1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/if_vlan.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 #include <linux/io.h>
27 #include <net/tso.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_address.h>
33 #include <linux/phy.h>
34 #include <linux/clk.h>
35 #include <linux/cpu.h>
36
37 /* Registers */
38 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
39 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
40 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
41 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
42 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
43 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
44 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
45 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
46 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
47 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
48 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
49 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
50 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
52 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
53 #define MVNETA_PORT_RX_RESET 0x1cc0
54 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
55 #define MVNETA_PHY_ADDR 0x2000
56 #define MVNETA_PHY_ADDR_MASK 0x1f
57 #define MVNETA_MBUS_RETRY 0x2010
58 #define MVNETA_UNIT_INTR_CAUSE 0x2080
59 #define MVNETA_UNIT_CONTROL 0x20B0
60 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
61 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
62 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
63 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
64 #define MVNETA_BASE_ADDR_ENABLE 0x2290
65 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
66 #define MVNETA_PORT_CONFIG 0x2400
67 #define MVNETA_UNI_PROMISC_MODE BIT(0)
68 #define MVNETA_DEF_RXQ(q) ((q) << 1)
69 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
70 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
71 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
72 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
73 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
74 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
75 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
76 MVNETA_DEF_RXQ_ARP(q) | \
77 MVNETA_DEF_RXQ_TCP(q) | \
78 MVNETA_DEF_RXQ_UDP(q) | \
79 MVNETA_DEF_RXQ_BPDU(q) | \
80 MVNETA_TX_UNSET_ERR_SUM | \
81 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
82 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
83 #define MVNETA_MAC_ADDR_LOW 0x2414
84 #define MVNETA_MAC_ADDR_HIGH 0x2418
85 #define MVNETA_SDMA_CONFIG 0x241c
86 #define MVNETA_SDMA_BRST_SIZE_16 4
87 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
88 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
89 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
90 #define MVNETA_DESC_SWAP BIT(6)
91 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
92 #define MVNETA_PORT_STATUS 0x2444
93 #define MVNETA_TX_IN_PRGRS BIT(1)
94 #define MVNETA_TX_FIFO_EMPTY BIT(8)
95 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
96 #define MVNETA_SERDES_CFG 0x24A0
97 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
98 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
99 #define MVNETA_TYPE_PRIO 0x24bc
100 #define MVNETA_FORCE_UNI BIT(21)
101 #define MVNETA_TXQ_CMD_1 0x24e4
102 #define MVNETA_TXQ_CMD 0x2448
103 #define MVNETA_TXQ_DISABLE_SHIFT 8
104 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
105 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
106 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
107 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
108 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
109 #define MVNETA_ACC_MODE 0x2500
110 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
111 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
112 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
113 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
114
115 /* Exception Interrupt Port/Queue Cause register */
116
117 #define MVNETA_INTR_NEW_CAUSE 0x25a0
118 #define MVNETA_INTR_NEW_MASK 0x25a4
119
120 /* bits 0..7 = TXQ SENT, one bit per queue.
121 * bits 8..15 = RXQ OCCUP, one bit per queue.
122 * bits 16..23 = RXQ FREE, one bit per queue.
123 * bit 29 = OLD_REG_SUM, see old reg ?
124 * bit 30 = TX_ERR_SUM, one bit for 4 ports
125 * bit 31 = MISC_SUM, one bit for 4 ports
126 */
127 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
128 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
129 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
130 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
131 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
132
133 #define MVNETA_INTR_OLD_CAUSE 0x25a8
134 #define MVNETA_INTR_OLD_MASK 0x25ac
135
136 /* Data Path Port/Queue Cause Register */
137 #define MVNETA_INTR_MISC_CAUSE 0x25b0
138 #define MVNETA_INTR_MISC_MASK 0x25b4
139
140 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
141 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
142 #define MVNETA_CAUSE_PTP BIT(4)
143
144 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
145 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
146 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
147 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
148 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
149 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
150 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
151 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
152
153 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
154 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
155 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
156
157 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
158 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
159 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
160
161 #define MVNETA_INTR_ENABLE 0x25b8
162 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
163 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
164
165 #define MVNETA_RXQ_CMD 0x2680
166 #define MVNETA_RXQ_DISABLE_SHIFT 8
167 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
168 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
169 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
170 #define MVNETA_GMAC_CTRL_0 0x2c00
171 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
172 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
173 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
174 #define MVNETA_GMAC_CTRL_2 0x2c08
175 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
176 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
177 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
178 #define MVNETA_GMAC2_PORT_RESET BIT(6)
179 #define MVNETA_GMAC_STATUS 0x2c10
180 #define MVNETA_GMAC_LINK_UP BIT(0)
181 #define MVNETA_GMAC_SPEED_1000 BIT(1)
182 #define MVNETA_GMAC_SPEED_100 BIT(2)
183 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
184 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
185 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
186 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
187 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
188 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
189 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
190 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
191 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
192 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
193 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
194 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
195 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
196 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
197 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
198 #define MVNETA_MIB_COUNTERS_BASE 0x3000
199 #define MVNETA_MIB_LATE_COLLISION 0x7c
200 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
201 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
202 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
203 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
204 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
205 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
206 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
207 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
208 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
209 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
210 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
211 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
212 #define MVNETA_PORT_TX_RESET 0x3cf0
213 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
214 #define MVNETA_TX_MTU 0x3e0c
215 #define MVNETA_TX_TOKEN_SIZE 0x3e14
216 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
217 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
218 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
219
220 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
221
222 /* Descriptor ring Macros */
223 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
224 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
225
226 /* Various constants */
227
228 /* Coalescing */
229 #define MVNETA_TXDONE_COAL_PKTS 1
230 #define MVNETA_RX_COAL_PKTS 32
231 #define MVNETA_RX_COAL_USEC 100
232
233 /* The two bytes Marvell header. Either contains a special value used
234 * by Marvell switches when a specific hardware mode is enabled (not
235 * supported by this driver) or is filled automatically by zeroes on
236 * the RX side. Those two bytes being at the front of the Ethernet
237 * header, they allow to have the IP header aligned on a 4 bytes
238 * boundary automatically: the hardware skips those two bytes on its
239 * own.
240 */
241 #define MVNETA_MH_SIZE 2
242
243 #define MVNETA_VLAN_TAG_LEN 4
244
245 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
246 #define MVNETA_TX_CSUM_DEF_SIZE 1600
247 #define MVNETA_TX_CSUM_MAX_SIZE 9800
248 #define MVNETA_ACC_MODE_EXT 1
249
250 /* Timeout constants */
251 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
252 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
253 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
254
255 #define MVNETA_TX_MTU_MAX 0x3ffff
256
257 /* TSO header size */
258 #define TSO_HEADER_SIZE 128
259
260 /* Max number of Rx descriptors */
261 #define MVNETA_MAX_RXD 128
262
263 /* Max number of Tx descriptors */
264 #define MVNETA_MAX_TXD 532
265
266 /* Max number of allowed TCP segments for software TSO */
267 #define MVNETA_MAX_TSO_SEGS 100
268
269 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
270
271 /* descriptor aligned size */
272 #define MVNETA_DESC_ALIGNED_SIZE 32
273
274 #define MVNETA_RX_PKT_SIZE(mtu) \
275 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
276 ETH_HLEN + ETH_FCS_LEN, \
277 MVNETA_CPU_D_CACHE_LINE_SIZE)
278
279 #define IS_TSO_HEADER(txq, addr) \
280 ((addr >= txq->tso_hdrs_phys) && \
281 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
282
283 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
284
285 struct mvneta_statistic {
286 unsigned short offset;
287 unsigned short type;
288 const char name[ETH_GSTRING_LEN];
289 };
290
291 #define T_REG_32 32
292 #define T_REG_64 64
293
294 static const struct mvneta_statistic mvneta_statistics[] = {
295 { 0x3000, T_REG_64, "good_octets_received", },
296 { 0x3010, T_REG_32, "good_frames_received", },
297 { 0x3008, T_REG_32, "bad_octets_received", },
298 { 0x3014, T_REG_32, "bad_frames_received", },
299 { 0x3018, T_REG_32, "broadcast_frames_received", },
300 { 0x301c, T_REG_32, "multicast_frames_received", },
301 { 0x3050, T_REG_32, "unrec_mac_control_received", },
302 { 0x3058, T_REG_32, "good_fc_received", },
303 { 0x305c, T_REG_32, "bad_fc_received", },
304 { 0x3060, T_REG_32, "undersize_received", },
305 { 0x3064, T_REG_32, "fragments_received", },
306 { 0x3068, T_REG_32, "oversize_received", },
307 { 0x306c, T_REG_32, "jabber_received", },
308 { 0x3070, T_REG_32, "mac_receive_error", },
309 { 0x3074, T_REG_32, "bad_crc_event", },
310 { 0x3078, T_REG_32, "collision", },
311 { 0x307c, T_REG_32, "late_collision", },
312 { 0x2484, T_REG_32, "rx_discard", },
313 { 0x2488, T_REG_32, "rx_overrun", },
314 { 0x3020, T_REG_32, "frames_64_octets", },
315 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
316 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
317 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
318 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
319 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
320 { 0x3038, T_REG_64, "good_octets_sent", },
321 { 0x3040, T_REG_32, "good_frames_sent", },
322 { 0x3044, T_REG_32, "excessive_collision", },
323 { 0x3048, T_REG_32, "multicast_frames_sent", },
324 { 0x304c, T_REG_32, "broadcast_frames_sent", },
325 { 0x3054, T_REG_32, "fc_sent", },
326 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
327 };
328
329 struct mvneta_pcpu_stats {
330 struct u64_stats_sync syncp;
331 u64 rx_packets;
332 u64 rx_bytes;
333 u64 tx_packets;
334 u64 tx_bytes;
335 };
336
337 struct mvneta_pcpu_port {
338 /* Pointer to the shared port */
339 struct mvneta_port *pp;
340
341 /* Pointer to the CPU-local NAPI struct */
342 struct napi_struct napi;
343
344 /* Cause of the previous interrupt */
345 u32 cause_rx_tx;
346 };
347
348 struct mvneta_port {
349 struct mvneta_pcpu_port __percpu *ports;
350 struct mvneta_pcpu_stats __percpu *stats;
351
352 int pkt_size;
353 unsigned int frag_size;
354 void __iomem *base;
355 struct mvneta_rx_queue *rxqs;
356 struct mvneta_tx_queue *txqs;
357 struct net_device *dev;
358 struct notifier_block cpu_notifier;
359
360 /* Core clock */
361 struct clk *clk;
362 u8 mcast_count[256];
363 u16 tx_ring_size;
364 u16 rx_ring_size;
365
366 struct mii_bus *mii_bus;
367 struct phy_device *phy_dev;
368 phy_interface_t phy_interface;
369 struct device_node *phy_node;
370 unsigned int link;
371 unsigned int duplex;
372 unsigned int speed;
373 unsigned int tx_csum_limit;
374 int use_inband_status:1;
375
376 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
377 };
378
379 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
380 * layout of the transmit and reception DMA descriptors, and their
381 * layout is therefore defined by the hardware design
382 */
383
384 #define MVNETA_TX_L3_OFF_SHIFT 0
385 #define MVNETA_TX_IP_HLEN_SHIFT 8
386 #define MVNETA_TX_L4_UDP BIT(16)
387 #define MVNETA_TX_L3_IP6 BIT(17)
388 #define MVNETA_TXD_IP_CSUM BIT(18)
389 #define MVNETA_TXD_Z_PAD BIT(19)
390 #define MVNETA_TXD_L_DESC BIT(20)
391 #define MVNETA_TXD_F_DESC BIT(21)
392 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
393 MVNETA_TXD_L_DESC | \
394 MVNETA_TXD_F_DESC)
395 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
396 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
397
398 #define MVNETA_RXD_ERR_CRC 0x0
399 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
400 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
401 #define MVNETA_RXD_ERR_LEN BIT(18)
402 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
403 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
404 #define MVNETA_RXD_L3_IP4 BIT(25)
405 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
406 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
407
408 #if defined(__LITTLE_ENDIAN)
409 struct mvneta_tx_desc {
410 u32 command; /* Options used by HW for packet transmitting.*/
411 u16 reserverd1; /* csum_l4 (for future use) */
412 u16 data_size; /* Data size of transmitted packet in bytes */
413 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
414 u32 reserved2; /* hw_cmd - (for future use, PMT) */
415 u32 reserved3[4]; /* Reserved - (for future use) */
416 };
417
418 struct mvneta_rx_desc {
419 u32 status; /* Info about received packet */
420 u16 reserved1; /* pnc_info - (for future use, PnC) */
421 u16 data_size; /* Size of received packet in bytes */
422
423 u32 buf_phys_addr; /* Physical address of the buffer */
424 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
425
426 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
427 u16 reserved3; /* prefetch_cmd, for future use */
428 u16 reserved4; /* csum_l4 - (for future use, PnC) */
429
430 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
431 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
432 };
433 #else
434 struct mvneta_tx_desc {
435 u16 data_size; /* Data size of transmitted packet in bytes */
436 u16 reserverd1; /* csum_l4 (for future use) */
437 u32 command; /* Options used by HW for packet transmitting.*/
438 u32 reserved2; /* hw_cmd - (for future use, PMT) */
439 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
440 u32 reserved3[4]; /* Reserved - (for future use) */
441 };
442
443 struct mvneta_rx_desc {
444 u16 data_size; /* Size of received packet in bytes */
445 u16 reserved1; /* pnc_info - (for future use, PnC) */
446 u32 status; /* Info about received packet */
447
448 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
449 u32 buf_phys_addr; /* Physical address of the buffer */
450
451 u16 reserved4; /* csum_l4 - (for future use, PnC) */
452 u16 reserved3; /* prefetch_cmd, for future use */
453 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
454
455 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
456 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
457 };
458 #endif
459
460 struct mvneta_tx_queue {
461 /* Number of this TX queue, in the range 0-7 */
462 u8 id;
463
464 /* Number of TX DMA descriptors in the descriptor ring */
465 int size;
466
467 /* Number of currently used TX DMA descriptor in the
468 * descriptor ring
469 */
470 int count;
471 int tx_stop_threshold;
472 int tx_wake_threshold;
473
474 /* Array of transmitted skb */
475 struct sk_buff **tx_skb;
476
477 /* Index of last TX DMA descriptor that was inserted */
478 int txq_put_index;
479
480 /* Index of the TX DMA descriptor to be cleaned up */
481 int txq_get_index;
482
483 u32 done_pkts_coal;
484
485 /* Virtual address of the TX DMA descriptors array */
486 struct mvneta_tx_desc *descs;
487
488 /* DMA address of the TX DMA descriptors array */
489 dma_addr_t descs_phys;
490
491 /* Index of the last TX DMA descriptor */
492 int last_desc;
493
494 /* Index of the next TX DMA descriptor to process */
495 int next_desc_to_proc;
496
497 /* DMA buffers for TSO headers */
498 char *tso_hdrs;
499
500 /* DMA address of TSO headers */
501 dma_addr_t tso_hdrs_phys;
502 };
503
504 struct mvneta_rx_queue {
505 /* rx queue number, in the range 0-7 */
506 u8 id;
507
508 /* num of rx descriptors in the rx descriptor ring */
509 int size;
510
511 /* counter of times when mvneta_refill() failed */
512 int missed;
513
514 u32 pkts_coal;
515 u32 time_coal;
516
517 /* Virtual address of the RX DMA descriptors array */
518 struct mvneta_rx_desc *descs;
519
520 /* DMA address of the RX DMA descriptors array */
521 dma_addr_t descs_phys;
522
523 /* Index of the last RX DMA descriptor */
524 int last_desc;
525
526 /* Index of the next RX DMA descriptor to process */
527 int next_desc_to_proc;
528 };
529
530 /* The hardware supports eight (8) rx queues, but we are only allowing
531 * the first one to be used. Therefore, let's just allocate one queue.
532 */
533 static int rxq_number = 8;
534 static int txq_number = 8;
535
536 static int rxq_def;
537
538 static int rx_copybreak __read_mostly = 256;
539
540 #define MVNETA_DRIVER_NAME "mvneta"
541 #define MVNETA_DRIVER_VERSION "1.0"
542
543 /* Utility/helper methods */
544
545 /* Write helper method */
mvreg_write(struct mvneta_port * pp,u32 offset,u32 data)546 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
547 {
548 writel(data, pp->base + offset);
549 }
550
551 /* Read helper method */
mvreg_read(struct mvneta_port * pp,u32 offset)552 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
553 {
554 return readl(pp->base + offset);
555 }
556
557 /* Increment txq get counter */
mvneta_txq_inc_get(struct mvneta_tx_queue * txq)558 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
559 {
560 txq->txq_get_index++;
561 if (txq->txq_get_index == txq->size)
562 txq->txq_get_index = 0;
563 }
564
565 /* Increment txq put counter */
mvneta_txq_inc_put(struct mvneta_tx_queue * txq)566 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
567 {
568 txq->txq_put_index++;
569 if (txq->txq_put_index == txq->size)
570 txq->txq_put_index = 0;
571 }
572
573
574 /* Clear all MIB counters */
mvneta_mib_counters_clear(struct mvneta_port * pp)575 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
576 {
577 int i;
578 u32 dummy;
579
580 /* Perform dummy reads from MIB counters */
581 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
582 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
583 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
584 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
585 }
586
587 /* Get System Network Statistics */
mvneta_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)588 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
589 struct rtnl_link_stats64 *stats)
590 {
591 struct mvneta_port *pp = netdev_priv(dev);
592 unsigned int start;
593 int cpu;
594
595 for_each_possible_cpu(cpu) {
596 struct mvneta_pcpu_stats *cpu_stats;
597 u64 rx_packets;
598 u64 rx_bytes;
599 u64 tx_packets;
600 u64 tx_bytes;
601
602 cpu_stats = per_cpu_ptr(pp->stats, cpu);
603 do {
604 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
605 rx_packets = cpu_stats->rx_packets;
606 rx_bytes = cpu_stats->rx_bytes;
607 tx_packets = cpu_stats->tx_packets;
608 tx_bytes = cpu_stats->tx_bytes;
609 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
610
611 stats->rx_packets += rx_packets;
612 stats->rx_bytes += rx_bytes;
613 stats->tx_packets += tx_packets;
614 stats->tx_bytes += tx_bytes;
615 }
616
617 stats->rx_errors = dev->stats.rx_errors;
618 stats->rx_dropped = dev->stats.rx_dropped;
619
620 stats->tx_dropped = dev->stats.tx_dropped;
621
622 return stats;
623 }
624
625 /* Rx descriptors helper methods */
626
627 /* Checks whether the RX descriptor having this status is both the first
628 * and the last descriptor for the RX packet. Each RX packet is currently
629 * received through a single RX descriptor, so not having each RX
630 * descriptor with its first and last bits set is an error
631 */
mvneta_rxq_desc_is_first_last(u32 status)632 static int mvneta_rxq_desc_is_first_last(u32 status)
633 {
634 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
635 MVNETA_RXD_FIRST_LAST_DESC;
636 }
637
638 /* Add number of descriptors ready to receive new packets */
mvneta_rxq_non_occup_desc_add(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int ndescs)639 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
640 struct mvneta_rx_queue *rxq,
641 int ndescs)
642 {
643 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
644 * be added at once
645 */
646 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
647 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
648 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
649 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
650 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
651 }
652
653 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
654 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
655 }
656
657 /* Get number of RX descriptors occupied by received packets */
mvneta_rxq_busy_desc_num_get(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)658 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
659 struct mvneta_rx_queue *rxq)
660 {
661 u32 val;
662
663 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
664 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
665 }
666
667 /* Update num of rx desc called upon return from rx path or
668 * from mvneta_rxq_drop_pkts().
669 */
mvneta_rxq_desc_num_update(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int rx_done,int rx_filled)670 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
671 struct mvneta_rx_queue *rxq,
672 int rx_done, int rx_filled)
673 {
674 u32 val;
675
676 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
677 val = rx_done |
678 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
679 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
680 return;
681 }
682
683 /* Only 255 descriptors can be added at once */
684 while ((rx_done > 0) || (rx_filled > 0)) {
685 if (rx_done <= 0xff) {
686 val = rx_done;
687 rx_done = 0;
688 } else {
689 val = 0xff;
690 rx_done -= 0xff;
691 }
692 if (rx_filled <= 0xff) {
693 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
694 rx_filled = 0;
695 } else {
696 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
697 rx_filled -= 0xff;
698 }
699 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
700 }
701 }
702
703 /* Get pointer to next RX descriptor to be processed by SW */
704 static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue * rxq)705 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
706 {
707 int rx_desc = rxq->next_desc_to_proc;
708
709 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
710 prefetch(rxq->descs + rxq->next_desc_to_proc);
711 return rxq->descs + rx_desc;
712 }
713
714 /* Change maximum receive size of the port. */
mvneta_max_rx_size_set(struct mvneta_port * pp,int max_rx_size)715 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
716 {
717 u32 val;
718
719 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
720 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
721 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
722 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
723 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
724 }
725
726
727 /* Set rx queue offset */
mvneta_rxq_offset_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int offset)728 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
729 struct mvneta_rx_queue *rxq,
730 int offset)
731 {
732 u32 val;
733
734 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
735 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
736
737 /* Offset is in */
738 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
739 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
740 }
741
742
743 /* Tx descriptors helper methods */
744
745 /* Update HW with number of TX descriptors to be sent */
mvneta_txq_pend_desc_add(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int pend_desc)746 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
747 struct mvneta_tx_queue *txq,
748 int pend_desc)
749 {
750 u32 val;
751
752 /* Only 255 descriptors can be added at once ; Assume caller
753 * process TX desriptors in quanta less than 256
754 */
755 val = pend_desc;
756 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
757 }
758
759 /* Get pointer to next TX descriptor to be processed (send) by HW */
760 static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue * txq)761 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
762 {
763 int tx_desc = txq->next_desc_to_proc;
764
765 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
766 return txq->descs + tx_desc;
767 }
768
769 /* Release the last allocated TX descriptor. Useful to handle DMA
770 * mapping failures in the TX path.
771 */
mvneta_txq_desc_put(struct mvneta_tx_queue * txq)772 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
773 {
774 if (txq->next_desc_to_proc == 0)
775 txq->next_desc_to_proc = txq->last_desc - 1;
776 else
777 txq->next_desc_to_proc--;
778 }
779
780 /* Set rxq buf size */
mvneta_rxq_buf_size_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int buf_size)781 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
782 struct mvneta_rx_queue *rxq,
783 int buf_size)
784 {
785 u32 val;
786
787 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
788
789 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
790 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
791
792 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
793 }
794
795 /* Disable buffer management (BM) */
mvneta_rxq_bm_disable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)796 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
797 struct mvneta_rx_queue *rxq)
798 {
799 u32 val;
800
801 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
802 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
803 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
804 }
805
806 /* Start the Ethernet port RX and TX activity */
mvneta_port_up(struct mvneta_port * pp)807 static void mvneta_port_up(struct mvneta_port *pp)
808 {
809 int queue;
810 u32 q_map;
811
812 /* Enable all initialized TXs. */
813 q_map = 0;
814 for (queue = 0; queue < txq_number; queue++) {
815 struct mvneta_tx_queue *txq = &pp->txqs[queue];
816 if (txq->descs != NULL)
817 q_map |= (1 << queue);
818 }
819 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
820
821 /* Enable all initialized RXQs. */
822 mvreg_write(pp, MVNETA_RXQ_CMD, BIT(rxq_def));
823 }
824
825 /* Stop the Ethernet port activity */
mvneta_port_down(struct mvneta_port * pp)826 static void mvneta_port_down(struct mvneta_port *pp)
827 {
828 u32 val;
829 int count;
830
831 /* Stop Rx port activity. Check port Rx activity. */
832 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
833
834 /* Issue stop command for active channels only */
835 if (val != 0)
836 mvreg_write(pp, MVNETA_RXQ_CMD,
837 val << MVNETA_RXQ_DISABLE_SHIFT);
838
839 /* Wait for all Rx activity to terminate. */
840 count = 0;
841 do {
842 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
843 netdev_warn(pp->dev,
844 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
845 val);
846 break;
847 }
848 mdelay(1);
849
850 val = mvreg_read(pp, MVNETA_RXQ_CMD);
851 } while (val & 0xff);
852
853 /* Stop Tx port activity. Check port Tx activity. Issue stop
854 * command for active channels only
855 */
856 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
857
858 if (val != 0)
859 mvreg_write(pp, MVNETA_TXQ_CMD,
860 (val << MVNETA_TXQ_DISABLE_SHIFT));
861
862 /* Wait for all Tx activity to terminate. */
863 count = 0;
864 do {
865 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
866 netdev_warn(pp->dev,
867 "TIMEOUT for TX stopped status=0x%08x\n",
868 val);
869 break;
870 }
871 mdelay(1);
872
873 /* Check TX Command reg that all Txqs are stopped */
874 val = mvreg_read(pp, MVNETA_TXQ_CMD);
875
876 } while (val & 0xff);
877
878 /* Double check to verify that TX FIFO is empty */
879 count = 0;
880 do {
881 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
882 netdev_warn(pp->dev,
883 "TX FIFO empty timeout status=0x08%x\n",
884 val);
885 break;
886 }
887 mdelay(1);
888
889 val = mvreg_read(pp, MVNETA_PORT_STATUS);
890 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
891 (val & MVNETA_TX_IN_PRGRS));
892
893 udelay(200);
894 }
895
896 /* Enable the port by setting the port enable bit of the MAC control register */
mvneta_port_enable(struct mvneta_port * pp)897 static void mvneta_port_enable(struct mvneta_port *pp)
898 {
899 u32 val;
900
901 /* Enable port */
902 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
903 val |= MVNETA_GMAC0_PORT_ENABLE;
904 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
905 }
906
907 /* Disable the port and wait for about 200 usec before retuning */
mvneta_port_disable(struct mvneta_port * pp)908 static void mvneta_port_disable(struct mvneta_port *pp)
909 {
910 u32 val;
911
912 /* Reset the Enable bit in the Serial Control Register */
913 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
914 val &= ~MVNETA_GMAC0_PORT_ENABLE;
915 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
916
917 udelay(200);
918 }
919
920 /* Multicast tables methods */
921
922 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
mvneta_set_ucast_table(struct mvneta_port * pp,int queue)923 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
924 {
925 int offset;
926 u32 val;
927
928 if (queue == -1) {
929 val = 0;
930 } else {
931 val = 0x1 | (queue << 1);
932 val |= (val << 24) | (val << 16) | (val << 8);
933 }
934
935 for (offset = 0; offset <= 0xc; offset += 4)
936 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
937 }
938
939 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
mvneta_set_special_mcast_table(struct mvneta_port * pp,int queue)940 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
941 {
942 int offset;
943 u32 val;
944
945 if (queue == -1) {
946 val = 0;
947 } else {
948 val = 0x1 | (queue << 1);
949 val |= (val << 24) | (val << 16) | (val << 8);
950 }
951
952 for (offset = 0; offset <= 0xfc; offset += 4)
953 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
954
955 }
956
957 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
mvneta_set_other_mcast_table(struct mvneta_port * pp,int queue)958 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
959 {
960 int offset;
961 u32 val;
962
963 if (queue == -1) {
964 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
965 val = 0;
966 } else {
967 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
968 val = 0x1 | (queue << 1);
969 val |= (val << 24) | (val << 16) | (val << 8);
970 }
971
972 for (offset = 0; offset <= 0xfc; offset += 4)
973 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
974 }
975
976 /* This method sets defaults to the NETA port:
977 * Clears interrupt Cause and Mask registers.
978 * Clears all MAC tables.
979 * Sets defaults to all registers.
980 * Resets RX and TX descriptor rings.
981 * Resets PHY.
982 * This method can be called after mvneta_port_down() to return the port
983 * settings to defaults.
984 */
mvneta_defaults_set(struct mvneta_port * pp)985 static void mvneta_defaults_set(struct mvneta_port *pp)
986 {
987 int cpu;
988 int queue;
989 u32 val;
990
991 /* Clear all Cause registers */
992 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
993 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
994 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
995
996 /* Mask all interrupts */
997 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
998 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
999 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1000 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1001
1002 /* Enable MBUS Retry bit16 */
1003 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1004
1005 /* Set CPU queue access map - all CPUs have access to all RX
1006 * queues and to all TX queues
1007 */
1008 for_each_present_cpu(cpu)
1009 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
1010 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
1011 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
1012
1013 /* Reset RX and TX DMAs */
1014 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1015 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1016
1017 /* Disable Legacy WRR, Disable EJP, Release from reset */
1018 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1019 for (queue = 0; queue < txq_number; queue++) {
1020 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1021 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1022 }
1023
1024 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1025 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1026
1027 /* Set Port Acceleration Mode */
1028 val = MVNETA_ACC_MODE_EXT;
1029 mvreg_write(pp, MVNETA_ACC_MODE, val);
1030
1031 /* Update val of portCfg register accordingly with all RxQueue types */
1032 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
1033 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1034
1035 val = 0;
1036 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1037 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1038
1039 /* Build PORT_SDMA_CONFIG_REG */
1040 val = 0;
1041
1042 /* Default burst size */
1043 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1044 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1045 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1046
1047 #if defined(__BIG_ENDIAN)
1048 val |= MVNETA_DESC_SWAP;
1049 #endif
1050
1051 /* Assign port SDMA configuration */
1052 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1053
1054 /* Disable PHY polling in hardware, since we're using the
1055 * kernel phylib to do this.
1056 */
1057 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1058 val &= ~MVNETA_PHY_POLLING_ENABLE;
1059 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1060
1061 if (pp->use_inband_status) {
1062 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1063 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1064 MVNETA_GMAC_FORCE_LINK_DOWN |
1065 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1066 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1067 MVNETA_GMAC_AN_SPEED_EN |
1068 MVNETA_GMAC_AN_DUPLEX_EN;
1069 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1070 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1071 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1072 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1073 } else {
1074 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1075 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1076 MVNETA_GMAC_AN_SPEED_EN |
1077 MVNETA_GMAC_AN_DUPLEX_EN);
1078 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1079 }
1080
1081 mvneta_set_ucast_table(pp, -1);
1082 mvneta_set_special_mcast_table(pp, -1);
1083 mvneta_set_other_mcast_table(pp, -1);
1084
1085 /* Set port interrupt enable register - default enable all */
1086 mvreg_write(pp, MVNETA_INTR_ENABLE,
1087 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1088 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1089
1090 mvneta_mib_counters_clear(pp);
1091 }
1092
1093 /* Set max sizes for tx queues */
mvneta_txq_max_tx_size_set(struct mvneta_port * pp,int max_tx_size)1094 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1095
1096 {
1097 u32 val, size, mtu;
1098 int queue;
1099
1100 mtu = max_tx_size * 8;
1101 if (mtu > MVNETA_TX_MTU_MAX)
1102 mtu = MVNETA_TX_MTU_MAX;
1103
1104 /* Set MTU */
1105 val = mvreg_read(pp, MVNETA_TX_MTU);
1106 val &= ~MVNETA_TX_MTU_MAX;
1107 val |= mtu;
1108 mvreg_write(pp, MVNETA_TX_MTU, val);
1109
1110 /* TX token size and all TXQs token size must be larger that MTU */
1111 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1112
1113 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1114 if (size < mtu) {
1115 size = mtu;
1116 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1117 val |= size;
1118 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1119 }
1120 for (queue = 0; queue < txq_number; queue++) {
1121 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1122
1123 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1124 if (size < mtu) {
1125 size = mtu;
1126 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1127 val |= size;
1128 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1129 }
1130 }
1131 }
1132
1133 /* Set unicast address */
mvneta_set_ucast_addr(struct mvneta_port * pp,u8 last_nibble,int queue)1134 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1135 int queue)
1136 {
1137 unsigned int unicast_reg;
1138 unsigned int tbl_offset;
1139 unsigned int reg_offset;
1140
1141 /* Locate the Unicast table entry */
1142 last_nibble = (0xf & last_nibble);
1143
1144 /* offset from unicast tbl base */
1145 tbl_offset = (last_nibble / 4) * 4;
1146
1147 /* offset within the above reg */
1148 reg_offset = last_nibble % 4;
1149
1150 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1151
1152 if (queue == -1) {
1153 /* Clear accepts frame bit at specified unicast DA tbl entry */
1154 unicast_reg &= ~(0xff << (8 * reg_offset));
1155 } else {
1156 unicast_reg &= ~(0xff << (8 * reg_offset));
1157 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1158 }
1159
1160 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1161 }
1162
1163 /* Set mac address */
mvneta_mac_addr_set(struct mvneta_port * pp,unsigned char * addr,int queue)1164 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1165 int queue)
1166 {
1167 unsigned int mac_h;
1168 unsigned int mac_l;
1169
1170 if (queue != -1) {
1171 mac_l = (addr[4] << 8) | (addr[5]);
1172 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1173 (addr[2] << 8) | (addr[3] << 0);
1174
1175 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1176 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1177 }
1178
1179 /* Accept frames of this address */
1180 mvneta_set_ucast_addr(pp, addr[5], queue);
1181 }
1182
1183 /* Set the number of packets that will be received before RX interrupt
1184 * will be generated by HW.
1185 */
mvneta_rx_pkts_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1186 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1187 struct mvneta_rx_queue *rxq, u32 value)
1188 {
1189 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1190 value | MVNETA_RXQ_NON_OCCUPIED(0));
1191 rxq->pkts_coal = value;
1192 }
1193
1194 /* Set the time delay in usec before RX interrupt will be generated by
1195 * HW.
1196 */
mvneta_rx_time_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1197 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1198 struct mvneta_rx_queue *rxq, u32 value)
1199 {
1200 u32 val;
1201 unsigned long clk_rate;
1202
1203 clk_rate = clk_get_rate(pp->clk);
1204 val = (clk_rate / 1000000) * value;
1205
1206 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1207 rxq->time_coal = value;
1208 }
1209
1210 /* Set threshold for TX_DONE pkts coalescing */
mvneta_tx_done_pkts_coal_set(struct mvneta_port * pp,struct mvneta_tx_queue * txq,u32 value)1211 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1212 struct mvneta_tx_queue *txq, u32 value)
1213 {
1214 u32 val;
1215
1216 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1217
1218 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1219 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1220
1221 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1222
1223 txq->done_pkts_coal = value;
1224 }
1225
1226 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
mvneta_rx_desc_fill(struct mvneta_rx_desc * rx_desc,u32 phys_addr,u32 cookie)1227 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1228 u32 phys_addr, u32 cookie)
1229 {
1230 rx_desc->buf_cookie = cookie;
1231 rx_desc->buf_phys_addr = phys_addr;
1232 }
1233
1234 /* Decrement sent descriptors counter */
mvneta_txq_sent_desc_dec(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int sent_desc)1235 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1236 struct mvneta_tx_queue *txq,
1237 int sent_desc)
1238 {
1239 u32 val;
1240
1241 /* Only 255 TX descriptors can be updated at once */
1242 while (sent_desc > 0xff) {
1243 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1244 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1245 sent_desc = sent_desc - 0xff;
1246 }
1247
1248 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1249 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1250 }
1251
1252 /* Get number of TX descriptors already sent by HW */
mvneta_txq_sent_desc_num_get(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1253 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1254 struct mvneta_tx_queue *txq)
1255 {
1256 u32 val;
1257 int sent_desc;
1258
1259 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1260 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1261 MVNETA_TXQ_SENT_DESC_SHIFT;
1262
1263 return sent_desc;
1264 }
1265
1266 /* Get number of sent descriptors and decrement counter.
1267 * The number of sent descriptors is returned.
1268 */
mvneta_txq_sent_desc_proc(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1269 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1270 struct mvneta_tx_queue *txq)
1271 {
1272 int sent_desc;
1273
1274 /* Get number of sent descriptors */
1275 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1276
1277 /* Decrement sent descriptors counter */
1278 if (sent_desc)
1279 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1280
1281 return sent_desc;
1282 }
1283
1284 /* Set TXQ descriptors fields relevant for CSUM calculation */
mvneta_txq_desc_csum(int l3_offs,int l3_proto,int ip_hdr_len,int l4_proto)1285 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1286 int ip_hdr_len, int l4_proto)
1287 {
1288 u32 command;
1289
1290 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1291 * G_L4_chk, L4_type; required only for checksum
1292 * calculation
1293 */
1294 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1295 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1296
1297 if (l3_proto == htons(ETH_P_IP))
1298 command |= MVNETA_TXD_IP_CSUM;
1299 else
1300 command |= MVNETA_TX_L3_IP6;
1301
1302 if (l4_proto == IPPROTO_TCP)
1303 command |= MVNETA_TX_L4_CSUM_FULL;
1304 else if (l4_proto == IPPROTO_UDP)
1305 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1306 else
1307 command |= MVNETA_TX_L4_CSUM_NOT;
1308
1309 return command;
1310 }
1311
1312
1313 /* Display more error info */
mvneta_rx_error(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)1314 static void mvneta_rx_error(struct mvneta_port *pp,
1315 struct mvneta_rx_desc *rx_desc)
1316 {
1317 u32 status = rx_desc->status;
1318
1319 if (!mvneta_rxq_desc_is_first_last(status)) {
1320 netdev_err(pp->dev,
1321 "bad rx status %08x (buffer oversize), size=%d\n",
1322 status, rx_desc->data_size);
1323 return;
1324 }
1325
1326 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1327 case MVNETA_RXD_ERR_CRC:
1328 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1329 status, rx_desc->data_size);
1330 break;
1331 case MVNETA_RXD_ERR_OVERRUN:
1332 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1333 status, rx_desc->data_size);
1334 break;
1335 case MVNETA_RXD_ERR_LEN:
1336 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1337 status, rx_desc->data_size);
1338 break;
1339 case MVNETA_RXD_ERR_RESOURCE:
1340 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1341 status, rx_desc->data_size);
1342 break;
1343 }
1344 }
1345
1346 /* Handle RX checksum offload based on the descriptor's status */
mvneta_rx_csum(struct mvneta_port * pp,u32 status,struct sk_buff * skb)1347 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1348 struct sk_buff *skb)
1349 {
1350 if ((status & MVNETA_RXD_L3_IP4) &&
1351 (status & MVNETA_RXD_L4_CSUM_OK)) {
1352 skb->csum = 0;
1353 skb->ip_summed = CHECKSUM_UNNECESSARY;
1354 return;
1355 }
1356
1357 skb->ip_summed = CHECKSUM_NONE;
1358 }
1359
1360 /* Return tx queue pointer (find last set bit) according to <cause> returned
1361 * form tx_done reg. <cause> must not be null. The return value is always a
1362 * valid queue for matching the first one found in <cause>.
1363 */
mvneta_tx_done_policy(struct mvneta_port * pp,u32 cause)1364 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1365 u32 cause)
1366 {
1367 int queue = fls(cause) - 1;
1368
1369 return &pp->txqs[queue];
1370 }
1371
1372 /* Free tx queue skbuffs */
mvneta_txq_bufs_free(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int num)1373 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1374 struct mvneta_tx_queue *txq, int num)
1375 {
1376 int i;
1377
1378 for (i = 0; i < num; i++) {
1379 struct mvneta_tx_desc *tx_desc = txq->descs +
1380 txq->txq_get_index;
1381 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1382
1383 mvneta_txq_inc_get(txq);
1384
1385 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1386 dma_unmap_single(pp->dev->dev.parent,
1387 tx_desc->buf_phys_addr,
1388 tx_desc->data_size, DMA_TO_DEVICE);
1389 if (!skb)
1390 continue;
1391 dev_kfree_skb_any(skb);
1392 }
1393 }
1394
1395 /* Handle end of transmission */
mvneta_txq_done(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1396 static void mvneta_txq_done(struct mvneta_port *pp,
1397 struct mvneta_tx_queue *txq)
1398 {
1399 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1400 int tx_done;
1401
1402 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1403 if (!tx_done)
1404 return;
1405
1406 mvneta_txq_bufs_free(pp, txq, tx_done);
1407
1408 txq->count -= tx_done;
1409
1410 if (netif_tx_queue_stopped(nq)) {
1411 if (txq->count <= txq->tx_wake_threshold)
1412 netif_tx_wake_queue(nq);
1413 }
1414 }
1415
mvneta_frag_alloc(const struct mvneta_port * pp)1416 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1417 {
1418 if (likely(pp->frag_size <= PAGE_SIZE))
1419 return netdev_alloc_frag(pp->frag_size);
1420 else
1421 return kmalloc(pp->frag_size, GFP_ATOMIC);
1422 }
1423
mvneta_frag_free(const struct mvneta_port * pp,void * data)1424 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1425 {
1426 if (likely(pp->frag_size <= PAGE_SIZE))
1427 skb_free_frag(data);
1428 else
1429 kfree(data);
1430 }
1431
1432 /* Refill processing */
mvneta_rx_refill(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)1433 static int mvneta_rx_refill(struct mvneta_port *pp,
1434 struct mvneta_rx_desc *rx_desc)
1435
1436 {
1437 dma_addr_t phys_addr;
1438 void *data;
1439
1440 data = mvneta_frag_alloc(pp);
1441 if (!data)
1442 return -ENOMEM;
1443
1444 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1445 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1446 DMA_FROM_DEVICE);
1447 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1448 mvneta_frag_free(pp, data);
1449 return -ENOMEM;
1450 }
1451
1452 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1453 return 0;
1454 }
1455
1456 /* Handle tx checksum */
mvneta_skb_tx_csum(struct mvneta_port * pp,struct sk_buff * skb)1457 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1458 {
1459 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1460 int ip_hdr_len = 0;
1461 __be16 l3_proto = vlan_get_protocol(skb);
1462 u8 l4_proto;
1463
1464 if (l3_proto == htons(ETH_P_IP)) {
1465 struct iphdr *ip4h = ip_hdr(skb);
1466
1467 /* Calculate IPv4 checksum and L4 checksum */
1468 ip_hdr_len = ip4h->ihl;
1469 l4_proto = ip4h->protocol;
1470 } else if (l3_proto == htons(ETH_P_IPV6)) {
1471 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1472
1473 /* Read l4_protocol from one of IPv6 extra headers */
1474 if (skb_network_header_len(skb) > 0)
1475 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1476 l4_proto = ip6h->nexthdr;
1477 } else
1478 return MVNETA_TX_L4_CSUM_NOT;
1479
1480 return mvneta_txq_desc_csum(skb_network_offset(skb),
1481 l3_proto, ip_hdr_len, l4_proto);
1482 }
1483
1484 return MVNETA_TX_L4_CSUM_NOT;
1485 }
1486
1487 /* Drop packets received by the RXQ and free buffers */
mvneta_rxq_drop_pkts(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1488 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1489 struct mvneta_rx_queue *rxq)
1490 {
1491 int rx_done, i;
1492
1493 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1494 for (i = 0; i < rxq->size; i++) {
1495 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1496 void *data = (void *)rx_desc->buf_cookie;
1497
1498 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1499 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1500 mvneta_frag_free(pp, data);
1501 }
1502
1503 if (rx_done)
1504 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1505 }
1506
1507 /* Main rx processing */
mvneta_rx(struct mvneta_port * pp,int rx_todo,struct mvneta_rx_queue * rxq)1508 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1509 struct mvneta_rx_queue *rxq)
1510 {
1511 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1512 struct net_device *dev = pp->dev;
1513 int rx_done;
1514 u32 rcvd_pkts = 0;
1515 u32 rcvd_bytes = 0;
1516
1517 /* Get number of received packets */
1518 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1519
1520 if (rx_todo > rx_done)
1521 rx_todo = rx_done;
1522
1523 rx_done = 0;
1524
1525 /* Fairness NAPI loop */
1526 while (rx_done < rx_todo) {
1527 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1528 struct sk_buff *skb;
1529 unsigned char *data;
1530 dma_addr_t phys_addr;
1531 u32 rx_status;
1532 int rx_bytes, err;
1533
1534 rx_done++;
1535 rx_status = rx_desc->status;
1536 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1537 data = (unsigned char *)rx_desc->buf_cookie;
1538 phys_addr = rx_desc->buf_phys_addr;
1539
1540 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1541 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1542 err_drop_frame:
1543 dev->stats.rx_errors++;
1544 mvneta_rx_error(pp, rx_desc);
1545 /* leave the descriptor untouched */
1546 continue;
1547 }
1548
1549 if (rx_bytes <= rx_copybreak) {
1550 /* better copy a small frame and not unmap the DMA region */
1551 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1552 if (unlikely(!skb))
1553 goto err_drop_frame;
1554
1555 dma_sync_single_range_for_cpu(dev->dev.parent,
1556 rx_desc->buf_phys_addr,
1557 MVNETA_MH_SIZE + NET_SKB_PAD,
1558 rx_bytes,
1559 DMA_FROM_DEVICE);
1560 memcpy(skb_put(skb, rx_bytes),
1561 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1562 rx_bytes);
1563
1564 skb->protocol = eth_type_trans(skb, dev);
1565 mvneta_rx_csum(pp, rx_status, skb);
1566 napi_gro_receive(&port->napi, skb);
1567
1568 rcvd_pkts++;
1569 rcvd_bytes += rx_bytes;
1570
1571 /* leave the descriptor and buffer untouched */
1572 continue;
1573 }
1574
1575 /* Refill processing */
1576 err = mvneta_rx_refill(pp, rx_desc);
1577 if (err) {
1578 netdev_err(dev, "Linux processing - Can't refill\n");
1579 rxq->missed++;
1580 goto err_drop_frame;
1581 }
1582
1583 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1584
1585 /* After refill old buffer has to be unmapped regardless
1586 * the skb is successfully built or not.
1587 */
1588 dma_unmap_single(dev->dev.parent, phys_addr,
1589 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1590
1591 if (!skb)
1592 goto err_drop_frame;
1593
1594 rcvd_pkts++;
1595 rcvd_bytes += rx_bytes;
1596
1597 /* Linux processing */
1598 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1599 skb_put(skb, rx_bytes);
1600
1601 skb->protocol = eth_type_trans(skb, dev);
1602
1603 mvneta_rx_csum(pp, rx_status, skb);
1604
1605 napi_gro_receive(&port->napi, skb);
1606 }
1607
1608 if (rcvd_pkts) {
1609 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1610
1611 u64_stats_update_begin(&stats->syncp);
1612 stats->rx_packets += rcvd_pkts;
1613 stats->rx_bytes += rcvd_bytes;
1614 u64_stats_update_end(&stats->syncp);
1615 }
1616
1617 /* Update rxq management counters */
1618 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1619
1620 return rx_done;
1621 }
1622
1623 static inline void
mvneta_tso_put_hdr(struct sk_buff * skb,struct mvneta_port * pp,struct mvneta_tx_queue * txq)1624 mvneta_tso_put_hdr(struct sk_buff *skb,
1625 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1626 {
1627 struct mvneta_tx_desc *tx_desc;
1628 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1629
1630 txq->tx_skb[txq->txq_put_index] = NULL;
1631 tx_desc = mvneta_txq_next_desc_get(txq);
1632 tx_desc->data_size = hdr_len;
1633 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1634 tx_desc->command |= MVNETA_TXD_F_DESC;
1635 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1636 txq->txq_put_index * TSO_HEADER_SIZE;
1637 mvneta_txq_inc_put(txq);
1638 }
1639
1640 static inline int
mvneta_tso_put_data(struct net_device * dev,struct mvneta_tx_queue * txq,struct sk_buff * skb,char * data,int size,bool last_tcp,bool is_last)1641 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1642 struct sk_buff *skb, char *data, int size,
1643 bool last_tcp, bool is_last)
1644 {
1645 struct mvneta_tx_desc *tx_desc;
1646
1647 tx_desc = mvneta_txq_next_desc_get(txq);
1648 tx_desc->data_size = size;
1649 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1650 size, DMA_TO_DEVICE);
1651 if (unlikely(dma_mapping_error(dev->dev.parent,
1652 tx_desc->buf_phys_addr))) {
1653 mvneta_txq_desc_put(txq);
1654 return -ENOMEM;
1655 }
1656
1657 tx_desc->command = 0;
1658 txq->tx_skb[txq->txq_put_index] = NULL;
1659
1660 if (last_tcp) {
1661 /* last descriptor in the TCP packet */
1662 tx_desc->command = MVNETA_TXD_L_DESC;
1663
1664 /* last descriptor in SKB */
1665 if (is_last)
1666 txq->tx_skb[txq->txq_put_index] = skb;
1667 }
1668 mvneta_txq_inc_put(txq);
1669 return 0;
1670 }
1671
mvneta_tx_tso(struct sk_buff * skb,struct net_device * dev,struct mvneta_tx_queue * txq)1672 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1673 struct mvneta_tx_queue *txq)
1674 {
1675 int total_len, data_left;
1676 int desc_count = 0;
1677 struct mvneta_port *pp = netdev_priv(dev);
1678 struct tso_t tso;
1679 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1680 int i;
1681
1682 /* Count needed descriptors */
1683 if ((txq->count + tso_count_descs(skb)) >= txq->size)
1684 return 0;
1685
1686 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1687 pr_info("*** Is this even possible???!?!?\n");
1688 return 0;
1689 }
1690
1691 /* Initialize the TSO handler, and prepare the first payload */
1692 tso_start(skb, &tso);
1693
1694 total_len = skb->len - hdr_len;
1695 while (total_len > 0) {
1696 char *hdr;
1697
1698 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1699 total_len -= data_left;
1700 desc_count++;
1701
1702 /* prepare packet headers: MAC + IP + TCP */
1703 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1704 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1705
1706 mvneta_tso_put_hdr(skb, pp, txq);
1707
1708 while (data_left > 0) {
1709 int size;
1710 desc_count++;
1711
1712 size = min_t(int, tso.size, data_left);
1713
1714 if (mvneta_tso_put_data(dev, txq, skb,
1715 tso.data, size,
1716 size == data_left,
1717 total_len == 0))
1718 goto err_release;
1719 data_left -= size;
1720
1721 tso_build_data(skb, &tso, size);
1722 }
1723 }
1724
1725 return desc_count;
1726
1727 err_release:
1728 /* Release all used data descriptors; header descriptors must not
1729 * be DMA-unmapped.
1730 */
1731 for (i = desc_count - 1; i >= 0; i--) {
1732 struct mvneta_tx_desc *tx_desc = txq->descs + i;
1733 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1734 dma_unmap_single(pp->dev->dev.parent,
1735 tx_desc->buf_phys_addr,
1736 tx_desc->data_size,
1737 DMA_TO_DEVICE);
1738 mvneta_txq_desc_put(txq);
1739 }
1740 return 0;
1741 }
1742
1743 /* Handle tx fragmentation processing */
mvneta_tx_frag_process(struct mvneta_port * pp,struct sk_buff * skb,struct mvneta_tx_queue * txq)1744 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1745 struct mvneta_tx_queue *txq)
1746 {
1747 struct mvneta_tx_desc *tx_desc;
1748 int i, nr_frags = skb_shinfo(skb)->nr_frags;
1749
1750 for (i = 0; i < nr_frags; i++) {
1751 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1752 void *addr = page_address(frag->page.p) + frag->page_offset;
1753
1754 tx_desc = mvneta_txq_next_desc_get(txq);
1755 tx_desc->data_size = frag->size;
1756
1757 tx_desc->buf_phys_addr =
1758 dma_map_single(pp->dev->dev.parent, addr,
1759 tx_desc->data_size, DMA_TO_DEVICE);
1760
1761 if (dma_mapping_error(pp->dev->dev.parent,
1762 tx_desc->buf_phys_addr)) {
1763 mvneta_txq_desc_put(txq);
1764 goto error;
1765 }
1766
1767 if (i == nr_frags - 1) {
1768 /* Last descriptor */
1769 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1770 txq->tx_skb[txq->txq_put_index] = skb;
1771 } else {
1772 /* Descriptor in the middle: Not First, Not Last */
1773 tx_desc->command = 0;
1774 txq->tx_skb[txq->txq_put_index] = NULL;
1775 }
1776 mvneta_txq_inc_put(txq);
1777 }
1778
1779 return 0;
1780
1781 error:
1782 /* Release all descriptors that were used to map fragments of
1783 * this packet, as well as the corresponding DMA mappings
1784 */
1785 for (i = i - 1; i >= 0; i--) {
1786 tx_desc = txq->descs + i;
1787 dma_unmap_single(pp->dev->dev.parent,
1788 tx_desc->buf_phys_addr,
1789 tx_desc->data_size,
1790 DMA_TO_DEVICE);
1791 mvneta_txq_desc_put(txq);
1792 }
1793
1794 return -ENOMEM;
1795 }
1796
1797 /* Main tx processing */
mvneta_tx(struct sk_buff * skb,struct net_device * dev)1798 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1799 {
1800 struct mvneta_port *pp = netdev_priv(dev);
1801 u16 txq_id = skb_get_queue_mapping(skb);
1802 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1803 struct mvneta_tx_desc *tx_desc;
1804 int len = skb->len;
1805 int frags = 0;
1806 u32 tx_cmd;
1807
1808 if (!netif_running(dev))
1809 goto out;
1810
1811 if (skb_is_gso(skb)) {
1812 frags = mvneta_tx_tso(skb, dev, txq);
1813 goto out;
1814 }
1815
1816 frags = skb_shinfo(skb)->nr_frags + 1;
1817
1818 /* Get a descriptor for the first part of the packet */
1819 tx_desc = mvneta_txq_next_desc_get(txq);
1820
1821 tx_cmd = mvneta_skb_tx_csum(pp, skb);
1822
1823 tx_desc->data_size = skb_headlen(skb);
1824
1825 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1826 tx_desc->data_size,
1827 DMA_TO_DEVICE);
1828 if (unlikely(dma_mapping_error(dev->dev.parent,
1829 tx_desc->buf_phys_addr))) {
1830 mvneta_txq_desc_put(txq);
1831 frags = 0;
1832 goto out;
1833 }
1834
1835 if (frags == 1) {
1836 /* First and Last descriptor */
1837 tx_cmd |= MVNETA_TXD_FLZ_DESC;
1838 tx_desc->command = tx_cmd;
1839 txq->tx_skb[txq->txq_put_index] = skb;
1840 mvneta_txq_inc_put(txq);
1841 } else {
1842 /* First but not Last */
1843 tx_cmd |= MVNETA_TXD_F_DESC;
1844 txq->tx_skb[txq->txq_put_index] = NULL;
1845 mvneta_txq_inc_put(txq);
1846 tx_desc->command = tx_cmd;
1847 /* Continue with other skb fragments */
1848 if (mvneta_tx_frag_process(pp, skb, txq)) {
1849 dma_unmap_single(dev->dev.parent,
1850 tx_desc->buf_phys_addr,
1851 tx_desc->data_size,
1852 DMA_TO_DEVICE);
1853 mvneta_txq_desc_put(txq);
1854 frags = 0;
1855 goto out;
1856 }
1857 }
1858
1859 out:
1860 if (frags > 0) {
1861 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1862 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1863
1864 txq->count += frags;
1865 mvneta_txq_pend_desc_add(pp, txq, frags);
1866
1867 if (txq->count >= txq->tx_stop_threshold)
1868 netif_tx_stop_queue(nq);
1869
1870 u64_stats_update_begin(&stats->syncp);
1871 stats->tx_packets++;
1872 stats->tx_bytes += len;
1873 u64_stats_update_end(&stats->syncp);
1874 } else {
1875 dev->stats.tx_dropped++;
1876 dev_kfree_skb_any(skb);
1877 }
1878
1879 return NETDEV_TX_OK;
1880 }
1881
1882
1883 /* Free tx resources, when resetting a port */
mvneta_txq_done_force(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1884 static void mvneta_txq_done_force(struct mvneta_port *pp,
1885 struct mvneta_tx_queue *txq)
1886
1887 {
1888 int tx_done = txq->count;
1889
1890 mvneta_txq_bufs_free(pp, txq, tx_done);
1891
1892 /* reset txq */
1893 txq->count = 0;
1894 txq->txq_put_index = 0;
1895 txq->txq_get_index = 0;
1896 }
1897
1898 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1899 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1900 */
mvneta_tx_done_gbe(struct mvneta_port * pp,u32 cause_tx_done)1901 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1902 {
1903 struct mvneta_tx_queue *txq;
1904 struct netdev_queue *nq;
1905
1906 while (cause_tx_done) {
1907 txq = mvneta_tx_done_policy(pp, cause_tx_done);
1908
1909 nq = netdev_get_tx_queue(pp->dev, txq->id);
1910 __netif_tx_lock(nq, smp_processor_id());
1911
1912 if (txq->count)
1913 mvneta_txq_done(pp, txq);
1914
1915 __netif_tx_unlock(nq);
1916 cause_tx_done &= ~((1 << txq->id));
1917 }
1918 }
1919
1920 /* Compute crc8 of the specified address, using a unique algorithm ,
1921 * according to hw spec, different than generic crc8 algorithm
1922 */
mvneta_addr_crc(unsigned char * addr)1923 static int mvneta_addr_crc(unsigned char *addr)
1924 {
1925 int crc = 0;
1926 int i;
1927
1928 for (i = 0; i < ETH_ALEN; i++) {
1929 int j;
1930
1931 crc = (crc ^ addr[i]) << 8;
1932 for (j = 7; j >= 0; j--) {
1933 if (crc & (0x100 << j))
1934 crc ^= 0x107 << j;
1935 }
1936 }
1937
1938 return crc;
1939 }
1940
1941 /* This method controls the net device special MAC multicast support.
1942 * The Special Multicast Table for MAC addresses supports MAC of the form
1943 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1944 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1945 * Table entries in the DA-Filter table. This method set the Special
1946 * Multicast Table appropriate entry.
1947 */
mvneta_set_special_mcast_addr(struct mvneta_port * pp,unsigned char last_byte,int queue)1948 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1949 unsigned char last_byte,
1950 int queue)
1951 {
1952 unsigned int smc_table_reg;
1953 unsigned int tbl_offset;
1954 unsigned int reg_offset;
1955
1956 /* Register offset from SMC table base */
1957 tbl_offset = (last_byte / 4);
1958 /* Entry offset within the above reg */
1959 reg_offset = last_byte % 4;
1960
1961 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1962 + tbl_offset * 4));
1963
1964 if (queue == -1)
1965 smc_table_reg &= ~(0xff << (8 * reg_offset));
1966 else {
1967 smc_table_reg &= ~(0xff << (8 * reg_offset));
1968 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1969 }
1970
1971 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1972 smc_table_reg);
1973 }
1974
1975 /* This method controls the network device Other MAC multicast support.
1976 * The Other Multicast Table is used for multicast of another type.
1977 * A CRC-8 is used as an index to the Other Multicast Table entries
1978 * in the DA-Filter table.
1979 * The method gets the CRC-8 value from the calling routine and
1980 * sets the Other Multicast Table appropriate entry according to the
1981 * specified CRC-8 .
1982 */
mvneta_set_other_mcast_addr(struct mvneta_port * pp,unsigned char crc8,int queue)1983 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1984 unsigned char crc8,
1985 int queue)
1986 {
1987 unsigned int omc_table_reg;
1988 unsigned int tbl_offset;
1989 unsigned int reg_offset;
1990
1991 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1992 reg_offset = crc8 % 4; /* Entry offset within the above reg */
1993
1994 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1995
1996 if (queue == -1) {
1997 /* Clear accepts frame bit at specified Other DA table entry */
1998 omc_table_reg &= ~(0xff << (8 * reg_offset));
1999 } else {
2000 omc_table_reg &= ~(0xff << (8 * reg_offset));
2001 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2002 }
2003
2004 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2005 }
2006
2007 /* The network device supports multicast using two tables:
2008 * 1) Special Multicast Table for MAC addresses of the form
2009 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2010 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2011 * Table entries in the DA-Filter table.
2012 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2013 * is used as an index to the Other Multicast Table entries in the
2014 * DA-Filter table.
2015 */
mvneta_mcast_addr_set(struct mvneta_port * pp,unsigned char * p_addr,int queue)2016 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2017 int queue)
2018 {
2019 unsigned char crc_result = 0;
2020
2021 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2022 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2023 return 0;
2024 }
2025
2026 crc_result = mvneta_addr_crc(p_addr);
2027 if (queue == -1) {
2028 if (pp->mcast_count[crc_result] == 0) {
2029 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2030 crc_result);
2031 return -EINVAL;
2032 }
2033
2034 pp->mcast_count[crc_result]--;
2035 if (pp->mcast_count[crc_result] != 0) {
2036 netdev_info(pp->dev,
2037 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2038 pp->mcast_count[crc_result], crc_result);
2039 return -EINVAL;
2040 }
2041 } else
2042 pp->mcast_count[crc_result]++;
2043
2044 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2045
2046 return 0;
2047 }
2048
2049 /* Configure Fitering mode of Ethernet port */
mvneta_rx_unicast_promisc_set(struct mvneta_port * pp,int is_promisc)2050 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2051 int is_promisc)
2052 {
2053 u32 port_cfg_reg, val;
2054
2055 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2056
2057 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2058
2059 /* Set / Clear UPM bit in port configuration register */
2060 if (is_promisc) {
2061 /* Accept all Unicast addresses */
2062 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2063 val |= MVNETA_FORCE_UNI;
2064 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2065 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2066 } else {
2067 /* Reject all Unicast addresses */
2068 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2069 val &= ~MVNETA_FORCE_UNI;
2070 }
2071
2072 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2073 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2074 }
2075
2076 /* register unicast and multicast addresses */
mvneta_set_rx_mode(struct net_device * dev)2077 static void mvneta_set_rx_mode(struct net_device *dev)
2078 {
2079 struct mvneta_port *pp = netdev_priv(dev);
2080 struct netdev_hw_addr *ha;
2081
2082 if (dev->flags & IFF_PROMISC) {
2083 /* Accept all: Multicast + Unicast */
2084 mvneta_rx_unicast_promisc_set(pp, 1);
2085 mvneta_set_ucast_table(pp, rxq_def);
2086 mvneta_set_special_mcast_table(pp, rxq_def);
2087 mvneta_set_other_mcast_table(pp, rxq_def);
2088 } else {
2089 /* Accept single Unicast */
2090 mvneta_rx_unicast_promisc_set(pp, 0);
2091 mvneta_set_ucast_table(pp, -1);
2092 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2093
2094 if (dev->flags & IFF_ALLMULTI) {
2095 /* Accept all multicast */
2096 mvneta_set_special_mcast_table(pp, rxq_def);
2097 mvneta_set_other_mcast_table(pp, rxq_def);
2098 } else {
2099 /* Accept only initialized multicast */
2100 mvneta_set_special_mcast_table(pp, -1);
2101 mvneta_set_other_mcast_table(pp, -1);
2102
2103 if (!netdev_mc_empty(dev)) {
2104 netdev_for_each_mc_addr(ha, dev) {
2105 mvneta_mcast_addr_set(pp, ha->addr,
2106 rxq_def);
2107 }
2108 }
2109 }
2110 }
2111 }
2112
2113 /* Interrupt handling - the callback for request_irq() */
mvneta_isr(int irq,void * dev_id)2114 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2115 {
2116 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2117
2118 disable_percpu_irq(port->pp->dev->irq);
2119 napi_schedule(&port->napi);
2120
2121 return IRQ_HANDLED;
2122 }
2123
mvneta_fixed_link_update(struct mvneta_port * pp,struct phy_device * phy)2124 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2125 struct phy_device *phy)
2126 {
2127 struct fixed_phy_status status;
2128 struct fixed_phy_status changed = {};
2129 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2130
2131 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2132 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2133 status.speed = SPEED_1000;
2134 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2135 status.speed = SPEED_100;
2136 else
2137 status.speed = SPEED_10;
2138 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2139 changed.link = 1;
2140 changed.speed = 1;
2141 changed.duplex = 1;
2142 fixed_phy_update_state(phy, &status, &changed);
2143 return 0;
2144 }
2145
2146 /* NAPI handler
2147 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2148 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2149 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2150 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2151 * Each CPU has its own causeRxTx register
2152 */
mvneta_poll(struct napi_struct * napi,int budget)2153 static int mvneta_poll(struct napi_struct *napi, int budget)
2154 {
2155 int rx_done = 0;
2156 u32 cause_rx_tx;
2157 struct mvneta_port *pp = netdev_priv(napi->dev);
2158 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2159
2160 if (!netif_running(pp->dev)) {
2161 napi_complete(&port->napi);
2162 return rx_done;
2163 }
2164
2165 /* Read cause register */
2166 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2167 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2168 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2169
2170 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2171 if (pp->use_inband_status && (cause_misc &
2172 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2173 MVNETA_CAUSE_LINK_CHANGE |
2174 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2175 mvneta_fixed_link_update(pp, pp->phy_dev);
2176 }
2177 }
2178
2179 /* Release Tx descriptors */
2180 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2181 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2182 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2183 }
2184
2185 /* For the case where the last mvneta_poll did not process all
2186 * RX packets
2187 */
2188 cause_rx_tx |= port->cause_rx_tx;
2189 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2190 budget -= rx_done;
2191
2192 if (budget > 0) {
2193 cause_rx_tx = 0;
2194 napi_complete(&port->napi);
2195 enable_percpu_irq(pp->dev->irq, 0);
2196 }
2197
2198 port->cause_rx_tx = cause_rx_tx;
2199 return rx_done;
2200 }
2201
2202 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
mvneta_rxq_fill(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int num)2203 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2204 int num)
2205 {
2206 int i;
2207
2208 for (i = 0; i < num; i++) {
2209 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2210 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2211 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2212 __func__, rxq->id, i, num);
2213 break;
2214 }
2215 }
2216
2217 /* Add this number of RX descriptors as non occupied (ready to
2218 * get packets)
2219 */
2220 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2221
2222 return i;
2223 }
2224
2225 /* Free all packets pending transmit from all TXQs and reset TX port */
mvneta_tx_reset(struct mvneta_port * pp)2226 static void mvneta_tx_reset(struct mvneta_port *pp)
2227 {
2228 int queue;
2229
2230 /* free the skb's in the tx ring */
2231 for (queue = 0; queue < txq_number; queue++)
2232 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2233
2234 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2235 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2236 }
2237
mvneta_rx_reset(struct mvneta_port * pp)2238 static void mvneta_rx_reset(struct mvneta_port *pp)
2239 {
2240 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2241 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2242 }
2243
2244 /* Rx/Tx queue initialization/cleanup methods */
2245
2246 /* Create a specified RX queue */
mvneta_rxq_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2247 static int mvneta_rxq_init(struct mvneta_port *pp,
2248 struct mvneta_rx_queue *rxq)
2249
2250 {
2251 rxq->size = pp->rx_ring_size;
2252
2253 /* Allocate memory for RX descriptors */
2254 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2255 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2256 &rxq->descs_phys, GFP_KERNEL);
2257 if (rxq->descs == NULL)
2258 return -ENOMEM;
2259
2260 BUG_ON(rxq->descs !=
2261 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2262
2263 rxq->last_desc = rxq->size - 1;
2264
2265 /* Set Rx descriptors queue starting address */
2266 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2267 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2268
2269 /* Set Offset */
2270 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2271
2272 /* Set coalescing pkts and time */
2273 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2274 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2275
2276 /* Fill RXQ with buffers from RX pool */
2277 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2278 mvneta_rxq_bm_disable(pp, rxq);
2279 mvneta_rxq_fill(pp, rxq, rxq->size);
2280
2281 return 0;
2282 }
2283
2284 /* Cleanup Rx queue */
mvneta_rxq_deinit(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2285 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2286 struct mvneta_rx_queue *rxq)
2287 {
2288 mvneta_rxq_drop_pkts(pp, rxq);
2289
2290 if (rxq->descs)
2291 dma_free_coherent(pp->dev->dev.parent,
2292 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2293 rxq->descs,
2294 rxq->descs_phys);
2295
2296 rxq->descs = NULL;
2297 rxq->last_desc = 0;
2298 rxq->next_desc_to_proc = 0;
2299 rxq->descs_phys = 0;
2300 }
2301
2302 /* Create and initialize a tx queue */
mvneta_txq_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2303 static int mvneta_txq_init(struct mvneta_port *pp,
2304 struct mvneta_tx_queue *txq)
2305 {
2306 txq->size = pp->tx_ring_size;
2307
2308 /* A queue must always have room for at least one skb.
2309 * Therefore, stop the queue when the free entries reaches
2310 * the maximum number of descriptors per skb.
2311 */
2312 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2313 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2314
2315
2316 /* Allocate memory for TX descriptors */
2317 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2318 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2319 &txq->descs_phys, GFP_KERNEL);
2320 if (txq->descs == NULL)
2321 return -ENOMEM;
2322
2323 /* Make sure descriptor address is cache line size aligned */
2324 BUG_ON(txq->descs !=
2325 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2326
2327 txq->last_desc = txq->size - 1;
2328
2329 /* Set maximum bandwidth for enabled TXQs */
2330 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2331 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2332
2333 /* Set Tx descriptors queue starting address */
2334 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2335 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2336
2337 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2338 if (txq->tx_skb == NULL) {
2339 dma_free_coherent(pp->dev->dev.parent,
2340 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2341 txq->descs, txq->descs_phys);
2342 return -ENOMEM;
2343 }
2344
2345 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2346 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2347 txq->size * TSO_HEADER_SIZE,
2348 &txq->tso_hdrs_phys, GFP_KERNEL);
2349 if (txq->tso_hdrs == NULL) {
2350 kfree(txq->tx_skb);
2351 dma_free_coherent(pp->dev->dev.parent,
2352 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2353 txq->descs, txq->descs_phys);
2354 return -ENOMEM;
2355 }
2356 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2357
2358 return 0;
2359 }
2360
2361 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
mvneta_txq_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2362 static void mvneta_txq_deinit(struct mvneta_port *pp,
2363 struct mvneta_tx_queue *txq)
2364 {
2365 kfree(txq->tx_skb);
2366
2367 if (txq->tso_hdrs)
2368 dma_free_coherent(pp->dev->dev.parent,
2369 txq->size * TSO_HEADER_SIZE,
2370 txq->tso_hdrs, txq->tso_hdrs_phys);
2371 if (txq->descs)
2372 dma_free_coherent(pp->dev->dev.parent,
2373 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2374 txq->descs, txq->descs_phys);
2375
2376 txq->descs = NULL;
2377 txq->last_desc = 0;
2378 txq->next_desc_to_proc = 0;
2379 txq->descs_phys = 0;
2380
2381 /* Set minimum bandwidth for disabled TXQs */
2382 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2383 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2384
2385 /* Set Tx descriptors queue starting address and size */
2386 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2387 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2388 }
2389
2390 /* Cleanup all Tx queues */
mvneta_cleanup_txqs(struct mvneta_port * pp)2391 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2392 {
2393 int queue;
2394
2395 for (queue = 0; queue < txq_number; queue++)
2396 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2397 }
2398
2399 /* Cleanup all Rx queues */
mvneta_cleanup_rxqs(struct mvneta_port * pp)2400 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2401 {
2402 mvneta_rxq_deinit(pp, &pp->rxqs[rxq_def]);
2403 }
2404
2405
2406 /* Init all Rx queues */
mvneta_setup_rxqs(struct mvneta_port * pp)2407 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2408 {
2409 int err = mvneta_rxq_init(pp, &pp->rxqs[rxq_def]);
2410 if (err) {
2411 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2412 __func__, rxq_def);
2413 mvneta_cleanup_rxqs(pp);
2414 return err;
2415 }
2416
2417 return 0;
2418 }
2419
2420 /* Init all tx queues */
mvneta_setup_txqs(struct mvneta_port * pp)2421 static int mvneta_setup_txqs(struct mvneta_port *pp)
2422 {
2423 int queue;
2424
2425 for (queue = 0; queue < txq_number; queue++) {
2426 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2427 if (err) {
2428 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2429 __func__, queue);
2430 mvneta_cleanup_txqs(pp);
2431 return err;
2432 }
2433 }
2434
2435 return 0;
2436 }
2437
mvneta_start_dev(struct mvneta_port * pp)2438 static void mvneta_start_dev(struct mvneta_port *pp)
2439 {
2440 unsigned int cpu;
2441
2442 mvneta_max_rx_size_set(pp, pp->pkt_size);
2443 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2444
2445 /* start the Rx/Tx activity */
2446 mvneta_port_enable(pp);
2447
2448 /* Enable polling on the port */
2449 for_each_present_cpu(cpu) {
2450 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2451
2452 napi_enable(&port->napi);
2453 }
2454
2455 /* Unmask interrupts */
2456 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2457 MVNETA_RX_INTR_MASK(rxq_number) |
2458 MVNETA_TX_INTR_MASK(txq_number) |
2459 MVNETA_MISCINTR_INTR_MASK);
2460 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2461 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2462 MVNETA_CAUSE_LINK_CHANGE |
2463 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2464
2465 phy_start(pp->phy_dev);
2466 netif_tx_start_all_queues(pp->dev);
2467 }
2468
mvneta_stop_dev(struct mvneta_port * pp)2469 static void mvneta_stop_dev(struct mvneta_port *pp)
2470 {
2471 unsigned int cpu;
2472
2473 phy_stop(pp->phy_dev);
2474
2475 for_each_present_cpu(cpu) {
2476 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2477
2478 napi_disable(&port->napi);
2479 }
2480
2481 netif_carrier_off(pp->dev);
2482
2483 mvneta_port_down(pp);
2484 netif_tx_stop_all_queues(pp->dev);
2485
2486 /* Stop the port activity */
2487 mvneta_port_disable(pp);
2488
2489 /* Clear all ethernet port interrupts */
2490 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2491 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2492
2493 /* Mask all ethernet port interrupts */
2494 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2495 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2496 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2497
2498 mvneta_tx_reset(pp);
2499 mvneta_rx_reset(pp);
2500 }
2501
2502 /* Return positive if MTU is valid */
mvneta_check_mtu_valid(struct net_device * dev,int mtu)2503 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2504 {
2505 if (mtu < 68) {
2506 netdev_err(dev, "cannot change mtu to less than 68\n");
2507 return -EINVAL;
2508 }
2509
2510 /* 9676 == 9700 - 20 and rounding to 8 */
2511 if (mtu > 9676) {
2512 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2513 mtu = 9676;
2514 }
2515
2516 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2517 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2518 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2519 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2520 }
2521
2522 return mtu;
2523 }
2524
2525 /* Change the device mtu */
mvneta_change_mtu(struct net_device * dev,int mtu)2526 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2527 {
2528 struct mvneta_port *pp = netdev_priv(dev);
2529 int ret;
2530
2531 mtu = mvneta_check_mtu_valid(dev, mtu);
2532 if (mtu < 0)
2533 return -EINVAL;
2534
2535 dev->mtu = mtu;
2536
2537 if (!netif_running(dev)) {
2538 netdev_update_features(dev);
2539 return 0;
2540 }
2541
2542 /* The interface is running, so we have to force a
2543 * reallocation of the queues
2544 */
2545 mvneta_stop_dev(pp);
2546
2547 mvneta_cleanup_txqs(pp);
2548 mvneta_cleanup_rxqs(pp);
2549
2550 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2551 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2552 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2553
2554 ret = mvneta_setup_rxqs(pp);
2555 if (ret) {
2556 netdev_err(dev, "unable to setup rxqs after MTU change\n");
2557 return ret;
2558 }
2559
2560 ret = mvneta_setup_txqs(pp);
2561 if (ret) {
2562 netdev_err(dev, "unable to setup txqs after MTU change\n");
2563 return ret;
2564 }
2565
2566 mvneta_start_dev(pp);
2567 mvneta_port_up(pp);
2568
2569 netdev_update_features(dev);
2570
2571 return 0;
2572 }
2573
mvneta_fix_features(struct net_device * dev,netdev_features_t features)2574 static netdev_features_t mvneta_fix_features(struct net_device *dev,
2575 netdev_features_t features)
2576 {
2577 struct mvneta_port *pp = netdev_priv(dev);
2578
2579 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
2580 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
2581 netdev_info(dev,
2582 "Disable IP checksum for MTU greater than %dB\n",
2583 pp->tx_csum_limit);
2584 }
2585
2586 return features;
2587 }
2588
2589 /* Get mac address */
mvneta_get_mac_addr(struct mvneta_port * pp,unsigned char * addr)2590 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2591 {
2592 u32 mac_addr_l, mac_addr_h;
2593
2594 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2595 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2596 addr[0] = (mac_addr_h >> 24) & 0xFF;
2597 addr[1] = (mac_addr_h >> 16) & 0xFF;
2598 addr[2] = (mac_addr_h >> 8) & 0xFF;
2599 addr[3] = mac_addr_h & 0xFF;
2600 addr[4] = (mac_addr_l >> 8) & 0xFF;
2601 addr[5] = mac_addr_l & 0xFF;
2602 }
2603
2604 /* Handle setting mac address */
mvneta_set_mac_addr(struct net_device * dev,void * addr)2605 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2606 {
2607 struct mvneta_port *pp = netdev_priv(dev);
2608 struct sockaddr *sockaddr = addr;
2609 int ret;
2610
2611 ret = eth_prepare_mac_addr_change(dev, addr);
2612 if (ret < 0)
2613 return ret;
2614 /* Remove previous address table entry */
2615 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2616
2617 /* Set new addr in hw */
2618 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2619
2620 eth_commit_mac_addr_change(dev, addr);
2621 return 0;
2622 }
2623
mvneta_adjust_link(struct net_device * ndev)2624 static void mvneta_adjust_link(struct net_device *ndev)
2625 {
2626 struct mvneta_port *pp = netdev_priv(ndev);
2627 struct phy_device *phydev = pp->phy_dev;
2628 int status_change = 0;
2629
2630 if (phydev->link) {
2631 if ((pp->speed != phydev->speed) ||
2632 (pp->duplex != phydev->duplex)) {
2633 u32 val;
2634
2635 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2636 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2637 MVNETA_GMAC_CONFIG_GMII_SPEED |
2638 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2639
2640 if (phydev->duplex)
2641 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2642
2643 if (phydev->speed == SPEED_1000)
2644 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2645 else if (phydev->speed == SPEED_100)
2646 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2647
2648 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2649
2650 pp->duplex = phydev->duplex;
2651 pp->speed = phydev->speed;
2652 }
2653 }
2654
2655 if (phydev->link != pp->link) {
2656 if (!phydev->link) {
2657 pp->duplex = -1;
2658 pp->speed = 0;
2659 }
2660
2661 pp->link = phydev->link;
2662 status_change = 1;
2663 }
2664
2665 if (status_change) {
2666 if (phydev->link) {
2667 if (!pp->use_inband_status) {
2668 u32 val = mvreg_read(pp,
2669 MVNETA_GMAC_AUTONEG_CONFIG);
2670 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2671 val |= MVNETA_GMAC_FORCE_LINK_PASS;
2672 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2673 val);
2674 }
2675 mvneta_port_up(pp);
2676 } else {
2677 if (!pp->use_inband_status) {
2678 u32 val = mvreg_read(pp,
2679 MVNETA_GMAC_AUTONEG_CONFIG);
2680 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2681 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2682 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2683 val);
2684 }
2685 mvneta_port_down(pp);
2686 }
2687 phy_print_status(phydev);
2688 }
2689 }
2690
mvneta_mdio_probe(struct mvneta_port * pp)2691 static int mvneta_mdio_probe(struct mvneta_port *pp)
2692 {
2693 struct phy_device *phy_dev;
2694
2695 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2696 pp->phy_interface);
2697 if (!phy_dev) {
2698 netdev_err(pp->dev, "could not find the PHY\n");
2699 return -ENODEV;
2700 }
2701
2702 phy_dev->supported &= PHY_GBIT_FEATURES;
2703 phy_dev->advertising = phy_dev->supported;
2704
2705 pp->phy_dev = phy_dev;
2706 pp->link = 0;
2707 pp->duplex = 0;
2708 pp->speed = 0;
2709
2710 return 0;
2711 }
2712
mvneta_mdio_remove(struct mvneta_port * pp)2713 static void mvneta_mdio_remove(struct mvneta_port *pp)
2714 {
2715 phy_disconnect(pp->phy_dev);
2716 pp->phy_dev = NULL;
2717 }
2718
mvneta_percpu_enable(void * arg)2719 static void mvneta_percpu_enable(void *arg)
2720 {
2721 struct mvneta_port *pp = arg;
2722
2723 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
2724 }
2725
mvneta_percpu_disable(void * arg)2726 static void mvneta_percpu_disable(void *arg)
2727 {
2728 struct mvneta_port *pp = arg;
2729
2730 disable_percpu_irq(pp->dev->irq);
2731 }
2732
mvneta_percpu_elect(struct mvneta_port * pp)2733 static void mvneta_percpu_elect(struct mvneta_port *pp)
2734 {
2735 int online_cpu_idx, cpu, i = 0;
2736
2737 online_cpu_idx = rxq_def % num_online_cpus();
2738
2739 for_each_online_cpu(cpu) {
2740 if (i == online_cpu_idx)
2741 /* Enable per-CPU interrupt on the one CPU we
2742 * just elected
2743 */
2744 smp_call_function_single(cpu, mvneta_percpu_enable,
2745 pp, true);
2746 else
2747 /* Disable per-CPU interrupt on all the other CPU */
2748 smp_call_function_single(cpu, mvneta_percpu_disable,
2749 pp, true);
2750 i++;
2751 }
2752 };
2753
mvneta_percpu_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)2754 static int mvneta_percpu_notifier(struct notifier_block *nfb,
2755 unsigned long action, void *hcpu)
2756 {
2757 struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
2758 cpu_notifier);
2759 int cpu = (unsigned long)hcpu, other_cpu;
2760 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2761
2762 switch (action) {
2763 case CPU_ONLINE:
2764 case CPU_ONLINE_FROZEN:
2765 netif_tx_stop_all_queues(pp->dev);
2766
2767 /* We have to synchronise on tha napi of each CPU
2768 * except the one just being waked up
2769 */
2770 for_each_online_cpu(other_cpu) {
2771 if (other_cpu != cpu) {
2772 struct mvneta_pcpu_port *other_port =
2773 per_cpu_ptr(pp->ports, other_cpu);
2774
2775 napi_synchronize(&other_port->napi);
2776 }
2777 }
2778
2779 /* Mask all ethernet port interrupts */
2780 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2781 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2782 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2783 napi_enable(&port->napi);
2784
2785 /* Enable per-CPU interrupt on the one CPU we care
2786 * about.
2787 */
2788 mvneta_percpu_elect(pp);
2789
2790 /* Unmask all ethernet port interrupts */
2791 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2792 MVNETA_RX_INTR_MASK(rxq_number) |
2793 MVNETA_TX_INTR_MASK(txq_number) |
2794 MVNETA_MISCINTR_INTR_MASK);
2795 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2796 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2797 MVNETA_CAUSE_LINK_CHANGE |
2798 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2799 netif_tx_start_all_queues(pp->dev);
2800 break;
2801 case CPU_DOWN_PREPARE:
2802 case CPU_DOWN_PREPARE_FROZEN:
2803 netif_tx_stop_all_queues(pp->dev);
2804 /* Mask all ethernet port interrupts */
2805 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2806 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2807 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2808
2809 napi_synchronize(&port->napi);
2810 napi_disable(&port->napi);
2811 /* Disable per-CPU interrupts on the CPU that is
2812 * brought down.
2813 */
2814 smp_call_function_single(cpu, mvneta_percpu_disable,
2815 pp, true);
2816
2817 break;
2818 case CPU_DEAD:
2819 case CPU_DEAD_FROZEN:
2820 /* Check if a new CPU must be elected now this on is down */
2821 mvneta_percpu_elect(pp);
2822 /* Unmask all ethernet port interrupts */
2823 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2824 MVNETA_RX_INTR_MASK(rxq_number) |
2825 MVNETA_TX_INTR_MASK(txq_number) |
2826 MVNETA_MISCINTR_INTR_MASK);
2827 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2828 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2829 MVNETA_CAUSE_LINK_CHANGE |
2830 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2831 netif_tx_start_all_queues(pp->dev);
2832 break;
2833 }
2834
2835 return NOTIFY_OK;
2836 }
2837
mvneta_open(struct net_device * dev)2838 static int mvneta_open(struct net_device *dev)
2839 {
2840 struct mvneta_port *pp = netdev_priv(dev);
2841 int ret;
2842
2843 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2844 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2845 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2846
2847 ret = mvneta_setup_rxqs(pp);
2848 if (ret)
2849 return ret;
2850
2851 ret = mvneta_setup_txqs(pp);
2852 if (ret)
2853 goto err_cleanup_rxqs;
2854
2855 /* Connect to port interrupt line */
2856 ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
2857 MVNETA_DRIVER_NAME, pp->ports);
2858 if (ret) {
2859 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2860 goto err_cleanup_txqs;
2861 }
2862
2863 /* Even though the documentation says that request_percpu_irq
2864 * doesn't enable the interrupts automatically, it actually
2865 * does so on the local CPU.
2866 *
2867 * Make sure it's disabled.
2868 */
2869 mvneta_percpu_disable(pp);
2870
2871 /* Elect a CPU to handle our RX queue interrupt */
2872 mvneta_percpu_elect(pp);
2873
2874 /* Register a CPU notifier to handle the case where our CPU
2875 * might be taken offline.
2876 */
2877 register_cpu_notifier(&pp->cpu_notifier);
2878
2879 /* In default link is down */
2880 netif_carrier_off(pp->dev);
2881
2882 ret = mvneta_mdio_probe(pp);
2883 if (ret < 0) {
2884 netdev_err(dev, "cannot probe MDIO bus\n");
2885 goto err_free_irq;
2886 }
2887
2888 mvneta_start_dev(pp);
2889
2890 return 0;
2891
2892 err_free_irq:
2893 free_percpu_irq(pp->dev->irq, pp->ports);
2894 err_cleanup_txqs:
2895 mvneta_cleanup_txqs(pp);
2896 err_cleanup_rxqs:
2897 mvneta_cleanup_rxqs(pp);
2898 return ret;
2899 }
2900
2901 /* Stop the port, free port interrupt line */
mvneta_stop(struct net_device * dev)2902 static int mvneta_stop(struct net_device *dev)
2903 {
2904 struct mvneta_port *pp = netdev_priv(dev);
2905 int cpu;
2906
2907 mvneta_stop_dev(pp);
2908 mvneta_mdio_remove(pp);
2909 unregister_cpu_notifier(&pp->cpu_notifier);
2910 for_each_present_cpu(cpu)
2911 smp_call_function_single(cpu, mvneta_percpu_disable, pp, true);
2912 free_percpu_irq(dev->irq, pp->ports);
2913 mvneta_cleanup_rxqs(pp);
2914 mvneta_cleanup_txqs(pp);
2915
2916 return 0;
2917 }
2918
mvneta_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2919 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2920 {
2921 struct mvneta_port *pp = netdev_priv(dev);
2922
2923 if (!pp->phy_dev)
2924 return -ENOTSUPP;
2925
2926 return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2927 }
2928
2929 /* Ethtool methods */
2930
2931 /* Get settings (phy address, speed) for ethtools */
mvneta_ethtool_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2932 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2933 {
2934 struct mvneta_port *pp = netdev_priv(dev);
2935
2936 if (!pp->phy_dev)
2937 return -ENODEV;
2938
2939 return phy_ethtool_gset(pp->phy_dev, cmd);
2940 }
2941
2942 /* Set settings (phy address, speed) for ethtools */
mvneta_ethtool_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2943 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2944 {
2945 struct mvneta_port *pp = netdev_priv(dev);
2946
2947 if (!pp->phy_dev)
2948 return -ENODEV;
2949
2950 return phy_ethtool_sset(pp->phy_dev, cmd);
2951 }
2952
2953 /* Set interrupt coalescing for ethtools */
mvneta_ethtool_set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2954 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2955 struct ethtool_coalesce *c)
2956 {
2957 struct mvneta_port *pp = netdev_priv(dev);
2958 int queue;
2959
2960 for (queue = 0; queue < rxq_number; queue++) {
2961 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2962 rxq->time_coal = c->rx_coalesce_usecs;
2963 rxq->pkts_coal = c->rx_max_coalesced_frames;
2964 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2965 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2966 }
2967
2968 for (queue = 0; queue < txq_number; queue++) {
2969 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2970 txq->done_pkts_coal = c->tx_max_coalesced_frames;
2971 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2972 }
2973
2974 return 0;
2975 }
2976
2977 /* get coalescing for ethtools */
mvneta_ethtool_get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2978 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2979 struct ethtool_coalesce *c)
2980 {
2981 struct mvneta_port *pp = netdev_priv(dev);
2982
2983 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
2984 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
2985
2986 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
2987 return 0;
2988 }
2989
2990
mvneta_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)2991 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2992 struct ethtool_drvinfo *drvinfo)
2993 {
2994 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2995 sizeof(drvinfo->driver));
2996 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2997 sizeof(drvinfo->version));
2998 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2999 sizeof(drvinfo->bus_info));
3000 }
3001
3002
mvneta_ethtool_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)3003 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3004 struct ethtool_ringparam *ring)
3005 {
3006 struct mvneta_port *pp = netdev_priv(netdev);
3007
3008 ring->rx_max_pending = MVNETA_MAX_RXD;
3009 ring->tx_max_pending = MVNETA_MAX_TXD;
3010 ring->rx_pending = pp->rx_ring_size;
3011 ring->tx_pending = pp->tx_ring_size;
3012 }
3013
mvneta_ethtool_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)3014 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3015 struct ethtool_ringparam *ring)
3016 {
3017 struct mvneta_port *pp = netdev_priv(dev);
3018
3019 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3020 return -EINVAL;
3021 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3022 ring->rx_pending : MVNETA_MAX_RXD;
3023
3024 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3025 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3026 if (pp->tx_ring_size != ring->tx_pending)
3027 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3028 pp->tx_ring_size, ring->tx_pending);
3029
3030 if (netif_running(dev)) {
3031 mvneta_stop(dev);
3032 if (mvneta_open(dev)) {
3033 netdev_err(dev,
3034 "error on opening device after ring param change\n");
3035 return -ENOMEM;
3036 }
3037 }
3038
3039 return 0;
3040 }
3041
mvneta_ethtool_get_strings(struct net_device * netdev,u32 sset,u8 * data)3042 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3043 u8 *data)
3044 {
3045 if (sset == ETH_SS_STATS) {
3046 int i;
3047
3048 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3049 memcpy(data + i * ETH_GSTRING_LEN,
3050 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3051 }
3052 }
3053
mvneta_ethtool_update_stats(struct mvneta_port * pp)3054 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3055 {
3056 const struct mvneta_statistic *s;
3057 void __iomem *base = pp->base;
3058 u32 high, low, val;
3059 int i;
3060
3061 for (i = 0, s = mvneta_statistics;
3062 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3063 s++, i++) {
3064 val = 0;
3065
3066 switch (s->type) {
3067 case T_REG_32:
3068 val = readl_relaxed(base + s->offset);
3069 break;
3070 case T_REG_64:
3071 /* Docs say to read low 32-bit then high */
3072 low = readl_relaxed(base + s->offset);
3073 high = readl_relaxed(base + s->offset + 4);
3074 val = (u64)high << 32 | low;
3075 break;
3076 }
3077
3078 pp->ethtool_stats[i] += val;
3079 }
3080 }
3081
mvneta_ethtool_get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3082 static void mvneta_ethtool_get_stats(struct net_device *dev,
3083 struct ethtool_stats *stats, u64 *data)
3084 {
3085 struct mvneta_port *pp = netdev_priv(dev);
3086 int i;
3087
3088 mvneta_ethtool_update_stats(pp);
3089
3090 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3091 *data++ = pp->ethtool_stats[i];
3092 }
3093
mvneta_ethtool_get_sset_count(struct net_device * dev,int sset)3094 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3095 {
3096 if (sset == ETH_SS_STATS)
3097 return ARRAY_SIZE(mvneta_statistics);
3098 return -EOPNOTSUPP;
3099 }
3100
3101 static const struct net_device_ops mvneta_netdev_ops = {
3102 .ndo_open = mvneta_open,
3103 .ndo_stop = mvneta_stop,
3104 .ndo_start_xmit = mvneta_tx,
3105 .ndo_set_rx_mode = mvneta_set_rx_mode,
3106 .ndo_set_mac_address = mvneta_set_mac_addr,
3107 .ndo_change_mtu = mvneta_change_mtu,
3108 .ndo_fix_features = mvneta_fix_features,
3109 .ndo_get_stats64 = mvneta_get_stats64,
3110 .ndo_do_ioctl = mvneta_ioctl,
3111 };
3112
3113 const struct ethtool_ops mvneta_eth_tool_ops = {
3114 .get_link = ethtool_op_get_link,
3115 .get_settings = mvneta_ethtool_get_settings,
3116 .set_settings = mvneta_ethtool_set_settings,
3117 .set_coalesce = mvneta_ethtool_set_coalesce,
3118 .get_coalesce = mvneta_ethtool_get_coalesce,
3119 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3120 .get_ringparam = mvneta_ethtool_get_ringparam,
3121 .set_ringparam = mvneta_ethtool_set_ringparam,
3122 .get_strings = mvneta_ethtool_get_strings,
3123 .get_ethtool_stats = mvneta_ethtool_get_stats,
3124 .get_sset_count = mvneta_ethtool_get_sset_count,
3125 };
3126
3127 /* Initialize hw */
mvneta_init(struct device * dev,struct mvneta_port * pp)3128 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3129 {
3130 int queue;
3131
3132 /* Disable port */
3133 mvneta_port_disable(pp);
3134
3135 /* Set port default values */
3136 mvneta_defaults_set(pp);
3137
3138 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3139 GFP_KERNEL);
3140 if (!pp->txqs)
3141 return -ENOMEM;
3142
3143 /* Initialize TX descriptor rings */
3144 for (queue = 0; queue < txq_number; queue++) {
3145 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3146 txq->id = queue;
3147 txq->size = pp->tx_ring_size;
3148 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3149 }
3150
3151 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3152 GFP_KERNEL);
3153 if (!pp->rxqs)
3154 return -ENOMEM;
3155
3156 /* Create Rx descriptor rings */
3157 for (queue = 0; queue < rxq_number; queue++) {
3158 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3159 rxq->id = queue;
3160 rxq->size = pp->rx_ring_size;
3161 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3162 rxq->time_coal = MVNETA_RX_COAL_USEC;
3163 }
3164
3165 return 0;
3166 }
3167
3168 /* platform glue : initialize decoding windows */
mvneta_conf_mbus_windows(struct mvneta_port * pp,const struct mbus_dram_target_info * dram)3169 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3170 const struct mbus_dram_target_info *dram)
3171 {
3172 u32 win_enable;
3173 u32 win_protect;
3174 int i;
3175
3176 for (i = 0; i < 6; i++) {
3177 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3178 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3179
3180 if (i < 4)
3181 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3182 }
3183
3184 win_enable = 0x3f;
3185 win_protect = 0;
3186
3187 for (i = 0; i < dram->num_cs; i++) {
3188 const struct mbus_dram_window *cs = dram->cs + i;
3189 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3190 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3191
3192 mvreg_write(pp, MVNETA_WIN_SIZE(i),
3193 (cs->size - 1) & 0xffff0000);
3194
3195 win_enable &= ~(1 << i);
3196 win_protect |= 3 << (2 * i);
3197 }
3198
3199 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3200 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3201 }
3202
3203 /* Power up the port */
mvneta_port_power_up(struct mvneta_port * pp,int phy_mode)3204 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3205 {
3206 u32 ctrl;
3207
3208 /* MAC Cause register should be cleared */
3209 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3210
3211 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3212
3213 /* Even though it might look weird, when we're configured in
3214 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3215 */
3216 switch(phy_mode) {
3217 case PHY_INTERFACE_MODE_QSGMII:
3218 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3219 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3220 break;
3221 case PHY_INTERFACE_MODE_SGMII:
3222 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3223 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3224 break;
3225 case PHY_INTERFACE_MODE_RGMII:
3226 case PHY_INTERFACE_MODE_RGMII_ID:
3227 ctrl |= MVNETA_GMAC2_PORT_RGMII;
3228 break;
3229 default:
3230 return -EINVAL;
3231 }
3232
3233 if (pp->use_inband_status)
3234 ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3235
3236 /* Cancel Port Reset */
3237 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3238 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3239
3240 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3241 MVNETA_GMAC2_PORT_RESET) != 0)
3242 continue;
3243
3244 return 0;
3245 }
3246
3247 /* Device initialization routine */
mvneta_probe(struct platform_device * pdev)3248 static int mvneta_probe(struct platform_device *pdev)
3249 {
3250 const struct mbus_dram_target_info *dram_target_info;
3251 struct resource *res;
3252 struct device_node *dn = pdev->dev.of_node;
3253 struct device_node *phy_node;
3254 struct mvneta_port *pp;
3255 struct net_device *dev;
3256 const char *dt_mac_addr;
3257 char hw_mac_addr[ETH_ALEN];
3258 const char *mac_from;
3259 const char *managed;
3260 int tx_csum_limit;
3261 int phy_mode;
3262 int err;
3263 int cpu;
3264
3265 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3266 if (!dev)
3267 return -ENOMEM;
3268
3269 dev->irq = irq_of_parse_and_map(dn, 0);
3270 if (dev->irq == 0) {
3271 err = -EINVAL;
3272 goto err_free_netdev;
3273 }
3274
3275 phy_node = of_parse_phandle(dn, "phy", 0);
3276 if (!phy_node) {
3277 if (!of_phy_is_fixed_link(dn)) {
3278 dev_err(&pdev->dev, "no PHY specified\n");
3279 err = -ENODEV;
3280 goto err_free_irq;
3281 }
3282
3283 err = of_phy_register_fixed_link(dn);
3284 if (err < 0) {
3285 dev_err(&pdev->dev, "cannot register fixed PHY\n");
3286 goto err_free_irq;
3287 }
3288
3289 /* In the case of a fixed PHY, the DT node associated
3290 * to the PHY is the Ethernet MAC DT node.
3291 */
3292 phy_node = of_node_get(dn);
3293 }
3294
3295 phy_mode = of_get_phy_mode(dn);
3296 if (phy_mode < 0) {
3297 dev_err(&pdev->dev, "incorrect phy-mode\n");
3298 err = -EINVAL;
3299 goto err_put_phy_node;
3300 }
3301
3302 dev->tx_queue_len = MVNETA_MAX_TXD;
3303 dev->watchdog_timeo = 5 * HZ;
3304 dev->netdev_ops = &mvneta_netdev_ops;
3305
3306 dev->ethtool_ops = &mvneta_eth_tool_ops;
3307
3308 pp = netdev_priv(dev);
3309 pp->phy_node = phy_node;
3310 pp->phy_interface = phy_mode;
3311
3312 err = of_property_read_string(dn, "managed", &managed);
3313 pp->use_inband_status = (err == 0 &&
3314 strcmp(managed, "in-band-status") == 0);
3315 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
3316
3317 pp->clk = devm_clk_get(&pdev->dev, NULL);
3318 if (IS_ERR(pp->clk)) {
3319 err = PTR_ERR(pp->clk);
3320 goto err_put_phy_node;
3321 }
3322
3323 clk_prepare_enable(pp->clk);
3324
3325 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3326 pp->base = devm_ioremap_resource(&pdev->dev, res);
3327 if (IS_ERR(pp->base)) {
3328 err = PTR_ERR(pp->base);
3329 goto err_clk;
3330 }
3331
3332 /* Alloc per-cpu port structure */
3333 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
3334 if (!pp->ports) {
3335 err = -ENOMEM;
3336 goto err_clk;
3337 }
3338
3339 /* Alloc per-cpu stats */
3340 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3341 if (!pp->stats) {
3342 err = -ENOMEM;
3343 goto err_free_ports;
3344 }
3345
3346 dt_mac_addr = of_get_mac_address(dn);
3347 if (dt_mac_addr) {
3348 mac_from = "device tree";
3349 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3350 } else {
3351 mvneta_get_mac_addr(pp, hw_mac_addr);
3352 if (is_valid_ether_addr(hw_mac_addr)) {
3353 mac_from = "hardware";
3354 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3355 } else {
3356 mac_from = "random";
3357 eth_hw_addr_random(dev);
3358 }
3359 }
3360
3361 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
3362 if (tx_csum_limit < 0 ||
3363 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
3364 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3365 dev_info(&pdev->dev,
3366 "Wrong TX csum limit in DT, set to %dB\n",
3367 MVNETA_TX_CSUM_DEF_SIZE);
3368 }
3369 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
3370 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3371 } else {
3372 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
3373 }
3374
3375 pp->tx_csum_limit = tx_csum_limit;
3376
3377 pp->tx_ring_size = MVNETA_MAX_TXD;
3378 pp->rx_ring_size = MVNETA_MAX_RXD;
3379
3380 pp->dev = dev;
3381 SET_NETDEV_DEV(dev, &pdev->dev);
3382
3383 err = mvneta_init(&pdev->dev, pp);
3384 if (err < 0)
3385 goto err_free_stats;
3386
3387 err = mvneta_port_power_up(pp, phy_mode);
3388 if (err < 0) {
3389 dev_err(&pdev->dev, "can't power up port\n");
3390 goto err_free_stats;
3391 }
3392
3393 dram_target_info = mv_mbus_dram_info();
3394 if (dram_target_info)
3395 mvneta_conf_mbus_windows(pp, dram_target_info);
3396
3397 for_each_present_cpu(cpu) {
3398 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3399
3400 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3401 port->pp = pp;
3402 }
3403
3404 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3405 dev->hw_features |= dev->features;
3406 dev->vlan_features |= dev->features;
3407 dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
3408 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3409
3410 err = register_netdev(dev);
3411 if (err < 0) {
3412 dev_err(&pdev->dev, "failed to register\n");
3413 goto err_free_stats;
3414 }
3415
3416 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3417 dev->dev_addr);
3418
3419 platform_set_drvdata(pdev, pp->dev);
3420
3421 if (pp->use_inband_status) {
3422 struct phy_device *phy = of_phy_find_device(dn);
3423
3424 mvneta_fixed_link_update(pp, phy);
3425
3426 put_device(&phy->dev);
3427 }
3428
3429 return 0;
3430
3431 err_free_stats:
3432 free_percpu(pp->stats);
3433 err_free_ports:
3434 free_percpu(pp->ports);
3435 err_clk:
3436 clk_disable_unprepare(pp->clk);
3437 err_put_phy_node:
3438 of_node_put(phy_node);
3439 err_free_irq:
3440 irq_dispose_mapping(dev->irq);
3441 err_free_netdev:
3442 free_netdev(dev);
3443 return err;
3444 }
3445
3446 /* Device removal routine */
mvneta_remove(struct platform_device * pdev)3447 static int mvneta_remove(struct platform_device *pdev)
3448 {
3449 struct net_device *dev = platform_get_drvdata(pdev);
3450 struct mvneta_port *pp = netdev_priv(dev);
3451
3452 unregister_netdev(dev);
3453 clk_disable_unprepare(pp->clk);
3454 free_percpu(pp->ports);
3455 free_percpu(pp->stats);
3456 irq_dispose_mapping(dev->irq);
3457 of_node_put(pp->phy_node);
3458 free_netdev(dev);
3459
3460 return 0;
3461 }
3462
3463 static const struct of_device_id mvneta_match[] = {
3464 { .compatible = "marvell,armada-370-neta" },
3465 { .compatible = "marvell,armada-xp-neta" },
3466 { }
3467 };
3468 MODULE_DEVICE_TABLE(of, mvneta_match);
3469
3470 static struct platform_driver mvneta_driver = {
3471 .probe = mvneta_probe,
3472 .remove = mvneta_remove,
3473 .driver = {
3474 .name = MVNETA_DRIVER_NAME,
3475 .of_match_table = mvneta_match,
3476 },
3477 };
3478
3479 module_platform_driver(mvneta_driver);
3480
3481 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3482 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3483 MODULE_LICENSE("GPL");
3484
3485 module_param(rxq_number, int, S_IRUGO);
3486 module_param(txq_number, int, S_IRUGO);
3487
3488 module_param(rxq_def, int, S_IRUGO);
3489 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
3490