 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
595 	};
596 	struct srpt_port *sport;
597 	int i;
598 
599 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
600 		sport = &sdev->port[i - 1];
601 		WARN_ON(sport->port != i);
602 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
603 			pr_err("disabling MAD processing failed.\n");
604 		if (sport->mad_agent) {
605 			ib_unregister_mad_agent(sport->mad_agent);
606 			sport->mad_agent = NULL;
607 		}
608 	}
609 }
610 
611 /**
612  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
613  */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,int dma_size,enum dma_data_direction dir)614 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
615 					   int ioctx_size, int dma_size,
616 					   enum dma_data_direction dir)
617 {
618 	struct srpt_ioctx *ioctx;
619 
620 	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
621 	if (!ioctx)
622 		goto err;
623 
624 	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
625 	if (!ioctx->buf)
626 		goto err_free_ioctx;
627 
628 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
629 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
630 		goto err_free_buf;
631 
632 	return ioctx;
633 
634 err_free_buf:
635 	kfree(ioctx->buf);
636 err_free_ioctx:
637 	kfree(ioctx);
638 err:
639 	return NULL;
640 }
641 
642 /**
643  * srpt_free_ioctx() - Free an SRPT I/O context structure.
644  */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,int dma_size,enum dma_data_direction dir)645 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
646 			    int dma_size, enum dma_data_direction dir)
647 {
648 	if (!ioctx)
649 		return;
650 
651 	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
652 	kfree(ioctx->buf);
653 	kfree(ioctx);
654 }
655 
656 /**
657  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
658  * @sdev:       Device to allocate the I/O context ring for.
659  * @ring_size:  Number of elements in the I/O context ring.
660  * @ioctx_size: I/O context size.
661  * @dma_size:   DMA buffer size.
662  * @dir:        DMA data direction.
663  */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,int dma_size,enum dma_data_direction dir)664 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
665 				int ring_size, int ioctx_size,
666 				int dma_size, enum dma_data_direction dir)
667 {
668 	struct srpt_ioctx **ring;
669 	int i;
670 
671 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
672 		&& ioctx_size != sizeof(struct srpt_send_ioctx));
673 
674 	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
675 	if (!ring)
676 		goto out;
677 	for (i = 0; i < ring_size; ++i) {
678 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
679 		if (!ring[i])
680 			goto err;
681 		ring[i]->index = i;
682 	}
683 	goto out;
684 
685 err:
686 	while (--i >= 0)
687 		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
688 	kfree(ring);
689 	ring = NULL;
690 out:
691 	return ring;
692 }
693 
694 /**
695  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
696  */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,int dma_size,enum dma_data_direction dir)697 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
698 				 struct srpt_device *sdev, int ring_size,
699 				 int dma_size, enum dma_data_direction dir)
700 {
701 	int i;
702 
703 	for (i = 0; i < ring_size; ++i)
704 		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
705 	kfree(ioctx_ring);
706 }
707 
708 /**
709  * srpt_get_cmd_state() - Get the state of a SCSI command.
710  */
srpt_get_cmd_state(struct srpt_send_ioctx * ioctx)711 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
712 {
713 	enum srpt_command_state state;
714 	unsigned long flags;
715 
716 	BUG_ON(!ioctx);
717 
718 	spin_lock_irqsave(&ioctx->spinlock, flags);
719 	state = ioctx->state;
720 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
721 	return state;
722 }
723 
724 /**
725  * srpt_set_cmd_state() - Set the state of a SCSI command.
726  *
727  * Does not modify the state of aborted commands. Returns the previous command
728  * state.
729  */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)730 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
731 						  enum srpt_command_state new)
732 {
733 	enum srpt_command_state previous;
734 	unsigned long flags;
735 
736 	BUG_ON(!ioctx);
737 
738 	spin_lock_irqsave(&ioctx->spinlock, flags);
739 	previous = ioctx->state;
740 	if (previous != SRPT_STATE_DONE)
741 		ioctx->state = new;
742 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
743 
744 	return previous;
745 }
746 
747 /**
748  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
749  *
750  * Returns true if and only if the previous command state was equal to 'old'.
751  */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)752 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
753 					enum srpt_command_state old,
754 					enum srpt_command_state new)
755 {
756 	enum srpt_command_state previous;
757 	unsigned long flags;
758 
759 	WARN_ON(!ioctx);
760 	WARN_ON(old == SRPT_STATE_DONE);
761 	WARN_ON(new == SRPT_STATE_NEW);
762 
763 	spin_lock_irqsave(&ioctx->spinlock, flags);
764 	previous = ioctx->state;
765 	if (previous == old)
766 		ioctx->state = new;
767 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
768 	return previous == old;
769 }
770 
771 /**
772  * srpt_post_recv() - Post an IB receive request.
773  */
srpt_post_recv(struct srpt_device * sdev,struct srpt_recv_ioctx * ioctx)774 static int srpt_post_recv(struct srpt_device *sdev,
775 			  struct srpt_recv_ioctx *ioctx)
776 {
777 	struct ib_sge list;
778 	struct ib_recv_wr wr, *bad_wr;
779 
780 	BUG_ON(!sdev);
781 	wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
782 
783 	list.addr = ioctx->ioctx.dma;
784 	list.length = srp_max_req_size;
785 	list.lkey = sdev->pd->local_dma_lkey;
786 
787 	wr.next = NULL;
788 	wr.sg_list = &list;
789 	wr.num_sge = 1;
790 
791 	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
792 }
793 
794 /**
795  * srpt_post_send() - Post an IB send request.
796  *
797  * Returns zero upon success and a non-zero value upon failure.
798  */
srpt_post_send(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,int len)799 static int srpt_post_send(struct srpt_rdma_ch *ch,
800 			  struct srpt_send_ioctx *ioctx, int len)
801 {
802 	struct ib_sge list;
803 	struct ib_send_wr wr, *bad_wr;
804 	struct srpt_device *sdev = ch->sport->sdev;
805 	int ret;
806 
807 	atomic_inc(&ch->req_lim);
808 
809 	ret = -ENOMEM;
810 	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
811 		pr_warn("IB send queue full (needed 1)\n");
812 		goto out;
813 	}
814 
815 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
816 				      DMA_TO_DEVICE);
817 
818 	list.addr = ioctx->ioctx.dma;
819 	list.length = len;
820 	list.lkey = sdev->pd->local_dma_lkey;
821 
822 	wr.next = NULL;
823 	wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
824 	wr.sg_list = &list;
825 	wr.num_sge = 1;
826 	wr.opcode = IB_WR_SEND;
827 	wr.send_flags = IB_SEND_SIGNALED;
828 
829 	ret = ib_post_send(ch->qp, &wr, &bad_wr);
830 
831 out:
832 	if (ret < 0) {
833 		atomic_inc(&ch->sq_wr_avail);
834 		atomic_dec(&ch->req_lim);
835 	}
836 	return ret;
837 }
838 
839 /**
840  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
841  * @ioctx: Pointer to the I/O context associated with the request.
842  * @srp_cmd: Pointer to the SRP_CMD request data.
843  * @dir: Pointer to the variable to which the transfer direction will be
844  *   written.
845  * @data_len: Pointer to the variable to which the total data length of all
846  *   descriptors in the SRP_CMD request will be written.
847  *
848  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
849  *
850  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
851  * -ENOMEM when memory allocation fails and zero upon success.
852  */
srpt_get_desc_tbl(struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,u64 * data_len)853 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
854 			     struct srp_cmd *srp_cmd,
855 			     enum dma_data_direction *dir, u64 *data_len)
856 {
857 	struct srp_indirect_buf *idb;
858 	struct srp_direct_buf *db;
859 	unsigned add_cdb_offset;
860 	int ret;
861 
862 	/*
863 	 * The pointer computations below will only be compiled correctly
864 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
865 	 * whether srp_cmd::add_data has been declared as a byte pointer.
866 	 */
867 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
868 		     && !__same_type(srp_cmd->add_data[0], (u8)0));
869 
870 	BUG_ON(!dir);
871 	BUG_ON(!data_len);
872 
873 	ret = 0;
874 	*data_len = 0;
875 
876 	/*
877 	 * The lower four bits of the buffer format field contain the DATA-IN
878 	 * buffer descriptor format, and the highest four bits contain the
879 	 * DATA-OUT buffer descriptor format.
880 	 */
881 	*dir = DMA_NONE;
882 	if (srp_cmd->buf_fmt & 0xf)
883 		/* DATA-IN: transfer data from target to initiator (read). */
884 		*dir = DMA_FROM_DEVICE;
885 	else if (srp_cmd->buf_fmt >> 4)
886 		/* DATA-OUT: transfer data from initiator to target (write). */
887 		*dir = DMA_TO_DEVICE;
888 
889 	/*
890 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
891 	 * CDB LENGTH' field are reserved and the size in bytes of this field
892 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
893 	 */
894 	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
895 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
896 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
897 		ioctx->n_rbuf = 1;
898 		ioctx->rbufs = &ioctx->single_rbuf;
899 
900 		db = (struct srp_direct_buf *)(srp_cmd->add_data
901 					       + add_cdb_offset);
902 		memcpy(ioctx->rbufs, db, sizeof *db);
903 		*data_len = be32_to_cpu(db->len);
904 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
905 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
906 		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
907 						  + add_cdb_offset);
908 
909 		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
910 
911 		if (ioctx->n_rbuf >
912 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
913 			pr_err("received unsupported SRP_CMD request"
914 			       " type (%u out + %u in != %u / %zu)\n",
915 			       srp_cmd->data_out_desc_cnt,
916 			       srp_cmd->data_in_desc_cnt,
917 			       be32_to_cpu(idb->table_desc.len),
918 			       sizeof(*db));
919 			ioctx->n_rbuf = 0;
920 			ret = -EINVAL;
921 			goto out;
922 		}
923 
924 		if (ioctx->n_rbuf == 1)
925 			ioctx->rbufs = &ioctx->single_rbuf;
926 		else {
927 			ioctx->rbufs =
928 				kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
929 			if (!ioctx->rbufs) {
930 				ioctx->n_rbuf = 0;
931 				ret = -ENOMEM;
932 				goto out;
933 			}
934 		}
935 
936 		db = idb->desc_list;
937 		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
938 		*data_len = be32_to_cpu(idb->len);
939 	}
940 out:
941 	return ret;
942 }
943 
944 /**
945  * srpt_init_ch_qp() - Initialize queue pair attributes.
946  *
947  * Initialized the attributes of queue pair 'qp' by allowing local write,
948  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
949  */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)950 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
951 {
952 	struct ib_qp_attr *attr;
953 	int ret;
954 
955 	attr = kzalloc(sizeof *attr, GFP_KERNEL);
956 	if (!attr)
957 		return -ENOMEM;
958 
959 	attr->qp_state = IB_QPS_INIT;
960 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
961 	    IB_ACCESS_REMOTE_WRITE;
962 	attr->port_num = ch->sport->port;
963 	attr->pkey_index = 0;
964 
965 	ret = ib_modify_qp(qp, attr,
966 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
967 			   IB_QP_PKEY_INDEX);
968 
969 	kfree(attr);
970 	return ret;
971 }
972 
973 /**
974  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
975  * @ch: channel of the queue pair.
976  * @qp: queue pair to change the state of.
977  *
978  * Returns zero upon success and a negative value upon failure.
979  *
980  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
981  * If this structure ever becomes larger, it might be necessary to allocate
982  * it dynamically instead of on the stack.
983  */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)984 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
985 {
986 	struct ib_qp_attr qp_attr;
987 	int attr_mask;
988 	int ret;
989 
990 	qp_attr.qp_state = IB_QPS_RTR;
991 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
992 	if (ret)
993 		goto out;
994 
995 	qp_attr.max_dest_rd_atomic = 4;
996 
997 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
998 
999 out:
1000 	return ret;
1001 }
1002 
1003 /**
1004  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1005  * @ch: channel of the queue pair.
1006  * @qp: queue pair to change the state of.
1007  *
1008  * Returns zero upon success and a negative value upon failure.
1009  *
1010  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1011  * If this structure ever becomes larger, it might be necessary to allocate
1012  * it dynamically instead of on the stack.
1013  */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1014 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1015 {
1016 	struct ib_qp_attr qp_attr;
1017 	int attr_mask;
1018 	int ret;
1019 
1020 	qp_attr.qp_state = IB_QPS_RTS;
1021 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1022 	if (ret)
1023 		goto out;
1024 
1025 	qp_attr.max_rd_atomic = 4;
1026 
1027 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1028 
1029 out:
1030 	return ret;
1031 }
1032 
1033 /**
1034  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1035  */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1036 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1037 {
1038 	struct ib_qp_attr qp_attr;
1039 
1040 	qp_attr.qp_state = IB_QPS_ERR;
1041 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1042 }
1043 
1044 /**
1045  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1046  */
srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1047 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1048 				    struct srpt_send_ioctx *ioctx)
1049 {
1050 	struct scatterlist *sg;
1051 	enum dma_data_direction dir;
1052 
1053 	BUG_ON(!ch);
1054 	BUG_ON(!ioctx);
1055 	BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1056 
1057 	while (ioctx->n_rdma)
1058 		kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1059 
1060 	kfree(ioctx->rdma_ius);
1061 	ioctx->rdma_ius = NULL;
1062 
1063 	if (ioctx->mapped_sg_count) {
1064 		sg = ioctx->sg;
1065 		WARN_ON(!sg);
1066 		dir = ioctx->cmd.data_direction;
1067 		BUG_ON(dir == DMA_NONE);
1068 		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1069 				opposite_dma_dir(dir));
1070 		ioctx->mapped_sg_count = 0;
1071 	}
1072 }
1073 
1074 /**
1075  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1076  */
srpt_map_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1077 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1078 				 struct srpt_send_ioctx *ioctx)
1079 {
1080 	struct ib_device *dev = ch->sport->sdev->device;
1081 	struct se_cmd *cmd;
1082 	struct scatterlist *sg, *sg_orig;
1083 	int sg_cnt;
1084 	enum dma_data_direction dir;
1085 	struct rdma_iu *riu;
1086 	struct srp_direct_buf *db;
1087 	dma_addr_t dma_addr;
1088 	struct ib_sge *sge;
1089 	u64 raddr;
1090 	u32 rsize;
1091 	u32 tsize;
1092 	u32 dma_len;
1093 	int count, nrdma;
1094 	int i, j, k;
1095 
1096 	BUG_ON(!ch);
1097 	BUG_ON(!ioctx);
1098 	cmd = &ioctx->cmd;
1099 	dir = cmd->data_direction;
1100 	BUG_ON(dir == DMA_NONE);
1101 
1102 	ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103 	ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1104 
1105 	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 			      opposite_dma_dir(dir));
1107 	if (unlikely(!count))
1108 		return -EAGAIN;
1109 
1110 	ioctx->mapped_sg_count = count;
1111 
1112 	if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 		nrdma = ioctx->n_rdma_ius;
1114 	else {
1115 		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 			+ ioctx->n_rbuf;
1117 
1118 		ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 		if (!ioctx->rdma_ius)
1120 			goto free_mem;
1121 
1122 		ioctx->n_rdma_ius = nrdma;
1123 	}
1124 
1125 	db = ioctx->rbufs;
1126 	tsize = cmd->data_length;
1127 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1128 	riu = ioctx->rdma_ius;
1129 
1130 	/*
1131 	 * For each remote desc - calculate the #ib_sge.
1132 	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 	 *      each remote desc rdma_iu is required a rdma wr;
1134 	 * else
1135 	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 	 *      another rdma wr
1137 	 */
1138 	for (i = 0, j = 0;
1139 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 		rsize = be32_to_cpu(db->len);
1141 		raddr = be64_to_cpu(db->va);
1142 		riu->raddr = raddr;
1143 		riu->rkey = be32_to_cpu(db->key);
1144 		riu->sge_cnt = 0;
1145 
1146 		/* calculate how many sge required for this remote_buf */
1147 		while (rsize > 0 && tsize > 0) {
1148 
1149 			if (rsize >= dma_len) {
1150 				tsize -= dma_len;
1151 				rsize -= dma_len;
1152 				raddr += dma_len;
1153 
1154 				if (tsize > 0) {
1155 					++j;
1156 					if (j < count) {
1157 						sg = sg_next(sg);
1158 						dma_len = ib_sg_dma_len(
1159 								dev, sg);
1160 					}
1161 				}
1162 			} else {
1163 				tsize -= rsize;
1164 				dma_len -= rsize;
1165 				rsize = 0;
1166 			}
1167 
1168 			++riu->sge_cnt;
1169 
1170 			if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1171 				++ioctx->n_rdma;
1172 				riu->sge =
1173 				    kmalloc(riu->sge_cnt * sizeof *riu->sge,
1174 					    GFP_KERNEL);
1175 				if (!riu->sge)
1176 					goto free_mem;
1177 
1178 				++riu;
1179 				riu->sge_cnt = 0;
1180 				riu->raddr = raddr;
1181 				riu->rkey = be32_to_cpu(db->key);
1182 			}
1183 		}
1184 
1185 		++ioctx->n_rdma;
1186 		riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1187 				   GFP_KERNEL);
1188 		if (!riu->sge)
1189 			goto free_mem;
1190 	}
1191 
1192 	db = ioctx->rbufs;
1193 	tsize = cmd->data_length;
1194 	riu = ioctx->rdma_ius;
1195 	sg = sg_orig;
1196 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1197 	dma_addr = ib_sg_dma_address(dev, &sg[0]);
1198 
1199 	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1200 	for (i = 0, j = 0;
1201 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1202 		rsize = be32_to_cpu(db->len);
1203 		sge = riu->sge;
1204 		k = 0;
1205 
1206 		while (rsize > 0 && tsize > 0) {
1207 			sge->addr = dma_addr;
1208 			sge->lkey = ch->sport->sdev->pd->local_dma_lkey;
1209 
1210 			if (rsize >= dma_len) {
1211 				sge->length =
1212 					(tsize < dma_len) ? tsize : dma_len;
1213 				tsize -= dma_len;
1214 				rsize -= dma_len;
1215 
1216 				if (tsize > 0) {
1217 					++j;
1218 					if (j < count) {
1219 						sg = sg_next(sg);
1220 						dma_len = ib_sg_dma_len(
1221 								dev, sg);
1222 						dma_addr = ib_sg_dma_address(
1223 								dev, sg);
1224 					}
1225 				}
1226 			} else {
1227 				sge->length = (tsize < rsize) ? tsize : rsize;
1228 				tsize -= rsize;
1229 				dma_len -= rsize;
1230 				dma_addr += rsize;
1231 				rsize = 0;
1232 			}
1233 
1234 			++k;
1235 			if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1236 				++riu;
1237 				sge = riu->sge;
1238 				k = 0;
1239 			} else if (rsize > 0 && tsize > 0)
1240 				++sge;
1241 		}
1242 	}
1243 
1244 	return 0;
1245 
1246 free_mem:
1247 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
1248 
1249 	return -ENOMEM;
1250 }
1251 
1252 /**
1253  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1254  */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1255 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1256 {
1257 	struct srpt_send_ioctx *ioctx;
1258 	unsigned long flags;
1259 
1260 	BUG_ON(!ch);
1261 
1262 	ioctx = NULL;
1263 	spin_lock_irqsave(&ch->spinlock, flags);
1264 	if (!list_empty(&ch->free_list)) {
1265 		ioctx = list_first_entry(&ch->free_list,
1266 					 struct srpt_send_ioctx, free_list);
1267 		list_del(&ioctx->free_list);
1268 	}
1269 	spin_unlock_irqrestore(&ch->spinlock, flags);
1270 
1271 	if (!ioctx)
1272 		return ioctx;
1273 
1274 	BUG_ON(ioctx->ch != ch);
1275 	spin_lock_init(&ioctx->spinlock);
1276 	ioctx->state = SRPT_STATE_NEW;
1277 	ioctx->n_rbuf = 0;
1278 	ioctx->rbufs = NULL;
1279 	ioctx->n_rdma = 0;
1280 	ioctx->n_rdma_ius = 0;
1281 	ioctx->rdma_ius = NULL;
1282 	ioctx->mapped_sg_count = 0;
1283 	init_completion(&ioctx->tx_done);
1284 	ioctx->queue_status_only = false;
1285 	/*
1286 	 * transport_init_se_cmd() does not initialize all fields, so do it
1287 	 * here.
1288 	 */
1289 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1290 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1291 
1292 	return ioctx;
1293 }
1294 
1295 /**
1296  * srpt_abort_cmd() - Abort a SCSI command.
1297  * @ioctx:   I/O context associated with the SCSI command.
1298  * @context: Preferred execution context.
1299  */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1300 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1301 {
1302 	enum srpt_command_state state;
1303 	unsigned long flags;
1304 
1305 	BUG_ON(!ioctx);
1306 
1307 	/*
1308 	 * If the command is in a state where the target core is waiting for
1309 	 * the ib_srpt driver, change the state to the next state. Changing
1310 	 * the state of the command from SRPT_STATE_NEED_DATA to
1311 	 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1312 	 * function a second time.
1313 	 */
1314 
1315 	spin_lock_irqsave(&ioctx->spinlock, flags);
1316 	state = ioctx->state;
1317 	switch (state) {
1318 	case SRPT_STATE_NEED_DATA:
1319 		ioctx->state = SRPT_STATE_DATA_IN;
1320 		break;
1321 	case SRPT_STATE_DATA_IN:
1322 	case SRPT_STATE_CMD_RSP_SENT:
1323 	case SRPT_STATE_MGMT_RSP_SENT:
1324 		ioctx->state = SRPT_STATE_DONE;
1325 		break;
1326 	default:
1327 		break;
1328 	}
1329 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
1330 
1331 	if (state == SRPT_STATE_DONE) {
1332 		struct srpt_rdma_ch *ch = ioctx->ch;
1333 
1334 		BUG_ON(ch->sess == NULL);
1335 
1336 		target_put_sess_cmd(&ioctx->cmd);
1337 		goto out;
1338 	}
1339 
1340 	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1341 		 ioctx->cmd.tag);
1342 
1343 	switch (state) {
1344 	case SRPT_STATE_NEW:
1345 	case SRPT_STATE_DATA_IN:
1346 	case SRPT_STATE_MGMT:
1347 		/*
1348 		 * Do nothing - defer abort processing until
1349 		 * srpt_queue_response() is invoked.
1350 		 */
1351 		WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1352 		break;
1353 	case SRPT_STATE_NEED_DATA:
1354 		/* DMA_TO_DEVICE (write) - RDMA read error. */
1355 
1356 		/* XXX(hch): this is a horrible layering violation.. */
1357 		spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1358 		ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1359 		spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1360 		break;
1361 	case SRPT_STATE_CMD_RSP_SENT:
1362 		/*
1363 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1364 		 * not been received in time.
1365 		 */
1366 		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1367 		target_put_sess_cmd(&ioctx->cmd);
1368 		break;
1369 	case SRPT_STATE_MGMT_RSP_SENT:
1370 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1371 		target_put_sess_cmd(&ioctx->cmd);
1372 		break;
1373 	default:
1374 		WARN(1, "Unexpected command state (%d)", state);
1375 		break;
1376 	}
1377 
1378 out:
1379 	return state;
1380 }
1381 
1382 /**
1383  * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1384  */
srpt_handle_send_err_comp(struct srpt_rdma_ch * ch,u64 wr_id)1385 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1386 {
1387 	struct srpt_send_ioctx *ioctx;
1388 	enum srpt_command_state state;
1389 	u32 index;
1390 
1391 	atomic_inc(&ch->sq_wr_avail);
1392 
1393 	index = idx_from_wr_id(wr_id);
1394 	ioctx = ch->ioctx_ring[index];
1395 	state = srpt_get_cmd_state(ioctx);
1396 
1397 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1398 		&& state != SRPT_STATE_MGMT_RSP_SENT
1399 		&& state != SRPT_STATE_NEED_DATA
1400 		&& state != SRPT_STATE_DONE);
1401 
1402 	/* If SRP_RSP sending failed, undo the ch->req_lim change. */
1403 	if (state == SRPT_STATE_CMD_RSP_SENT
1404 	    || state == SRPT_STATE_MGMT_RSP_SENT)
1405 		atomic_dec(&ch->req_lim);
1406 
1407 	srpt_abort_cmd(ioctx);
1408 }
1409 
1410 /**
1411  * srpt_handle_send_comp() - Process an IB send completion notification.
1412  */
srpt_handle_send_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1413 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1414 				  struct srpt_send_ioctx *ioctx)
1415 {
1416 	enum srpt_command_state state;
1417 
1418 	atomic_inc(&ch->sq_wr_avail);
1419 
1420 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1421 
1422 	if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1423 		    && state != SRPT_STATE_MGMT_RSP_SENT
1424 		    && state != SRPT_STATE_DONE))
1425 		pr_debug("state = %d\n", state);
1426 
1427 	if (state != SRPT_STATE_DONE) {
1428 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
1429 		transport_generic_free_cmd(&ioctx->cmd, 0);
1430 	} else {
1431 		pr_err("IB completion has been received too late for"
1432 		       " wr_id = %u.\n", ioctx->ioctx.index);
1433 	}
1434 }
1435 
1436 /**
1437  * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1438  *
1439  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1440  * the data that has been transferred via IB RDMA had to be postponed until the
1441  * check_stop_free() callback.  None of this is necessary anymore and needs to
1442  * be cleaned up.
1443  */
srpt_handle_rdma_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1444 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1445 				  struct srpt_send_ioctx *ioctx,
1446 				  enum srpt_opcode opcode)
1447 {
1448 	WARN_ON(ioctx->n_rdma <= 0);
1449 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1450 
1451 	if (opcode == SRPT_RDMA_READ_LAST) {
1452 		if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1453 						SRPT_STATE_DATA_IN))
1454 			target_execute_cmd(&ioctx->cmd);
1455 		else
1456 			pr_err("%s[%d]: wrong state = %d\n", __func__,
1457 			       __LINE__, srpt_get_cmd_state(ioctx));
1458 	} else if (opcode == SRPT_RDMA_ABORT) {
1459 		ioctx->rdma_aborted = true;
1460 	} else {
1461 		WARN(true, "unexpected opcode %d\n", opcode);
1462 	}
1463 }
1464 
1465 /**
1466  * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1467  */
srpt_handle_rdma_err_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1468 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1469 				      struct srpt_send_ioctx *ioctx,
1470 				      enum srpt_opcode opcode)
1471 {
1472 	enum srpt_command_state state;
1473 
1474 	state = srpt_get_cmd_state(ioctx);
1475 	switch (opcode) {
1476 	case SRPT_RDMA_READ_LAST:
1477 		if (ioctx->n_rdma <= 0) {
1478 			pr_err("Received invalid RDMA read"
1479 			       " error completion with idx %d\n",
1480 			       ioctx->ioctx.index);
1481 			break;
1482 		}
1483 		atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1484 		if (state == SRPT_STATE_NEED_DATA)
1485 			srpt_abort_cmd(ioctx);
1486 		else
1487 			pr_err("%s[%d]: wrong state = %d\n",
1488 			       __func__, __LINE__, state);
1489 		break;
1490 	case SRPT_RDMA_WRITE_LAST:
1491 		break;
1492 	default:
1493 		pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1494 		break;
1495 	}
1496 }
1497 
1498 /**
1499  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1500  * @ch: RDMA channel through which the request has been received.
1501  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1502  *   be built in the buffer ioctx->buf points at and hence this function will
1503  *   overwrite the request data.
1504  * @tag: tag of the request for which this response is being generated.
1505  * @status: value for the STATUS field of the SRP_RSP information unit.
1506  *
1507  * Returns the size in bytes of the SRP_RSP response.
1508  *
1509  * An SRP_RSP response contains a SCSI status or service response. See also
1510  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1511  * response. See also SPC-2 for more information about sense data.
1512  */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1513 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1514 			      struct srpt_send_ioctx *ioctx, u64 tag,
1515 			      int status)
1516 {
1517 	struct srp_rsp *srp_rsp;
1518 	const u8 *sense_data;
1519 	int sense_data_len, max_sense_len;
1520 
1521 	/*
1522 	 * The lowest bit of all SAM-3 status codes is zero (see also
1523 	 * paragraph 5.3 in SAM-3).
1524 	 */
1525 	WARN_ON(status & 1);
1526 
1527 	srp_rsp = ioctx->ioctx.buf;
1528 	BUG_ON(!srp_rsp);
1529 
1530 	sense_data = ioctx->sense_data;
1531 	sense_data_len = ioctx->cmd.scsi_sense_length;
1532 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1533 
1534 	memset(srp_rsp, 0, sizeof *srp_rsp);
1535 	srp_rsp->opcode = SRP_RSP;
1536 	srp_rsp->req_lim_delta =
1537 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1538 	srp_rsp->tag = tag;
1539 	srp_rsp->status = status;
1540 
1541 	if (sense_data_len) {
1542 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1543 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1544 		if (sense_data_len > max_sense_len) {
1545 			pr_warn("truncated sense data from %d to %d"
1546 				" bytes\n", sense_data_len, max_sense_len);
1547 			sense_data_len = max_sense_len;
1548 		}
1549 
1550 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1551 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1552 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1553 	}
1554 
1555 	return sizeof(*srp_rsp) + sense_data_len;
1556 }
1557 
1558 /**
1559  * srpt_build_tskmgmt_rsp() - Build a task management response.
1560  * @ch:       RDMA channel through which the request has been received.
1561  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1562  * @rsp_code: RSP_CODE that will be stored in the response.
1563  * @tag:      Tag of the request for which this response is being generated.
1564  *
1565  * Returns the size in bytes of the SRP_RSP response.
1566  *
1567  * An SRP_RSP response contains a SCSI status or service response. See also
1568  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1569  * response.
1570  */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1571 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1572 				  struct srpt_send_ioctx *ioctx,
1573 				  u8 rsp_code, u64 tag)
1574 {
1575 	struct srp_rsp *srp_rsp;
1576 	int resp_data_len;
1577 	int resp_len;
1578 
1579 	resp_data_len = 4;
1580 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1581 
1582 	srp_rsp = ioctx->ioctx.buf;
1583 	BUG_ON(!srp_rsp);
1584 	memset(srp_rsp, 0, sizeof *srp_rsp);
1585 
1586 	srp_rsp->opcode = SRP_RSP;
1587 	srp_rsp->req_lim_delta =
1588 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1589 	srp_rsp->tag = tag;
1590 
1591 	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1592 	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1593 	srp_rsp->data[3] = rsp_code;
1594 
1595 	return resp_len;
1596 }
1597 
1598 #define NO_SUCH_LUN ((uint64_t)-1LL)
1599 
1600 /*
1601  * SCSI LUN addressing method. See also SAM-2 and the section about
1602  * eight byte LUNs.
1603  */
1604 enum scsi_lun_addr_method {
1605 	SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1606 	SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1607 	SCSI_LUN_ADDR_METHOD_LUN          = 2,
1608 	SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1609 };
1610 
1611 /*
1612  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1613  *
1614  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1615  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1616  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1617  */
srpt_unpack_lun(const uint8_t * lun,int len)1618 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1619 {
1620 	uint64_t res = NO_SUCH_LUN;
1621 	int addressing_method;
1622 
1623 	if (unlikely(len < 2)) {
1624 		pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1625 		       len);
1626 		goto out;
1627 	}
1628 
1629 	switch (len) {
1630 	case 8:
1631 		if ((*((__be64 *)lun) &
1632 		     cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1633 			goto out_err;
1634 		break;
1635 	case 4:
1636 		if (*((__be16 *)&lun[2]) != 0)
1637 			goto out_err;
1638 		break;
1639 	case 6:
1640 		if (*((__be32 *)&lun[2]) != 0)
1641 			goto out_err;
1642 		break;
1643 	case 2:
1644 		break;
1645 	default:
1646 		goto out_err;
1647 	}
1648 
1649 	addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1650 	switch (addressing_method) {
1651 	case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1652 	case SCSI_LUN_ADDR_METHOD_FLAT:
1653 	case SCSI_LUN_ADDR_METHOD_LUN:
1654 		res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1655 		break;
1656 
1657 	case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1658 	default:
1659 		pr_err("Unimplemented LUN addressing method %u\n",
1660 		       addressing_method);
1661 		break;
1662 	}
1663 
1664 out:
1665 	return res;
1666 
1667 out_err:
1668 	pr_err("Support for multi-level LUNs has not yet been implemented\n");
1669 	goto out;
1670 }
1671 
srpt_check_stop_free(struct se_cmd * cmd)1672 static int srpt_check_stop_free(struct se_cmd *cmd)
1673 {
1674 	struct srpt_send_ioctx *ioctx = container_of(cmd,
1675 				struct srpt_send_ioctx, cmd);
1676 
1677 	return target_put_sess_cmd(&ioctx->cmd);
1678 }
1679 
1680 /**
1681  * srpt_handle_cmd() - Process SRP_CMD.
1682  */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1683 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1684 			   struct srpt_recv_ioctx *recv_ioctx,
1685 			   struct srpt_send_ioctx *send_ioctx)
1686 {
1687 	struct se_cmd *cmd;
1688 	struct srp_cmd *srp_cmd;
1689 	uint64_t unpacked_lun;
1690 	u64 data_len;
1691 	enum dma_data_direction dir;
1692 	sense_reason_t ret;
1693 	int rc;
1694 
1695 	BUG_ON(!send_ioctx);
1696 
1697 	srp_cmd = recv_ioctx->ioctx.buf;
1698 	cmd = &send_ioctx->cmd;
1699 	cmd->tag = srp_cmd->tag;
1700 
1701 	switch (srp_cmd->task_attr) {
1702 	case SRP_CMD_SIMPLE_Q:
1703 		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1704 		break;
1705 	case SRP_CMD_ORDERED_Q:
1706 	default:
1707 		cmd->sam_task_attr = TCM_ORDERED_TAG;
1708 		break;
1709 	case SRP_CMD_HEAD_OF_Q:
1710 		cmd->sam_task_attr = TCM_HEAD_TAG;
1711 		break;
1712 	case SRP_CMD_ACA:
1713 		cmd->sam_task_attr = TCM_ACA_TAG;
1714 		break;
1715 	}
1716 
1717 	if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1718 		pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1719 		       srp_cmd->tag);
1720 		ret = TCM_INVALID_CDB_FIELD;
1721 		goto send_sense;
1722 	}
1723 
1724 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1725 				       sizeof(srp_cmd->lun));
1726 	rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1727 			&send_ioctx->sense_data[0], unpacked_lun, data_len,
1728 			TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1729 	if (rc != 0) {
1730 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1731 		goto send_sense;
1732 	}
1733 	return 0;
1734 
1735 send_sense:
1736 	transport_send_check_condition_and_sense(cmd, ret, 0);
1737 	return -1;
1738 }
1739 
srp_tmr_to_tcm(int fn)1740 static int srp_tmr_to_tcm(int fn)
1741 {
1742 	switch (fn) {
1743 	case SRP_TSK_ABORT_TASK:
1744 		return TMR_ABORT_TASK;
1745 	case SRP_TSK_ABORT_TASK_SET:
1746 		return TMR_ABORT_TASK_SET;
1747 	case SRP_TSK_CLEAR_TASK_SET:
1748 		return TMR_CLEAR_TASK_SET;
1749 	case SRP_TSK_LUN_RESET:
1750 		return TMR_LUN_RESET;
1751 	case SRP_TSK_CLEAR_ACA:
1752 		return TMR_CLEAR_ACA;
1753 	default:
1754 		return -1;
1755 	}
1756 }
1757 
1758 /**
1759  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1760  *
1761  * Returns 0 if and only if the request will be processed by the target core.
1762  *
1763  * For more information about SRP_TSK_MGMT information units, see also section
1764  * 6.7 in the SRP r16a document.
1765  */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1766 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1767 				 struct srpt_recv_ioctx *recv_ioctx,
1768 				 struct srpt_send_ioctx *send_ioctx)
1769 {
1770 	struct srp_tsk_mgmt *srp_tsk;
1771 	struct se_cmd *cmd;
1772 	struct se_session *sess = ch->sess;
1773 	uint64_t unpacked_lun;
1774 	int tcm_tmr;
1775 	int rc;
1776 
1777 	BUG_ON(!send_ioctx);
1778 
1779 	srp_tsk = recv_ioctx->ioctx.buf;
1780 	cmd = &send_ioctx->cmd;
1781 
1782 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1783 		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1784 		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1785 
1786 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1787 	send_ioctx->cmd.tag = srp_tsk->tag;
1788 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1789 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1790 				       sizeof(srp_tsk->lun));
1791 	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1792 				srp_tsk, tcm_tmr, GFP_KERNEL, srp_tsk->task_tag,
1793 				TARGET_SCF_ACK_KREF);
1794 	if (rc != 0) {
1795 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1796 		goto fail;
1797 	}
1798 	return;
1799 fail:
1800 	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1801 }
1802 
1803 /**
1804  * srpt_handle_new_iu() - Process a newly received information unit.
1805  * @ch:    RDMA channel through which the information unit has been received.
1806  * @ioctx: SRPT I/O context associated with the information unit.
1807  */
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1808 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1809 			       struct srpt_recv_ioctx *recv_ioctx,
1810 			       struct srpt_send_ioctx *send_ioctx)
1811 {
1812 	struct srp_cmd *srp_cmd;
1813 	enum rdma_ch_state ch_state;
1814 
1815 	BUG_ON(!ch);
1816 	BUG_ON(!recv_ioctx);
1817 
1818 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1819 				   recv_ioctx->ioctx.dma, srp_max_req_size,
1820 				   DMA_FROM_DEVICE);
1821 
1822 	ch_state = srpt_get_ch_state(ch);
1823 	if (unlikely(ch_state == CH_CONNECTING)) {
1824 		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1825 		goto out;
1826 	}
1827 
1828 	if (unlikely(ch_state != CH_LIVE))
1829 		goto out;
1830 
1831 	srp_cmd = recv_ioctx->ioctx.buf;
1832 	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1833 		if (!send_ioctx)
1834 			send_ioctx = srpt_get_send_ioctx(ch);
1835 		if (unlikely(!send_ioctx)) {
1836 			list_add_tail(&recv_ioctx->wait_list,
1837 				      &ch->cmd_wait_list);
1838 			goto out;
1839 		}
1840 	}
1841 
1842 	switch (srp_cmd->opcode) {
1843 	case SRP_CMD:
1844 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1845 		break;
1846 	case SRP_TSK_MGMT:
1847 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1848 		break;
1849 	case SRP_I_LOGOUT:
1850 		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1851 		break;
1852 	case SRP_CRED_RSP:
1853 		pr_debug("received SRP_CRED_RSP\n");
1854 		break;
1855 	case SRP_AER_RSP:
1856 		pr_debug("received SRP_AER_RSP\n");
1857 		break;
1858 	case SRP_RSP:
1859 		pr_err("Received SRP_RSP\n");
1860 		break;
1861 	default:
1862 		pr_err("received IU with unknown opcode 0x%x\n",
1863 		       srp_cmd->opcode);
1864 		break;
1865 	}
1866 
1867 	srpt_post_recv(ch->sport->sdev, recv_ioctx);
1868 out:
1869 	return;
1870 }
1871 
srpt_process_rcv_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1872 static void srpt_process_rcv_completion(struct ib_cq *cq,
1873 					struct srpt_rdma_ch *ch,
1874 					struct ib_wc *wc)
1875 {
1876 	struct srpt_device *sdev = ch->sport->sdev;
1877 	struct srpt_recv_ioctx *ioctx;
1878 	u32 index;
1879 
1880 	index = idx_from_wr_id(wc->wr_id);
1881 	if (wc->status == IB_WC_SUCCESS) {
1882 		int req_lim;
1883 
1884 		req_lim = atomic_dec_return(&ch->req_lim);
1885 		if (unlikely(req_lim < 0))
1886 			pr_err("req_lim = %d < 0\n", req_lim);
1887 		ioctx = sdev->ioctx_ring[index];
1888 		srpt_handle_new_iu(ch, ioctx, NULL);
1889 	} else {
1890 		pr_info("receiving failed for idx %u with status %d\n",
1891 			index, wc->status);
1892 	}
1893 }
1894 
1895 /**
1896  * srpt_process_send_completion() - Process an IB send completion.
1897  *
1898  * Note: Although this has not yet been observed during tests, at least in
1899  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1900  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1901  * value in each response is set to one, and it is possible that this response
1902  * makes the initiator send a new request before the send completion for that
1903  * response has been processed. This could e.g. happen if the call to
1904  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1905  * if IB retransmission causes generation of the send completion to be
1906  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1907  * are queued on cmd_wait_list. The code below processes these delayed
1908  * requests one at a time.
1909  */
srpt_process_send_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1910 static void srpt_process_send_completion(struct ib_cq *cq,
1911 					 struct srpt_rdma_ch *ch,
1912 					 struct ib_wc *wc)
1913 {
1914 	struct srpt_send_ioctx *send_ioctx;
1915 	uint32_t index;
1916 	enum srpt_opcode opcode;
1917 
1918 	index = idx_from_wr_id(wc->wr_id);
1919 	opcode = opcode_from_wr_id(wc->wr_id);
1920 	send_ioctx = ch->ioctx_ring[index];
1921 	if (wc->status == IB_WC_SUCCESS) {
1922 		if (opcode == SRPT_SEND)
1923 			srpt_handle_send_comp(ch, send_ioctx);
1924 		else {
1925 			WARN_ON(opcode != SRPT_RDMA_ABORT &&
1926 				wc->opcode != IB_WC_RDMA_READ);
1927 			srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1928 		}
1929 	} else {
1930 		if (opcode == SRPT_SEND) {
1931 			pr_info("sending response for idx %u failed"
1932 				" with status %d\n", index, wc->status);
1933 			srpt_handle_send_err_comp(ch, wc->wr_id);
1934 		} else if (opcode != SRPT_RDMA_MID) {
1935 			pr_info("RDMA t %d for idx %u failed with"
1936 				" status %d\n", opcode, index, wc->status);
1937 			srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1938 		}
1939 	}
1940 
1941 	while (unlikely(opcode == SRPT_SEND
1942 			&& !list_empty(&ch->cmd_wait_list)
1943 			&& srpt_get_ch_state(ch) == CH_LIVE
1944 			&& (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
1945 		struct srpt_recv_ioctx *recv_ioctx;
1946 
1947 		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1948 					      struct srpt_recv_ioctx,
1949 					      wait_list);
1950 		list_del(&recv_ioctx->wait_list);
1951 		srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
1952 	}
1953 }
1954 
srpt_process_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch)1955 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
1956 {
1957 	struct ib_wc *const wc = ch->wc;
1958 	int i, n;
1959 
1960 	WARN_ON(cq != ch->cq);
1961 
1962 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1963 	while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
1964 		for (i = 0; i < n; i++) {
1965 			if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
1966 				srpt_process_rcv_completion(cq, ch, &wc[i]);
1967 			else
1968 				srpt_process_send_completion(cq, ch, &wc[i]);
1969 		}
1970 	}
1971 }
1972 
1973 /**
1974  * srpt_completion() - IB completion queue callback function.
1975  *
1976  * Notes:
1977  * - It is guaranteed that a completion handler will never be invoked
1978  *   concurrently on two different CPUs for the same completion queue. See also
1979  *   Documentation/infiniband/core_locking.txt and the implementation of
1980  *   handle_edge_irq() in kernel/irq/chip.c.
1981  * - When threaded IRQs are enabled, completion handlers are invoked in thread
1982  *   context instead of interrupt context.
1983  */
srpt_completion(struct ib_cq * cq,void * ctx)1984 static void srpt_completion(struct ib_cq *cq, void *ctx)
1985 {
1986 	struct srpt_rdma_ch *ch = ctx;
1987 
1988 	wake_up_interruptible(&ch->wait_queue);
1989 }
1990 
srpt_compl_thread(void * arg)1991 static int srpt_compl_thread(void *arg)
1992 {
1993 	struct srpt_rdma_ch *ch;
1994 
1995 	/* Hibernation / freezing of the SRPT kernel thread is not supported. */
1996 	current->flags |= PF_NOFREEZE;
1997 
1998 	ch = arg;
1999 	BUG_ON(!ch);
2000 	pr_info("Session %s: kernel thread %s (PID %d) started\n",
2001 		ch->sess_name, ch->thread->comm, current->pid);
2002 	while (!kthread_should_stop()) {
2003 		wait_event_interruptible(ch->wait_queue,
2004 			(srpt_process_completion(ch->cq, ch),
2005 			 kthread_should_stop()));
2006 	}
2007 	pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2008 		ch->sess_name, ch->thread->comm, current->pid);
2009 	return 0;
2010 }
2011 
2012 /**
2013  * srpt_create_ch_ib() - Create receive and send completion queues.
2014  */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)2015 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2016 {
2017 	struct ib_qp_init_attr *qp_init;
2018 	struct srpt_port *sport = ch->sport;
2019 	struct srpt_device *sdev = sport->sdev;
2020 	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2021 	struct ib_cq_init_attr cq_attr = {};
2022 	int ret;
2023 
2024 	WARN_ON(ch->rq_size < 1);
2025 
2026 	ret = -ENOMEM;
2027 	qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2028 	if (!qp_init)
2029 		goto out;
2030 
2031 retry:
2032 	cq_attr.cqe = ch->rq_size + srp_sq_size;
2033 	ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2034 			      &cq_attr);
2035 	if (IS_ERR(ch->cq)) {
2036 		ret = PTR_ERR(ch->cq);
2037 		pr_err("failed to create CQ cqe= %d ret= %d\n",
2038 		       ch->rq_size + srp_sq_size, ret);
2039 		goto out;
2040 	}
2041 
2042 	qp_init->qp_context = (void *)ch;
2043 	qp_init->event_handler
2044 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
2045 	qp_init->send_cq = ch->cq;
2046 	qp_init->recv_cq = ch->cq;
2047 	qp_init->srq = sdev->srq;
2048 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2049 	qp_init->qp_type = IB_QPT_RC;
2050 	qp_init->cap.max_send_wr = srp_sq_size;
2051 	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2052 
2053 	ch->qp = ib_create_qp(sdev->pd, qp_init);
2054 	if (IS_ERR(ch->qp)) {
2055 		ret = PTR_ERR(ch->qp);
2056 		if (ret == -ENOMEM) {
2057 			srp_sq_size /= 2;
2058 			if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2059 				ib_destroy_cq(ch->cq);
2060 				goto retry;
2061 			}
2062 		}
2063 		pr_err("failed to create_qp ret= %d\n", ret);
2064 		goto err_destroy_cq;
2065 	}
2066 
2067 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2068 
2069 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2070 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2071 		 qp_init->cap.max_send_wr, ch->cm_id);
2072 
2073 	ret = srpt_init_ch_qp(ch, ch->qp);
2074 	if (ret)
2075 		goto err_destroy_qp;
2076 
2077 	init_waitqueue_head(&ch->wait_queue);
2078 
2079 	pr_debug("creating thread for session %s\n", ch->sess_name);
2080 
2081 	ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2082 	if (IS_ERR(ch->thread)) {
2083 		pr_err("failed to create kernel thread %ld\n",
2084 		       PTR_ERR(ch->thread));
2085 		ch->thread = NULL;
2086 		goto err_destroy_qp;
2087 	}
2088 
2089 out:
2090 	kfree(qp_init);
2091 	return ret;
2092 
2093 err_destroy_qp:
2094 	ib_destroy_qp(ch->qp);
2095 err_destroy_cq:
2096 	ib_destroy_cq(ch->cq);
2097 	goto out;
2098 }
2099 
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)2100 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2101 {
2102 	if (ch->thread)
2103 		kthread_stop(ch->thread);
2104 
2105 	ib_destroy_qp(ch->qp);
2106 	ib_destroy_cq(ch->cq);
2107 }
2108 
2109 /**
2110  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2111  *
2112  * Reset the QP and make sure all resources associated with the channel will
2113  * be deallocated at an appropriate time.
2114  *
2115  * Note: The caller must hold ch->sport->sdev->spinlock.
2116  */
__srpt_close_ch(struct srpt_rdma_ch * ch)2117 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2118 {
2119 	enum rdma_ch_state prev_state;
2120 	unsigned long flags;
2121 
2122 	spin_lock_irqsave(&ch->spinlock, flags);
2123 	prev_state = ch->state;
2124 	switch (prev_state) {
2125 	case CH_CONNECTING:
2126 	case CH_LIVE:
2127 		ch->state = CH_DISCONNECTING;
2128 		break;
2129 	default:
2130 		break;
2131 	}
2132 	spin_unlock_irqrestore(&ch->spinlock, flags);
2133 
2134 	switch (prev_state) {
2135 	case CH_CONNECTING:
2136 		ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2137 			       NULL, 0);
2138 		/* fall through */
2139 	case CH_LIVE:
2140 		if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2141 			pr_err("sending CM DREQ failed.\n");
2142 		break;
2143 	case CH_DISCONNECTING:
2144 		break;
2145 	case CH_DRAINING:
2146 	case CH_RELEASING:
2147 		break;
2148 	}
2149 }
2150 
2151 /**
2152  * srpt_close_ch() - Close an RDMA channel.
2153  */
srpt_close_ch(struct srpt_rdma_ch * ch)2154 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2155 {
2156 	struct srpt_device *sdev;
2157 
2158 	sdev = ch->sport->sdev;
2159 	spin_lock_irq(&sdev->spinlock);
2160 	__srpt_close_ch(ch);
2161 	spin_unlock_irq(&sdev->spinlock);
2162 }
2163 
2164 /**
2165  * srpt_shutdown_session() - Whether or not a session may be shut down.
2166  */
srpt_shutdown_session(struct se_session * se_sess)2167 static int srpt_shutdown_session(struct se_session *se_sess)
2168 {
2169 	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2170 	unsigned long flags;
2171 
2172 	spin_lock_irqsave(&ch->spinlock, flags);
2173 	if (ch->in_shutdown) {
2174 		spin_unlock_irqrestore(&ch->spinlock, flags);
2175 		return true;
2176 	}
2177 
2178 	ch->in_shutdown = true;
2179 	target_sess_cmd_list_set_waiting(se_sess);
2180 	spin_unlock_irqrestore(&ch->spinlock, flags);
2181 
2182 	return true;
2183 }
2184 
2185 /**
2186  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2187  * @cm_id: Pointer to the CM ID of the channel to be drained.
2188  *
2189  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2190  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2191  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2192  * waits until all target sessions for the associated IB device have been
2193  * unregistered and target session registration involves a call to
2194  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2195  * this function has finished).
2196  */
srpt_drain_channel(struct ib_cm_id * cm_id)2197 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2198 {
2199 	struct srpt_device *sdev;
2200 	struct srpt_rdma_ch *ch;
2201 	int ret;
2202 	bool do_reset = false;
2203 
2204 	WARN_ON_ONCE(irqs_disabled());
2205 
2206 	sdev = cm_id->context;
2207 	BUG_ON(!sdev);
2208 	spin_lock_irq(&sdev->spinlock);
2209 	list_for_each_entry(ch, &sdev->rch_list, list) {
2210 		if (ch->cm_id == cm_id) {
2211 			do_reset = srpt_test_and_set_ch_state(ch,
2212 					CH_CONNECTING, CH_DRAINING) ||
2213 				   srpt_test_and_set_ch_state(ch,
2214 					CH_LIVE, CH_DRAINING) ||
2215 				   srpt_test_and_set_ch_state(ch,
2216 					CH_DISCONNECTING, CH_DRAINING);
2217 			break;
2218 		}
2219 	}
2220 	spin_unlock_irq(&sdev->spinlock);
2221 
2222 	if (do_reset) {
2223 		if (ch->sess)
2224 			srpt_shutdown_session(ch->sess);
2225 
2226 		ret = srpt_ch_qp_err(ch);
2227 		if (ret < 0)
2228 			pr_err("Setting queue pair in error state"
2229 			       " failed: %d\n", ret);
2230 	}
2231 }
2232 
2233 /**
2234  * srpt_find_channel() - Look up an RDMA channel.
2235  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2236  *
2237  * Return NULL if no matching RDMA channel has been found.
2238  */
srpt_find_channel(struct srpt_device * sdev,struct ib_cm_id * cm_id)2239 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2240 					      struct ib_cm_id *cm_id)
2241 {
2242 	struct srpt_rdma_ch *ch;
2243 	bool found;
2244 
2245 	WARN_ON_ONCE(irqs_disabled());
2246 	BUG_ON(!sdev);
2247 
2248 	found = false;
2249 	spin_lock_irq(&sdev->spinlock);
2250 	list_for_each_entry(ch, &sdev->rch_list, list) {
2251 		if (ch->cm_id == cm_id) {
2252 			found = true;
2253 			break;
2254 		}
2255 	}
2256 	spin_unlock_irq(&sdev->spinlock);
2257 
2258 	return found ? ch : NULL;
2259 }
2260 
2261 /**
2262  * srpt_release_channel() - Release channel resources.
2263  *
2264  * Schedules the actual release because:
2265  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2266  *   trigger a deadlock.
2267  * - It is not safe to call TCM transport_* functions from interrupt context.
2268  */
srpt_release_channel(struct srpt_rdma_ch * ch)2269 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2270 {
2271 	schedule_work(&ch->release_work);
2272 }
2273 
srpt_release_channel_work(struct work_struct * w)2274 static void srpt_release_channel_work(struct work_struct *w)
2275 {
2276 	struct srpt_rdma_ch *ch;
2277 	struct srpt_device *sdev;
2278 	struct se_session *se_sess;
2279 
2280 	ch = container_of(w, struct srpt_rdma_ch, release_work);
2281 	pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2282 		 ch->release_done);
2283 
2284 	sdev = ch->sport->sdev;
2285 	BUG_ON(!sdev);
2286 
2287 	se_sess = ch->sess;
2288 	BUG_ON(!se_sess);
2289 
2290 	target_wait_for_sess_cmds(se_sess);
2291 
2292 	transport_deregister_session_configfs(se_sess);
2293 	transport_deregister_session(se_sess);
2294 	ch->sess = NULL;
2295 
2296 	ib_destroy_cm_id(ch->cm_id);
2297 
2298 	srpt_destroy_ch_ib(ch);
2299 
2300 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2301 			     ch->sport->sdev, ch->rq_size,
2302 			     ch->rsp_size, DMA_TO_DEVICE);
2303 
2304 	spin_lock_irq(&sdev->spinlock);
2305 	list_del(&ch->list);
2306 	spin_unlock_irq(&sdev->spinlock);
2307 
2308 	if (ch->release_done)
2309 		complete(ch->release_done);
2310 
2311 	wake_up(&sdev->ch_releaseQ);
2312 
2313 	kfree(ch);
2314 }
2315 
__srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2316 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2317 					       u8 i_port_id[16])
2318 {
2319 	struct srpt_node_acl *nacl;
2320 
2321 	list_for_each_entry(nacl, &sport->port_acl_list, list)
2322 		if (memcmp(nacl->i_port_id, i_port_id,
2323 			   sizeof(nacl->i_port_id)) == 0)
2324 			return nacl;
2325 
2326 	return NULL;
2327 }
2328 
srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2329 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2330 					     u8 i_port_id[16])
2331 {
2332 	struct srpt_node_acl *nacl;
2333 
2334 	spin_lock_irq(&sport->port_acl_lock);
2335 	nacl = __srpt_lookup_acl(sport, i_port_id);
2336 	spin_unlock_irq(&sport->port_acl_lock);
2337 
2338 	return nacl;
2339 }
2340 
2341 /**
2342  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2343  *
2344  * Ownership of the cm_id is transferred to the target session if this
2345  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2346  */
srpt_cm_req_recv(struct ib_cm_id * cm_id,struct ib_cm_req_event_param * param,void * private_data)2347 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2348 			    struct ib_cm_req_event_param *param,
2349 			    void *private_data)
2350 {
2351 	struct srpt_device *sdev = cm_id->context;
2352 	struct srpt_port *sport = &sdev->port[param->port - 1];
2353 	struct srp_login_req *req;
2354 	struct srp_login_rsp *rsp;
2355 	struct srp_login_rej *rej;
2356 	struct ib_cm_rep_param *rep_param;
2357 	struct srpt_rdma_ch *ch, *tmp_ch;
2358 	struct srpt_node_acl *nacl;
2359 	u32 it_iu_len;
2360 	int i;
2361 	int ret = 0;
2362 
2363 	WARN_ON_ONCE(irqs_disabled());
2364 
2365 	if (WARN_ON(!sdev || !private_data))
2366 		return -EINVAL;
2367 
2368 	req = (struct srp_login_req *)private_data;
2369 
2370 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2371 
2372 	pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2373 		" t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2374 		" (guid=0x%llx:0x%llx)\n",
2375 		be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2376 		be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2377 		be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2378 		be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2379 		it_iu_len,
2380 		param->port,
2381 		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2382 		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2383 
2384 	rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2385 	rej = kzalloc(sizeof *rej, GFP_KERNEL);
2386 	rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2387 
2388 	if (!rsp || !rej || !rep_param) {
2389 		ret = -ENOMEM;
2390 		goto out;
2391 	}
2392 
2393 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2394 		rej->reason = cpu_to_be32(
2395 			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2396 		ret = -EINVAL;
2397 		pr_err("rejected SRP_LOGIN_REQ because its"
2398 		       " length (%d bytes) is out of range (%d .. %d)\n",
2399 		       it_iu_len, 64, srp_max_req_size);
2400 		goto reject;
2401 	}
2402 
2403 	if (!sport->enabled) {
2404 		rej->reason = cpu_to_be32(
2405 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2406 		ret = -EINVAL;
2407 		pr_err("rejected SRP_LOGIN_REQ because the target port"
2408 		       " has not yet been enabled\n");
2409 		goto reject;
2410 	}
2411 
2412 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2413 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2414 
2415 		spin_lock_irq(&sdev->spinlock);
2416 
2417 		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2418 			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2419 			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
2420 			    && param->port == ch->sport->port
2421 			    && param->listen_id == ch->sport->sdev->cm_id
2422 			    && ch->cm_id) {
2423 				enum rdma_ch_state ch_state;
2424 
2425 				ch_state = srpt_get_ch_state(ch);
2426 				if (ch_state != CH_CONNECTING
2427 				    && ch_state != CH_LIVE)
2428 					continue;
2429 
2430 				/* found an existing channel */
2431 				pr_debug("Found existing channel %s"
2432 					 " cm_id= %p state= %d\n",
2433 					 ch->sess_name, ch->cm_id, ch_state);
2434 
2435 				__srpt_close_ch(ch);
2436 
2437 				rsp->rsp_flags =
2438 					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2439 			}
2440 		}
2441 
2442 		spin_unlock_irq(&sdev->spinlock);
2443 
2444 	} else
2445 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2446 
2447 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2448 	    || *(__be64 *)(req->target_port_id + 8) !=
2449 	       cpu_to_be64(srpt_service_guid)) {
2450 		rej->reason = cpu_to_be32(
2451 			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2452 		ret = -ENOMEM;
2453 		pr_err("rejected SRP_LOGIN_REQ because it"
2454 		       " has an invalid target port identifier.\n");
2455 		goto reject;
2456 	}
2457 
2458 	ch = kzalloc(sizeof *ch, GFP_KERNEL);
2459 	if (!ch) {
2460 		rej->reason = cpu_to_be32(
2461 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2462 		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2463 		ret = -ENOMEM;
2464 		goto reject;
2465 	}
2466 
2467 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2468 	memcpy(ch->i_port_id, req->initiator_port_id, 16);
2469 	memcpy(ch->t_port_id, req->target_port_id, 16);
2470 	ch->sport = &sdev->port[param->port - 1];
2471 	ch->cm_id = cm_id;
2472 	/*
2473 	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2474 	 * for the SRP protocol to the command queue size.
2475 	 */
2476 	ch->rq_size = SRPT_RQ_SIZE;
2477 	spin_lock_init(&ch->spinlock);
2478 	ch->state = CH_CONNECTING;
2479 	INIT_LIST_HEAD(&ch->cmd_wait_list);
2480 	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2481 
2482 	ch->ioctx_ring = (struct srpt_send_ioctx **)
2483 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2484 				      sizeof(*ch->ioctx_ring[0]),
2485 				      ch->rsp_size, DMA_TO_DEVICE);
2486 	if (!ch->ioctx_ring)
2487 		goto free_ch;
2488 
2489 	INIT_LIST_HEAD(&ch->free_list);
2490 	for (i = 0; i < ch->rq_size; i++) {
2491 		ch->ioctx_ring[i]->ch = ch;
2492 		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2493 	}
2494 
2495 	ret = srpt_create_ch_ib(ch);
2496 	if (ret) {
2497 		rej->reason = cpu_to_be32(
2498 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2499 		pr_err("rejected SRP_LOGIN_REQ because creating"
2500 		       " a new RDMA channel failed.\n");
2501 		goto free_ring;
2502 	}
2503 
2504 	ret = srpt_ch_qp_rtr(ch, ch->qp);
2505 	if (ret) {
2506 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2507 		pr_err("rejected SRP_LOGIN_REQ because enabling"
2508 		       " RTR failed (error code = %d)\n", ret);
2509 		goto destroy_ib;
2510 	}
2511 	/*
2512 	 * Use the initator port identifier as the session name.
2513 	 */
2514 	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2515 			be64_to_cpu(*(__be64 *)ch->i_port_id),
2516 			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2517 
2518 	pr_debug("registering session %s\n", ch->sess_name);
2519 
2520 	nacl = srpt_lookup_acl(sport, ch->i_port_id);
2521 	if (!nacl) {
2522 		pr_info("Rejected login because no ACL has been"
2523 			" configured yet for initiator %s.\n", ch->sess_name);
2524 		rej->reason = cpu_to_be32(
2525 			      SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2526 		goto destroy_ib;
2527 	}
2528 
2529 	ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2530 	if (IS_ERR(ch->sess)) {
2531 		rej->reason = cpu_to_be32(
2532 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2533 		pr_debug("Failed to create session\n");
2534 		goto deregister_session;
2535 	}
2536 	ch->sess->se_node_acl = &nacl->nacl;
2537 	transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2538 
2539 	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2540 		 ch->sess_name, ch->cm_id);
2541 
2542 	/* create srp_login_response */
2543 	rsp->opcode = SRP_LOGIN_RSP;
2544 	rsp->tag = req->tag;
2545 	rsp->max_it_iu_len = req->req_it_iu_len;
2546 	rsp->max_ti_iu_len = req->req_it_iu_len;
2547 	ch->max_ti_iu_len = it_iu_len;
2548 	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2549 				   | SRP_BUF_FORMAT_INDIRECT);
2550 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2551 	atomic_set(&ch->req_lim, ch->rq_size);
2552 	atomic_set(&ch->req_lim_delta, 0);
2553 
2554 	/* create cm reply */
2555 	rep_param->qp_num = ch->qp->qp_num;
2556 	rep_param->private_data = (void *)rsp;
2557 	rep_param->private_data_len = sizeof *rsp;
2558 	rep_param->rnr_retry_count = 7;
2559 	rep_param->flow_control = 1;
2560 	rep_param->failover_accepted = 0;
2561 	rep_param->srq = 1;
2562 	rep_param->responder_resources = 4;
2563 	rep_param->initiator_depth = 4;
2564 
2565 	ret = ib_send_cm_rep(cm_id, rep_param);
2566 	if (ret) {
2567 		pr_err("sending SRP_LOGIN_REQ response failed"
2568 		       " (error code = %d)\n", ret);
2569 		goto release_channel;
2570 	}
2571 
2572 	spin_lock_irq(&sdev->spinlock);
2573 	list_add_tail(&ch->list, &sdev->rch_list);
2574 	spin_unlock_irq(&sdev->spinlock);
2575 
2576 	goto out;
2577 
2578 release_channel:
2579 	srpt_set_ch_state(ch, CH_RELEASING);
2580 	transport_deregister_session_configfs(ch->sess);
2581 
2582 deregister_session:
2583 	transport_deregister_session(ch->sess);
2584 	ch->sess = NULL;
2585 
2586 destroy_ib:
2587 	srpt_destroy_ch_ib(ch);
2588 
2589 free_ring:
2590 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2591 			     ch->sport->sdev, ch->rq_size,
2592 			     ch->rsp_size, DMA_TO_DEVICE);
2593 free_ch:
2594 	kfree(ch);
2595 
2596 reject:
2597 	rej->opcode = SRP_LOGIN_REJ;
2598 	rej->tag = req->tag;
2599 	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2600 				   | SRP_BUF_FORMAT_INDIRECT);
2601 
2602 	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2603 			     (void *)rej, sizeof *rej);
2604 
2605 out:
2606 	kfree(rep_param);
2607 	kfree(rsp);
2608 	kfree(rej);
2609 
2610 	return ret;
2611 }
2612 
srpt_cm_rej_recv(struct ib_cm_id * cm_id)2613 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2614 {
2615 	pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2616 	srpt_drain_channel(cm_id);
2617 }
2618 
2619 /**
2620  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2621  *
2622  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2623  * and that the recipient may begin transmitting (RTU = ready to use).
2624  */
srpt_cm_rtu_recv(struct ib_cm_id * cm_id)2625 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2626 {
2627 	struct srpt_rdma_ch *ch;
2628 	int ret;
2629 
2630 	ch = srpt_find_channel(cm_id->context, cm_id);
2631 	BUG_ON(!ch);
2632 
2633 	if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2634 		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2635 
2636 		ret = srpt_ch_qp_rts(ch, ch->qp);
2637 
2638 		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2639 					 wait_list) {
2640 			list_del(&ioctx->wait_list);
2641 			srpt_handle_new_iu(ch, ioctx, NULL);
2642 		}
2643 		if (ret)
2644 			srpt_close_ch(ch);
2645 	}
2646 }
2647 
srpt_cm_timewait_exit(struct ib_cm_id * cm_id)2648 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2649 {
2650 	pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2651 	srpt_drain_channel(cm_id);
2652 }
2653 
srpt_cm_rep_error(struct ib_cm_id * cm_id)2654 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2655 {
2656 	pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2657 	srpt_drain_channel(cm_id);
2658 }
2659 
2660 /**
2661  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2662  */
srpt_cm_dreq_recv(struct ib_cm_id * cm_id)2663 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2664 {
2665 	struct srpt_rdma_ch *ch;
2666 	unsigned long flags;
2667 	bool send_drep = false;
2668 
2669 	ch = srpt_find_channel(cm_id->context, cm_id);
2670 	BUG_ON(!ch);
2671 
2672 	pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2673 
2674 	spin_lock_irqsave(&ch->spinlock, flags);
2675 	switch (ch->state) {
2676 	case CH_CONNECTING:
2677 	case CH_LIVE:
2678 		send_drep = true;
2679 		ch->state = CH_DISCONNECTING;
2680 		break;
2681 	case CH_DISCONNECTING:
2682 	case CH_DRAINING:
2683 	case CH_RELEASING:
2684 		WARN(true, "unexpected channel state %d\n", ch->state);
2685 		break;
2686 	}
2687 	spin_unlock_irqrestore(&ch->spinlock, flags);
2688 
2689 	if (send_drep) {
2690 		if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2691 			pr_err("Sending IB DREP failed.\n");
2692 		pr_info("Received DREQ and sent DREP for session %s.\n",
2693 			ch->sess_name);
2694 	}
2695 }
2696 
2697 /**
2698  * srpt_cm_drep_recv() - Process reception of a DREP message.
2699  */
srpt_cm_drep_recv(struct ib_cm_id * cm_id)2700 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2701 {
2702 	pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2703 	srpt_drain_channel(cm_id);
2704 }
2705 
2706 /**
2707  * srpt_cm_handler() - IB connection manager callback function.
2708  *
2709  * A non-zero return value will cause the caller destroy the CM ID.
2710  *
2711  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2712  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2713  * a non-zero value in any other case will trigger a race with the
2714  * ib_destroy_cm_id() call in srpt_release_channel().
2715  */
srpt_cm_handler(struct ib_cm_id * cm_id,struct ib_cm_event * event)2716 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2717 {
2718 	int ret;
2719 
2720 	ret = 0;
2721 	switch (event->event) {
2722 	case IB_CM_REQ_RECEIVED:
2723 		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2724 				       event->private_data);
2725 		break;
2726 	case IB_CM_REJ_RECEIVED:
2727 		srpt_cm_rej_recv(cm_id);
2728 		break;
2729 	case IB_CM_RTU_RECEIVED:
2730 	case IB_CM_USER_ESTABLISHED:
2731 		srpt_cm_rtu_recv(cm_id);
2732 		break;
2733 	case IB_CM_DREQ_RECEIVED:
2734 		srpt_cm_dreq_recv(cm_id);
2735 		break;
2736 	case IB_CM_DREP_RECEIVED:
2737 		srpt_cm_drep_recv(cm_id);
2738 		break;
2739 	case IB_CM_TIMEWAIT_EXIT:
2740 		srpt_cm_timewait_exit(cm_id);
2741 		break;
2742 	case IB_CM_REP_ERROR:
2743 		srpt_cm_rep_error(cm_id);
2744 		break;
2745 	case IB_CM_DREQ_ERROR:
2746 		pr_info("Received IB DREQ ERROR event.\n");
2747 		break;
2748 	case IB_CM_MRA_RECEIVED:
2749 		pr_info("Received IB MRA event\n");
2750 		break;
2751 	default:
2752 		pr_err("received unrecognized IB CM event %d\n", event->event);
2753 		break;
2754 	}
2755 
2756 	return ret;
2757 }
2758 
2759 /**
2760  * srpt_perform_rdmas() - Perform IB RDMA.
2761  *
2762  * Returns zero upon success or a negative number upon failure.
2763  */
srpt_perform_rdmas(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2764 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2765 			      struct srpt_send_ioctx *ioctx)
2766 {
2767 	struct ib_rdma_wr wr;
2768 	struct ib_send_wr *bad_wr;
2769 	struct rdma_iu *riu;
2770 	int i;
2771 	int ret;
2772 	int sq_wr_avail;
2773 	enum dma_data_direction dir;
2774 	const int n_rdma = ioctx->n_rdma;
2775 
2776 	dir = ioctx->cmd.data_direction;
2777 	if (dir == DMA_TO_DEVICE) {
2778 		/* write */
2779 		ret = -ENOMEM;
2780 		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2781 		if (sq_wr_avail < 0) {
2782 			pr_warn("IB send queue full (needed %d)\n",
2783 				n_rdma);
2784 			goto out;
2785 		}
2786 	}
2787 
2788 	ioctx->rdma_aborted = false;
2789 	ret = 0;
2790 	riu = ioctx->rdma_ius;
2791 	memset(&wr, 0, sizeof wr);
2792 
2793 	for (i = 0; i < n_rdma; ++i, ++riu) {
2794 		if (dir == DMA_FROM_DEVICE) {
2795 			wr.wr.opcode = IB_WR_RDMA_WRITE;
2796 			wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2797 						SRPT_RDMA_WRITE_LAST :
2798 						SRPT_RDMA_MID,
2799 						ioctx->ioctx.index);
2800 		} else {
2801 			wr.wr.opcode = IB_WR_RDMA_READ;
2802 			wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2803 						SRPT_RDMA_READ_LAST :
2804 						SRPT_RDMA_MID,
2805 						ioctx->ioctx.index);
2806 		}
2807 		wr.wr.next = NULL;
2808 		wr.remote_addr = riu->raddr;
2809 		wr.rkey = riu->rkey;
2810 		wr.wr.num_sge = riu->sge_cnt;
2811 		wr.wr.sg_list = riu->sge;
2812 
2813 		/* only get completion event for the last rdma write */
2814 		if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2815 			wr.wr.send_flags = IB_SEND_SIGNALED;
2816 
2817 		ret = ib_post_send(ch->qp, &wr.wr, &bad_wr);
2818 		if (ret)
2819 			break;
2820 	}
2821 
2822 	if (ret)
2823 		pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2824 				 __func__, __LINE__, ret, i, n_rdma);
2825 	if (ret && i > 0) {
2826 		wr.wr.num_sge = 0;
2827 		wr.wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2828 		wr.wr.send_flags = IB_SEND_SIGNALED;
2829 		while (ch->state == CH_LIVE &&
2830 			ib_post_send(ch->qp, &wr.wr, &bad_wr) != 0) {
2831 			pr_info("Trying to abort failed RDMA transfer [%d]\n",
2832 				ioctx->ioctx.index);
2833 			msleep(1000);
2834 		}
2835 		while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2836 			pr_info("Waiting until RDMA abort finished [%d]\n",
2837 				ioctx->ioctx.index);
2838 			msleep(1000);
2839 		}
2840 	}
2841 out:
2842 	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2843 		atomic_add(n_rdma, &ch->sq_wr_avail);
2844 	return ret;
2845 }
2846 
2847 /**
2848  * srpt_xfer_data() - Start data transfer from initiator to target.
2849  */
srpt_xfer_data(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2850 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2851 			  struct srpt_send_ioctx *ioctx)
2852 {
2853 	int ret;
2854 
2855 	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2856 	if (ret) {
2857 		pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2858 		goto out;
2859 	}
2860 
2861 	ret = srpt_perform_rdmas(ch, ioctx);
2862 	if (ret) {
2863 		if (ret == -EAGAIN || ret == -ENOMEM)
2864 			pr_info("%s[%d] queue full -- ret=%d\n",
2865 				__func__, __LINE__, ret);
2866 		else
2867 			pr_err("%s[%d] fatal error -- ret=%d\n",
2868 			       __func__, __LINE__, ret);
2869 		goto out_unmap;
2870 	}
2871 
2872 out:
2873 	return ret;
2874 out_unmap:
2875 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
2876 	goto out;
2877 }
2878 
srpt_write_pending_status(struct se_cmd * se_cmd)2879 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2880 {
2881 	struct srpt_send_ioctx *ioctx;
2882 
2883 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2884 	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2885 }
2886 
2887 /*
2888  * srpt_write_pending() - Start data transfer from initiator to target (write).
2889  */
srpt_write_pending(struct se_cmd * se_cmd)2890 static int srpt_write_pending(struct se_cmd *se_cmd)
2891 {
2892 	struct srpt_rdma_ch *ch;
2893 	struct srpt_send_ioctx *ioctx;
2894 	enum srpt_command_state new_state;
2895 	enum rdma_ch_state ch_state;
2896 	int ret;
2897 
2898 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2899 
2900 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2901 	WARN_ON(new_state == SRPT_STATE_DONE);
2902 
2903 	ch = ioctx->ch;
2904 	BUG_ON(!ch);
2905 
2906 	ch_state = srpt_get_ch_state(ch);
2907 	switch (ch_state) {
2908 	case CH_CONNECTING:
2909 		WARN(true, "unexpected channel state %d\n", ch_state);
2910 		ret = -EINVAL;
2911 		goto out;
2912 	case CH_LIVE:
2913 		break;
2914 	case CH_DISCONNECTING:
2915 	case CH_DRAINING:
2916 	case CH_RELEASING:
2917 		pr_debug("cmd with tag %lld: channel disconnecting\n",
2918 			 ioctx->cmd.tag);
2919 		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2920 		ret = -EINVAL;
2921 		goto out;
2922 	}
2923 	ret = srpt_xfer_data(ch, ioctx);
2924 
2925 out:
2926 	return ret;
2927 }
2928 
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2929 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2930 {
2931 	switch (tcm_mgmt_status) {
2932 	case TMR_FUNCTION_COMPLETE:
2933 		return SRP_TSK_MGMT_SUCCESS;
2934 	case TMR_FUNCTION_REJECTED:
2935 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2936 	}
2937 	return SRP_TSK_MGMT_FAILED;
2938 }
2939 
2940 /**
2941  * srpt_queue_response() - Transmits the response to a SCSI command.
2942  *
2943  * Callback function called by the TCM core. Must not block since it can be
2944  * invoked on the context of the IB completion handler.
2945  */
srpt_queue_response(struct se_cmd * cmd)2946 static void srpt_queue_response(struct se_cmd *cmd)
2947 {
2948 	struct srpt_rdma_ch *ch;
2949 	struct srpt_send_ioctx *ioctx;
2950 	enum srpt_command_state state;
2951 	unsigned long flags;
2952 	int ret;
2953 	enum dma_data_direction dir;
2954 	int resp_len;
2955 	u8 srp_tm_status;
2956 
2957 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2958 	ch = ioctx->ch;
2959 	BUG_ON(!ch);
2960 
2961 	spin_lock_irqsave(&ioctx->spinlock, flags);
2962 	state = ioctx->state;
2963 	switch (state) {
2964 	case SRPT_STATE_NEW:
2965 	case SRPT_STATE_DATA_IN:
2966 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2967 		break;
2968 	case SRPT_STATE_MGMT:
2969 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2970 		break;
2971 	default:
2972 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2973 			ch, ioctx->ioctx.index, ioctx->state);
2974 		break;
2975 	}
2976 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
2977 
2978 	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2979 		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2980 		atomic_inc(&ch->req_lim_delta);
2981 		srpt_abort_cmd(ioctx);
2982 		return;
2983 	}
2984 
2985 	dir = ioctx->cmd.data_direction;
2986 
2987 	/* For read commands, transfer the data to the initiator. */
2988 	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
2989 	    !ioctx->queue_status_only) {
2990 		ret = srpt_xfer_data(ch, ioctx);
2991 		if (ret) {
2992 			pr_err("xfer_data failed for tag %llu\n",
2993 			       ioctx->cmd.tag);
2994 			return;
2995 		}
2996 	}
2997 
2998 	if (state != SRPT_STATE_MGMT)
2999 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
3000 					      cmd->scsi_status);
3001 	else {
3002 		srp_tm_status
3003 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3004 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3005 						 ioctx->cmd.tag);
3006 	}
3007 	ret = srpt_post_send(ch, ioctx, resp_len);
3008 	if (ret) {
3009 		pr_err("sending cmd response failed for tag %llu\n",
3010 		       ioctx->cmd.tag);
3011 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
3012 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3013 		target_put_sess_cmd(&ioctx->cmd);
3014 	}
3015 }
3016 
srpt_queue_data_in(struct se_cmd * cmd)3017 static int srpt_queue_data_in(struct se_cmd *cmd)
3018 {
3019 	srpt_queue_response(cmd);
3020 	return 0;
3021 }
3022 
srpt_queue_tm_rsp(struct se_cmd * cmd)3023 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3024 {
3025 	srpt_queue_response(cmd);
3026 }
3027 
srpt_aborted_task(struct se_cmd * cmd)3028 static void srpt_aborted_task(struct se_cmd *cmd)
3029 {
3030 	struct srpt_send_ioctx *ioctx = container_of(cmd,
3031 				struct srpt_send_ioctx, cmd);
3032 
3033 	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3034 }
3035 
srpt_queue_status(struct se_cmd * cmd)3036 static int srpt_queue_status(struct se_cmd *cmd)
3037 {
3038 	struct srpt_send_ioctx *ioctx;
3039 
3040 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3041 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3042 	if (cmd->se_cmd_flags &
3043 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3044 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3045 	ioctx->queue_status_only = true;
3046 	srpt_queue_response(cmd);
3047 	return 0;
3048 }
3049 
srpt_refresh_port_work(struct work_struct * work)3050 static void srpt_refresh_port_work(struct work_struct *work)
3051 {
3052 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
3053 
3054 	srpt_refresh_port(sport);
3055 }
3056 
srpt_ch_list_empty(struct srpt_device * sdev)3057 static int srpt_ch_list_empty(struct srpt_device *sdev)
3058 {
3059 	int res;
3060 
3061 	spin_lock_irq(&sdev->spinlock);
3062 	res = list_empty(&sdev->rch_list);
3063 	spin_unlock_irq(&sdev->spinlock);
3064 
3065 	return res;
3066 }
3067 
3068 /**
3069  * srpt_release_sdev() - Free the channel resources associated with a target.
3070  */
srpt_release_sdev(struct srpt_device * sdev)3071 static int srpt_release_sdev(struct srpt_device *sdev)
3072 {
3073 	struct srpt_rdma_ch *ch, *tmp_ch;
3074 	int res;
3075 
3076 	WARN_ON_ONCE(irqs_disabled());
3077 
3078 	BUG_ON(!sdev);
3079 
3080 	spin_lock_irq(&sdev->spinlock);
3081 	list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3082 		__srpt_close_ch(ch);
3083 	spin_unlock_irq(&sdev->spinlock);
3084 
3085 	res = wait_event_interruptible(sdev->ch_releaseQ,
3086 				       srpt_ch_list_empty(sdev));
3087 	if (res)
3088 		pr_err("%s: interrupted.\n", __func__);
3089 
3090 	return 0;
3091 }
3092 
__srpt_lookup_port(const char * name)3093 static struct srpt_port *__srpt_lookup_port(const char *name)
3094 {
3095 	struct ib_device *dev;
3096 	struct srpt_device *sdev;
3097 	struct srpt_port *sport;
3098 	int i;
3099 
3100 	list_for_each_entry(sdev, &srpt_dev_list, list) {
3101 		dev = sdev->device;
3102 		if (!dev)
3103 			continue;
3104 
3105 		for (i = 0; i < dev->phys_port_cnt; i++) {
3106 			sport = &sdev->port[i];
3107 
3108 			if (!strcmp(sport->port_guid, name))
3109 				return sport;
3110 		}
3111 	}
3112 
3113 	return NULL;
3114 }
3115 
srpt_lookup_port(const char * name)3116 static struct srpt_port *srpt_lookup_port(const char *name)
3117 {
3118 	struct srpt_port *sport;
3119 
3120 	spin_lock(&srpt_dev_lock);
3121 	sport = __srpt_lookup_port(name);
3122 	spin_unlock(&srpt_dev_lock);
3123 
3124 	return sport;
3125 }
3126 
3127 /**
3128  * srpt_add_one() - Infiniband device addition callback function.
3129  */
srpt_add_one(struct ib_device * device)3130 static void srpt_add_one(struct ib_device *device)
3131 {
3132 	struct srpt_device *sdev;
3133 	struct srpt_port *sport;
3134 	struct ib_srq_init_attr srq_attr;
3135 	int i;
3136 
3137 	pr_debug("device = %p, device->dma_ops = %p\n", device,
3138 		 device->dma_ops);
3139 
3140 	sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3141 	if (!sdev)
3142 		goto err;
3143 
3144 	sdev->device = device;
3145 	INIT_LIST_HEAD(&sdev->rch_list);
3146 	init_waitqueue_head(&sdev->ch_releaseQ);
3147 	spin_lock_init(&sdev->spinlock);
3148 
3149 	if (ib_query_device(device, &sdev->dev_attr))
3150 		goto free_dev;
3151 
3152 	sdev->pd = ib_alloc_pd(device);
3153 	if (IS_ERR(sdev->pd))
3154 		goto free_dev;
3155 
3156 	sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3157 
3158 	srq_attr.event_handler = srpt_srq_event;
3159 	srq_attr.srq_context = (void *)sdev;
3160 	srq_attr.attr.max_wr = sdev->srq_size;
3161 	srq_attr.attr.max_sge = 1;
3162 	srq_attr.attr.srq_limit = 0;
3163 	srq_attr.srq_type = IB_SRQT_BASIC;
3164 
3165 	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3166 	if (IS_ERR(sdev->srq))
3167 		goto err_pd;
3168 
3169 	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3170 		 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3171 		 device->name);
3172 
3173 	if (!srpt_service_guid)
3174 		srpt_service_guid = be64_to_cpu(device->node_guid);
3175 
3176 	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3177 	if (IS_ERR(sdev->cm_id))
3178 		goto err_srq;
3179 
3180 	/* print out target login information */
3181 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3182 		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3183 		 srpt_service_guid, srpt_service_guid);
3184 
3185 	/*
3186 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3187 	 * to identify this target. We currently use the guid of the first HCA
3188 	 * in the system as service_id; therefore, the target_id will change
3189 	 * if this HCA is gone bad and replaced by different HCA
3190 	 */
3191 	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
3192 		goto err_cm;
3193 
3194 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3195 			      srpt_event_handler);
3196 	if (ib_register_event_handler(&sdev->event_handler))
3197 		goto err_cm;
3198 
3199 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3200 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3201 				      sizeof(*sdev->ioctx_ring[0]),
3202 				      srp_max_req_size, DMA_FROM_DEVICE);
3203 	if (!sdev->ioctx_ring)
3204 		goto err_event;
3205 
3206 	for (i = 0; i < sdev->srq_size; ++i)
3207 		srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3208 
3209 	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3210 
3211 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3212 		sport = &sdev->port[i - 1];
3213 		sport->sdev = sdev;
3214 		sport->port = i;
3215 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3216 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3217 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3218 		INIT_WORK(&sport->work, srpt_refresh_port_work);
3219 		INIT_LIST_HEAD(&sport->port_acl_list);
3220 		spin_lock_init(&sport->port_acl_lock);
3221 
3222 		if (srpt_refresh_port(sport)) {
3223 			pr_err("MAD registration failed for %s-%d.\n",
3224 			       srpt_sdev_name(sdev), i);
3225 			goto err_ring;
3226 		}
3227 		snprintf(sport->port_guid, sizeof(sport->port_guid),
3228 			"0x%016llx%016llx",
3229 			be64_to_cpu(sport->gid.global.subnet_prefix),
3230 			be64_to_cpu(sport->gid.global.interface_id));
3231 	}
3232 
3233 	spin_lock(&srpt_dev_lock);
3234 	list_add_tail(&sdev->list, &srpt_dev_list);
3235 	spin_unlock(&srpt_dev_lock);
3236 
3237 out:
3238 	ib_set_client_data(device, &srpt_client, sdev);
3239 	pr_debug("added %s.\n", device->name);
3240 	return;
3241 
3242 err_ring:
3243 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3244 			     sdev->srq_size, srp_max_req_size,
3245 			     DMA_FROM_DEVICE);
3246 err_event:
3247 	ib_unregister_event_handler(&sdev->event_handler);
3248 err_cm:
3249 	ib_destroy_cm_id(sdev->cm_id);
3250 err_srq:
3251 	ib_destroy_srq(sdev->srq);
3252 err_pd:
3253 	ib_dealloc_pd(sdev->pd);
3254 free_dev:
3255 	kfree(sdev);
3256 err:
3257 	sdev = NULL;
3258 	pr_info("%s(%s) failed.\n", __func__, device->name);
3259 	goto out;
3260 }
3261 
3262 /**
3263  * srpt_remove_one() - InfiniBand device removal callback function.
3264  */
srpt_remove_one(struct ib_device * device,void * client_data)3265 static void srpt_remove_one(struct ib_device *device, void *client_data)
3266 {
3267 	struct srpt_device *sdev = client_data;
3268 	int i;
3269 
3270 	if (!sdev) {
3271 		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3272 		return;
3273 	}
3274 
3275 	srpt_unregister_mad_agent(sdev);
3276 
3277 	ib_unregister_event_handler(&sdev->event_handler);
3278 
3279 	/* Cancel any work queued by the just unregistered IB event handler. */
3280 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3281 		cancel_work_sync(&sdev->port[i].work);
3282 
3283 	ib_destroy_cm_id(sdev->cm_id);
3284 
3285 	/*
3286 	 * Unregistering a target must happen after destroying sdev->cm_id
3287 	 * such that no new SRP_LOGIN_REQ information units can arrive while
3288 	 * destroying the target.
3289 	 */
3290 	spin_lock(&srpt_dev_lock);
3291 	list_del(&sdev->list);
3292 	spin_unlock(&srpt_dev_lock);
3293 	srpt_release_sdev(sdev);
3294 
3295 	ib_destroy_srq(sdev->srq);
3296 	ib_dealloc_pd(sdev->pd);
3297 
3298 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3299 			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3300 	sdev->ioctx_ring = NULL;
3301 	kfree(sdev);
3302 }
3303 
3304 static struct ib_client srpt_client = {
3305 	.name = DRV_NAME,
3306 	.add = srpt_add_one,
3307 	.remove = srpt_remove_one
3308 };
3309 
srpt_check_true(struct se_portal_group * se_tpg)3310 static int srpt_check_true(struct se_portal_group *se_tpg)
3311 {
3312 	return 1;
3313 }
3314 
srpt_check_false(struct se_portal_group * se_tpg)3315 static int srpt_check_false(struct se_portal_group *se_tpg)
3316 {
3317 	return 0;
3318 }
3319 
srpt_get_fabric_name(void)3320 static char *srpt_get_fabric_name(void)
3321 {
3322 	return "srpt";
3323 }
3324 
srpt_get_fabric_wwn(struct se_portal_group * tpg)3325 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3326 {
3327 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3328 
3329 	return sport->port_guid;
3330 }
3331 
srpt_get_tag(struct se_portal_group * tpg)3332 static u16 srpt_get_tag(struct se_portal_group *tpg)
3333 {
3334 	return 1;
3335 }
3336 
srpt_tpg_get_inst_index(struct se_portal_group * se_tpg)3337 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3338 {
3339 	return 1;
3340 }
3341 
srpt_release_cmd(struct se_cmd * se_cmd)3342 static void srpt_release_cmd(struct se_cmd *se_cmd)
3343 {
3344 	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3345 				struct srpt_send_ioctx, cmd);
3346 	struct srpt_rdma_ch *ch = ioctx->ch;
3347 	unsigned long flags;
3348 
3349 	WARN_ON(ioctx->state != SRPT_STATE_DONE);
3350 	WARN_ON(ioctx->mapped_sg_count != 0);
3351 
3352 	if (ioctx->n_rbuf > 1) {
3353 		kfree(ioctx->rbufs);
3354 		ioctx->rbufs = NULL;
3355 		ioctx->n_rbuf = 0;
3356 	}
3357 
3358 	spin_lock_irqsave(&ch->spinlock, flags);
3359 	list_add(&ioctx->free_list, &ch->free_list);
3360 	spin_unlock_irqrestore(&ch->spinlock, flags);
3361 }
3362 
3363 /**
3364  * srpt_close_session() - Forcibly close a session.
3365  *
3366  * Callback function invoked by the TCM core to clean up sessions associated
3367  * with a node ACL when the user invokes
3368  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3369  */
srpt_close_session(struct se_session * se_sess)3370 static void srpt_close_session(struct se_session *se_sess)
3371 {
3372 	DECLARE_COMPLETION_ONSTACK(release_done);
3373 	struct srpt_rdma_ch *ch;
3374 	struct srpt_device *sdev;
3375 	unsigned long res;
3376 
3377 	ch = se_sess->fabric_sess_ptr;
3378 	WARN_ON(ch->sess != se_sess);
3379 
3380 	pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3381 
3382 	sdev = ch->sport->sdev;
3383 	spin_lock_irq(&sdev->spinlock);
3384 	BUG_ON(ch->release_done);
3385 	ch->release_done = &release_done;
3386 	__srpt_close_ch(ch);
3387 	spin_unlock_irq(&sdev->spinlock);
3388 
3389 	res = wait_for_completion_timeout(&release_done, 60 * HZ);
3390 	WARN_ON(res == 0);
3391 }
3392 
3393 /**
3394  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3395  *
3396  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3397  * This object represents an arbitrary integer used to uniquely identify a
3398  * particular attached remote initiator port to a particular SCSI target port
3399  * within a particular SCSI target device within a particular SCSI instance.
3400  */
srpt_sess_get_index(struct se_session * se_sess)3401 static u32 srpt_sess_get_index(struct se_session *se_sess)
3402 {
3403 	return 0;
3404 }
3405 
srpt_set_default_node_attrs(struct se_node_acl * nacl)3406 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3407 {
3408 }
3409 
3410 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3411 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3412 {
3413 	struct srpt_send_ioctx *ioctx;
3414 
3415 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3416 	return srpt_get_cmd_state(ioctx);
3417 }
3418 
3419 /**
3420  * srpt_parse_i_port_id() - Parse an initiator port ID.
3421  * @name: ASCII representation of a 128-bit initiator port ID.
3422  * @i_port_id: Binary 128-bit port ID.
3423  */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3424 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3425 {
3426 	const char *p;
3427 	unsigned len, count, leading_zero_bytes;
3428 	int ret, rc;
3429 
3430 	p = name;
3431 	if (strncasecmp(p, "0x", 2) == 0)
3432 		p += 2;
3433 	ret = -EINVAL;
3434 	len = strlen(p);
3435 	if (len % 2)
3436 		goto out;
3437 	count = min(len / 2, 16U);
3438 	leading_zero_bytes = 16 - count;
3439 	memset(i_port_id, 0, leading_zero_bytes);
3440 	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3441 	if (rc < 0)
3442 		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3443 	ret = 0;
3444 out:
3445 	return ret;
3446 }
3447 
3448 /*
3449  * configfs callback function invoked for
3450  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3451  */
srpt_init_nodeacl(struct se_node_acl * se_nacl,const char * name)3452 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3453 {
3454 	struct srpt_port *sport =
3455 		container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3456 	struct srpt_node_acl *nacl =
3457 		container_of(se_nacl, struct srpt_node_acl, nacl);
3458 	u8 i_port_id[16];
3459 
3460 	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3461 		pr_err("invalid initiator port ID %s\n", name);
3462 		return -EINVAL;
3463 	}
3464 
3465 	memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3466 	nacl->sport = sport;
3467 
3468 	spin_lock_irq(&sport->port_acl_lock);
3469 	list_add_tail(&nacl->list, &sport->port_acl_list);
3470 	spin_unlock_irq(&sport->port_acl_lock);
3471 
3472 	return 0;
3473 }
3474 
3475 /*
3476  * configfs callback function invoked for
3477  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3478  */
srpt_cleanup_nodeacl(struct se_node_acl * se_nacl)3479 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3480 {
3481 	struct srpt_node_acl *nacl =
3482 		container_of(se_nacl, struct srpt_node_acl, nacl);
3483 	struct srpt_port *sport = nacl->sport;
3484 
3485 	spin_lock_irq(&sport->port_acl_lock);
3486 	list_del(&nacl->list);
3487 	spin_unlock_irq(&sport->port_acl_lock);
3488 }
3489 
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item * item,char * page)3490 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3491 		char *page)
3492 {
3493 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3494 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3495 
3496 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3497 }
3498 
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item * item,const char * page,size_t count)3499 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3500 		const char *page, size_t count)
3501 {
3502 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3503 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3504 	unsigned long val;
3505 	int ret;
3506 
3507 	ret = kstrtoul(page, 0, &val);
3508 	if (ret < 0) {
3509 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3510 		return -EINVAL;
3511 	}
3512 	if (val > MAX_SRPT_RDMA_SIZE) {
3513 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3514 			MAX_SRPT_RDMA_SIZE);
3515 		return -EINVAL;
3516 	}
3517 	if (val < DEFAULT_MAX_RDMA_SIZE) {
3518 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3519 			val, DEFAULT_MAX_RDMA_SIZE);
3520 		return -EINVAL;
3521 	}
3522 	sport->port_attrib.srp_max_rdma_size = val;
3523 
3524 	return count;
3525 }
3526 
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item * item,char * page)3527 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3528 		char *page)
3529 {
3530 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3531 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3532 
3533 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3534 }
3535 
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item * item,const char * page,size_t count)3536 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3537 		const char *page, size_t count)
3538 {
3539 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3540 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3541 	unsigned long val;
3542 	int ret;
3543 
3544 	ret = kstrtoul(page, 0, &val);
3545 	if (ret < 0) {
3546 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3547 		return -EINVAL;
3548 	}
3549 	if (val > MAX_SRPT_RSP_SIZE) {
3550 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3551 			MAX_SRPT_RSP_SIZE);
3552 		return -EINVAL;
3553 	}
3554 	if (val < MIN_MAX_RSP_SIZE) {
3555 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3556 			MIN_MAX_RSP_SIZE);
3557 		return -EINVAL;
3558 	}
3559 	sport->port_attrib.srp_max_rsp_size = val;
3560 
3561 	return count;
3562 }
3563 
srpt_tpg_attrib_srp_sq_size_show(struct config_item * item,char * page)3564 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3565 		char *page)
3566 {
3567 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3568 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3569 
3570 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3571 }
3572 
srpt_tpg_attrib_srp_sq_size_store(struct config_item * item,const char * page,size_t count)3573 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3574 		const char *page, size_t count)
3575 {
3576 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3577 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3578 	unsigned long val;
3579 	int ret;
3580 
3581 	ret = kstrtoul(page, 0, &val);
3582 	if (ret < 0) {
3583 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3584 		return -EINVAL;
3585 	}
3586 	if (val > MAX_SRPT_SRQ_SIZE) {
3587 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3588 			MAX_SRPT_SRQ_SIZE);
3589 		return -EINVAL;
3590 	}
3591 	if (val < MIN_SRPT_SRQ_SIZE) {
3592 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3593 			MIN_SRPT_SRQ_SIZE);
3594 		return -EINVAL;
3595 	}
3596 	sport->port_attrib.srp_sq_size = val;
3597 
3598 	return count;
3599 }
3600 
3601 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3602 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3603 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3604 
3605 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3606 	&srpt_tpg_attrib_attr_srp_max_rdma_size,
3607 	&srpt_tpg_attrib_attr_srp_max_rsp_size,
3608 	&srpt_tpg_attrib_attr_srp_sq_size,
3609 	NULL,
3610 };
3611 
srpt_tpg_enable_show(struct config_item * item,char * page)3612 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3613 {
3614 	struct se_portal_group *se_tpg = to_tpg(item);
3615 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3616 
3617 	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3618 }
3619 
srpt_tpg_enable_store(struct config_item * item,const char * page,size_t count)3620 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3621 		const char *page, size_t count)
3622 {
3623 	struct se_portal_group *se_tpg = to_tpg(item);
3624 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3625 	unsigned long tmp;
3626         int ret;
3627 
3628 	ret = kstrtoul(page, 0, &tmp);
3629 	if (ret < 0) {
3630 		pr_err("Unable to extract srpt_tpg_store_enable\n");
3631 		return -EINVAL;
3632 	}
3633 
3634 	if ((tmp != 0) && (tmp != 1)) {
3635 		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3636 		return -EINVAL;
3637 	}
3638 	if (tmp == 1)
3639 		sport->enabled = true;
3640 	else
3641 		sport->enabled = false;
3642 
3643 	return count;
3644 }
3645 
3646 CONFIGFS_ATTR(srpt_tpg_, enable);
3647 
3648 static struct configfs_attribute *srpt_tpg_attrs[] = {
3649 	&srpt_tpg_attr_enable,
3650 	NULL,
3651 };
3652 
3653 /**
3654  * configfs callback invoked for
3655  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3656  */
srpt_make_tpg(struct se_wwn * wwn,struct config_group * group,const char * name)3657 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3658 					     struct config_group *group,
3659 					     const char *name)
3660 {
3661 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3662 	int res;
3663 
3664 	/* Initialize sport->port_wwn and sport->port_tpg_1 */
3665 	res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3666 	if (res)
3667 		return ERR_PTR(res);
3668 
3669 	return &sport->port_tpg_1;
3670 }
3671 
3672 /**
3673  * configfs callback invoked for
3674  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3675  */
srpt_drop_tpg(struct se_portal_group * tpg)3676 static void srpt_drop_tpg(struct se_portal_group *tpg)
3677 {
3678 	struct srpt_port *sport = container_of(tpg,
3679 				struct srpt_port, port_tpg_1);
3680 
3681 	sport->enabled = false;
3682 	core_tpg_deregister(&sport->port_tpg_1);
3683 }
3684 
3685 /**
3686  * configfs callback invoked for
3687  * mkdir /sys/kernel/config/target/$driver/$port
3688  */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3689 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3690 				      struct config_group *group,
3691 				      const char *name)
3692 {
3693 	struct srpt_port *sport;
3694 	int ret;
3695 
3696 	sport = srpt_lookup_port(name);
3697 	pr_debug("make_tport(%s)\n", name);
3698 	ret = -EINVAL;
3699 	if (!sport)
3700 		goto err;
3701 
3702 	return &sport->port_wwn;
3703 
3704 err:
3705 	return ERR_PTR(ret);
3706 }
3707 
3708 /**
3709  * configfs callback invoked for
3710  * rmdir /sys/kernel/config/target/$driver/$port
3711  */
srpt_drop_tport(struct se_wwn * wwn)3712 static void srpt_drop_tport(struct se_wwn *wwn)
3713 {
3714 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3715 
3716 	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3717 }
3718 
srpt_wwn_version_show(struct config_item * item,char * buf)3719 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3720 {
3721 	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3722 }
3723 
3724 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3725 
3726 static struct configfs_attribute *srpt_wwn_attrs[] = {
3727 	&srpt_wwn_attr_version,
3728 	NULL,
3729 };
3730 
3731 static const struct target_core_fabric_ops srpt_template = {
3732 	.module				= THIS_MODULE,
3733 	.name				= "srpt",
3734 	.node_acl_size			= sizeof(struct srpt_node_acl),
3735 	.get_fabric_name		= srpt_get_fabric_name,
3736 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3737 	.tpg_get_tag			= srpt_get_tag,
3738 	.tpg_check_demo_mode		= srpt_check_false,
3739 	.tpg_check_demo_mode_cache	= srpt_check_true,
3740 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3741 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3742 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3743 	.release_cmd			= srpt_release_cmd,
3744 	.check_stop_free		= srpt_check_stop_free,
3745 	.shutdown_session		= srpt_shutdown_session,
3746 	.close_session			= srpt_close_session,
3747 	.sess_get_index			= srpt_sess_get_index,
3748 	.sess_get_initiator_sid		= NULL,
3749 	.write_pending			= srpt_write_pending,
3750 	.write_pending_status		= srpt_write_pending_status,
3751 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3752 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3753 	.queue_data_in			= srpt_queue_data_in,
3754 	.queue_status			= srpt_queue_status,
3755 	.queue_tm_rsp			= srpt_queue_tm_rsp,
3756 	.aborted_task			= srpt_aborted_task,
3757 	/*
3758 	 * Setup function pointers for generic logic in
3759 	 * target_core_fabric_configfs.c
3760 	 */
3761 	.fabric_make_wwn		= srpt_make_tport,
3762 	.fabric_drop_wwn		= srpt_drop_tport,
3763 	.fabric_make_tpg		= srpt_make_tpg,
3764 	.fabric_drop_tpg		= srpt_drop_tpg,
3765 	.fabric_init_nodeacl		= srpt_init_nodeacl,
3766 	.fabric_cleanup_nodeacl		= srpt_cleanup_nodeacl,
3767 
3768 	.tfc_wwn_attrs			= srpt_wwn_attrs,
3769 	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3770 	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3771 };
3772 
3773 /**
3774  * srpt_init_module() - Kernel module initialization.
3775  *
3776  * Note: Since ib_register_client() registers callback functions, and since at
3777  * least one of these callback functions (srpt_add_one()) calls target core
3778  * functions, this driver must be registered with the target core before
3779  * ib_register_client() is called.
3780  */
srpt_init_module(void)3781 static int __init srpt_init_module(void)
3782 {
3783 	int ret;
3784 
3785 	ret = -EINVAL;
3786 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3787 		pr_err("invalid value %d for kernel module parameter"
3788 		       " srp_max_req_size -- must be at least %d.\n",
3789 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3790 		goto out;
3791 	}
3792 
3793 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3794 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3795 		pr_err("invalid value %d for kernel module parameter"
3796 		       " srpt_srq_size -- must be in the range [%d..%d].\n",
3797 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3798 		goto out;
3799 	}
3800 
3801 	ret = target_register_template(&srpt_template);
3802 	if (ret)
3803 		goto out;
3804 
3805 	ret = ib_register_client(&srpt_client);
3806 	if (ret) {
3807 		pr_err("couldn't register IB client\n");
3808 		goto out_unregister_target;
3809 	}
3810 
3811 	return 0;
3812 
3813 out_unregister_target:
3814 	target_unregister_template(&srpt_template);
3815 out:
3816 	return ret;
3817 }
3818 
srpt_cleanup_module(void)3819 static void __exit srpt_cleanup_module(void)
3820 {
3821 	ib_unregister_client(&srpt_client);
3822 	target_unregister_template(&srpt_template);
3823 }
3824 
3825 module_init(srpt_init_module);
3826 module_exit(srpt_cleanup_module);
3827