1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22 
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <linux/bitmap.h>
45 #include <linux/io.h>
46 #include <asm/uaccess.h>
47 
48 #include <linux/dma-mapping.h>
49 #include <linux/blkdev.h>
50 #include <linux/genhd.h>
51 #include <linux/completion.h>
52 #include <scsi/scsi.h>
53 #include <scsi/sg.h>
54 #include <scsi/scsi_ioctl.h>
55 #include <linux/cdrom.h>
56 #include <linux/scatterlist.h>
57 #include <linux/kthread.h>
58 
59 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 
63 /* Embedded module documentation macros - see modules.h */
64 MODULE_AUTHOR("Hewlett-Packard Company");
65 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67 MODULE_VERSION("3.6.26");
68 MODULE_LICENSE("GPL");
69 static int cciss_tape_cmds = 6;
70 module_param(cciss_tape_cmds, int, 0644);
71 MODULE_PARM_DESC(cciss_tape_cmds,
72 	"number of commands to allocate for tape devices (default: 6)");
73 static int cciss_simple_mode;
74 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(cciss_simple_mode,
76 	"Use 'simple mode' rather than 'performant mode'");
77 
78 static int cciss_allow_hpsa;
79 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(cciss_allow_hpsa,
81 	"Prevent cciss driver from accessing hardware known to be "
82 	" supported by the hpsa driver");
83 
84 static DEFINE_MUTEX(cciss_mutex);
85 static struct proc_dir_entry *proc_cciss;
86 
87 #include "cciss_cmd.h"
88 #include "cciss.h"
89 #include <linux/cciss_ioctl.h>
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id cciss_pci_device_id[] = {
93 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
94 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
95 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
96 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
97 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
98 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
99 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
100 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
101 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
113 	{0,}
114 };
115 
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
117 
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123 	{0x40700E11, "Smart Array 5300", &SA5_access},
124 	{0x40800E11, "Smart Array 5i", &SA5B_access},
125 	{0x40820E11, "Smart Array 532", &SA5B_access},
126 	{0x40830E11, "Smart Array 5312", &SA5B_access},
127 	{0x409A0E11, "Smart Array 641", &SA5_access},
128 	{0x409B0E11, "Smart Array 642", &SA5_access},
129 	{0x409C0E11, "Smart Array 6400", &SA5_access},
130 	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131 	{0x40910E11, "Smart Array 6i", &SA5_access},
132 	{0x3225103C, "Smart Array P600", &SA5_access},
133 	{0x3223103C, "Smart Array P800", &SA5_access},
134 	{0x3234103C, "Smart Array P400", &SA5_access},
135 	{0x3235103C, "Smart Array P400i", &SA5_access},
136 	{0x3211103C, "Smart Array E200i", &SA5_access},
137 	{0x3212103C, "Smart Array E200", &SA5_access},
138 	{0x3213103C, "Smart Array E200i", &SA5_access},
139 	{0x3214103C, "Smart Array E200i", &SA5_access},
140 	{0x3215103C, "Smart Array E200i", &SA5_access},
141 	{0x3237103C, "Smart Array E500", &SA5_access},
142 	{0x323D103C, "Smart Array P700m", &SA5_access},
143 };
144 
145 /* How long to wait (in milliseconds) for board to go into simple mode */
146 #define MAX_CONFIG_WAIT 30000
147 #define MAX_IOCTL_CONFIG_WAIT 1000
148 
149 /*define how many times we will try a command because of bus resets */
150 #define MAX_CMD_RETRIES 3
151 
152 #define MAX_CTLR	32
153 
154 /* Originally cciss driver only supports 8 major numbers */
155 #define MAX_CTLR_ORIG 	8
156 
157 static ctlr_info_t *hba[MAX_CTLR];
158 
159 static struct task_struct *cciss_scan_thread;
160 static DEFINE_MUTEX(scan_mutex);
161 static LIST_HEAD(scan_q);
162 
163 static void do_cciss_request(struct request_queue *q);
164 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
165 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
166 static int cciss_open(struct block_device *bdev, fmode_t mode);
167 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
168 static void cciss_release(struct gendisk *disk, fmode_t mode);
169 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
170 		       unsigned int cmd, unsigned long arg);
171 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
172 
173 static int cciss_revalidate(struct gendisk *disk);
174 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
175 static int deregister_disk(ctlr_info_t *h, int drv_index,
176 			   int clear_all, int via_ioctl);
177 
178 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
179 			sector_t *total_size, unsigned int *block_size);
180 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
181 			sector_t *total_size, unsigned int *block_size);
182 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
183 			sector_t total_size,
184 			unsigned int block_size, InquiryData_struct *inq_buff,
185 				   drive_info_struct *drv);
186 static void cciss_interrupt_mode(ctlr_info_t *);
187 static int cciss_enter_simple_mode(struct ctlr_info *h);
188 static void start_io(ctlr_info_t *h);
189 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
190 			__u8 page_code, unsigned char scsi3addr[],
191 			int cmd_type);
192 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
193 	int attempt_retry);
194 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
195 
196 static int add_to_scan_list(struct ctlr_info *h);
197 static int scan_thread(void *data);
198 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
199 static void cciss_hba_release(struct device *dev);
200 static void cciss_device_release(struct device *dev);
201 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
202 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
203 static inline u32 next_command(ctlr_info_t *h);
204 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
205 				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
206 				u64 *cfg_offset);
207 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
208 				     unsigned long *memory_bar);
209 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
210 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
211 
212 /* performant mode helper functions */
213 static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
214 				int *bucket_map);
215 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
216 
217 #ifdef CONFIG_PROC_FS
218 static void cciss_procinit(ctlr_info_t *h);
219 #else
cciss_procinit(ctlr_info_t * h)220 static void cciss_procinit(ctlr_info_t *h)
221 {
222 }
223 #endif				/* CONFIG_PROC_FS */
224 
225 #ifdef CONFIG_COMPAT
226 static int cciss_compat_ioctl(struct block_device *, fmode_t,
227 			      unsigned, unsigned long);
228 #endif
229 
230 static const struct block_device_operations cciss_fops = {
231 	.owner = THIS_MODULE,
232 	.open = cciss_unlocked_open,
233 	.release = cciss_release,
234 	.ioctl = cciss_ioctl,
235 	.getgeo = cciss_getgeo,
236 #ifdef CONFIG_COMPAT
237 	.compat_ioctl = cciss_compat_ioctl,
238 #endif
239 	.revalidate_disk = cciss_revalidate,
240 };
241 
242 /* set_performant_mode: Modify the tag for cciss performant
243  * set bit 0 for pull model, bits 3-1 for block fetch
244  * register number
245  */
set_performant_mode(ctlr_info_t * h,CommandList_struct * c)246 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
247 {
248 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
249 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
250 }
251 
252 /*
253  * Enqueuing and dequeuing functions for cmdlists.
254  */
addQ(struct list_head * list,CommandList_struct * c)255 static inline void addQ(struct list_head *list, CommandList_struct *c)
256 {
257 	list_add_tail(&c->list, list);
258 }
259 
removeQ(CommandList_struct * c)260 static inline void removeQ(CommandList_struct *c)
261 {
262 	/*
263 	 * After kexec/dump some commands might still
264 	 * be in flight, which the firmware will try
265 	 * to complete. Resetting the firmware doesn't work
266 	 * with old fw revisions, so we have to mark
267 	 * them off as 'stale' to prevent the driver from
268 	 * falling over.
269 	 */
270 	if (WARN_ON(list_empty(&c->list))) {
271 		c->cmd_type = CMD_MSG_STALE;
272 		return;
273 	}
274 
275 	list_del_init(&c->list);
276 }
277 
enqueue_cmd_and_start_io(ctlr_info_t * h,CommandList_struct * c)278 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
279 	CommandList_struct *c)
280 {
281 	unsigned long flags;
282 	set_performant_mode(h, c);
283 	spin_lock_irqsave(&h->lock, flags);
284 	addQ(&h->reqQ, c);
285 	h->Qdepth++;
286 	if (h->Qdepth > h->maxQsinceinit)
287 		h->maxQsinceinit = h->Qdepth;
288 	start_io(h);
289 	spin_unlock_irqrestore(&h->lock, flags);
290 }
291 
cciss_free_sg_chain_blocks(SGDescriptor_struct ** cmd_sg_list,int nr_cmds)292 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
293 	int nr_cmds)
294 {
295 	int i;
296 
297 	if (!cmd_sg_list)
298 		return;
299 	for (i = 0; i < nr_cmds; i++) {
300 		kfree(cmd_sg_list[i]);
301 		cmd_sg_list[i] = NULL;
302 	}
303 	kfree(cmd_sg_list);
304 }
305 
cciss_allocate_sg_chain_blocks(ctlr_info_t * h,int chainsize,int nr_cmds)306 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
307 	ctlr_info_t *h, int chainsize, int nr_cmds)
308 {
309 	int j;
310 	SGDescriptor_struct **cmd_sg_list;
311 
312 	if (chainsize <= 0)
313 		return NULL;
314 
315 	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
316 	if (!cmd_sg_list)
317 		return NULL;
318 
319 	/* Build up chain blocks for each command */
320 	for (j = 0; j < nr_cmds; j++) {
321 		/* Need a block of chainsized s/g elements. */
322 		cmd_sg_list[j] = kmalloc((chainsize *
323 			sizeof(*cmd_sg_list[j])), GFP_KERNEL);
324 		if (!cmd_sg_list[j]) {
325 			dev_err(&h->pdev->dev, "Cannot get memory "
326 				"for s/g chains.\n");
327 			goto clean;
328 		}
329 	}
330 	return cmd_sg_list;
331 clean:
332 	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
333 	return NULL;
334 }
335 
cciss_unmap_sg_chain_block(ctlr_info_t * h,CommandList_struct * c)336 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
337 {
338 	SGDescriptor_struct *chain_sg;
339 	u64bit temp64;
340 
341 	if (c->Header.SGTotal <= h->max_cmd_sgentries)
342 		return;
343 
344 	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
345 	temp64.val32.lower = chain_sg->Addr.lower;
346 	temp64.val32.upper = chain_sg->Addr.upper;
347 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
348 }
349 
cciss_map_sg_chain_block(ctlr_info_t * h,CommandList_struct * c,SGDescriptor_struct * chain_block,int len)350 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
351 	SGDescriptor_struct *chain_block, int len)
352 {
353 	SGDescriptor_struct *chain_sg;
354 	u64bit temp64;
355 
356 	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
357 	chain_sg->Ext = CCISS_SG_CHAIN;
358 	chain_sg->Len = len;
359 	temp64.val = pci_map_single(h->pdev, chain_block, len,
360 				PCI_DMA_TODEVICE);
361 	chain_sg->Addr.lower = temp64.val32.lower;
362 	chain_sg->Addr.upper = temp64.val32.upper;
363 }
364 
365 #include "cciss_scsi.c"		/* For SCSI tape support */
366 
367 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
368 	"UNKNOWN"
369 };
370 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
371 
372 #ifdef CONFIG_PROC_FS
373 
374 /*
375  * Report information about this controller.
376  */
377 #define ENG_GIG 1000000000
378 #define ENG_GIG_FACTOR (ENG_GIG/512)
379 #define ENGAGE_SCSI	"engage scsi"
380 
cciss_seq_show_header(struct seq_file * seq)381 static void cciss_seq_show_header(struct seq_file *seq)
382 {
383 	ctlr_info_t *h = seq->private;
384 
385 	seq_printf(seq, "%s: HP %s Controller\n"
386 		"Board ID: 0x%08lx\n"
387 		"Firmware Version: %c%c%c%c\n"
388 		"IRQ: %d\n"
389 		"Logical drives: %d\n"
390 		"Current Q depth: %d\n"
391 		"Current # commands on controller: %d\n"
392 		"Max Q depth since init: %d\n"
393 		"Max # commands on controller since init: %d\n"
394 		"Max SG entries since init: %d\n",
395 		h->devname,
396 		h->product_name,
397 		(unsigned long)h->board_id,
398 		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
399 		h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
400 		h->num_luns,
401 		h->Qdepth, h->commands_outstanding,
402 		h->maxQsinceinit, h->max_outstanding, h->maxSG);
403 
404 #ifdef CONFIG_CISS_SCSI_TAPE
405 	cciss_seq_tape_report(seq, h);
406 #endif /* CONFIG_CISS_SCSI_TAPE */
407 }
408 
cciss_seq_start(struct seq_file * seq,loff_t * pos)409 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
410 {
411 	ctlr_info_t *h = seq->private;
412 	unsigned long flags;
413 
414 	/* prevent displaying bogus info during configuration
415 	 * or deconfiguration of a logical volume
416 	 */
417 	spin_lock_irqsave(&h->lock, flags);
418 	if (h->busy_configuring) {
419 		spin_unlock_irqrestore(&h->lock, flags);
420 		return ERR_PTR(-EBUSY);
421 	}
422 	h->busy_configuring = 1;
423 	spin_unlock_irqrestore(&h->lock, flags);
424 
425 	if (*pos == 0)
426 		cciss_seq_show_header(seq);
427 
428 	return pos;
429 }
430 
cciss_seq_show(struct seq_file * seq,void * v)431 static int cciss_seq_show(struct seq_file *seq, void *v)
432 {
433 	sector_t vol_sz, vol_sz_frac;
434 	ctlr_info_t *h = seq->private;
435 	unsigned ctlr = h->ctlr;
436 	loff_t *pos = v;
437 	drive_info_struct *drv = h->drv[*pos];
438 
439 	if (*pos > h->highest_lun)
440 		return 0;
441 
442 	if (drv == NULL) /* it's possible for h->drv[] to have holes. */
443 		return 0;
444 
445 	if (drv->heads == 0)
446 		return 0;
447 
448 	vol_sz = drv->nr_blocks;
449 	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
450 	vol_sz_frac *= 100;
451 	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
452 
453 	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
454 		drv->raid_level = RAID_UNKNOWN;
455 	seq_printf(seq, "cciss/c%dd%d:"
456 			"\t%4u.%02uGB\tRAID %s\n",
457 			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
458 			raid_label[drv->raid_level]);
459 	return 0;
460 }
461 
cciss_seq_next(struct seq_file * seq,void * v,loff_t * pos)462 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
463 {
464 	ctlr_info_t *h = seq->private;
465 
466 	if (*pos > h->highest_lun)
467 		return NULL;
468 	*pos += 1;
469 
470 	return pos;
471 }
472 
cciss_seq_stop(struct seq_file * seq,void * v)473 static void cciss_seq_stop(struct seq_file *seq, void *v)
474 {
475 	ctlr_info_t *h = seq->private;
476 
477 	/* Only reset h->busy_configuring if we succeeded in setting
478 	 * it during cciss_seq_start. */
479 	if (v == ERR_PTR(-EBUSY))
480 		return;
481 
482 	h->busy_configuring = 0;
483 }
484 
485 static const struct seq_operations cciss_seq_ops = {
486 	.start = cciss_seq_start,
487 	.show  = cciss_seq_show,
488 	.next  = cciss_seq_next,
489 	.stop  = cciss_seq_stop,
490 };
491 
cciss_seq_open(struct inode * inode,struct file * file)492 static int cciss_seq_open(struct inode *inode, struct file *file)
493 {
494 	int ret = seq_open(file, &cciss_seq_ops);
495 	struct seq_file *seq = file->private_data;
496 
497 	if (!ret)
498 		seq->private = PDE_DATA(inode);
499 
500 	return ret;
501 }
502 
503 static ssize_t
cciss_proc_write(struct file * file,const char __user * buf,size_t length,loff_t * ppos)504 cciss_proc_write(struct file *file, const char __user *buf,
505 		 size_t length, loff_t *ppos)
506 {
507 	int err;
508 	char *buffer;
509 
510 #ifndef CONFIG_CISS_SCSI_TAPE
511 	return -EINVAL;
512 #endif
513 
514 	if (!buf || length > PAGE_SIZE - 1)
515 		return -EINVAL;
516 
517 	buffer = (char *)__get_free_page(GFP_KERNEL);
518 	if (!buffer)
519 		return -ENOMEM;
520 
521 	err = -EFAULT;
522 	if (copy_from_user(buffer, buf, length))
523 		goto out;
524 	buffer[length] = '\0';
525 
526 #ifdef CONFIG_CISS_SCSI_TAPE
527 	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
528 		struct seq_file *seq = file->private_data;
529 		ctlr_info_t *h = seq->private;
530 
531 		err = cciss_engage_scsi(h);
532 		if (err == 0)
533 			err = length;
534 	} else
535 #endif /* CONFIG_CISS_SCSI_TAPE */
536 		err = -EINVAL;
537 	/* might be nice to have "disengage" too, but it's not
538 	   safely possible. (only 1 module use count, lock issues.) */
539 
540 out:
541 	free_page((unsigned long)buffer);
542 	return err;
543 }
544 
545 static const struct file_operations cciss_proc_fops = {
546 	.owner	 = THIS_MODULE,
547 	.open    = cciss_seq_open,
548 	.read    = seq_read,
549 	.llseek  = seq_lseek,
550 	.release = seq_release,
551 	.write	 = cciss_proc_write,
552 };
553 
cciss_procinit(ctlr_info_t * h)554 static void cciss_procinit(ctlr_info_t *h)
555 {
556 	struct proc_dir_entry *pde;
557 
558 	if (proc_cciss == NULL)
559 		proc_cciss = proc_mkdir("driver/cciss", NULL);
560 	if (!proc_cciss)
561 		return;
562 	pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
563 					S_IROTH, proc_cciss,
564 					&cciss_proc_fops, h);
565 }
566 #endif				/* CONFIG_PROC_FS */
567 
568 #define MAX_PRODUCT_NAME_LEN 19
569 
570 #define to_hba(n) container_of(n, struct ctlr_info, dev)
571 #define to_drv(n) container_of(n, drive_info_struct, dev)
572 
573 /* List of controllers which cannot be hard reset on kexec with reset_devices */
574 static u32 unresettable_controller[] = {
575 	0x3223103C, /* Smart Array P800 */
576 	0x3234103C, /* Smart Array P400 */
577 	0x3235103C, /* Smart Array P400i */
578 	0x3211103C, /* Smart Array E200i */
579 	0x3212103C, /* Smart Array E200 */
580 	0x3213103C, /* Smart Array E200i */
581 	0x3214103C, /* Smart Array E200i */
582 	0x3215103C, /* Smart Array E200i */
583 	0x3237103C, /* Smart Array E500 */
584 	0x323D103C, /* Smart Array P700m */
585 	0x40800E11, /* Smart Array 5i */
586 	0x409C0E11, /* Smart Array 6400 */
587 	0x409D0E11, /* Smart Array 6400 EM */
588 	0x40700E11, /* Smart Array 5300 */
589 	0x40820E11, /* Smart Array 532 */
590 	0x40830E11, /* Smart Array 5312 */
591 	0x409A0E11, /* Smart Array 641 */
592 	0x409B0E11, /* Smart Array 642 */
593 	0x40910E11, /* Smart Array 6i */
594 };
595 
596 /* List of controllers which cannot even be soft reset */
597 static u32 soft_unresettable_controller[] = {
598 	0x40800E11, /* Smart Array 5i */
599 	0x40700E11, /* Smart Array 5300 */
600 	0x40820E11, /* Smart Array 532 */
601 	0x40830E11, /* Smart Array 5312 */
602 	0x409A0E11, /* Smart Array 641 */
603 	0x409B0E11, /* Smart Array 642 */
604 	0x40910E11, /* Smart Array 6i */
605 	/* Exclude 640x boards.  These are two pci devices in one slot
606 	 * which share a battery backed cache module.  One controls the
607 	 * cache, the other accesses the cache through the one that controls
608 	 * it.  If we reset the one controlling the cache, the other will
609 	 * likely not be happy.  Just forbid resetting this conjoined mess.
610 	 */
611 	0x409C0E11, /* Smart Array 6400 */
612 	0x409D0E11, /* Smart Array 6400 EM */
613 };
614 
ctlr_is_hard_resettable(u32 board_id)615 static int ctlr_is_hard_resettable(u32 board_id)
616 {
617 	int i;
618 
619 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
620 		if (unresettable_controller[i] == board_id)
621 			return 0;
622 	return 1;
623 }
624 
ctlr_is_soft_resettable(u32 board_id)625 static int ctlr_is_soft_resettable(u32 board_id)
626 {
627 	int i;
628 
629 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
630 		if (soft_unresettable_controller[i] == board_id)
631 			return 0;
632 	return 1;
633 }
634 
ctlr_is_resettable(u32 board_id)635 static int ctlr_is_resettable(u32 board_id)
636 {
637 	return ctlr_is_hard_resettable(board_id) ||
638 		ctlr_is_soft_resettable(board_id);
639 }
640 
host_show_resettable(struct device * dev,struct device_attribute * attr,char * buf)641 static ssize_t host_show_resettable(struct device *dev,
642 				    struct device_attribute *attr,
643 				    char *buf)
644 {
645 	struct ctlr_info *h = to_hba(dev);
646 
647 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
648 }
649 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
650 
host_store_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)651 static ssize_t host_store_rescan(struct device *dev,
652 				 struct device_attribute *attr,
653 				 const char *buf, size_t count)
654 {
655 	struct ctlr_info *h = to_hba(dev);
656 
657 	add_to_scan_list(h);
658 	wake_up_process(cciss_scan_thread);
659 	wait_for_completion_interruptible(&h->scan_wait);
660 
661 	return count;
662 }
663 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
664 
host_show_transport_mode(struct device * dev,struct device_attribute * attr,char * buf)665 static ssize_t host_show_transport_mode(struct device *dev,
666 				 struct device_attribute *attr,
667 				 char *buf)
668 {
669 	struct ctlr_info *h = to_hba(dev);
670 
671 	return snprintf(buf, 20, "%s\n",
672 		h->transMethod & CFGTBL_Trans_Performant ?
673 			"performant" : "simple");
674 }
675 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
676 
dev_show_unique_id(struct device * dev,struct device_attribute * attr,char * buf)677 static ssize_t dev_show_unique_id(struct device *dev,
678 				 struct device_attribute *attr,
679 				 char *buf)
680 {
681 	drive_info_struct *drv = to_drv(dev);
682 	struct ctlr_info *h = to_hba(drv->dev.parent);
683 	__u8 sn[16];
684 	unsigned long flags;
685 	int ret = 0;
686 
687 	spin_lock_irqsave(&h->lock, flags);
688 	if (h->busy_configuring)
689 		ret = -EBUSY;
690 	else
691 		memcpy(sn, drv->serial_no, sizeof(sn));
692 	spin_unlock_irqrestore(&h->lock, flags);
693 
694 	if (ret)
695 		return ret;
696 	else
697 		return snprintf(buf, 16 * 2 + 2,
698 				"%02X%02X%02X%02X%02X%02X%02X%02X"
699 				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
700 				sn[0], sn[1], sn[2], sn[3],
701 				sn[4], sn[5], sn[6], sn[7],
702 				sn[8], sn[9], sn[10], sn[11],
703 				sn[12], sn[13], sn[14], sn[15]);
704 }
705 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
706 
dev_show_vendor(struct device * dev,struct device_attribute * attr,char * buf)707 static ssize_t dev_show_vendor(struct device *dev,
708 			       struct device_attribute *attr,
709 			       char *buf)
710 {
711 	drive_info_struct *drv = to_drv(dev);
712 	struct ctlr_info *h = to_hba(drv->dev.parent);
713 	char vendor[VENDOR_LEN + 1];
714 	unsigned long flags;
715 	int ret = 0;
716 
717 	spin_lock_irqsave(&h->lock, flags);
718 	if (h->busy_configuring)
719 		ret = -EBUSY;
720 	else
721 		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
722 	spin_unlock_irqrestore(&h->lock, flags);
723 
724 	if (ret)
725 		return ret;
726 	else
727 		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
728 }
729 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
730 
dev_show_model(struct device * dev,struct device_attribute * attr,char * buf)731 static ssize_t dev_show_model(struct device *dev,
732 			      struct device_attribute *attr,
733 			      char *buf)
734 {
735 	drive_info_struct *drv = to_drv(dev);
736 	struct ctlr_info *h = to_hba(drv->dev.parent);
737 	char model[MODEL_LEN + 1];
738 	unsigned long flags;
739 	int ret = 0;
740 
741 	spin_lock_irqsave(&h->lock, flags);
742 	if (h->busy_configuring)
743 		ret = -EBUSY;
744 	else
745 		memcpy(model, drv->model, MODEL_LEN + 1);
746 	spin_unlock_irqrestore(&h->lock, flags);
747 
748 	if (ret)
749 		return ret;
750 	else
751 		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
752 }
753 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
754 
dev_show_rev(struct device * dev,struct device_attribute * attr,char * buf)755 static ssize_t dev_show_rev(struct device *dev,
756 			    struct device_attribute *attr,
757 			    char *buf)
758 {
759 	drive_info_struct *drv = to_drv(dev);
760 	struct ctlr_info *h = to_hba(drv->dev.parent);
761 	char rev[REV_LEN + 1];
762 	unsigned long flags;
763 	int ret = 0;
764 
765 	spin_lock_irqsave(&h->lock, flags);
766 	if (h->busy_configuring)
767 		ret = -EBUSY;
768 	else
769 		memcpy(rev, drv->rev, REV_LEN + 1);
770 	spin_unlock_irqrestore(&h->lock, flags);
771 
772 	if (ret)
773 		return ret;
774 	else
775 		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
776 }
777 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
778 
cciss_show_lunid(struct device * dev,struct device_attribute * attr,char * buf)779 static ssize_t cciss_show_lunid(struct device *dev,
780 				struct device_attribute *attr, char *buf)
781 {
782 	drive_info_struct *drv = to_drv(dev);
783 	struct ctlr_info *h = to_hba(drv->dev.parent);
784 	unsigned long flags;
785 	unsigned char lunid[8];
786 
787 	spin_lock_irqsave(&h->lock, flags);
788 	if (h->busy_configuring) {
789 		spin_unlock_irqrestore(&h->lock, flags);
790 		return -EBUSY;
791 	}
792 	if (!drv->heads) {
793 		spin_unlock_irqrestore(&h->lock, flags);
794 		return -ENOTTY;
795 	}
796 	memcpy(lunid, drv->LunID, sizeof(lunid));
797 	spin_unlock_irqrestore(&h->lock, flags);
798 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
799 		lunid[0], lunid[1], lunid[2], lunid[3],
800 		lunid[4], lunid[5], lunid[6], lunid[7]);
801 }
802 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
803 
cciss_show_raid_level(struct device * dev,struct device_attribute * attr,char * buf)804 static ssize_t cciss_show_raid_level(struct device *dev,
805 				     struct device_attribute *attr, char *buf)
806 {
807 	drive_info_struct *drv = to_drv(dev);
808 	struct ctlr_info *h = to_hba(drv->dev.parent);
809 	int raid;
810 	unsigned long flags;
811 
812 	spin_lock_irqsave(&h->lock, flags);
813 	if (h->busy_configuring) {
814 		spin_unlock_irqrestore(&h->lock, flags);
815 		return -EBUSY;
816 	}
817 	raid = drv->raid_level;
818 	spin_unlock_irqrestore(&h->lock, flags);
819 	if (raid < 0 || raid > RAID_UNKNOWN)
820 		raid = RAID_UNKNOWN;
821 
822 	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
823 			raid_label[raid]);
824 }
825 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
826 
cciss_show_usage_count(struct device * dev,struct device_attribute * attr,char * buf)827 static ssize_t cciss_show_usage_count(struct device *dev,
828 				      struct device_attribute *attr, char *buf)
829 {
830 	drive_info_struct *drv = to_drv(dev);
831 	struct ctlr_info *h = to_hba(drv->dev.parent);
832 	unsigned long flags;
833 	int count;
834 
835 	spin_lock_irqsave(&h->lock, flags);
836 	if (h->busy_configuring) {
837 		spin_unlock_irqrestore(&h->lock, flags);
838 		return -EBUSY;
839 	}
840 	count = drv->usage_count;
841 	spin_unlock_irqrestore(&h->lock, flags);
842 	return snprintf(buf, 20, "%d\n", count);
843 }
844 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
845 
846 static struct attribute *cciss_host_attrs[] = {
847 	&dev_attr_rescan.attr,
848 	&dev_attr_resettable.attr,
849 	&dev_attr_transport_mode.attr,
850 	NULL
851 };
852 
853 static struct attribute_group cciss_host_attr_group = {
854 	.attrs = cciss_host_attrs,
855 };
856 
857 static const struct attribute_group *cciss_host_attr_groups[] = {
858 	&cciss_host_attr_group,
859 	NULL
860 };
861 
862 static struct device_type cciss_host_type = {
863 	.name		= "cciss_host",
864 	.groups		= cciss_host_attr_groups,
865 	.release	= cciss_hba_release,
866 };
867 
868 static struct attribute *cciss_dev_attrs[] = {
869 	&dev_attr_unique_id.attr,
870 	&dev_attr_model.attr,
871 	&dev_attr_vendor.attr,
872 	&dev_attr_rev.attr,
873 	&dev_attr_lunid.attr,
874 	&dev_attr_raid_level.attr,
875 	&dev_attr_usage_count.attr,
876 	NULL
877 };
878 
879 static struct attribute_group cciss_dev_attr_group = {
880 	.attrs = cciss_dev_attrs,
881 };
882 
883 static const struct attribute_group *cciss_dev_attr_groups[] = {
884 	&cciss_dev_attr_group,
885 	NULL
886 };
887 
888 static struct device_type cciss_dev_type = {
889 	.name		= "cciss_device",
890 	.groups		= cciss_dev_attr_groups,
891 	.release	= cciss_device_release,
892 };
893 
894 static struct bus_type cciss_bus_type = {
895 	.name		= "cciss",
896 };
897 
898 /*
899  * cciss_hba_release is called when the reference count
900  * of h->dev goes to zero.
901  */
cciss_hba_release(struct device * dev)902 static void cciss_hba_release(struct device *dev)
903 {
904 	/*
905 	 * nothing to do, but need this to avoid a warning
906 	 * about not having a release handler from lib/kref.c.
907 	 */
908 }
909 
910 /*
911  * Initialize sysfs entry for each controller.  This sets up and registers
912  * the 'cciss#' directory for each individual controller under
913  * /sys/bus/pci/devices/<dev>/.
914  */
cciss_create_hba_sysfs_entry(struct ctlr_info * h)915 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
916 {
917 	device_initialize(&h->dev);
918 	h->dev.type = &cciss_host_type;
919 	h->dev.bus = &cciss_bus_type;
920 	dev_set_name(&h->dev, "%s", h->devname);
921 	h->dev.parent = &h->pdev->dev;
922 
923 	return device_add(&h->dev);
924 }
925 
926 /*
927  * Remove sysfs entries for an hba.
928  */
cciss_destroy_hba_sysfs_entry(struct ctlr_info * h)929 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
930 {
931 	device_del(&h->dev);
932 	put_device(&h->dev); /* final put. */
933 }
934 
935 /* cciss_device_release is called when the reference count
936  * of h->drv[x]dev goes to zero.
937  */
cciss_device_release(struct device * dev)938 static void cciss_device_release(struct device *dev)
939 {
940 	drive_info_struct *drv = to_drv(dev);
941 	kfree(drv);
942 }
943 
944 /*
945  * Initialize sysfs for each logical drive.  This sets up and registers
946  * the 'c#d#' directory for each individual logical drive under
947  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
948  * /sys/block/cciss!c#d# to this entry.
949  */
cciss_create_ld_sysfs_entry(struct ctlr_info * h,int drv_index)950 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
951 				       int drv_index)
952 {
953 	struct device *dev;
954 
955 	if (h->drv[drv_index]->device_initialized)
956 		return 0;
957 
958 	dev = &h->drv[drv_index]->dev;
959 	device_initialize(dev);
960 	dev->type = &cciss_dev_type;
961 	dev->bus = &cciss_bus_type;
962 	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
963 	dev->parent = &h->dev;
964 	h->drv[drv_index]->device_initialized = 1;
965 	return device_add(dev);
966 }
967 
968 /*
969  * Remove sysfs entries for a logical drive.
970  */
cciss_destroy_ld_sysfs_entry(struct ctlr_info * h,int drv_index,int ctlr_exiting)971 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
972 	int ctlr_exiting)
973 {
974 	struct device *dev = &h->drv[drv_index]->dev;
975 
976 	/* special case for c*d0, we only destroy it on controller exit */
977 	if (drv_index == 0 && !ctlr_exiting)
978 		return;
979 
980 	device_del(dev);
981 	put_device(dev); /* the "final" put. */
982 	h->drv[drv_index] = NULL;
983 }
984 
985 /*
986  * For operations that cannot sleep, a command block is allocated at init,
987  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
988  * which ones are free or in use.
989  */
cmd_alloc(ctlr_info_t * h)990 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
991 {
992 	CommandList_struct *c;
993 	int i;
994 	u64bit temp64;
995 	dma_addr_t cmd_dma_handle, err_dma_handle;
996 
997 	do {
998 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
999 		if (i == h->nr_cmds)
1000 			return NULL;
1001 	} while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
1002 	c = h->cmd_pool + i;
1003 	memset(c, 0, sizeof(CommandList_struct));
1004 	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
1005 	c->err_info = h->errinfo_pool + i;
1006 	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1007 	err_dma_handle = h->errinfo_pool_dhandle
1008 	    + i * sizeof(ErrorInfo_struct);
1009 	h->nr_allocs++;
1010 
1011 	c->cmdindex = i;
1012 
1013 	INIT_LIST_HEAD(&c->list);
1014 	c->busaddr = (__u32) cmd_dma_handle;
1015 	temp64.val = (__u64) err_dma_handle;
1016 	c->ErrDesc.Addr.lower = temp64.val32.lower;
1017 	c->ErrDesc.Addr.upper = temp64.val32.upper;
1018 	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1019 
1020 	c->ctlr = h->ctlr;
1021 	return c;
1022 }
1023 
1024 /* allocate a command using pci_alloc_consistent, used for ioctls,
1025  * etc., not for the main i/o path.
1026  */
cmd_special_alloc(ctlr_info_t * h)1027 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1028 {
1029 	CommandList_struct *c;
1030 	u64bit temp64;
1031 	dma_addr_t cmd_dma_handle, err_dma_handle;
1032 
1033 	c = pci_zalloc_consistent(h->pdev, sizeof(CommandList_struct),
1034 				  &cmd_dma_handle);
1035 	if (c == NULL)
1036 		return NULL;
1037 
1038 	c->cmdindex = -1;
1039 
1040 	c->err_info = pci_zalloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1041 					    &err_dma_handle);
1042 
1043 	if (c->err_info == NULL) {
1044 		pci_free_consistent(h->pdev,
1045 			sizeof(CommandList_struct), c, cmd_dma_handle);
1046 		return NULL;
1047 	}
1048 
1049 	INIT_LIST_HEAD(&c->list);
1050 	c->busaddr = (__u32) cmd_dma_handle;
1051 	temp64.val = (__u64) err_dma_handle;
1052 	c->ErrDesc.Addr.lower = temp64.val32.lower;
1053 	c->ErrDesc.Addr.upper = temp64.val32.upper;
1054 	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1055 
1056 	c->ctlr = h->ctlr;
1057 	return c;
1058 }
1059 
cmd_free(ctlr_info_t * h,CommandList_struct * c)1060 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1061 {
1062 	int i;
1063 
1064 	i = c - h->cmd_pool;
1065 	clear_bit(i, h->cmd_pool_bits);
1066 	h->nr_frees++;
1067 }
1068 
cmd_special_free(ctlr_info_t * h,CommandList_struct * c)1069 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1070 {
1071 	u64bit temp64;
1072 
1073 	temp64.val32.lower = c->ErrDesc.Addr.lower;
1074 	temp64.val32.upper = c->ErrDesc.Addr.upper;
1075 	pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1076 			    c->err_info, (dma_addr_t) temp64.val);
1077 	pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1078 		(dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1079 }
1080 
get_host(struct gendisk * disk)1081 static inline ctlr_info_t *get_host(struct gendisk *disk)
1082 {
1083 	return disk->queue->queuedata;
1084 }
1085 
get_drv(struct gendisk * disk)1086 static inline drive_info_struct *get_drv(struct gendisk *disk)
1087 {
1088 	return disk->private_data;
1089 }
1090 
1091 /*
1092  * Open.  Make sure the device is really there.
1093  */
cciss_open(struct block_device * bdev,fmode_t mode)1094 static int cciss_open(struct block_device *bdev, fmode_t mode)
1095 {
1096 	ctlr_info_t *h = get_host(bdev->bd_disk);
1097 	drive_info_struct *drv = get_drv(bdev->bd_disk);
1098 
1099 	dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1100 	if (drv->busy_configuring)
1101 		return -EBUSY;
1102 	/*
1103 	 * Root is allowed to open raw volume zero even if it's not configured
1104 	 * so array config can still work. Root is also allowed to open any
1105 	 * volume that has a LUN ID, so it can issue IOCTL to reread the
1106 	 * disk information.  I don't think I really like this
1107 	 * but I'm already using way to many device nodes to claim another one
1108 	 * for "raw controller".
1109 	 */
1110 	if (drv->heads == 0) {
1111 		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
1112 			/* if not node 0 make sure it is a partition = 0 */
1113 			if (MINOR(bdev->bd_dev) & 0x0f) {
1114 				return -ENXIO;
1115 				/* if it is, make sure we have a LUN ID */
1116 			} else if (memcmp(drv->LunID, CTLR_LUNID,
1117 				sizeof(drv->LunID))) {
1118 				return -ENXIO;
1119 			}
1120 		}
1121 		if (!capable(CAP_SYS_ADMIN))
1122 			return -EPERM;
1123 	}
1124 	drv->usage_count++;
1125 	h->usage_count++;
1126 	return 0;
1127 }
1128 
cciss_unlocked_open(struct block_device * bdev,fmode_t mode)1129 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1130 {
1131 	int ret;
1132 
1133 	mutex_lock(&cciss_mutex);
1134 	ret = cciss_open(bdev, mode);
1135 	mutex_unlock(&cciss_mutex);
1136 
1137 	return ret;
1138 }
1139 
1140 /*
1141  * Close.  Sync first.
1142  */
cciss_release(struct gendisk * disk,fmode_t mode)1143 static void cciss_release(struct gendisk *disk, fmode_t mode)
1144 {
1145 	ctlr_info_t *h;
1146 	drive_info_struct *drv;
1147 
1148 	mutex_lock(&cciss_mutex);
1149 	h = get_host(disk);
1150 	drv = get_drv(disk);
1151 	dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1152 	drv->usage_count--;
1153 	h->usage_count--;
1154 	mutex_unlock(&cciss_mutex);
1155 }
1156 
1157 #ifdef CONFIG_COMPAT
1158 
1159 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1160 				  unsigned cmd, unsigned long arg);
1161 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1162 				      unsigned cmd, unsigned long arg);
1163 
cciss_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1164 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1165 			      unsigned cmd, unsigned long arg)
1166 {
1167 	switch (cmd) {
1168 	case CCISS_GETPCIINFO:
1169 	case CCISS_GETINTINFO:
1170 	case CCISS_SETINTINFO:
1171 	case CCISS_GETNODENAME:
1172 	case CCISS_SETNODENAME:
1173 	case CCISS_GETHEARTBEAT:
1174 	case CCISS_GETBUSTYPES:
1175 	case CCISS_GETFIRMVER:
1176 	case CCISS_GETDRIVVER:
1177 	case CCISS_REVALIDVOLS:
1178 	case CCISS_DEREGDISK:
1179 	case CCISS_REGNEWDISK:
1180 	case CCISS_REGNEWD:
1181 	case CCISS_RESCANDISK:
1182 	case CCISS_GETLUNINFO:
1183 		return cciss_ioctl(bdev, mode, cmd, arg);
1184 
1185 	case CCISS_PASSTHRU32:
1186 		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1187 	case CCISS_BIG_PASSTHRU32:
1188 		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1189 
1190 	default:
1191 		return -ENOIOCTLCMD;
1192 	}
1193 }
1194 
cciss_ioctl32_passthru(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1195 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1196 				  unsigned cmd, unsigned long arg)
1197 {
1198 	IOCTL32_Command_struct __user *arg32 =
1199 	    (IOCTL32_Command_struct __user *) arg;
1200 	IOCTL_Command_struct arg64;
1201 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1202 	int err;
1203 	u32 cp;
1204 
1205 	memset(&arg64, 0, sizeof(arg64));
1206 	err = 0;
1207 	err |=
1208 	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1209 			   sizeof(arg64.LUN_info));
1210 	err |=
1211 	    copy_from_user(&arg64.Request, &arg32->Request,
1212 			   sizeof(arg64.Request));
1213 	err |=
1214 	    copy_from_user(&arg64.error_info, &arg32->error_info,
1215 			   sizeof(arg64.error_info));
1216 	err |= get_user(arg64.buf_size, &arg32->buf_size);
1217 	err |= get_user(cp, &arg32->buf);
1218 	arg64.buf = compat_ptr(cp);
1219 	err |= copy_to_user(p, &arg64, sizeof(arg64));
1220 
1221 	if (err)
1222 		return -EFAULT;
1223 
1224 	err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1225 	if (err)
1226 		return err;
1227 	err |=
1228 	    copy_in_user(&arg32->error_info, &p->error_info,
1229 			 sizeof(arg32->error_info));
1230 	if (err)
1231 		return -EFAULT;
1232 	return err;
1233 }
1234 
cciss_ioctl32_big_passthru(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1235 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1236 				      unsigned cmd, unsigned long arg)
1237 {
1238 	BIG_IOCTL32_Command_struct __user *arg32 =
1239 	    (BIG_IOCTL32_Command_struct __user *) arg;
1240 	BIG_IOCTL_Command_struct arg64;
1241 	BIG_IOCTL_Command_struct __user *p =
1242 	    compat_alloc_user_space(sizeof(arg64));
1243 	int err;
1244 	u32 cp;
1245 
1246 	memset(&arg64, 0, sizeof(arg64));
1247 	err = 0;
1248 	err |=
1249 	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1250 			   sizeof(arg64.LUN_info));
1251 	err |=
1252 	    copy_from_user(&arg64.Request, &arg32->Request,
1253 			   sizeof(arg64.Request));
1254 	err |=
1255 	    copy_from_user(&arg64.error_info, &arg32->error_info,
1256 			   sizeof(arg64.error_info));
1257 	err |= get_user(arg64.buf_size, &arg32->buf_size);
1258 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1259 	err |= get_user(cp, &arg32->buf);
1260 	arg64.buf = compat_ptr(cp);
1261 	err |= copy_to_user(p, &arg64, sizeof(arg64));
1262 
1263 	if (err)
1264 		return -EFAULT;
1265 
1266 	err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1267 	if (err)
1268 		return err;
1269 	err |=
1270 	    copy_in_user(&arg32->error_info, &p->error_info,
1271 			 sizeof(arg32->error_info));
1272 	if (err)
1273 		return -EFAULT;
1274 	return err;
1275 }
1276 #endif
1277 
cciss_getgeo(struct block_device * bdev,struct hd_geometry * geo)1278 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1279 {
1280 	drive_info_struct *drv = get_drv(bdev->bd_disk);
1281 
1282 	if (!drv->cylinders)
1283 		return -ENXIO;
1284 
1285 	geo->heads = drv->heads;
1286 	geo->sectors = drv->sectors;
1287 	geo->cylinders = drv->cylinders;
1288 	return 0;
1289 }
1290 
check_ioctl_unit_attention(ctlr_info_t * h,CommandList_struct * c)1291 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1292 {
1293 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1294 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1295 		(void)check_for_unit_attention(h, c);
1296 }
1297 
cciss_getpciinfo(ctlr_info_t * h,void __user * argp)1298 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1299 {
1300 	cciss_pci_info_struct pciinfo;
1301 
1302 	if (!argp)
1303 		return -EINVAL;
1304 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
1305 	pciinfo.bus = h->pdev->bus->number;
1306 	pciinfo.dev_fn = h->pdev->devfn;
1307 	pciinfo.board_id = h->board_id;
1308 	if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1309 		return -EFAULT;
1310 	return 0;
1311 }
1312 
cciss_getintinfo(ctlr_info_t * h,void __user * argp)1313 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1314 {
1315 	cciss_coalint_struct intinfo;
1316 	unsigned long flags;
1317 
1318 	if (!argp)
1319 		return -EINVAL;
1320 	spin_lock_irqsave(&h->lock, flags);
1321 	intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1322 	intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1323 	spin_unlock_irqrestore(&h->lock, flags);
1324 	if (copy_to_user
1325 	    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1326 		return -EFAULT;
1327 	return 0;
1328 }
1329 
cciss_setintinfo(ctlr_info_t * h,void __user * argp)1330 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1331 {
1332 	cciss_coalint_struct intinfo;
1333 	unsigned long flags;
1334 	int i;
1335 
1336 	if (!argp)
1337 		return -EINVAL;
1338 	if (!capable(CAP_SYS_ADMIN))
1339 		return -EPERM;
1340 	if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1341 		return -EFAULT;
1342 	if ((intinfo.delay == 0) && (intinfo.count == 0))
1343 		return -EINVAL;
1344 	spin_lock_irqsave(&h->lock, flags);
1345 	/* Update the field, and then ring the doorbell */
1346 	writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1347 	writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1348 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1349 
1350 	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1351 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1352 			break;
1353 		udelay(1000); /* delay and try again */
1354 	}
1355 	spin_unlock_irqrestore(&h->lock, flags);
1356 	if (i >= MAX_IOCTL_CONFIG_WAIT)
1357 		return -EAGAIN;
1358 	return 0;
1359 }
1360 
cciss_getnodename(ctlr_info_t * h,void __user * argp)1361 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1362 {
1363 	NodeName_type NodeName;
1364 	unsigned long flags;
1365 	int i;
1366 
1367 	if (!argp)
1368 		return -EINVAL;
1369 	spin_lock_irqsave(&h->lock, flags);
1370 	for (i = 0; i < 16; i++)
1371 		NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1372 	spin_unlock_irqrestore(&h->lock, flags);
1373 	if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1374 		return -EFAULT;
1375 	return 0;
1376 }
1377 
cciss_setnodename(ctlr_info_t * h,void __user * argp)1378 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1379 {
1380 	NodeName_type NodeName;
1381 	unsigned long flags;
1382 	int i;
1383 
1384 	if (!argp)
1385 		return -EINVAL;
1386 	if (!capable(CAP_SYS_ADMIN))
1387 		return -EPERM;
1388 	if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1389 		return -EFAULT;
1390 	spin_lock_irqsave(&h->lock, flags);
1391 	/* Update the field, and then ring the doorbell */
1392 	for (i = 0; i < 16; i++)
1393 		writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1394 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1395 	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1396 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1397 			break;
1398 		udelay(1000); /* delay and try again */
1399 	}
1400 	spin_unlock_irqrestore(&h->lock, flags);
1401 	if (i >= MAX_IOCTL_CONFIG_WAIT)
1402 		return -EAGAIN;
1403 	return 0;
1404 }
1405 
cciss_getheartbeat(ctlr_info_t * h,void __user * argp)1406 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1407 {
1408 	Heartbeat_type heartbeat;
1409 	unsigned long flags;
1410 
1411 	if (!argp)
1412 		return -EINVAL;
1413 	spin_lock_irqsave(&h->lock, flags);
1414 	heartbeat = readl(&h->cfgtable->HeartBeat);
1415 	spin_unlock_irqrestore(&h->lock, flags);
1416 	if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1417 		return -EFAULT;
1418 	return 0;
1419 }
1420 
cciss_getbustypes(ctlr_info_t * h,void __user * argp)1421 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1422 {
1423 	BusTypes_type BusTypes;
1424 	unsigned long flags;
1425 
1426 	if (!argp)
1427 		return -EINVAL;
1428 	spin_lock_irqsave(&h->lock, flags);
1429 	BusTypes = readl(&h->cfgtable->BusTypes);
1430 	spin_unlock_irqrestore(&h->lock, flags);
1431 	if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1432 		return -EFAULT;
1433 	return 0;
1434 }
1435 
cciss_getfirmver(ctlr_info_t * h,void __user * argp)1436 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1437 {
1438 	FirmwareVer_type firmware;
1439 
1440 	if (!argp)
1441 		return -EINVAL;
1442 	memcpy(firmware, h->firm_ver, 4);
1443 
1444 	if (copy_to_user
1445 	    (argp, firmware, sizeof(FirmwareVer_type)))
1446 		return -EFAULT;
1447 	return 0;
1448 }
1449 
cciss_getdrivver(ctlr_info_t * h,void __user * argp)1450 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1451 {
1452 	DriverVer_type DriverVer = DRIVER_VERSION;
1453 
1454 	if (!argp)
1455 		return -EINVAL;
1456 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1457 		return -EFAULT;
1458 	return 0;
1459 }
1460 
cciss_getluninfo(ctlr_info_t * h,struct gendisk * disk,void __user * argp)1461 static int cciss_getluninfo(ctlr_info_t *h,
1462 	struct gendisk *disk, void __user *argp)
1463 {
1464 	LogvolInfo_struct luninfo;
1465 	drive_info_struct *drv = get_drv(disk);
1466 
1467 	if (!argp)
1468 		return -EINVAL;
1469 	memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1470 	luninfo.num_opens = drv->usage_count;
1471 	luninfo.num_parts = 0;
1472 	if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1473 		return -EFAULT;
1474 	return 0;
1475 }
1476 
cciss_passthru(ctlr_info_t * h,void __user * argp)1477 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1478 {
1479 	IOCTL_Command_struct iocommand;
1480 	CommandList_struct *c;
1481 	char *buff = NULL;
1482 	u64bit temp64;
1483 	DECLARE_COMPLETION_ONSTACK(wait);
1484 
1485 	if (!argp)
1486 		return -EINVAL;
1487 
1488 	if (!capable(CAP_SYS_RAWIO))
1489 		return -EPERM;
1490 
1491 	if (copy_from_user
1492 	    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1493 		return -EFAULT;
1494 	if ((iocommand.buf_size < 1) &&
1495 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
1496 		return -EINVAL;
1497 	}
1498 	if (iocommand.buf_size > 0) {
1499 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1500 		if (buff == NULL)
1501 			return -EFAULT;
1502 	}
1503 	if (iocommand.Request.Type.Direction == XFER_WRITE) {
1504 		/* Copy the data into the buffer we created */
1505 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1506 			kfree(buff);
1507 			return -EFAULT;
1508 		}
1509 	} else {
1510 		memset(buff, 0, iocommand.buf_size);
1511 	}
1512 	c = cmd_special_alloc(h);
1513 	if (!c) {
1514 		kfree(buff);
1515 		return -ENOMEM;
1516 	}
1517 	/* Fill in the command type */
1518 	c->cmd_type = CMD_IOCTL_PEND;
1519 	/* Fill in Command Header */
1520 	c->Header.ReplyQueue = 0;   /* unused in simple mode */
1521 	if (iocommand.buf_size > 0) { /* buffer to fill */
1522 		c->Header.SGList = 1;
1523 		c->Header.SGTotal = 1;
1524 	} else { /* no buffers to fill */
1525 		c->Header.SGList = 0;
1526 		c->Header.SGTotal = 0;
1527 	}
1528 	c->Header.LUN = iocommand.LUN_info;
1529 	/* use the kernel address the cmd block for tag */
1530 	c->Header.Tag.lower = c->busaddr;
1531 
1532 	/* Fill in Request block */
1533 	c->Request = iocommand.Request;
1534 
1535 	/* Fill in the scatter gather information */
1536 	if (iocommand.buf_size > 0) {
1537 		temp64.val = pci_map_single(h->pdev, buff,
1538 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1539 		c->SG[0].Addr.lower = temp64.val32.lower;
1540 		c->SG[0].Addr.upper = temp64.val32.upper;
1541 		c->SG[0].Len = iocommand.buf_size;
1542 		c->SG[0].Ext = 0;  /* we are not chaining */
1543 	}
1544 	c->waiting = &wait;
1545 
1546 	enqueue_cmd_and_start_io(h, c);
1547 	wait_for_completion(&wait);
1548 
1549 	/* unlock the buffers from DMA */
1550 	temp64.val32.lower = c->SG[0].Addr.lower;
1551 	temp64.val32.upper = c->SG[0].Addr.upper;
1552 	pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1553 			 PCI_DMA_BIDIRECTIONAL);
1554 	check_ioctl_unit_attention(h, c);
1555 
1556 	/* Copy the error information out */
1557 	iocommand.error_info = *(c->err_info);
1558 	if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1559 		kfree(buff);
1560 		cmd_special_free(h, c);
1561 		return -EFAULT;
1562 	}
1563 
1564 	if (iocommand.Request.Type.Direction == XFER_READ) {
1565 		/* Copy the data out of the buffer we created */
1566 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1567 			kfree(buff);
1568 			cmd_special_free(h, c);
1569 			return -EFAULT;
1570 		}
1571 	}
1572 	kfree(buff);
1573 	cmd_special_free(h, c);
1574 	return 0;
1575 }
1576 
cciss_bigpassthru(ctlr_info_t * h,void __user * argp)1577 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1578 {
1579 	BIG_IOCTL_Command_struct *ioc;
1580 	CommandList_struct *c;
1581 	unsigned char **buff = NULL;
1582 	int *buff_size = NULL;
1583 	u64bit temp64;
1584 	BYTE sg_used = 0;
1585 	int status = 0;
1586 	int i;
1587 	DECLARE_COMPLETION_ONSTACK(wait);
1588 	__u32 left;
1589 	__u32 sz;
1590 	BYTE __user *data_ptr;
1591 
1592 	if (!argp)
1593 		return -EINVAL;
1594 	if (!capable(CAP_SYS_RAWIO))
1595 		return -EPERM;
1596 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1597 	if (!ioc) {
1598 		status = -ENOMEM;
1599 		goto cleanup1;
1600 	}
1601 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1602 		status = -EFAULT;
1603 		goto cleanup1;
1604 	}
1605 	if ((ioc->buf_size < 1) &&
1606 	    (ioc->Request.Type.Direction != XFER_NONE)) {
1607 		status = -EINVAL;
1608 		goto cleanup1;
1609 	}
1610 	/* Check kmalloc limits  using all SGs */
1611 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1612 		status = -EINVAL;
1613 		goto cleanup1;
1614 	}
1615 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1616 		status = -EINVAL;
1617 		goto cleanup1;
1618 	}
1619 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1620 	if (!buff) {
1621 		status = -ENOMEM;
1622 		goto cleanup1;
1623 	}
1624 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1625 	if (!buff_size) {
1626 		status = -ENOMEM;
1627 		goto cleanup1;
1628 	}
1629 	left = ioc->buf_size;
1630 	data_ptr = ioc->buf;
1631 	while (left) {
1632 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1633 		buff_size[sg_used] = sz;
1634 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1635 		if (buff[sg_used] == NULL) {
1636 			status = -ENOMEM;
1637 			goto cleanup1;
1638 		}
1639 		if (ioc->Request.Type.Direction == XFER_WRITE) {
1640 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1641 				status = -EFAULT;
1642 				goto cleanup1;
1643 			}
1644 		} else {
1645 			memset(buff[sg_used], 0, sz);
1646 		}
1647 		left -= sz;
1648 		data_ptr += sz;
1649 		sg_used++;
1650 	}
1651 	c = cmd_special_alloc(h);
1652 	if (!c) {
1653 		status = -ENOMEM;
1654 		goto cleanup1;
1655 	}
1656 	c->cmd_type = CMD_IOCTL_PEND;
1657 	c->Header.ReplyQueue = 0;
1658 	c->Header.SGList = sg_used;
1659 	c->Header.SGTotal = sg_used;
1660 	c->Header.LUN = ioc->LUN_info;
1661 	c->Header.Tag.lower = c->busaddr;
1662 
1663 	c->Request = ioc->Request;
1664 	for (i = 0; i < sg_used; i++) {
1665 		temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1666 				    PCI_DMA_BIDIRECTIONAL);
1667 		c->SG[i].Addr.lower = temp64.val32.lower;
1668 		c->SG[i].Addr.upper = temp64.val32.upper;
1669 		c->SG[i].Len = buff_size[i];
1670 		c->SG[i].Ext = 0;	/* we are not chaining */
1671 	}
1672 	c->waiting = &wait;
1673 	enqueue_cmd_and_start_io(h, c);
1674 	wait_for_completion(&wait);
1675 	/* unlock the buffers from DMA */
1676 	for (i = 0; i < sg_used; i++) {
1677 		temp64.val32.lower = c->SG[i].Addr.lower;
1678 		temp64.val32.upper = c->SG[i].Addr.upper;
1679 		pci_unmap_single(h->pdev,
1680 			(dma_addr_t) temp64.val, buff_size[i],
1681 			PCI_DMA_BIDIRECTIONAL);
1682 	}
1683 	check_ioctl_unit_attention(h, c);
1684 	/* Copy the error information out */
1685 	ioc->error_info = *(c->err_info);
1686 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1687 		cmd_special_free(h, c);
1688 		status = -EFAULT;
1689 		goto cleanup1;
1690 	}
1691 	if (ioc->Request.Type.Direction == XFER_READ) {
1692 		/* Copy the data out of the buffer we created */
1693 		BYTE __user *ptr = ioc->buf;
1694 		for (i = 0; i < sg_used; i++) {
1695 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
1696 				cmd_special_free(h, c);
1697 				status = -EFAULT;
1698 				goto cleanup1;
1699 			}
1700 			ptr += buff_size[i];
1701 		}
1702 	}
1703 	cmd_special_free(h, c);
1704 	status = 0;
1705 cleanup1:
1706 	if (buff) {
1707 		for (i = 0; i < sg_used; i++)
1708 			kfree(buff[i]);
1709 		kfree(buff);
1710 	}
1711 	kfree(buff_size);
1712 	kfree(ioc);
1713 	return status;
1714 }
1715 
cciss_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1716 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1717 	unsigned int cmd, unsigned long arg)
1718 {
1719 	struct gendisk *disk = bdev->bd_disk;
1720 	ctlr_info_t *h = get_host(disk);
1721 	void __user *argp = (void __user *)arg;
1722 
1723 	dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1724 		cmd, arg);
1725 	switch (cmd) {
1726 	case CCISS_GETPCIINFO:
1727 		return cciss_getpciinfo(h, argp);
1728 	case CCISS_GETINTINFO:
1729 		return cciss_getintinfo(h, argp);
1730 	case CCISS_SETINTINFO:
1731 		return cciss_setintinfo(h, argp);
1732 	case CCISS_GETNODENAME:
1733 		return cciss_getnodename(h, argp);
1734 	case CCISS_SETNODENAME:
1735 		return cciss_setnodename(h, argp);
1736 	case CCISS_GETHEARTBEAT:
1737 		return cciss_getheartbeat(h, argp);
1738 	case CCISS_GETBUSTYPES:
1739 		return cciss_getbustypes(h, argp);
1740 	case CCISS_GETFIRMVER:
1741 		return cciss_getfirmver(h, argp);
1742 	case CCISS_GETDRIVVER:
1743 		return cciss_getdrivver(h, argp);
1744 	case CCISS_DEREGDISK:
1745 	case CCISS_REGNEWD:
1746 	case CCISS_REVALIDVOLS:
1747 		return rebuild_lun_table(h, 0, 1);
1748 	case CCISS_GETLUNINFO:
1749 		return cciss_getluninfo(h, disk, argp);
1750 	case CCISS_PASSTHRU:
1751 		return cciss_passthru(h, argp);
1752 	case CCISS_BIG_PASSTHRU:
1753 		return cciss_bigpassthru(h, argp);
1754 
1755 	/* scsi_cmd_blk_ioctl handles these, below, though some are not */
1756 	/* very meaningful for cciss.  SG_IO is the main one people want. */
1757 
1758 	case SG_GET_VERSION_NUM:
1759 	case SG_SET_TIMEOUT:
1760 	case SG_GET_TIMEOUT:
1761 	case SG_GET_RESERVED_SIZE:
1762 	case SG_SET_RESERVED_SIZE:
1763 	case SG_EMULATED_HOST:
1764 	case SG_IO:
1765 	case SCSI_IOCTL_SEND_COMMAND:
1766 		return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1767 
1768 	/* scsi_cmd_blk_ioctl would normally handle these, below, but */
1769 	/* they aren't a good fit for cciss, as CD-ROMs are */
1770 	/* not supported, and we don't have any bus/target/lun */
1771 	/* which we present to the kernel. */
1772 
1773 	case CDROM_SEND_PACKET:
1774 	case CDROMCLOSETRAY:
1775 	case CDROMEJECT:
1776 	case SCSI_IOCTL_GET_IDLUN:
1777 	case SCSI_IOCTL_GET_BUS_NUMBER:
1778 	default:
1779 		return -ENOTTY;
1780 	}
1781 }
1782 
cciss_check_queues(ctlr_info_t * h)1783 static void cciss_check_queues(ctlr_info_t *h)
1784 {
1785 	int start_queue = h->next_to_run;
1786 	int i;
1787 
1788 	/* check to see if we have maxed out the number of commands that can
1789 	 * be placed on the queue.  If so then exit.  We do this check here
1790 	 * in case the interrupt we serviced was from an ioctl and did not
1791 	 * free any new commands.
1792 	 */
1793 	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1794 		return;
1795 
1796 	/* We have room on the queue for more commands.  Now we need to queue
1797 	 * them up.  We will also keep track of the next queue to run so
1798 	 * that every queue gets a chance to be started first.
1799 	 */
1800 	for (i = 0; i < h->highest_lun + 1; i++) {
1801 		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1802 		/* make sure the disk has been added and the drive is real
1803 		 * because this can be called from the middle of init_one.
1804 		 */
1805 		if (!h->drv[curr_queue])
1806 			continue;
1807 		if (!(h->drv[curr_queue]->queue) ||
1808 			!(h->drv[curr_queue]->heads))
1809 			continue;
1810 		blk_start_queue(h->gendisk[curr_queue]->queue);
1811 
1812 		/* check to see if we have maxed out the number of commands
1813 		 * that can be placed on the queue.
1814 		 */
1815 		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1816 			if (curr_queue == start_queue) {
1817 				h->next_to_run =
1818 				    (start_queue + 1) % (h->highest_lun + 1);
1819 				break;
1820 			} else {
1821 				h->next_to_run = curr_queue;
1822 				break;
1823 			}
1824 		}
1825 	}
1826 }
1827 
cciss_softirq_done(struct request * rq)1828 static void cciss_softirq_done(struct request *rq)
1829 {
1830 	CommandList_struct *c = rq->completion_data;
1831 	ctlr_info_t *h = hba[c->ctlr];
1832 	SGDescriptor_struct *curr_sg = c->SG;
1833 	u64bit temp64;
1834 	unsigned long flags;
1835 	int i, ddir;
1836 	int sg_index = 0;
1837 
1838 	if (c->Request.Type.Direction == XFER_READ)
1839 		ddir = PCI_DMA_FROMDEVICE;
1840 	else
1841 		ddir = PCI_DMA_TODEVICE;
1842 
1843 	/* command did not need to be retried */
1844 	/* unmap the DMA mapping for all the scatter gather elements */
1845 	for (i = 0; i < c->Header.SGList; i++) {
1846 		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1847 			cciss_unmap_sg_chain_block(h, c);
1848 			/* Point to the next block */
1849 			curr_sg = h->cmd_sg_list[c->cmdindex];
1850 			sg_index = 0;
1851 		}
1852 		temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1853 		temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1854 		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1855 				ddir);
1856 		++sg_index;
1857 	}
1858 
1859 	dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1860 
1861 	/* set the residual count for pc requests */
1862 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1863 		rq->resid_len = c->err_info->ResidualCnt;
1864 
1865 	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1866 
1867 	spin_lock_irqsave(&h->lock, flags);
1868 	cmd_free(h, c);
1869 	cciss_check_queues(h);
1870 	spin_unlock_irqrestore(&h->lock, flags);
1871 }
1872 
log_unit_to_scsi3addr(ctlr_info_t * h,unsigned char scsi3addr[],uint32_t log_unit)1873 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1874 	unsigned char scsi3addr[], uint32_t log_unit)
1875 {
1876 	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1877 		sizeof(h->drv[log_unit]->LunID));
1878 }
1879 
1880 /* This function gets the SCSI vendor, model, and revision of a logical drive
1881  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1882  * they cannot be read.
1883  */
cciss_get_device_descr(ctlr_info_t * h,int logvol,char * vendor,char * model,char * rev)1884 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1885 				   char *vendor, char *model, char *rev)
1886 {
1887 	int rc;
1888 	InquiryData_struct *inq_buf;
1889 	unsigned char scsi3addr[8];
1890 
1891 	*vendor = '\0';
1892 	*model = '\0';
1893 	*rev = '\0';
1894 
1895 	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1896 	if (!inq_buf)
1897 		return;
1898 
1899 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1900 	rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1901 			scsi3addr, TYPE_CMD);
1902 	if (rc == IO_OK) {
1903 		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1904 		vendor[VENDOR_LEN] = '\0';
1905 		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1906 		model[MODEL_LEN] = '\0';
1907 		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1908 		rev[REV_LEN] = '\0';
1909 	}
1910 
1911 	kfree(inq_buf);
1912 	return;
1913 }
1914 
1915 /* This function gets the serial number of a logical drive via
1916  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1917  * number cannot be had, for whatever reason, 16 bytes of 0xff
1918  * are returned instead.
1919  */
cciss_get_serial_no(ctlr_info_t * h,int logvol,unsigned char * serial_no,int buflen)1920 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1921 				unsigned char *serial_no, int buflen)
1922 {
1923 #define PAGE_83_INQ_BYTES 64
1924 	int rc;
1925 	unsigned char *buf;
1926 	unsigned char scsi3addr[8];
1927 
1928 	if (buflen > 16)
1929 		buflen = 16;
1930 	memset(serial_no, 0xff, buflen);
1931 	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1932 	if (!buf)
1933 		return;
1934 	memset(serial_no, 0, buflen);
1935 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1936 	rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1937 		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1938 	if (rc == IO_OK)
1939 		memcpy(serial_no, &buf[8], buflen);
1940 	kfree(buf);
1941 	return;
1942 }
1943 
1944 /*
1945  * cciss_add_disk sets up the block device queue for a logical drive
1946  */
cciss_add_disk(ctlr_info_t * h,struct gendisk * disk,int drv_index)1947 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1948 				int drv_index)
1949 {
1950 	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1951 	if (!disk->queue)
1952 		goto init_queue_failure;
1953 	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1954 	disk->major = h->major;
1955 	disk->first_minor = drv_index << NWD_SHIFT;
1956 	disk->fops = &cciss_fops;
1957 	if (cciss_create_ld_sysfs_entry(h, drv_index))
1958 		goto cleanup_queue;
1959 	disk->private_data = h->drv[drv_index];
1960 	disk->driverfs_dev = &h->drv[drv_index]->dev;
1961 
1962 	/* Set up queue information */
1963 	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1964 
1965 	/* This is a hardware imposed limit. */
1966 	blk_queue_max_segments(disk->queue, h->maxsgentries);
1967 
1968 	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1969 
1970 	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1971 
1972 	disk->queue->queuedata = h;
1973 
1974 	blk_queue_logical_block_size(disk->queue,
1975 				     h->drv[drv_index]->block_size);
1976 
1977 	/* Make sure all queue data is written out before */
1978 	/* setting h->drv[drv_index]->queue, as setting this */
1979 	/* allows the interrupt handler to start the queue */
1980 	wmb();
1981 	h->drv[drv_index]->queue = disk->queue;
1982 	add_disk(disk);
1983 	return 0;
1984 
1985 cleanup_queue:
1986 	blk_cleanup_queue(disk->queue);
1987 	disk->queue = NULL;
1988 init_queue_failure:
1989 	return -1;
1990 }
1991 
1992 /* This function will check the usage_count of the drive to be updated/added.
1993  * If the usage_count is zero and it is a heretofore unknown drive, or,
1994  * the drive's capacity, geometry, or serial number has changed,
1995  * then the drive information will be updated and the disk will be
1996  * re-registered with the kernel.  If these conditions don't hold,
1997  * then it will be left alone for the next reboot.  The exception to this
1998  * is disk 0 which will always be left registered with the kernel since it
1999  * is also the controller node.  Any changes to disk 0 will show up on
2000  * the next reboot.
2001  */
cciss_update_drive_info(ctlr_info_t * h,int drv_index,int first_time,int via_ioctl)2002 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
2003 	int first_time, int via_ioctl)
2004 {
2005 	struct gendisk *disk;
2006 	InquiryData_struct *inq_buff = NULL;
2007 	unsigned int block_size;
2008 	sector_t total_size;
2009 	unsigned long flags = 0;
2010 	int ret = 0;
2011 	drive_info_struct *drvinfo;
2012 
2013 	/* Get information about the disk and modify the driver structure */
2014 	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2015 	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2016 	if (inq_buff == NULL || drvinfo == NULL)
2017 		goto mem_msg;
2018 
2019 	/* testing to see if 16-byte CDBs are already being used */
2020 	if (h->cciss_read == CCISS_READ_16) {
2021 		cciss_read_capacity_16(h, drv_index,
2022 			&total_size, &block_size);
2023 
2024 	} else {
2025 		cciss_read_capacity(h, drv_index, &total_size, &block_size);
2026 		/* if read_capacity returns all F's this volume is >2TB */
2027 		/* in size so we switch to 16-byte CDB's for all */
2028 		/* read/write ops */
2029 		if (total_size == 0xFFFFFFFFULL) {
2030 			cciss_read_capacity_16(h, drv_index,
2031 			&total_size, &block_size);
2032 			h->cciss_read = CCISS_READ_16;
2033 			h->cciss_write = CCISS_WRITE_16;
2034 		} else {
2035 			h->cciss_read = CCISS_READ_10;
2036 			h->cciss_write = CCISS_WRITE_10;
2037 		}
2038 	}
2039 
2040 	cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2041 			       inq_buff, drvinfo);
2042 	drvinfo->block_size = block_size;
2043 	drvinfo->nr_blocks = total_size + 1;
2044 
2045 	cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2046 				drvinfo->model, drvinfo->rev);
2047 	cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2048 			sizeof(drvinfo->serial_no));
2049 	/* Save the lunid in case we deregister the disk, below. */
2050 	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2051 		sizeof(drvinfo->LunID));
2052 
2053 	/* Is it the same disk we already know, and nothing's changed? */
2054 	if (h->drv[drv_index]->raid_level != -1 &&
2055 		((memcmp(drvinfo->serial_no,
2056 				h->drv[drv_index]->serial_no, 16) == 0) &&
2057 		drvinfo->block_size == h->drv[drv_index]->block_size &&
2058 		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2059 		drvinfo->heads == h->drv[drv_index]->heads &&
2060 		drvinfo->sectors == h->drv[drv_index]->sectors &&
2061 		drvinfo->cylinders == h->drv[drv_index]->cylinders))
2062 			/* The disk is unchanged, nothing to update */
2063 			goto freeret;
2064 
2065 	/* If we get here it's not the same disk, or something's changed,
2066 	 * so we need to * deregister it, and re-register it, if it's not
2067 	 * in use.
2068 	 * If the disk already exists then deregister it before proceeding
2069 	 * (unless it's the first disk (for the controller node).
2070 	 */
2071 	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2072 		dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2073 		spin_lock_irqsave(&h->lock, flags);
2074 		h->drv[drv_index]->busy_configuring = 1;
2075 		spin_unlock_irqrestore(&h->lock, flags);
2076 
2077 		/* deregister_disk sets h->drv[drv_index]->queue = NULL
2078 		 * which keeps the interrupt handler from starting
2079 		 * the queue.
2080 		 */
2081 		ret = deregister_disk(h, drv_index, 0, via_ioctl);
2082 	}
2083 
2084 	/* If the disk is in use return */
2085 	if (ret)
2086 		goto freeret;
2087 
2088 	/* Save the new information from cciss_geometry_inquiry
2089 	 * and serial number inquiry.  If the disk was deregistered
2090 	 * above, then h->drv[drv_index] will be NULL.
2091 	 */
2092 	if (h->drv[drv_index] == NULL) {
2093 		drvinfo->device_initialized = 0;
2094 		h->drv[drv_index] = drvinfo;
2095 		drvinfo = NULL; /* so it won't be freed below. */
2096 	} else {
2097 		/* special case for cxd0 */
2098 		h->drv[drv_index]->block_size = drvinfo->block_size;
2099 		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2100 		h->drv[drv_index]->heads = drvinfo->heads;
2101 		h->drv[drv_index]->sectors = drvinfo->sectors;
2102 		h->drv[drv_index]->cylinders = drvinfo->cylinders;
2103 		h->drv[drv_index]->raid_level = drvinfo->raid_level;
2104 		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2105 		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2106 			VENDOR_LEN + 1);
2107 		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2108 		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2109 	}
2110 
2111 	++h->num_luns;
2112 	disk = h->gendisk[drv_index];
2113 	set_capacity(disk, h->drv[drv_index]->nr_blocks);
2114 
2115 	/* If it's not disk 0 (drv_index != 0)
2116 	 * or if it was disk 0, but there was previously
2117 	 * no actual corresponding configured logical drive
2118 	 * (raid_leve == -1) then we want to update the
2119 	 * logical drive's information.
2120 	 */
2121 	if (drv_index || first_time) {
2122 		if (cciss_add_disk(h, disk, drv_index) != 0) {
2123 			cciss_free_gendisk(h, drv_index);
2124 			cciss_free_drive_info(h, drv_index);
2125 			dev_warn(&h->pdev->dev, "could not update disk %d\n",
2126 				drv_index);
2127 			--h->num_luns;
2128 		}
2129 	}
2130 
2131 freeret:
2132 	kfree(inq_buff);
2133 	kfree(drvinfo);
2134 	return;
2135 mem_msg:
2136 	dev_err(&h->pdev->dev, "out of memory\n");
2137 	goto freeret;
2138 }
2139 
2140 /* This function will find the first index of the controllers drive array
2141  * that has a null drv pointer and allocate the drive info struct and
2142  * will return that index   This is where new drives will be added.
2143  * If the index to be returned is greater than the highest_lun index for
2144  * the controller then highest_lun is set * to this new index.
2145  * If there are no available indexes or if tha allocation fails, then -1
2146  * is returned.  * "controller_node" is used to know if this is a real
2147  * logical drive, or just the controller node, which determines if this
2148  * counts towards highest_lun.
2149  */
cciss_alloc_drive_info(ctlr_info_t * h,int controller_node)2150 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2151 {
2152 	int i;
2153 	drive_info_struct *drv;
2154 
2155 	/* Search for an empty slot for our drive info */
2156 	for (i = 0; i < CISS_MAX_LUN; i++) {
2157 
2158 		/* if not cxd0 case, and it's occupied, skip it. */
2159 		if (h->drv[i] && i != 0)
2160 			continue;
2161 		/*
2162 		 * If it's cxd0 case, and drv is alloc'ed already, and a
2163 		 * disk is configured there, skip it.
2164 		 */
2165 		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2166 			continue;
2167 
2168 		/*
2169 		 * We've found an empty slot.  Update highest_lun
2170 		 * provided this isn't just the fake cxd0 controller node.
2171 		 */
2172 		if (i > h->highest_lun && !controller_node)
2173 			h->highest_lun = i;
2174 
2175 		/* If adding a real disk at cxd0, and it's already alloc'ed */
2176 		if (i == 0 && h->drv[i] != NULL)
2177 			return i;
2178 
2179 		/*
2180 		 * Found an empty slot, not already alloc'ed.  Allocate it.
2181 		 * Mark it with raid_level == -1, so we know it's new later on.
2182 		 */
2183 		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2184 		if (!drv)
2185 			return -1;
2186 		drv->raid_level = -1; /* so we know it's new */
2187 		h->drv[i] = drv;
2188 		return i;
2189 	}
2190 	return -1;
2191 }
2192 
cciss_free_drive_info(ctlr_info_t * h,int drv_index)2193 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2194 {
2195 	kfree(h->drv[drv_index]);
2196 	h->drv[drv_index] = NULL;
2197 }
2198 
cciss_free_gendisk(ctlr_info_t * h,int drv_index)2199 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2200 {
2201 	put_disk(h->gendisk[drv_index]);
2202 	h->gendisk[drv_index] = NULL;
2203 }
2204 
2205 /* cciss_add_gendisk finds a free hba[]->drv structure
2206  * and allocates a gendisk if needed, and sets the lunid
2207  * in the drvinfo structure.   It returns the index into
2208  * the ->drv[] array, or -1 if none are free.
2209  * is_controller_node indicates whether highest_lun should
2210  * count this disk, or if it's only being added to provide
2211  * a means to talk to the controller in case no logical
2212  * drives have yet been configured.
2213  */
cciss_add_gendisk(ctlr_info_t * h,unsigned char lunid[],int controller_node)2214 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2215 	int controller_node)
2216 {
2217 	int drv_index;
2218 
2219 	drv_index = cciss_alloc_drive_info(h, controller_node);
2220 	if (drv_index == -1)
2221 		return -1;
2222 
2223 	/*Check if the gendisk needs to be allocated */
2224 	if (!h->gendisk[drv_index]) {
2225 		h->gendisk[drv_index] =
2226 			alloc_disk(1 << NWD_SHIFT);
2227 		if (!h->gendisk[drv_index]) {
2228 			dev_err(&h->pdev->dev,
2229 				"could not allocate a new disk %d\n",
2230 				drv_index);
2231 			goto err_free_drive_info;
2232 		}
2233 	}
2234 	memcpy(h->drv[drv_index]->LunID, lunid,
2235 		sizeof(h->drv[drv_index]->LunID));
2236 	if (cciss_create_ld_sysfs_entry(h, drv_index))
2237 		goto err_free_disk;
2238 	/* Don't need to mark this busy because nobody */
2239 	/* else knows about this disk yet to contend */
2240 	/* for access to it. */
2241 	h->drv[drv_index]->busy_configuring = 0;
2242 	wmb();
2243 	return drv_index;
2244 
2245 err_free_disk:
2246 	cciss_free_gendisk(h, drv_index);
2247 err_free_drive_info:
2248 	cciss_free_drive_info(h, drv_index);
2249 	return -1;
2250 }
2251 
2252 /* This is for the special case of a controller which
2253  * has no logical drives.  In this case, we still need
2254  * to register a disk so the controller can be accessed
2255  * by the Array Config Utility.
2256  */
cciss_add_controller_node(ctlr_info_t * h)2257 static void cciss_add_controller_node(ctlr_info_t *h)
2258 {
2259 	struct gendisk *disk;
2260 	int drv_index;
2261 
2262 	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2263 		return;
2264 
2265 	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2266 	if (drv_index == -1)
2267 		goto error;
2268 	h->drv[drv_index]->block_size = 512;
2269 	h->drv[drv_index]->nr_blocks = 0;
2270 	h->drv[drv_index]->heads = 0;
2271 	h->drv[drv_index]->sectors = 0;
2272 	h->drv[drv_index]->cylinders = 0;
2273 	h->drv[drv_index]->raid_level = -1;
2274 	memset(h->drv[drv_index]->serial_no, 0, 16);
2275 	disk = h->gendisk[drv_index];
2276 	if (cciss_add_disk(h, disk, drv_index) == 0)
2277 		return;
2278 	cciss_free_gendisk(h, drv_index);
2279 	cciss_free_drive_info(h, drv_index);
2280 error:
2281 	dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2282 	return;
2283 }
2284 
2285 /* This function will add and remove logical drives from the Logical
2286  * drive array of the controller and maintain persistency of ordering
2287  * so that mount points are preserved until the next reboot.  This allows
2288  * for the removal of logical drives in the middle of the drive array
2289  * without a re-ordering of those drives.
2290  * INPUT
2291  * h		= The controller to perform the operations on
2292  */
rebuild_lun_table(ctlr_info_t * h,int first_time,int via_ioctl)2293 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2294 	int via_ioctl)
2295 {
2296 	int num_luns;
2297 	ReportLunData_struct *ld_buff = NULL;
2298 	int return_code;
2299 	int listlength = 0;
2300 	int i;
2301 	int drv_found;
2302 	int drv_index = 0;
2303 	unsigned char lunid[8] = CTLR_LUNID;
2304 	unsigned long flags;
2305 
2306 	if (!capable(CAP_SYS_RAWIO))
2307 		return -EPERM;
2308 
2309 	/* Set busy_configuring flag for this operation */
2310 	spin_lock_irqsave(&h->lock, flags);
2311 	if (h->busy_configuring) {
2312 		spin_unlock_irqrestore(&h->lock, flags);
2313 		return -EBUSY;
2314 	}
2315 	h->busy_configuring = 1;
2316 	spin_unlock_irqrestore(&h->lock, flags);
2317 
2318 	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2319 	if (ld_buff == NULL)
2320 		goto mem_msg;
2321 
2322 	return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2323 				      sizeof(ReportLunData_struct),
2324 				      0, CTLR_LUNID, TYPE_CMD);
2325 
2326 	if (return_code == IO_OK)
2327 		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2328 	else {	/* reading number of logical volumes failed */
2329 		dev_warn(&h->pdev->dev,
2330 			"report logical volume command failed\n");
2331 		listlength = 0;
2332 		goto freeret;
2333 	}
2334 
2335 	num_luns = listlength / 8;	/* 8 bytes per entry */
2336 	if (num_luns > CISS_MAX_LUN) {
2337 		num_luns = CISS_MAX_LUN;
2338 		dev_warn(&h->pdev->dev, "more luns configured"
2339 		       " on controller than can be handled by"
2340 		       " this driver.\n");
2341 	}
2342 
2343 	if (num_luns == 0)
2344 		cciss_add_controller_node(h);
2345 
2346 	/* Compare controller drive array to driver's drive array
2347 	 * to see if any drives are missing on the controller due
2348 	 * to action of Array Config Utility (user deletes drive)
2349 	 * and deregister logical drives which have disappeared.
2350 	 */
2351 	for (i = 0; i <= h->highest_lun; i++) {
2352 		int j;
2353 		drv_found = 0;
2354 
2355 		/* skip holes in the array from already deleted drives */
2356 		if (h->drv[i] == NULL)
2357 			continue;
2358 
2359 		for (j = 0; j < num_luns; j++) {
2360 			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2361 			if (memcmp(h->drv[i]->LunID, lunid,
2362 				sizeof(lunid)) == 0) {
2363 				drv_found = 1;
2364 				break;
2365 			}
2366 		}
2367 		if (!drv_found) {
2368 			/* Deregister it from the OS, it's gone. */
2369 			spin_lock_irqsave(&h->lock, flags);
2370 			h->drv[i]->busy_configuring = 1;
2371 			spin_unlock_irqrestore(&h->lock, flags);
2372 			return_code = deregister_disk(h, i, 1, via_ioctl);
2373 			if (h->drv[i] != NULL)
2374 				h->drv[i]->busy_configuring = 0;
2375 		}
2376 	}
2377 
2378 	/* Compare controller drive array to driver's drive array.
2379 	 * Check for updates in the drive information and any new drives
2380 	 * on the controller due to ACU adding logical drives, or changing
2381 	 * a logical drive's size, etc.  Reregister any new/changed drives
2382 	 */
2383 	for (i = 0; i < num_luns; i++) {
2384 		int j;
2385 
2386 		drv_found = 0;
2387 
2388 		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2389 		/* Find if the LUN is already in the drive array
2390 		 * of the driver.  If so then update its info
2391 		 * if not in use.  If it does not exist then find
2392 		 * the first free index and add it.
2393 		 */
2394 		for (j = 0; j <= h->highest_lun; j++) {
2395 			if (h->drv[j] != NULL &&
2396 				memcmp(h->drv[j]->LunID, lunid,
2397 					sizeof(h->drv[j]->LunID)) == 0) {
2398 				drv_index = j;
2399 				drv_found = 1;
2400 				break;
2401 			}
2402 		}
2403 
2404 		/* check if the drive was found already in the array */
2405 		if (!drv_found) {
2406 			drv_index = cciss_add_gendisk(h, lunid, 0);
2407 			if (drv_index == -1)
2408 				goto freeret;
2409 		}
2410 		cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2411 	}		/* end for */
2412 
2413 freeret:
2414 	kfree(ld_buff);
2415 	h->busy_configuring = 0;
2416 	/* We return -1 here to tell the ACU that we have registered/updated
2417 	 * all of the drives that we can and to keep it from calling us
2418 	 * additional times.
2419 	 */
2420 	return -1;
2421 mem_msg:
2422 	dev_err(&h->pdev->dev, "out of memory\n");
2423 	h->busy_configuring = 0;
2424 	goto freeret;
2425 }
2426 
cciss_clear_drive_info(drive_info_struct * drive_info)2427 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2428 {
2429 	/* zero out the disk size info */
2430 	drive_info->nr_blocks = 0;
2431 	drive_info->block_size = 0;
2432 	drive_info->heads = 0;
2433 	drive_info->sectors = 0;
2434 	drive_info->cylinders = 0;
2435 	drive_info->raid_level = -1;
2436 	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2437 	memset(drive_info->model, 0, sizeof(drive_info->model));
2438 	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2439 	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2440 	/*
2441 	 * don't clear the LUNID though, we need to remember which
2442 	 * one this one is.
2443 	 */
2444 }
2445 
2446 /* This function will deregister the disk and it's queue from the
2447  * kernel.  It must be called with the controller lock held and the
2448  * drv structures busy_configuring flag set.  It's parameters are:
2449  *
2450  * disk = This is the disk to be deregistered
2451  * drv  = This is the drive_info_struct associated with the disk to be
2452  *        deregistered.  It contains information about the disk used
2453  *        by the driver.
2454  * clear_all = This flag determines whether or not the disk information
2455  *             is going to be completely cleared out and the highest_lun
2456  *             reset.  Sometimes we want to clear out information about
2457  *             the disk in preparation for re-adding it.  In this case
2458  *             the highest_lun should be left unchanged and the LunID
2459  *             should not be cleared.
2460  * via_ioctl
2461  *    This indicates whether we've reached this path via ioctl.
2462  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2463  *    If this path is reached via ioctl(), then the max_usage_count will
2464  *    be 1, as the process calling ioctl() has got to have the device open.
2465  *    If we get here via sysfs, then the max usage count will be zero.
2466 */
deregister_disk(ctlr_info_t * h,int drv_index,int clear_all,int via_ioctl)2467 static int deregister_disk(ctlr_info_t *h, int drv_index,
2468 			   int clear_all, int via_ioctl)
2469 {
2470 	int i;
2471 	struct gendisk *disk;
2472 	drive_info_struct *drv;
2473 	int recalculate_highest_lun;
2474 
2475 	if (!capable(CAP_SYS_RAWIO))
2476 		return -EPERM;
2477 
2478 	drv = h->drv[drv_index];
2479 	disk = h->gendisk[drv_index];
2480 
2481 	/* make sure logical volume is NOT is use */
2482 	if (clear_all || (h->gendisk[0] == disk)) {
2483 		if (drv->usage_count > via_ioctl)
2484 			return -EBUSY;
2485 	} else if (drv->usage_count > 0)
2486 		return -EBUSY;
2487 
2488 	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2489 
2490 	/* invalidate the devices and deregister the disk.  If it is disk
2491 	 * zero do not deregister it but just zero out it's values.  This
2492 	 * allows us to delete disk zero but keep the controller registered.
2493 	 */
2494 	if (h->gendisk[0] != disk) {
2495 		struct request_queue *q = disk->queue;
2496 		if (disk->flags & GENHD_FL_UP) {
2497 			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2498 			del_gendisk(disk);
2499 		}
2500 		if (q)
2501 			blk_cleanup_queue(q);
2502 		/* If clear_all is set then we are deleting the logical
2503 		 * drive, not just refreshing its info.  For drives
2504 		 * other than disk 0 we will call put_disk.  We do not
2505 		 * do this for disk 0 as we need it to be able to
2506 		 * configure the controller.
2507 		 */
2508 		if (clear_all){
2509 			/* This isn't pretty, but we need to find the
2510 			 * disk in our array and NULL our the pointer.
2511 			 * This is so that we will call alloc_disk if
2512 			 * this index is used again later.
2513 			 */
2514 			for (i=0; i < CISS_MAX_LUN; i++){
2515 				if (h->gendisk[i] == disk) {
2516 					h->gendisk[i] = NULL;
2517 					break;
2518 				}
2519 			}
2520 			put_disk(disk);
2521 		}
2522 	} else {
2523 		set_capacity(disk, 0);
2524 		cciss_clear_drive_info(drv);
2525 	}
2526 
2527 	--h->num_luns;
2528 
2529 	/* if it was the last disk, find the new hightest lun */
2530 	if (clear_all && recalculate_highest_lun) {
2531 		int newhighest = -1;
2532 		for (i = 0; i <= h->highest_lun; i++) {
2533 			/* if the disk has size > 0, it is available */
2534 			if (h->drv[i] && h->drv[i]->heads)
2535 				newhighest = i;
2536 		}
2537 		h->highest_lun = newhighest;
2538 	}
2539 	return 0;
2540 }
2541 
fill_cmd(ctlr_info_t * h,CommandList_struct * c,__u8 cmd,void * buff,size_t size,__u8 page_code,unsigned char * scsi3addr,int cmd_type)2542 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2543 		size_t size, __u8 page_code, unsigned char *scsi3addr,
2544 		int cmd_type)
2545 {
2546 	u64bit buff_dma_handle;
2547 	int status = IO_OK;
2548 
2549 	c->cmd_type = CMD_IOCTL_PEND;
2550 	c->Header.ReplyQueue = 0;
2551 	if (buff != NULL) {
2552 		c->Header.SGList = 1;
2553 		c->Header.SGTotal = 1;
2554 	} else {
2555 		c->Header.SGList = 0;
2556 		c->Header.SGTotal = 0;
2557 	}
2558 	c->Header.Tag.lower = c->busaddr;
2559 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2560 
2561 	c->Request.Type.Type = cmd_type;
2562 	if (cmd_type == TYPE_CMD) {
2563 		switch (cmd) {
2564 		case CISS_INQUIRY:
2565 			/* are we trying to read a vital product page */
2566 			if (page_code != 0) {
2567 				c->Request.CDB[1] = 0x01;
2568 				c->Request.CDB[2] = page_code;
2569 			}
2570 			c->Request.CDBLen = 6;
2571 			c->Request.Type.Attribute = ATTR_SIMPLE;
2572 			c->Request.Type.Direction = XFER_READ;
2573 			c->Request.Timeout = 0;
2574 			c->Request.CDB[0] = CISS_INQUIRY;
2575 			c->Request.CDB[4] = size & 0xFF;
2576 			break;
2577 		case CISS_REPORT_LOG:
2578 		case CISS_REPORT_PHYS:
2579 			/* Talking to controller so It's a physical command
2580 			   mode = 00 target = 0.  Nothing to write.
2581 			 */
2582 			c->Request.CDBLen = 12;
2583 			c->Request.Type.Attribute = ATTR_SIMPLE;
2584 			c->Request.Type.Direction = XFER_READ;
2585 			c->Request.Timeout = 0;
2586 			c->Request.CDB[0] = cmd;
2587 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2588 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2589 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2590 			c->Request.CDB[9] = size & 0xFF;
2591 			break;
2592 
2593 		case CCISS_READ_CAPACITY:
2594 			c->Request.CDBLen = 10;
2595 			c->Request.Type.Attribute = ATTR_SIMPLE;
2596 			c->Request.Type.Direction = XFER_READ;
2597 			c->Request.Timeout = 0;
2598 			c->Request.CDB[0] = cmd;
2599 			break;
2600 		case CCISS_READ_CAPACITY_16:
2601 			c->Request.CDBLen = 16;
2602 			c->Request.Type.Attribute = ATTR_SIMPLE;
2603 			c->Request.Type.Direction = XFER_READ;
2604 			c->Request.Timeout = 0;
2605 			c->Request.CDB[0] = cmd;
2606 			c->Request.CDB[1] = 0x10;
2607 			c->Request.CDB[10] = (size >> 24) & 0xFF;
2608 			c->Request.CDB[11] = (size >> 16) & 0xFF;
2609 			c->Request.CDB[12] = (size >> 8) & 0xFF;
2610 			c->Request.CDB[13] = size & 0xFF;
2611 			c->Request.Timeout = 0;
2612 			c->Request.CDB[0] = cmd;
2613 			break;
2614 		case CCISS_CACHE_FLUSH:
2615 			c->Request.CDBLen = 12;
2616 			c->Request.Type.Attribute = ATTR_SIMPLE;
2617 			c->Request.Type.Direction = XFER_WRITE;
2618 			c->Request.Timeout = 0;
2619 			c->Request.CDB[0] = BMIC_WRITE;
2620 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2621 			c->Request.CDB[7] = (size >> 8) & 0xFF;
2622 			c->Request.CDB[8] = size & 0xFF;
2623 			break;
2624 		case TEST_UNIT_READY:
2625 			c->Request.CDBLen = 6;
2626 			c->Request.Type.Attribute = ATTR_SIMPLE;
2627 			c->Request.Type.Direction = XFER_NONE;
2628 			c->Request.Timeout = 0;
2629 			break;
2630 		default:
2631 			dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2632 			return IO_ERROR;
2633 		}
2634 	} else if (cmd_type == TYPE_MSG) {
2635 		switch (cmd) {
2636 		case CCISS_ABORT_MSG:
2637 			c->Request.CDBLen = 12;
2638 			c->Request.Type.Attribute = ATTR_SIMPLE;
2639 			c->Request.Type.Direction = XFER_WRITE;
2640 			c->Request.Timeout = 0;
2641 			c->Request.CDB[0] = cmd;	/* abort */
2642 			c->Request.CDB[1] = 0;	/* abort a command */
2643 			/* buff contains the tag of the command to abort */
2644 			memcpy(&c->Request.CDB[4], buff, 8);
2645 			break;
2646 		case CCISS_RESET_MSG:
2647 			c->Request.CDBLen = 16;
2648 			c->Request.Type.Attribute = ATTR_SIMPLE;
2649 			c->Request.Type.Direction = XFER_NONE;
2650 			c->Request.Timeout = 0;
2651 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2652 			c->Request.CDB[0] = cmd;	/* reset */
2653 			c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2654 			break;
2655 		case CCISS_NOOP_MSG:
2656 			c->Request.CDBLen = 1;
2657 			c->Request.Type.Attribute = ATTR_SIMPLE;
2658 			c->Request.Type.Direction = XFER_WRITE;
2659 			c->Request.Timeout = 0;
2660 			c->Request.CDB[0] = cmd;
2661 			break;
2662 		default:
2663 			dev_warn(&h->pdev->dev,
2664 				"unknown message type %d\n", cmd);
2665 			return IO_ERROR;
2666 		}
2667 	} else {
2668 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2669 		return IO_ERROR;
2670 	}
2671 	/* Fill in the scatter gather information */
2672 	if (size > 0) {
2673 		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2674 							     buff, size,
2675 							     PCI_DMA_BIDIRECTIONAL);
2676 		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2677 		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2678 		c->SG[0].Len = size;
2679 		c->SG[0].Ext = 0;	/* we are not chaining */
2680 	}
2681 	return status;
2682 }
2683 
cciss_send_reset(ctlr_info_t * h,unsigned char * scsi3addr,u8 reset_type)2684 static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2685 			    u8 reset_type)
2686 {
2687 	CommandList_struct *c;
2688 	int return_status;
2689 
2690 	c = cmd_alloc(h);
2691 	if (!c)
2692 		return -ENOMEM;
2693 	return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2694 		CTLR_LUNID, TYPE_MSG);
2695 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2696 	if (return_status != IO_OK) {
2697 		cmd_special_free(h, c);
2698 		return return_status;
2699 	}
2700 	c->waiting = NULL;
2701 	enqueue_cmd_and_start_io(h, c);
2702 	/* Don't wait for completion, the reset won't complete.  Don't free
2703 	 * the command either.  This is the last command we will send before
2704 	 * re-initializing everything, so it doesn't matter and won't leak.
2705 	 */
2706 	return 0;
2707 }
2708 
check_target_status(ctlr_info_t * h,CommandList_struct * c)2709 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2710 {
2711 	switch (c->err_info->ScsiStatus) {
2712 	case SAM_STAT_GOOD:
2713 		return IO_OK;
2714 	case SAM_STAT_CHECK_CONDITION:
2715 		switch (0xf & c->err_info->SenseInfo[2]) {
2716 		case 0: return IO_OK; /* no sense */
2717 		case 1: return IO_OK; /* recovered error */
2718 		default:
2719 			if (check_for_unit_attention(h, c))
2720 				return IO_NEEDS_RETRY;
2721 			dev_warn(&h->pdev->dev, "cmd 0x%02x "
2722 				"check condition, sense key = 0x%02x\n",
2723 				c->Request.CDB[0], c->err_info->SenseInfo[2]);
2724 		}
2725 		break;
2726 	default:
2727 		dev_warn(&h->pdev->dev, "cmd 0x%02x"
2728 			"scsi status = 0x%02x\n",
2729 			c->Request.CDB[0], c->err_info->ScsiStatus);
2730 		break;
2731 	}
2732 	return IO_ERROR;
2733 }
2734 
process_sendcmd_error(ctlr_info_t * h,CommandList_struct * c)2735 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2736 {
2737 	int return_status = IO_OK;
2738 
2739 	if (c->err_info->CommandStatus == CMD_SUCCESS)
2740 		return IO_OK;
2741 
2742 	switch (c->err_info->CommandStatus) {
2743 	case CMD_TARGET_STATUS:
2744 		return_status = check_target_status(h, c);
2745 		break;
2746 	case CMD_DATA_UNDERRUN:
2747 	case CMD_DATA_OVERRUN:
2748 		/* expected for inquiry and report lun commands */
2749 		break;
2750 	case CMD_INVALID:
2751 		dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2752 		       "reported invalid\n", c->Request.CDB[0]);
2753 		return_status = IO_ERROR;
2754 		break;
2755 	case CMD_PROTOCOL_ERR:
2756 		dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2757 		       "protocol error\n", c->Request.CDB[0]);
2758 		return_status = IO_ERROR;
2759 		break;
2760 	case CMD_HARDWARE_ERR:
2761 		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2762 		       " hardware error\n", c->Request.CDB[0]);
2763 		return_status = IO_ERROR;
2764 		break;
2765 	case CMD_CONNECTION_LOST:
2766 		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2767 		       "connection lost\n", c->Request.CDB[0]);
2768 		return_status = IO_ERROR;
2769 		break;
2770 	case CMD_ABORTED:
2771 		dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2772 		       "aborted\n", c->Request.CDB[0]);
2773 		return_status = IO_ERROR;
2774 		break;
2775 	case CMD_ABORT_FAILED:
2776 		dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2777 		       "abort failed\n", c->Request.CDB[0]);
2778 		return_status = IO_ERROR;
2779 		break;
2780 	case CMD_UNSOLICITED_ABORT:
2781 		dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2782 			c->Request.CDB[0]);
2783 		return_status = IO_NEEDS_RETRY;
2784 		break;
2785 	case CMD_UNABORTABLE:
2786 		dev_warn(&h->pdev->dev, "cmd unabortable\n");
2787 		return_status = IO_ERROR;
2788 		break;
2789 	default:
2790 		dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2791 		       "unknown status %x\n", c->Request.CDB[0],
2792 		       c->err_info->CommandStatus);
2793 		return_status = IO_ERROR;
2794 	}
2795 	return return_status;
2796 }
2797 
sendcmd_withirq_core(ctlr_info_t * h,CommandList_struct * c,int attempt_retry)2798 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2799 	int attempt_retry)
2800 {
2801 	DECLARE_COMPLETION_ONSTACK(wait);
2802 	u64bit buff_dma_handle;
2803 	int return_status = IO_OK;
2804 
2805 resend_cmd2:
2806 	c->waiting = &wait;
2807 	enqueue_cmd_and_start_io(h, c);
2808 
2809 	wait_for_completion(&wait);
2810 
2811 	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2812 		goto command_done;
2813 
2814 	return_status = process_sendcmd_error(h, c);
2815 
2816 	if (return_status == IO_NEEDS_RETRY &&
2817 		c->retry_count < MAX_CMD_RETRIES) {
2818 		dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2819 			c->Request.CDB[0]);
2820 		c->retry_count++;
2821 		/* erase the old error information */
2822 		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2823 		return_status = IO_OK;
2824 		reinit_completion(&wait);
2825 		goto resend_cmd2;
2826 	}
2827 
2828 command_done:
2829 	/* unlock the buffers from DMA */
2830 	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2831 	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2832 	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2833 			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2834 	return return_status;
2835 }
2836 
sendcmd_withirq(ctlr_info_t * h,__u8 cmd,void * buff,size_t size,__u8 page_code,unsigned char scsi3addr[],int cmd_type)2837 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2838 			   __u8 page_code, unsigned char scsi3addr[],
2839 			int cmd_type)
2840 {
2841 	CommandList_struct *c;
2842 	int return_status;
2843 
2844 	c = cmd_special_alloc(h);
2845 	if (!c)
2846 		return -ENOMEM;
2847 	return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2848 		scsi3addr, cmd_type);
2849 	if (return_status == IO_OK)
2850 		return_status = sendcmd_withirq_core(h, c, 1);
2851 
2852 	cmd_special_free(h, c);
2853 	return return_status;
2854 }
2855 
cciss_geometry_inquiry(ctlr_info_t * h,int logvol,sector_t total_size,unsigned int block_size,InquiryData_struct * inq_buff,drive_info_struct * drv)2856 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2857 				   sector_t total_size,
2858 				   unsigned int block_size,
2859 				   InquiryData_struct *inq_buff,
2860 				   drive_info_struct *drv)
2861 {
2862 	int return_code;
2863 	unsigned long t;
2864 	unsigned char scsi3addr[8];
2865 
2866 	memset(inq_buff, 0, sizeof(InquiryData_struct));
2867 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2868 	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2869 			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2870 	if (return_code == IO_OK) {
2871 		if (inq_buff->data_byte[8] == 0xFF) {
2872 			dev_warn(&h->pdev->dev,
2873 			       "reading geometry failed, volume "
2874 			       "does not support reading geometry\n");
2875 			drv->heads = 255;
2876 			drv->sectors = 32;	/* Sectors per track */
2877 			drv->cylinders = total_size + 1;
2878 			drv->raid_level = RAID_UNKNOWN;
2879 		} else {
2880 			drv->heads = inq_buff->data_byte[6];
2881 			drv->sectors = inq_buff->data_byte[7];
2882 			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2883 			drv->cylinders += inq_buff->data_byte[5];
2884 			drv->raid_level = inq_buff->data_byte[8];
2885 		}
2886 		drv->block_size = block_size;
2887 		drv->nr_blocks = total_size + 1;
2888 		t = drv->heads * drv->sectors;
2889 		if (t > 1) {
2890 			sector_t real_size = total_size + 1;
2891 			unsigned long rem = sector_div(real_size, t);
2892 			if (rem)
2893 				real_size++;
2894 			drv->cylinders = real_size;
2895 		}
2896 	} else {		/* Get geometry failed */
2897 		dev_warn(&h->pdev->dev, "reading geometry failed\n");
2898 	}
2899 }
2900 
2901 static void
cciss_read_capacity(ctlr_info_t * h,int logvol,sector_t * total_size,unsigned int * block_size)2902 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2903 		    unsigned int *block_size)
2904 {
2905 	ReadCapdata_struct *buf;
2906 	int return_code;
2907 	unsigned char scsi3addr[8];
2908 
2909 	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2910 	if (!buf) {
2911 		dev_warn(&h->pdev->dev, "out of memory\n");
2912 		return;
2913 	}
2914 
2915 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2916 	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2917 		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2918 	if (return_code == IO_OK) {
2919 		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2920 		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2921 	} else {		/* read capacity command failed */
2922 		dev_warn(&h->pdev->dev, "read capacity failed\n");
2923 		*total_size = 0;
2924 		*block_size = BLOCK_SIZE;
2925 	}
2926 	kfree(buf);
2927 }
2928 
cciss_read_capacity_16(ctlr_info_t * h,int logvol,sector_t * total_size,unsigned int * block_size)2929 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2930 	sector_t *total_size, unsigned int *block_size)
2931 {
2932 	ReadCapdata_struct_16 *buf;
2933 	int return_code;
2934 	unsigned char scsi3addr[8];
2935 
2936 	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2937 	if (!buf) {
2938 		dev_warn(&h->pdev->dev, "out of memory\n");
2939 		return;
2940 	}
2941 
2942 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2943 	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2944 		buf, sizeof(ReadCapdata_struct_16),
2945 			0, scsi3addr, TYPE_CMD);
2946 	if (return_code == IO_OK) {
2947 		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2948 		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2949 	} else {		/* read capacity command failed */
2950 		dev_warn(&h->pdev->dev, "read capacity failed\n");
2951 		*total_size = 0;
2952 		*block_size = BLOCK_SIZE;
2953 	}
2954 	dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2955 	       (unsigned long long)*total_size+1, *block_size);
2956 	kfree(buf);
2957 }
2958 
cciss_revalidate(struct gendisk * disk)2959 static int cciss_revalidate(struct gendisk *disk)
2960 {
2961 	ctlr_info_t *h = get_host(disk);
2962 	drive_info_struct *drv = get_drv(disk);
2963 	int logvol;
2964 	int FOUND = 0;
2965 	unsigned int block_size;
2966 	sector_t total_size;
2967 	InquiryData_struct *inq_buff = NULL;
2968 
2969 	for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2970 		if (!h->drv[logvol])
2971 			continue;
2972 		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2973 			sizeof(drv->LunID)) == 0) {
2974 			FOUND = 1;
2975 			break;
2976 		}
2977 	}
2978 
2979 	if (!FOUND)
2980 		return 1;
2981 
2982 	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2983 	if (inq_buff == NULL) {
2984 		dev_warn(&h->pdev->dev, "out of memory\n");
2985 		return 1;
2986 	}
2987 	if (h->cciss_read == CCISS_READ_10) {
2988 		cciss_read_capacity(h, logvol,
2989 					&total_size, &block_size);
2990 	} else {
2991 		cciss_read_capacity_16(h, logvol,
2992 					&total_size, &block_size);
2993 	}
2994 	cciss_geometry_inquiry(h, logvol, total_size, block_size,
2995 			       inq_buff, drv);
2996 
2997 	blk_queue_logical_block_size(drv->queue, drv->block_size);
2998 	set_capacity(disk, drv->nr_blocks);
2999 
3000 	kfree(inq_buff);
3001 	return 0;
3002 }
3003 
3004 /*
3005  * Map (physical) PCI mem into (virtual) kernel space
3006  */
remap_pci_mem(ulong base,ulong size)3007 static void __iomem *remap_pci_mem(ulong base, ulong size)
3008 {
3009 	ulong page_base = ((ulong) base) & PAGE_MASK;
3010 	ulong page_offs = ((ulong) base) - page_base;
3011 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3012 
3013 	return page_remapped ? (page_remapped + page_offs) : NULL;
3014 }
3015 
3016 /*
3017  * Takes jobs of the Q and sends them to the hardware, then puts it on
3018  * the Q to wait for completion.
3019  */
start_io(ctlr_info_t * h)3020 static void start_io(ctlr_info_t *h)
3021 {
3022 	CommandList_struct *c;
3023 
3024 	while (!list_empty(&h->reqQ)) {
3025 		c = list_entry(h->reqQ.next, CommandList_struct, list);
3026 		/* can't do anything if fifo is full */
3027 		if ((h->access.fifo_full(h))) {
3028 			dev_warn(&h->pdev->dev, "fifo full\n");
3029 			break;
3030 		}
3031 
3032 		/* Get the first entry from the Request Q */
3033 		removeQ(c);
3034 		h->Qdepth--;
3035 
3036 		/* Tell the controller execute command */
3037 		h->access.submit_command(h, c);
3038 
3039 		/* Put job onto the completed Q */
3040 		addQ(&h->cmpQ, c);
3041 	}
3042 }
3043 
3044 /* Assumes that h->lock is held. */
3045 /* Zeros out the error record and then resends the command back */
3046 /* to the controller */
resend_cciss_cmd(ctlr_info_t * h,CommandList_struct * c)3047 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3048 {
3049 	/* erase the old error information */
3050 	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3051 
3052 	/* add it to software queue and then send it to the controller */
3053 	addQ(&h->reqQ, c);
3054 	h->Qdepth++;
3055 	if (h->Qdepth > h->maxQsinceinit)
3056 		h->maxQsinceinit = h->Qdepth;
3057 
3058 	start_io(h);
3059 }
3060 
make_status_bytes(unsigned int scsi_status_byte,unsigned int msg_byte,unsigned int host_byte,unsigned int driver_byte)3061 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3062 	unsigned int msg_byte, unsigned int host_byte,
3063 	unsigned int driver_byte)
3064 {
3065 	/* inverse of macros in scsi.h */
3066 	return (scsi_status_byte & 0xff) |
3067 		((msg_byte & 0xff) << 8) |
3068 		((host_byte & 0xff) << 16) |
3069 		((driver_byte & 0xff) << 24);
3070 }
3071 
evaluate_target_status(ctlr_info_t * h,CommandList_struct * cmd,int * retry_cmd)3072 static inline int evaluate_target_status(ctlr_info_t *h,
3073 			CommandList_struct *cmd, int *retry_cmd)
3074 {
3075 	unsigned char sense_key;
3076 	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3077 	int error_value;
3078 
3079 	*retry_cmd = 0;
3080 	/* If we get in here, it means we got "target status", that is, scsi status */
3081 	status_byte = cmd->err_info->ScsiStatus;
3082 	driver_byte = DRIVER_OK;
3083 	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3084 
3085 	if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3086 		host_byte = DID_PASSTHROUGH;
3087 	else
3088 		host_byte = DID_OK;
3089 
3090 	error_value = make_status_bytes(status_byte, msg_byte,
3091 		host_byte, driver_byte);
3092 
3093 	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3094 		if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3095 			dev_warn(&h->pdev->dev, "cmd %p "
3096 			       "has SCSI Status 0x%x\n",
3097 			       cmd, cmd->err_info->ScsiStatus);
3098 		return error_value;
3099 	}
3100 
3101 	/* check the sense key */
3102 	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3103 	/* no status or recovered error */
3104 	if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3105 	    (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3106 		error_value = 0;
3107 
3108 	if (check_for_unit_attention(h, cmd)) {
3109 		*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3110 		return 0;
3111 	}
3112 
3113 	/* Not SG_IO or similar? */
3114 	if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3115 		if (error_value != 0)
3116 			dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3117 			       " sense key = 0x%x\n", cmd, sense_key);
3118 		return error_value;
3119 	}
3120 
3121 	/* SG_IO or similar, copy sense data back */
3122 	if (cmd->rq->sense) {
3123 		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3124 			cmd->rq->sense_len = cmd->err_info->SenseLen;
3125 		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3126 			cmd->rq->sense_len);
3127 	} else
3128 		cmd->rq->sense_len = 0;
3129 
3130 	return error_value;
3131 }
3132 
3133 /* checks the status of the job and calls complete buffers to mark all
3134  * buffers for the completed job. Note that this function does not need
3135  * to hold the hba/queue lock.
3136  */
complete_command(ctlr_info_t * h,CommandList_struct * cmd,int timeout)3137 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3138 				    int timeout)
3139 {
3140 	int retry_cmd = 0;
3141 	struct request *rq = cmd->rq;
3142 
3143 	rq->errors = 0;
3144 
3145 	if (timeout)
3146 		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3147 
3148 	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3149 		goto after_error_processing;
3150 
3151 	switch (cmd->err_info->CommandStatus) {
3152 	case CMD_TARGET_STATUS:
3153 		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3154 		break;
3155 	case CMD_DATA_UNDERRUN:
3156 		if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3157 			dev_warn(&h->pdev->dev, "cmd %p has"
3158 			       " completed with data underrun "
3159 			       "reported\n", cmd);
3160 			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3161 		}
3162 		break;
3163 	case CMD_DATA_OVERRUN:
3164 		if (cmd->rq->cmd_type == REQ_TYPE_FS)
3165 			dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3166 			       " completed with data overrun "
3167 			       "reported\n", cmd);
3168 		break;
3169 	case CMD_INVALID:
3170 		dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3171 		       "reported invalid\n", cmd);
3172 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3173 			cmd->err_info->CommandStatus, DRIVER_OK,
3174 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3175 				DID_PASSTHROUGH : DID_ERROR);
3176 		break;
3177 	case CMD_PROTOCOL_ERR:
3178 		dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3179 		       "protocol error\n", cmd);
3180 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3181 			cmd->err_info->CommandStatus, DRIVER_OK,
3182 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3183 				DID_PASSTHROUGH : DID_ERROR);
3184 		break;
3185 	case CMD_HARDWARE_ERR:
3186 		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3187 		       " hardware error\n", cmd);
3188 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3189 			cmd->err_info->CommandStatus, DRIVER_OK,
3190 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3191 				DID_PASSTHROUGH : DID_ERROR);
3192 		break;
3193 	case CMD_CONNECTION_LOST:
3194 		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3195 		       "connection lost\n", cmd);
3196 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197 			cmd->err_info->CommandStatus, DRIVER_OK,
3198 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3199 				DID_PASSTHROUGH : DID_ERROR);
3200 		break;
3201 	case CMD_ABORTED:
3202 		dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3203 		       "aborted\n", cmd);
3204 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3205 			cmd->err_info->CommandStatus, DRIVER_OK,
3206 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3207 				DID_PASSTHROUGH : DID_ABORT);
3208 		break;
3209 	case CMD_ABORT_FAILED:
3210 		dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3211 		       "abort failed\n", cmd);
3212 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3213 			cmd->err_info->CommandStatus, DRIVER_OK,
3214 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3215 				DID_PASSTHROUGH : DID_ERROR);
3216 		break;
3217 	case CMD_UNSOLICITED_ABORT:
3218 		dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3219 		       "abort %p\n", h->ctlr, cmd);
3220 		if (cmd->retry_count < MAX_CMD_RETRIES) {
3221 			retry_cmd = 1;
3222 			dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3223 			cmd->retry_count++;
3224 		} else
3225 			dev_warn(&h->pdev->dev,
3226 				"%p retried too many times\n", cmd);
3227 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3228 			cmd->err_info->CommandStatus, DRIVER_OK,
3229 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3230 				DID_PASSTHROUGH : DID_ABORT);
3231 		break;
3232 	case CMD_TIMEOUT:
3233 		dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3234 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3235 			cmd->err_info->CommandStatus, DRIVER_OK,
3236 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3237 				DID_PASSTHROUGH : DID_ERROR);
3238 		break;
3239 	case CMD_UNABORTABLE:
3240 		dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3241 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3242 			cmd->err_info->CommandStatus, DRIVER_OK,
3243 			cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3244 				DID_PASSTHROUGH : DID_ERROR);
3245 		break;
3246 	default:
3247 		dev_warn(&h->pdev->dev, "cmd %p returned "
3248 		       "unknown status %x\n", cmd,
3249 		       cmd->err_info->CommandStatus);
3250 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3251 			cmd->err_info->CommandStatus, DRIVER_OK,
3252 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3253 				DID_PASSTHROUGH : DID_ERROR);
3254 	}
3255 
3256 after_error_processing:
3257 
3258 	/* We need to return this command */
3259 	if (retry_cmd) {
3260 		resend_cciss_cmd(h, cmd);
3261 		return;
3262 	}
3263 	cmd->rq->completion_data = cmd;
3264 	blk_complete_request(cmd->rq);
3265 }
3266 
cciss_tag_contains_index(u32 tag)3267 static inline u32 cciss_tag_contains_index(u32 tag)
3268 {
3269 #define DIRECT_LOOKUP_BIT 0x10
3270 	return tag & DIRECT_LOOKUP_BIT;
3271 }
3272 
cciss_tag_to_index(u32 tag)3273 static inline u32 cciss_tag_to_index(u32 tag)
3274 {
3275 #define DIRECT_LOOKUP_SHIFT 5
3276 	return tag >> DIRECT_LOOKUP_SHIFT;
3277 }
3278 
cciss_tag_discard_error_bits(ctlr_info_t * h,u32 tag)3279 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3280 {
3281 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3282 #define CCISS_SIMPLE_ERROR_BITS 0x03
3283 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
3284 		return tag & ~CCISS_PERF_ERROR_BITS;
3285 	return tag & ~CCISS_SIMPLE_ERROR_BITS;
3286 }
3287 
cciss_mark_tag_indexed(u32 * tag)3288 static inline void cciss_mark_tag_indexed(u32 *tag)
3289 {
3290 	*tag |= DIRECT_LOOKUP_BIT;
3291 }
3292 
cciss_set_tag_index(u32 * tag,u32 index)3293 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3294 {
3295 	*tag |= (index << DIRECT_LOOKUP_SHIFT);
3296 }
3297 
3298 /*
3299  * Get a request and submit it to the controller.
3300  */
do_cciss_request(struct request_queue * q)3301 static void do_cciss_request(struct request_queue *q)
3302 {
3303 	ctlr_info_t *h = q->queuedata;
3304 	CommandList_struct *c;
3305 	sector_t start_blk;
3306 	int seg;
3307 	struct request *creq;
3308 	u64bit temp64;
3309 	struct scatterlist *tmp_sg;
3310 	SGDescriptor_struct *curr_sg;
3311 	drive_info_struct *drv;
3312 	int i, dir;
3313 	int sg_index = 0;
3314 	int chained = 0;
3315 
3316       queue:
3317 	creq = blk_peek_request(q);
3318 	if (!creq)
3319 		goto startio;
3320 
3321 	BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3322 
3323 	c = cmd_alloc(h);
3324 	if (!c)
3325 		goto full;
3326 
3327 	blk_start_request(creq);
3328 
3329 	tmp_sg = h->scatter_list[c->cmdindex];
3330 	spin_unlock_irq(q->queue_lock);
3331 
3332 	c->cmd_type = CMD_RWREQ;
3333 	c->rq = creq;
3334 
3335 	/* fill in the request */
3336 	drv = creq->rq_disk->private_data;
3337 	c->Header.ReplyQueue = 0;	/* unused in simple mode */
3338 	/* got command from pool, so use the command block index instead */
3339 	/* for direct lookups. */
3340 	/* The first 2 bits are reserved for controller error reporting. */
3341 	cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3342 	cciss_mark_tag_indexed(&c->Header.Tag.lower);
3343 	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3344 	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */
3345 	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */
3346 	c->Request.Type.Attribute = ATTR_SIMPLE;
3347 	c->Request.Type.Direction =
3348 	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3349 	c->Request.Timeout = 0;	/* Don't time out */
3350 	c->Request.CDB[0] =
3351 	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3352 	start_blk = blk_rq_pos(creq);
3353 	dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3354 	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3355 	sg_init_table(tmp_sg, h->maxsgentries);
3356 	seg = blk_rq_map_sg(q, creq, tmp_sg);
3357 
3358 	/* get the DMA records for the setup */
3359 	if (c->Request.Type.Direction == XFER_READ)
3360 		dir = PCI_DMA_FROMDEVICE;
3361 	else
3362 		dir = PCI_DMA_TODEVICE;
3363 
3364 	curr_sg = c->SG;
3365 	sg_index = 0;
3366 	chained = 0;
3367 
3368 	for (i = 0; i < seg; i++) {
3369 		if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3370 			!chained && ((seg - i) > 1)) {
3371 			/* Point to next chain block. */
3372 			curr_sg = h->cmd_sg_list[c->cmdindex];
3373 			sg_index = 0;
3374 			chained = 1;
3375 		}
3376 		curr_sg[sg_index].Len = tmp_sg[i].length;
3377 		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3378 						tmp_sg[i].offset,
3379 						tmp_sg[i].length, dir);
3380 		curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3381 		curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3382 		curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3383 		++sg_index;
3384 	}
3385 	if (chained)
3386 		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3387 			(seg - (h->max_cmd_sgentries - 1)) *
3388 				sizeof(SGDescriptor_struct));
3389 
3390 	/* track how many SG entries we are using */
3391 	if (seg > h->maxSG)
3392 		h->maxSG = seg;
3393 
3394 	dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3395 			"chained[%d]\n",
3396 			blk_rq_sectors(creq), seg, chained);
3397 
3398 	c->Header.SGTotal = seg + chained;
3399 	if (seg <= h->max_cmd_sgentries)
3400 		c->Header.SGList = c->Header.SGTotal;
3401 	else
3402 		c->Header.SGList = h->max_cmd_sgentries;
3403 	set_performant_mode(h, c);
3404 
3405 	if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3406 		if(h->cciss_read == CCISS_READ_10) {
3407 			c->Request.CDB[1] = 0;
3408 			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3409 			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3410 			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3411 			c->Request.CDB[5] = start_blk & 0xff;
3412 			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3413 			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3414 			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3415 			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3416 		} else {
3417 			u32 upper32 = upper_32_bits(start_blk);
3418 
3419 			c->Request.CDBLen = 16;
3420 			c->Request.CDB[1]= 0;
3421 			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3422 			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3423 			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3424 			c->Request.CDB[5]= upper32 & 0xff;
3425 			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3426 			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3427 			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3428 			c->Request.CDB[9]= start_blk & 0xff;
3429 			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3430 			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3431 			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3432 			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3433 			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3434 		}
3435 	} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3436 		c->Request.CDBLen = creq->cmd_len;
3437 		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3438 	} else {
3439 		dev_warn(&h->pdev->dev, "bad request type %d\n",
3440 			creq->cmd_type);
3441 		BUG();
3442 	}
3443 
3444 	spin_lock_irq(q->queue_lock);
3445 
3446 	addQ(&h->reqQ, c);
3447 	h->Qdepth++;
3448 	if (h->Qdepth > h->maxQsinceinit)
3449 		h->maxQsinceinit = h->Qdepth;
3450 
3451 	goto queue;
3452 full:
3453 	blk_stop_queue(q);
3454 startio:
3455 	/* We will already have the driver lock here so not need
3456 	 * to lock it.
3457 	 */
3458 	start_io(h);
3459 }
3460 
get_next_completion(ctlr_info_t * h)3461 static inline unsigned long get_next_completion(ctlr_info_t *h)
3462 {
3463 	return h->access.command_completed(h);
3464 }
3465 
interrupt_pending(ctlr_info_t * h)3466 static inline int interrupt_pending(ctlr_info_t *h)
3467 {
3468 	return h->access.intr_pending(h);
3469 }
3470 
interrupt_not_for_us(ctlr_info_t * h)3471 static inline long interrupt_not_for_us(ctlr_info_t *h)
3472 {
3473 	return ((h->access.intr_pending(h) == 0) ||
3474 		(h->interrupts_enabled == 0));
3475 }
3476 
bad_tag(ctlr_info_t * h,u32 tag_index,u32 raw_tag)3477 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3478 			u32 raw_tag)
3479 {
3480 	if (unlikely(tag_index >= h->nr_cmds)) {
3481 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3482 		return 1;
3483 	}
3484 	return 0;
3485 }
3486 
finish_cmd(ctlr_info_t * h,CommandList_struct * c,u32 raw_tag)3487 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3488 				u32 raw_tag)
3489 {
3490 	removeQ(c);
3491 	if (likely(c->cmd_type == CMD_RWREQ))
3492 		complete_command(h, c, 0);
3493 	else if (c->cmd_type == CMD_IOCTL_PEND)
3494 		complete(c->waiting);
3495 #ifdef CONFIG_CISS_SCSI_TAPE
3496 	else if (c->cmd_type == CMD_SCSI)
3497 		complete_scsi_command(c, 0, raw_tag);
3498 #endif
3499 }
3500 
next_command(ctlr_info_t * h)3501 static inline u32 next_command(ctlr_info_t *h)
3502 {
3503 	u32 a;
3504 
3505 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3506 		return h->access.command_completed(h);
3507 
3508 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3509 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3510 		(h->reply_pool_head)++;
3511 		h->commands_outstanding--;
3512 	} else {
3513 		a = FIFO_EMPTY;
3514 	}
3515 	/* Check for wraparound */
3516 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3517 		h->reply_pool_head = h->reply_pool;
3518 		h->reply_pool_wraparound ^= 1;
3519 	}
3520 	return a;
3521 }
3522 
3523 /* process completion of an indexed ("direct lookup") command */
process_indexed_cmd(ctlr_info_t * h,u32 raw_tag)3524 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3525 {
3526 	u32 tag_index;
3527 	CommandList_struct *c;
3528 
3529 	tag_index = cciss_tag_to_index(raw_tag);
3530 	if (bad_tag(h, tag_index, raw_tag))
3531 		return next_command(h);
3532 	c = h->cmd_pool + tag_index;
3533 	finish_cmd(h, c, raw_tag);
3534 	return next_command(h);
3535 }
3536 
3537 /* process completion of a non-indexed command */
process_nonindexed_cmd(ctlr_info_t * h,u32 raw_tag)3538 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3539 {
3540 	CommandList_struct *c = NULL;
3541 	__u32 busaddr_masked, tag_masked;
3542 
3543 	tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3544 	list_for_each_entry(c, &h->cmpQ, list) {
3545 		busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3546 		if (busaddr_masked == tag_masked) {
3547 			finish_cmd(h, c, raw_tag);
3548 			return next_command(h);
3549 		}
3550 	}
3551 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3552 	return next_command(h);
3553 }
3554 
3555 /* Some controllers, like p400, will give us one interrupt
3556  * after a soft reset, even if we turned interrupts off.
3557  * Only need to check for this in the cciss_xxx_discard_completions
3558  * functions.
3559  */
ignore_bogus_interrupt(ctlr_info_t * h)3560 static int ignore_bogus_interrupt(ctlr_info_t *h)
3561 {
3562 	if (likely(!reset_devices))
3563 		return 0;
3564 
3565 	if (likely(h->interrupts_enabled))
3566 		return 0;
3567 
3568 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3569 		"(known firmware bug.)  Ignoring.\n");
3570 
3571 	return 1;
3572 }
3573 
cciss_intx_discard_completions(int irq,void * dev_id)3574 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3575 {
3576 	ctlr_info_t *h = dev_id;
3577 	unsigned long flags;
3578 	u32 raw_tag;
3579 
3580 	if (ignore_bogus_interrupt(h))
3581 		return IRQ_NONE;
3582 
3583 	if (interrupt_not_for_us(h))
3584 		return IRQ_NONE;
3585 	spin_lock_irqsave(&h->lock, flags);
3586 	while (interrupt_pending(h)) {
3587 		raw_tag = get_next_completion(h);
3588 		while (raw_tag != FIFO_EMPTY)
3589 			raw_tag = next_command(h);
3590 	}
3591 	spin_unlock_irqrestore(&h->lock, flags);
3592 	return IRQ_HANDLED;
3593 }
3594 
cciss_msix_discard_completions(int irq,void * dev_id)3595 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3596 {
3597 	ctlr_info_t *h = dev_id;
3598 	unsigned long flags;
3599 	u32 raw_tag;
3600 
3601 	if (ignore_bogus_interrupt(h))
3602 		return IRQ_NONE;
3603 
3604 	spin_lock_irqsave(&h->lock, flags);
3605 	raw_tag = get_next_completion(h);
3606 	while (raw_tag != FIFO_EMPTY)
3607 		raw_tag = next_command(h);
3608 	spin_unlock_irqrestore(&h->lock, flags);
3609 	return IRQ_HANDLED;
3610 }
3611 
do_cciss_intx(int irq,void * dev_id)3612 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3613 {
3614 	ctlr_info_t *h = dev_id;
3615 	unsigned long flags;
3616 	u32 raw_tag;
3617 
3618 	if (interrupt_not_for_us(h))
3619 		return IRQ_NONE;
3620 	spin_lock_irqsave(&h->lock, flags);
3621 	while (interrupt_pending(h)) {
3622 		raw_tag = get_next_completion(h);
3623 		while (raw_tag != FIFO_EMPTY) {
3624 			if (cciss_tag_contains_index(raw_tag))
3625 				raw_tag = process_indexed_cmd(h, raw_tag);
3626 			else
3627 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3628 		}
3629 	}
3630 	spin_unlock_irqrestore(&h->lock, flags);
3631 	return IRQ_HANDLED;
3632 }
3633 
3634 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3635  * check the interrupt pending register because it is not set.
3636  */
do_cciss_msix_intr(int irq,void * dev_id)3637 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3638 {
3639 	ctlr_info_t *h = dev_id;
3640 	unsigned long flags;
3641 	u32 raw_tag;
3642 
3643 	spin_lock_irqsave(&h->lock, flags);
3644 	raw_tag = get_next_completion(h);
3645 	while (raw_tag != FIFO_EMPTY) {
3646 		if (cciss_tag_contains_index(raw_tag))
3647 			raw_tag = process_indexed_cmd(h, raw_tag);
3648 		else
3649 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3650 	}
3651 	spin_unlock_irqrestore(&h->lock, flags);
3652 	return IRQ_HANDLED;
3653 }
3654 
3655 /**
3656  * add_to_scan_list() - add controller to rescan queue
3657  * @h:		      Pointer to the controller.
3658  *
3659  * Adds the controller to the rescan queue if not already on the queue.
3660  *
3661  * returns 1 if added to the queue, 0 if skipped (could be on the
3662  * queue already, or the controller could be initializing or shutting
3663  * down).
3664  **/
add_to_scan_list(struct ctlr_info * h)3665 static int add_to_scan_list(struct ctlr_info *h)
3666 {
3667 	struct ctlr_info *test_h;
3668 	int found = 0;
3669 	int ret = 0;
3670 
3671 	if (h->busy_initializing)
3672 		return 0;
3673 
3674 	if (!mutex_trylock(&h->busy_shutting_down))
3675 		return 0;
3676 
3677 	mutex_lock(&scan_mutex);
3678 	list_for_each_entry(test_h, &scan_q, scan_list) {
3679 		if (test_h == h) {
3680 			found = 1;
3681 			break;
3682 		}
3683 	}
3684 	if (!found && !h->busy_scanning) {
3685 		reinit_completion(&h->scan_wait);
3686 		list_add_tail(&h->scan_list, &scan_q);
3687 		ret = 1;
3688 	}
3689 	mutex_unlock(&scan_mutex);
3690 	mutex_unlock(&h->busy_shutting_down);
3691 
3692 	return ret;
3693 }
3694 
3695 /**
3696  * remove_from_scan_list() - remove controller from rescan queue
3697  * @h:			   Pointer to the controller.
3698  *
3699  * Removes the controller from the rescan queue if present. Blocks if
3700  * the controller is currently conducting a rescan.  The controller
3701  * can be in one of three states:
3702  * 1. Doesn't need a scan
3703  * 2. On the scan list, but not scanning yet (we remove it)
3704  * 3. Busy scanning (and not on the list). In this case we want to wait for
3705  *    the scan to complete to make sure the scanning thread for this
3706  *    controller is completely idle.
3707  **/
remove_from_scan_list(struct ctlr_info * h)3708 static void remove_from_scan_list(struct ctlr_info *h)
3709 {
3710 	struct ctlr_info *test_h, *tmp_h;
3711 
3712 	mutex_lock(&scan_mutex);
3713 	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3714 		if (test_h == h) { /* state 2. */
3715 			list_del(&h->scan_list);
3716 			complete_all(&h->scan_wait);
3717 			mutex_unlock(&scan_mutex);
3718 			return;
3719 		}
3720 	}
3721 	if (h->busy_scanning) { /* state 3. */
3722 		mutex_unlock(&scan_mutex);
3723 		wait_for_completion(&h->scan_wait);
3724 	} else { /* state 1, nothing to do. */
3725 		mutex_unlock(&scan_mutex);
3726 	}
3727 }
3728 
3729 /**
3730  * scan_thread() - kernel thread used to rescan controllers
3731  * @data:	 Ignored.
3732  *
3733  * A kernel thread used scan for drive topology changes on
3734  * controllers. The thread processes only one controller at a time
3735  * using a queue.  Controllers are added to the queue using
3736  * add_to_scan_list() and removed from the queue either after done
3737  * processing or using remove_from_scan_list().
3738  *
3739  * returns 0.
3740  **/
scan_thread(void * data)3741 static int scan_thread(void *data)
3742 {
3743 	struct ctlr_info *h;
3744 
3745 	while (1) {
3746 		set_current_state(TASK_INTERRUPTIBLE);
3747 		schedule();
3748 		if (kthread_should_stop())
3749 			break;
3750 
3751 		while (1) {
3752 			mutex_lock(&scan_mutex);
3753 			if (list_empty(&scan_q)) {
3754 				mutex_unlock(&scan_mutex);
3755 				break;
3756 			}
3757 
3758 			h = list_entry(scan_q.next,
3759 				       struct ctlr_info,
3760 				       scan_list);
3761 			list_del(&h->scan_list);
3762 			h->busy_scanning = 1;
3763 			mutex_unlock(&scan_mutex);
3764 
3765 			rebuild_lun_table(h, 0, 0);
3766 			complete_all(&h->scan_wait);
3767 			mutex_lock(&scan_mutex);
3768 			h->busy_scanning = 0;
3769 			mutex_unlock(&scan_mutex);
3770 		}
3771 	}
3772 
3773 	return 0;
3774 }
3775 
check_for_unit_attention(ctlr_info_t * h,CommandList_struct * c)3776 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3777 {
3778 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3779 		return 0;
3780 
3781 	switch (c->err_info->SenseInfo[12]) {
3782 	case STATE_CHANGED:
3783 		dev_warn(&h->pdev->dev, "a state change "
3784 			"detected, command retried\n");
3785 		return 1;
3786 	break;
3787 	case LUN_FAILED:
3788 		dev_warn(&h->pdev->dev, "LUN failure "
3789 			"detected, action required\n");
3790 		return 1;
3791 	break;
3792 	case REPORT_LUNS_CHANGED:
3793 		dev_warn(&h->pdev->dev, "report LUN data changed\n");
3794 	/*
3795 	 * Here, we could call add_to_scan_list and wake up the scan thread,
3796 	 * except that it's quite likely that we will get more than one
3797 	 * REPORT_LUNS_CHANGED condition in quick succession, which means
3798 	 * that those which occur after the first one will likely happen
3799 	 * *during* the scan_thread's rescan.  And the rescan code is not
3800 	 * robust enough to restart in the middle, undoing what it has already
3801 	 * done, and it's not clear that it's even possible to do this, since
3802 	 * part of what it does is notify the block layer, which starts
3803 	 * doing it's own i/o to read partition tables and so on, and the
3804 	 * driver doesn't have visibility to know what might need undoing.
3805 	 * In any event, if possible, it is horribly complicated to get right
3806 	 * so we just don't do it for now.
3807 	 *
3808 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3809 	 */
3810 		return 1;
3811 	break;
3812 	case POWER_OR_RESET:
3813 		dev_warn(&h->pdev->dev,
3814 			"a power on or device reset detected\n");
3815 		return 1;
3816 	break;
3817 	case UNIT_ATTENTION_CLEARED:
3818 		dev_warn(&h->pdev->dev,
3819 			"unit attention cleared by another initiator\n");
3820 		return 1;
3821 	break;
3822 	default:
3823 		dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3824 		return 1;
3825 	}
3826 }
3827 
3828 /*
3829  *  We cannot read the structure directly, for portability we must use
3830  *   the io functions.
3831  *   This is for debug only.
3832  */
print_cfg_table(ctlr_info_t * h)3833 static void print_cfg_table(ctlr_info_t *h)
3834 {
3835 	int i;
3836 	char temp_name[17];
3837 	CfgTable_struct *tb = h->cfgtable;
3838 
3839 	dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3840 	dev_dbg(&h->pdev->dev, "------------------------------------\n");
3841 	for (i = 0; i < 4; i++)
3842 		temp_name[i] = readb(&(tb->Signature[i]));
3843 	temp_name[4] = '\0';
3844 	dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3845 	dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3846 		readl(&(tb->SpecValence)));
3847 	dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3848 	       readl(&(tb->TransportSupport)));
3849 	dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3850 	       readl(&(tb->TransportActive)));
3851 	dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3852 	       readl(&(tb->HostWrite.TransportRequest)));
3853 	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3854 	       readl(&(tb->HostWrite.CoalIntDelay)));
3855 	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3856 	       readl(&(tb->HostWrite.CoalIntCount)));
3857 	dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3858 	       readl(&(tb->CmdsOutMax)));
3859 	dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3860 		readl(&(tb->BusTypes)));
3861 	for (i = 0; i < 16; i++)
3862 		temp_name[i] = readb(&(tb->ServerName[i]));
3863 	temp_name[16] = '\0';
3864 	dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3865 	dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3866 		readl(&(tb->HeartBeat)));
3867 }
3868 
find_PCI_BAR_index(struct pci_dev * pdev,unsigned long pci_bar_addr)3869 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3870 {
3871 	int i, offset, mem_type, bar_type;
3872 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3873 		return 0;
3874 	offset = 0;
3875 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3876 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3877 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3878 			offset += 4;
3879 		else {
3880 			mem_type = pci_resource_flags(pdev, i) &
3881 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3882 			switch (mem_type) {
3883 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3884 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3885 				offset += 4;	/* 32 bit */
3886 				break;
3887 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3888 				offset += 8;
3889 				break;
3890 			default:	/* reserved in PCI 2.2 */
3891 				dev_warn(&pdev->dev,
3892 				       "Base address is invalid\n");
3893 				return -1;
3894 				break;
3895 			}
3896 		}
3897 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3898 			return i + 1;
3899 	}
3900 	return -1;
3901 }
3902 
3903 /* Fill in bucket_map[], given nsgs (the max number of
3904  * scatter gather elements supported) and bucket[],
3905  * which is an array of 8 integers.  The bucket[] array
3906  * contains 8 different DMA transfer sizes (in 16
3907  * byte increments) which the controller uses to fetch
3908  * commands.  This function fills in bucket_map[], which
3909  * maps a given number of scatter gather elements to one of
3910  * the 8 DMA transfer sizes.  The point of it is to allow the
3911  * controller to only do as much DMA as needed to fetch the
3912  * command, with the DMA transfer size encoded in the lower
3913  * bits of the command address.
3914  */
calc_bucket_map(int bucket[],int num_buckets,int nsgs,int * bucket_map)3915 static void  calc_bucket_map(int bucket[], int num_buckets,
3916 	int nsgs, int *bucket_map)
3917 {
3918 	int i, j, b, size;
3919 
3920 	/* even a command with 0 SGs requires 4 blocks */
3921 #define MINIMUM_TRANSFER_BLOCKS 4
3922 #define NUM_BUCKETS 8
3923 	/* Note, bucket_map must have nsgs+1 entries. */
3924 	for (i = 0; i <= nsgs; i++) {
3925 		/* Compute size of a command with i SG entries */
3926 		size = i + MINIMUM_TRANSFER_BLOCKS;
3927 		b = num_buckets; /* Assume the biggest bucket */
3928 		/* Find the bucket that is just big enough */
3929 		for (j = 0; j < 8; j++) {
3930 			if (bucket[j] >= size) {
3931 				b = j;
3932 				break;
3933 			}
3934 		}
3935 		/* for a command with i SG entries, use bucket b. */
3936 		bucket_map[i] = b;
3937 	}
3938 }
3939 
cciss_wait_for_mode_change_ack(ctlr_info_t * h)3940 static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3941 {
3942 	int i;
3943 
3944 	/* under certain very rare conditions, this can take awhile.
3945 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3946 	 * as we enter this code.) */
3947 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3948 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3949 			break;
3950 		usleep_range(10000, 20000);
3951 	}
3952 }
3953 
cciss_enter_performant_mode(ctlr_info_t * h,u32 use_short_tags)3954 static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3955 {
3956 	/* This is a bit complicated.  There are 8 registers on
3957 	 * the controller which we write to to tell it 8 different
3958 	 * sizes of commands which there may be.  It's a way of
3959 	 * reducing the DMA done to fetch each command.  Encoded into
3960 	 * each command's tag are 3 bits which communicate to the controller
3961 	 * which of the eight sizes that command fits within.  The size of
3962 	 * each command depends on how many scatter gather entries there are.
3963 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
3964 	 * with the number of 16-byte blocks a command of that size requires.
3965 	 * The smallest command possible requires 5 such 16 byte blocks.
3966 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3967 	 * blocks.  Note, this only extends to the SG entries contained
3968 	 * within the command block, and does not extend to chained blocks
3969 	 * of SG elements.   bft[] contains the eight values we write to
3970 	 * the registers.  They are not evenly distributed, but have more
3971 	 * sizes for small commands, and fewer sizes for larger commands.
3972 	 */
3973 	__u32 trans_offset;
3974 	int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3975 			/*
3976 			 *  5 = 1 s/g entry or 4k
3977 			 *  6 = 2 s/g entry or 8k
3978 			 *  8 = 4 s/g entry or 16k
3979 			 * 10 = 6 s/g entry or 24k
3980 			 */
3981 	unsigned long register_value;
3982 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3983 
3984 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3985 
3986 	/* Controller spec: zero out this buffer. */
3987 	memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3988 	h->reply_pool_head = h->reply_pool;
3989 
3990 	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3991 	calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3992 				h->blockFetchTable);
3993 	writel(bft[0], &h->transtable->BlockFetch0);
3994 	writel(bft[1], &h->transtable->BlockFetch1);
3995 	writel(bft[2], &h->transtable->BlockFetch2);
3996 	writel(bft[3], &h->transtable->BlockFetch3);
3997 	writel(bft[4], &h->transtable->BlockFetch4);
3998 	writel(bft[5], &h->transtable->BlockFetch5);
3999 	writel(bft[6], &h->transtable->BlockFetch6);
4000 	writel(bft[7], &h->transtable->BlockFetch7);
4001 
4002 	/* size of controller ring buffer */
4003 	writel(h->max_commands, &h->transtable->RepQSize);
4004 	writel(1, &h->transtable->RepQCount);
4005 	writel(0, &h->transtable->RepQCtrAddrLow32);
4006 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4007 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4008 	writel(0, &h->transtable->RepQAddr0High32);
4009 	writel(CFGTBL_Trans_Performant | use_short_tags,
4010 			&(h->cfgtable->HostWrite.TransportRequest));
4011 
4012 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4013 	cciss_wait_for_mode_change_ack(h);
4014 	register_value = readl(&(h->cfgtable->TransportActive));
4015 	if (!(register_value & CFGTBL_Trans_Performant))
4016 		dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4017 					" performant mode\n");
4018 }
4019 
cciss_put_controller_into_performant_mode(ctlr_info_t * h)4020 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4021 {
4022 	__u32 trans_support;
4023 
4024 	if (cciss_simple_mode)
4025 		return;
4026 
4027 	dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4028 	/* Attempt to put controller into performant mode if supported */
4029 	/* Does board support performant mode? */
4030 	trans_support = readl(&(h->cfgtable->TransportSupport));
4031 	if (!(trans_support & PERFORMANT_MODE))
4032 		return;
4033 
4034 	dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4035 	/* Performant mode demands commands on a 32 byte boundary
4036 	 * pci_alloc_consistent aligns on page boundarys already.
4037 	 * Just need to check if divisible by 32
4038 	 */
4039 	if ((sizeof(CommandList_struct) % 32) != 0) {
4040 		dev_warn(&h->pdev->dev, "%s %d %s\n",
4041 			"cciss info: command size[",
4042 			(int)sizeof(CommandList_struct),
4043 			"] not divisible by 32, no performant mode..\n");
4044 		return;
4045 	}
4046 
4047 	/* Performant mode ring buffer and supporting data structures */
4048 	h->reply_pool = (__u64 *)pci_alloc_consistent(
4049 		h->pdev, h->max_commands * sizeof(__u64),
4050 		&(h->reply_pool_dhandle));
4051 
4052 	/* Need a block fetch table for performant mode */
4053 	h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4054 		sizeof(__u32)), GFP_KERNEL);
4055 
4056 	if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4057 		goto clean_up;
4058 
4059 	cciss_enter_performant_mode(h,
4060 		trans_support & CFGTBL_Trans_use_short_tags);
4061 
4062 	/* Change the access methods to the performant access methods */
4063 	h->access = SA5_performant_access;
4064 	h->transMethod = CFGTBL_Trans_Performant;
4065 
4066 	return;
4067 clean_up:
4068 	kfree(h->blockFetchTable);
4069 	if (h->reply_pool)
4070 		pci_free_consistent(h->pdev,
4071 				h->max_commands * sizeof(__u64),
4072 				h->reply_pool,
4073 				h->reply_pool_dhandle);
4074 	return;
4075 
4076 } /* cciss_put_controller_into_performant_mode */
4077 
4078 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4079  * controllers that are capable. If not, we use IO-APIC mode.
4080  */
4081 
cciss_interrupt_mode(ctlr_info_t * h)4082 static void cciss_interrupt_mode(ctlr_info_t *h)
4083 {
4084 #ifdef CONFIG_PCI_MSI
4085 	int err;
4086 	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4087 	{0, 2}, {0, 3}
4088 	};
4089 
4090 	/* Some boards advertise MSI but don't really support it */
4091 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4092 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4093 		goto default_int_mode;
4094 
4095 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4096 		err = pci_enable_msix_exact(h->pdev, cciss_msix_entries, 4);
4097 		if (!err) {
4098 			h->intr[0] = cciss_msix_entries[0].vector;
4099 			h->intr[1] = cciss_msix_entries[1].vector;
4100 			h->intr[2] = cciss_msix_entries[2].vector;
4101 			h->intr[3] = cciss_msix_entries[3].vector;
4102 			h->msix_vector = 1;
4103 			return;
4104 		} else {
4105 			dev_warn(&h->pdev->dev,
4106 				"MSI-X init failed %d\n", err);
4107 		}
4108 	}
4109 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4110 		if (!pci_enable_msi(h->pdev))
4111 			h->msi_vector = 1;
4112 		else
4113 			dev_warn(&h->pdev->dev, "MSI init failed\n");
4114 	}
4115 default_int_mode:
4116 #endif				/* CONFIG_PCI_MSI */
4117 	/* if we get here we're going to use the default interrupt mode */
4118 	h->intr[h->intr_mode] = h->pdev->irq;
4119 	return;
4120 }
4121 
cciss_lookup_board_id(struct pci_dev * pdev,u32 * board_id)4122 static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4123 {
4124 	int i;
4125 	u32 subsystem_vendor_id, subsystem_device_id;
4126 
4127 	subsystem_vendor_id = pdev->subsystem_vendor;
4128 	subsystem_device_id = pdev->subsystem_device;
4129 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4130 			subsystem_vendor_id;
4131 
4132 	for (i = 0; i < ARRAY_SIZE(products); i++) {
4133 		/* Stand aside for hpsa driver on request */
4134 		if (cciss_allow_hpsa)
4135 			return -ENODEV;
4136 		if (*board_id == products[i].board_id)
4137 			return i;
4138 	}
4139 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4140 		*board_id);
4141 	return -ENODEV;
4142 }
4143 
cciss_board_disabled(ctlr_info_t * h)4144 static inline bool cciss_board_disabled(ctlr_info_t *h)
4145 {
4146 	u16 command;
4147 
4148 	(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4149 	return ((command & PCI_COMMAND_MEMORY) == 0);
4150 }
4151 
cciss_pci_find_memory_BAR(struct pci_dev * pdev,unsigned long * memory_bar)4152 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4153 				     unsigned long *memory_bar)
4154 {
4155 	int i;
4156 
4157 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4158 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4159 			/* addressing mode bits already removed */
4160 			*memory_bar = pci_resource_start(pdev, i);
4161 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4162 				*memory_bar);
4163 			return 0;
4164 		}
4165 	dev_warn(&pdev->dev, "no memory BAR found\n");
4166 	return -ENODEV;
4167 }
4168 
cciss_wait_for_board_state(struct pci_dev * pdev,void __iomem * vaddr,int wait_for_ready)4169 static int cciss_wait_for_board_state(struct pci_dev *pdev,
4170 				      void __iomem *vaddr, int wait_for_ready)
4171 #define BOARD_READY 1
4172 #define BOARD_NOT_READY 0
4173 {
4174 	int i, iterations;
4175 	u32 scratchpad;
4176 
4177 	if (wait_for_ready)
4178 		iterations = CCISS_BOARD_READY_ITERATIONS;
4179 	else
4180 		iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4181 
4182 	for (i = 0; i < iterations; i++) {
4183 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4184 		if (wait_for_ready) {
4185 			if (scratchpad == CCISS_FIRMWARE_READY)
4186 				return 0;
4187 		} else {
4188 			if (scratchpad != CCISS_FIRMWARE_READY)
4189 				return 0;
4190 		}
4191 		msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4192 	}
4193 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4194 	return -ENODEV;
4195 }
4196 
cciss_find_cfg_addrs(struct pci_dev * pdev,void __iomem * vaddr,u32 * cfg_base_addr,u64 * cfg_base_addr_index,u64 * cfg_offset)4197 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4198 				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4199 				u64 *cfg_offset)
4200 {
4201 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4202 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4203 	*cfg_base_addr &= (u32) 0x0000ffff;
4204 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4205 	if (*cfg_base_addr_index == -1) {
4206 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4207 			"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4208 		return -ENODEV;
4209 	}
4210 	return 0;
4211 }
4212 
cciss_find_cfgtables(ctlr_info_t * h)4213 static int cciss_find_cfgtables(ctlr_info_t *h)
4214 {
4215 	u64 cfg_offset;
4216 	u32 cfg_base_addr;
4217 	u64 cfg_base_addr_index;
4218 	u32 trans_offset;
4219 	int rc;
4220 
4221 	rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4222 		&cfg_base_addr_index, &cfg_offset);
4223 	if (rc)
4224 		return rc;
4225 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4226 		cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4227 	if (!h->cfgtable)
4228 		return -ENOMEM;
4229 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4230 	if (rc)
4231 		return rc;
4232 	/* Find performant mode table. */
4233 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4234 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4235 				cfg_base_addr_index)+cfg_offset+trans_offset,
4236 				sizeof(*h->transtable));
4237 	if (!h->transtable)
4238 		return -ENOMEM;
4239 	return 0;
4240 }
4241 
cciss_get_max_perf_mode_cmds(struct ctlr_info * h)4242 static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4243 {
4244 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4245 
4246 	/* Limit commands in memory limited kdump scenario. */
4247 	if (reset_devices && h->max_commands > 32)
4248 		h->max_commands = 32;
4249 
4250 	if (h->max_commands < 16) {
4251 		dev_warn(&h->pdev->dev, "Controller reports "
4252 			"max supported commands of %d, an obvious lie. "
4253 			"Using 16.  Ensure that firmware is up to date.\n",
4254 			h->max_commands);
4255 		h->max_commands = 16;
4256 	}
4257 }
4258 
4259 /* Interrogate the hardware for some limits:
4260  * max commands, max SG elements without chaining, and with chaining,
4261  * SG chain block size, etc.
4262  */
cciss_find_board_params(ctlr_info_t * h)4263 static void cciss_find_board_params(ctlr_info_t *h)
4264 {
4265 	cciss_get_max_perf_mode_cmds(h);
4266 	h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4267 	h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4268 	/*
4269 	 * The P600 may exhibit poor performnace under some workloads
4270 	 * if we use the value in the configuration table. Limit this
4271 	 * controller to MAXSGENTRIES (32) instead.
4272 	 */
4273 	if (h->board_id == 0x3225103C)
4274 		h->maxsgentries = MAXSGENTRIES;
4275 	/*
4276 	 * Limit in-command s/g elements to 32 save dma'able memory.
4277 	 * Howvever spec says if 0, use 31
4278 	 */
4279 	h->max_cmd_sgentries = 31;
4280 	if (h->maxsgentries > 512) {
4281 		h->max_cmd_sgentries = 32;
4282 		h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4283 		h->maxsgentries--; /* save one for chain pointer */
4284 	} else {
4285 		h->maxsgentries = 31; /* default to traditional values */
4286 		h->chainsize = 0;
4287 	}
4288 }
4289 
CISS_signature_present(ctlr_info_t * h)4290 static inline bool CISS_signature_present(ctlr_info_t *h)
4291 {
4292 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4293 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4294 		return false;
4295 	}
4296 	return true;
4297 }
4298 
4299 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
cciss_enable_scsi_prefetch(ctlr_info_t * h)4300 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4301 {
4302 #ifdef CONFIG_X86
4303 	u32 prefetch;
4304 
4305 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4306 	prefetch |= 0x100;
4307 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4308 #endif
4309 }
4310 
4311 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4312  * in a prefetch beyond physical memory.
4313  */
cciss_p600_dma_prefetch_quirk(ctlr_info_t * h)4314 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4315 {
4316 	u32 dma_prefetch;
4317 	__u32 dma_refetch;
4318 
4319 	if (h->board_id != 0x3225103C)
4320 		return;
4321 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4322 	dma_prefetch |= 0x8000;
4323 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4324 	pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4325 	dma_refetch |= 0x1;
4326 	pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4327 }
4328 
cciss_pci_init(ctlr_info_t * h)4329 static int cciss_pci_init(ctlr_info_t *h)
4330 {
4331 	int prod_index, err;
4332 
4333 	prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4334 	if (prod_index < 0)
4335 		return -ENODEV;
4336 	h->product_name = products[prod_index].product_name;
4337 	h->access = *(products[prod_index].access);
4338 
4339 	if (cciss_board_disabled(h)) {
4340 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4341 		return -ENODEV;
4342 	}
4343 
4344 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4345 				PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4346 
4347 	err = pci_enable_device(h->pdev);
4348 	if (err) {
4349 		dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4350 		return err;
4351 	}
4352 
4353 	err = pci_request_regions(h->pdev, "cciss");
4354 	if (err) {
4355 		dev_warn(&h->pdev->dev,
4356 			"Cannot obtain PCI resources, aborting\n");
4357 		return err;
4358 	}
4359 
4360 	dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4361 	dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4362 
4363 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4364  * else we use the IO-APIC interrupt assigned to us by system ROM.
4365  */
4366 	cciss_interrupt_mode(h);
4367 	err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4368 	if (err)
4369 		goto err_out_free_res;
4370 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4371 	if (!h->vaddr) {
4372 		err = -ENOMEM;
4373 		goto err_out_free_res;
4374 	}
4375 	err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4376 	if (err)
4377 		goto err_out_free_res;
4378 	err = cciss_find_cfgtables(h);
4379 	if (err)
4380 		goto err_out_free_res;
4381 	print_cfg_table(h);
4382 	cciss_find_board_params(h);
4383 
4384 	if (!CISS_signature_present(h)) {
4385 		err = -ENODEV;
4386 		goto err_out_free_res;
4387 	}
4388 	cciss_enable_scsi_prefetch(h);
4389 	cciss_p600_dma_prefetch_quirk(h);
4390 	err = cciss_enter_simple_mode(h);
4391 	if (err)
4392 		goto err_out_free_res;
4393 	cciss_put_controller_into_performant_mode(h);
4394 	return 0;
4395 
4396 err_out_free_res:
4397 	/*
4398 	 * Deliberately omit pci_disable_device(): it does something nasty to
4399 	 * Smart Array controllers that pci_enable_device does not undo
4400 	 */
4401 	if (h->transtable)
4402 		iounmap(h->transtable);
4403 	if (h->cfgtable)
4404 		iounmap(h->cfgtable);
4405 	if (h->vaddr)
4406 		iounmap(h->vaddr);
4407 	pci_release_regions(h->pdev);
4408 	return err;
4409 }
4410 
4411 /* Function to find the first free pointer into our hba[] array
4412  * Returns -1 if no free entries are left.
4413  */
alloc_cciss_hba(struct pci_dev * pdev)4414 static int alloc_cciss_hba(struct pci_dev *pdev)
4415 {
4416 	int i;
4417 
4418 	for (i = 0; i < MAX_CTLR; i++) {
4419 		if (!hba[i]) {
4420 			ctlr_info_t *h;
4421 
4422 			h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4423 			if (!h)
4424 				goto Enomem;
4425 			hba[i] = h;
4426 			return i;
4427 		}
4428 	}
4429 	dev_warn(&pdev->dev, "This driver supports a maximum"
4430 	       " of %d controllers.\n", MAX_CTLR);
4431 	return -1;
4432 Enomem:
4433 	dev_warn(&pdev->dev, "out of memory.\n");
4434 	return -1;
4435 }
4436 
free_hba(ctlr_info_t * h)4437 static void free_hba(ctlr_info_t *h)
4438 {
4439 	int i;
4440 
4441 	hba[h->ctlr] = NULL;
4442 	for (i = 0; i < h->highest_lun + 1; i++)
4443 		if (h->gendisk[i] != NULL)
4444 			put_disk(h->gendisk[i]);
4445 	kfree(h);
4446 }
4447 
4448 /* Send a message CDB to the firmware. */
cciss_message(struct pci_dev * pdev,unsigned char opcode,unsigned char type)4449 static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4450 			 unsigned char type)
4451 {
4452 	typedef struct {
4453 		CommandListHeader_struct CommandHeader;
4454 		RequestBlock_struct Request;
4455 		ErrDescriptor_struct ErrorDescriptor;
4456 	} Command;
4457 	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4458 	Command *cmd;
4459 	dma_addr_t paddr64;
4460 	uint32_t paddr32, tag;
4461 	void __iomem *vaddr;
4462 	int i, err;
4463 
4464 	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4465 	if (vaddr == NULL)
4466 		return -ENOMEM;
4467 
4468 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4469 	   CCISS commands, so they must be allocated from the lower 4GiB of
4470 	   memory. */
4471 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4472 	if (err) {
4473 		iounmap(vaddr);
4474 		return -ENOMEM;
4475 	}
4476 
4477 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4478 	if (cmd == NULL) {
4479 		iounmap(vaddr);
4480 		return -ENOMEM;
4481 	}
4482 
4483 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4484 	   although there's no guarantee, we assume that the address is at
4485 	   least 4-byte aligned (most likely, it's page-aligned). */
4486 	paddr32 = paddr64;
4487 
4488 	cmd->CommandHeader.ReplyQueue = 0;
4489 	cmd->CommandHeader.SGList = 0;
4490 	cmd->CommandHeader.SGTotal = 0;
4491 	cmd->CommandHeader.Tag.lower = paddr32;
4492 	cmd->CommandHeader.Tag.upper = 0;
4493 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4494 
4495 	cmd->Request.CDBLen = 16;
4496 	cmd->Request.Type.Type = TYPE_MSG;
4497 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4498 	cmd->Request.Type.Direction = XFER_NONE;
4499 	cmd->Request.Timeout = 0; /* Don't time out */
4500 	cmd->Request.CDB[0] = opcode;
4501 	cmd->Request.CDB[1] = type;
4502 	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4503 
4504 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4505 	cmd->ErrorDescriptor.Addr.upper = 0;
4506 	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4507 
4508 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4509 
4510 	for (i = 0; i < 10; i++) {
4511 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4512 		if ((tag & ~3) == paddr32)
4513 			break;
4514 		msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4515 	}
4516 
4517 	iounmap(vaddr);
4518 
4519 	/* we leak the DMA buffer here ... no choice since the controller could
4520 	   still complete the command. */
4521 	if (i == 10) {
4522 		dev_err(&pdev->dev,
4523 			"controller message %02x:%02x timed out\n",
4524 			opcode, type);
4525 		return -ETIMEDOUT;
4526 	}
4527 
4528 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4529 
4530 	if (tag & 2) {
4531 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4532 			opcode, type);
4533 		return -EIO;
4534 	}
4535 
4536 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4537 		opcode, type);
4538 	return 0;
4539 }
4540 
4541 #define cciss_noop(p) cciss_message(p, 3, 0)
4542 
cciss_controller_hard_reset(struct pci_dev * pdev,void * __iomem vaddr,u32 use_doorbell)4543 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4544 	void * __iomem vaddr, u32 use_doorbell)
4545 {
4546 	u16 pmcsr;
4547 	int pos;
4548 
4549 	if (use_doorbell) {
4550 		/* For everything after the P600, the PCI power state method
4551 		 * of resetting the controller doesn't work, so we have this
4552 		 * other way using the doorbell register.
4553 		 */
4554 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
4555 		writel(use_doorbell, vaddr + SA5_DOORBELL);
4556 	} else { /* Try to do it the PCI power state way */
4557 
4558 		/* Quoting from the Open CISS Specification: "The Power
4559 		 * Management Control/Status Register (CSR) controls the power
4560 		 * state of the device.  The normal operating state is D0,
4561 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4562 		 * the controller, place the interface device in D3 then to D0,
4563 		 * this causes a secondary PCI reset which will reset the
4564 		 * controller." */
4565 
4566 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4567 		if (pos == 0) {
4568 			dev_err(&pdev->dev,
4569 				"cciss_controller_hard_reset: "
4570 				"PCI PM not supported\n");
4571 			return -ENODEV;
4572 		}
4573 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4574 		/* enter the D3hot power management state */
4575 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4576 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4577 		pmcsr |= PCI_D3hot;
4578 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4579 
4580 		msleep(500);
4581 
4582 		/* enter the D0 power management state */
4583 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4584 		pmcsr |= PCI_D0;
4585 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4586 
4587 		/*
4588 		 * The P600 requires a small delay when changing states.
4589 		 * Otherwise we may think the board did not reset and we bail.
4590 		 * This for kdump only and is particular to the P600.
4591 		 */
4592 		msleep(500);
4593 	}
4594 	return 0;
4595 }
4596 
init_driver_version(char * driver_version,int len)4597 static void init_driver_version(char *driver_version, int len)
4598 {
4599 	memset(driver_version, 0, len);
4600 	strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4601 }
4602 
write_driver_ver_to_cfgtable(CfgTable_struct __iomem * cfgtable)4603 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4604 {
4605 	char *driver_version;
4606 	int i, size = sizeof(cfgtable->driver_version);
4607 
4608 	driver_version = kmalloc(size, GFP_KERNEL);
4609 	if (!driver_version)
4610 		return -ENOMEM;
4611 
4612 	init_driver_version(driver_version, size);
4613 	for (i = 0; i < size; i++)
4614 		writeb(driver_version[i], &cfgtable->driver_version[i]);
4615 	kfree(driver_version);
4616 	return 0;
4617 }
4618 
read_driver_ver_from_cfgtable(CfgTable_struct __iomem * cfgtable,unsigned char * driver_ver)4619 static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4620 					  unsigned char *driver_ver)
4621 {
4622 	int i;
4623 
4624 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4625 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
4626 }
4627 
controller_reset_failed(CfgTable_struct __iomem * cfgtable)4628 static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4629 {
4630 
4631 	char *driver_ver, *old_driver_ver;
4632 	int rc, size = sizeof(cfgtable->driver_version);
4633 
4634 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4635 	if (!old_driver_ver)
4636 		return -ENOMEM;
4637 	driver_ver = old_driver_ver + size;
4638 
4639 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
4640 	 * should have been changed, otherwise we know the reset failed.
4641 	 */
4642 	init_driver_version(old_driver_ver, size);
4643 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4644 	rc = !memcmp(driver_ver, old_driver_ver, size);
4645 	kfree(old_driver_ver);
4646 	return rc;
4647 }
4648 
4649 /* This does a hard reset of the controller using PCI power management
4650  * states or using the doorbell register. */
cciss_kdump_hard_reset_controller(struct pci_dev * pdev)4651 static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4652 {
4653 	u64 cfg_offset;
4654 	u32 cfg_base_addr;
4655 	u64 cfg_base_addr_index;
4656 	void __iomem *vaddr;
4657 	unsigned long paddr;
4658 	u32 misc_fw_support;
4659 	int rc;
4660 	CfgTable_struct __iomem *cfgtable;
4661 	u32 use_doorbell;
4662 	u32 board_id;
4663 	u16 command_register;
4664 
4665 	/* For controllers as old a the p600, this is very nearly
4666 	 * the same thing as
4667 	 *
4668 	 * pci_save_state(pci_dev);
4669 	 * pci_set_power_state(pci_dev, PCI_D3hot);
4670 	 * pci_set_power_state(pci_dev, PCI_D0);
4671 	 * pci_restore_state(pci_dev);
4672 	 *
4673 	 * For controllers newer than the P600, the pci power state
4674 	 * method of resetting doesn't work so we have another way
4675 	 * using the doorbell register.
4676 	 */
4677 
4678 	/* Exclude 640x boards.  These are two pci devices in one slot
4679 	 * which share a battery backed cache module.  One controls the
4680 	 * cache, the other accesses the cache through the one that controls
4681 	 * it.  If we reset the one controlling the cache, the other will
4682 	 * likely not be happy.  Just forbid resetting this conjoined mess.
4683 	 */
4684 	cciss_lookup_board_id(pdev, &board_id);
4685 	if (!ctlr_is_resettable(board_id)) {
4686 		dev_warn(&pdev->dev, "Controller not resettable\n");
4687 		return -ENODEV;
4688 	}
4689 
4690 	/* if controller is soft- but not hard resettable... */
4691 	if (!ctlr_is_hard_resettable(board_id))
4692 		return -ENOTSUPP; /* try soft reset later. */
4693 
4694 	/* Save the PCI command register */
4695 	pci_read_config_word(pdev, 4, &command_register);
4696 	/* Turn the board off.  This is so that later pci_restore_state()
4697 	 * won't turn the board on before the rest of config space is ready.
4698 	 */
4699 	pci_disable_device(pdev);
4700 	pci_save_state(pdev);
4701 
4702 	/* find the first memory BAR, so we can find the cfg table */
4703 	rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4704 	if (rc)
4705 		return rc;
4706 	vaddr = remap_pci_mem(paddr, 0x250);
4707 	if (!vaddr)
4708 		return -ENOMEM;
4709 
4710 	/* find cfgtable in order to check if reset via doorbell is supported */
4711 	rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4712 					&cfg_base_addr_index, &cfg_offset);
4713 	if (rc)
4714 		goto unmap_vaddr;
4715 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
4716 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4717 	if (!cfgtable) {
4718 		rc = -ENOMEM;
4719 		goto unmap_vaddr;
4720 	}
4721 	rc = write_driver_ver_to_cfgtable(cfgtable);
4722 	if (rc)
4723 		goto unmap_vaddr;
4724 
4725 	/* If reset via doorbell register is supported, use that.
4726 	 * There are two such methods.  Favor the newest method.
4727 	 */
4728 	misc_fw_support = readl(&cfgtable->misc_fw_support);
4729 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4730 	if (use_doorbell) {
4731 		use_doorbell = DOORBELL_CTLR_RESET2;
4732 	} else {
4733 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4734 		if (use_doorbell) {
4735 			dev_warn(&pdev->dev, "Controller claims that "
4736 				"'Bit 2 doorbell reset' is "
4737 				"supported, but not 'bit 5 doorbell reset'.  "
4738 				"Firmware update is recommended.\n");
4739 			rc = -ENOTSUPP; /* use the soft reset */
4740 			goto unmap_cfgtable;
4741 		}
4742 	}
4743 
4744 	rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4745 	if (rc)
4746 		goto unmap_cfgtable;
4747 	pci_restore_state(pdev);
4748 	rc = pci_enable_device(pdev);
4749 	if (rc) {
4750 		dev_warn(&pdev->dev, "failed to enable device.\n");
4751 		goto unmap_cfgtable;
4752 	}
4753 	pci_write_config_word(pdev, 4, command_register);
4754 
4755 	/* Some devices (notably the HP Smart Array 5i Controller)
4756 	   need a little pause here */
4757 	msleep(CCISS_POST_RESET_PAUSE_MSECS);
4758 
4759 	/* Wait for board to become not ready, then ready. */
4760 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
4761 	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4762 	if (rc) {
4763 		dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4764 				"  Will try soft reset.\n");
4765 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4766 		goto unmap_cfgtable;
4767 	}
4768 	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4769 	if (rc) {
4770 		dev_warn(&pdev->dev,
4771 			"failed waiting for board to become ready "
4772 			"after hard reset\n");
4773 		goto unmap_cfgtable;
4774 	}
4775 
4776 	rc = controller_reset_failed(vaddr);
4777 	if (rc < 0)
4778 		goto unmap_cfgtable;
4779 	if (rc) {
4780 		dev_warn(&pdev->dev, "Unable to successfully hard reset "
4781 			"controller. Will try soft reset.\n");
4782 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4783 	} else {
4784 		dev_info(&pdev->dev, "Board ready after hard reset.\n");
4785 	}
4786 
4787 unmap_cfgtable:
4788 	iounmap(cfgtable);
4789 
4790 unmap_vaddr:
4791 	iounmap(vaddr);
4792 	return rc;
4793 }
4794 
cciss_init_reset_devices(struct pci_dev * pdev)4795 static int cciss_init_reset_devices(struct pci_dev *pdev)
4796 {
4797 	int rc, i;
4798 
4799 	if (!reset_devices)
4800 		return 0;
4801 
4802 	/* Reset the controller with a PCI power-cycle or via doorbell */
4803 	rc = cciss_kdump_hard_reset_controller(pdev);
4804 
4805 	/* -ENOTSUPP here means we cannot reset the controller
4806 	 * but it's already (and still) up and running in
4807 	 * "performant mode".  Or, it might be 640x, which can't reset
4808 	 * due to concerns about shared bbwc between 6402/6404 pair.
4809 	 */
4810 	if (rc == -ENOTSUPP)
4811 		return rc; /* just try to do the kdump anyhow. */
4812 	if (rc)
4813 		return -ENODEV;
4814 
4815 	/* Now try to get the controller to respond to a no-op */
4816 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4817 	for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4818 		if (cciss_noop(pdev) == 0)
4819 			break;
4820 		else
4821 			dev_warn(&pdev->dev, "no-op failed%s\n",
4822 				(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4823 					"; re-trying" : ""));
4824 		msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4825 	}
4826 	return 0;
4827 }
4828 
cciss_allocate_cmd_pool(ctlr_info_t * h)4829 static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4830 {
4831 	h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4832 		sizeof(unsigned long), GFP_KERNEL);
4833 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4834 		h->nr_cmds * sizeof(CommandList_struct),
4835 		&(h->cmd_pool_dhandle));
4836 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4837 		h->nr_cmds * sizeof(ErrorInfo_struct),
4838 		&(h->errinfo_pool_dhandle));
4839 	if ((h->cmd_pool_bits == NULL)
4840 		|| (h->cmd_pool == NULL)
4841 		|| (h->errinfo_pool == NULL)) {
4842 		dev_err(&h->pdev->dev, "out of memory");
4843 		return -ENOMEM;
4844 	}
4845 	return 0;
4846 }
4847 
cciss_allocate_scatterlists(ctlr_info_t * h)4848 static int cciss_allocate_scatterlists(ctlr_info_t *h)
4849 {
4850 	int i;
4851 
4852 	/* zero it, so that on free we need not know how many were alloc'ed */
4853 	h->scatter_list = kzalloc(h->max_commands *
4854 				sizeof(struct scatterlist *), GFP_KERNEL);
4855 	if (!h->scatter_list)
4856 		return -ENOMEM;
4857 
4858 	for (i = 0; i < h->nr_cmds; i++) {
4859 		h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4860 						h->maxsgentries, GFP_KERNEL);
4861 		if (h->scatter_list[i] == NULL) {
4862 			dev_err(&h->pdev->dev, "could not allocate "
4863 				"s/g lists\n");
4864 			return -ENOMEM;
4865 		}
4866 	}
4867 	return 0;
4868 }
4869 
cciss_free_scatterlists(ctlr_info_t * h)4870 static void cciss_free_scatterlists(ctlr_info_t *h)
4871 {
4872 	int i;
4873 
4874 	if (h->scatter_list) {
4875 		for (i = 0; i < h->nr_cmds; i++)
4876 			kfree(h->scatter_list[i]);
4877 		kfree(h->scatter_list);
4878 	}
4879 }
4880 
cciss_free_cmd_pool(ctlr_info_t * h)4881 static void cciss_free_cmd_pool(ctlr_info_t *h)
4882 {
4883 	kfree(h->cmd_pool_bits);
4884 	if (h->cmd_pool)
4885 		pci_free_consistent(h->pdev,
4886 			h->nr_cmds * sizeof(CommandList_struct),
4887 			h->cmd_pool, h->cmd_pool_dhandle);
4888 	if (h->errinfo_pool)
4889 		pci_free_consistent(h->pdev,
4890 			h->nr_cmds * sizeof(ErrorInfo_struct),
4891 			h->errinfo_pool, h->errinfo_pool_dhandle);
4892 }
4893 
cciss_request_irq(ctlr_info_t * h,irqreturn_t (* msixhandler)(int,void *),irqreturn_t (* intxhandler)(int,void *))4894 static int cciss_request_irq(ctlr_info_t *h,
4895 	irqreturn_t (*msixhandler)(int, void *),
4896 	irqreturn_t (*intxhandler)(int, void *))
4897 {
4898 	if (h->msix_vector || h->msi_vector) {
4899 		if (!request_irq(h->intr[h->intr_mode], msixhandler,
4900 				0, h->devname, h))
4901 			return 0;
4902 		dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4903 			" for %s\n", h->intr[h->intr_mode],
4904 			h->devname);
4905 		return -1;
4906 	}
4907 
4908 	if (!request_irq(h->intr[h->intr_mode], intxhandler,
4909 			IRQF_SHARED, h->devname, h))
4910 		return 0;
4911 	dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4912 		h->intr[h->intr_mode], h->devname);
4913 	return -1;
4914 }
4915 
cciss_kdump_soft_reset(ctlr_info_t * h)4916 static int cciss_kdump_soft_reset(ctlr_info_t *h)
4917 {
4918 	if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4919 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4920 		return -EIO;
4921 	}
4922 
4923 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4924 	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4925 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4926 		return -1;
4927 	}
4928 
4929 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4930 	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4931 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4932 			"after soft reset.\n");
4933 		return -1;
4934 	}
4935 
4936 	return 0;
4937 }
4938 
cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t * h)4939 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4940 {
4941 	int ctlr = h->ctlr;
4942 
4943 	free_irq(h->intr[h->intr_mode], h);
4944 #ifdef CONFIG_PCI_MSI
4945 	if (h->msix_vector)
4946 		pci_disable_msix(h->pdev);
4947 	else if (h->msi_vector)
4948 		pci_disable_msi(h->pdev);
4949 #endif /* CONFIG_PCI_MSI */
4950 	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4951 	cciss_free_scatterlists(h);
4952 	cciss_free_cmd_pool(h);
4953 	kfree(h->blockFetchTable);
4954 	if (h->reply_pool)
4955 		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4956 				h->reply_pool, h->reply_pool_dhandle);
4957 	if (h->transtable)
4958 		iounmap(h->transtable);
4959 	if (h->cfgtable)
4960 		iounmap(h->cfgtable);
4961 	if (h->vaddr)
4962 		iounmap(h->vaddr);
4963 	unregister_blkdev(h->major, h->devname);
4964 	cciss_destroy_hba_sysfs_entry(h);
4965 	pci_release_regions(h->pdev);
4966 	kfree(h);
4967 	hba[ctlr] = NULL;
4968 }
4969 
4970 /*
4971  *  This is it.  Find all the controllers and register them.  I really hate
4972  *  stealing all these major device numbers.
4973  *  returns the number of block devices registered.
4974  */
cciss_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4975 static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4976 {
4977 	int i;
4978 	int j = 0;
4979 	int rc;
4980 	int try_soft_reset = 0;
4981 	int dac, return_code;
4982 	InquiryData_struct *inq_buff;
4983 	ctlr_info_t *h;
4984 	unsigned long flags;
4985 
4986 	/*
4987 	 * By default the cciss driver is used for all older HP Smart Array
4988 	 * controllers. There are module paramaters that allow a user to
4989 	 * override this behavior and instead use the hpsa SCSI driver. If
4990 	 * this is the case cciss may be loaded first from the kdump initrd
4991 	 * image and cause a kernel panic. So if reset_devices is true and
4992 	 * cciss_allow_hpsa is set just bail.
4993 	 */
4994 	if ((reset_devices) && (cciss_allow_hpsa == 1))
4995 		return -ENODEV;
4996 	rc = cciss_init_reset_devices(pdev);
4997 	if (rc) {
4998 		if (rc != -ENOTSUPP)
4999 			return rc;
5000 		/* If the reset fails in a particular way (it has no way to do
5001 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
5002 		 * a soft reset once we get the controller configured up to the
5003 		 * point that it can accept a command.
5004 		 */
5005 		try_soft_reset = 1;
5006 		rc = 0;
5007 	}
5008 
5009 reinit_after_soft_reset:
5010 
5011 	i = alloc_cciss_hba(pdev);
5012 	if (i < 0)
5013 		return -ENOMEM;
5014 
5015 	h = hba[i];
5016 	h->pdev = pdev;
5017 	h->busy_initializing = 1;
5018 	h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5019 	INIT_LIST_HEAD(&h->cmpQ);
5020 	INIT_LIST_HEAD(&h->reqQ);
5021 	mutex_init(&h->busy_shutting_down);
5022 
5023 	if (cciss_pci_init(h) != 0)
5024 		goto clean_no_release_regions;
5025 
5026 	sprintf(h->devname, "cciss%d", i);
5027 	h->ctlr = i;
5028 
5029 	if (cciss_tape_cmds < 2)
5030 		cciss_tape_cmds = 2;
5031 	if (cciss_tape_cmds > 16)
5032 		cciss_tape_cmds = 16;
5033 
5034 	init_completion(&h->scan_wait);
5035 
5036 	if (cciss_create_hba_sysfs_entry(h))
5037 		goto clean0;
5038 
5039 	/* configure PCI DMA stuff */
5040 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5041 		dac = 1;
5042 	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5043 		dac = 0;
5044 	else {
5045 		dev_err(&h->pdev->dev, "no suitable DMA available\n");
5046 		goto clean1;
5047 	}
5048 
5049 	/*
5050 	 * register with the major number, or get a dynamic major number
5051 	 * by passing 0 as argument.  This is done for greater than
5052 	 * 8 controller support.
5053 	 */
5054 	if (i < MAX_CTLR_ORIG)
5055 		h->major = COMPAQ_CISS_MAJOR + i;
5056 	rc = register_blkdev(h->major, h->devname);
5057 	if (rc == -EBUSY || rc == -EINVAL) {
5058 		dev_err(&h->pdev->dev,
5059 		       "Unable to get major number %d for %s "
5060 		       "on hba %d\n", h->major, h->devname, i);
5061 		goto clean1;
5062 	} else {
5063 		if (i >= MAX_CTLR_ORIG)
5064 			h->major = rc;
5065 	}
5066 
5067 	/* make sure the board interrupts are off */
5068 	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5069 	rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5070 	if (rc)
5071 		goto clean2;
5072 
5073 	dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5074 	       h->devname, pdev->device, pci_name(pdev),
5075 	       h->intr[h->intr_mode], dac ? "" : " not");
5076 
5077 	if (cciss_allocate_cmd_pool(h))
5078 		goto clean4;
5079 
5080 	if (cciss_allocate_scatterlists(h))
5081 		goto clean4;
5082 
5083 	h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5084 		h->chainsize, h->nr_cmds);
5085 	if (!h->cmd_sg_list && h->chainsize > 0)
5086 		goto clean4;
5087 
5088 	spin_lock_init(&h->lock);
5089 
5090 	/* Initialize the pdev driver private data.
5091 	   have it point to h.  */
5092 	pci_set_drvdata(pdev, h);
5093 	/* command and error info recs zeroed out before
5094 	   they are used */
5095 	bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5096 
5097 	h->num_luns = 0;
5098 	h->highest_lun = -1;
5099 	for (j = 0; j < CISS_MAX_LUN; j++) {
5100 		h->drv[j] = NULL;
5101 		h->gendisk[j] = NULL;
5102 	}
5103 
5104 	/* At this point, the controller is ready to take commands.
5105 	 * Now, if reset_devices and the hard reset didn't work, try
5106 	 * the soft reset and see if that works.
5107 	 */
5108 	if (try_soft_reset) {
5109 
5110 		/* This is kind of gross.  We may or may not get a completion
5111 		 * from the soft reset command, and if we do, then the value
5112 		 * from the fifo may or may not be valid.  So, we wait 10 secs
5113 		 * after the reset throwing away any completions we get during
5114 		 * that time.  Unregister the interrupt handler and register
5115 		 * fake ones to scoop up any residual completions.
5116 		 */
5117 		spin_lock_irqsave(&h->lock, flags);
5118 		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5119 		spin_unlock_irqrestore(&h->lock, flags);
5120 		free_irq(h->intr[h->intr_mode], h);
5121 		rc = cciss_request_irq(h, cciss_msix_discard_completions,
5122 					cciss_intx_discard_completions);
5123 		if (rc) {
5124 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
5125 				"soft reset.\n");
5126 			goto clean4;
5127 		}
5128 
5129 		rc = cciss_kdump_soft_reset(h);
5130 		if (rc) {
5131 			dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5132 			goto clean4;
5133 		}
5134 
5135 		dev_info(&h->pdev->dev, "Board READY.\n");
5136 		dev_info(&h->pdev->dev,
5137 			"Waiting for stale completions to drain.\n");
5138 		h->access.set_intr_mask(h, CCISS_INTR_ON);
5139 		msleep(10000);
5140 		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5141 
5142 		rc = controller_reset_failed(h->cfgtable);
5143 		if (rc)
5144 			dev_info(&h->pdev->dev,
5145 				"Soft reset appears to have failed.\n");
5146 
5147 		/* since the controller's reset, we have to go back and re-init
5148 		 * everything.  Easiest to just forget what we've done and do it
5149 		 * all over again.
5150 		 */
5151 		cciss_undo_allocations_after_kdump_soft_reset(h);
5152 		try_soft_reset = 0;
5153 		if (rc)
5154 			/* don't go to clean4, we already unallocated */
5155 			return -ENODEV;
5156 
5157 		goto reinit_after_soft_reset;
5158 	}
5159 
5160 	cciss_scsi_setup(h);
5161 
5162 	/* Turn the interrupts on so we can service requests */
5163 	h->access.set_intr_mask(h, CCISS_INTR_ON);
5164 
5165 	/* Get the firmware version */
5166 	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5167 	if (inq_buff == NULL) {
5168 		dev_err(&h->pdev->dev, "out of memory\n");
5169 		goto clean4;
5170 	}
5171 
5172 	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5173 		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5174 	if (return_code == IO_OK) {
5175 		h->firm_ver[0] = inq_buff->data_byte[32];
5176 		h->firm_ver[1] = inq_buff->data_byte[33];
5177 		h->firm_ver[2] = inq_buff->data_byte[34];
5178 		h->firm_ver[3] = inq_buff->data_byte[35];
5179 	} else {	 /* send command failed */
5180 		dev_warn(&h->pdev->dev, "unable to determine firmware"
5181 			" version of controller\n");
5182 	}
5183 	kfree(inq_buff);
5184 
5185 	cciss_procinit(h);
5186 
5187 	h->cciss_max_sectors = 8192;
5188 
5189 	rebuild_lun_table(h, 1, 0);
5190 	cciss_engage_scsi(h);
5191 	h->busy_initializing = 0;
5192 	return 0;
5193 
5194 clean4:
5195 	cciss_free_cmd_pool(h);
5196 	cciss_free_scatterlists(h);
5197 	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5198 	free_irq(h->intr[h->intr_mode], h);
5199 clean2:
5200 	unregister_blkdev(h->major, h->devname);
5201 clean1:
5202 	cciss_destroy_hba_sysfs_entry(h);
5203 clean0:
5204 	pci_release_regions(pdev);
5205 clean_no_release_regions:
5206 	h->busy_initializing = 0;
5207 
5208 	/*
5209 	 * Deliberately omit pci_disable_device(): it does something nasty to
5210 	 * Smart Array controllers that pci_enable_device does not undo
5211 	 */
5212 	pci_set_drvdata(pdev, NULL);
5213 	free_hba(h);
5214 	return -ENODEV;
5215 }
5216 
cciss_shutdown(struct pci_dev * pdev)5217 static void cciss_shutdown(struct pci_dev *pdev)
5218 {
5219 	ctlr_info_t *h;
5220 	char *flush_buf;
5221 	int return_code;
5222 
5223 	h = pci_get_drvdata(pdev);
5224 	flush_buf = kzalloc(4, GFP_KERNEL);
5225 	if (!flush_buf) {
5226 		dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5227 		return;
5228 	}
5229 	/* write all data in the battery backed cache to disk */
5230 	return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5231 		4, 0, CTLR_LUNID, TYPE_CMD);
5232 	kfree(flush_buf);
5233 	if (return_code != IO_OK)
5234 		dev_warn(&h->pdev->dev, "Error flushing cache\n");
5235 	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5236 	free_irq(h->intr[h->intr_mode], h);
5237 }
5238 
cciss_enter_simple_mode(struct ctlr_info * h)5239 static int cciss_enter_simple_mode(struct ctlr_info *h)
5240 {
5241 	u32 trans_support;
5242 
5243 	trans_support = readl(&(h->cfgtable->TransportSupport));
5244 	if (!(trans_support & SIMPLE_MODE))
5245 		return -ENOTSUPP;
5246 
5247 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5248 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5249 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5250 	cciss_wait_for_mode_change_ack(h);
5251 	print_cfg_table(h);
5252 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5253 		dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5254 		return -ENODEV;
5255 	}
5256 	h->transMethod = CFGTBL_Trans_Simple;
5257 	return 0;
5258 }
5259 
5260 
cciss_remove_one(struct pci_dev * pdev)5261 static void cciss_remove_one(struct pci_dev *pdev)
5262 {
5263 	ctlr_info_t *h;
5264 	int i, j;
5265 
5266 	if (pci_get_drvdata(pdev) == NULL) {
5267 		dev_err(&pdev->dev, "Unable to remove device\n");
5268 		return;
5269 	}
5270 
5271 	h = pci_get_drvdata(pdev);
5272 	i = h->ctlr;
5273 	if (hba[i] == NULL) {
5274 		dev_err(&pdev->dev, "device appears to already be removed\n");
5275 		return;
5276 	}
5277 
5278 	mutex_lock(&h->busy_shutting_down);
5279 
5280 	remove_from_scan_list(h);
5281 	remove_proc_entry(h->devname, proc_cciss);
5282 	unregister_blkdev(h->major, h->devname);
5283 
5284 	/* remove it from the disk list */
5285 	for (j = 0; j < CISS_MAX_LUN; j++) {
5286 		struct gendisk *disk = h->gendisk[j];
5287 		if (disk) {
5288 			struct request_queue *q = disk->queue;
5289 
5290 			if (disk->flags & GENHD_FL_UP) {
5291 				cciss_destroy_ld_sysfs_entry(h, j, 1);
5292 				del_gendisk(disk);
5293 			}
5294 			if (q)
5295 				blk_cleanup_queue(q);
5296 		}
5297 	}
5298 
5299 #ifdef CONFIG_CISS_SCSI_TAPE
5300 	cciss_unregister_scsi(h);	/* unhook from SCSI subsystem */
5301 #endif
5302 
5303 	cciss_shutdown(pdev);
5304 
5305 #ifdef CONFIG_PCI_MSI
5306 	if (h->msix_vector)
5307 		pci_disable_msix(h->pdev);
5308 	else if (h->msi_vector)
5309 		pci_disable_msi(h->pdev);
5310 #endif				/* CONFIG_PCI_MSI */
5311 
5312 	iounmap(h->transtable);
5313 	iounmap(h->cfgtable);
5314 	iounmap(h->vaddr);
5315 
5316 	cciss_free_cmd_pool(h);
5317 	/* Free up sg elements */
5318 	for (j = 0; j < h->nr_cmds; j++)
5319 		kfree(h->scatter_list[j]);
5320 	kfree(h->scatter_list);
5321 	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5322 	kfree(h->blockFetchTable);
5323 	if (h->reply_pool)
5324 		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5325 				h->reply_pool, h->reply_pool_dhandle);
5326 	/*
5327 	 * Deliberately omit pci_disable_device(): it does something nasty to
5328 	 * Smart Array controllers that pci_enable_device does not undo
5329 	 */
5330 	pci_release_regions(pdev);
5331 	pci_set_drvdata(pdev, NULL);
5332 	cciss_destroy_hba_sysfs_entry(h);
5333 	mutex_unlock(&h->busy_shutting_down);
5334 	free_hba(h);
5335 }
5336 
5337 static struct pci_driver cciss_pci_driver = {
5338 	.name = "cciss",
5339 	.probe = cciss_init_one,
5340 	.remove = cciss_remove_one,
5341 	.id_table = cciss_pci_device_id,	/* id_table */
5342 	.shutdown = cciss_shutdown,
5343 };
5344 
5345 /*
5346  *  This is it.  Register the PCI driver information for the cards we control
5347  *  the OS will call our registered routines when it finds one of our cards.
5348  */
cciss_init(void)5349 static int __init cciss_init(void)
5350 {
5351 	int err;
5352 
5353 	/*
5354 	 * The hardware requires that commands are aligned on a 64-bit
5355 	 * boundary. Given that we use pci_alloc_consistent() to allocate an
5356 	 * array of them, the size must be a multiple of 8 bytes.
5357 	 */
5358 	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5359 	printk(KERN_INFO DRIVER_NAME "\n");
5360 
5361 	err = bus_register(&cciss_bus_type);
5362 	if (err)
5363 		return err;
5364 
5365 	/* Start the scan thread */
5366 	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5367 	if (IS_ERR(cciss_scan_thread)) {
5368 		err = PTR_ERR(cciss_scan_thread);
5369 		goto err_bus_unregister;
5370 	}
5371 
5372 	/* Register for our PCI devices */
5373 	err = pci_register_driver(&cciss_pci_driver);
5374 	if (err)
5375 		goto err_thread_stop;
5376 
5377 	return err;
5378 
5379 err_thread_stop:
5380 	kthread_stop(cciss_scan_thread);
5381 err_bus_unregister:
5382 	bus_unregister(&cciss_bus_type);
5383 
5384 	return err;
5385 }
5386 
cciss_cleanup(void)5387 static void __exit cciss_cleanup(void)
5388 {
5389 	int i;
5390 
5391 	pci_unregister_driver(&cciss_pci_driver);
5392 	/* double check that all controller entrys have been removed */
5393 	for (i = 0; i < MAX_CTLR; i++) {
5394 		if (hba[i] != NULL) {
5395 			dev_warn(&hba[i]->pdev->dev,
5396 				"had to remove controller\n");
5397 			cciss_remove_one(hba[i]->pdev);
5398 		}
5399 	}
5400 	kthread_stop(cciss_scan_thread);
5401 	if (proc_cciss)
5402 		remove_proc_entry("driver/cciss", NULL);
5403 	bus_unregister(&cciss_bus_type);
5404 }
5405 
5406 module_init(cciss_init);
5407 module_exit(cciss_cleanup);
5408