1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22 
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <linux/bitmap.h>
45 #include <linux/io.h>
46 #include <asm/uaccess.h>
47 
48 #include <linux/dma-mapping.h>
49 #include <linux/blkdev.h>
50 #include <linux/genhd.h>
51 #include <linux/completion.h>
52 #include <scsi/scsi.h>
53 #include <scsi/sg.h>
54 #include <scsi/scsi_ioctl.h>
55 #include <linux/cdrom.h>
56 #include <linux/scatterlist.h>
57 #include <linux/kthread.h>
58 
59 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 
63 /* Embedded module documentation macros - see modules.h */
64 MODULE_AUTHOR("Hewlett-Packard Company");
65 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67 MODULE_VERSION("3.6.26");
68 MODULE_LICENSE("GPL");
69 static int cciss_tape_cmds = 6;
70 module_param(cciss_tape_cmds, int, 0644);
71 MODULE_PARM_DESC(cciss_tape_cmds,
72 	"number of commands to allocate for tape devices (default: 6)");
73 static int cciss_simple_mode;
74 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(cciss_simple_mode,
76 	"Use 'simple mode' rather than 'performant mode'");
77 
78 static int cciss_allow_hpsa;
79 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(cciss_allow_hpsa,
81 	"Prevent cciss driver from accessing hardware known to be "
82 	" supported by the hpsa driver");
83 
84 static DEFINE_MUTEX(cciss_mutex);
85 static struct proc_dir_entry *proc_cciss;
86 
87 #include "cciss_cmd.h"
88 #include "cciss.h"
89 #include <linux/cciss_ioctl.h>
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id cciss_pci_device_id[] = {
93 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
94 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
95 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
96 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
97 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
98 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
99 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
100 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
101 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
113 	{0,}
114 };
115 
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
117 
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123 	{0x40700E11, "Smart Array 5300", &SA5_access},
124 	{0x40800E11, "Smart Array 5i", &SA5B_access},
125 	{0x40820E11, "Smart Array 532", &SA5B_access},
126 	{0x40830E11, "Smart Array 5312", &SA5B_access},
127 	{0x409A0E11, "Smart Array 641", &SA5_access},
128 	{0x409B0E11, "Smart Array 642", &SA5_access},
129 	{0x409C0E11, "Smart Array 6400", &SA5_access},
130 	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131 	{0x40910E11, "Smart Array 6i", &SA5_access},
132 	{0x3225103C, "Smart Array P600", &SA5_access},
133 	{0x3223103C, "Smart Array P800", &SA5_access},
134 	{0x3234103C, "Smart Array P400", &SA5_access},
135 	{0x3235103C, "Smart Array P400i", &SA5_access},
136 	{0x3211103C, "Smart Array E200i", &SA5_access},
137 	{0x3212103C, "Smart Array E200", &SA5_access},
138 	{0x3213103C, "Smart Array E200i", &SA5_access},
139 	{0x3214103C, "Smart Array E200i", &SA5_access},
140 	{0x3215103C, "Smart Array E200i", &SA5_access},
141 	{0x3237103C, "Smart Array E500", &SA5_access},
142 	{0x3223103C, "Smart Array P800", &SA5_access},
143 	{0x3234103C, "Smart Array P400", &SA5_access},
144 	{0x323D103C, "Smart Array P700m", &SA5_access},
145 };
146 
147 /* How long to wait (in milliseconds) for board to go into simple mode */
148 #define MAX_CONFIG_WAIT 30000
149 #define MAX_IOCTL_CONFIG_WAIT 1000
150 
151 /*define how many times we will try a command because of bus resets */
152 #define MAX_CMD_RETRIES 3
153 
154 #define MAX_CTLR	32
155 
156 /* Originally cciss driver only supports 8 major numbers */
157 #define MAX_CTLR_ORIG 	8
158 
159 static ctlr_info_t *hba[MAX_CTLR];
160 
161 static struct task_struct *cciss_scan_thread;
162 static DEFINE_MUTEX(scan_mutex);
163 static LIST_HEAD(scan_q);
164 
165 static void do_cciss_request(struct request_queue *q);
166 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
167 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
168 static int cciss_open(struct block_device *bdev, fmode_t mode);
169 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
170 static void cciss_release(struct gendisk *disk, fmode_t mode);
171 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
172 		       unsigned int cmd, unsigned long arg);
173 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
174 
175 static int cciss_revalidate(struct gendisk *disk);
176 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
177 static int deregister_disk(ctlr_info_t *h, int drv_index,
178 			   int clear_all, int via_ioctl);
179 
180 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
181 			sector_t *total_size, unsigned int *block_size);
182 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
183 			sector_t *total_size, unsigned int *block_size);
184 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
185 			sector_t total_size,
186 			unsigned int block_size, InquiryData_struct *inq_buff,
187 				   drive_info_struct *drv);
188 static void cciss_interrupt_mode(ctlr_info_t *);
189 static int cciss_enter_simple_mode(struct ctlr_info *h);
190 static void start_io(ctlr_info_t *h);
191 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
192 			__u8 page_code, unsigned char scsi3addr[],
193 			int cmd_type);
194 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
195 	int attempt_retry);
196 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
197 
198 static int add_to_scan_list(struct ctlr_info *h);
199 static int scan_thread(void *data);
200 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
201 static void cciss_hba_release(struct device *dev);
202 static void cciss_device_release(struct device *dev);
203 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
204 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
205 static inline u32 next_command(ctlr_info_t *h);
206 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
207 				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
208 				u64 *cfg_offset);
209 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
210 				     unsigned long *memory_bar);
211 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
212 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
213 
214 /* performant mode helper functions */
215 static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
216 				int *bucket_map);
217 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
218 
219 #ifdef CONFIG_PROC_FS
220 static void cciss_procinit(ctlr_info_t *h);
221 #else
cciss_procinit(ctlr_info_t * h)222 static void cciss_procinit(ctlr_info_t *h)
223 {
224 }
225 #endif				/* CONFIG_PROC_FS */
226 
227 #ifdef CONFIG_COMPAT
228 static int cciss_compat_ioctl(struct block_device *, fmode_t,
229 			      unsigned, unsigned long);
230 #endif
231 
232 static const struct block_device_operations cciss_fops = {
233 	.owner = THIS_MODULE,
234 	.open = cciss_unlocked_open,
235 	.release = cciss_release,
236 	.ioctl = cciss_ioctl,
237 	.getgeo = cciss_getgeo,
238 #ifdef CONFIG_COMPAT
239 	.compat_ioctl = cciss_compat_ioctl,
240 #endif
241 	.revalidate_disk = cciss_revalidate,
242 };
243 
244 /* set_performant_mode: Modify the tag for cciss performant
245  * set bit 0 for pull model, bits 3-1 for block fetch
246  * register number
247  */
set_performant_mode(ctlr_info_t * h,CommandList_struct * c)248 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
249 {
250 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
251 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
252 }
253 
254 /*
255  * Enqueuing and dequeuing functions for cmdlists.
256  */
addQ(struct list_head * list,CommandList_struct * c)257 static inline void addQ(struct list_head *list, CommandList_struct *c)
258 {
259 	list_add_tail(&c->list, list);
260 }
261 
removeQ(CommandList_struct * c)262 static inline void removeQ(CommandList_struct *c)
263 {
264 	/*
265 	 * After kexec/dump some commands might still
266 	 * be in flight, which the firmware will try
267 	 * to complete. Resetting the firmware doesn't work
268 	 * with old fw revisions, so we have to mark
269 	 * them off as 'stale' to prevent the driver from
270 	 * falling over.
271 	 */
272 	if (WARN_ON(list_empty(&c->list))) {
273 		c->cmd_type = CMD_MSG_STALE;
274 		return;
275 	}
276 
277 	list_del_init(&c->list);
278 }
279 
enqueue_cmd_and_start_io(ctlr_info_t * h,CommandList_struct * c)280 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
281 	CommandList_struct *c)
282 {
283 	unsigned long flags;
284 	set_performant_mode(h, c);
285 	spin_lock_irqsave(&h->lock, flags);
286 	addQ(&h->reqQ, c);
287 	h->Qdepth++;
288 	if (h->Qdepth > h->maxQsinceinit)
289 		h->maxQsinceinit = h->Qdepth;
290 	start_io(h);
291 	spin_unlock_irqrestore(&h->lock, flags);
292 }
293 
cciss_free_sg_chain_blocks(SGDescriptor_struct ** cmd_sg_list,int nr_cmds)294 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
295 	int nr_cmds)
296 {
297 	int i;
298 
299 	if (!cmd_sg_list)
300 		return;
301 	for (i = 0; i < nr_cmds; i++) {
302 		kfree(cmd_sg_list[i]);
303 		cmd_sg_list[i] = NULL;
304 	}
305 	kfree(cmd_sg_list);
306 }
307 
cciss_allocate_sg_chain_blocks(ctlr_info_t * h,int chainsize,int nr_cmds)308 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
309 	ctlr_info_t *h, int chainsize, int nr_cmds)
310 {
311 	int j;
312 	SGDescriptor_struct **cmd_sg_list;
313 
314 	if (chainsize <= 0)
315 		return NULL;
316 
317 	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
318 	if (!cmd_sg_list)
319 		return NULL;
320 
321 	/* Build up chain blocks for each command */
322 	for (j = 0; j < nr_cmds; j++) {
323 		/* Need a block of chainsized s/g elements. */
324 		cmd_sg_list[j] = kmalloc((chainsize *
325 			sizeof(*cmd_sg_list[j])), GFP_KERNEL);
326 		if (!cmd_sg_list[j]) {
327 			dev_err(&h->pdev->dev, "Cannot get memory "
328 				"for s/g chains.\n");
329 			goto clean;
330 		}
331 	}
332 	return cmd_sg_list;
333 clean:
334 	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
335 	return NULL;
336 }
337 
cciss_unmap_sg_chain_block(ctlr_info_t * h,CommandList_struct * c)338 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
339 {
340 	SGDescriptor_struct *chain_sg;
341 	u64bit temp64;
342 
343 	if (c->Header.SGTotal <= h->max_cmd_sgentries)
344 		return;
345 
346 	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
347 	temp64.val32.lower = chain_sg->Addr.lower;
348 	temp64.val32.upper = chain_sg->Addr.upper;
349 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
350 }
351 
cciss_map_sg_chain_block(ctlr_info_t * h,CommandList_struct * c,SGDescriptor_struct * chain_block,int len)352 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
353 	SGDescriptor_struct *chain_block, int len)
354 {
355 	SGDescriptor_struct *chain_sg;
356 	u64bit temp64;
357 
358 	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
359 	chain_sg->Ext = CCISS_SG_CHAIN;
360 	chain_sg->Len = len;
361 	temp64.val = pci_map_single(h->pdev, chain_block, len,
362 				PCI_DMA_TODEVICE);
363 	chain_sg->Addr.lower = temp64.val32.lower;
364 	chain_sg->Addr.upper = temp64.val32.upper;
365 }
366 
367 #include "cciss_scsi.c"		/* For SCSI tape support */
368 
369 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
370 	"UNKNOWN"
371 };
372 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
373 
374 #ifdef CONFIG_PROC_FS
375 
376 /*
377  * Report information about this controller.
378  */
379 #define ENG_GIG 1000000000
380 #define ENG_GIG_FACTOR (ENG_GIG/512)
381 #define ENGAGE_SCSI	"engage scsi"
382 
cciss_seq_show_header(struct seq_file * seq)383 static void cciss_seq_show_header(struct seq_file *seq)
384 {
385 	ctlr_info_t *h = seq->private;
386 
387 	seq_printf(seq, "%s: HP %s Controller\n"
388 		"Board ID: 0x%08lx\n"
389 		"Firmware Version: %c%c%c%c\n"
390 		"IRQ: %d\n"
391 		"Logical drives: %d\n"
392 		"Current Q depth: %d\n"
393 		"Current # commands on controller: %d\n"
394 		"Max Q depth since init: %d\n"
395 		"Max # commands on controller since init: %d\n"
396 		"Max SG entries since init: %d\n",
397 		h->devname,
398 		h->product_name,
399 		(unsigned long)h->board_id,
400 		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
401 		h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
402 		h->num_luns,
403 		h->Qdepth, h->commands_outstanding,
404 		h->maxQsinceinit, h->max_outstanding, h->maxSG);
405 
406 #ifdef CONFIG_CISS_SCSI_TAPE
407 	cciss_seq_tape_report(seq, h);
408 #endif /* CONFIG_CISS_SCSI_TAPE */
409 }
410 
cciss_seq_start(struct seq_file * seq,loff_t * pos)411 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
412 {
413 	ctlr_info_t *h = seq->private;
414 	unsigned long flags;
415 
416 	/* prevent displaying bogus info during configuration
417 	 * or deconfiguration of a logical volume
418 	 */
419 	spin_lock_irqsave(&h->lock, flags);
420 	if (h->busy_configuring) {
421 		spin_unlock_irqrestore(&h->lock, flags);
422 		return ERR_PTR(-EBUSY);
423 	}
424 	h->busy_configuring = 1;
425 	spin_unlock_irqrestore(&h->lock, flags);
426 
427 	if (*pos == 0)
428 		cciss_seq_show_header(seq);
429 
430 	return pos;
431 }
432 
cciss_seq_show(struct seq_file * seq,void * v)433 static int cciss_seq_show(struct seq_file *seq, void *v)
434 {
435 	sector_t vol_sz, vol_sz_frac;
436 	ctlr_info_t *h = seq->private;
437 	unsigned ctlr = h->ctlr;
438 	loff_t *pos = v;
439 	drive_info_struct *drv = h->drv[*pos];
440 
441 	if (*pos > h->highest_lun)
442 		return 0;
443 
444 	if (drv == NULL) /* it's possible for h->drv[] to have holes. */
445 		return 0;
446 
447 	if (drv->heads == 0)
448 		return 0;
449 
450 	vol_sz = drv->nr_blocks;
451 	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
452 	vol_sz_frac *= 100;
453 	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
454 
455 	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
456 		drv->raid_level = RAID_UNKNOWN;
457 	seq_printf(seq, "cciss/c%dd%d:"
458 			"\t%4u.%02uGB\tRAID %s\n",
459 			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
460 			raid_label[drv->raid_level]);
461 	return 0;
462 }
463 
cciss_seq_next(struct seq_file * seq,void * v,loff_t * pos)464 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
465 {
466 	ctlr_info_t *h = seq->private;
467 
468 	if (*pos > h->highest_lun)
469 		return NULL;
470 	*pos += 1;
471 
472 	return pos;
473 }
474 
cciss_seq_stop(struct seq_file * seq,void * v)475 static void cciss_seq_stop(struct seq_file *seq, void *v)
476 {
477 	ctlr_info_t *h = seq->private;
478 
479 	/* Only reset h->busy_configuring if we succeeded in setting
480 	 * it during cciss_seq_start. */
481 	if (v == ERR_PTR(-EBUSY))
482 		return;
483 
484 	h->busy_configuring = 0;
485 }
486 
487 static const struct seq_operations cciss_seq_ops = {
488 	.start = cciss_seq_start,
489 	.show  = cciss_seq_show,
490 	.next  = cciss_seq_next,
491 	.stop  = cciss_seq_stop,
492 };
493 
cciss_seq_open(struct inode * inode,struct file * file)494 static int cciss_seq_open(struct inode *inode, struct file *file)
495 {
496 	int ret = seq_open(file, &cciss_seq_ops);
497 	struct seq_file *seq = file->private_data;
498 
499 	if (!ret)
500 		seq->private = PDE_DATA(inode);
501 
502 	return ret;
503 }
504 
505 static ssize_t
cciss_proc_write(struct file * file,const char __user * buf,size_t length,loff_t * ppos)506 cciss_proc_write(struct file *file, const char __user *buf,
507 		 size_t length, loff_t *ppos)
508 {
509 	int err;
510 	char *buffer;
511 
512 #ifndef CONFIG_CISS_SCSI_TAPE
513 	return -EINVAL;
514 #endif
515 
516 	if (!buf || length > PAGE_SIZE - 1)
517 		return -EINVAL;
518 
519 	buffer = (char *)__get_free_page(GFP_KERNEL);
520 	if (!buffer)
521 		return -ENOMEM;
522 
523 	err = -EFAULT;
524 	if (copy_from_user(buffer, buf, length))
525 		goto out;
526 	buffer[length] = '\0';
527 
528 #ifdef CONFIG_CISS_SCSI_TAPE
529 	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
530 		struct seq_file *seq = file->private_data;
531 		ctlr_info_t *h = seq->private;
532 
533 		err = cciss_engage_scsi(h);
534 		if (err == 0)
535 			err = length;
536 	} else
537 #endif /* CONFIG_CISS_SCSI_TAPE */
538 		err = -EINVAL;
539 	/* might be nice to have "disengage" too, but it's not
540 	   safely possible. (only 1 module use count, lock issues.) */
541 
542 out:
543 	free_page((unsigned long)buffer);
544 	return err;
545 }
546 
547 static const struct file_operations cciss_proc_fops = {
548 	.owner	 = THIS_MODULE,
549 	.open    = cciss_seq_open,
550 	.read    = seq_read,
551 	.llseek  = seq_lseek,
552 	.release = seq_release,
553 	.write	 = cciss_proc_write,
554 };
555 
cciss_procinit(ctlr_info_t * h)556 static void cciss_procinit(ctlr_info_t *h)
557 {
558 	struct proc_dir_entry *pde;
559 
560 	if (proc_cciss == NULL)
561 		proc_cciss = proc_mkdir("driver/cciss", NULL);
562 	if (!proc_cciss)
563 		return;
564 	pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
565 					S_IROTH, proc_cciss,
566 					&cciss_proc_fops, h);
567 }
568 #endif				/* CONFIG_PROC_FS */
569 
570 #define MAX_PRODUCT_NAME_LEN 19
571 
572 #define to_hba(n) container_of(n, struct ctlr_info, dev)
573 #define to_drv(n) container_of(n, drive_info_struct, dev)
574 
575 /* List of controllers which cannot be hard reset on kexec with reset_devices */
576 static u32 unresettable_controller[] = {
577 	0x324a103C, /* Smart Array P712m */
578 	0x324b103C, /* SmartArray P711m */
579 	0x3223103C, /* Smart Array P800 */
580 	0x3234103C, /* Smart Array P400 */
581 	0x3235103C, /* Smart Array P400i */
582 	0x3211103C, /* Smart Array E200i */
583 	0x3212103C, /* Smart Array E200 */
584 	0x3213103C, /* Smart Array E200i */
585 	0x3214103C, /* Smart Array E200i */
586 	0x3215103C, /* Smart Array E200i */
587 	0x3237103C, /* Smart Array E500 */
588 	0x323D103C, /* Smart Array P700m */
589 	0x409C0E11, /* Smart Array 6400 */
590 	0x409D0E11, /* Smart Array 6400 EM */
591 };
592 
593 /* List of controllers which cannot even be soft reset */
594 static u32 soft_unresettable_controller[] = {
595 	0x409C0E11, /* Smart Array 6400 */
596 	0x409D0E11, /* Smart Array 6400 EM */
597 };
598 
ctlr_is_hard_resettable(u32 board_id)599 static int ctlr_is_hard_resettable(u32 board_id)
600 {
601 	int i;
602 
603 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
604 		if (unresettable_controller[i] == board_id)
605 			return 0;
606 	return 1;
607 }
608 
ctlr_is_soft_resettable(u32 board_id)609 static int ctlr_is_soft_resettable(u32 board_id)
610 {
611 	int i;
612 
613 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
614 		if (soft_unresettable_controller[i] == board_id)
615 			return 0;
616 	return 1;
617 }
618 
ctlr_is_resettable(u32 board_id)619 static int ctlr_is_resettable(u32 board_id)
620 {
621 	return ctlr_is_hard_resettable(board_id) ||
622 		ctlr_is_soft_resettable(board_id);
623 }
624 
host_show_resettable(struct device * dev,struct device_attribute * attr,char * buf)625 static ssize_t host_show_resettable(struct device *dev,
626 				    struct device_attribute *attr,
627 				    char *buf)
628 {
629 	struct ctlr_info *h = to_hba(dev);
630 
631 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
632 }
633 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
634 
host_store_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)635 static ssize_t host_store_rescan(struct device *dev,
636 				 struct device_attribute *attr,
637 				 const char *buf, size_t count)
638 {
639 	struct ctlr_info *h = to_hba(dev);
640 
641 	add_to_scan_list(h);
642 	wake_up_process(cciss_scan_thread);
643 	wait_for_completion_interruptible(&h->scan_wait);
644 
645 	return count;
646 }
647 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
648 
host_show_transport_mode(struct device * dev,struct device_attribute * attr,char * buf)649 static ssize_t host_show_transport_mode(struct device *dev,
650 				 struct device_attribute *attr,
651 				 char *buf)
652 {
653 	struct ctlr_info *h = to_hba(dev);
654 
655 	return snprintf(buf, 20, "%s\n",
656 		h->transMethod & CFGTBL_Trans_Performant ?
657 			"performant" : "simple");
658 }
659 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
660 
dev_show_unique_id(struct device * dev,struct device_attribute * attr,char * buf)661 static ssize_t dev_show_unique_id(struct device *dev,
662 				 struct device_attribute *attr,
663 				 char *buf)
664 {
665 	drive_info_struct *drv = to_drv(dev);
666 	struct ctlr_info *h = to_hba(drv->dev.parent);
667 	__u8 sn[16];
668 	unsigned long flags;
669 	int ret = 0;
670 
671 	spin_lock_irqsave(&h->lock, flags);
672 	if (h->busy_configuring)
673 		ret = -EBUSY;
674 	else
675 		memcpy(sn, drv->serial_no, sizeof(sn));
676 	spin_unlock_irqrestore(&h->lock, flags);
677 
678 	if (ret)
679 		return ret;
680 	else
681 		return snprintf(buf, 16 * 2 + 2,
682 				"%02X%02X%02X%02X%02X%02X%02X%02X"
683 				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
684 				sn[0], sn[1], sn[2], sn[3],
685 				sn[4], sn[5], sn[6], sn[7],
686 				sn[8], sn[9], sn[10], sn[11],
687 				sn[12], sn[13], sn[14], sn[15]);
688 }
689 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
690 
dev_show_vendor(struct device * dev,struct device_attribute * attr,char * buf)691 static ssize_t dev_show_vendor(struct device *dev,
692 			       struct device_attribute *attr,
693 			       char *buf)
694 {
695 	drive_info_struct *drv = to_drv(dev);
696 	struct ctlr_info *h = to_hba(drv->dev.parent);
697 	char vendor[VENDOR_LEN + 1];
698 	unsigned long flags;
699 	int ret = 0;
700 
701 	spin_lock_irqsave(&h->lock, flags);
702 	if (h->busy_configuring)
703 		ret = -EBUSY;
704 	else
705 		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
706 	spin_unlock_irqrestore(&h->lock, flags);
707 
708 	if (ret)
709 		return ret;
710 	else
711 		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
712 }
713 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
714 
dev_show_model(struct device * dev,struct device_attribute * attr,char * buf)715 static ssize_t dev_show_model(struct device *dev,
716 			      struct device_attribute *attr,
717 			      char *buf)
718 {
719 	drive_info_struct *drv = to_drv(dev);
720 	struct ctlr_info *h = to_hba(drv->dev.parent);
721 	char model[MODEL_LEN + 1];
722 	unsigned long flags;
723 	int ret = 0;
724 
725 	spin_lock_irqsave(&h->lock, flags);
726 	if (h->busy_configuring)
727 		ret = -EBUSY;
728 	else
729 		memcpy(model, drv->model, MODEL_LEN + 1);
730 	spin_unlock_irqrestore(&h->lock, flags);
731 
732 	if (ret)
733 		return ret;
734 	else
735 		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
736 }
737 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
738 
dev_show_rev(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t dev_show_rev(struct device *dev,
740 			    struct device_attribute *attr,
741 			    char *buf)
742 {
743 	drive_info_struct *drv = to_drv(dev);
744 	struct ctlr_info *h = to_hba(drv->dev.parent);
745 	char rev[REV_LEN + 1];
746 	unsigned long flags;
747 	int ret = 0;
748 
749 	spin_lock_irqsave(&h->lock, flags);
750 	if (h->busy_configuring)
751 		ret = -EBUSY;
752 	else
753 		memcpy(rev, drv->rev, REV_LEN + 1);
754 	spin_unlock_irqrestore(&h->lock, flags);
755 
756 	if (ret)
757 		return ret;
758 	else
759 		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
760 }
761 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
762 
cciss_show_lunid(struct device * dev,struct device_attribute * attr,char * buf)763 static ssize_t cciss_show_lunid(struct device *dev,
764 				struct device_attribute *attr, char *buf)
765 {
766 	drive_info_struct *drv = to_drv(dev);
767 	struct ctlr_info *h = to_hba(drv->dev.parent);
768 	unsigned long flags;
769 	unsigned char lunid[8];
770 
771 	spin_lock_irqsave(&h->lock, flags);
772 	if (h->busy_configuring) {
773 		spin_unlock_irqrestore(&h->lock, flags);
774 		return -EBUSY;
775 	}
776 	if (!drv->heads) {
777 		spin_unlock_irqrestore(&h->lock, flags);
778 		return -ENOTTY;
779 	}
780 	memcpy(lunid, drv->LunID, sizeof(lunid));
781 	spin_unlock_irqrestore(&h->lock, flags);
782 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
783 		lunid[0], lunid[1], lunid[2], lunid[3],
784 		lunid[4], lunid[5], lunid[6], lunid[7]);
785 }
786 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
787 
cciss_show_raid_level(struct device * dev,struct device_attribute * attr,char * buf)788 static ssize_t cciss_show_raid_level(struct device *dev,
789 				     struct device_attribute *attr, char *buf)
790 {
791 	drive_info_struct *drv = to_drv(dev);
792 	struct ctlr_info *h = to_hba(drv->dev.parent);
793 	int raid;
794 	unsigned long flags;
795 
796 	spin_lock_irqsave(&h->lock, flags);
797 	if (h->busy_configuring) {
798 		spin_unlock_irqrestore(&h->lock, flags);
799 		return -EBUSY;
800 	}
801 	raid = drv->raid_level;
802 	spin_unlock_irqrestore(&h->lock, flags);
803 	if (raid < 0 || raid > RAID_UNKNOWN)
804 		raid = RAID_UNKNOWN;
805 
806 	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
807 			raid_label[raid]);
808 }
809 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
810 
cciss_show_usage_count(struct device * dev,struct device_attribute * attr,char * buf)811 static ssize_t cciss_show_usage_count(struct device *dev,
812 				      struct device_attribute *attr, char *buf)
813 {
814 	drive_info_struct *drv = to_drv(dev);
815 	struct ctlr_info *h = to_hba(drv->dev.parent);
816 	unsigned long flags;
817 	int count;
818 
819 	spin_lock_irqsave(&h->lock, flags);
820 	if (h->busy_configuring) {
821 		spin_unlock_irqrestore(&h->lock, flags);
822 		return -EBUSY;
823 	}
824 	count = drv->usage_count;
825 	spin_unlock_irqrestore(&h->lock, flags);
826 	return snprintf(buf, 20, "%d\n", count);
827 }
828 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
829 
830 static struct attribute *cciss_host_attrs[] = {
831 	&dev_attr_rescan.attr,
832 	&dev_attr_resettable.attr,
833 	&dev_attr_transport_mode.attr,
834 	NULL
835 };
836 
837 static struct attribute_group cciss_host_attr_group = {
838 	.attrs = cciss_host_attrs,
839 };
840 
841 static const struct attribute_group *cciss_host_attr_groups[] = {
842 	&cciss_host_attr_group,
843 	NULL
844 };
845 
846 static struct device_type cciss_host_type = {
847 	.name		= "cciss_host",
848 	.groups		= cciss_host_attr_groups,
849 	.release	= cciss_hba_release,
850 };
851 
852 static struct attribute *cciss_dev_attrs[] = {
853 	&dev_attr_unique_id.attr,
854 	&dev_attr_model.attr,
855 	&dev_attr_vendor.attr,
856 	&dev_attr_rev.attr,
857 	&dev_attr_lunid.attr,
858 	&dev_attr_raid_level.attr,
859 	&dev_attr_usage_count.attr,
860 	NULL
861 };
862 
863 static struct attribute_group cciss_dev_attr_group = {
864 	.attrs = cciss_dev_attrs,
865 };
866 
867 static const struct attribute_group *cciss_dev_attr_groups[] = {
868 	&cciss_dev_attr_group,
869 	NULL
870 };
871 
872 static struct device_type cciss_dev_type = {
873 	.name		= "cciss_device",
874 	.groups		= cciss_dev_attr_groups,
875 	.release	= cciss_device_release,
876 };
877 
878 static struct bus_type cciss_bus_type = {
879 	.name		= "cciss",
880 };
881 
882 /*
883  * cciss_hba_release is called when the reference count
884  * of h->dev goes to zero.
885  */
cciss_hba_release(struct device * dev)886 static void cciss_hba_release(struct device *dev)
887 {
888 	/*
889 	 * nothing to do, but need this to avoid a warning
890 	 * about not having a release handler from lib/kref.c.
891 	 */
892 }
893 
894 /*
895  * Initialize sysfs entry for each controller.  This sets up and registers
896  * the 'cciss#' directory for each individual controller under
897  * /sys/bus/pci/devices/<dev>/.
898  */
cciss_create_hba_sysfs_entry(struct ctlr_info * h)899 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
900 {
901 	device_initialize(&h->dev);
902 	h->dev.type = &cciss_host_type;
903 	h->dev.bus = &cciss_bus_type;
904 	dev_set_name(&h->dev, "%s", h->devname);
905 	h->dev.parent = &h->pdev->dev;
906 
907 	return device_add(&h->dev);
908 }
909 
910 /*
911  * Remove sysfs entries for an hba.
912  */
cciss_destroy_hba_sysfs_entry(struct ctlr_info * h)913 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
914 {
915 	device_del(&h->dev);
916 	put_device(&h->dev); /* final put. */
917 }
918 
919 /* cciss_device_release is called when the reference count
920  * of h->drv[x]dev goes to zero.
921  */
cciss_device_release(struct device * dev)922 static void cciss_device_release(struct device *dev)
923 {
924 	drive_info_struct *drv = to_drv(dev);
925 	kfree(drv);
926 }
927 
928 /*
929  * Initialize sysfs for each logical drive.  This sets up and registers
930  * the 'c#d#' directory for each individual logical drive under
931  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
932  * /sys/block/cciss!c#d# to this entry.
933  */
cciss_create_ld_sysfs_entry(struct ctlr_info * h,int drv_index)934 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
935 				       int drv_index)
936 {
937 	struct device *dev;
938 
939 	if (h->drv[drv_index]->device_initialized)
940 		return 0;
941 
942 	dev = &h->drv[drv_index]->dev;
943 	device_initialize(dev);
944 	dev->type = &cciss_dev_type;
945 	dev->bus = &cciss_bus_type;
946 	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
947 	dev->parent = &h->dev;
948 	h->drv[drv_index]->device_initialized = 1;
949 	return device_add(dev);
950 }
951 
952 /*
953  * Remove sysfs entries for a logical drive.
954  */
cciss_destroy_ld_sysfs_entry(struct ctlr_info * h,int drv_index,int ctlr_exiting)955 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
956 	int ctlr_exiting)
957 {
958 	struct device *dev = &h->drv[drv_index]->dev;
959 
960 	/* special case for c*d0, we only destroy it on controller exit */
961 	if (drv_index == 0 && !ctlr_exiting)
962 		return;
963 
964 	device_del(dev);
965 	put_device(dev); /* the "final" put. */
966 	h->drv[drv_index] = NULL;
967 }
968 
969 /*
970  * For operations that cannot sleep, a command block is allocated at init,
971  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
972  * which ones are free or in use.
973  */
cmd_alloc(ctlr_info_t * h)974 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
975 {
976 	CommandList_struct *c;
977 	int i;
978 	u64bit temp64;
979 	dma_addr_t cmd_dma_handle, err_dma_handle;
980 
981 	do {
982 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
983 		if (i == h->nr_cmds)
984 			return NULL;
985 	} while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
986 	c = h->cmd_pool + i;
987 	memset(c, 0, sizeof(CommandList_struct));
988 	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
989 	c->err_info = h->errinfo_pool + i;
990 	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
991 	err_dma_handle = h->errinfo_pool_dhandle
992 	    + i * sizeof(ErrorInfo_struct);
993 	h->nr_allocs++;
994 
995 	c->cmdindex = i;
996 
997 	INIT_LIST_HEAD(&c->list);
998 	c->busaddr = (__u32) cmd_dma_handle;
999 	temp64.val = (__u64) err_dma_handle;
1000 	c->ErrDesc.Addr.lower = temp64.val32.lower;
1001 	c->ErrDesc.Addr.upper = temp64.val32.upper;
1002 	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1003 
1004 	c->ctlr = h->ctlr;
1005 	return c;
1006 }
1007 
1008 /* allocate a command using pci_alloc_consistent, used for ioctls,
1009  * etc., not for the main i/o path.
1010  */
cmd_special_alloc(ctlr_info_t * h)1011 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1012 {
1013 	CommandList_struct *c;
1014 	u64bit temp64;
1015 	dma_addr_t cmd_dma_handle, err_dma_handle;
1016 
1017 	c = pci_zalloc_consistent(h->pdev, sizeof(CommandList_struct),
1018 				  &cmd_dma_handle);
1019 	if (c == NULL)
1020 		return NULL;
1021 
1022 	c->cmdindex = -1;
1023 
1024 	c->err_info = pci_zalloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1025 					    &err_dma_handle);
1026 
1027 	if (c->err_info == NULL) {
1028 		pci_free_consistent(h->pdev,
1029 			sizeof(CommandList_struct), c, cmd_dma_handle);
1030 		return NULL;
1031 	}
1032 
1033 	INIT_LIST_HEAD(&c->list);
1034 	c->busaddr = (__u32) cmd_dma_handle;
1035 	temp64.val = (__u64) err_dma_handle;
1036 	c->ErrDesc.Addr.lower = temp64.val32.lower;
1037 	c->ErrDesc.Addr.upper = temp64.val32.upper;
1038 	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1039 
1040 	c->ctlr = h->ctlr;
1041 	return c;
1042 }
1043 
cmd_free(ctlr_info_t * h,CommandList_struct * c)1044 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1045 {
1046 	int i;
1047 
1048 	i = c - h->cmd_pool;
1049 	clear_bit(i, h->cmd_pool_bits);
1050 	h->nr_frees++;
1051 }
1052 
cmd_special_free(ctlr_info_t * h,CommandList_struct * c)1053 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1054 {
1055 	u64bit temp64;
1056 
1057 	temp64.val32.lower = c->ErrDesc.Addr.lower;
1058 	temp64.val32.upper = c->ErrDesc.Addr.upper;
1059 	pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1060 			    c->err_info, (dma_addr_t) temp64.val);
1061 	pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1062 		(dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1063 }
1064 
get_host(struct gendisk * disk)1065 static inline ctlr_info_t *get_host(struct gendisk *disk)
1066 {
1067 	return disk->queue->queuedata;
1068 }
1069 
get_drv(struct gendisk * disk)1070 static inline drive_info_struct *get_drv(struct gendisk *disk)
1071 {
1072 	return disk->private_data;
1073 }
1074 
1075 /*
1076  * Open.  Make sure the device is really there.
1077  */
cciss_open(struct block_device * bdev,fmode_t mode)1078 static int cciss_open(struct block_device *bdev, fmode_t mode)
1079 {
1080 	ctlr_info_t *h = get_host(bdev->bd_disk);
1081 	drive_info_struct *drv = get_drv(bdev->bd_disk);
1082 
1083 	dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1084 	if (drv->busy_configuring)
1085 		return -EBUSY;
1086 	/*
1087 	 * Root is allowed to open raw volume zero even if it's not configured
1088 	 * so array config can still work. Root is also allowed to open any
1089 	 * volume that has a LUN ID, so it can issue IOCTL to reread the
1090 	 * disk information.  I don't think I really like this
1091 	 * but I'm already using way to many device nodes to claim another one
1092 	 * for "raw controller".
1093 	 */
1094 	if (drv->heads == 0) {
1095 		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
1096 			/* if not node 0 make sure it is a partition = 0 */
1097 			if (MINOR(bdev->bd_dev) & 0x0f) {
1098 				return -ENXIO;
1099 				/* if it is, make sure we have a LUN ID */
1100 			} else if (memcmp(drv->LunID, CTLR_LUNID,
1101 				sizeof(drv->LunID))) {
1102 				return -ENXIO;
1103 			}
1104 		}
1105 		if (!capable(CAP_SYS_ADMIN))
1106 			return -EPERM;
1107 	}
1108 	drv->usage_count++;
1109 	h->usage_count++;
1110 	return 0;
1111 }
1112 
cciss_unlocked_open(struct block_device * bdev,fmode_t mode)1113 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1114 {
1115 	int ret;
1116 
1117 	mutex_lock(&cciss_mutex);
1118 	ret = cciss_open(bdev, mode);
1119 	mutex_unlock(&cciss_mutex);
1120 
1121 	return ret;
1122 }
1123 
1124 /*
1125  * Close.  Sync first.
1126  */
cciss_release(struct gendisk * disk,fmode_t mode)1127 static void cciss_release(struct gendisk *disk, fmode_t mode)
1128 {
1129 	ctlr_info_t *h;
1130 	drive_info_struct *drv;
1131 
1132 	mutex_lock(&cciss_mutex);
1133 	h = get_host(disk);
1134 	drv = get_drv(disk);
1135 	dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1136 	drv->usage_count--;
1137 	h->usage_count--;
1138 	mutex_unlock(&cciss_mutex);
1139 }
1140 
1141 #ifdef CONFIG_COMPAT
1142 
1143 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1144 				  unsigned cmd, unsigned long arg);
1145 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1146 				      unsigned cmd, unsigned long arg);
1147 
cciss_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1148 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1149 			      unsigned cmd, unsigned long arg)
1150 {
1151 	switch (cmd) {
1152 	case CCISS_GETPCIINFO:
1153 	case CCISS_GETINTINFO:
1154 	case CCISS_SETINTINFO:
1155 	case CCISS_GETNODENAME:
1156 	case CCISS_SETNODENAME:
1157 	case CCISS_GETHEARTBEAT:
1158 	case CCISS_GETBUSTYPES:
1159 	case CCISS_GETFIRMVER:
1160 	case CCISS_GETDRIVVER:
1161 	case CCISS_REVALIDVOLS:
1162 	case CCISS_DEREGDISK:
1163 	case CCISS_REGNEWDISK:
1164 	case CCISS_REGNEWD:
1165 	case CCISS_RESCANDISK:
1166 	case CCISS_GETLUNINFO:
1167 		return cciss_ioctl(bdev, mode, cmd, arg);
1168 
1169 	case CCISS_PASSTHRU32:
1170 		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1171 	case CCISS_BIG_PASSTHRU32:
1172 		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1173 
1174 	default:
1175 		return -ENOIOCTLCMD;
1176 	}
1177 }
1178 
cciss_ioctl32_passthru(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1179 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1180 				  unsigned cmd, unsigned long arg)
1181 {
1182 	IOCTL32_Command_struct __user *arg32 =
1183 	    (IOCTL32_Command_struct __user *) arg;
1184 	IOCTL_Command_struct arg64;
1185 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1186 	int err;
1187 	u32 cp;
1188 
1189 	memset(&arg64, 0, sizeof(arg64));
1190 	err = 0;
1191 	err |=
1192 	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1193 			   sizeof(arg64.LUN_info));
1194 	err |=
1195 	    copy_from_user(&arg64.Request, &arg32->Request,
1196 			   sizeof(arg64.Request));
1197 	err |=
1198 	    copy_from_user(&arg64.error_info, &arg32->error_info,
1199 			   sizeof(arg64.error_info));
1200 	err |= get_user(arg64.buf_size, &arg32->buf_size);
1201 	err |= get_user(cp, &arg32->buf);
1202 	arg64.buf = compat_ptr(cp);
1203 	err |= copy_to_user(p, &arg64, sizeof(arg64));
1204 
1205 	if (err)
1206 		return -EFAULT;
1207 
1208 	err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1209 	if (err)
1210 		return err;
1211 	err |=
1212 	    copy_in_user(&arg32->error_info, &p->error_info,
1213 			 sizeof(arg32->error_info));
1214 	if (err)
1215 		return -EFAULT;
1216 	return err;
1217 }
1218 
cciss_ioctl32_big_passthru(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1219 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1220 				      unsigned cmd, unsigned long arg)
1221 {
1222 	BIG_IOCTL32_Command_struct __user *arg32 =
1223 	    (BIG_IOCTL32_Command_struct __user *) arg;
1224 	BIG_IOCTL_Command_struct arg64;
1225 	BIG_IOCTL_Command_struct __user *p =
1226 	    compat_alloc_user_space(sizeof(arg64));
1227 	int err;
1228 	u32 cp;
1229 
1230 	memset(&arg64, 0, sizeof(arg64));
1231 	err = 0;
1232 	err |=
1233 	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1234 			   sizeof(arg64.LUN_info));
1235 	err |=
1236 	    copy_from_user(&arg64.Request, &arg32->Request,
1237 			   sizeof(arg64.Request));
1238 	err |=
1239 	    copy_from_user(&arg64.error_info, &arg32->error_info,
1240 			   sizeof(arg64.error_info));
1241 	err |= get_user(arg64.buf_size, &arg32->buf_size);
1242 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1243 	err |= get_user(cp, &arg32->buf);
1244 	arg64.buf = compat_ptr(cp);
1245 	err |= copy_to_user(p, &arg64, sizeof(arg64));
1246 
1247 	if (err)
1248 		return -EFAULT;
1249 
1250 	err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1251 	if (err)
1252 		return err;
1253 	err |=
1254 	    copy_in_user(&arg32->error_info, &p->error_info,
1255 			 sizeof(arg32->error_info));
1256 	if (err)
1257 		return -EFAULT;
1258 	return err;
1259 }
1260 #endif
1261 
cciss_getgeo(struct block_device * bdev,struct hd_geometry * geo)1262 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1263 {
1264 	drive_info_struct *drv = get_drv(bdev->bd_disk);
1265 
1266 	if (!drv->cylinders)
1267 		return -ENXIO;
1268 
1269 	geo->heads = drv->heads;
1270 	geo->sectors = drv->sectors;
1271 	geo->cylinders = drv->cylinders;
1272 	return 0;
1273 }
1274 
check_ioctl_unit_attention(ctlr_info_t * h,CommandList_struct * c)1275 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1276 {
1277 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1278 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1279 		(void)check_for_unit_attention(h, c);
1280 }
1281 
cciss_getpciinfo(ctlr_info_t * h,void __user * argp)1282 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1283 {
1284 	cciss_pci_info_struct pciinfo;
1285 
1286 	if (!argp)
1287 		return -EINVAL;
1288 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
1289 	pciinfo.bus = h->pdev->bus->number;
1290 	pciinfo.dev_fn = h->pdev->devfn;
1291 	pciinfo.board_id = h->board_id;
1292 	if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1293 		return -EFAULT;
1294 	return 0;
1295 }
1296 
cciss_getintinfo(ctlr_info_t * h,void __user * argp)1297 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1298 {
1299 	cciss_coalint_struct intinfo;
1300 	unsigned long flags;
1301 
1302 	if (!argp)
1303 		return -EINVAL;
1304 	spin_lock_irqsave(&h->lock, flags);
1305 	intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1306 	intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1307 	spin_unlock_irqrestore(&h->lock, flags);
1308 	if (copy_to_user
1309 	    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1310 		return -EFAULT;
1311 	return 0;
1312 }
1313 
cciss_setintinfo(ctlr_info_t * h,void __user * argp)1314 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1315 {
1316 	cciss_coalint_struct intinfo;
1317 	unsigned long flags;
1318 	int i;
1319 
1320 	if (!argp)
1321 		return -EINVAL;
1322 	if (!capable(CAP_SYS_ADMIN))
1323 		return -EPERM;
1324 	if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1325 		return -EFAULT;
1326 	if ((intinfo.delay == 0) && (intinfo.count == 0))
1327 		return -EINVAL;
1328 	spin_lock_irqsave(&h->lock, flags);
1329 	/* Update the field, and then ring the doorbell */
1330 	writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1331 	writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1332 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1333 
1334 	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1335 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1336 			break;
1337 		udelay(1000); /* delay and try again */
1338 	}
1339 	spin_unlock_irqrestore(&h->lock, flags);
1340 	if (i >= MAX_IOCTL_CONFIG_WAIT)
1341 		return -EAGAIN;
1342 	return 0;
1343 }
1344 
cciss_getnodename(ctlr_info_t * h,void __user * argp)1345 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1346 {
1347 	NodeName_type NodeName;
1348 	unsigned long flags;
1349 	int i;
1350 
1351 	if (!argp)
1352 		return -EINVAL;
1353 	spin_lock_irqsave(&h->lock, flags);
1354 	for (i = 0; i < 16; i++)
1355 		NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1356 	spin_unlock_irqrestore(&h->lock, flags);
1357 	if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1358 		return -EFAULT;
1359 	return 0;
1360 }
1361 
cciss_setnodename(ctlr_info_t * h,void __user * argp)1362 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1363 {
1364 	NodeName_type NodeName;
1365 	unsigned long flags;
1366 	int i;
1367 
1368 	if (!argp)
1369 		return -EINVAL;
1370 	if (!capable(CAP_SYS_ADMIN))
1371 		return -EPERM;
1372 	if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1373 		return -EFAULT;
1374 	spin_lock_irqsave(&h->lock, flags);
1375 	/* Update the field, and then ring the doorbell */
1376 	for (i = 0; i < 16; i++)
1377 		writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1378 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1379 	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1380 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1381 			break;
1382 		udelay(1000); /* delay and try again */
1383 	}
1384 	spin_unlock_irqrestore(&h->lock, flags);
1385 	if (i >= MAX_IOCTL_CONFIG_WAIT)
1386 		return -EAGAIN;
1387 	return 0;
1388 }
1389 
cciss_getheartbeat(ctlr_info_t * h,void __user * argp)1390 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1391 {
1392 	Heartbeat_type heartbeat;
1393 	unsigned long flags;
1394 
1395 	if (!argp)
1396 		return -EINVAL;
1397 	spin_lock_irqsave(&h->lock, flags);
1398 	heartbeat = readl(&h->cfgtable->HeartBeat);
1399 	spin_unlock_irqrestore(&h->lock, flags);
1400 	if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1401 		return -EFAULT;
1402 	return 0;
1403 }
1404 
cciss_getbustypes(ctlr_info_t * h,void __user * argp)1405 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1406 {
1407 	BusTypes_type BusTypes;
1408 	unsigned long flags;
1409 
1410 	if (!argp)
1411 		return -EINVAL;
1412 	spin_lock_irqsave(&h->lock, flags);
1413 	BusTypes = readl(&h->cfgtable->BusTypes);
1414 	spin_unlock_irqrestore(&h->lock, flags);
1415 	if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1416 		return -EFAULT;
1417 	return 0;
1418 }
1419 
cciss_getfirmver(ctlr_info_t * h,void __user * argp)1420 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1421 {
1422 	FirmwareVer_type firmware;
1423 
1424 	if (!argp)
1425 		return -EINVAL;
1426 	memcpy(firmware, h->firm_ver, 4);
1427 
1428 	if (copy_to_user
1429 	    (argp, firmware, sizeof(FirmwareVer_type)))
1430 		return -EFAULT;
1431 	return 0;
1432 }
1433 
cciss_getdrivver(ctlr_info_t * h,void __user * argp)1434 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1435 {
1436 	DriverVer_type DriverVer = DRIVER_VERSION;
1437 
1438 	if (!argp)
1439 		return -EINVAL;
1440 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1441 		return -EFAULT;
1442 	return 0;
1443 }
1444 
cciss_getluninfo(ctlr_info_t * h,struct gendisk * disk,void __user * argp)1445 static int cciss_getluninfo(ctlr_info_t *h,
1446 	struct gendisk *disk, void __user *argp)
1447 {
1448 	LogvolInfo_struct luninfo;
1449 	drive_info_struct *drv = get_drv(disk);
1450 
1451 	if (!argp)
1452 		return -EINVAL;
1453 	memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1454 	luninfo.num_opens = drv->usage_count;
1455 	luninfo.num_parts = 0;
1456 	if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1457 		return -EFAULT;
1458 	return 0;
1459 }
1460 
cciss_passthru(ctlr_info_t * h,void __user * argp)1461 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1462 {
1463 	IOCTL_Command_struct iocommand;
1464 	CommandList_struct *c;
1465 	char *buff = NULL;
1466 	u64bit temp64;
1467 	DECLARE_COMPLETION_ONSTACK(wait);
1468 
1469 	if (!argp)
1470 		return -EINVAL;
1471 
1472 	if (!capable(CAP_SYS_RAWIO))
1473 		return -EPERM;
1474 
1475 	if (copy_from_user
1476 	    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1477 		return -EFAULT;
1478 	if ((iocommand.buf_size < 1) &&
1479 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
1480 		return -EINVAL;
1481 	}
1482 	if (iocommand.buf_size > 0) {
1483 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1484 		if (buff == NULL)
1485 			return -EFAULT;
1486 	}
1487 	if (iocommand.Request.Type.Direction == XFER_WRITE) {
1488 		/* Copy the data into the buffer we created */
1489 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1490 			kfree(buff);
1491 			return -EFAULT;
1492 		}
1493 	} else {
1494 		memset(buff, 0, iocommand.buf_size);
1495 	}
1496 	c = cmd_special_alloc(h);
1497 	if (!c) {
1498 		kfree(buff);
1499 		return -ENOMEM;
1500 	}
1501 	/* Fill in the command type */
1502 	c->cmd_type = CMD_IOCTL_PEND;
1503 	/* Fill in Command Header */
1504 	c->Header.ReplyQueue = 0;   /* unused in simple mode */
1505 	if (iocommand.buf_size > 0) { /* buffer to fill */
1506 		c->Header.SGList = 1;
1507 		c->Header.SGTotal = 1;
1508 	} else { /* no buffers to fill */
1509 		c->Header.SGList = 0;
1510 		c->Header.SGTotal = 0;
1511 	}
1512 	c->Header.LUN = iocommand.LUN_info;
1513 	/* use the kernel address the cmd block for tag */
1514 	c->Header.Tag.lower = c->busaddr;
1515 
1516 	/* Fill in Request block */
1517 	c->Request = iocommand.Request;
1518 
1519 	/* Fill in the scatter gather information */
1520 	if (iocommand.buf_size > 0) {
1521 		temp64.val = pci_map_single(h->pdev, buff,
1522 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1523 		c->SG[0].Addr.lower = temp64.val32.lower;
1524 		c->SG[0].Addr.upper = temp64.val32.upper;
1525 		c->SG[0].Len = iocommand.buf_size;
1526 		c->SG[0].Ext = 0;  /* we are not chaining */
1527 	}
1528 	c->waiting = &wait;
1529 
1530 	enqueue_cmd_and_start_io(h, c);
1531 	wait_for_completion(&wait);
1532 
1533 	/* unlock the buffers from DMA */
1534 	temp64.val32.lower = c->SG[0].Addr.lower;
1535 	temp64.val32.upper = c->SG[0].Addr.upper;
1536 	pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1537 			 PCI_DMA_BIDIRECTIONAL);
1538 	check_ioctl_unit_attention(h, c);
1539 
1540 	/* Copy the error information out */
1541 	iocommand.error_info = *(c->err_info);
1542 	if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1543 		kfree(buff);
1544 		cmd_special_free(h, c);
1545 		return -EFAULT;
1546 	}
1547 
1548 	if (iocommand.Request.Type.Direction == XFER_READ) {
1549 		/* Copy the data out of the buffer we created */
1550 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1551 			kfree(buff);
1552 			cmd_special_free(h, c);
1553 			return -EFAULT;
1554 		}
1555 	}
1556 	kfree(buff);
1557 	cmd_special_free(h, c);
1558 	return 0;
1559 }
1560 
cciss_bigpassthru(ctlr_info_t * h,void __user * argp)1561 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1562 {
1563 	BIG_IOCTL_Command_struct *ioc;
1564 	CommandList_struct *c;
1565 	unsigned char **buff = NULL;
1566 	int *buff_size = NULL;
1567 	u64bit temp64;
1568 	BYTE sg_used = 0;
1569 	int status = 0;
1570 	int i;
1571 	DECLARE_COMPLETION_ONSTACK(wait);
1572 	__u32 left;
1573 	__u32 sz;
1574 	BYTE __user *data_ptr;
1575 
1576 	if (!argp)
1577 		return -EINVAL;
1578 	if (!capable(CAP_SYS_RAWIO))
1579 		return -EPERM;
1580 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1581 	if (!ioc) {
1582 		status = -ENOMEM;
1583 		goto cleanup1;
1584 	}
1585 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1586 		status = -EFAULT;
1587 		goto cleanup1;
1588 	}
1589 	if ((ioc->buf_size < 1) &&
1590 	    (ioc->Request.Type.Direction != XFER_NONE)) {
1591 		status = -EINVAL;
1592 		goto cleanup1;
1593 	}
1594 	/* Check kmalloc limits  using all SGs */
1595 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1596 		status = -EINVAL;
1597 		goto cleanup1;
1598 	}
1599 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1600 		status = -EINVAL;
1601 		goto cleanup1;
1602 	}
1603 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1604 	if (!buff) {
1605 		status = -ENOMEM;
1606 		goto cleanup1;
1607 	}
1608 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1609 	if (!buff_size) {
1610 		status = -ENOMEM;
1611 		goto cleanup1;
1612 	}
1613 	left = ioc->buf_size;
1614 	data_ptr = ioc->buf;
1615 	while (left) {
1616 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1617 		buff_size[sg_used] = sz;
1618 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1619 		if (buff[sg_used] == NULL) {
1620 			status = -ENOMEM;
1621 			goto cleanup1;
1622 		}
1623 		if (ioc->Request.Type.Direction == XFER_WRITE) {
1624 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1625 				status = -EFAULT;
1626 				goto cleanup1;
1627 			}
1628 		} else {
1629 			memset(buff[sg_used], 0, sz);
1630 		}
1631 		left -= sz;
1632 		data_ptr += sz;
1633 		sg_used++;
1634 	}
1635 	c = cmd_special_alloc(h);
1636 	if (!c) {
1637 		status = -ENOMEM;
1638 		goto cleanup1;
1639 	}
1640 	c->cmd_type = CMD_IOCTL_PEND;
1641 	c->Header.ReplyQueue = 0;
1642 	c->Header.SGList = sg_used;
1643 	c->Header.SGTotal = sg_used;
1644 	c->Header.LUN = ioc->LUN_info;
1645 	c->Header.Tag.lower = c->busaddr;
1646 
1647 	c->Request = ioc->Request;
1648 	for (i = 0; i < sg_used; i++) {
1649 		temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1650 				    PCI_DMA_BIDIRECTIONAL);
1651 		c->SG[i].Addr.lower = temp64.val32.lower;
1652 		c->SG[i].Addr.upper = temp64.val32.upper;
1653 		c->SG[i].Len = buff_size[i];
1654 		c->SG[i].Ext = 0;	/* we are not chaining */
1655 	}
1656 	c->waiting = &wait;
1657 	enqueue_cmd_and_start_io(h, c);
1658 	wait_for_completion(&wait);
1659 	/* unlock the buffers from DMA */
1660 	for (i = 0; i < sg_used; i++) {
1661 		temp64.val32.lower = c->SG[i].Addr.lower;
1662 		temp64.val32.upper = c->SG[i].Addr.upper;
1663 		pci_unmap_single(h->pdev,
1664 			(dma_addr_t) temp64.val, buff_size[i],
1665 			PCI_DMA_BIDIRECTIONAL);
1666 	}
1667 	check_ioctl_unit_attention(h, c);
1668 	/* Copy the error information out */
1669 	ioc->error_info = *(c->err_info);
1670 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1671 		cmd_special_free(h, c);
1672 		status = -EFAULT;
1673 		goto cleanup1;
1674 	}
1675 	if (ioc->Request.Type.Direction == XFER_READ) {
1676 		/* Copy the data out of the buffer we created */
1677 		BYTE __user *ptr = ioc->buf;
1678 		for (i = 0; i < sg_used; i++) {
1679 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
1680 				cmd_special_free(h, c);
1681 				status = -EFAULT;
1682 				goto cleanup1;
1683 			}
1684 			ptr += buff_size[i];
1685 		}
1686 	}
1687 	cmd_special_free(h, c);
1688 	status = 0;
1689 cleanup1:
1690 	if (buff) {
1691 		for (i = 0; i < sg_used; i++)
1692 			kfree(buff[i]);
1693 		kfree(buff);
1694 	}
1695 	kfree(buff_size);
1696 	kfree(ioc);
1697 	return status;
1698 }
1699 
cciss_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1700 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1701 	unsigned int cmd, unsigned long arg)
1702 {
1703 	struct gendisk *disk = bdev->bd_disk;
1704 	ctlr_info_t *h = get_host(disk);
1705 	void __user *argp = (void __user *)arg;
1706 
1707 	dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1708 		cmd, arg);
1709 	switch (cmd) {
1710 	case CCISS_GETPCIINFO:
1711 		return cciss_getpciinfo(h, argp);
1712 	case CCISS_GETINTINFO:
1713 		return cciss_getintinfo(h, argp);
1714 	case CCISS_SETINTINFO:
1715 		return cciss_setintinfo(h, argp);
1716 	case CCISS_GETNODENAME:
1717 		return cciss_getnodename(h, argp);
1718 	case CCISS_SETNODENAME:
1719 		return cciss_setnodename(h, argp);
1720 	case CCISS_GETHEARTBEAT:
1721 		return cciss_getheartbeat(h, argp);
1722 	case CCISS_GETBUSTYPES:
1723 		return cciss_getbustypes(h, argp);
1724 	case CCISS_GETFIRMVER:
1725 		return cciss_getfirmver(h, argp);
1726 	case CCISS_GETDRIVVER:
1727 		return cciss_getdrivver(h, argp);
1728 	case CCISS_DEREGDISK:
1729 	case CCISS_REGNEWD:
1730 	case CCISS_REVALIDVOLS:
1731 		return rebuild_lun_table(h, 0, 1);
1732 	case CCISS_GETLUNINFO:
1733 		return cciss_getluninfo(h, disk, argp);
1734 	case CCISS_PASSTHRU:
1735 		return cciss_passthru(h, argp);
1736 	case CCISS_BIG_PASSTHRU:
1737 		return cciss_bigpassthru(h, argp);
1738 
1739 	/* scsi_cmd_blk_ioctl handles these, below, though some are not */
1740 	/* very meaningful for cciss.  SG_IO is the main one people want. */
1741 
1742 	case SG_GET_VERSION_NUM:
1743 	case SG_SET_TIMEOUT:
1744 	case SG_GET_TIMEOUT:
1745 	case SG_GET_RESERVED_SIZE:
1746 	case SG_SET_RESERVED_SIZE:
1747 	case SG_EMULATED_HOST:
1748 	case SG_IO:
1749 	case SCSI_IOCTL_SEND_COMMAND:
1750 		return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1751 
1752 	/* scsi_cmd_blk_ioctl would normally handle these, below, but */
1753 	/* they aren't a good fit for cciss, as CD-ROMs are */
1754 	/* not supported, and we don't have any bus/target/lun */
1755 	/* which we present to the kernel. */
1756 
1757 	case CDROM_SEND_PACKET:
1758 	case CDROMCLOSETRAY:
1759 	case CDROMEJECT:
1760 	case SCSI_IOCTL_GET_IDLUN:
1761 	case SCSI_IOCTL_GET_BUS_NUMBER:
1762 	default:
1763 		return -ENOTTY;
1764 	}
1765 }
1766 
cciss_check_queues(ctlr_info_t * h)1767 static void cciss_check_queues(ctlr_info_t *h)
1768 {
1769 	int start_queue = h->next_to_run;
1770 	int i;
1771 
1772 	/* check to see if we have maxed out the number of commands that can
1773 	 * be placed on the queue.  If so then exit.  We do this check here
1774 	 * in case the interrupt we serviced was from an ioctl and did not
1775 	 * free any new commands.
1776 	 */
1777 	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1778 		return;
1779 
1780 	/* We have room on the queue for more commands.  Now we need to queue
1781 	 * them up.  We will also keep track of the next queue to run so
1782 	 * that every queue gets a chance to be started first.
1783 	 */
1784 	for (i = 0; i < h->highest_lun + 1; i++) {
1785 		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1786 		/* make sure the disk has been added and the drive is real
1787 		 * because this can be called from the middle of init_one.
1788 		 */
1789 		if (!h->drv[curr_queue])
1790 			continue;
1791 		if (!(h->drv[curr_queue]->queue) ||
1792 			!(h->drv[curr_queue]->heads))
1793 			continue;
1794 		blk_start_queue(h->gendisk[curr_queue]->queue);
1795 
1796 		/* check to see if we have maxed out the number of commands
1797 		 * that can be placed on the queue.
1798 		 */
1799 		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1800 			if (curr_queue == start_queue) {
1801 				h->next_to_run =
1802 				    (start_queue + 1) % (h->highest_lun + 1);
1803 				break;
1804 			} else {
1805 				h->next_to_run = curr_queue;
1806 				break;
1807 			}
1808 		}
1809 	}
1810 }
1811 
cciss_softirq_done(struct request * rq)1812 static void cciss_softirq_done(struct request *rq)
1813 {
1814 	CommandList_struct *c = rq->completion_data;
1815 	ctlr_info_t *h = hba[c->ctlr];
1816 	SGDescriptor_struct *curr_sg = c->SG;
1817 	u64bit temp64;
1818 	unsigned long flags;
1819 	int i, ddir;
1820 	int sg_index = 0;
1821 
1822 	if (c->Request.Type.Direction == XFER_READ)
1823 		ddir = PCI_DMA_FROMDEVICE;
1824 	else
1825 		ddir = PCI_DMA_TODEVICE;
1826 
1827 	/* command did not need to be retried */
1828 	/* unmap the DMA mapping for all the scatter gather elements */
1829 	for (i = 0; i < c->Header.SGList; i++) {
1830 		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1831 			cciss_unmap_sg_chain_block(h, c);
1832 			/* Point to the next block */
1833 			curr_sg = h->cmd_sg_list[c->cmdindex];
1834 			sg_index = 0;
1835 		}
1836 		temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1837 		temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1838 		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1839 				ddir);
1840 		++sg_index;
1841 	}
1842 
1843 	dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1844 
1845 	/* set the residual count for pc requests */
1846 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1847 		rq->resid_len = c->err_info->ResidualCnt;
1848 
1849 	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1850 
1851 	spin_lock_irqsave(&h->lock, flags);
1852 	cmd_free(h, c);
1853 	cciss_check_queues(h);
1854 	spin_unlock_irqrestore(&h->lock, flags);
1855 }
1856 
log_unit_to_scsi3addr(ctlr_info_t * h,unsigned char scsi3addr[],uint32_t log_unit)1857 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1858 	unsigned char scsi3addr[], uint32_t log_unit)
1859 {
1860 	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1861 		sizeof(h->drv[log_unit]->LunID));
1862 }
1863 
1864 /* This function gets the SCSI vendor, model, and revision of a logical drive
1865  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1866  * they cannot be read.
1867  */
cciss_get_device_descr(ctlr_info_t * h,int logvol,char * vendor,char * model,char * rev)1868 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1869 				   char *vendor, char *model, char *rev)
1870 {
1871 	int rc;
1872 	InquiryData_struct *inq_buf;
1873 	unsigned char scsi3addr[8];
1874 
1875 	*vendor = '\0';
1876 	*model = '\0';
1877 	*rev = '\0';
1878 
1879 	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1880 	if (!inq_buf)
1881 		return;
1882 
1883 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1884 	rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1885 			scsi3addr, TYPE_CMD);
1886 	if (rc == IO_OK) {
1887 		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1888 		vendor[VENDOR_LEN] = '\0';
1889 		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1890 		model[MODEL_LEN] = '\0';
1891 		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1892 		rev[REV_LEN] = '\0';
1893 	}
1894 
1895 	kfree(inq_buf);
1896 	return;
1897 }
1898 
1899 /* This function gets the serial number of a logical drive via
1900  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1901  * number cannot be had, for whatever reason, 16 bytes of 0xff
1902  * are returned instead.
1903  */
cciss_get_serial_no(ctlr_info_t * h,int logvol,unsigned char * serial_no,int buflen)1904 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1905 				unsigned char *serial_no, int buflen)
1906 {
1907 #define PAGE_83_INQ_BYTES 64
1908 	int rc;
1909 	unsigned char *buf;
1910 	unsigned char scsi3addr[8];
1911 
1912 	if (buflen > 16)
1913 		buflen = 16;
1914 	memset(serial_no, 0xff, buflen);
1915 	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1916 	if (!buf)
1917 		return;
1918 	memset(serial_no, 0, buflen);
1919 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1920 	rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1921 		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1922 	if (rc == IO_OK)
1923 		memcpy(serial_no, &buf[8], buflen);
1924 	kfree(buf);
1925 	return;
1926 }
1927 
1928 /*
1929  * cciss_add_disk sets up the block device queue for a logical drive
1930  */
cciss_add_disk(ctlr_info_t * h,struct gendisk * disk,int drv_index)1931 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1932 				int drv_index)
1933 {
1934 	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1935 	if (!disk->queue)
1936 		goto init_queue_failure;
1937 	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1938 	disk->major = h->major;
1939 	disk->first_minor = drv_index << NWD_SHIFT;
1940 	disk->fops = &cciss_fops;
1941 	if (cciss_create_ld_sysfs_entry(h, drv_index))
1942 		goto cleanup_queue;
1943 	disk->private_data = h->drv[drv_index];
1944 	disk->driverfs_dev = &h->drv[drv_index]->dev;
1945 
1946 	/* Set up queue information */
1947 	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1948 
1949 	/* This is a hardware imposed limit. */
1950 	blk_queue_max_segments(disk->queue, h->maxsgentries);
1951 
1952 	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1953 
1954 	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1955 
1956 	disk->queue->queuedata = h;
1957 
1958 	blk_queue_logical_block_size(disk->queue,
1959 				     h->drv[drv_index]->block_size);
1960 
1961 	/* Make sure all queue data is written out before */
1962 	/* setting h->drv[drv_index]->queue, as setting this */
1963 	/* allows the interrupt handler to start the queue */
1964 	wmb();
1965 	h->drv[drv_index]->queue = disk->queue;
1966 	add_disk(disk);
1967 	return 0;
1968 
1969 cleanup_queue:
1970 	blk_cleanup_queue(disk->queue);
1971 	disk->queue = NULL;
1972 init_queue_failure:
1973 	return -1;
1974 }
1975 
1976 /* This function will check the usage_count of the drive to be updated/added.
1977  * If the usage_count is zero and it is a heretofore unknown drive, or,
1978  * the drive's capacity, geometry, or serial number has changed,
1979  * then the drive information will be updated and the disk will be
1980  * re-registered with the kernel.  If these conditions don't hold,
1981  * then it will be left alone for the next reboot.  The exception to this
1982  * is disk 0 which will always be left registered with the kernel since it
1983  * is also the controller node.  Any changes to disk 0 will show up on
1984  * the next reboot.
1985  */
cciss_update_drive_info(ctlr_info_t * h,int drv_index,int first_time,int via_ioctl)1986 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1987 	int first_time, int via_ioctl)
1988 {
1989 	struct gendisk *disk;
1990 	InquiryData_struct *inq_buff = NULL;
1991 	unsigned int block_size;
1992 	sector_t total_size;
1993 	unsigned long flags = 0;
1994 	int ret = 0;
1995 	drive_info_struct *drvinfo;
1996 
1997 	/* Get information about the disk and modify the driver structure */
1998 	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1999 	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2000 	if (inq_buff == NULL || drvinfo == NULL)
2001 		goto mem_msg;
2002 
2003 	/* testing to see if 16-byte CDBs are already being used */
2004 	if (h->cciss_read == CCISS_READ_16) {
2005 		cciss_read_capacity_16(h, drv_index,
2006 			&total_size, &block_size);
2007 
2008 	} else {
2009 		cciss_read_capacity(h, drv_index, &total_size, &block_size);
2010 		/* if read_capacity returns all F's this volume is >2TB */
2011 		/* in size so we switch to 16-byte CDB's for all */
2012 		/* read/write ops */
2013 		if (total_size == 0xFFFFFFFFULL) {
2014 			cciss_read_capacity_16(h, drv_index,
2015 			&total_size, &block_size);
2016 			h->cciss_read = CCISS_READ_16;
2017 			h->cciss_write = CCISS_WRITE_16;
2018 		} else {
2019 			h->cciss_read = CCISS_READ_10;
2020 			h->cciss_write = CCISS_WRITE_10;
2021 		}
2022 	}
2023 
2024 	cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2025 			       inq_buff, drvinfo);
2026 	drvinfo->block_size = block_size;
2027 	drvinfo->nr_blocks = total_size + 1;
2028 
2029 	cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2030 				drvinfo->model, drvinfo->rev);
2031 	cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2032 			sizeof(drvinfo->serial_no));
2033 	/* Save the lunid in case we deregister the disk, below. */
2034 	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2035 		sizeof(drvinfo->LunID));
2036 
2037 	/* Is it the same disk we already know, and nothing's changed? */
2038 	if (h->drv[drv_index]->raid_level != -1 &&
2039 		((memcmp(drvinfo->serial_no,
2040 				h->drv[drv_index]->serial_no, 16) == 0) &&
2041 		drvinfo->block_size == h->drv[drv_index]->block_size &&
2042 		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2043 		drvinfo->heads == h->drv[drv_index]->heads &&
2044 		drvinfo->sectors == h->drv[drv_index]->sectors &&
2045 		drvinfo->cylinders == h->drv[drv_index]->cylinders))
2046 			/* The disk is unchanged, nothing to update */
2047 			goto freeret;
2048 
2049 	/* If we get here it's not the same disk, or something's changed,
2050 	 * so we need to * deregister it, and re-register it, if it's not
2051 	 * in use.
2052 	 * If the disk already exists then deregister it before proceeding
2053 	 * (unless it's the first disk (for the controller node).
2054 	 */
2055 	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2056 		dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2057 		spin_lock_irqsave(&h->lock, flags);
2058 		h->drv[drv_index]->busy_configuring = 1;
2059 		spin_unlock_irqrestore(&h->lock, flags);
2060 
2061 		/* deregister_disk sets h->drv[drv_index]->queue = NULL
2062 		 * which keeps the interrupt handler from starting
2063 		 * the queue.
2064 		 */
2065 		ret = deregister_disk(h, drv_index, 0, via_ioctl);
2066 	}
2067 
2068 	/* If the disk is in use return */
2069 	if (ret)
2070 		goto freeret;
2071 
2072 	/* Save the new information from cciss_geometry_inquiry
2073 	 * and serial number inquiry.  If the disk was deregistered
2074 	 * above, then h->drv[drv_index] will be NULL.
2075 	 */
2076 	if (h->drv[drv_index] == NULL) {
2077 		drvinfo->device_initialized = 0;
2078 		h->drv[drv_index] = drvinfo;
2079 		drvinfo = NULL; /* so it won't be freed below. */
2080 	} else {
2081 		/* special case for cxd0 */
2082 		h->drv[drv_index]->block_size = drvinfo->block_size;
2083 		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2084 		h->drv[drv_index]->heads = drvinfo->heads;
2085 		h->drv[drv_index]->sectors = drvinfo->sectors;
2086 		h->drv[drv_index]->cylinders = drvinfo->cylinders;
2087 		h->drv[drv_index]->raid_level = drvinfo->raid_level;
2088 		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2089 		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2090 			VENDOR_LEN + 1);
2091 		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2092 		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2093 	}
2094 
2095 	++h->num_luns;
2096 	disk = h->gendisk[drv_index];
2097 	set_capacity(disk, h->drv[drv_index]->nr_blocks);
2098 
2099 	/* If it's not disk 0 (drv_index != 0)
2100 	 * or if it was disk 0, but there was previously
2101 	 * no actual corresponding configured logical drive
2102 	 * (raid_leve == -1) then we want to update the
2103 	 * logical drive's information.
2104 	 */
2105 	if (drv_index || first_time) {
2106 		if (cciss_add_disk(h, disk, drv_index) != 0) {
2107 			cciss_free_gendisk(h, drv_index);
2108 			cciss_free_drive_info(h, drv_index);
2109 			dev_warn(&h->pdev->dev, "could not update disk %d\n",
2110 				drv_index);
2111 			--h->num_luns;
2112 		}
2113 	}
2114 
2115 freeret:
2116 	kfree(inq_buff);
2117 	kfree(drvinfo);
2118 	return;
2119 mem_msg:
2120 	dev_err(&h->pdev->dev, "out of memory\n");
2121 	goto freeret;
2122 }
2123 
2124 /* This function will find the first index of the controllers drive array
2125  * that has a null drv pointer and allocate the drive info struct and
2126  * will return that index   This is where new drives will be added.
2127  * If the index to be returned is greater than the highest_lun index for
2128  * the controller then highest_lun is set * to this new index.
2129  * If there are no available indexes or if tha allocation fails, then -1
2130  * is returned.  * "controller_node" is used to know if this is a real
2131  * logical drive, or just the controller node, which determines if this
2132  * counts towards highest_lun.
2133  */
cciss_alloc_drive_info(ctlr_info_t * h,int controller_node)2134 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2135 {
2136 	int i;
2137 	drive_info_struct *drv;
2138 
2139 	/* Search for an empty slot for our drive info */
2140 	for (i = 0; i < CISS_MAX_LUN; i++) {
2141 
2142 		/* if not cxd0 case, and it's occupied, skip it. */
2143 		if (h->drv[i] && i != 0)
2144 			continue;
2145 		/*
2146 		 * If it's cxd0 case, and drv is alloc'ed already, and a
2147 		 * disk is configured there, skip it.
2148 		 */
2149 		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2150 			continue;
2151 
2152 		/*
2153 		 * We've found an empty slot.  Update highest_lun
2154 		 * provided this isn't just the fake cxd0 controller node.
2155 		 */
2156 		if (i > h->highest_lun && !controller_node)
2157 			h->highest_lun = i;
2158 
2159 		/* If adding a real disk at cxd0, and it's already alloc'ed */
2160 		if (i == 0 && h->drv[i] != NULL)
2161 			return i;
2162 
2163 		/*
2164 		 * Found an empty slot, not already alloc'ed.  Allocate it.
2165 		 * Mark it with raid_level == -1, so we know it's new later on.
2166 		 */
2167 		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2168 		if (!drv)
2169 			return -1;
2170 		drv->raid_level = -1; /* so we know it's new */
2171 		h->drv[i] = drv;
2172 		return i;
2173 	}
2174 	return -1;
2175 }
2176 
cciss_free_drive_info(ctlr_info_t * h,int drv_index)2177 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2178 {
2179 	kfree(h->drv[drv_index]);
2180 	h->drv[drv_index] = NULL;
2181 }
2182 
cciss_free_gendisk(ctlr_info_t * h,int drv_index)2183 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2184 {
2185 	put_disk(h->gendisk[drv_index]);
2186 	h->gendisk[drv_index] = NULL;
2187 }
2188 
2189 /* cciss_add_gendisk finds a free hba[]->drv structure
2190  * and allocates a gendisk if needed, and sets the lunid
2191  * in the drvinfo structure.   It returns the index into
2192  * the ->drv[] array, or -1 if none are free.
2193  * is_controller_node indicates whether highest_lun should
2194  * count this disk, or if it's only being added to provide
2195  * a means to talk to the controller in case no logical
2196  * drives have yet been configured.
2197  */
cciss_add_gendisk(ctlr_info_t * h,unsigned char lunid[],int controller_node)2198 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2199 	int controller_node)
2200 {
2201 	int drv_index;
2202 
2203 	drv_index = cciss_alloc_drive_info(h, controller_node);
2204 	if (drv_index == -1)
2205 		return -1;
2206 
2207 	/*Check if the gendisk needs to be allocated */
2208 	if (!h->gendisk[drv_index]) {
2209 		h->gendisk[drv_index] =
2210 			alloc_disk(1 << NWD_SHIFT);
2211 		if (!h->gendisk[drv_index]) {
2212 			dev_err(&h->pdev->dev,
2213 				"could not allocate a new disk %d\n",
2214 				drv_index);
2215 			goto err_free_drive_info;
2216 		}
2217 	}
2218 	memcpy(h->drv[drv_index]->LunID, lunid,
2219 		sizeof(h->drv[drv_index]->LunID));
2220 	if (cciss_create_ld_sysfs_entry(h, drv_index))
2221 		goto err_free_disk;
2222 	/* Don't need to mark this busy because nobody */
2223 	/* else knows about this disk yet to contend */
2224 	/* for access to it. */
2225 	h->drv[drv_index]->busy_configuring = 0;
2226 	wmb();
2227 	return drv_index;
2228 
2229 err_free_disk:
2230 	cciss_free_gendisk(h, drv_index);
2231 err_free_drive_info:
2232 	cciss_free_drive_info(h, drv_index);
2233 	return -1;
2234 }
2235 
2236 /* This is for the special case of a controller which
2237  * has no logical drives.  In this case, we still need
2238  * to register a disk so the controller can be accessed
2239  * by the Array Config Utility.
2240  */
cciss_add_controller_node(ctlr_info_t * h)2241 static void cciss_add_controller_node(ctlr_info_t *h)
2242 {
2243 	struct gendisk *disk;
2244 	int drv_index;
2245 
2246 	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2247 		return;
2248 
2249 	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2250 	if (drv_index == -1)
2251 		goto error;
2252 	h->drv[drv_index]->block_size = 512;
2253 	h->drv[drv_index]->nr_blocks = 0;
2254 	h->drv[drv_index]->heads = 0;
2255 	h->drv[drv_index]->sectors = 0;
2256 	h->drv[drv_index]->cylinders = 0;
2257 	h->drv[drv_index]->raid_level = -1;
2258 	memset(h->drv[drv_index]->serial_no, 0, 16);
2259 	disk = h->gendisk[drv_index];
2260 	if (cciss_add_disk(h, disk, drv_index) == 0)
2261 		return;
2262 	cciss_free_gendisk(h, drv_index);
2263 	cciss_free_drive_info(h, drv_index);
2264 error:
2265 	dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2266 	return;
2267 }
2268 
2269 /* This function will add and remove logical drives from the Logical
2270  * drive array of the controller and maintain persistency of ordering
2271  * so that mount points are preserved until the next reboot.  This allows
2272  * for the removal of logical drives in the middle of the drive array
2273  * without a re-ordering of those drives.
2274  * INPUT
2275  * h		= The controller to perform the operations on
2276  */
rebuild_lun_table(ctlr_info_t * h,int first_time,int via_ioctl)2277 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2278 	int via_ioctl)
2279 {
2280 	int num_luns;
2281 	ReportLunData_struct *ld_buff = NULL;
2282 	int return_code;
2283 	int listlength = 0;
2284 	int i;
2285 	int drv_found;
2286 	int drv_index = 0;
2287 	unsigned char lunid[8] = CTLR_LUNID;
2288 	unsigned long flags;
2289 
2290 	if (!capable(CAP_SYS_RAWIO))
2291 		return -EPERM;
2292 
2293 	/* Set busy_configuring flag for this operation */
2294 	spin_lock_irqsave(&h->lock, flags);
2295 	if (h->busy_configuring) {
2296 		spin_unlock_irqrestore(&h->lock, flags);
2297 		return -EBUSY;
2298 	}
2299 	h->busy_configuring = 1;
2300 	spin_unlock_irqrestore(&h->lock, flags);
2301 
2302 	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2303 	if (ld_buff == NULL)
2304 		goto mem_msg;
2305 
2306 	return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2307 				      sizeof(ReportLunData_struct),
2308 				      0, CTLR_LUNID, TYPE_CMD);
2309 
2310 	if (return_code == IO_OK)
2311 		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2312 	else {	/* reading number of logical volumes failed */
2313 		dev_warn(&h->pdev->dev,
2314 			"report logical volume command failed\n");
2315 		listlength = 0;
2316 		goto freeret;
2317 	}
2318 
2319 	num_luns = listlength / 8;	/* 8 bytes per entry */
2320 	if (num_luns > CISS_MAX_LUN) {
2321 		num_luns = CISS_MAX_LUN;
2322 		dev_warn(&h->pdev->dev, "more luns configured"
2323 		       " on controller than can be handled by"
2324 		       " this driver.\n");
2325 	}
2326 
2327 	if (num_luns == 0)
2328 		cciss_add_controller_node(h);
2329 
2330 	/* Compare controller drive array to driver's drive array
2331 	 * to see if any drives are missing on the controller due
2332 	 * to action of Array Config Utility (user deletes drive)
2333 	 * and deregister logical drives which have disappeared.
2334 	 */
2335 	for (i = 0; i <= h->highest_lun; i++) {
2336 		int j;
2337 		drv_found = 0;
2338 
2339 		/* skip holes in the array from already deleted drives */
2340 		if (h->drv[i] == NULL)
2341 			continue;
2342 
2343 		for (j = 0; j < num_luns; j++) {
2344 			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2345 			if (memcmp(h->drv[i]->LunID, lunid,
2346 				sizeof(lunid)) == 0) {
2347 				drv_found = 1;
2348 				break;
2349 			}
2350 		}
2351 		if (!drv_found) {
2352 			/* Deregister it from the OS, it's gone. */
2353 			spin_lock_irqsave(&h->lock, flags);
2354 			h->drv[i]->busy_configuring = 1;
2355 			spin_unlock_irqrestore(&h->lock, flags);
2356 			return_code = deregister_disk(h, i, 1, via_ioctl);
2357 			if (h->drv[i] != NULL)
2358 				h->drv[i]->busy_configuring = 0;
2359 		}
2360 	}
2361 
2362 	/* Compare controller drive array to driver's drive array.
2363 	 * Check for updates in the drive information and any new drives
2364 	 * on the controller due to ACU adding logical drives, or changing
2365 	 * a logical drive's size, etc.  Reregister any new/changed drives
2366 	 */
2367 	for (i = 0; i < num_luns; i++) {
2368 		int j;
2369 
2370 		drv_found = 0;
2371 
2372 		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2373 		/* Find if the LUN is already in the drive array
2374 		 * of the driver.  If so then update its info
2375 		 * if not in use.  If it does not exist then find
2376 		 * the first free index and add it.
2377 		 */
2378 		for (j = 0; j <= h->highest_lun; j++) {
2379 			if (h->drv[j] != NULL &&
2380 				memcmp(h->drv[j]->LunID, lunid,
2381 					sizeof(h->drv[j]->LunID)) == 0) {
2382 				drv_index = j;
2383 				drv_found = 1;
2384 				break;
2385 			}
2386 		}
2387 
2388 		/* check if the drive was found already in the array */
2389 		if (!drv_found) {
2390 			drv_index = cciss_add_gendisk(h, lunid, 0);
2391 			if (drv_index == -1)
2392 				goto freeret;
2393 		}
2394 		cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2395 	}		/* end for */
2396 
2397 freeret:
2398 	kfree(ld_buff);
2399 	h->busy_configuring = 0;
2400 	/* We return -1 here to tell the ACU that we have registered/updated
2401 	 * all of the drives that we can and to keep it from calling us
2402 	 * additional times.
2403 	 */
2404 	return -1;
2405 mem_msg:
2406 	dev_err(&h->pdev->dev, "out of memory\n");
2407 	h->busy_configuring = 0;
2408 	goto freeret;
2409 }
2410 
cciss_clear_drive_info(drive_info_struct * drive_info)2411 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2412 {
2413 	/* zero out the disk size info */
2414 	drive_info->nr_blocks = 0;
2415 	drive_info->block_size = 0;
2416 	drive_info->heads = 0;
2417 	drive_info->sectors = 0;
2418 	drive_info->cylinders = 0;
2419 	drive_info->raid_level = -1;
2420 	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2421 	memset(drive_info->model, 0, sizeof(drive_info->model));
2422 	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2423 	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2424 	/*
2425 	 * don't clear the LUNID though, we need to remember which
2426 	 * one this one is.
2427 	 */
2428 }
2429 
2430 /* This function will deregister the disk and it's queue from the
2431  * kernel.  It must be called with the controller lock held and the
2432  * drv structures busy_configuring flag set.  It's parameters are:
2433  *
2434  * disk = This is the disk to be deregistered
2435  * drv  = This is the drive_info_struct associated with the disk to be
2436  *        deregistered.  It contains information about the disk used
2437  *        by the driver.
2438  * clear_all = This flag determines whether or not the disk information
2439  *             is going to be completely cleared out and the highest_lun
2440  *             reset.  Sometimes we want to clear out information about
2441  *             the disk in preparation for re-adding it.  In this case
2442  *             the highest_lun should be left unchanged and the LunID
2443  *             should not be cleared.
2444  * via_ioctl
2445  *    This indicates whether we've reached this path via ioctl.
2446  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2447  *    If this path is reached via ioctl(), then the max_usage_count will
2448  *    be 1, as the process calling ioctl() has got to have the device open.
2449  *    If we get here via sysfs, then the max usage count will be zero.
2450 */
deregister_disk(ctlr_info_t * h,int drv_index,int clear_all,int via_ioctl)2451 static int deregister_disk(ctlr_info_t *h, int drv_index,
2452 			   int clear_all, int via_ioctl)
2453 {
2454 	int i;
2455 	struct gendisk *disk;
2456 	drive_info_struct *drv;
2457 	int recalculate_highest_lun;
2458 
2459 	if (!capable(CAP_SYS_RAWIO))
2460 		return -EPERM;
2461 
2462 	drv = h->drv[drv_index];
2463 	disk = h->gendisk[drv_index];
2464 
2465 	/* make sure logical volume is NOT is use */
2466 	if (clear_all || (h->gendisk[0] == disk)) {
2467 		if (drv->usage_count > via_ioctl)
2468 			return -EBUSY;
2469 	} else if (drv->usage_count > 0)
2470 		return -EBUSY;
2471 
2472 	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2473 
2474 	/* invalidate the devices and deregister the disk.  If it is disk
2475 	 * zero do not deregister it but just zero out it's values.  This
2476 	 * allows us to delete disk zero but keep the controller registered.
2477 	 */
2478 	if (h->gendisk[0] != disk) {
2479 		struct request_queue *q = disk->queue;
2480 		if (disk->flags & GENHD_FL_UP) {
2481 			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2482 			del_gendisk(disk);
2483 		}
2484 		if (q)
2485 			blk_cleanup_queue(q);
2486 		/* If clear_all is set then we are deleting the logical
2487 		 * drive, not just refreshing its info.  For drives
2488 		 * other than disk 0 we will call put_disk.  We do not
2489 		 * do this for disk 0 as we need it to be able to
2490 		 * configure the controller.
2491 		 */
2492 		if (clear_all){
2493 			/* This isn't pretty, but we need to find the
2494 			 * disk in our array and NULL our the pointer.
2495 			 * This is so that we will call alloc_disk if
2496 			 * this index is used again later.
2497 			 */
2498 			for (i=0; i < CISS_MAX_LUN; i++){
2499 				if (h->gendisk[i] == disk) {
2500 					h->gendisk[i] = NULL;
2501 					break;
2502 				}
2503 			}
2504 			put_disk(disk);
2505 		}
2506 	} else {
2507 		set_capacity(disk, 0);
2508 		cciss_clear_drive_info(drv);
2509 	}
2510 
2511 	--h->num_luns;
2512 
2513 	/* if it was the last disk, find the new hightest lun */
2514 	if (clear_all && recalculate_highest_lun) {
2515 		int newhighest = -1;
2516 		for (i = 0; i <= h->highest_lun; i++) {
2517 			/* if the disk has size > 0, it is available */
2518 			if (h->drv[i] && h->drv[i]->heads)
2519 				newhighest = i;
2520 		}
2521 		h->highest_lun = newhighest;
2522 	}
2523 	return 0;
2524 }
2525 
fill_cmd(ctlr_info_t * h,CommandList_struct * c,__u8 cmd,void * buff,size_t size,__u8 page_code,unsigned char * scsi3addr,int cmd_type)2526 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2527 		size_t size, __u8 page_code, unsigned char *scsi3addr,
2528 		int cmd_type)
2529 {
2530 	u64bit buff_dma_handle;
2531 	int status = IO_OK;
2532 
2533 	c->cmd_type = CMD_IOCTL_PEND;
2534 	c->Header.ReplyQueue = 0;
2535 	if (buff != NULL) {
2536 		c->Header.SGList = 1;
2537 		c->Header.SGTotal = 1;
2538 	} else {
2539 		c->Header.SGList = 0;
2540 		c->Header.SGTotal = 0;
2541 	}
2542 	c->Header.Tag.lower = c->busaddr;
2543 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2544 
2545 	c->Request.Type.Type = cmd_type;
2546 	if (cmd_type == TYPE_CMD) {
2547 		switch (cmd) {
2548 		case CISS_INQUIRY:
2549 			/* are we trying to read a vital product page */
2550 			if (page_code != 0) {
2551 				c->Request.CDB[1] = 0x01;
2552 				c->Request.CDB[2] = page_code;
2553 			}
2554 			c->Request.CDBLen = 6;
2555 			c->Request.Type.Attribute = ATTR_SIMPLE;
2556 			c->Request.Type.Direction = XFER_READ;
2557 			c->Request.Timeout = 0;
2558 			c->Request.CDB[0] = CISS_INQUIRY;
2559 			c->Request.CDB[4] = size & 0xFF;
2560 			break;
2561 		case CISS_REPORT_LOG:
2562 		case CISS_REPORT_PHYS:
2563 			/* Talking to controller so It's a physical command
2564 			   mode = 00 target = 0.  Nothing to write.
2565 			 */
2566 			c->Request.CDBLen = 12;
2567 			c->Request.Type.Attribute = ATTR_SIMPLE;
2568 			c->Request.Type.Direction = XFER_READ;
2569 			c->Request.Timeout = 0;
2570 			c->Request.CDB[0] = cmd;
2571 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2572 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2573 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2574 			c->Request.CDB[9] = size & 0xFF;
2575 			break;
2576 
2577 		case CCISS_READ_CAPACITY:
2578 			c->Request.CDBLen = 10;
2579 			c->Request.Type.Attribute = ATTR_SIMPLE;
2580 			c->Request.Type.Direction = XFER_READ;
2581 			c->Request.Timeout = 0;
2582 			c->Request.CDB[0] = cmd;
2583 			break;
2584 		case CCISS_READ_CAPACITY_16:
2585 			c->Request.CDBLen = 16;
2586 			c->Request.Type.Attribute = ATTR_SIMPLE;
2587 			c->Request.Type.Direction = XFER_READ;
2588 			c->Request.Timeout = 0;
2589 			c->Request.CDB[0] = cmd;
2590 			c->Request.CDB[1] = 0x10;
2591 			c->Request.CDB[10] = (size >> 24) & 0xFF;
2592 			c->Request.CDB[11] = (size >> 16) & 0xFF;
2593 			c->Request.CDB[12] = (size >> 8) & 0xFF;
2594 			c->Request.CDB[13] = size & 0xFF;
2595 			c->Request.Timeout = 0;
2596 			c->Request.CDB[0] = cmd;
2597 			break;
2598 		case CCISS_CACHE_FLUSH:
2599 			c->Request.CDBLen = 12;
2600 			c->Request.Type.Attribute = ATTR_SIMPLE;
2601 			c->Request.Type.Direction = XFER_WRITE;
2602 			c->Request.Timeout = 0;
2603 			c->Request.CDB[0] = BMIC_WRITE;
2604 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2605 			c->Request.CDB[7] = (size >> 8) & 0xFF;
2606 			c->Request.CDB[8] = size & 0xFF;
2607 			break;
2608 		case TEST_UNIT_READY:
2609 			c->Request.CDBLen = 6;
2610 			c->Request.Type.Attribute = ATTR_SIMPLE;
2611 			c->Request.Type.Direction = XFER_NONE;
2612 			c->Request.Timeout = 0;
2613 			break;
2614 		default:
2615 			dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2616 			return IO_ERROR;
2617 		}
2618 	} else if (cmd_type == TYPE_MSG) {
2619 		switch (cmd) {
2620 		case CCISS_ABORT_MSG:
2621 			c->Request.CDBLen = 12;
2622 			c->Request.Type.Attribute = ATTR_SIMPLE;
2623 			c->Request.Type.Direction = XFER_WRITE;
2624 			c->Request.Timeout = 0;
2625 			c->Request.CDB[0] = cmd;	/* abort */
2626 			c->Request.CDB[1] = 0;	/* abort a command */
2627 			/* buff contains the tag of the command to abort */
2628 			memcpy(&c->Request.CDB[4], buff, 8);
2629 			break;
2630 		case CCISS_RESET_MSG:
2631 			c->Request.CDBLen = 16;
2632 			c->Request.Type.Attribute = ATTR_SIMPLE;
2633 			c->Request.Type.Direction = XFER_NONE;
2634 			c->Request.Timeout = 0;
2635 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2636 			c->Request.CDB[0] = cmd;	/* reset */
2637 			c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2638 			break;
2639 		case CCISS_NOOP_MSG:
2640 			c->Request.CDBLen = 1;
2641 			c->Request.Type.Attribute = ATTR_SIMPLE;
2642 			c->Request.Type.Direction = XFER_WRITE;
2643 			c->Request.Timeout = 0;
2644 			c->Request.CDB[0] = cmd;
2645 			break;
2646 		default:
2647 			dev_warn(&h->pdev->dev,
2648 				"unknown message type %d\n", cmd);
2649 			return IO_ERROR;
2650 		}
2651 	} else {
2652 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2653 		return IO_ERROR;
2654 	}
2655 	/* Fill in the scatter gather information */
2656 	if (size > 0) {
2657 		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2658 							     buff, size,
2659 							     PCI_DMA_BIDIRECTIONAL);
2660 		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2661 		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2662 		c->SG[0].Len = size;
2663 		c->SG[0].Ext = 0;	/* we are not chaining */
2664 	}
2665 	return status;
2666 }
2667 
cciss_send_reset(ctlr_info_t * h,unsigned char * scsi3addr,u8 reset_type)2668 static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2669 			    u8 reset_type)
2670 {
2671 	CommandList_struct *c;
2672 	int return_status;
2673 
2674 	c = cmd_alloc(h);
2675 	if (!c)
2676 		return -ENOMEM;
2677 	return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2678 		CTLR_LUNID, TYPE_MSG);
2679 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2680 	if (return_status != IO_OK) {
2681 		cmd_special_free(h, c);
2682 		return return_status;
2683 	}
2684 	c->waiting = NULL;
2685 	enqueue_cmd_and_start_io(h, c);
2686 	/* Don't wait for completion, the reset won't complete.  Don't free
2687 	 * the command either.  This is the last command we will send before
2688 	 * re-initializing everything, so it doesn't matter and won't leak.
2689 	 */
2690 	return 0;
2691 }
2692 
check_target_status(ctlr_info_t * h,CommandList_struct * c)2693 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2694 {
2695 	switch (c->err_info->ScsiStatus) {
2696 	case SAM_STAT_GOOD:
2697 		return IO_OK;
2698 	case SAM_STAT_CHECK_CONDITION:
2699 		switch (0xf & c->err_info->SenseInfo[2]) {
2700 		case 0: return IO_OK; /* no sense */
2701 		case 1: return IO_OK; /* recovered error */
2702 		default:
2703 			if (check_for_unit_attention(h, c))
2704 				return IO_NEEDS_RETRY;
2705 			dev_warn(&h->pdev->dev, "cmd 0x%02x "
2706 				"check condition, sense key = 0x%02x\n",
2707 				c->Request.CDB[0], c->err_info->SenseInfo[2]);
2708 		}
2709 		break;
2710 	default:
2711 		dev_warn(&h->pdev->dev, "cmd 0x%02x"
2712 			"scsi status = 0x%02x\n",
2713 			c->Request.CDB[0], c->err_info->ScsiStatus);
2714 		break;
2715 	}
2716 	return IO_ERROR;
2717 }
2718 
process_sendcmd_error(ctlr_info_t * h,CommandList_struct * c)2719 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2720 {
2721 	int return_status = IO_OK;
2722 
2723 	if (c->err_info->CommandStatus == CMD_SUCCESS)
2724 		return IO_OK;
2725 
2726 	switch (c->err_info->CommandStatus) {
2727 	case CMD_TARGET_STATUS:
2728 		return_status = check_target_status(h, c);
2729 		break;
2730 	case CMD_DATA_UNDERRUN:
2731 	case CMD_DATA_OVERRUN:
2732 		/* expected for inquiry and report lun commands */
2733 		break;
2734 	case CMD_INVALID:
2735 		dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2736 		       "reported invalid\n", c->Request.CDB[0]);
2737 		return_status = IO_ERROR;
2738 		break;
2739 	case CMD_PROTOCOL_ERR:
2740 		dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2741 		       "protocol error\n", c->Request.CDB[0]);
2742 		return_status = IO_ERROR;
2743 		break;
2744 	case CMD_HARDWARE_ERR:
2745 		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2746 		       " hardware error\n", c->Request.CDB[0]);
2747 		return_status = IO_ERROR;
2748 		break;
2749 	case CMD_CONNECTION_LOST:
2750 		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2751 		       "connection lost\n", c->Request.CDB[0]);
2752 		return_status = IO_ERROR;
2753 		break;
2754 	case CMD_ABORTED:
2755 		dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2756 		       "aborted\n", c->Request.CDB[0]);
2757 		return_status = IO_ERROR;
2758 		break;
2759 	case CMD_ABORT_FAILED:
2760 		dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2761 		       "abort failed\n", c->Request.CDB[0]);
2762 		return_status = IO_ERROR;
2763 		break;
2764 	case CMD_UNSOLICITED_ABORT:
2765 		dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2766 			c->Request.CDB[0]);
2767 		return_status = IO_NEEDS_RETRY;
2768 		break;
2769 	case CMD_UNABORTABLE:
2770 		dev_warn(&h->pdev->dev, "cmd unabortable\n");
2771 		return_status = IO_ERROR;
2772 		break;
2773 	default:
2774 		dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2775 		       "unknown status %x\n", c->Request.CDB[0],
2776 		       c->err_info->CommandStatus);
2777 		return_status = IO_ERROR;
2778 	}
2779 	return return_status;
2780 }
2781 
sendcmd_withirq_core(ctlr_info_t * h,CommandList_struct * c,int attempt_retry)2782 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2783 	int attempt_retry)
2784 {
2785 	DECLARE_COMPLETION_ONSTACK(wait);
2786 	u64bit buff_dma_handle;
2787 	int return_status = IO_OK;
2788 
2789 resend_cmd2:
2790 	c->waiting = &wait;
2791 	enqueue_cmd_and_start_io(h, c);
2792 
2793 	wait_for_completion(&wait);
2794 
2795 	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2796 		goto command_done;
2797 
2798 	return_status = process_sendcmd_error(h, c);
2799 
2800 	if (return_status == IO_NEEDS_RETRY &&
2801 		c->retry_count < MAX_CMD_RETRIES) {
2802 		dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2803 			c->Request.CDB[0]);
2804 		c->retry_count++;
2805 		/* erase the old error information */
2806 		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2807 		return_status = IO_OK;
2808 		reinit_completion(&wait);
2809 		goto resend_cmd2;
2810 	}
2811 
2812 command_done:
2813 	/* unlock the buffers from DMA */
2814 	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2815 	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2816 	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2817 			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2818 	return return_status;
2819 }
2820 
sendcmd_withirq(ctlr_info_t * h,__u8 cmd,void * buff,size_t size,__u8 page_code,unsigned char scsi3addr[],int cmd_type)2821 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2822 			   __u8 page_code, unsigned char scsi3addr[],
2823 			int cmd_type)
2824 {
2825 	CommandList_struct *c;
2826 	int return_status;
2827 
2828 	c = cmd_special_alloc(h);
2829 	if (!c)
2830 		return -ENOMEM;
2831 	return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2832 		scsi3addr, cmd_type);
2833 	if (return_status == IO_OK)
2834 		return_status = sendcmd_withirq_core(h, c, 1);
2835 
2836 	cmd_special_free(h, c);
2837 	return return_status;
2838 }
2839 
cciss_geometry_inquiry(ctlr_info_t * h,int logvol,sector_t total_size,unsigned int block_size,InquiryData_struct * inq_buff,drive_info_struct * drv)2840 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2841 				   sector_t total_size,
2842 				   unsigned int block_size,
2843 				   InquiryData_struct *inq_buff,
2844 				   drive_info_struct *drv)
2845 {
2846 	int return_code;
2847 	unsigned long t;
2848 	unsigned char scsi3addr[8];
2849 
2850 	memset(inq_buff, 0, sizeof(InquiryData_struct));
2851 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2852 	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2853 			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2854 	if (return_code == IO_OK) {
2855 		if (inq_buff->data_byte[8] == 0xFF) {
2856 			dev_warn(&h->pdev->dev,
2857 			       "reading geometry failed, volume "
2858 			       "does not support reading geometry\n");
2859 			drv->heads = 255;
2860 			drv->sectors = 32;	/* Sectors per track */
2861 			drv->cylinders = total_size + 1;
2862 			drv->raid_level = RAID_UNKNOWN;
2863 		} else {
2864 			drv->heads = inq_buff->data_byte[6];
2865 			drv->sectors = inq_buff->data_byte[7];
2866 			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2867 			drv->cylinders += inq_buff->data_byte[5];
2868 			drv->raid_level = inq_buff->data_byte[8];
2869 		}
2870 		drv->block_size = block_size;
2871 		drv->nr_blocks = total_size + 1;
2872 		t = drv->heads * drv->sectors;
2873 		if (t > 1) {
2874 			sector_t real_size = total_size + 1;
2875 			unsigned long rem = sector_div(real_size, t);
2876 			if (rem)
2877 				real_size++;
2878 			drv->cylinders = real_size;
2879 		}
2880 	} else {		/* Get geometry failed */
2881 		dev_warn(&h->pdev->dev, "reading geometry failed\n");
2882 	}
2883 }
2884 
2885 static void
cciss_read_capacity(ctlr_info_t * h,int logvol,sector_t * total_size,unsigned int * block_size)2886 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2887 		    unsigned int *block_size)
2888 {
2889 	ReadCapdata_struct *buf;
2890 	int return_code;
2891 	unsigned char scsi3addr[8];
2892 
2893 	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2894 	if (!buf) {
2895 		dev_warn(&h->pdev->dev, "out of memory\n");
2896 		return;
2897 	}
2898 
2899 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2900 	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2901 		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2902 	if (return_code == IO_OK) {
2903 		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2904 		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2905 	} else {		/* read capacity command failed */
2906 		dev_warn(&h->pdev->dev, "read capacity failed\n");
2907 		*total_size = 0;
2908 		*block_size = BLOCK_SIZE;
2909 	}
2910 	kfree(buf);
2911 }
2912 
cciss_read_capacity_16(ctlr_info_t * h,int logvol,sector_t * total_size,unsigned int * block_size)2913 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2914 	sector_t *total_size, unsigned int *block_size)
2915 {
2916 	ReadCapdata_struct_16 *buf;
2917 	int return_code;
2918 	unsigned char scsi3addr[8];
2919 
2920 	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2921 	if (!buf) {
2922 		dev_warn(&h->pdev->dev, "out of memory\n");
2923 		return;
2924 	}
2925 
2926 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2927 	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2928 		buf, sizeof(ReadCapdata_struct_16),
2929 			0, scsi3addr, TYPE_CMD);
2930 	if (return_code == IO_OK) {
2931 		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2932 		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2933 	} else {		/* read capacity command failed */
2934 		dev_warn(&h->pdev->dev, "read capacity failed\n");
2935 		*total_size = 0;
2936 		*block_size = BLOCK_SIZE;
2937 	}
2938 	dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2939 	       (unsigned long long)*total_size+1, *block_size);
2940 	kfree(buf);
2941 }
2942 
cciss_revalidate(struct gendisk * disk)2943 static int cciss_revalidate(struct gendisk *disk)
2944 {
2945 	ctlr_info_t *h = get_host(disk);
2946 	drive_info_struct *drv = get_drv(disk);
2947 	int logvol;
2948 	int FOUND = 0;
2949 	unsigned int block_size;
2950 	sector_t total_size;
2951 	InquiryData_struct *inq_buff = NULL;
2952 
2953 	for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2954 		if (!h->drv[logvol])
2955 			continue;
2956 		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2957 			sizeof(drv->LunID)) == 0) {
2958 			FOUND = 1;
2959 			break;
2960 		}
2961 	}
2962 
2963 	if (!FOUND)
2964 		return 1;
2965 
2966 	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2967 	if (inq_buff == NULL) {
2968 		dev_warn(&h->pdev->dev, "out of memory\n");
2969 		return 1;
2970 	}
2971 	if (h->cciss_read == CCISS_READ_10) {
2972 		cciss_read_capacity(h, logvol,
2973 					&total_size, &block_size);
2974 	} else {
2975 		cciss_read_capacity_16(h, logvol,
2976 					&total_size, &block_size);
2977 	}
2978 	cciss_geometry_inquiry(h, logvol, total_size, block_size,
2979 			       inq_buff, drv);
2980 
2981 	blk_queue_logical_block_size(drv->queue, drv->block_size);
2982 	set_capacity(disk, drv->nr_blocks);
2983 
2984 	kfree(inq_buff);
2985 	return 0;
2986 }
2987 
2988 /*
2989  * Map (physical) PCI mem into (virtual) kernel space
2990  */
remap_pci_mem(ulong base,ulong size)2991 static void __iomem *remap_pci_mem(ulong base, ulong size)
2992 {
2993 	ulong page_base = ((ulong) base) & PAGE_MASK;
2994 	ulong page_offs = ((ulong) base) - page_base;
2995 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2996 
2997 	return page_remapped ? (page_remapped + page_offs) : NULL;
2998 }
2999 
3000 /*
3001  * Takes jobs of the Q and sends them to the hardware, then puts it on
3002  * the Q to wait for completion.
3003  */
start_io(ctlr_info_t * h)3004 static void start_io(ctlr_info_t *h)
3005 {
3006 	CommandList_struct *c;
3007 
3008 	while (!list_empty(&h->reqQ)) {
3009 		c = list_entry(h->reqQ.next, CommandList_struct, list);
3010 		/* can't do anything if fifo is full */
3011 		if ((h->access.fifo_full(h))) {
3012 			dev_warn(&h->pdev->dev, "fifo full\n");
3013 			break;
3014 		}
3015 
3016 		/* Get the first entry from the Request Q */
3017 		removeQ(c);
3018 		h->Qdepth--;
3019 
3020 		/* Tell the controller execute command */
3021 		h->access.submit_command(h, c);
3022 
3023 		/* Put job onto the completed Q */
3024 		addQ(&h->cmpQ, c);
3025 	}
3026 }
3027 
3028 /* Assumes that h->lock is held. */
3029 /* Zeros out the error record and then resends the command back */
3030 /* to the controller */
resend_cciss_cmd(ctlr_info_t * h,CommandList_struct * c)3031 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3032 {
3033 	/* erase the old error information */
3034 	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3035 
3036 	/* add it to software queue and then send it to the controller */
3037 	addQ(&h->reqQ, c);
3038 	h->Qdepth++;
3039 	if (h->Qdepth > h->maxQsinceinit)
3040 		h->maxQsinceinit = h->Qdepth;
3041 
3042 	start_io(h);
3043 }
3044 
make_status_bytes(unsigned int scsi_status_byte,unsigned int msg_byte,unsigned int host_byte,unsigned int driver_byte)3045 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3046 	unsigned int msg_byte, unsigned int host_byte,
3047 	unsigned int driver_byte)
3048 {
3049 	/* inverse of macros in scsi.h */
3050 	return (scsi_status_byte & 0xff) |
3051 		((msg_byte & 0xff) << 8) |
3052 		((host_byte & 0xff) << 16) |
3053 		((driver_byte & 0xff) << 24);
3054 }
3055 
evaluate_target_status(ctlr_info_t * h,CommandList_struct * cmd,int * retry_cmd)3056 static inline int evaluate_target_status(ctlr_info_t *h,
3057 			CommandList_struct *cmd, int *retry_cmd)
3058 {
3059 	unsigned char sense_key;
3060 	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3061 	int error_value;
3062 
3063 	*retry_cmd = 0;
3064 	/* If we get in here, it means we got "target status", that is, scsi status */
3065 	status_byte = cmd->err_info->ScsiStatus;
3066 	driver_byte = DRIVER_OK;
3067 	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3068 
3069 	if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3070 		host_byte = DID_PASSTHROUGH;
3071 	else
3072 		host_byte = DID_OK;
3073 
3074 	error_value = make_status_bytes(status_byte, msg_byte,
3075 		host_byte, driver_byte);
3076 
3077 	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3078 		if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3079 			dev_warn(&h->pdev->dev, "cmd %p "
3080 			       "has SCSI Status 0x%x\n",
3081 			       cmd, cmd->err_info->ScsiStatus);
3082 		return error_value;
3083 	}
3084 
3085 	/* check the sense key */
3086 	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3087 	/* no status or recovered error */
3088 	if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3089 	    (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3090 		error_value = 0;
3091 
3092 	if (check_for_unit_attention(h, cmd)) {
3093 		*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3094 		return 0;
3095 	}
3096 
3097 	/* Not SG_IO or similar? */
3098 	if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3099 		if (error_value != 0)
3100 			dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3101 			       " sense key = 0x%x\n", cmd, sense_key);
3102 		return error_value;
3103 	}
3104 
3105 	/* SG_IO or similar, copy sense data back */
3106 	if (cmd->rq->sense) {
3107 		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3108 			cmd->rq->sense_len = cmd->err_info->SenseLen;
3109 		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3110 			cmd->rq->sense_len);
3111 	} else
3112 		cmd->rq->sense_len = 0;
3113 
3114 	return error_value;
3115 }
3116 
3117 /* checks the status of the job and calls complete buffers to mark all
3118  * buffers for the completed job. Note that this function does not need
3119  * to hold the hba/queue lock.
3120  */
complete_command(ctlr_info_t * h,CommandList_struct * cmd,int timeout)3121 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3122 				    int timeout)
3123 {
3124 	int retry_cmd = 0;
3125 	struct request *rq = cmd->rq;
3126 
3127 	rq->errors = 0;
3128 
3129 	if (timeout)
3130 		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3131 
3132 	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3133 		goto after_error_processing;
3134 
3135 	switch (cmd->err_info->CommandStatus) {
3136 	case CMD_TARGET_STATUS:
3137 		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3138 		break;
3139 	case CMD_DATA_UNDERRUN:
3140 		if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3141 			dev_warn(&h->pdev->dev, "cmd %p has"
3142 			       " completed with data underrun "
3143 			       "reported\n", cmd);
3144 			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3145 		}
3146 		break;
3147 	case CMD_DATA_OVERRUN:
3148 		if (cmd->rq->cmd_type == REQ_TYPE_FS)
3149 			dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3150 			       " completed with data overrun "
3151 			       "reported\n", cmd);
3152 		break;
3153 	case CMD_INVALID:
3154 		dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3155 		       "reported invalid\n", cmd);
3156 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3157 			cmd->err_info->CommandStatus, DRIVER_OK,
3158 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3159 				DID_PASSTHROUGH : DID_ERROR);
3160 		break;
3161 	case CMD_PROTOCOL_ERR:
3162 		dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3163 		       "protocol error\n", cmd);
3164 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3165 			cmd->err_info->CommandStatus, DRIVER_OK,
3166 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3167 				DID_PASSTHROUGH : DID_ERROR);
3168 		break;
3169 	case CMD_HARDWARE_ERR:
3170 		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3171 		       " hardware error\n", cmd);
3172 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3173 			cmd->err_info->CommandStatus, DRIVER_OK,
3174 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3175 				DID_PASSTHROUGH : DID_ERROR);
3176 		break;
3177 	case CMD_CONNECTION_LOST:
3178 		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3179 		       "connection lost\n", cmd);
3180 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3181 			cmd->err_info->CommandStatus, DRIVER_OK,
3182 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3183 				DID_PASSTHROUGH : DID_ERROR);
3184 		break;
3185 	case CMD_ABORTED:
3186 		dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3187 		       "aborted\n", cmd);
3188 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3189 			cmd->err_info->CommandStatus, DRIVER_OK,
3190 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3191 				DID_PASSTHROUGH : DID_ABORT);
3192 		break;
3193 	case CMD_ABORT_FAILED:
3194 		dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3195 		       "abort failed\n", cmd);
3196 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197 			cmd->err_info->CommandStatus, DRIVER_OK,
3198 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3199 				DID_PASSTHROUGH : DID_ERROR);
3200 		break;
3201 	case CMD_UNSOLICITED_ABORT:
3202 		dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3203 		       "abort %p\n", h->ctlr, cmd);
3204 		if (cmd->retry_count < MAX_CMD_RETRIES) {
3205 			retry_cmd = 1;
3206 			dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3207 			cmd->retry_count++;
3208 		} else
3209 			dev_warn(&h->pdev->dev,
3210 				"%p retried too many times\n", cmd);
3211 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3212 			cmd->err_info->CommandStatus, DRIVER_OK,
3213 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3214 				DID_PASSTHROUGH : DID_ABORT);
3215 		break;
3216 	case CMD_TIMEOUT:
3217 		dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3218 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3219 			cmd->err_info->CommandStatus, DRIVER_OK,
3220 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3221 				DID_PASSTHROUGH : DID_ERROR);
3222 		break;
3223 	case CMD_UNABORTABLE:
3224 		dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3225 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3226 			cmd->err_info->CommandStatus, DRIVER_OK,
3227 			cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3228 				DID_PASSTHROUGH : DID_ERROR);
3229 		break;
3230 	default:
3231 		dev_warn(&h->pdev->dev, "cmd %p returned "
3232 		       "unknown status %x\n", cmd,
3233 		       cmd->err_info->CommandStatus);
3234 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3235 			cmd->err_info->CommandStatus, DRIVER_OK,
3236 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3237 				DID_PASSTHROUGH : DID_ERROR);
3238 	}
3239 
3240 after_error_processing:
3241 
3242 	/* We need to return this command */
3243 	if (retry_cmd) {
3244 		resend_cciss_cmd(h, cmd);
3245 		return;
3246 	}
3247 	cmd->rq->completion_data = cmd;
3248 	blk_complete_request(cmd->rq);
3249 }
3250 
cciss_tag_contains_index(u32 tag)3251 static inline u32 cciss_tag_contains_index(u32 tag)
3252 {
3253 #define DIRECT_LOOKUP_BIT 0x10
3254 	return tag & DIRECT_LOOKUP_BIT;
3255 }
3256 
cciss_tag_to_index(u32 tag)3257 static inline u32 cciss_tag_to_index(u32 tag)
3258 {
3259 #define DIRECT_LOOKUP_SHIFT 5
3260 	return tag >> DIRECT_LOOKUP_SHIFT;
3261 }
3262 
cciss_tag_discard_error_bits(ctlr_info_t * h,u32 tag)3263 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3264 {
3265 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3266 #define CCISS_SIMPLE_ERROR_BITS 0x03
3267 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
3268 		return tag & ~CCISS_PERF_ERROR_BITS;
3269 	return tag & ~CCISS_SIMPLE_ERROR_BITS;
3270 }
3271 
cciss_mark_tag_indexed(u32 * tag)3272 static inline void cciss_mark_tag_indexed(u32 *tag)
3273 {
3274 	*tag |= DIRECT_LOOKUP_BIT;
3275 }
3276 
cciss_set_tag_index(u32 * tag,u32 index)3277 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3278 {
3279 	*tag |= (index << DIRECT_LOOKUP_SHIFT);
3280 }
3281 
3282 /*
3283  * Get a request and submit it to the controller.
3284  */
do_cciss_request(struct request_queue * q)3285 static void do_cciss_request(struct request_queue *q)
3286 {
3287 	ctlr_info_t *h = q->queuedata;
3288 	CommandList_struct *c;
3289 	sector_t start_blk;
3290 	int seg;
3291 	struct request *creq;
3292 	u64bit temp64;
3293 	struct scatterlist *tmp_sg;
3294 	SGDescriptor_struct *curr_sg;
3295 	drive_info_struct *drv;
3296 	int i, dir;
3297 	int sg_index = 0;
3298 	int chained = 0;
3299 
3300       queue:
3301 	creq = blk_peek_request(q);
3302 	if (!creq)
3303 		goto startio;
3304 
3305 	BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3306 
3307 	c = cmd_alloc(h);
3308 	if (!c)
3309 		goto full;
3310 
3311 	blk_start_request(creq);
3312 
3313 	tmp_sg = h->scatter_list[c->cmdindex];
3314 	spin_unlock_irq(q->queue_lock);
3315 
3316 	c->cmd_type = CMD_RWREQ;
3317 	c->rq = creq;
3318 
3319 	/* fill in the request */
3320 	drv = creq->rq_disk->private_data;
3321 	c->Header.ReplyQueue = 0;	/* unused in simple mode */
3322 	/* got command from pool, so use the command block index instead */
3323 	/* for direct lookups. */
3324 	/* The first 2 bits are reserved for controller error reporting. */
3325 	cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3326 	cciss_mark_tag_indexed(&c->Header.Tag.lower);
3327 	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3328 	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */
3329 	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */
3330 	c->Request.Type.Attribute = ATTR_SIMPLE;
3331 	c->Request.Type.Direction =
3332 	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3333 	c->Request.Timeout = 0;	/* Don't time out */
3334 	c->Request.CDB[0] =
3335 	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3336 	start_blk = blk_rq_pos(creq);
3337 	dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3338 	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3339 	sg_init_table(tmp_sg, h->maxsgentries);
3340 	seg = blk_rq_map_sg(q, creq, tmp_sg);
3341 
3342 	/* get the DMA records for the setup */
3343 	if (c->Request.Type.Direction == XFER_READ)
3344 		dir = PCI_DMA_FROMDEVICE;
3345 	else
3346 		dir = PCI_DMA_TODEVICE;
3347 
3348 	curr_sg = c->SG;
3349 	sg_index = 0;
3350 	chained = 0;
3351 
3352 	for (i = 0; i < seg; i++) {
3353 		if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3354 			!chained && ((seg - i) > 1)) {
3355 			/* Point to next chain block. */
3356 			curr_sg = h->cmd_sg_list[c->cmdindex];
3357 			sg_index = 0;
3358 			chained = 1;
3359 		}
3360 		curr_sg[sg_index].Len = tmp_sg[i].length;
3361 		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3362 						tmp_sg[i].offset,
3363 						tmp_sg[i].length, dir);
3364 		curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3365 		curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3366 		curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3367 		++sg_index;
3368 	}
3369 	if (chained)
3370 		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3371 			(seg - (h->max_cmd_sgentries - 1)) *
3372 				sizeof(SGDescriptor_struct));
3373 
3374 	/* track how many SG entries we are using */
3375 	if (seg > h->maxSG)
3376 		h->maxSG = seg;
3377 
3378 	dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3379 			"chained[%d]\n",
3380 			blk_rq_sectors(creq), seg, chained);
3381 
3382 	c->Header.SGTotal = seg + chained;
3383 	if (seg <= h->max_cmd_sgentries)
3384 		c->Header.SGList = c->Header.SGTotal;
3385 	else
3386 		c->Header.SGList = h->max_cmd_sgentries;
3387 	set_performant_mode(h, c);
3388 
3389 	if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3390 		if(h->cciss_read == CCISS_READ_10) {
3391 			c->Request.CDB[1] = 0;
3392 			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3393 			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3394 			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3395 			c->Request.CDB[5] = start_blk & 0xff;
3396 			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3397 			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3398 			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3399 			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3400 		} else {
3401 			u32 upper32 = upper_32_bits(start_blk);
3402 
3403 			c->Request.CDBLen = 16;
3404 			c->Request.CDB[1]= 0;
3405 			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3406 			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3407 			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3408 			c->Request.CDB[5]= upper32 & 0xff;
3409 			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3410 			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3411 			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3412 			c->Request.CDB[9]= start_blk & 0xff;
3413 			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3414 			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3415 			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3416 			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3417 			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3418 		}
3419 	} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3420 		c->Request.CDBLen = creq->cmd_len;
3421 		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3422 	} else {
3423 		dev_warn(&h->pdev->dev, "bad request type %d\n",
3424 			creq->cmd_type);
3425 		BUG();
3426 	}
3427 
3428 	spin_lock_irq(q->queue_lock);
3429 
3430 	addQ(&h->reqQ, c);
3431 	h->Qdepth++;
3432 	if (h->Qdepth > h->maxQsinceinit)
3433 		h->maxQsinceinit = h->Qdepth;
3434 
3435 	goto queue;
3436 full:
3437 	blk_stop_queue(q);
3438 startio:
3439 	/* We will already have the driver lock here so not need
3440 	 * to lock it.
3441 	 */
3442 	start_io(h);
3443 }
3444 
get_next_completion(ctlr_info_t * h)3445 static inline unsigned long get_next_completion(ctlr_info_t *h)
3446 {
3447 	return h->access.command_completed(h);
3448 }
3449 
interrupt_pending(ctlr_info_t * h)3450 static inline int interrupt_pending(ctlr_info_t *h)
3451 {
3452 	return h->access.intr_pending(h);
3453 }
3454 
interrupt_not_for_us(ctlr_info_t * h)3455 static inline long interrupt_not_for_us(ctlr_info_t *h)
3456 {
3457 	return ((h->access.intr_pending(h) == 0) ||
3458 		(h->interrupts_enabled == 0));
3459 }
3460 
bad_tag(ctlr_info_t * h,u32 tag_index,u32 raw_tag)3461 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3462 			u32 raw_tag)
3463 {
3464 	if (unlikely(tag_index >= h->nr_cmds)) {
3465 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3466 		return 1;
3467 	}
3468 	return 0;
3469 }
3470 
finish_cmd(ctlr_info_t * h,CommandList_struct * c,u32 raw_tag)3471 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3472 				u32 raw_tag)
3473 {
3474 	removeQ(c);
3475 	if (likely(c->cmd_type == CMD_RWREQ))
3476 		complete_command(h, c, 0);
3477 	else if (c->cmd_type == CMD_IOCTL_PEND)
3478 		complete(c->waiting);
3479 #ifdef CONFIG_CISS_SCSI_TAPE
3480 	else if (c->cmd_type == CMD_SCSI)
3481 		complete_scsi_command(c, 0, raw_tag);
3482 #endif
3483 }
3484 
next_command(ctlr_info_t * h)3485 static inline u32 next_command(ctlr_info_t *h)
3486 {
3487 	u32 a;
3488 
3489 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3490 		return h->access.command_completed(h);
3491 
3492 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3493 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3494 		(h->reply_pool_head)++;
3495 		h->commands_outstanding--;
3496 	} else {
3497 		a = FIFO_EMPTY;
3498 	}
3499 	/* Check for wraparound */
3500 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3501 		h->reply_pool_head = h->reply_pool;
3502 		h->reply_pool_wraparound ^= 1;
3503 	}
3504 	return a;
3505 }
3506 
3507 /* process completion of an indexed ("direct lookup") command */
process_indexed_cmd(ctlr_info_t * h,u32 raw_tag)3508 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3509 {
3510 	u32 tag_index;
3511 	CommandList_struct *c;
3512 
3513 	tag_index = cciss_tag_to_index(raw_tag);
3514 	if (bad_tag(h, tag_index, raw_tag))
3515 		return next_command(h);
3516 	c = h->cmd_pool + tag_index;
3517 	finish_cmd(h, c, raw_tag);
3518 	return next_command(h);
3519 }
3520 
3521 /* process completion of a non-indexed command */
process_nonindexed_cmd(ctlr_info_t * h,u32 raw_tag)3522 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3523 {
3524 	CommandList_struct *c = NULL;
3525 	__u32 busaddr_masked, tag_masked;
3526 
3527 	tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3528 	list_for_each_entry(c, &h->cmpQ, list) {
3529 		busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3530 		if (busaddr_masked == tag_masked) {
3531 			finish_cmd(h, c, raw_tag);
3532 			return next_command(h);
3533 		}
3534 	}
3535 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3536 	return next_command(h);
3537 }
3538 
3539 /* Some controllers, like p400, will give us one interrupt
3540  * after a soft reset, even if we turned interrupts off.
3541  * Only need to check for this in the cciss_xxx_discard_completions
3542  * functions.
3543  */
ignore_bogus_interrupt(ctlr_info_t * h)3544 static int ignore_bogus_interrupt(ctlr_info_t *h)
3545 {
3546 	if (likely(!reset_devices))
3547 		return 0;
3548 
3549 	if (likely(h->interrupts_enabled))
3550 		return 0;
3551 
3552 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3553 		"(known firmware bug.)  Ignoring.\n");
3554 
3555 	return 1;
3556 }
3557 
cciss_intx_discard_completions(int irq,void * dev_id)3558 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3559 {
3560 	ctlr_info_t *h = dev_id;
3561 	unsigned long flags;
3562 	u32 raw_tag;
3563 
3564 	if (ignore_bogus_interrupt(h))
3565 		return IRQ_NONE;
3566 
3567 	if (interrupt_not_for_us(h))
3568 		return IRQ_NONE;
3569 	spin_lock_irqsave(&h->lock, flags);
3570 	while (interrupt_pending(h)) {
3571 		raw_tag = get_next_completion(h);
3572 		while (raw_tag != FIFO_EMPTY)
3573 			raw_tag = next_command(h);
3574 	}
3575 	spin_unlock_irqrestore(&h->lock, flags);
3576 	return IRQ_HANDLED;
3577 }
3578 
cciss_msix_discard_completions(int irq,void * dev_id)3579 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3580 {
3581 	ctlr_info_t *h = dev_id;
3582 	unsigned long flags;
3583 	u32 raw_tag;
3584 
3585 	if (ignore_bogus_interrupt(h))
3586 		return IRQ_NONE;
3587 
3588 	spin_lock_irqsave(&h->lock, flags);
3589 	raw_tag = get_next_completion(h);
3590 	while (raw_tag != FIFO_EMPTY)
3591 		raw_tag = next_command(h);
3592 	spin_unlock_irqrestore(&h->lock, flags);
3593 	return IRQ_HANDLED;
3594 }
3595 
do_cciss_intx(int irq,void * dev_id)3596 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3597 {
3598 	ctlr_info_t *h = dev_id;
3599 	unsigned long flags;
3600 	u32 raw_tag;
3601 
3602 	if (interrupt_not_for_us(h))
3603 		return IRQ_NONE;
3604 	spin_lock_irqsave(&h->lock, flags);
3605 	while (interrupt_pending(h)) {
3606 		raw_tag = get_next_completion(h);
3607 		while (raw_tag != FIFO_EMPTY) {
3608 			if (cciss_tag_contains_index(raw_tag))
3609 				raw_tag = process_indexed_cmd(h, raw_tag);
3610 			else
3611 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3612 		}
3613 	}
3614 	spin_unlock_irqrestore(&h->lock, flags);
3615 	return IRQ_HANDLED;
3616 }
3617 
3618 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3619  * check the interrupt pending register because it is not set.
3620  */
do_cciss_msix_intr(int irq,void * dev_id)3621 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3622 {
3623 	ctlr_info_t *h = dev_id;
3624 	unsigned long flags;
3625 	u32 raw_tag;
3626 
3627 	spin_lock_irqsave(&h->lock, flags);
3628 	raw_tag = get_next_completion(h);
3629 	while (raw_tag != FIFO_EMPTY) {
3630 		if (cciss_tag_contains_index(raw_tag))
3631 			raw_tag = process_indexed_cmd(h, raw_tag);
3632 		else
3633 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3634 	}
3635 	spin_unlock_irqrestore(&h->lock, flags);
3636 	return IRQ_HANDLED;
3637 }
3638 
3639 /**
3640  * add_to_scan_list() - add controller to rescan queue
3641  * @h:		      Pointer to the controller.
3642  *
3643  * Adds the controller to the rescan queue if not already on the queue.
3644  *
3645  * returns 1 if added to the queue, 0 if skipped (could be on the
3646  * queue already, or the controller could be initializing or shutting
3647  * down).
3648  **/
add_to_scan_list(struct ctlr_info * h)3649 static int add_to_scan_list(struct ctlr_info *h)
3650 {
3651 	struct ctlr_info *test_h;
3652 	int found = 0;
3653 	int ret = 0;
3654 
3655 	if (h->busy_initializing)
3656 		return 0;
3657 
3658 	if (!mutex_trylock(&h->busy_shutting_down))
3659 		return 0;
3660 
3661 	mutex_lock(&scan_mutex);
3662 	list_for_each_entry(test_h, &scan_q, scan_list) {
3663 		if (test_h == h) {
3664 			found = 1;
3665 			break;
3666 		}
3667 	}
3668 	if (!found && !h->busy_scanning) {
3669 		reinit_completion(&h->scan_wait);
3670 		list_add_tail(&h->scan_list, &scan_q);
3671 		ret = 1;
3672 	}
3673 	mutex_unlock(&scan_mutex);
3674 	mutex_unlock(&h->busy_shutting_down);
3675 
3676 	return ret;
3677 }
3678 
3679 /**
3680  * remove_from_scan_list() - remove controller from rescan queue
3681  * @h:			   Pointer to the controller.
3682  *
3683  * Removes the controller from the rescan queue if present. Blocks if
3684  * the controller is currently conducting a rescan.  The controller
3685  * can be in one of three states:
3686  * 1. Doesn't need a scan
3687  * 2. On the scan list, but not scanning yet (we remove it)
3688  * 3. Busy scanning (and not on the list). In this case we want to wait for
3689  *    the scan to complete to make sure the scanning thread for this
3690  *    controller is completely idle.
3691  **/
remove_from_scan_list(struct ctlr_info * h)3692 static void remove_from_scan_list(struct ctlr_info *h)
3693 {
3694 	struct ctlr_info *test_h, *tmp_h;
3695 
3696 	mutex_lock(&scan_mutex);
3697 	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3698 		if (test_h == h) { /* state 2. */
3699 			list_del(&h->scan_list);
3700 			complete_all(&h->scan_wait);
3701 			mutex_unlock(&scan_mutex);
3702 			return;
3703 		}
3704 	}
3705 	if (h->busy_scanning) { /* state 3. */
3706 		mutex_unlock(&scan_mutex);
3707 		wait_for_completion(&h->scan_wait);
3708 	} else { /* state 1, nothing to do. */
3709 		mutex_unlock(&scan_mutex);
3710 	}
3711 }
3712 
3713 /**
3714  * scan_thread() - kernel thread used to rescan controllers
3715  * @data:	 Ignored.
3716  *
3717  * A kernel thread used scan for drive topology changes on
3718  * controllers. The thread processes only one controller at a time
3719  * using a queue.  Controllers are added to the queue using
3720  * add_to_scan_list() and removed from the queue either after done
3721  * processing or using remove_from_scan_list().
3722  *
3723  * returns 0.
3724  **/
scan_thread(void * data)3725 static int scan_thread(void *data)
3726 {
3727 	struct ctlr_info *h;
3728 
3729 	while (1) {
3730 		set_current_state(TASK_INTERRUPTIBLE);
3731 		schedule();
3732 		if (kthread_should_stop())
3733 			break;
3734 
3735 		while (1) {
3736 			mutex_lock(&scan_mutex);
3737 			if (list_empty(&scan_q)) {
3738 				mutex_unlock(&scan_mutex);
3739 				break;
3740 			}
3741 
3742 			h = list_entry(scan_q.next,
3743 				       struct ctlr_info,
3744 				       scan_list);
3745 			list_del(&h->scan_list);
3746 			h->busy_scanning = 1;
3747 			mutex_unlock(&scan_mutex);
3748 
3749 			rebuild_lun_table(h, 0, 0);
3750 			complete_all(&h->scan_wait);
3751 			mutex_lock(&scan_mutex);
3752 			h->busy_scanning = 0;
3753 			mutex_unlock(&scan_mutex);
3754 		}
3755 	}
3756 
3757 	return 0;
3758 }
3759 
check_for_unit_attention(ctlr_info_t * h,CommandList_struct * c)3760 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3761 {
3762 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3763 		return 0;
3764 
3765 	switch (c->err_info->SenseInfo[12]) {
3766 	case STATE_CHANGED:
3767 		dev_warn(&h->pdev->dev, "a state change "
3768 			"detected, command retried\n");
3769 		return 1;
3770 	break;
3771 	case LUN_FAILED:
3772 		dev_warn(&h->pdev->dev, "LUN failure "
3773 			"detected, action required\n");
3774 		return 1;
3775 	break;
3776 	case REPORT_LUNS_CHANGED:
3777 		dev_warn(&h->pdev->dev, "report LUN data changed\n");
3778 	/*
3779 	 * Here, we could call add_to_scan_list and wake up the scan thread,
3780 	 * except that it's quite likely that we will get more than one
3781 	 * REPORT_LUNS_CHANGED condition in quick succession, which means
3782 	 * that those which occur after the first one will likely happen
3783 	 * *during* the scan_thread's rescan.  And the rescan code is not
3784 	 * robust enough to restart in the middle, undoing what it has already
3785 	 * done, and it's not clear that it's even possible to do this, since
3786 	 * part of what it does is notify the block layer, which starts
3787 	 * doing it's own i/o to read partition tables and so on, and the
3788 	 * driver doesn't have visibility to know what might need undoing.
3789 	 * In any event, if possible, it is horribly complicated to get right
3790 	 * so we just don't do it for now.
3791 	 *
3792 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3793 	 */
3794 		return 1;
3795 	break;
3796 	case POWER_OR_RESET:
3797 		dev_warn(&h->pdev->dev,
3798 			"a power on or device reset detected\n");
3799 		return 1;
3800 	break;
3801 	case UNIT_ATTENTION_CLEARED:
3802 		dev_warn(&h->pdev->dev,
3803 			"unit attention cleared by another initiator\n");
3804 		return 1;
3805 	break;
3806 	default:
3807 		dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3808 		return 1;
3809 	}
3810 }
3811 
3812 /*
3813  *  We cannot read the structure directly, for portability we must use
3814  *   the io functions.
3815  *   This is for debug only.
3816  */
print_cfg_table(ctlr_info_t * h)3817 static void print_cfg_table(ctlr_info_t *h)
3818 {
3819 	int i;
3820 	char temp_name[17];
3821 	CfgTable_struct *tb = h->cfgtable;
3822 
3823 	dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3824 	dev_dbg(&h->pdev->dev, "------------------------------------\n");
3825 	for (i = 0; i < 4; i++)
3826 		temp_name[i] = readb(&(tb->Signature[i]));
3827 	temp_name[4] = '\0';
3828 	dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3829 	dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3830 		readl(&(tb->SpecValence)));
3831 	dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3832 	       readl(&(tb->TransportSupport)));
3833 	dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3834 	       readl(&(tb->TransportActive)));
3835 	dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3836 	       readl(&(tb->HostWrite.TransportRequest)));
3837 	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3838 	       readl(&(tb->HostWrite.CoalIntDelay)));
3839 	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3840 	       readl(&(tb->HostWrite.CoalIntCount)));
3841 	dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3842 	       readl(&(tb->CmdsOutMax)));
3843 	dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3844 		readl(&(tb->BusTypes)));
3845 	for (i = 0; i < 16; i++)
3846 		temp_name[i] = readb(&(tb->ServerName[i]));
3847 	temp_name[16] = '\0';
3848 	dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3849 	dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3850 		readl(&(tb->HeartBeat)));
3851 }
3852 
find_PCI_BAR_index(struct pci_dev * pdev,unsigned long pci_bar_addr)3853 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3854 {
3855 	int i, offset, mem_type, bar_type;
3856 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3857 		return 0;
3858 	offset = 0;
3859 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3860 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3861 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3862 			offset += 4;
3863 		else {
3864 			mem_type = pci_resource_flags(pdev, i) &
3865 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3866 			switch (mem_type) {
3867 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3868 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3869 				offset += 4;	/* 32 bit */
3870 				break;
3871 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3872 				offset += 8;
3873 				break;
3874 			default:	/* reserved in PCI 2.2 */
3875 				dev_warn(&pdev->dev,
3876 				       "Base address is invalid\n");
3877 				return -1;
3878 				break;
3879 			}
3880 		}
3881 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3882 			return i + 1;
3883 	}
3884 	return -1;
3885 }
3886 
3887 /* Fill in bucket_map[], given nsgs (the max number of
3888  * scatter gather elements supported) and bucket[],
3889  * which is an array of 8 integers.  The bucket[] array
3890  * contains 8 different DMA transfer sizes (in 16
3891  * byte increments) which the controller uses to fetch
3892  * commands.  This function fills in bucket_map[], which
3893  * maps a given number of scatter gather elements to one of
3894  * the 8 DMA transfer sizes.  The point of it is to allow the
3895  * controller to only do as much DMA as needed to fetch the
3896  * command, with the DMA transfer size encoded in the lower
3897  * bits of the command address.
3898  */
calc_bucket_map(int bucket[],int num_buckets,int nsgs,int * bucket_map)3899 static void  calc_bucket_map(int bucket[], int num_buckets,
3900 	int nsgs, int *bucket_map)
3901 {
3902 	int i, j, b, size;
3903 
3904 	/* even a command with 0 SGs requires 4 blocks */
3905 #define MINIMUM_TRANSFER_BLOCKS 4
3906 #define NUM_BUCKETS 8
3907 	/* Note, bucket_map must have nsgs+1 entries. */
3908 	for (i = 0; i <= nsgs; i++) {
3909 		/* Compute size of a command with i SG entries */
3910 		size = i + MINIMUM_TRANSFER_BLOCKS;
3911 		b = num_buckets; /* Assume the biggest bucket */
3912 		/* Find the bucket that is just big enough */
3913 		for (j = 0; j < 8; j++) {
3914 			if (bucket[j] >= size) {
3915 				b = j;
3916 				break;
3917 			}
3918 		}
3919 		/* for a command with i SG entries, use bucket b. */
3920 		bucket_map[i] = b;
3921 	}
3922 }
3923 
cciss_wait_for_mode_change_ack(ctlr_info_t * h)3924 static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3925 {
3926 	int i;
3927 
3928 	/* under certain very rare conditions, this can take awhile.
3929 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3930 	 * as we enter this code.) */
3931 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3932 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3933 			break;
3934 		usleep_range(10000, 20000);
3935 	}
3936 }
3937 
cciss_enter_performant_mode(ctlr_info_t * h,u32 use_short_tags)3938 static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3939 {
3940 	/* This is a bit complicated.  There are 8 registers on
3941 	 * the controller which we write to to tell it 8 different
3942 	 * sizes of commands which there may be.  It's a way of
3943 	 * reducing the DMA done to fetch each command.  Encoded into
3944 	 * each command's tag are 3 bits which communicate to the controller
3945 	 * which of the eight sizes that command fits within.  The size of
3946 	 * each command depends on how many scatter gather entries there are.
3947 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
3948 	 * with the number of 16-byte blocks a command of that size requires.
3949 	 * The smallest command possible requires 5 such 16 byte blocks.
3950 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3951 	 * blocks.  Note, this only extends to the SG entries contained
3952 	 * within the command block, and does not extend to chained blocks
3953 	 * of SG elements.   bft[] contains the eight values we write to
3954 	 * the registers.  They are not evenly distributed, but have more
3955 	 * sizes for small commands, and fewer sizes for larger commands.
3956 	 */
3957 	__u32 trans_offset;
3958 	int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3959 			/*
3960 			 *  5 = 1 s/g entry or 4k
3961 			 *  6 = 2 s/g entry or 8k
3962 			 *  8 = 4 s/g entry or 16k
3963 			 * 10 = 6 s/g entry or 24k
3964 			 */
3965 	unsigned long register_value;
3966 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3967 
3968 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3969 
3970 	/* Controller spec: zero out this buffer. */
3971 	memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3972 	h->reply_pool_head = h->reply_pool;
3973 
3974 	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3975 	calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3976 				h->blockFetchTable);
3977 	writel(bft[0], &h->transtable->BlockFetch0);
3978 	writel(bft[1], &h->transtable->BlockFetch1);
3979 	writel(bft[2], &h->transtable->BlockFetch2);
3980 	writel(bft[3], &h->transtable->BlockFetch3);
3981 	writel(bft[4], &h->transtable->BlockFetch4);
3982 	writel(bft[5], &h->transtable->BlockFetch5);
3983 	writel(bft[6], &h->transtable->BlockFetch6);
3984 	writel(bft[7], &h->transtable->BlockFetch7);
3985 
3986 	/* size of controller ring buffer */
3987 	writel(h->max_commands, &h->transtable->RepQSize);
3988 	writel(1, &h->transtable->RepQCount);
3989 	writel(0, &h->transtable->RepQCtrAddrLow32);
3990 	writel(0, &h->transtable->RepQCtrAddrHigh32);
3991 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3992 	writel(0, &h->transtable->RepQAddr0High32);
3993 	writel(CFGTBL_Trans_Performant | use_short_tags,
3994 			&(h->cfgtable->HostWrite.TransportRequest));
3995 
3996 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3997 	cciss_wait_for_mode_change_ack(h);
3998 	register_value = readl(&(h->cfgtable->TransportActive));
3999 	if (!(register_value & CFGTBL_Trans_Performant))
4000 		dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4001 					" performant mode\n");
4002 }
4003 
cciss_put_controller_into_performant_mode(ctlr_info_t * h)4004 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4005 {
4006 	__u32 trans_support;
4007 
4008 	if (cciss_simple_mode)
4009 		return;
4010 
4011 	dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4012 	/* Attempt to put controller into performant mode if supported */
4013 	/* Does board support performant mode? */
4014 	trans_support = readl(&(h->cfgtable->TransportSupport));
4015 	if (!(trans_support & PERFORMANT_MODE))
4016 		return;
4017 
4018 	dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4019 	/* Performant mode demands commands on a 32 byte boundary
4020 	 * pci_alloc_consistent aligns on page boundarys already.
4021 	 * Just need to check if divisible by 32
4022 	 */
4023 	if ((sizeof(CommandList_struct) % 32) != 0) {
4024 		dev_warn(&h->pdev->dev, "%s %d %s\n",
4025 			"cciss info: command size[",
4026 			(int)sizeof(CommandList_struct),
4027 			"] not divisible by 32, no performant mode..\n");
4028 		return;
4029 	}
4030 
4031 	/* Performant mode ring buffer and supporting data structures */
4032 	h->reply_pool = (__u64 *)pci_alloc_consistent(
4033 		h->pdev, h->max_commands * sizeof(__u64),
4034 		&(h->reply_pool_dhandle));
4035 
4036 	/* Need a block fetch table for performant mode */
4037 	h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4038 		sizeof(__u32)), GFP_KERNEL);
4039 
4040 	if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4041 		goto clean_up;
4042 
4043 	cciss_enter_performant_mode(h,
4044 		trans_support & CFGTBL_Trans_use_short_tags);
4045 
4046 	/* Change the access methods to the performant access methods */
4047 	h->access = SA5_performant_access;
4048 	h->transMethod = CFGTBL_Trans_Performant;
4049 
4050 	return;
4051 clean_up:
4052 	kfree(h->blockFetchTable);
4053 	if (h->reply_pool)
4054 		pci_free_consistent(h->pdev,
4055 				h->max_commands * sizeof(__u64),
4056 				h->reply_pool,
4057 				h->reply_pool_dhandle);
4058 	return;
4059 
4060 } /* cciss_put_controller_into_performant_mode */
4061 
4062 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4063  * controllers that are capable. If not, we use IO-APIC mode.
4064  */
4065 
cciss_interrupt_mode(ctlr_info_t * h)4066 static void cciss_interrupt_mode(ctlr_info_t *h)
4067 {
4068 #ifdef CONFIG_PCI_MSI
4069 	int err;
4070 	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4071 	{0, 2}, {0, 3}
4072 	};
4073 
4074 	/* Some boards advertise MSI but don't really support it */
4075 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4076 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4077 		goto default_int_mode;
4078 
4079 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4080 		err = pci_enable_msix_exact(h->pdev, cciss_msix_entries, 4);
4081 		if (!err) {
4082 			h->intr[0] = cciss_msix_entries[0].vector;
4083 			h->intr[1] = cciss_msix_entries[1].vector;
4084 			h->intr[2] = cciss_msix_entries[2].vector;
4085 			h->intr[3] = cciss_msix_entries[3].vector;
4086 			h->msix_vector = 1;
4087 			return;
4088 		} else {
4089 			dev_warn(&h->pdev->dev,
4090 				"MSI-X init failed %d\n", err);
4091 		}
4092 	}
4093 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4094 		if (!pci_enable_msi(h->pdev))
4095 			h->msi_vector = 1;
4096 		else
4097 			dev_warn(&h->pdev->dev, "MSI init failed\n");
4098 	}
4099 default_int_mode:
4100 #endif				/* CONFIG_PCI_MSI */
4101 	/* if we get here we're going to use the default interrupt mode */
4102 	h->intr[h->intr_mode] = h->pdev->irq;
4103 	return;
4104 }
4105 
cciss_lookup_board_id(struct pci_dev * pdev,u32 * board_id)4106 static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4107 {
4108 	int i;
4109 	u32 subsystem_vendor_id, subsystem_device_id;
4110 
4111 	subsystem_vendor_id = pdev->subsystem_vendor;
4112 	subsystem_device_id = pdev->subsystem_device;
4113 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4114 			subsystem_vendor_id;
4115 
4116 	for (i = 0; i < ARRAY_SIZE(products); i++) {
4117 		/* Stand aside for hpsa driver on request */
4118 		if (cciss_allow_hpsa)
4119 			return -ENODEV;
4120 		if (*board_id == products[i].board_id)
4121 			return i;
4122 	}
4123 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4124 		*board_id);
4125 	return -ENODEV;
4126 }
4127 
cciss_board_disabled(ctlr_info_t * h)4128 static inline bool cciss_board_disabled(ctlr_info_t *h)
4129 {
4130 	u16 command;
4131 
4132 	(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4133 	return ((command & PCI_COMMAND_MEMORY) == 0);
4134 }
4135 
cciss_pci_find_memory_BAR(struct pci_dev * pdev,unsigned long * memory_bar)4136 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4137 				     unsigned long *memory_bar)
4138 {
4139 	int i;
4140 
4141 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4142 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4143 			/* addressing mode bits already removed */
4144 			*memory_bar = pci_resource_start(pdev, i);
4145 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4146 				*memory_bar);
4147 			return 0;
4148 		}
4149 	dev_warn(&pdev->dev, "no memory BAR found\n");
4150 	return -ENODEV;
4151 }
4152 
cciss_wait_for_board_state(struct pci_dev * pdev,void __iomem * vaddr,int wait_for_ready)4153 static int cciss_wait_for_board_state(struct pci_dev *pdev,
4154 				      void __iomem *vaddr, int wait_for_ready)
4155 #define BOARD_READY 1
4156 #define BOARD_NOT_READY 0
4157 {
4158 	int i, iterations;
4159 	u32 scratchpad;
4160 
4161 	if (wait_for_ready)
4162 		iterations = CCISS_BOARD_READY_ITERATIONS;
4163 	else
4164 		iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4165 
4166 	for (i = 0; i < iterations; i++) {
4167 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4168 		if (wait_for_ready) {
4169 			if (scratchpad == CCISS_FIRMWARE_READY)
4170 				return 0;
4171 		} else {
4172 			if (scratchpad != CCISS_FIRMWARE_READY)
4173 				return 0;
4174 		}
4175 		msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4176 	}
4177 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4178 	return -ENODEV;
4179 }
4180 
cciss_find_cfg_addrs(struct pci_dev * pdev,void __iomem * vaddr,u32 * cfg_base_addr,u64 * cfg_base_addr_index,u64 * cfg_offset)4181 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4182 				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4183 				u64 *cfg_offset)
4184 {
4185 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4186 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4187 	*cfg_base_addr &= (u32) 0x0000ffff;
4188 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4189 	if (*cfg_base_addr_index == -1) {
4190 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4191 			"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4192 		return -ENODEV;
4193 	}
4194 	return 0;
4195 }
4196 
cciss_find_cfgtables(ctlr_info_t * h)4197 static int cciss_find_cfgtables(ctlr_info_t *h)
4198 {
4199 	u64 cfg_offset;
4200 	u32 cfg_base_addr;
4201 	u64 cfg_base_addr_index;
4202 	u32 trans_offset;
4203 	int rc;
4204 
4205 	rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4206 		&cfg_base_addr_index, &cfg_offset);
4207 	if (rc)
4208 		return rc;
4209 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4210 		cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4211 	if (!h->cfgtable)
4212 		return -ENOMEM;
4213 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4214 	if (rc)
4215 		return rc;
4216 	/* Find performant mode table. */
4217 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4218 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4219 				cfg_base_addr_index)+cfg_offset+trans_offset,
4220 				sizeof(*h->transtable));
4221 	if (!h->transtable)
4222 		return -ENOMEM;
4223 	return 0;
4224 }
4225 
cciss_get_max_perf_mode_cmds(struct ctlr_info * h)4226 static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4227 {
4228 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4229 
4230 	/* Limit commands in memory limited kdump scenario. */
4231 	if (reset_devices && h->max_commands > 32)
4232 		h->max_commands = 32;
4233 
4234 	if (h->max_commands < 16) {
4235 		dev_warn(&h->pdev->dev, "Controller reports "
4236 			"max supported commands of %d, an obvious lie. "
4237 			"Using 16.  Ensure that firmware is up to date.\n",
4238 			h->max_commands);
4239 		h->max_commands = 16;
4240 	}
4241 }
4242 
4243 /* Interrogate the hardware for some limits:
4244  * max commands, max SG elements without chaining, and with chaining,
4245  * SG chain block size, etc.
4246  */
cciss_find_board_params(ctlr_info_t * h)4247 static void cciss_find_board_params(ctlr_info_t *h)
4248 {
4249 	cciss_get_max_perf_mode_cmds(h);
4250 	h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4251 	h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4252 	/*
4253 	 * The P600 may exhibit poor performnace under some workloads
4254 	 * if we use the value in the configuration table. Limit this
4255 	 * controller to MAXSGENTRIES (32) instead.
4256 	 */
4257 	if (h->board_id == 0x3225103C)
4258 		h->maxsgentries = MAXSGENTRIES;
4259 	/*
4260 	 * Limit in-command s/g elements to 32 save dma'able memory.
4261 	 * Howvever spec says if 0, use 31
4262 	 */
4263 	h->max_cmd_sgentries = 31;
4264 	if (h->maxsgentries > 512) {
4265 		h->max_cmd_sgentries = 32;
4266 		h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4267 		h->maxsgentries--; /* save one for chain pointer */
4268 	} else {
4269 		h->maxsgentries = 31; /* default to traditional values */
4270 		h->chainsize = 0;
4271 	}
4272 }
4273 
CISS_signature_present(ctlr_info_t * h)4274 static inline bool CISS_signature_present(ctlr_info_t *h)
4275 {
4276 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4277 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4278 		return false;
4279 	}
4280 	return true;
4281 }
4282 
4283 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
cciss_enable_scsi_prefetch(ctlr_info_t * h)4284 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4285 {
4286 #ifdef CONFIG_X86
4287 	u32 prefetch;
4288 
4289 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4290 	prefetch |= 0x100;
4291 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4292 #endif
4293 }
4294 
4295 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4296  * in a prefetch beyond physical memory.
4297  */
cciss_p600_dma_prefetch_quirk(ctlr_info_t * h)4298 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4299 {
4300 	u32 dma_prefetch;
4301 	__u32 dma_refetch;
4302 
4303 	if (h->board_id != 0x3225103C)
4304 		return;
4305 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4306 	dma_prefetch |= 0x8000;
4307 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4308 	pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4309 	dma_refetch |= 0x1;
4310 	pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4311 }
4312 
cciss_pci_init(ctlr_info_t * h)4313 static int cciss_pci_init(ctlr_info_t *h)
4314 {
4315 	int prod_index, err;
4316 
4317 	prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4318 	if (prod_index < 0)
4319 		return -ENODEV;
4320 	h->product_name = products[prod_index].product_name;
4321 	h->access = *(products[prod_index].access);
4322 
4323 	if (cciss_board_disabled(h)) {
4324 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4325 		return -ENODEV;
4326 	}
4327 
4328 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4329 				PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4330 
4331 	err = pci_enable_device(h->pdev);
4332 	if (err) {
4333 		dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4334 		return err;
4335 	}
4336 
4337 	err = pci_request_regions(h->pdev, "cciss");
4338 	if (err) {
4339 		dev_warn(&h->pdev->dev,
4340 			"Cannot obtain PCI resources, aborting\n");
4341 		return err;
4342 	}
4343 
4344 	dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4345 	dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4346 
4347 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4348  * else we use the IO-APIC interrupt assigned to us by system ROM.
4349  */
4350 	cciss_interrupt_mode(h);
4351 	err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4352 	if (err)
4353 		goto err_out_free_res;
4354 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4355 	if (!h->vaddr) {
4356 		err = -ENOMEM;
4357 		goto err_out_free_res;
4358 	}
4359 	err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4360 	if (err)
4361 		goto err_out_free_res;
4362 	err = cciss_find_cfgtables(h);
4363 	if (err)
4364 		goto err_out_free_res;
4365 	print_cfg_table(h);
4366 	cciss_find_board_params(h);
4367 
4368 	if (!CISS_signature_present(h)) {
4369 		err = -ENODEV;
4370 		goto err_out_free_res;
4371 	}
4372 	cciss_enable_scsi_prefetch(h);
4373 	cciss_p600_dma_prefetch_quirk(h);
4374 	err = cciss_enter_simple_mode(h);
4375 	if (err)
4376 		goto err_out_free_res;
4377 	cciss_put_controller_into_performant_mode(h);
4378 	return 0;
4379 
4380 err_out_free_res:
4381 	/*
4382 	 * Deliberately omit pci_disable_device(): it does something nasty to
4383 	 * Smart Array controllers that pci_enable_device does not undo
4384 	 */
4385 	if (h->transtable)
4386 		iounmap(h->transtable);
4387 	if (h->cfgtable)
4388 		iounmap(h->cfgtable);
4389 	if (h->vaddr)
4390 		iounmap(h->vaddr);
4391 	pci_release_regions(h->pdev);
4392 	return err;
4393 }
4394 
4395 /* Function to find the first free pointer into our hba[] array
4396  * Returns -1 if no free entries are left.
4397  */
alloc_cciss_hba(struct pci_dev * pdev)4398 static int alloc_cciss_hba(struct pci_dev *pdev)
4399 {
4400 	int i;
4401 
4402 	for (i = 0; i < MAX_CTLR; i++) {
4403 		if (!hba[i]) {
4404 			ctlr_info_t *h;
4405 
4406 			h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4407 			if (!h)
4408 				goto Enomem;
4409 			hba[i] = h;
4410 			return i;
4411 		}
4412 	}
4413 	dev_warn(&pdev->dev, "This driver supports a maximum"
4414 	       " of %d controllers.\n", MAX_CTLR);
4415 	return -1;
4416 Enomem:
4417 	dev_warn(&pdev->dev, "out of memory.\n");
4418 	return -1;
4419 }
4420 
free_hba(ctlr_info_t * h)4421 static void free_hba(ctlr_info_t *h)
4422 {
4423 	int i;
4424 
4425 	hba[h->ctlr] = NULL;
4426 	for (i = 0; i < h->highest_lun + 1; i++)
4427 		if (h->gendisk[i] != NULL)
4428 			put_disk(h->gendisk[i]);
4429 	kfree(h);
4430 }
4431 
4432 /* Send a message CDB to the firmware. */
cciss_message(struct pci_dev * pdev,unsigned char opcode,unsigned char type)4433 static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4434 			 unsigned char type)
4435 {
4436 	typedef struct {
4437 		CommandListHeader_struct CommandHeader;
4438 		RequestBlock_struct Request;
4439 		ErrDescriptor_struct ErrorDescriptor;
4440 	} Command;
4441 	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4442 	Command *cmd;
4443 	dma_addr_t paddr64;
4444 	uint32_t paddr32, tag;
4445 	void __iomem *vaddr;
4446 	int i, err;
4447 
4448 	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4449 	if (vaddr == NULL)
4450 		return -ENOMEM;
4451 
4452 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4453 	   CCISS commands, so they must be allocated from the lower 4GiB of
4454 	   memory. */
4455 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4456 	if (err) {
4457 		iounmap(vaddr);
4458 		return -ENOMEM;
4459 	}
4460 
4461 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4462 	if (cmd == NULL) {
4463 		iounmap(vaddr);
4464 		return -ENOMEM;
4465 	}
4466 
4467 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4468 	   although there's no guarantee, we assume that the address is at
4469 	   least 4-byte aligned (most likely, it's page-aligned). */
4470 	paddr32 = paddr64;
4471 
4472 	cmd->CommandHeader.ReplyQueue = 0;
4473 	cmd->CommandHeader.SGList = 0;
4474 	cmd->CommandHeader.SGTotal = 0;
4475 	cmd->CommandHeader.Tag.lower = paddr32;
4476 	cmd->CommandHeader.Tag.upper = 0;
4477 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4478 
4479 	cmd->Request.CDBLen = 16;
4480 	cmd->Request.Type.Type = TYPE_MSG;
4481 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4482 	cmd->Request.Type.Direction = XFER_NONE;
4483 	cmd->Request.Timeout = 0; /* Don't time out */
4484 	cmd->Request.CDB[0] = opcode;
4485 	cmd->Request.CDB[1] = type;
4486 	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4487 
4488 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4489 	cmd->ErrorDescriptor.Addr.upper = 0;
4490 	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4491 
4492 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4493 
4494 	for (i = 0; i < 10; i++) {
4495 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4496 		if ((tag & ~3) == paddr32)
4497 			break;
4498 		msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4499 	}
4500 
4501 	iounmap(vaddr);
4502 
4503 	/* we leak the DMA buffer here ... no choice since the controller could
4504 	   still complete the command. */
4505 	if (i == 10) {
4506 		dev_err(&pdev->dev,
4507 			"controller message %02x:%02x timed out\n",
4508 			opcode, type);
4509 		return -ETIMEDOUT;
4510 	}
4511 
4512 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4513 
4514 	if (tag & 2) {
4515 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4516 			opcode, type);
4517 		return -EIO;
4518 	}
4519 
4520 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4521 		opcode, type);
4522 	return 0;
4523 }
4524 
4525 #define cciss_noop(p) cciss_message(p, 3, 0)
4526 
cciss_controller_hard_reset(struct pci_dev * pdev,void * __iomem vaddr,u32 use_doorbell)4527 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4528 	void * __iomem vaddr, u32 use_doorbell)
4529 {
4530 	u16 pmcsr;
4531 	int pos;
4532 
4533 	if (use_doorbell) {
4534 		/* For everything after the P600, the PCI power state method
4535 		 * of resetting the controller doesn't work, so we have this
4536 		 * other way using the doorbell register.
4537 		 */
4538 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
4539 		writel(use_doorbell, vaddr + SA5_DOORBELL);
4540 	} else { /* Try to do it the PCI power state way */
4541 
4542 		/* Quoting from the Open CISS Specification: "The Power
4543 		 * Management Control/Status Register (CSR) controls the power
4544 		 * state of the device.  The normal operating state is D0,
4545 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4546 		 * the controller, place the interface device in D3 then to D0,
4547 		 * this causes a secondary PCI reset which will reset the
4548 		 * controller." */
4549 
4550 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4551 		if (pos == 0) {
4552 			dev_err(&pdev->dev,
4553 				"cciss_controller_hard_reset: "
4554 				"PCI PM not supported\n");
4555 			return -ENODEV;
4556 		}
4557 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4558 		/* enter the D3hot power management state */
4559 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4560 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4561 		pmcsr |= PCI_D3hot;
4562 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4563 
4564 		msleep(500);
4565 
4566 		/* enter the D0 power management state */
4567 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4568 		pmcsr |= PCI_D0;
4569 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4570 
4571 		/*
4572 		 * The P600 requires a small delay when changing states.
4573 		 * Otherwise we may think the board did not reset and we bail.
4574 		 * This for kdump only and is particular to the P600.
4575 		 */
4576 		msleep(500);
4577 	}
4578 	return 0;
4579 }
4580 
init_driver_version(char * driver_version,int len)4581 static void init_driver_version(char *driver_version, int len)
4582 {
4583 	memset(driver_version, 0, len);
4584 	strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4585 }
4586 
write_driver_ver_to_cfgtable(CfgTable_struct __iomem * cfgtable)4587 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4588 {
4589 	char *driver_version;
4590 	int i, size = sizeof(cfgtable->driver_version);
4591 
4592 	driver_version = kmalloc(size, GFP_KERNEL);
4593 	if (!driver_version)
4594 		return -ENOMEM;
4595 
4596 	init_driver_version(driver_version, size);
4597 	for (i = 0; i < size; i++)
4598 		writeb(driver_version[i], &cfgtable->driver_version[i]);
4599 	kfree(driver_version);
4600 	return 0;
4601 }
4602 
read_driver_ver_from_cfgtable(CfgTable_struct __iomem * cfgtable,unsigned char * driver_ver)4603 static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4604 					  unsigned char *driver_ver)
4605 {
4606 	int i;
4607 
4608 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4609 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
4610 }
4611 
controller_reset_failed(CfgTable_struct __iomem * cfgtable)4612 static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4613 {
4614 
4615 	char *driver_ver, *old_driver_ver;
4616 	int rc, size = sizeof(cfgtable->driver_version);
4617 
4618 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4619 	if (!old_driver_ver)
4620 		return -ENOMEM;
4621 	driver_ver = old_driver_ver + size;
4622 
4623 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
4624 	 * should have been changed, otherwise we know the reset failed.
4625 	 */
4626 	init_driver_version(old_driver_ver, size);
4627 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4628 	rc = !memcmp(driver_ver, old_driver_ver, size);
4629 	kfree(old_driver_ver);
4630 	return rc;
4631 }
4632 
4633 /* This does a hard reset of the controller using PCI power management
4634  * states or using the doorbell register. */
cciss_kdump_hard_reset_controller(struct pci_dev * pdev)4635 static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4636 {
4637 	u64 cfg_offset;
4638 	u32 cfg_base_addr;
4639 	u64 cfg_base_addr_index;
4640 	void __iomem *vaddr;
4641 	unsigned long paddr;
4642 	u32 misc_fw_support;
4643 	int rc;
4644 	CfgTable_struct __iomem *cfgtable;
4645 	u32 use_doorbell;
4646 	u32 board_id;
4647 	u16 command_register;
4648 
4649 	/* For controllers as old a the p600, this is very nearly
4650 	 * the same thing as
4651 	 *
4652 	 * pci_save_state(pci_dev);
4653 	 * pci_set_power_state(pci_dev, PCI_D3hot);
4654 	 * pci_set_power_state(pci_dev, PCI_D0);
4655 	 * pci_restore_state(pci_dev);
4656 	 *
4657 	 * For controllers newer than the P600, the pci power state
4658 	 * method of resetting doesn't work so we have another way
4659 	 * using the doorbell register.
4660 	 */
4661 
4662 	/* Exclude 640x boards.  These are two pci devices in one slot
4663 	 * which share a battery backed cache module.  One controls the
4664 	 * cache, the other accesses the cache through the one that controls
4665 	 * it.  If we reset the one controlling the cache, the other will
4666 	 * likely not be happy.  Just forbid resetting this conjoined mess.
4667 	 */
4668 	cciss_lookup_board_id(pdev, &board_id);
4669 	if (!ctlr_is_resettable(board_id)) {
4670 		dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4671 				"due to shared cache module.");
4672 		return -ENODEV;
4673 	}
4674 
4675 	/* if controller is soft- but not hard resettable... */
4676 	if (!ctlr_is_hard_resettable(board_id))
4677 		return -ENOTSUPP; /* try soft reset later. */
4678 
4679 	/* Save the PCI command register */
4680 	pci_read_config_word(pdev, 4, &command_register);
4681 	/* Turn the board off.  This is so that later pci_restore_state()
4682 	 * won't turn the board on before the rest of config space is ready.
4683 	 */
4684 	pci_disable_device(pdev);
4685 	pci_save_state(pdev);
4686 
4687 	/* find the first memory BAR, so we can find the cfg table */
4688 	rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4689 	if (rc)
4690 		return rc;
4691 	vaddr = remap_pci_mem(paddr, 0x250);
4692 	if (!vaddr)
4693 		return -ENOMEM;
4694 
4695 	/* find cfgtable in order to check if reset via doorbell is supported */
4696 	rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4697 					&cfg_base_addr_index, &cfg_offset);
4698 	if (rc)
4699 		goto unmap_vaddr;
4700 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
4701 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4702 	if (!cfgtable) {
4703 		rc = -ENOMEM;
4704 		goto unmap_vaddr;
4705 	}
4706 	rc = write_driver_ver_to_cfgtable(cfgtable);
4707 	if (rc)
4708 		goto unmap_vaddr;
4709 
4710 	/* If reset via doorbell register is supported, use that.
4711 	 * There are two such methods.  Favor the newest method.
4712 	 */
4713 	misc_fw_support = readl(&cfgtable->misc_fw_support);
4714 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4715 	if (use_doorbell) {
4716 		use_doorbell = DOORBELL_CTLR_RESET2;
4717 	} else {
4718 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4719 		if (use_doorbell) {
4720 			dev_warn(&pdev->dev, "Controller claims that "
4721 				"'Bit 2 doorbell reset' is "
4722 				"supported, but not 'bit 5 doorbell reset'.  "
4723 				"Firmware update is recommended.\n");
4724 			rc = -ENOTSUPP; /* use the soft reset */
4725 			goto unmap_cfgtable;
4726 		}
4727 	}
4728 
4729 	rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4730 	if (rc)
4731 		goto unmap_cfgtable;
4732 	pci_restore_state(pdev);
4733 	rc = pci_enable_device(pdev);
4734 	if (rc) {
4735 		dev_warn(&pdev->dev, "failed to enable device.\n");
4736 		goto unmap_cfgtable;
4737 	}
4738 	pci_write_config_word(pdev, 4, command_register);
4739 
4740 	/* Some devices (notably the HP Smart Array 5i Controller)
4741 	   need a little pause here */
4742 	msleep(CCISS_POST_RESET_PAUSE_MSECS);
4743 
4744 	/* Wait for board to become not ready, then ready. */
4745 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
4746 	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4747 	if (rc) {
4748 		dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4749 				"  Will try soft reset.\n");
4750 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4751 		goto unmap_cfgtable;
4752 	}
4753 	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4754 	if (rc) {
4755 		dev_warn(&pdev->dev,
4756 			"failed waiting for board to become ready "
4757 			"after hard reset\n");
4758 		goto unmap_cfgtable;
4759 	}
4760 
4761 	rc = controller_reset_failed(vaddr);
4762 	if (rc < 0)
4763 		goto unmap_cfgtable;
4764 	if (rc) {
4765 		dev_warn(&pdev->dev, "Unable to successfully hard reset "
4766 			"controller. Will try soft reset.\n");
4767 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4768 	} else {
4769 		dev_info(&pdev->dev, "Board ready after hard reset.\n");
4770 	}
4771 
4772 unmap_cfgtable:
4773 	iounmap(cfgtable);
4774 
4775 unmap_vaddr:
4776 	iounmap(vaddr);
4777 	return rc;
4778 }
4779 
cciss_init_reset_devices(struct pci_dev * pdev)4780 static int cciss_init_reset_devices(struct pci_dev *pdev)
4781 {
4782 	int rc, i;
4783 
4784 	if (!reset_devices)
4785 		return 0;
4786 
4787 	/* Reset the controller with a PCI power-cycle or via doorbell */
4788 	rc = cciss_kdump_hard_reset_controller(pdev);
4789 
4790 	/* -ENOTSUPP here means we cannot reset the controller
4791 	 * but it's already (and still) up and running in
4792 	 * "performant mode".  Or, it might be 640x, which can't reset
4793 	 * due to concerns about shared bbwc between 6402/6404 pair.
4794 	 */
4795 	if (rc == -ENOTSUPP)
4796 		return rc; /* just try to do the kdump anyhow. */
4797 	if (rc)
4798 		return -ENODEV;
4799 
4800 	/* Now try to get the controller to respond to a no-op */
4801 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4802 	for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4803 		if (cciss_noop(pdev) == 0)
4804 			break;
4805 		else
4806 			dev_warn(&pdev->dev, "no-op failed%s\n",
4807 				(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4808 					"; re-trying" : ""));
4809 		msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4810 	}
4811 	return 0;
4812 }
4813 
cciss_allocate_cmd_pool(ctlr_info_t * h)4814 static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4815 {
4816 	h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4817 		sizeof(unsigned long), GFP_KERNEL);
4818 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4819 		h->nr_cmds * sizeof(CommandList_struct),
4820 		&(h->cmd_pool_dhandle));
4821 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4822 		h->nr_cmds * sizeof(ErrorInfo_struct),
4823 		&(h->errinfo_pool_dhandle));
4824 	if ((h->cmd_pool_bits == NULL)
4825 		|| (h->cmd_pool == NULL)
4826 		|| (h->errinfo_pool == NULL)) {
4827 		dev_err(&h->pdev->dev, "out of memory");
4828 		return -ENOMEM;
4829 	}
4830 	return 0;
4831 }
4832 
cciss_allocate_scatterlists(ctlr_info_t * h)4833 static int cciss_allocate_scatterlists(ctlr_info_t *h)
4834 {
4835 	int i;
4836 
4837 	/* zero it, so that on free we need not know how many were alloc'ed */
4838 	h->scatter_list = kzalloc(h->max_commands *
4839 				sizeof(struct scatterlist *), GFP_KERNEL);
4840 	if (!h->scatter_list)
4841 		return -ENOMEM;
4842 
4843 	for (i = 0; i < h->nr_cmds; i++) {
4844 		h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4845 						h->maxsgentries, GFP_KERNEL);
4846 		if (h->scatter_list[i] == NULL) {
4847 			dev_err(&h->pdev->dev, "could not allocate "
4848 				"s/g lists\n");
4849 			return -ENOMEM;
4850 		}
4851 	}
4852 	return 0;
4853 }
4854 
cciss_free_scatterlists(ctlr_info_t * h)4855 static void cciss_free_scatterlists(ctlr_info_t *h)
4856 {
4857 	int i;
4858 
4859 	if (h->scatter_list) {
4860 		for (i = 0; i < h->nr_cmds; i++)
4861 			kfree(h->scatter_list[i]);
4862 		kfree(h->scatter_list);
4863 	}
4864 }
4865 
cciss_free_cmd_pool(ctlr_info_t * h)4866 static void cciss_free_cmd_pool(ctlr_info_t *h)
4867 {
4868 	kfree(h->cmd_pool_bits);
4869 	if (h->cmd_pool)
4870 		pci_free_consistent(h->pdev,
4871 			h->nr_cmds * sizeof(CommandList_struct),
4872 			h->cmd_pool, h->cmd_pool_dhandle);
4873 	if (h->errinfo_pool)
4874 		pci_free_consistent(h->pdev,
4875 			h->nr_cmds * sizeof(ErrorInfo_struct),
4876 			h->errinfo_pool, h->errinfo_pool_dhandle);
4877 }
4878 
cciss_request_irq(ctlr_info_t * h,irqreturn_t (* msixhandler)(int,void *),irqreturn_t (* intxhandler)(int,void *))4879 static int cciss_request_irq(ctlr_info_t *h,
4880 	irqreturn_t (*msixhandler)(int, void *),
4881 	irqreturn_t (*intxhandler)(int, void *))
4882 {
4883 	if (h->msix_vector || h->msi_vector) {
4884 		if (!request_irq(h->intr[h->intr_mode], msixhandler,
4885 				0, h->devname, h))
4886 			return 0;
4887 		dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4888 			" for %s\n", h->intr[h->intr_mode],
4889 			h->devname);
4890 		return -1;
4891 	}
4892 
4893 	if (!request_irq(h->intr[h->intr_mode], intxhandler,
4894 			IRQF_SHARED, h->devname, h))
4895 		return 0;
4896 	dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4897 		h->intr[h->intr_mode], h->devname);
4898 	return -1;
4899 }
4900 
cciss_kdump_soft_reset(ctlr_info_t * h)4901 static int cciss_kdump_soft_reset(ctlr_info_t *h)
4902 {
4903 	if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4904 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4905 		return -EIO;
4906 	}
4907 
4908 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4909 	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4910 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4911 		return -1;
4912 	}
4913 
4914 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4915 	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4916 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4917 			"after soft reset.\n");
4918 		return -1;
4919 	}
4920 
4921 	return 0;
4922 }
4923 
cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t * h)4924 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4925 {
4926 	int ctlr = h->ctlr;
4927 
4928 	free_irq(h->intr[h->intr_mode], h);
4929 #ifdef CONFIG_PCI_MSI
4930 	if (h->msix_vector)
4931 		pci_disable_msix(h->pdev);
4932 	else if (h->msi_vector)
4933 		pci_disable_msi(h->pdev);
4934 #endif /* CONFIG_PCI_MSI */
4935 	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4936 	cciss_free_scatterlists(h);
4937 	cciss_free_cmd_pool(h);
4938 	kfree(h->blockFetchTable);
4939 	if (h->reply_pool)
4940 		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4941 				h->reply_pool, h->reply_pool_dhandle);
4942 	if (h->transtable)
4943 		iounmap(h->transtable);
4944 	if (h->cfgtable)
4945 		iounmap(h->cfgtable);
4946 	if (h->vaddr)
4947 		iounmap(h->vaddr);
4948 	unregister_blkdev(h->major, h->devname);
4949 	cciss_destroy_hba_sysfs_entry(h);
4950 	pci_release_regions(h->pdev);
4951 	kfree(h);
4952 	hba[ctlr] = NULL;
4953 }
4954 
4955 /*
4956  *  This is it.  Find all the controllers and register them.  I really hate
4957  *  stealing all these major device numbers.
4958  *  returns the number of block devices registered.
4959  */
cciss_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4960 static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4961 {
4962 	int i;
4963 	int j = 0;
4964 	int rc;
4965 	int try_soft_reset = 0;
4966 	int dac, return_code;
4967 	InquiryData_struct *inq_buff;
4968 	ctlr_info_t *h;
4969 	unsigned long flags;
4970 
4971 	/*
4972 	 * By default the cciss driver is used for all older HP Smart Array
4973 	 * controllers. There are module paramaters that allow a user to
4974 	 * override this behavior and instead use the hpsa SCSI driver. If
4975 	 * this is the case cciss may be loaded first from the kdump initrd
4976 	 * image and cause a kernel panic. So if reset_devices is true and
4977 	 * cciss_allow_hpsa is set just bail.
4978 	 */
4979 	if ((reset_devices) && (cciss_allow_hpsa == 1))
4980 		return -ENODEV;
4981 	rc = cciss_init_reset_devices(pdev);
4982 	if (rc) {
4983 		if (rc != -ENOTSUPP)
4984 			return rc;
4985 		/* If the reset fails in a particular way (it has no way to do
4986 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4987 		 * a soft reset once we get the controller configured up to the
4988 		 * point that it can accept a command.
4989 		 */
4990 		try_soft_reset = 1;
4991 		rc = 0;
4992 	}
4993 
4994 reinit_after_soft_reset:
4995 
4996 	i = alloc_cciss_hba(pdev);
4997 	if (i < 0)
4998 		return -ENOMEM;
4999 
5000 	h = hba[i];
5001 	h->pdev = pdev;
5002 	h->busy_initializing = 1;
5003 	h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5004 	INIT_LIST_HEAD(&h->cmpQ);
5005 	INIT_LIST_HEAD(&h->reqQ);
5006 	mutex_init(&h->busy_shutting_down);
5007 
5008 	if (cciss_pci_init(h) != 0)
5009 		goto clean_no_release_regions;
5010 
5011 	sprintf(h->devname, "cciss%d", i);
5012 	h->ctlr = i;
5013 
5014 	if (cciss_tape_cmds < 2)
5015 		cciss_tape_cmds = 2;
5016 	if (cciss_tape_cmds > 16)
5017 		cciss_tape_cmds = 16;
5018 
5019 	init_completion(&h->scan_wait);
5020 
5021 	if (cciss_create_hba_sysfs_entry(h))
5022 		goto clean0;
5023 
5024 	/* configure PCI DMA stuff */
5025 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5026 		dac = 1;
5027 	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5028 		dac = 0;
5029 	else {
5030 		dev_err(&h->pdev->dev, "no suitable DMA available\n");
5031 		goto clean1;
5032 	}
5033 
5034 	/*
5035 	 * register with the major number, or get a dynamic major number
5036 	 * by passing 0 as argument.  This is done for greater than
5037 	 * 8 controller support.
5038 	 */
5039 	if (i < MAX_CTLR_ORIG)
5040 		h->major = COMPAQ_CISS_MAJOR + i;
5041 	rc = register_blkdev(h->major, h->devname);
5042 	if (rc == -EBUSY || rc == -EINVAL) {
5043 		dev_err(&h->pdev->dev,
5044 		       "Unable to get major number %d for %s "
5045 		       "on hba %d\n", h->major, h->devname, i);
5046 		goto clean1;
5047 	} else {
5048 		if (i >= MAX_CTLR_ORIG)
5049 			h->major = rc;
5050 	}
5051 
5052 	/* make sure the board interrupts are off */
5053 	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5054 	rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5055 	if (rc)
5056 		goto clean2;
5057 
5058 	dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5059 	       h->devname, pdev->device, pci_name(pdev),
5060 	       h->intr[h->intr_mode], dac ? "" : " not");
5061 
5062 	if (cciss_allocate_cmd_pool(h))
5063 		goto clean4;
5064 
5065 	if (cciss_allocate_scatterlists(h))
5066 		goto clean4;
5067 
5068 	h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5069 		h->chainsize, h->nr_cmds);
5070 	if (!h->cmd_sg_list && h->chainsize > 0)
5071 		goto clean4;
5072 
5073 	spin_lock_init(&h->lock);
5074 
5075 	/* Initialize the pdev driver private data.
5076 	   have it point to h.  */
5077 	pci_set_drvdata(pdev, h);
5078 	/* command and error info recs zeroed out before
5079 	   they are used */
5080 	bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5081 
5082 	h->num_luns = 0;
5083 	h->highest_lun = -1;
5084 	for (j = 0; j < CISS_MAX_LUN; j++) {
5085 		h->drv[j] = NULL;
5086 		h->gendisk[j] = NULL;
5087 	}
5088 
5089 	/* At this point, the controller is ready to take commands.
5090 	 * Now, if reset_devices and the hard reset didn't work, try
5091 	 * the soft reset and see if that works.
5092 	 */
5093 	if (try_soft_reset) {
5094 
5095 		/* This is kind of gross.  We may or may not get a completion
5096 		 * from the soft reset command, and if we do, then the value
5097 		 * from the fifo may or may not be valid.  So, we wait 10 secs
5098 		 * after the reset throwing away any completions we get during
5099 		 * that time.  Unregister the interrupt handler and register
5100 		 * fake ones to scoop up any residual completions.
5101 		 */
5102 		spin_lock_irqsave(&h->lock, flags);
5103 		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5104 		spin_unlock_irqrestore(&h->lock, flags);
5105 		free_irq(h->intr[h->intr_mode], h);
5106 		rc = cciss_request_irq(h, cciss_msix_discard_completions,
5107 					cciss_intx_discard_completions);
5108 		if (rc) {
5109 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
5110 				"soft reset.\n");
5111 			goto clean4;
5112 		}
5113 
5114 		rc = cciss_kdump_soft_reset(h);
5115 		if (rc) {
5116 			dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5117 			goto clean4;
5118 		}
5119 
5120 		dev_info(&h->pdev->dev, "Board READY.\n");
5121 		dev_info(&h->pdev->dev,
5122 			"Waiting for stale completions to drain.\n");
5123 		h->access.set_intr_mask(h, CCISS_INTR_ON);
5124 		msleep(10000);
5125 		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5126 
5127 		rc = controller_reset_failed(h->cfgtable);
5128 		if (rc)
5129 			dev_info(&h->pdev->dev,
5130 				"Soft reset appears to have failed.\n");
5131 
5132 		/* since the controller's reset, we have to go back and re-init
5133 		 * everything.  Easiest to just forget what we've done and do it
5134 		 * all over again.
5135 		 */
5136 		cciss_undo_allocations_after_kdump_soft_reset(h);
5137 		try_soft_reset = 0;
5138 		if (rc)
5139 			/* don't go to clean4, we already unallocated */
5140 			return -ENODEV;
5141 
5142 		goto reinit_after_soft_reset;
5143 	}
5144 
5145 	cciss_scsi_setup(h);
5146 
5147 	/* Turn the interrupts on so we can service requests */
5148 	h->access.set_intr_mask(h, CCISS_INTR_ON);
5149 
5150 	/* Get the firmware version */
5151 	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5152 	if (inq_buff == NULL) {
5153 		dev_err(&h->pdev->dev, "out of memory\n");
5154 		goto clean4;
5155 	}
5156 
5157 	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5158 		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5159 	if (return_code == IO_OK) {
5160 		h->firm_ver[0] = inq_buff->data_byte[32];
5161 		h->firm_ver[1] = inq_buff->data_byte[33];
5162 		h->firm_ver[2] = inq_buff->data_byte[34];
5163 		h->firm_ver[3] = inq_buff->data_byte[35];
5164 	} else {	 /* send command failed */
5165 		dev_warn(&h->pdev->dev, "unable to determine firmware"
5166 			" version of controller\n");
5167 	}
5168 	kfree(inq_buff);
5169 
5170 	cciss_procinit(h);
5171 
5172 	h->cciss_max_sectors = 8192;
5173 
5174 	rebuild_lun_table(h, 1, 0);
5175 	cciss_engage_scsi(h);
5176 	h->busy_initializing = 0;
5177 	return 0;
5178 
5179 clean4:
5180 	cciss_free_cmd_pool(h);
5181 	cciss_free_scatterlists(h);
5182 	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5183 	free_irq(h->intr[h->intr_mode], h);
5184 clean2:
5185 	unregister_blkdev(h->major, h->devname);
5186 clean1:
5187 	cciss_destroy_hba_sysfs_entry(h);
5188 clean0:
5189 	pci_release_regions(pdev);
5190 clean_no_release_regions:
5191 	h->busy_initializing = 0;
5192 
5193 	/*
5194 	 * Deliberately omit pci_disable_device(): it does something nasty to
5195 	 * Smart Array controllers that pci_enable_device does not undo
5196 	 */
5197 	pci_set_drvdata(pdev, NULL);
5198 	free_hba(h);
5199 	return -ENODEV;
5200 }
5201 
cciss_shutdown(struct pci_dev * pdev)5202 static void cciss_shutdown(struct pci_dev *pdev)
5203 {
5204 	ctlr_info_t *h;
5205 	char *flush_buf;
5206 	int return_code;
5207 
5208 	h = pci_get_drvdata(pdev);
5209 	flush_buf = kzalloc(4, GFP_KERNEL);
5210 	if (!flush_buf) {
5211 		dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5212 		return;
5213 	}
5214 	/* write all data in the battery backed cache to disk */
5215 	return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5216 		4, 0, CTLR_LUNID, TYPE_CMD);
5217 	kfree(flush_buf);
5218 	if (return_code != IO_OK)
5219 		dev_warn(&h->pdev->dev, "Error flushing cache\n");
5220 	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5221 	free_irq(h->intr[h->intr_mode], h);
5222 }
5223 
cciss_enter_simple_mode(struct ctlr_info * h)5224 static int cciss_enter_simple_mode(struct ctlr_info *h)
5225 {
5226 	u32 trans_support;
5227 
5228 	trans_support = readl(&(h->cfgtable->TransportSupport));
5229 	if (!(trans_support & SIMPLE_MODE))
5230 		return -ENOTSUPP;
5231 
5232 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5233 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5234 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5235 	cciss_wait_for_mode_change_ack(h);
5236 	print_cfg_table(h);
5237 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5238 		dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5239 		return -ENODEV;
5240 	}
5241 	h->transMethod = CFGTBL_Trans_Simple;
5242 	return 0;
5243 }
5244 
5245 
cciss_remove_one(struct pci_dev * pdev)5246 static void cciss_remove_one(struct pci_dev *pdev)
5247 {
5248 	ctlr_info_t *h;
5249 	int i, j;
5250 
5251 	if (pci_get_drvdata(pdev) == NULL) {
5252 		dev_err(&pdev->dev, "Unable to remove device\n");
5253 		return;
5254 	}
5255 
5256 	h = pci_get_drvdata(pdev);
5257 	i = h->ctlr;
5258 	if (hba[i] == NULL) {
5259 		dev_err(&pdev->dev, "device appears to already be removed\n");
5260 		return;
5261 	}
5262 
5263 	mutex_lock(&h->busy_shutting_down);
5264 
5265 	remove_from_scan_list(h);
5266 	remove_proc_entry(h->devname, proc_cciss);
5267 	unregister_blkdev(h->major, h->devname);
5268 
5269 	/* remove it from the disk list */
5270 	for (j = 0; j < CISS_MAX_LUN; j++) {
5271 		struct gendisk *disk = h->gendisk[j];
5272 		if (disk) {
5273 			struct request_queue *q = disk->queue;
5274 
5275 			if (disk->flags & GENHD_FL_UP) {
5276 				cciss_destroy_ld_sysfs_entry(h, j, 1);
5277 				del_gendisk(disk);
5278 			}
5279 			if (q)
5280 				blk_cleanup_queue(q);
5281 		}
5282 	}
5283 
5284 #ifdef CONFIG_CISS_SCSI_TAPE
5285 	cciss_unregister_scsi(h);	/* unhook from SCSI subsystem */
5286 #endif
5287 
5288 	cciss_shutdown(pdev);
5289 
5290 #ifdef CONFIG_PCI_MSI
5291 	if (h->msix_vector)
5292 		pci_disable_msix(h->pdev);
5293 	else if (h->msi_vector)
5294 		pci_disable_msi(h->pdev);
5295 #endif				/* CONFIG_PCI_MSI */
5296 
5297 	iounmap(h->transtable);
5298 	iounmap(h->cfgtable);
5299 	iounmap(h->vaddr);
5300 
5301 	cciss_free_cmd_pool(h);
5302 	/* Free up sg elements */
5303 	for (j = 0; j < h->nr_cmds; j++)
5304 		kfree(h->scatter_list[j]);
5305 	kfree(h->scatter_list);
5306 	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5307 	kfree(h->blockFetchTable);
5308 	if (h->reply_pool)
5309 		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5310 				h->reply_pool, h->reply_pool_dhandle);
5311 	/*
5312 	 * Deliberately omit pci_disable_device(): it does something nasty to
5313 	 * Smart Array controllers that pci_enable_device does not undo
5314 	 */
5315 	pci_release_regions(pdev);
5316 	pci_set_drvdata(pdev, NULL);
5317 	cciss_destroy_hba_sysfs_entry(h);
5318 	mutex_unlock(&h->busy_shutting_down);
5319 	free_hba(h);
5320 }
5321 
5322 static struct pci_driver cciss_pci_driver = {
5323 	.name = "cciss",
5324 	.probe = cciss_init_one,
5325 	.remove = cciss_remove_one,
5326 	.id_table = cciss_pci_device_id,	/* id_table */
5327 	.shutdown = cciss_shutdown,
5328 };
5329 
5330 /*
5331  *  This is it.  Register the PCI driver information for the cards we control
5332  *  the OS will call our registered routines when it finds one of our cards.
5333  */
cciss_init(void)5334 static int __init cciss_init(void)
5335 {
5336 	int err;
5337 
5338 	/*
5339 	 * The hardware requires that commands are aligned on a 64-bit
5340 	 * boundary. Given that we use pci_alloc_consistent() to allocate an
5341 	 * array of them, the size must be a multiple of 8 bytes.
5342 	 */
5343 	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5344 	printk(KERN_INFO DRIVER_NAME "\n");
5345 
5346 	err = bus_register(&cciss_bus_type);
5347 	if (err)
5348 		return err;
5349 
5350 	/* Start the scan thread */
5351 	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5352 	if (IS_ERR(cciss_scan_thread)) {
5353 		err = PTR_ERR(cciss_scan_thread);
5354 		goto err_bus_unregister;
5355 	}
5356 
5357 	/* Register for our PCI devices */
5358 	err = pci_register_driver(&cciss_pci_driver);
5359 	if (err)
5360 		goto err_thread_stop;
5361 
5362 	return err;
5363 
5364 err_thread_stop:
5365 	kthread_stop(cciss_scan_thread);
5366 err_bus_unregister:
5367 	bus_unregister(&cciss_bus_type);
5368 
5369 	return err;
5370 }
5371 
cciss_cleanup(void)5372 static void __exit cciss_cleanup(void)
5373 {
5374 	int i;
5375 
5376 	pci_unregister_driver(&cciss_pci_driver);
5377 	/* double check that all controller entrys have been removed */
5378 	for (i = 0; i < MAX_CTLR; i++) {
5379 		if (hba[i] != NULL) {
5380 			dev_warn(&hba[i]->pdev->dev,
5381 				"had to remove controller\n");
5382 			cciss_remove_one(hba[i]->pdev);
5383 		}
5384 	}
5385 	kthread_stop(cciss_scan_thread);
5386 	if (proc_cciss)
5387 		remove_proc_entry("driver/cciss", NULL);
5388 	bus_unregister(&cciss_bus_type);
5389 }
5390 
5391 module_init(cciss_init);
5392 module_exit(cciss_cleanup);
5393