1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18 
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25 
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40 
41 #include <asm/virtext.h>
42 #include "trace.h"
43 
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45 
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48 
49 static const struct x86_cpu_id svm_cpu_id[] = {
50 	X86_FEATURE_MATCH(X86_FEATURE_SVM),
51 	{}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54 
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57 
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60 
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70 
71 #define NESTED_EXIT_HOST	0	/* Exit handled on host level */
72 #define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
74 
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76 
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN		0x0000000000000001ULL
79 #define TSC_RATIO_MAX		0x000000ffffffffffULL
80 
81 static bool erratum_383_found __read_mostly;
82 
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85 	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86 	MSR_FS_BASE,
87 #endif
88 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90 
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92 
93 struct kvm_vcpu;
94 
95 struct nested_state {
96 	struct vmcb *hsave;
97 	u64 hsave_msr;
98 	u64 vm_cr_msr;
99 	u64 vmcb;
100 
101 	/* These are the merged vectors */
102 	u32 *msrpm;
103 
104 	/* gpa pointers to the real vectors */
105 	u64 vmcb_msrpm;
106 	u64 vmcb_iopm;
107 
108 	/* A VMEXIT is required but not yet emulated */
109 	bool exit_required;
110 
111 	/* cache for intercepts of the guest */
112 	u32 intercept_cr;
113 	u32 intercept_dr;
114 	u32 intercept_exceptions;
115 	u64 intercept;
116 
117 	/* Nested Paging related state */
118 	u64 nested_cr3;
119 };
120 
121 #define MSRPM_OFFSETS	16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123 
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129 
130 struct vcpu_svm {
131 	struct kvm_vcpu vcpu;
132 	struct vmcb *vmcb;
133 	unsigned long vmcb_pa;
134 	struct svm_cpu_data *svm_data;
135 	uint64_t asid_generation;
136 	uint64_t sysenter_esp;
137 	uint64_t sysenter_eip;
138 
139 	u64 next_rip;
140 
141 	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142 	struct {
143 		u16 fs;
144 		u16 gs;
145 		u16 ldt;
146 		u64 gs_base;
147 	} host;
148 
149 	u32 *msrpm;
150 
151 	ulong nmi_iret_rip;
152 
153 	struct nested_state nested;
154 
155 	bool nmi_singlestep;
156 
157 	unsigned int3_injected;
158 	unsigned long int3_rip;
159 	u32 apf_reason;
160 
161 	/* cached guest cpuid flags for faster access */
162 	bool nrips_enabled	: 1;
163 };
164 
165 static DEFINE_PER_CPU(u64, current_tsc_ratio);
166 #define TSC_RATIO_DEFAULT	0x0100000000ULL
167 
168 #define MSR_INVALID			0xffffffffU
169 
170 static const struct svm_direct_access_msrs {
171 	u32 index;   /* Index of the MSR */
172 	bool always; /* True if intercept is always on */
173 } direct_access_msrs[] = {
174 	{ .index = MSR_STAR,				.always = true  },
175 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
176 #ifdef CONFIG_X86_64
177 	{ .index = MSR_GS_BASE,				.always = true  },
178 	{ .index = MSR_FS_BASE,				.always = true  },
179 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
180 	{ .index = MSR_LSTAR,				.always = true  },
181 	{ .index = MSR_CSTAR,				.always = true  },
182 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
183 #endif
184 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
185 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
186 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
187 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
188 	{ .index = MSR_INVALID,				.always = false },
189 };
190 
191 /* enable NPT for AMD64 and X86 with PAE */
192 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
193 static bool npt_enabled = true;
194 #else
195 static bool npt_enabled;
196 #endif
197 
198 /* allow nested paging (virtualized MMU) for all guests */
199 static int npt = true;
200 module_param(npt, int, S_IRUGO);
201 
202 /* allow nested virtualization in KVM/SVM */
203 static int nested = true;
204 module_param(nested, int, S_IRUGO);
205 
206 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
207 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
208 static void svm_complete_interrupts(struct vcpu_svm *svm);
209 
210 static int nested_svm_exit_handled(struct vcpu_svm *svm);
211 static int nested_svm_intercept(struct vcpu_svm *svm);
212 static int nested_svm_vmexit(struct vcpu_svm *svm);
213 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
214 				      bool has_error_code, u32 error_code);
215 
216 enum {
217 	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
218 			    pause filter count */
219 	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
220 	VMCB_ASID,	 /* ASID */
221 	VMCB_INTR,	 /* int_ctl, int_vector */
222 	VMCB_NPT,        /* npt_en, nCR3, gPAT */
223 	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
224 	VMCB_DR,         /* DR6, DR7 */
225 	VMCB_DT,         /* GDT, IDT */
226 	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
227 	VMCB_CR2,        /* CR2 only */
228 	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229 	VMCB_DIRTY_MAX,
230 };
231 
232 /* TPR and CR2 are always written before VMRUN */
233 #define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
234 
mark_all_dirty(struct vmcb * vmcb)235 static inline void mark_all_dirty(struct vmcb *vmcb)
236 {
237 	vmcb->control.clean = 0;
238 }
239 
mark_all_clean(struct vmcb * vmcb)240 static inline void mark_all_clean(struct vmcb *vmcb)
241 {
242 	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
243 			       & ~VMCB_ALWAYS_DIRTY_MASK;
244 }
245 
mark_dirty(struct vmcb * vmcb,int bit)246 static inline void mark_dirty(struct vmcb *vmcb, int bit)
247 {
248 	vmcb->control.clean &= ~(1 << bit);
249 }
250 
to_svm(struct kvm_vcpu * vcpu)251 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
252 {
253 	return container_of(vcpu, struct vcpu_svm, vcpu);
254 }
255 
recalc_intercepts(struct vcpu_svm * svm)256 static void recalc_intercepts(struct vcpu_svm *svm)
257 {
258 	struct vmcb_control_area *c, *h;
259 	struct nested_state *g;
260 
261 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
262 
263 	if (!is_guest_mode(&svm->vcpu))
264 		return;
265 
266 	c = &svm->vmcb->control;
267 	h = &svm->nested.hsave->control;
268 	g = &svm->nested;
269 
270 	c->intercept_cr = h->intercept_cr | g->intercept_cr;
271 	c->intercept_dr = h->intercept_dr | g->intercept_dr;
272 	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
273 	c->intercept = h->intercept | g->intercept;
274 }
275 
get_host_vmcb(struct vcpu_svm * svm)276 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
277 {
278 	if (is_guest_mode(&svm->vcpu))
279 		return svm->nested.hsave;
280 	else
281 		return svm->vmcb;
282 }
283 
set_cr_intercept(struct vcpu_svm * svm,int bit)284 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
285 {
286 	struct vmcb *vmcb = get_host_vmcb(svm);
287 
288 	vmcb->control.intercept_cr |= (1U << bit);
289 
290 	recalc_intercepts(svm);
291 }
292 
clr_cr_intercept(struct vcpu_svm * svm,int bit)293 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
294 {
295 	struct vmcb *vmcb = get_host_vmcb(svm);
296 
297 	vmcb->control.intercept_cr &= ~(1U << bit);
298 
299 	recalc_intercepts(svm);
300 }
301 
is_cr_intercept(struct vcpu_svm * svm,int bit)302 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
303 {
304 	struct vmcb *vmcb = get_host_vmcb(svm);
305 
306 	return vmcb->control.intercept_cr & (1U << bit);
307 }
308 
set_dr_intercepts(struct vcpu_svm * svm)309 static inline void set_dr_intercepts(struct vcpu_svm *svm)
310 {
311 	struct vmcb *vmcb = get_host_vmcb(svm);
312 
313 	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
314 		| (1 << INTERCEPT_DR1_READ)
315 		| (1 << INTERCEPT_DR2_READ)
316 		| (1 << INTERCEPT_DR3_READ)
317 		| (1 << INTERCEPT_DR4_READ)
318 		| (1 << INTERCEPT_DR5_READ)
319 		| (1 << INTERCEPT_DR6_READ)
320 		| (1 << INTERCEPT_DR7_READ)
321 		| (1 << INTERCEPT_DR0_WRITE)
322 		| (1 << INTERCEPT_DR1_WRITE)
323 		| (1 << INTERCEPT_DR2_WRITE)
324 		| (1 << INTERCEPT_DR3_WRITE)
325 		| (1 << INTERCEPT_DR4_WRITE)
326 		| (1 << INTERCEPT_DR5_WRITE)
327 		| (1 << INTERCEPT_DR6_WRITE)
328 		| (1 << INTERCEPT_DR7_WRITE);
329 
330 	recalc_intercepts(svm);
331 }
332 
clr_dr_intercepts(struct vcpu_svm * svm)333 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
334 {
335 	struct vmcb *vmcb = get_host_vmcb(svm);
336 
337 	vmcb->control.intercept_dr = 0;
338 
339 	recalc_intercepts(svm);
340 }
341 
set_exception_intercept(struct vcpu_svm * svm,int bit)342 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
343 {
344 	struct vmcb *vmcb = get_host_vmcb(svm);
345 
346 	vmcb->control.intercept_exceptions |= (1U << bit);
347 
348 	recalc_intercepts(svm);
349 }
350 
clr_exception_intercept(struct vcpu_svm * svm,int bit)351 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
352 {
353 	struct vmcb *vmcb = get_host_vmcb(svm);
354 
355 	vmcb->control.intercept_exceptions &= ~(1U << bit);
356 
357 	recalc_intercepts(svm);
358 }
359 
set_intercept(struct vcpu_svm * svm,int bit)360 static inline void set_intercept(struct vcpu_svm *svm, int bit)
361 {
362 	struct vmcb *vmcb = get_host_vmcb(svm);
363 
364 	vmcb->control.intercept |= (1ULL << bit);
365 
366 	recalc_intercepts(svm);
367 }
368 
clr_intercept(struct vcpu_svm * svm,int bit)369 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
370 {
371 	struct vmcb *vmcb = get_host_vmcb(svm);
372 
373 	vmcb->control.intercept &= ~(1ULL << bit);
374 
375 	recalc_intercepts(svm);
376 }
377 
enable_gif(struct vcpu_svm * svm)378 static inline void enable_gif(struct vcpu_svm *svm)
379 {
380 	svm->vcpu.arch.hflags |= HF_GIF_MASK;
381 }
382 
disable_gif(struct vcpu_svm * svm)383 static inline void disable_gif(struct vcpu_svm *svm)
384 {
385 	svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
386 }
387 
gif_set(struct vcpu_svm * svm)388 static inline bool gif_set(struct vcpu_svm *svm)
389 {
390 	return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
391 }
392 
393 static unsigned long iopm_base;
394 
395 struct kvm_ldttss_desc {
396 	u16 limit0;
397 	u16 base0;
398 	unsigned base1:8, type:5, dpl:2, p:1;
399 	unsigned limit1:4, zero0:3, g:1, base2:8;
400 	u32 base3;
401 	u32 zero1;
402 } __attribute__((packed));
403 
404 struct svm_cpu_data {
405 	int cpu;
406 
407 	u64 asid_generation;
408 	u32 max_asid;
409 	u32 next_asid;
410 	struct kvm_ldttss_desc *tss_desc;
411 
412 	struct page *save_area;
413 };
414 
415 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
416 
417 struct svm_init_data {
418 	int cpu;
419 	int r;
420 };
421 
422 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
423 
424 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
425 #define MSRS_RANGE_SIZE 2048
426 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
427 
svm_msrpm_offset(u32 msr)428 static u32 svm_msrpm_offset(u32 msr)
429 {
430 	u32 offset;
431 	int i;
432 
433 	for (i = 0; i < NUM_MSR_MAPS; i++) {
434 		if (msr < msrpm_ranges[i] ||
435 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
436 			continue;
437 
438 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
439 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
440 
441 		/* Now we have the u8 offset - but need the u32 offset */
442 		return offset / 4;
443 	}
444 
445 	/* MSR not in any range */
446 	return MSR_INVALID;
447 }
448 
449 #define MAX_INST_SIZE 15
450 
clgi(void)451 static inline void clgi(void)
452 {
453 	asm volatile (__ex(SVM_CLGI));
454 }
455 
stgi(void)456 static inline void stgi(void)
457 {
458 	asm volatile (__ex(SVM_STGI));
459 }
460 
invlpga(unsigned long addr,u32 asid)461 static inline void invlpga(unsigned long addr, u32 asid)
462 {
463 	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
464 }
465 
get_npt_level(void)466 static int get_npt_level(void)
467 {
468 #ifdef CONFIG_X86_64
469 	return PT64_ROOT_LEVEL;
470 #else
471 	return PT32E_ROOT_LEVEL;
472 #endif
473 }
474 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)475 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
476 {
477 	vcpu->arch.efer = efer;
478 	if (!npt_enabled && !(efer & EFER_LMA))
479 		efer &= ~EFER_LME;
480 
481 	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
482 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
483 }
484 
is_external_interrupt(u32 info)485 static int is_external_interrupt(u32 info)
486 {
487 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
488 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
489 }
490 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)491 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
492 {
493 	struct vcpu_svm *svm = to_svm(vcpu);
494 	u32 ret = 0;
495 
496 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
497 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
498 	return ret;
499 }
500 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)501 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
502 {
503 	struct vcpu_svm *svm = to_svm(vcpu);
504 
505 	if (mask == 0)
506 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
507 	else
508 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
509 
510 }
511 
skip_emulated_instruction(struct kvm_vcpu * vcpu)512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513 {
514 	struct vcpu_svm *svm = to_svm(vcpu);
515 
516 	if (svm->vmcb->control.next_rip != 0) {
517 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
518 		svm->next_rip = svm->vmcb->control.next_rip;
519 	}
520 
521 	if (!svm->next_rip) {
522 		if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
523 				EMULATE_DONE)
524 			printk(KERN_DEBUG "%s: NOP\n", __func__);
525 		return;
526 	}
527 	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
528 		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
529 		       __func__, kvm_rip_read(vcpu), svm->next_rip);
530 
531 	kvm_rip_write(vcpu, svm->next_rip);
532 	svm_set_interrupt_shadow(vcpu, 0);
533 }
534 
svm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)535 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
536 				bool has_error_code, u32 error_code,
537 				bool reinject)
538 {
539 	struct vcpu_svm *svm = to_svm(vcpu);
540 
541 	/*
542 	 * If we are within a nested VM we'd better #VMEXIT and let the guest
543 	 * handle the exception
544 	 */
545 	if (!reinject &&
546 	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
547 		return;
548 
549 	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
550 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
551 
552 		/*
553 		 * For guest debugging where we have to reinject #BP if some
554 		 * INT3 is guest-owned:
555 		 * Emulate nRIP by moving RIP forward. Will fail if injection
556 		 * raises a fault that is not intercepted. Still better than
557 		 * failing in all cases.
558 		 */
559 		skip_emulated_instruction(&svm->vcpu);
560 		rip = kvm_rip_read(&svm->vcpu);
561 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
562 		svm->int3_injected = rip - old_rip;
563 	}
564 
565 	svm->vmcb->control.event_inj = nr
566 		| SVM_EVTINJ_VALID
567 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
568 		| SVM_EVTINJ_TYPE_EXEPT;
569 	svm->vmcb->control.event_inj_err = error_code;
570 }
571 
svm_init_erratum_383(void)572 static void svm_init_erratum_383(void)
573 {
574 	u32 low, high;
575 	int err;
576 	u64 val;
577 
578 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
579 		return;
580 
581 	/* Use _safe variants to not break nested virtualization */
582 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
583 	if (err)
584 		return;
585 
586 	val |= (1ULL << 47);
587 
588 	low  = lower_32_bits(val);
589 	high = upper_32_bits(val);
590 
591 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
592 
593 	erratum_383_found = true;
594 }
595 
svm_init_osvw(struct kvm_vcpu * vcpu)596 static void svm_init_osvw(struct kvm_vcpu *vcpu)
597 {
598 	/*
599 	 * Guests should see errata 400 and 415 as fixed (assuming that
600 	 * HLT and IO instructions are intercepted).
601 	 */
602 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
603 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
604 
605 	/*
606 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
607 	 * all osvw.status bits inside that length, including bit 0 (which is
608 	 * reserved for erratum 298), are valid. However, if host processor's
609 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
610 	 * be conservative here and therefore we tell the guest that erratum 298
611 	 * is present (because we really don't know).
612 	 */
613 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
614 		vcpu->arch.osvw.status |= 1;
615 }
616 
has_svm(void)617 static int has_svm(void)
618 {
619 	const char *msg;
620 
621 	if (!cpu_has_svm(&msg)) {
622 		printk(KERN_INFO "has_svm: %s\n", msg);
623 		return 0;
624 	}
625 
626 	return 1;
627 }
628 
svm_hardware_disable(void)629 static void svm_hardware_disable(void)
630 {
631 	/* Make sure we clean up behind us */
632 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
633 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
634 
635 	cpu_svm_disable();
636 
637 	amd_pmu_disable_virt();
638 }
639 
svm_hardware_enable(void)640 static int svm_hardware_enable(void)
641 {
642 
643 	struct svm_cpu_data *sd;
644 	uint64_t efer;
645 	struct desc_ptr gdt_descr;
646 	struct desc_struct *gdt;
647 	int me = raw_smp_processor_id();
648 
649 	rdmsrl(MSR_EFER, efer);
650 	if (efer & EFER_SVME)
651 		return -EBUSY;
652 
653 	if (!has_svm()) {
654 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
655 		return -EINVAL;
656 	}
657 	sd = per_cpu(svm_data, me);
658 	if (!sd) {
659 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
660 		return -EINVAL;
661 	}
662 
663 	sd->asid_generation = 1;
664 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
665 	sd->next_asid = sd->max_asid + 1;
666 
667 	native_store_gdt(&gdt_descr);
668 	gdt = (struct desc_struct *)gdt_descr.address;
669 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
670 
671 	wrmsrl(MSR_EFER, efer | EFER_SVME);
672 
673 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
674 
675 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
676 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
677 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
678 	}
679 
680 
681 	/*
682 	 * Get OSVW bits.
683 	 *
684 	 * Note that it is possible to have a system with mixed processor
685 	 * revisions and therefore different OSVW bits. If bits are not the same
686 	 * on different processors then choose the worst case (i.e. if erratum
687 	 * is present on one processor and not on another then assume that the
688 	 * erratum is present everywhere).
689 	 */
690 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
691 		uint64_t len, status = 0;
692 		int err;
693 
694 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
695 		if (!err)
696 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
697 						      &err);
698 
699 		if (err)
700 			osvw_status = osvw_len = 0;
701 		else {
702 			if (len < osvw_len)
703 				osvw_len = len;
704 			osvw_status |= status;
705 			osvw_status &= (1ULL << osvw_len) - 1;
706 		}
707 	} else
708 		osvw_status = osvw_len = 0;
709 
710 	svm_init_erratum_383();
711 
712 	amd_pmu_enable_virt();
713 
714 	return 0;
715 }
716 
svm_cpu_uninit(int cpu)717 static void svm_cpu_uninit(int cpu)
718 {
719 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
720 
721 	if (!sd)
722 		return;
723 
724 	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
725 	__free_page(sd->save_area);
726 	kfree(sd);
727 }
728 
svm_cpu_init(int cpu)729 static int svm_cpu_init(int cpu)
730 {
731 	struct svm_cpu_data *sd;
732 	int r;
733 
734 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
735 	if (!sd)
736 		return -ENOMEM;
737 	sd->cpu = cpu;
738 	sd->save_area = alloc_page(GFP_KERNEL);
739 	r = -ENOMEM;
740 	if (!sd->save_area)
741 		goto err_1;
742 
743 	per_cpu(svm_data, cpu) = sd;
744 
745 	return 0;
746 
747 err_1:
748 	kfree(sd);
749 	return r;
750 
751 }
752 
valid_msr_intercept(u32 index)753 static bool valid_msr_intercept(u32 index)
754 {
755 	int i;
756 
757 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
758 		if (direct_access_msrs[i].index == index)
759 			return true;
760 
761 	return false;
762 }
763 
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)764 static void set_msr_interception(u32 *msrpm, unsigned msr,
765 				 int read, int write)
766 {
767 	u8 bit_read, bit_write;
768 	unsigned long tmp;
769 	u32 offset;
770 
771 	/*
772 	 * If this warning triggers extend the direct_access_msrs list at the
773 	 * beginning of the file
774 	 */
775 	WARN_ON(!valid_msr_intercept(msr));
776 
777 	offset    = svm_msrpm_offset(msr);
778 	bit_read  = 2 * (msr & 0x0f);
779 	bit_write = 2 * (msr & 0x0f) + 1;
780 	tmp       = msrpm[offset];
781 
782 	BUG_ON(offset == MSR_INVALID);
783 
784 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
785 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
786 
787 	msrpm[offset] = tmp;
788 }
789 
svm_vcpu_init_msrpm(u32 * msrpm)790 static void svm_vcpu_init_msrpm(u32 *msrpm)
791 {
792 	int i;
793 
794 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
795 
796 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
797 		if (!direct_access_msrs[i].always)
798 			continue;
799 
800 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
801 	}
802 }
803 
add_msr_offset(u32 offset)804 static void add_msr_offset(u32 offset)
805 {
806 	int i;
807 
808 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
809 
810 		/* Offset already in list? */
811 		if (msrpm_offsets[i] == offset)
812 			return;
813 
814 		/* Slot used by another offset? */
815 		if (msrpm_offsets[i] != MSR_INVALID)
816 			continue;
817 
818 		/* Add offset to list */
819 		msrpm_offsets[i] = offset;
820 
821 		return;
822 	}
823 
824 	/*
825 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
826 	 * increase MSRPM_OFFSETS in this case.
827 	 */
828 	BUG();
829 }
830 
init_msrpm_offsets(void)831 static void init_msrpm_offsets(void)
832 {
833 	int i;
834 
835 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
836 
837 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
838 		u32 offset;
839 
840 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
841 		BUG_ON(offset == MSR_INVALID);
842 
843 		add_msr_offset(offset);
844 	}
845 }
846 
svm_enable_lbrv(struct vcpu_svm * svm)847 static void svm_enable_lbrv(struct vcpu_svm *svm)
848 {
849 	u32 *msrpm = svm->msrpm;
850 
851 	svm->vmcb->control.lbr_ctl = 1;
852 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
853 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
854 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
855 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
856 }
857 
svm_disable_lbrv(struct vcpu_svm * svm)858 static void svm_disable_lbrv(struct vcpu_svm *svm)
859 {
860 	u32 *msrpm = svm->msrpm;
861 
862 	svm->vmcb->control.lbr_ctl = 0;
863 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
864 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
865 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
866 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
867 }
868 
svm_hardware_setup(void)869 static __init int svm_hardware_setup(void)
870 {
871 	int cpu;
872 	struct page *iopm_pages;
873 	void *iopm_va;
874 	int r;
875 
876 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
877 
878 	if (!iopm_pages)
879 		return -ENOMEM;
880 
881 	iopm_va = page_address(iopm_pages);
882 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
883 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
884 
885 	init_msrpm_offsets();
886 
887 	if (boot_cpu_has(X86_FEATURE_NX))
888 		kvm_enable_efer_bits(EFER_NX);
889 
890 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
891 		kvm_enable_efer_bits(EFER_FFXSR);
892 
893 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
894 		kvm_has_tsc_control = true;
895 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
896 		kvm_tsc_scaling_ratio_frac_bits = 32;
897 	}
898 
899 	if (nested) {
900 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
901 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
902 	}
903 
904 	for_each_possible_cpu(cpu) {
905 		r = svm_cpu_init(cpu);
906 		if (r)
907 			goto err;
908 	}
909 
910 	if (!boot_cpu_has(X86_FEATURE_NPT))
911 		npt_enabled = false;
912 
913 	if (npt_enabled && !npt) {
914 		printk(KERN_INFO "kvm: Nested Paging disabled\n");
915 		npt_enabled = false;
916 	}
917 
918 	if (npt_enabled) {
919 		printk(KERN_INFO "kvm: Nested Paging enabled\n");
920 		kvm_enable_tdp();
921 	} else
922 		kvm_disable_tdp();
923 
924 	return 0;
925 
926 err:
927 	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
928 	iopm_base = 0;
929 	return r;
930 }
931 
svm_hardware_unsetup(void)932 static __exit void svm_hardware_unsetup(void)
933 {
934 	int cpu;
935 
936 	for_each_possible_cpu(cpu)
937 		svm_cpu_uninit(cpu);
938 
939 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
940 	iopm_base = 0;
941 }
942 
init_seg(struct vmcb_seg * seg)943 static void init_seg(struct vmcb_seg *seg)
944 {
945 	seg->selector = 0;
946 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
947 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
948 	seg->limit = 0xffff;
949 	seg->base = 0;
950 }
951 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)952 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
953 {
954 	seg->selector = 0;
955 	seg->attrib = SVM_SELECTOR_P_MASK | type;
956 	seg->limit = 0xffff;
957 	seg->base = 0;
958 }
959 
svm_read_tsc_offset(struct kvm_vcpu * vcpu)960 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
961 {
962 	struct vcpu_svm *svm = to_svm(vcpu);
963 
964 	return svm->vmcb->control.tsc_offset;
965 }
966 
svm_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)967 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
968 {
969 	struct vcpu_svm *svm = to_svm(vcpu);
970 	u64 g_tsc_offset = 0;
971 
972 	if (is_guest_mode(vcpu)) {
973 		g_tsc_offset = svm->vmcb->control.tsc_offset -
974 			       svm->nested.hsave->control.tsc_offset;
975 		svm->nested.hsave->control.tsc_offset = offset;
976 	} else
977 		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
978 					   svm->vmcb->control.tsc_offset,
979 					   offset);
980 
981 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
982 
983 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
984 }
985 
svm_adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)986 static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
987 {
988 	struct vcpu_svm *svm = to_svm(vcpu);
989 
990 	svm->vmcb->control.tsc_offset += adjustment;
991 	if (is_guest_mode(vcpu))
992 		svm->nested.hsave->control.tsc_offset += adjustment;
993 	else
994 		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
995 				     svm->vmcb->control.tsc_offset - adjustment,
996 				     svm->vmcb->control.tsc_offset);
997 
998 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
999 }
1000 
init_vmcb(struct vcpu_svm * svm)1001 static void init_vmcb(struct vcpu_svm *svm)
1002 {
1003 	struct vmcb_control_area *control = &svm->vmcb->control;
1004 	struct vmcb_save_area *save = &svm->vmcb->save;
1005 
1006 	svm->vcpu.fpu_active = 1;
1007 	svm->vcpu.arch.hflags = 0;
1008 
1009 	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1010 	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1011 	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1012 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1013 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1014 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1015 	set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1016 
1017 	set_dr_intercepts(svm);
1018 
1019 	set_exception_intercept(svm, PF_VECTOR);
1020 	set_exception_intercept(svm, UD_VECTOR);
1021 	set_exception_intercept(svm, MC_VECTOR);
1022 	set_exception_intercept(svm, AC_VECTOR);
1023 	set_exception_intercept(svm, DB_VECTOR);
1024 
1025 	set_intercept(svm, INTERCEPT_INTR);
1026 	set_intercept(svm, INTERCEPT_NMI);
1027 	set_intercept(svm, INTERCEPT_SMI);
1028 	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1029 	set_intercept(svm, INTERCEPT_RDPMC);
1030 	set_intercept(svm, INTERCEPT_CPUID);
1031 	set_intercept(svm, INTERCEPT_INVD);
1032 	set_intercept(svm, INTERCEPT_HLT);
1033 	set_intercept(svm, INTERCEPT_INVLPG);
1034 	set_intercept(svm, INTERCEPT_INVLPGA);
1035 	set_intercept(svm, INTERCEPT_IOIO_PROT);
1036 	set_intercept(svm, INTERCEPT_MSR_PROT);
1037 	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1038 	set_intercept(svm, INTERCEPT_SHUTDOWN);
1039 	set_intercept(svm, INTERCEPT_VMRUN);
1040 	set_intercept(svm, INTERCEPT_VMMCALL);
1041 	set_intercept(svm, INTERCEPT_VMLOAD);
1042 	set_intercept(svm, INTERCEPT_VMSAVE);
1043 	set_intercept(svm, INTERCEPT_STGI);
1044 	set_intercept(svm, INTERCEPT_CLGI);
1045 	set_intercept(svm, INTERCEPT_SKINIT);
1046 	set_intercept(svm, INTERCEPT_WBINVD);
1047 	set_intercept(svm, INTERCEPT_MONITOR);
1048 	set_intercept(svm, INTERCEPT_MWAIT);
1049 	set_intercept(svm, INTERCEPT_XSETBV);
1050 
1051 	control->iopm_base_pa = iopm_base;
1052 	control->msrpm_base_pa = __pa(svm->msrpm);
1053 	control->int_ctl = V_INTR_MASKING_MASK;
1054 
1055 	init_seg(&save->es);
1056 	init_seg(&save->ss);
1057 	init_seg(&save->ds);
1058 	init_seg(&save->fs);
1059 	init_seg(&save->gs);
1060 
1061 	save->cs.selector = 0xf000;
1062 	save->cs.base = 0xffff0000;
1063 	/* Executable/Readable Code Segment */
1064 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1065 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1066 	save->cs.limit = 0xffff;
1067 
1068 	save->gdtr.limit = 0xffff;
1069 	save->idtr.limit = 0xffff;
1070 
1071 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1072 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1073 
1074 	svm_set_efer(&svm->vcpu, 0);
1075 	save->dr6 = 0xffff0ff0;
1076 	kvm_set_rflags(&svm->vcpu, 2);
1077 	save->rip = 0x0000fff0;
1078 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1079 
1080 	/*
1081 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1082 	 * It also updates the guest-visible cr0 value.
1083 	 */
1084 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1085 	kvm_mmu_reset_context(&svm->vcpu);
1086 
1087 	save->cr4 = X86_CR4_PAE;
1088 	/* rdx = ?? */
1089 
1090 	if (npt_enabled) {
1091 		/* Setup VMCB for Nested Paging */
1092 		control->nested_ctl = 1;
1093 		clr_intercept(svm, INTERCEPT_INVLPG);
1094 		clr_exception_intercept(svm, PF_VECTOR);
1095 		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1096 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1097 		save->g_pat = svm->vcpu.arch.pat;
1098 		save->cr3 = 0;
1099 		save->cr4 = 0;
1100 	}
1101 	svm->asid_generation = 0;
1102 
1103 	svm->nested.vmcb = 0;
1104 	svm->vcpu.arch.hflags = 0;
1105 
1106 	if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1107 		control->pause_filter_count = 3000;
1108 		set_intercept(svm, INTERCEPT_PAUSE);
1109 	}
1110 
1111 	mark_all_dirty(svm->vmcb);
1112 
1113 	enable_gif(svm);
1114 }
1115 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1116 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1117 {
1118 	struct vcpu_svm *svm = to_svm(vcpu);
1119 	u32 dummy;
1120 	u32 eax = 1;
1121 
1122 	if (!init_event) {
1123 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1124 					   MSR_IA32_APICBASE_ENABLE;
1125 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1126 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1127 	}
1128 	init_vmcb(svm);
1129 
1130 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1131 	kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1132 }
1133 
svm_create_vcpu(struct kvm * kvm,unsigned int id)1134 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1135 {
1136 	struct vcpu_svm *svm;
1137 	struct page *page;
1138 	struct page *msrpm_pages;
1139 	struct page *hsave_page;
1140 	struct page *nested_msrpm_pages;
1141 	int err;
1142 
1143 	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1144 	if (!svm) {
1145 		err = -ENOMEM;
1146 		goto out;
1147 	}
1148 
1149 	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1150 	if (err)
1151 		goto free_svm;
1152 
1153 	err = -ENOMEM;
1154 	page = alloc_page(GFP_KERNEL);
1155 	if (!page)
1156 		goto uninit;
1157 
1158 	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1159 	if (!msrpm_pages)
1160 		goto free_page1;
1161 
1162 	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1163 	if (!nested_msrpm_pages)
1164 		goto free_page2;
1165 
1166 	hsave_page = alloc_page(GFP_KERNEL);
1167 	if (!hsave_page)
1168 		goto free_page3;
1169 
1170 	svm->nested.hsave = page_address(hsave_page);
1171 
1172 	svm->msrpm = page_address(msrpm_pages);
1173 	svm_vcpu_init_msrpm(svm->msrpm);
1174 
1175 	svm->nested.msrpm = page_address(nested_msrpm_pages);
1176 	svm_vcpu_init_msrpm(svm->nested.msrpm);
1177 
1178 	svm->vmcb = page_address(page);
1179 	clear_page(svm->vmcb);
1180 	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1181 	svm->asid_generation = 0;
1182 	init_vmcb(svm);
1183 
1184 	svm_init_osvw(&svm->vcpu);
1185 
1186 	return &svm->vcpu;
1187 
1188 free_page3:
1189 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1190 free_page2:
1191 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1192 free_page1:
1193 	__free_page(page);
1194 uninit:
1195 	kvm_vcpu_uninit(&svm->vcpu);
1196 free_svm:
1197 	kmem_cache_free(kvm_vcpu_cache, svm);
1198 out:
1199 	return ERR_PTR(err);
1200 }
1201 
svm_free_vcpu(struct kvm_vcpu * vcpu)1202 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1203 {
1204 	struct vcpu_svm *svm = to_svm(vcpu);
1205 
1206 	__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1207 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1208 	__free_page(virt_to_page(svm->nested.hsave));
1209 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1210 	kvm_vcpu_uninit(vcpu);
1211 	kmem_cache_free(kvm_vcpu_cache, svm);
1212 }
1213 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1214 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1215 {
1216 	struct vcpu_svm *svm = to_svm(vcpu);
1217 	int i;
1218 
1219 	if (unlikely(cpu != vcpu->cpu)) {
1220 		svm->asid_generation = 0;
1221 		mark_all_dirty(svm->vmcb);
1222 	}
1223 
1224 #ifdef CONFIG_X86_64
1225 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1226 #endif
1227 	savesegment(fs, svm->host.fs);
1228 	savesegment(gs, svm->host.gs);
1229 	svm->host.ldt = kvm_read_ldt();
1230 
1231 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1232 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1233 
1234 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1235 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1236 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1237 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1238 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1239 		}
1240 	}
1241 }
1242 
svm_vcpu_put(struct kvm_vcpu * vcpu)1243 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1244 {
1245 	struct vcpu_svm *svm = to_svm(vcpu);
1246 	int i;
1247 
1248 	++vcpu->stat.host_state_reload;
1249 	kvm_load_ldt(svm->host.ldt);
1250 #ifdef CONFIG_X86_64
1251 	loadsegment(fs, svm->host.fs);
1252 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1253 	load_gs_index(svm->host.gs);
1254 #else
1255 #ifdef CONFIG_X86_32_LAZY_GS
1256 	loadsegment(gs, svm->host.gs);
1257 #endif
1258 #endif
1259 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1260 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1261 }
1262 
svm_get_rflags(struct kvm_vcpu * vcpu)1263 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1264 {
1265 	return to_svm(vcpu)->vmcb->save.rflags;
1266 }
1267 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1268 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1269 {
1270        /*
1271         * Any change of EFLAGS.VM is accompained by a reload of SS
1272         * (caused by either a task switch or an inter-privilege IRET),
1273         * so we do not need to update the CPL here.
1274         */
1275 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1276 }
1277 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1278 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1279 {
1280 	switch (reg) {
1281 	case VCPU_EXREG_PDPTR:
1282 		BUG_ON(!npt_enabled);
1283 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1284 		break;
1285 	default:
1286 		BUG();
1287 	}
1288 }
1289 
svm_set_vintr(struct vcpu_svm * svm)1290 static void svm_set_vintr(struct vcpu_svm *svm)
1291 {
1292 	set_intercept(svm, INTERCEPT_VINTR);
1293 }
1294 
svm_clear_vintr(struct vcpu_svm * svm)1295 static void svm_clear_vintr(struct vcpu_svm *svm)
1296 {
1297 	clr_intercept(svm, INTERCEPT_VINTR);
1298 }
1299 
svm_seg(struct kvm_vcpu * vcpu,int seg)1300 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1301 {
1302 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1303 
1304 	switch (seg) {
1305 	case VCPU_SREG_CS: return &save->cs;
1306 	case VCPU_SREG_DS: return &save->ds;
1307 	case VCPU_SREG_ES: return &save->es;
1308 	case VCPU_SREG_FS: return &save->fs;
1309 	case VCPU_SREG_GS: return &save->gs;
1310 	case VCPU_SREG_SS: return &save->ss;
1311 	case VCPU_SREG_TR: return &save->tr;
1312 	case VCPU_SREG_LDTR: return &save->ldtr;
1313 	}
1314 	BUG();
1315 	return NULL;
1316 }
1317 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1318 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1319 {
1320 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1321 
1322 	return s->base;
1323 }
1324 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1325 static void svm_get_segment(struct kvm_vcpu *vcpu,
1326 			    struct kvm_segment *var, int seg)
1327 {
1328 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1329 
1330 	var->base = s->base;
1331 	var->limit = s->limit;
1332 	var->selector = s->selector;
1333 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1334 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1335 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1336 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1337 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1338 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1339 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1340 
1341 	/*
1342 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1343 	 * However, the SVM spec states that the G bit is not observed by the
1344 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1345 	 * So let's synthesize a legal G bit for all segments, this helps
1346 	 * running KVM nested. It also helps cross-vendor migration, because
1347 	 * Intel's vmentry has a check on the 'G' bit.
1348 	 */
1349 	var->g = s->limit > 0xfffff;
1350 
1351 	/*
1352 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1353 	 * for cross vendor migration purposes by "not present"
1354 	 */
1355 	var->unusable = !var->present || (var->type == 0);
1356 
1357 	switch (seg) {
1358 	case VCPU_SREG_TR:
1359 		/*
1360 		 * Work around a bug where the busy flag in the tr selector
1361 		 * isn't exposed
1362 		 */
1363 		var->type |= 0x2;
1364 		break;
1365 	case VCPU_SREG_DS:
1366 	case VCPU_SREG_ES:
1367 	case VCPU_SREG_FS:
1368 	case VCPU_SREG_GS:
1369 		/*
1370 		 * The accessed bit must always be set in the segment
1371 		 * descriptor cache, although it can be cleared in the
1372 		 * descriptor, the cached bit always remains at 1. Since
1373 		 * Intel has a check on this, set it here to support
1374 		 * cross-vendor migration.
1375 		 */
1376 		if (!var->unusable)
1377 			var->type |= 0x1;
1378 		break;
1379 	case VCPU_SREG_SS:
1380 		/*
1381 		 * On AMD CPUs sometimes the DB bit in the segment
1382 		 * descriptor is left as 1, although the whole segment has
1383 		 * been made unusable. Clear it here to pass an Intel VMX
1384 		 * entry check when cross vendor migrating.
1385 		 */
1386 		if (var->unusable)
1387 			var->db = 0;
1388 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1389 		break;
1390 	}
1391 }
1392 
svm_get_cpl(struct kvm_vcpu * vcpu)1393 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1394 {
1395 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1396 
1397 	return save->cpl;
1398 }
1399 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1400 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1401 {
1402 	struct vcpu_svm *svm = to_svm(vcpu);
1403 
1404 	dt->size = svm->vmcb->save.idtr.limit;
1405 	dt->address = svm->vmcb->save.idtr.base;
1406 }
1407 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1408 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1409 {
1410 	struct vcpu_svm *svm = to_svm(vcpu);
1411 
1412 	svm->vmcb->save.idtr.limit = dt->size;
1413 	svm->vmcb->save.idtr.base = dt->address ;
1414 	mark_dirty(svm->vmcb, VMCB_DT);
1415 }
1416 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1417 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1418 {
1419 	struct vcpu_svm *svm = to_svm(vcpu);
1420 
1421 	dt->size = svm->vmcb->save.gdtr.limit;
1422 	dt->address = svm->vmcb->save.gdtr.base;
1423 }
1424 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1425 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1426 {
1427 	struct vcpu_svm *svm = to_svm(vcpu);
1428 
1429 	svm->vmcb->save.gdtr.limit = dt->size;
1430 	svm->vmcb->save.gdtr.base = dt->address ;
1431 	mark_dirty(svm->vmcb, VMCB_DT);
1432 }
1433 
svm_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)1434 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1435 {
1436 }
1437 
svm_decache_cr3(struct kvm_vcpu * vcpu)1438 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1439 {
1440 }
1441 
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)1442 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1443 {
1444 }
1445 
update_cr0_intercept(struct vcpu_svm * svm)1446 static void update_cr0_intercept(struct vcpu_svm *svm)
1447 {
1448 	ulong gcr0 = svm->vcpu.arch.cr0;
1449 	u64 *hcr0 = &svm->vmcb->save.cr0;
1450 
1451 	if (!svm->vcpu.fpu_active)
1452 		*hcr0 |= SVM_CR0_SELECTIVE_MASK;
1453 	else
1454 		*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1455 			| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1456 
1457 	mark_dirty(svm->vmcb, VMCB_CR);
1458 
1459 	if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1460 		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1461 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1462 	} else {
1463 		set_cr_intercept(svm, INTERCEPT_CR0_READ);
1464 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1465 	}
1466 }
1467 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1468 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1469 {
1470 	struct vcpu_svm *svm = to_svm(vcpu);
1471 
1472 #ifdef CONFIG_X86_64
1473 	if (vcpu->arch.efer & EFER_LME) {
1474 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1475 			vcpu->arch.efer |= EFER_LMA;
1476 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1477 		}
1478 
1479 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1480 			vcpu->arch.efer &= ~EFER_LMA;
1481 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1482 		}
1483 	}
1484 #endif
1485 	vcpu->arch.cr0 = cr0;
1486 
1487 	if (!npt_enabled)
1488 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1489 
1490 	if (!vcpu->fpu_active)
1491 		cr0 |= X86_CR0_TS;
1492 	/*
1493 	 * re-enable caching here because the QEMU bios
1494 	 * does not do it - this results in some delay at
1495 	 * reboot
1496 	 */
1497 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1498 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1499 	svm->vmcb->save.cr0 = cr0;
1500 	mark_dirty(svm->vmcb, VMCB_CR);
1501 	update_cr0_intercept(svm);
1502 }
1503 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1504 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1505 {
1506 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1507 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1508 
1509 	if (cr4 & X86_CR4_VMXE)
1510 		return 1;
1511 
1512 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1513 		svm_flush_tlb(vcpu);
1514 
1515 	vcpu->arch.cr4 = cr4;
1516 	if (!npt_enabled)
1517 		cr4 |= X86_CR4_PAE;
1518 	cr4 |= host_cr4_mce;
1519 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1520 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1521 	return 0;
1522 }
1523 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1524 static void svm_set_segment(struct kvm_vcpu *vcpu,
1525 			    struct kvm_segment *var, int seg)
1526 {
1527 	struct vcpu_svm *svm = to_svm(vcpu);
1528 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1529 
1530 	s->base = var->base;
1531 	s->limit = var->limit;
1532 	s->selector = var->selector;
1533 	if (var->unusable)
1534 		s->attrib = 0;
1535 	else {
1536 		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1537 		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1538 		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1539 		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1540 		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1541 		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1542 		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1543 		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1544 	}
1545 
1546 	/*
1547 	 * This is always accurate, except if SYSRET returned to a segment
1548 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1549 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1550 	 * would entail passing the CPL to userspace and back.
1551 	 */
1552 	if (seg == VCPU_SREG_SS)
1553 		svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1554 
1555 	mark_dirty(svm->vmcb, VMCB_SEG);
1556 }
1557 
update_bp_intercept(struct kvm_vcpu * vcpu)1558 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1559 {
1560 	struct vcpu_svm *svm = to_svm(vcpu);
1561 
1562 	clr_exception_intercept(svm, BP_VECTOR);
1563 
1564 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1565 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1566 			set_exception_intercept(svm, BP_VECTOR);
1567 	} else
1568 		vcpu->guest_debug = 0;
1569 }
1570 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1571 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1572 {
1573 	if (sd->next_asid > sd->max_asid) {
1574 		++sd->asid_generation;
1575 		sd->next_asid = 1;
1576 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1577 	}
1578 
1579 	svm->asid_generation = sd->asid_generation;
1580 	svm->vmcb->control.asid = sd->next_asid++;
1581 
1582 	mark_dirty(svm->vmcb, VMCB_ASID);
1583 }
1584 
svm_get_dr6(struct kvm_vcpu * vcpu)1585 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1586 {
1587 	return to_svm(vcpu)->vmcb->save.dr6;
1588 }
1589 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1590 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1591 {
1592 	struct vcpu_svm *svm = to_svm(vcpu);
1593 
1594 	svm->vmcb->save.dr6 = value;
1595 	mark_dirty(svm->vmcb, VMCB_DR);
1596 }
1597 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1598 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1599 {
1600 	struct vcpu_svm *svm = to_svm(vcpu);
1601 
1602 	get_debugreg(vcpu->arch.db[0], 0);
1603 	get_debugreg(vcpu->arch.db[1], 1);
1604 	get_debugreg(vcpu->arch.db[2], 2);
1605 	get_debugreg(vcpu->arch.db[3], 3);
1606 	vcpu->arch.dr6 = svm_get_dr6(vcpu);
1607 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1608 
1609 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1610 	set_dr_intercepts(svm);
1611 }
1612 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1613 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1614 {
1615 	struct vcpu_svm *svm = to_svm(vcpu);
1616 
1617 	svm->vmcb->save.dr7 = value;
1618 	mark_dirty(svm->vmcb, VMCB_DR);
1619 }
1620 
pf_interception(struct vcpu_svm * svm)1621 static int pf_interception(struct vcpu_svm *svm)
1622 {
1623 	u64 fault_address = svm->vmcb->control.exit_info_2;
1624 	u32 error_code;
1625 	int r = 1;
1626 
1627 	switch (svm->apf_reason) {
1628 	default:
1629 		error_code = svm->vmcb->control.exit_info_1;
1630 
1631 		trace_kvm_page_fault(fault_address, error_code);
1632 		if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1633 			kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1634 		r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1635 			svm->vmcb->control.insn_bytes,
1636 			svm->vmcb->control.insn_len);
1637 		break;
1638 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
1639 		svm->apf_reason = 0;
1640 		local_irq_disable();
1641 		kvm_async_pf_task_wait(fault_address);
1642 		local_irq_enable();
1643 		break;
1644 	case KVM_PV_REASON_PAGE_READY:
1645 		svm->apf_reason = 0;
1646 		local_irq_disable();
1647 		kvm_async_pf_task_wake(fault_address);
1648 		local_irq_enable();
1649 		break;
1650 	}
1651 	return r;
1652 }
1653 
db_interception(struct vcpu_svm * svm)1654 static int db_interception(struct vcpu_svm *svm)
1655 {
1656 	struct kvm_run *kvm_run = svm->vcpu.run;
1657 
1658 	if (!(svm->vcpu.guest_debug &
1659 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1660 		!svm->nmi_singlestep) {
1661 		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1662 		return 1;
1663 	}
1664 
1665 	if (svm->nmi_singlestep) {
1666 		svm->nmi_singlestep = false;
1667 		if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1668 			svm->vmcb->save.rflags &=
1669 				~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1670 	}
1671 
1672 	if (svm->vcpu.guest_debug &
1673 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1674 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1675 		kvm_run->debug.arch.pc =
1676 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1677 		kvm_run->debug.arch.exception = DB_VECTOR;
1678 		return 0;
1679 	}
1680 
1681 	return 1;
1682 }
1683 
bp_interception(struct vcpu_svm * svm)1684 static int bp_interception(struct vcpu_svm *svm)
1685 {
1686 	struct kvm_run *kvm_run = svm->vcpu.run;
1687 
1688 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1689 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1690 	kvm_run->debug.arch.exception = BP_VECTOR;
1691 	return 0;
1692 }
1693 
ud_interception(struct vcpu_svm * svm)1694 static int ud_interception(struct vcpu_svm *svm)
1695 {
1696 	int er;
1697 
1698 	er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1699 	if (er != EMULATE_DONE)
1700 		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1701 	return 1;
1702 }
1703 
ac_interception(struct vcpu_svm * svm)1704 static int ac_interception(struct vcpu_svm *svm)
1705 {
1706 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1707 	return 1;
1708 }
1709 
svm_fpu_activate(struct kvm_vcpu * vcpu)1710 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1711 {
1712 	struct vcpu_svm *svm = to_svm(vcpu);
1713 
1714 	clr_exception_intercept(svm, NM_VECTOR);
1715 
1716 	svm->vcpu.fpu_active = 1;
1717 	update_cr0_intercept(svm);
1718 }
1719 
nm_interception(struct vcpu_svm * svm)1720 static int nm_interception(struct vcpu_svm *svm)
1721 {
1722 	svm_fpu_activate(&svm->vcpu);
1723 	return 1;
1724 }
1725 
is_erratum_383(void)1726 static bool is_erratum_383(void)
1727 {
1728 	int err, i;
1729 	u64 value;
1730 
1731 	if (!erratum_383_found)
1732 		return false;
1733 
1734 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1735 	if (err)
1736 		return false;
1737 
1738 	/* Bit 62 may or may not be set for this mce */
1739 	value &= ~(1ULL << 62);
1740 
1741 	if (value != 0xb600000000010015ULL)
1742 		return false;
1743 
1744 	/* Clear MCi_STATUS registers */
1745 	for (i = 0; i < 6; ++i)
1746 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1747 
1748 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1749 	if (!err) {
1750 		u32 low, high;
1751 
1752 		value &= ~(1ULL << 2);
1753 		low    = lower_32_bits(value);
1754 		high   = upper_32_bits(value);
1755 
1756 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1757 	}
1758 
1759 	/* Flush tlb to evict multi-match entries */
1760 	__flush_tlb_all();
1761 
1762 	return true;
1763 }
1764 
svm_handle_mce(struct vcpu_svm * svm)1765 static void svm_handle_mce(struct vcpu_svm *svm)
1766 {
1767 	if (is_erratum_383()) {
1768 		/*
1769 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1770 		 * guest.
1771 		 */
1772 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1773 
1774 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1775 
1776 		return;
1777 	}
1778 
1779 	/*
1780 	 * On an #MC intercept the MCE handler is not called automatically in
1781 	 * the host. So do it by hand here.
1782 	 */
1783 	asm volatile (
1784 		"int $0x12\n");
1785 	/* not sure if we ever come back to this point */
1786 
1787 	return;
1788 }
1789 
mc_interception(struct vcpu_svm * svm)1790 static int mc_interception(struct vcpu_svm *svm)
1791 {
1792 	return 1;
1793 }
1794 
shutdown_interception(struct vcpu_svm * svm)1795 static int shutdown_interception(struct vcpu_svm *svm)
1796 {
1797 	struct kvm_run *kvm_run = svm->vcpu.run;
1798 
1799 	/*
1800 	 * VMCB is undefined after a SHUTDOWN intercept
1801 	 * so reinitialize it.
1802 	 */
1803 	clear_page(svm->vmcb);
1804 	init_vmcb(svm);
1805 
1806 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1807 	return 0;
1808 }
1809 
io_interception(struct vcpu_svm * svm)1810 static int io_interception(struct vcpu_svm *svm)
1811 {
1812 	struct kvm_vcpu *vcpu = &svm->vcpu;
1813 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1814 	int size, in, string;
1815 	unsigned port;
1816 
1817 	++svm->vcpu.stat.io_exits;
1818 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1819 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1820 	if (string || in)
1821 		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1822 
1823 	port = io_info >> 16;
1824 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1825 	svm->next_rip = svm->vmcb->control.exit_info_2;
1826 	skip_emulated_instruction(&svm->vcpu);
1827 
1828 	return kvm_fast_pio_out(vcpu, size, port);
1829 }
1830 
nmi_interception(struct vcpu_svm * svm)1831 static int nmi_interception(struct vcpu_svm *svm)
1832 {
1833 	return 1;
1834 }
1835 
intr_interception(struct vcpu_svm * svm)1836 static int intr_interception(struct vcpu_svm *svm)
1837 {
1838 	++svm->vcpu.stat.irq_exits;
1839 	return 1;
1840 }
1841 
nop_on_interception(struct vcpu_svm * svm)1842 static int nop_on_interception(struct vcpu_svm *svm)
1843 {
1844 	return 1;
1845 }
1846 
halt_interception(struct vcpu_svm * svm)1847 static int halt_interception(struct vcpu_svm *svm)
1848 {
1849 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1850 	return kvm_emulate_halt(&svm->vcpu);
1851 }
1852 
vmmcall_interception(struct vcpu_svm * svm)1853 static int vmmcall_interception(struct vcpu_svm *svm)
1854 {
1855 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1856 	kvm_emulate_hypercall(&svm->vcpu);
1857 	return 1;
1858 }
1859 
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)1860 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1861 {
1862 	struct vcpu_svm *svm = to_svm(vcpu);
1863 
1864 	return svm->nested.nested_cr3;
1865 }
1866 
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)1867 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1868 {
1869 	struct vcpu_svm *svm = to_svm(vcpu);
1870 	u64 cr3 = svm->nested.nested_cr3;
1871 	u64 pdpte;
1872 	int ret;
1873 
1874 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1875 				       offset_in_page(cr3) + index * 8, 8);
1876 	if (ret)
1877 		return 0;
1878 	return pdpte;
1879 }
1880 
nested_svm_set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)1881 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1882 				   unsigned long root)
1883 {
1884 	struct vcpu_svm *svm = to_svm(vcpu);
1885 
1886 	svm->vmcb->control.nested_cr3 = root;
1887 	mark_dirty(svm->vmcb, VMCB_NPT);
1888 	svm_flush_tlb(vcpu);
1889 }
1890 
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)1891 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1892 				       struct x86_exception *fault)
1893 {
1894 	struct vcpu_svm *svm = to_svm(vcpu);
1895 
1896 	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1897 		/*
1898 		 * TODO: track the cause of the nested page fault, and
1899 		 * correctly fill in the high bits of exit_info_1.
1900 		 */
1901 		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1902 		svm->vmcb->control.exit_code_hi = 0;
1903 		svm->vmcb->control.exit_info_1 = (1ULL << 32);
1904 		svm->vmcb->control.exit_info_2 = fault->address;
1905 	}
1906 
1907 	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1908 	svm->vmcb->control.exit_info_1 |= fault->error_code;
1909 
1910 	/*
1911 	 * The present bit is always zero for page structure faults on real
1912 	 * hardware.
1913 	 */
1914 	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1915 		svm->vmcb->control.exit_info_1 &= ~1;
1916 
1917 	nested_svm_vmexit(svm);
1918 }
1919 
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)1920 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1921 {
1922 	WARN_ON(mmu_is_nested(vcpu));
1923 	kvm_init_shadow_mmu(vcpu);
1924 	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1925 	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1926 	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1927 	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1928 	vcpu->arch.mmu.shadow_root_level = get_npt_level();
1929 	reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
1930 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1931 }
1932 
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)1933 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1934 {
1935 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1936 }
1937 
nested_svm_check_permissions(struct vcpu_svm * svm)1938 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1939 {
1940 	if (!(svm->vcpu.arch.efer & EFER_SVME)
1941 	    || !is_paging(&svm->vcpu)) {
1942 		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1943 		return 1;
1944 	}
1945 
1946 	if (svm->vmcb->save.cpl) {
1947 		kvm_inject_gp(&svm->vcpu, 0);
1948 		return 1;
1949 	}
1950 
1951        return 0;
1952 }
1953 
nested_svm_check_exception(struct vcpu_svm * svm,unsigned nr,bool has_error_code,u32 error_code)1954 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1955 				      bool has_error_code, u32 error_code)
1956 {
1957 	int vmexit;
1958 
1959 	if (!is_guest_mode(&svm->vcpu))
1960 		return 0;
1961 
1962 	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1963 	svm->vmcb->control.exit_code_hi = 0;
1964 	svm->vmcb->control.exit_info_1 = error_code;
1965 	svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1966 
1967 	vmexit = nested_svm_intercept(svm);
1968 	if (vmexit == NESTED_EXIT_DONE)
1969 		svm->nested.exit_required = true;
1970 
1971 	return vmexit;
1972 }
1973 
1974 /* This function returns true if it is save to enable the irq window */
nested_svm_intr(struct vcpu_svm * svm)1975 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1976 {
1977 	if (!is_guest_mode(&svm->vcpu))
1978 		return true;
1979 
1980 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1981 		return true;
1982 
1983 	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1984 		return false;
1985 
1986 	/*
1987 	 * if vmexit was already requested (by intercepted exception
1988 	 * for instance) do not overwrite it with "external interrupt"
1989 	 * vmexit.
1990 	 */
1991 	if (svm->nested.exit_required)
1992 		return false;
1993 
1994 	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1995 	svm->vmcb->control.exit_info_1 = 0;
1996 	svm->vmcb->control.exit_info_2 = 0;
1997 
1998 	if (svm->nested.intercept & 1ULL) {
1999 		/*
2000 		 * The #vmexit can't be emulated here directly because this
2001 		 * code path runs with irqs and preemption disabled. A
2002 		 * #vmexit emulation might sleep. Only signal request for
2003 		 * the #vmexit here.
2004 		 */
2005 		svm->nested.exit_required = true;
2006 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2007 		return false;
2008 	}
2009 
2010 	return true;
2011 }
2012 
2013 /* This function returns true if it is save to enable the nmi window */
nested_svm_nmi(struct vcpu_svm * svm)2014 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2015 {
2016 	if (!is_guest_mode(&svm->vcpu))
2017 		return true;
2018 
2019 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2020 		return true;
2021 
2022 	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2023 	svm->nested.exit_required = true;
2024 
2025 	return false;
2026 }
2027 
nested_svm_map(struct vcpu_svm * svm,u64 gpa,struct page ** _page)2028 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2029 {
2030 	struct page *page;
2031 
2032 	might_sleep();
2033 
2034 	page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2035 	if (is_error_page(page))
2036 		goto error;
2037 
2038 	*_page = page;
2039 
2040 	return kmap(page);
2041 
2042 error:
2043 	kvm_inject_gp(&svm->vcpu, 0);
2044 
2045 	return NULL;
2046 }
2047 
nested_svm_unmap(struct page * page)2048 static void nested_svm_unmap(struct page *page)
2049 {
2050 	kunmap(page);
2051 	kvm_release_page_dirty(page);
2052 }
2053 
nested_svm_intercept_ioio(struct vcpu_svm * svm)2054 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2055 {
2056 	unsigned port, size, iopm_len;
2057 	u16 val, mask;
2058 	u8 start_bit;
2059 	u64 gpa;
2060 
2061 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2062 		return NESTED_EXIT_HOST;
2063 
2064 	port = svm->vmcb->control.exit_info_1 >> 16;
2065 	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2066 		SVM_IOIO_SIZE_SHIFT;
2067 	gpa  = svm->nested.vmcb_iopm + (port / 8);
2068 	start_bit = port % 8;
2069 	iopm_len = (start_bit + size > 8) ? 2 : 1;
2070 	mask = (0xf >> (4 - size)) << start_bit;
2071 	val = 0;
2072 
2073 	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2074 		return NESTED_EXIT_DONE;
2075 
2076 	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2077 }
2078 
nested_svm_exit_handled_msr(struct vcpu_svm * svm)2079 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2080 {
2081 	u32 offset, msr, value;
2082 	int write, mask;
2083 
2084 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2085 		return NESTED_EXIT_HOST;
2086 
2087 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2088 	offset = svm_msrpm_offset(msr);
2089 	write  = svm->vmcb->control.exit_info_1 & 1;
2090 	mask   = 1 << ((2 * (msr & 0xf)) + write);
2091 
2092 	if (offset == MSR_INVALID)
2093 		return NESTED_EXIT_DONE;
2094 
2095 	/* Offset is in 32 bit units but need in 8 bit units */
2096 	offset *= 4;
2097 
2098 	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2099 		return NESTED_EXIT_DONE;
2100 
2101 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2102 }
2103 
nested_svm_exit_special(struct vcpu_svm * svm)2104 static int nested_svm_exit_special(struct vcpu_svm *svm)
2105 {
2106 	u32 exit_code = svm->vmcb->control.exit_code;
2107 
2108 	switch (exit_code) {
2109 	case SVM_EXIT_INTR:
2110 	case SVM_EXIT_NMI:
2111 	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2112 		return NESTED_EXIT_HOST;
2113 	case SVM_EXIT_NPF:
2114 		/* For now we are always handling NPFs when using them */
2115 		if (npt_enabled)
2116 			return NESTED_EXIT_HOST;
2117 		break;
2118 	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2119 		/* When we're shadowing, trap PFs, but not async PF */
2120 		if (!npt_enabled && svm->apf_reason == 0)
2121 			return NESTED_EXIT_HOST;
2122 		break;
2123 	case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2124 		nm_interception(svm);
2125 		break;
2126 	default:
2127 		break;
2128 	}
2129 
2130 	return NESTED_EXIT_CONTINUE;
2131 }
2132 
2133 /*
2134  * If this function returns true, this #vmexit was already handled
2135  */
nested_svm_intercept(struct vcpu_svm * svm)2136 static int nested_svm_intercept(struct vcpu_svm *svm)
2137 {
2138 	u32 exit_code = svm->vmcb->control.exit_code;
2139 	int vmexit = NESTED_EXIT_HOST;
2140 
2141 	switch (exit_code) {
2142 	case SVM_EXIT_MSR:
2143 		vmexit = nested_svm_exit_handled_msr(svm);
2144 		break;
2145 	case SVM_EXIT_IOIO:
2146 		vmexit = nested_svm_intercept_ioio(svm);
2147 		break;
2148 	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2149 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2150 		if (svm->nested.intercept_cr & bit)
2151 			vmexit = NESTED_EXIT_DONE;
2152 		break;
2153 	}
2154 	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2155 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2156 		if (svm->nested.intercept_dr & bit)
2157 			vmexit = NESTED_EXIT_DONE;
2158 		break;
2159 	}
2160 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2161 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2162 		if (svm->nested.intercept_exceptions & excp_bits)
2163 			vmexit = NESTED_EXIT_DONE;
2164 		/* async page fault always cause vmexit */
2165 		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2166 			 svm->apf_reason != 0)
2167 			vmexit = NESTED_EXIT_DONE;
2168 		break;
2169 	}
2170 	case SVM_EXIT_ERR: {
2171 		vmexit = NESTED_EXIT_DONE;
2172 		break;
2173 	}
2174 	default: {
2175 		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2176 		if (svm->nested.intercept & exit_bits)
2177 			vmexit = NESTED_EXIT_DONE;
2178 	}
2179 	}
2180 
2181 	return vmexit;
2182 }
2183 
nested_svm_exit_handled(struct vcpu_svm * svm)2184 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2185 {
2186 	int vmexit;
2187 
2188 	vmexit = nested_svm_intercept(svm);
2189 
2190 	if (vmexit == NESTED_EXIT_DONE)
2191 		nested_svm_vmexit(svm);
2192 
2193 	return vmexit;
2194 }
2195 
copy_vmcb_control_area(struct vmcb * dst_vmcb,struct vmcb * from_vmcb)2196 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2197 {
2198 	struct vmcb_control_area *dst  = &dst_vmcb->control;
2199 	struct vmcb_control_area *from = &from_vmcb->control;
2200 
2201 	dst->intercept_cr         = from->intercept_cr;
2202 	dst->intercept_dr         = from->intercept_dr;
2203 	dst->intercept_exceptions = from->intercept_exceptions;
2204 	dst->intercept            = from->intercept;
2205 	dst->iopm_base_pa         = from->iopm_base_pa;
2206 	dst->msrpm_base_pa        = from->msrpm_base_pa;
2207 	dst->tsc_offset           = from->tsc_offset;
2208 	dst->asid                 = from->asid;
2209 	dst->tlb_ctl              = from->tlb_ctl;
2210 	dst->int_ctl              = from->int_ctl;
2211 	dst->int_vector           = from->int_vector;
2212 	dst->int_state            = from->int_state;
2213 	dst->exit_code            = from->exit_code;
2214 	dst->exit_code_hi         = from->exit_code_hi;
2215 	dst->exit_info_1          = from->exit_info_1;
2216 	dst->exit_info_2          = from->exit_info_2;
2217 	dst->exit_int_info        = from->exit_int_info;
2218 	dst->exit_int_info_err    = from->exit_int_info_err;
2219 	dst->nested_ctl           = from->nested_ctl;
2220 	dst->event_inj            = from->event_inj;
2221 	dst->event_inj_err        = from->event_inj_err;
2222 	dst->nested_cr3           = from->nested_cr3;
2223 	dst->lbr_ctl              = from->lbr_ctl;
2224 }
2225 
nested_svm_vmexit(struct vcpu_svm * svm)2226 static int nested_svm_vmexit(struct vcpu_svm *svm)
2227 {
2228 	struct vmcb *nested_vmcb;
2229 	struct vmcb *hsave = svm->nested.hsave;
2230 	struct vmcb *vmcb = svm->vmcb;
2231 	struct page *page;
2232 
2233 	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2234 				       vmcb->control.exit_info_1,
2235 				       vmcb->control.exit_info_2,
2236 				       vmcb->control.exit_int_info,
2237 				       vmcb->control.exit_int_info_err,
2238 				       KVM_ISA_SVM);
2239 
2240 	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2241 	if (!nested_vmcb)
2242 		return 1;
2243 
2244 	/* Exit Guest-Mode */
2245 	leave_guest_mode(&svm->vcpu);
2246 	svm->nested.vmcb = 0;
2247 
2248 	/* Give the current vmcb to the guest */
2249 	disable_gif(svm);
2250 
2251 	nested_vmcb->save.es     = vmcb->save.es;
2252 	nested_vmcb->save.cs     = vmcb->save.cs;
2253 	nested_vmcb->save.ss     = vmcb->save.ss;
2254 	nested_vmcb->save.ds     = vmcb->save.ds;
2255 	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2256 	nested_vmcb->save.idtr   = vmcb->save.idtr;
2257 	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2258 	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2259 	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2260 	nested_vmcb->save.cr2    = vmcb->save.cr2;
2261 	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2262 	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2263 	nested_vmcb->save.rip    = vmcb->save.rip;
2264 	nested_vmcb->save.rsp    = vmcb->save.rsp;
2265 	nested_vmcb->save.rax    = vmcb->save.rax;
2266 	nested_vmcb->save.dr7    = vmcb->save.dr7;
2267 	nested_vmcb->save.dr6    = vmcb->save.dr6;
2268 	nested_vmcb->save.cpl    = vmcb->save.cpl;
2269 
2270 	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2271 	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2272 	nested_vmcb->control.int_state         = vmcb->control.int_state;
2273 	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2274 	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2275 	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2276 	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2277 	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2278 	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2279 
2280 	if (svm->nrips_enabled)
2281 		nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2282 
2283 	/*
2284 	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2285 	 * to make sure that we do not lose injected events. So check event_inj
2286 	 * here and copy it to exit_int_info if it is valid.
2287 	 * Exit_int_info and event_inj can't be both valid because the case
2288 	 * below only happens on a VMRUN instruction intercept which has
2289 	 * no valid exit_int_info set.
2290 	 */
2291 	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2292 		struct vmcb_control_area *nc = &nested_vmcb->control;
2293 
2294 		nc->exit_int_info     = vmcb->control.event_inj;
2295 		nc->exit_int_info_err = vmcb->control.event_inj_err;
2296 	}
2297 
2298 	nested_vmcb->control.tlb_ctl           = 0;
2299 	nested_vmcb->control.event_inj         = 0;
2300 	nested_vmcb->control.event_inj_err     = 0;
2301 
2302 	/* We always set V_INTR_MASKING and remember the old value in hflags */
2303 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2304 		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2305 
2306 	/* Restore the original control entries */
2307 	copy_vmcb_control_area(vmcb, hsave);
2308 
2309 	kvm_clear_exception_queue(&svm->vcpu);
2310 	kvm_clear_interrupt_queue(&svm->vcpu);
2311 
2312 	svm->nested.nested_cr3 = 0;
2313 
2314 	/* Restore selected save entries */
2315 	svm->vmcb->save.es = hsave->save.es;
2316 	svm->vmcb->save.cs = hsave->save.cs;
2317 	svm->vmcb->save.ss = hsave->save.ss;
2318 	svm->vmcb->save.ds = hsave->save.ds;
2319 	svm->vmcb->save.gdtr = hsave->save.gdtr;
2320 	svm->vmcb->save.idtr = hsave->save.idtr;
2321 	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2322 	svm_set_efer(&svm->vcpu, hsave->save.efer);
2323 	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2324 	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2325 	if (npt_enabled) {
2326 		svm->vmcb->save.cr3 = hsave->save.cr3;
2327 		svm->vcpu.arch.cr3 = hsave->save.cr3;
2328 	} else {
2329 		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2330 	}
2331 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2332 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2333 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2334 	svm->vmcb->save.dr7 = 0;
2335 	svm->vmcb->save.cpl = 0;
2336 	svm->vmcb->control.exit_int_info = 0;
2337 
2338 	mark_all_dirty(svm->vmcb);
2339 
2340 	nested_svm_unmap(page);
2341 
2342 	nested_svm_uninit_mmu_context(&svm->vcpu);
2343 	kvm_mmu_reset_context(&svm->vcpu);
2344 	kvm_mmu_load(&svm->vcpu);
2345 
2346 	return 0;
2347 }
2348 
nested_svm_vmrun_msrpm(struct vcpu_svm * svm)2349 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2350 {
2351 	/*
2352 	 * This function merges the msr permission bitmaps of kvm and the
2353 	 * nested vmcb. It is optimized in that it only merges the parts where
2354 	 * the kvm msr permission bitmap may contain zero bits
2355 	 */
2356 	int i;
2357 
2358 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2359 		return true;
2360 
2361 	for (i = 0; i < MSRPM_OFFSETS; i++) {
2362 		u32 value, p;
2363 		u64 offset;
2364 
2365 		if (msrpm_offsets[i] == 0xffffffff)
2366 			break;
2367 
2368 		p      = msrpm_offsets[i];
2369 		offset = svm->nested.vmcb_msrpm + (p * 4);
2370 
2371 		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2372 			return false;
2373 
2374 		svm->nested.msrpm[p] = svm->msrpm[p] | value;
2375 	}
2376 
2377 	svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2378 
2379 	return true;
2380 }
2381 
nested_vmcb_checks(struct vmcb * vmcb)2382 static bool nested_vmcb_checks(struct vmcb *vmcb)
2383 {
2384 	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2385 		return false;
2386 
2387 	if (vmcb->control.asid == 0)
2388 		return false;
2389 
2390 	if (vmcb->control.nested_ctl && !npt_enabled)
2391 		return false;
2392 
2393 	return true;
2394 }
2395 
nested_svm_vmrun(struct vcpu_svm * svm)2396 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2397 {
2398 	struct vmcb *nested_vmcb;
2399 	struct vmcb *hsave = svm->nested.hsave;
2400 	struct vmcb *vmcb = svm->vmcb;
2401 	struct page *page;
2402 	u64 vmcb_gpa;
2403 
2404 	vmcb_gpa = svm->vmcb->save.rax;
2405 
2406 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2407 	if (!nested_vmcb)
2408 		return false;
2409 
2410 	if (!nested_vmcb_checks(nested_vmcb)) {
2411 		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2412 		nested_vmcb->control.exit_code_hi = 0;
2413 		nested_vmcb->control.exit_info_1  = 0;
2414 		nested_vmcb->control.exit_info_2  = 0;
2415 
2416 		nested_svm_unmap(page);
2417 
2418 		return false;
2419 	}
2420 
2421 	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2422 			       nested_vmcb->save.rip,
2423 			       nested_vmcb->control.int_ctl,
2424 			       nested_vmcb->control.event_inj,
2425 			       nested_vmcb->control.nested_ctl);
2426 
2427 	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2428 				    nested_vmcb->control.intercept_cr >> 16,
2429 				    nested_vmcb->control.intercept_exceptions,
2430 				    nested_vmcb->control.intercept);
2431 
2432 	/* Clear internal status */
2433 	kvm_clear_exception_queue(&svm->vcpu);
2434 	kvm_clear_interrupt_queue(&svm->vcpu);
2435 
2436 	/*
2437 	 * Save the old vmcb, so we don't need to pick what we save, but can
2438 	 * restore everything when a VMEXIT occurs
2439 	 */
2440 	hsave->save.es     = vmcb->save.es;
2441 	hsave->save.cs     = vmcb->save.cs;
2442 	hsave->save.ss     = vmcb->save.ss;
2443 	hsave->save.ds     = vmcb->save.ds;
2444 	hsave->save.gdtr   = vmcb->save.gdtr;
2445 	hsave->save.idtr   = vmcb->save.idtr;
2446 	hsave->save.efer   = svm->vcpu.arch.efer;
2447 	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2448 	hsave->save.cr4    = svm->vcpu.arch.cr4;
2449 	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2450 	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2451 	hsave->save.rsp    = vmcb->save.rsp;
2452 	hsave->save.rax    = vmcb->save.rax;
2453 	if (npt_enabled)
2454 		hsave->save.cr3    = vmcb->save.cr3;
2455 	else
2456 		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2457 
2458 	copy_vmcb_control_area(hsave, vmcb);
2459 
2460 	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2461 		svm->vcpu.arch.hflags |= HF_HIF_MASK;
2462 	else
2463 		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2464 
2465 	if (nested_vmcb->control.nested_ctl) {
2466 		kvm_mmu_unload(&svm->vcpu);
2467 		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2468 		nested_svm_init_mmu_context(&svm->vcpu);
2469 	}
2470 
2471 	/* Load the nested guest state */
2472 	svm->vmcb->save.es = nested_vmcb->save.es;
2473 	svm->vmcb->save.cs = nested_vmcb->save.cs;
2474 	svm->vmcb->save.ss = nested_vmcb->save.ss;
2475 	svm->vmcb->save.ds = nested_vmcb->save.ds;
2476 	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2477 	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2478 	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2479 	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2480 	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2481 	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2482 	if (npt_enabled) {
2483 		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2484 		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2485 	} else
2486 		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2487 
2488 	/* Guest paging mode is active - reset mmu */
2489 	kvm_mmu_reset_context(&svm->vcpu);
2490 
2491 	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2492 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2493 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2494 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2495 
2496 	/* In case we don't even reach vcpu_run, the fields are not updated */
2497 	svm->vmcb->save.rax = nested_vmcb->save.rax;
2498 	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2499 	svm->vmcb->save.rip = nested_vmcb->save.rip;
2500 	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2501 	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2502 	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2503 
2504 	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2505 	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2506 
2507 	/* cache intercepts */
2508 	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2509 	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2510 	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2511 	svm->nested.intercept            = nested_vmcb->control.intercept;
2512 
2513 	svm_flush_tlb(&svm->vcpu);
2514 	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2515 	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2516 		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2517 	else
2518 		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2519 
2520 	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2521 		/* We only want the cr8 intercept bits of the guest */
2522 		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2523 		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2524 	}
2525 
2526 	/* We don't want to see VMMCALLs from a nested guest */
2527 	clr_intercept(svm, INTERCEPT_VMMCALL);
2528 
2529 	svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2530 	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2531 	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2532 	svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2533 	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2534 	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2535 
2536 	nested_svm_unmap(page);
2537 
2538 	/* Enter Guest-Mode */
2539 	enter_guest_mode(&svm->vcpu);
2540 
2541 	/*
2542 	 * Merge guest and host intercepts - must be called  with vcpu in
2543 	 * guest-mode to take affect here
2544 	 */
2545 	recalc_intercepts(svm);
2546 
2547 	svm->nested.vmcb = vmcb_gpa;
2548 
2549 	enable_gif(svm);
2550 
2551 	mark_all_dirty(svm->vmcb);
2552 
2553 	return true;
2554 }
2555 
nested_svm_vmloadsave(struct vmcb * from_vmcb,struct vmcb * to_vmcb)2556 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2557 {
2558 	to_vmcb->save.fs = from_vmcb->save.fs;
2559 	to_vmcb->save.gs = from_vmcb->save.gs;
2560 	to_vmcb->save.tr = from_vmcb->save.tr;
2561 	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2562 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2563 	to_vmcb->save.star = from_vmcb->save.star;
2564 	to_vmcb->save.lstar = from_vmcb->save.lstar;
2565 	to_vmcb->save.cstar = from_vmcb->save.cstar;
2566 	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2567 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2568 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2569 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2570 }
2571 
vmload_interception(struct vcpu_svm * svm)2572 static int vmload_interception(struct vcpu_svm *svm)
2573 {
2574 	struct vmcb *nested_vmcb;
2575 	struct page *page;
2576 
2577 	if (nested_svm_check_permissions(svm))
2578 		return 1;
2579 
2580 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2581 	if (!nested_vmcb)
2582 		return 1;
2583 
2584 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2585 	skip_emulated_instruction(&svm->vcpu);
2586 
2587 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2588 	nested_svm_unmap(page);
2589 
2590 	return 1;
2591 }
2592 
vmsave_interception(struct vcpu_svm * svm)2593 static int vmsave_interception(struct vcpu_svm *svm)
2594 {
2595 	struct vmcb *nested_vmcb;
2596 	struct page *page;
2597 
2598 	if (nested_svm_check_permissions(svm))
2599 		return 1;
2600 
2601 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2602 	if (!nested_vmcb)
2603 		return 1;
2604 
2605 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2606 	skip_emulated_instruction(&svm->vcpu);
2607 
2608 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2609 	nested_svm_unmap(page);
2610 
2611 	return 1;
2612 }
2613 
vmrun_interception(struct vcpu_svm * svm)2614 static int vmrun_interception(struct vcpu_svm *svm)
2615 {
2616 	if (nested_svm_check_permissions(svm))
2617 		return 1;
2618 
2619 	/* Save rip after vmrun instruction */
2620 	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2621 
2622 	if (!nested_svm_vmrun(svm))
2623 		return 1;
2624 
2625 	if (!nested_svm_vmrun_msrpm(svm))
2626 		goto failed;
2627 
2628 	return 1;
2629 
2630 failed:
2631 
2632 	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2633 	svm->vmcb->control.exit_code_hi = 0;
2634 	svm->vmcb->control.exit_info_1  = 0;
2635 	svm->vmcb->control.exit_info_2  = 0;
2636 
2637 	nested_svm_vmexit(svm);
2638 
2639 	return 1;
2640 }
2641 
stgi_interception(struct vcpu_svm * svm)2642 static int stgi_interception(struct vcpu_svm *svm)
2643 {
2644 	if (nested_svm_check_permissions(svm))
2645 		return 1;
2646 
2647 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2648 	skip_emulated_instruction(&svm->vcpu);
2649 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2650 
2651 	enable_gif(svm);
2652 
2653 	return 1;
2654 }
2655 
clgi_interception(struct vcpu_svm * svm)2656 static int clgi_interception(struct vcpu_svm *svm)
2657 {
2658 	if (nested_svm_check_permissions(svm))
2659 		return 1;
2660 
2661 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2662 	skip_emulated_instruction(&svm->vcpu);
2663 
2664 	disable_gif(svm);
2665 
2666 	/* After a CLGI no interrupts should come */
2667 	svm_clear_vintr(svm);
2668 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2669 
2670 	mark_dirty(svm->vmcb, VMCB_INTR);
2671 
2672 	return 1;
2673 }
2674 
invlpga_interception(struct vcpu_svm * svm)2675 static int invlpga_interception(struct vcpu_svm *svm)
2676 {
2677 	struct kvm_vcpu *vcpu = &svm->vcpu;
2678 
2679 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2680 			  kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2681 
2682 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2683 	kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2684 
2685 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2686 	skip_emulated_instruction(&svm->vcpu);
2687 	return 1;
2688 }
2689 
skinit_interception(struct vcpu_svm * svm)2690 static int skinit_interception(struct vcpu_svm *svm)
2691 {
2692 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2693 
2694 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2695 	return 1;
2696 }
2697 
wbinvd_interception(struct vcpu_svm * svm)2698 static int wbinvd_interception(struct vcpu_svm *svm)
2699 {
2700 	kvm_emulate_wbinvd(&svm->vcpu);
2701 	return 1;
2702 }
2703 
xsetbv_interception(struct vcpu_svm * svm)2704 static int xsetbv_interception(struct vcpu_svm *svm)
2705 {
2706 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2707 	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2708 
2709 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2710 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2711 		skip_emulated_instruction(&svm->vcpu);
2712 	}
2713 
2714 	return 1;
2715 }
2716 
task_switch_interception(struct vcpu_svm * svm)2717 static int task_switch_interception(struct vcpu_svm *svm)
2718 {
2719 	u16 tss_selector;
2720 	int reason;
2721 	int int_type = svm->vmcb->control.exit_int_info &
2722 		SVM_EXITINTINFO_TYPE_MASK;
2723 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2724 	uint32_t type =
2725 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2726 	uint32_t idt_v =
2727 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2728 	bool has_error_code = false;
2729 	u32 error_code = 0;
2730 
2731 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2732 
2733 	if (svm->vmcb->control.exit_info_2 &
2734 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2735 		reason = TASK_SWITCH_IRET;
2736 	else if (svm->vmcb->control.exit_info_2 &
2737 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2738 		reason = TASK_SWITCH_JMP;
2739 	else if (idt_v)
2740 		reason = TASK_SWITCH_GATE;
2741 	else
2742 		reason = TASK_SWITCH_CALL;
2743 
2744 	if (reason == TASK_SWITCH_GATE) {
2745 		switch (type) {
2746 		case SVM_EXITINTINFO_TYPE_NMI:
2747 			svm->vcpu.arch.nmi_injected = false;
2748 			break;
2749 		case SVM_EXITINTINFO_TYPE_EXEPT:
2750 			if (svm->vmcb->control.exit_info_2 &
2751 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2752 				has_error_code = true;
2753 				error_code =
2754 					(u32)svm->vmcb->control.exit_info_2;
2755 			}
2756 			kvm_clear_exception_queue(&svm->vcpu);
2757 			break;
2758 		case SVM_EXITINTINFO_TYPE_INTR:
2759 			kvm_clear_interrupt_queue(&svm->vcpu);
2760 			break;
2761 		default:
2762 			break;
2763 		}
2764 	}
2765 
2766 	if (reason != TASK_SWITCH_GATE ||
2767 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2768 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2769 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2770 		skip_emulated_instruction(&svm->vcpu);
2771 
2772 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2773 		int_vec = -1;
2774 
2775 	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2776 				has_error_code, error_code) == EMULATE_FAIL) {
2777 		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2778 		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2779 		svm->vcpu.run->internal.ndata = 0;
2780 		return 0;
2781 	}
2782 	return 1;
2783 }
2784 
cpuid_interception(struct vcpu_svm * svm)2785 static int cpuid_interception(struct vcpu_svm *svm)
2786 {
2787 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2788 	kvm_emulate_cpuid(&svm->vcpu);
2789 	return 1;
2790 }
2791 
iret_interception(struct vcpu_svm * svm)2792 static int iret_interception(struct vcpu_svm *svm)
2793 {
2794 	++svm->vcpu.stat.nmi_window_exits;
2795 	clr_intercept(svm, INTERCEPT_IRET);
2796 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2797 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2798 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2799 	return 1;
2800 }
2801 
invlpg_interception(struct vcpu_svm * svm)2802 static int invlpg_interception(struct vcpu_svm *svm)
2803 {
2804 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2805 		return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2806 
2807 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2808 	skip_emulated_instruction(&svm->vcpu);
2809 	return 1;
2810 }
2811 
emulate_on_interception(struct vcpu_svm * svm)2812 static int emulate_on_interception(struct vcpu_svm *svm)
2813 {
2814 	return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2815 }
2816 
rdpmc_interception(struct vcpu_svm * svm)2817 static int rdpmc_interception(struct vcpu_svm *svm)
2818 {
2819 	int err;
2820 
2821 	if (!static_cpu_has(X86_FEATURE_NRIPS))
2822 		return emulate_on_interception(svm);
2823 
2824 	err = kvm_rdpmc(&svm->vcpu);
2825 	kvm_complete_insn_gp(&svm->vcpu, err);
2826 
2827 	return 1;
2828 }
2829 
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)2830 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2831 					    unsigned long val)
2832 {
2833 	unsigned long cr0 = svm->vcpu.arch.cr0;
2834 	bool ret = false;
2835 	u64 intercept;
2836 
2837 	intercept = svm->nested.intercept;
2838 
2839 	if (!is_guest_mode(&svm->vcpu) ||
2840 	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2841 		return false;
2842 
2843 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2844 	val &= ~SVM_CR0_SELECTIVE_MASK;
2845 
2846 	if (cr0 ^ val) {
2847 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2848 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2849 	}
2850 
2851 	return ret;
2852 }
2853 
2854 #define CR_VALID (1ULL << 63)
2855 
cr_interception(struct vcpu_svm * svm)2856 static int cr_interception(struct vcpu_svm *svm)
2857 {
2858 	int reg, cr;
2859 	unsigned long val;
2860 	int err;
2861 
2862 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2863 		return emulate_on_interception(svm);
2864 
2865 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2866 		return emulate_on_interception(svm);
2867 
2868 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2869 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2870 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2871 	else
2872 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2873 
2874 	err = 0;
2875 	if (cr >= 16) { /* mov to cr */
2876 		cr -= 16;
2877 		val = kvm_register_read(&svm->vcpu, reg);
2878 		switch (cr) {
2879 		case 0:
2880 			if (!check_selective_cr0_intercepted(svm, val))
2881 				err = kvm_set_cr0(&svm->vcpu, val);
2882 			else
2883 				return 1;
2884 
2885 			break;
2886 		case 3:
2887 			err = kvm_set_cr3(&svm->vcpu, val);
2888 			break;
2889 		case 4:
2890 			err = kvm_set_cr4(&svm->vcpu, val);
2891 			break;
2892 		case 8:
2893 			err = kvm_set_cr8(&svm->vcpu, val);
2894 			break;
2895 		default:
2896 			WARN(1, "unhandled write to CR%d", cr);
2897 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2898 			return 1;
2899 		}
2900 	} else { /* mov from cr */
2901 		switch (cr) {
2902 		case 0:
2903 			val = kvm_read_cr0(&svm->vcpu);
2904 			break;
2905 		case 2:
2906 			val = svm->vcpu.arch.cr2;
2907 			break;
2908 		case 3:
2909 			val = kvm_read_cr3(&svm->vcpu);
2910 			break;
2911 		case 4:
2912 			val = kvm_read_cr4(&svm->vcpu);
2913 			break;
2914 		case 8:
2915 			val = kvm_get_cr8(&svm->vcpu);
2916 			break;
2917 		default:
2918 			WARN(1, "unhandled read from CR%d", cr);
2919 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2920 			return 1;
2921 		}
2922 		kvm_register_write(&svm->vcpu, reg, val);
2923 	}
2924 	kvm_complete_insn_gp(&svm->vcpu, err);
2925 
2926 	return 1;
2927 }
2928 
dr_interception(struct vcpu_svm * svm)2929 static int dr_interception(struct vcpu_svm *svm)
2930 {
2931 	int reg, dr;
2932 	unsigned long val;
2933 
2934 	if (svm->vcpu.guest_debug == 0) {
2935 		/*
2936 		 * No more DR vmexits; force a reload of the debug registers
2937 		 * and reenter on this instruction.  The next vmexit will
2938 		 * retrieve the full state of the debug registers.
2939 		 */
2940 		clr_dr_intercepts(svm);
2941 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2942 		return 1;
2943 	}
2944 
2945 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2946 		return emulate_on_interception(svm);
2947 
2948 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2949 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2950 
2951 	if (dr >= 16) { /* mov to DRn */
2952 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2953 			return 1;
2954 		val = kvm_register_read(&svm->vcpu, reg);
2955 		kvm_set_dr(&svm->vcpu, dr - 16, val);
2956 	} else {
2957 		if (!kvm_require_dr(&svm->vcpu, dr))
2958 			return 1;
2959 		kvm_get_dr(&svm->vcpu, dr, &val);
2960 		kvm_register_write(&svm->vcpu, reg, val);
2961 	}
2962 
2963 	skip_emulated_instruction(&svm->vcpu);
2964 
2965 	return 1;
2966 }
2967 
cr8_write_interception(struct vcpu_svm * svm)2968 static int cr8_write_interception(struct vcpu_svm *svm)
2969 {
2970 	struct kvm_run *kvm_run = svm->vcpu.run;
2971 	int r;
2972 
2973 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2974 	/* instruction emulation calls kvm_set_cr8() */
2975 	r = cr_interception(svm);
2976 	if (lapic_in_kernel(&svm->vcpu))
2977 		return r;
2978 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2979 		return r;
2980 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2981 	return 0;
2982 }
2983 
svm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2984 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2985 {
2986 	struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2987 	return vmcb->control.tsc_offset + host_tsc;
2988 }
2989 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2990 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2991 {
2992 	struct vcpu_svm *svm = to_svm(vcpu);
2993 
2994 	switch (msr_info->index) {
2995 	case MSR_IA32_TSC: {
2996 		msr_info->data = svm->vmcb->control.tsc_offset +
2997 			kvm_scale_tsc(vcpu, rdtsc());
2998 
2999 		break;
3000 	}
3001 	case MSR_STAR:
3002 		msr_info->data = svm->vmcb->save.star;
3003 		break;
3004 #ifdef CONFIG_X86_64
3005 	case MSR_LSTAR:
3006 		msr_info->data = svm->vmcb->save.lstar;
3007 		break;
3008 	case MSR_CSTAR:
3009 		msr_info->data = svm->vmcb->save.cstar;
3010 		break;
3011 	case MSR_KERNEL_GS_BASE:
3012 		msr_info->data = svm->vmcb->save.kernel_gs_base;
3013 		break;
3014 	case MSR_SYSCALL_MASK:
3015 		msr_info->data = svm->vmcb->save.sfmask;
3016 		break;
3017 #endif
3018 	case MSR_IA32_SYSENTER_CS:
3019 		msr_info->data = svm->vmcb->save.sysenter_cs;
3020 		break;
3021 	case MSR_IA32_SYSENTER_EIP:
3022 		msr_info->data = svm->sysenter_eip;
3023 		break;
3024 	case MSR_IA32_SYSENTER_ESP:
3025 		msr_info->data = svm->sysenter_esp;
3026 		break;
3027 	/*
3028 	 * Nobody will change the following 5 values in the VMCB so we can
3029 	 * safely return them on rdmsr. They will always be 0 until LBRV is
3030 	 * implemented.
3031 	 */
3032 	case MSR_IA32_DEBUGCTLMSR:
3033 		msr_info->data = svm->vmcb->save.dbgctl;
3034 		break;
3035 	case MSR_IA32_LASTBRANCHFROMIP:
3036 		msr_info->data = svm->vmcb->save.br_from;
3037 		break;
3038 	case MSR_IA32_LASTBRANCHTOIP:
3039 		msr_info->data = svm->vmcb->save.br_to;
3040 		break;
3041 	case MSR_IA32_LASTINTFROMIP:
3042 		msr_info->data = svm->vmcb->save.last_excp_from;
3043 		break;
3044 	case MSR_IA32_LASTINTTOIP:
3045 		msr_info->data = svm->vmcb->save.last_excp_to;
3046 		break;
3047 	case MSR_VM_HSAVE_PA:
3048 		msr_info->data = svm->nested.hsave_msr;
3049 		break;
3050 	case MSR_VM_CR:
3051 		msr_info->data = svm->nested.vm_cr_msr;
3052 		break;
3053 	case MSR_IA32_UCODE_REV:
3054 		msr_info->data = 0x01000065;
3055 		break;
3056 	default:
3057 		return kvm_get_msr_common(vcpu, msr_info);
3058 	}
3059 	return 0;
3060 }
3061 
rdmsr_interception(struct vcpu_svm * svm)3062 static int rdmsr_interception(struct vcpu_svm *svm)
3063 {
3064 	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3065 	struct msr_data msr_info;
3066 
3067 	msr_info.index = ecx;
3068 	msr_info.host_initiated = false;
3069 	if (svm_get_msr(&svm->vcpu, &msr_info)) {
3070 		trace_kvm_msr_read_ex(ecx);
3071 		kvm_inject_gp(&svm->vcpu, 0);
3072 	} else {
3073 		trace_kvm_msr_read(ecx, msr_info.data);
3074 
3075 		kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3076 				   msr_info.data & 0xffffffff);
3077 		kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3078 				   msr_info.data >> 32);
3079 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3080 		skip_emulated_instruction(&svm->vcpu);
3081 	}
3082 	return 1;
3083 }
3084 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)3085 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3086 {
3087 	struct vcpu_svm *svm = to_svm(vcpu);
3088 	int svm_dis, chg_mask;
3089 
3090 	if (data & ~SVM_VM_CR_VALID_MASK)
3091 		return 1;
3092 
3093 	chg_mask = SVM_VM_CR_VALID_MASK;
3094 
3095 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3096 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3097 
3098 	svm->nested.vm_cr_msr &= ~chg_mask;
3099 	svm->nested.vm_cr_msr |= (data & chg_mask);
3100 
3101 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3102 
3103 	/* check for svm_disable while efer.svme is set */
3104 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3105 		return 1;
3106 
3107 	return 0;
3108 }
3109 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3110 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3111 {
3112 	struct vcpu_svm *svm = to_svm(vcpu);
3113 
3114 	u32 ecx = msr->index;
3115 	u64 data = msr->data;
3116 	switch (ecx) {
3117 	case MSR_IA32_TSC:
3118 		kvm_write_tsc(vcpu, msr);
3119 		break;
3120 	case MSR_STAR:
3121 		svm->vmcb->save.star = data;
3122 		break;
3123 #ifdef CONFIG_X86_64
3124 	case MSR_LSTAR:
3125 		svm->vmcb->save.lstar = data;
3126 		break;
3127 	case MSR_CSTAR:
3128 		svm->vmcb->save.cstar = data;
3129 		break;
3130 	case MSR_KERNEL_GS_BASE:
3131 		svm->vmcb->save.kernel_gs_base = data;
3132 		break;
3133 	case MSR_SYSCALL_MASK:
3134 		svm->vmcb->save.sfmask = data;
3135 		break;
3136 #endif
3137 	case MSR_IA32_SYSENTER_CS:
3138 		svm->vmcb->save.sysenter_cs = data;
3139 		break;
3140 	case MSR_IA32_SYSENTER_EIP:
3141 		svm->sysenter_eip = data;
3142 		svm->vmcb->save.sysenter_eip = data;
3143 		break;
3144 	case MSR_IA32_SYSENTER_ESP:
3145 		svm->sysenter_esp = data;
3146 		svm->vmcb->save.sysenter_esp = data;
3147 		break;
3148 	case MSR_IA32_DEBUGCTLMSR:
3149 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3150 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3151 				    __func__, data);
3152 			break;
3153 		}
3154 		if (data & DEBUGCTL_RESERVED_BITS)
3155 			return 1;
3156 
3157 		svm->vmcb->save.dbgctl = data;
3158 		mark_dirty(svm->vmcb, VMCB_LBR);
3159 		if (data & (1ULL<<0))
3160 			svm_enable_lbrv(svm);
3161 		else
3162 			svm_disable_lbrv(svm);
3163 		break;
3164 	case MSR_VM_HSAVE_PA:
3165 		svm->nested.hsave_msr = data;
3166 		break;
3167 	case MSR_VM_CR:
3168 		return svm_set_vm_cr(vcpu, data);
3169 	case MSR_VM_IGNNE:
3170 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3171 		break;
3172 	default:
3173 		return kvm_set_msr_common(vcpu, msr);
3174 	}
3175 	return 0;
3176 }
3177 
wrmsr_interception(struct vcpu_svm * svm)3178 static int wrmsr_interception(struct vcpu_svm *svm)
3179 {
3180 	struct msr_data msr;
3181 	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3182 	u64 data = kvm_read_edx_eax(&svm->vcpu);
3183 
3184 	msr.data = data;
3185 	msr.index = ecx;
3186 	msr.host_initiated = false;
3187 
3188 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3189 	if (kvm_set_msr(&svm->vcpu, &msr)) {
3190 		trace_kvm_msr_write_ex(ecx, data);
3191 		kvm_inject_gp(&svm->vcpu, 0);
3192 	} else {
3193 		trace_kvm_msr_write(ecx, data);
3194 		skip_emulated_instruction(&svm->vcpu);
3195 	}
3196 	return 1;
3197 }
3198 
msr_interception(struct vcpu_svm * svm)3199 static int msr_interception(struct vcpu_svm *svm)
3200 {
3201 	if (svm->vmcb->control.exit_info_1)
3202 		return wrmsr_interception(svm);
3203 	else
3204 		return rdmsr_interception(svm);
3205 }
3206 
interrupt_window_interception(struct vcpu_svm * svm)3207 static int interrupt_window_interception(struct vcpu_svm *svm)
3208 {
3209 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3210 	svm_clear_vintr(svm);
3211 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3212 	mark_dirty(svm->vmcb, VMCB_INTR);
3213 	++svm->vcpu.stat.irq_window_exits;
3214 	return 1;
3215 }
3216 
pause_interception(struct vcpu_svm * svm)3217 static int pause_interception(struct vcpu_svm *svm)
3218 {
3219 	kvm_vcpu_on_spin(&(svm->vcpu));
3220 	return 1;
3221 }
3222 
nop_interception(struct vcpu_svm * svm)3223 static int nop_interception(struct vcpu_svm *svm)
3224 {
3225 	skip_emulated_instruction(&(svm->vcpu));
3226 	return 1;
3227 }
3228 
monitor_interception(struct vcpu_svm * svm)3229 static int monitor_interception(struct vcpu_svm *svm)
3230 {
3231 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3232 	return nop_interception(svm);
3233 }
3234 
mwait_interception(struct vcpu_svm * svm)3235 static int mwait_interception(struct vcpu_svm *svm)
3236 {
3237 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3238 	return nop_interception(svm);
3239 }
3240 
3241 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3242 	[SVM_EXIT_READ_CR0]			= cr_interception,
3243 	[SVM_EXIT_READ_CR3]			= cr_interception,
3244 	[SVM_EXIT_READ_CR4]			= cr_interception,
3245 	[SVM_EXIT_READ_CR8]			= cr_interception,
3246 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3247 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3248 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3249 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3250 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3251 	[SVM_EXIT_READ_DR0]			= dr_interception,
3252 	[SVM_EXIT_READ_DR1]			= dr_interception,
3253 	[SVM_EXIT_READ_DR2]			= dr_interception,
3254 	[SVM_EXIT_READ_DR3]			= dr_interception,
3255 	[SVM_EXIT_READ_DR4]			= dr_interception,
3256 	[SVM_EXIT_READ_DR5]			= dr_interception,
3257 	[SVM_EXIT_READ_DR6]			= dr_interception,
3258 	[SVM_EXIT_READ_DR7]			= dr_interception,
3259 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3260 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3261 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3262 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3263 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3264 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3265 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3266 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3267 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3268 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3269 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3270 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3271 	[SVM_EXIT_EXCP_BASE + NM_VECTOR]	= nm_interception,
3272 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3273 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3274 	[SVM_EXIT_INTR]				= intr_interception,
3275 	[SVM_EXIT_NMI]				= nmi_interception,
3276 	[SVM_EXIT_SMI]				= nop_on_interception,
3277 	[SVM_EXIT_INIT]				= nop_on_interception,
3278 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3279 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3280 	[SVM_EXIT_CPUID]			= cpuid_interception,
3281 	[SVM_EXIT_IRET]                         = iret_interception,
3282 	[SVM_EXIT_INVD]                         = emulate_on_interception,
3283 	[SVM_EXIT_PAUSE]			= pause_interception,
3284 	[SVM_EXIT_HLT]				= halt_interception,
3285 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3286 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3287 	[SVM_EXIT_IOIO]				= io_interception,
3288 	[SVM_EXIT_MSR]				= msr_interception,
3289 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3290 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3291 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3292 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3293 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3294 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3295 	[SVM_EXIT_STGI]				= stgi_interception,
3296 	[SVM_EXIT_CLGI]				= clgi_interception,
3297 	[SVM_EXIT_SKINIT]			= skinit_interception,
3298 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
3299 	[SVM_EXIT_MONITOR]			= monitor_interception,
3300 	[SVM_EXIT_MWAIT]			= mwait_interception,
3301 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3302 	[SVM_EXIT_NPF]				= pf_interception,
3303 	[SVM_EXIT_RSM]                          = emulate_on_interception,
3304 };
3305 
dump_vmcb(struct kvm_vcpu * vcpu)3306 static void dump_vmcb(struct kvm_vcpu *vcpu)
3307 {
3308 	struct vcpu_svm *svm = to_svm(vcpu);
3309 	struct vmcb_control_area *control = &svm->vmcb->control;
3310 	struct vmcb_save_area *save = &svm->vmcb->save;
3311 
3312 	pr_err("VMCB Control Area:\n");
3313 	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3314 	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3315 	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3316 	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3317 	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3318 	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3319 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3320 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3321 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3322 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3323 	pr_err("%-20s%d\n", "asid:", control->asid);
3324 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3325 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3326 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3327 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3328 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3329 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3330 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3331 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3332 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3333 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3334 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3335 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3336 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3337 	pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3338 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3339 	pr_err("VMCB State Save Area:\n");
3340 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3341 	       "es:",
3342 	       save->es.selector, save->es.attrib,
3343 	       save->es.limit, save->es.base);
3344 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3345 	       "cs:",
3346 	       save->cs.selector, save->cs.attrib,
3347 	       save->cs.limit, save->cs.base);
3348 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3349 	       "ss:",
3350 	       save->ss.selector, save->ss.attrib,
3351 	       save->ss.limit, save->ss.base);
3352 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3353 	       "ds:",
3354 	       save->ds.selector, save->ds.attrib,
3355 	       save->ds.limit, save->ds.base);
3356 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3357 	       "fs:",
3358 	       save->fs.selector, save->fs.attrib,
3359 	       save->fs.limit, save->fs.base);
3360 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3361 	       "gs:",
3362 	       save->gs.selector, save->gs.attrib,
3363 	       save->gs.limit, save->gs.base);
3364 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3365 	       "gdtr:",
3366 	       save->gdtr.selector, save->gdtr.attrib,
3367 	       save->gdtr.limit, save->gdtr.base);
3368 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369 	       "ldtr:",
3370 	       save->ldtr.selector, save->ldtr.attrib,
3371 	       save->ldtr.limit, save->ldtr.base);
3372 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373 	       "idtr:",
3374 	       save->idtr.selector, save->idtr.attrib,
3375 	       save->idtr.limit, save->idtr.base);
3376 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377 	       "tr:",
3378 	       save->tr.selector, save->tr.attrib,
3379 	       save->tr.limit, save->tr.base);
3380 	pr_err("cpl:            %d                efer:         %016llx\n",
3381 		save->cpl, save->efer);
3382 	pr_err("%-15s %016llx %-13s %016llx\n",
3383 	       "cr0:", save->cr0, "cr2:", save->cr2);
3384 	pr_err("%-15s %016llx %-13s %016llx\n",
3385 	       "cr3:", save->cr3, "cr4:", save->cr4);
3386 	pr_err("%-15s %016llx %-13s %016llx\n",
3387 	       "dr6:", save->dr6, "dr7:", save->dr7);
3388 	pr_err("%-15s %016llx %-13s %016llx\n",
3389 	       "rip:", save->rip, "rflags:", save->rflags);
3390 	pr_err("%-15s %016llx %-13s %016llx\n",
3391 	       "rsp:", save->rsp, "rax:", save->rax);
3392 	pr_err("%-15s %016llx %-13s %016llx\n",
3393 	       "star:", save->star, "lstar:", save->lstar);
3394 	pr_err("%-15s %016llx %-13s %016llx\n",
3395 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3396 	pr_err("%-15s %016llx %-13s %016llx\n",
3397 	       "kernel_gs_base:", save->kernel_gs_base,
3398 	       "sysenter_cs:", save->sysenter_cs);
3399 	pr_err("%-15s %016llx %-13s %016llx\n",
3400 	       "sysenter_esp:", save->sysenter_esp,
3401 	       "sysenter_eip:", save->sysenter_eip);
3402 	pr_err("%-15s %016llx %-13s %016llx\n",
3403 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3404 	pr_err("%-15s %016llx %-13s %016llx\n",
3405 	       "br_from:", save->br_from, "br_to:", save->br_to);
3406 	pr_err("%-15s %016llx %-13s %016llx\n",
3407 	       "excp_from:", save->last_excp_from,
3408 	       "excp_to:", save->last_excp_to);
3409 }
3410 
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)3411 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3412 {
3413 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3414 
3415 	*info1 = control->exit_info_1;
3416 	*info2 = control->exit_info_2;
3417 }
3418 
handle_exit(struct kvm_vcpu * vcpu)3419 static int handle_exit(struct kvm_vcpu *vcpu)
3420 {
3421 	struct vcpu_svm *svm = to_svm(vcpu);
3422 	struct kvm_run *kvm_run = vcpu->run;
3423 	u32 exit_code = svm->vmcb->control.exit_code;
3424 
3425 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3426 
3427 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3428 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
3429 	if (npt_enabled)
3430 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
3431 
3432 	if (unlikely(svm->nested.exit_required)) {
3433 		nested_svm_vmexit(svm);
3434 		svm->nested.exit_required = false;
3435 
3436 		return 1;
3437 	}
3438 
3439 	if (is_guest_mode(vcpu)) {
3440 		int vmexit;
3441 
3442 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3443 					svm->vmcb->control.exit_info_1,
3444 					svm->vmcb->control.exit_info_2,
3445 					svm->vmcb->control.exit_int_info,
3446 					svm->vmcb->control.exit_int_info_err,
3447 					KVM_ISA_SVM);
3448 
3449 		vmexit = nested_svm_exit_special(svm);
3450 
3451 		if (vmexit == NESTED_EXIT_CONTINUE)
3452 			vmexit = nested_svm_exit_handled(svm);
3453 
3454 		if (vmexit == NESTED_EXIT_DONE)
3455 			return 1;
3456 	}
3457 
3458 	svm_complete_interrupts(svm);
3459 
3460 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3461 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3462 		kvm_run->fail_entry.hardware_entry_failure_reason
3463 			= svm->vmcb->control.exit_code;
3464 		pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3465 		dump_vmcb(vcpu);
3466 		return 0;
3467 	}
3468 
3469 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3470 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3471 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3472 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3473 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3474 		       "exit_code 0x%x\n",
3475 		       __func__, svm->vmcb->control.exit_int_info,
3476 		       exit_code);
3477 
3478 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3479 	    || !svm_exit_handlers[exit_code]) {
3480 		WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3481 		kvm_queue_exception(vcpu, UD_VECTOR);
3482 		return 1;
3483 	}
3484 
3485 	return svm_exit_handlers[exit_code](svm);
3486 }
3487 
reload_tss(struct kvm_vcpu * vcpu)3488 static void reload_tss(struct kvm_vcpu *vcpu)
3489 {
3490 	int cpu = raw_smp_processor_id();
3491 
3492 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3493 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3494 	load_TR_desc();
3495 }
3496 
pre_svm_run(struct vcpu_svm * svm)3497 static void pre_svm_run(struct vcpu_svm *svm)
3498 {
3499 	int cpu = raw_smp_processor_id();
3500 
3501 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3502 
3503 	/* FIXME: handle wraparound of asid_generation */
3504 	if (svm->asid_generation != sd->asid_generation)
3505 		new_asid(svm, sd);
3506 }
3507 
svm_inject_nmi(struct kvm_vcpu * vcpu)3508 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3509 {
3510 	struct vcpu_svm *svm = to_svm(vcpu);
3511 
3512 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3513 	vcpu->arch.hflags |= HF_NMI_MASK;
3514 	set_intercept(svm, INTERCEPT_IRET);
3515 	++vcpu->stat.nmi_injections;
3516 }
3517 
svm_inject_irq(struct vcpu_svm * svm,int irq)3518 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3519 {
3520 	struct vmcb_control_area *control;
3521 
3522 	control = &svm->vmcb->control;
3523 	control->int_vector = irq;
3524 	control->int_ctl &= ~V_INTR_PRIO_MASK;
3525 	control->int_ctl |= V_IRQ_MASK |
3526 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3527 	mark_dirty(svm->vmcb, VMCB_INTR);
3528 }
3529 
svm_set_irq(struct kvm_vcpu * vcpu)3530 static void svm_set_irq(struct kvm_vcpu *vcpu)
3531 {
3532 	struct vcpu_svm *svm = to_svm(vcpu);
3533 
3534 	BUG_ON(!(gif_set(svm)));
3535 
3536 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3537 	++vcpu->stat.irq_injections;
3538 
3539 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3540 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3541 }
3542 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3543 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3544 {
3545 	struct vcpu_svm *svm = to_svm(vcpu);
3546 
3547 	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3548 		return;
3549 
3550 	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3551 
3552 	if (irr == -1)
3553 		return;
3554 
3555 	if (tpr >= irr)
3556 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3557 }
3558 
svm_set_virtual_x2apic_mode(struct kvm_vcpu * vcpu,bool set)3559 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3560 {
3561 	return;
3562 }
3563 
svm_cpu_uses_apicv(struct kvm_vcpu * vcpu)3564 static int svm_cpu_uses_apicv(struct kvm_vcpu *vcpu)
3565 {
3566 	return 0;
3567 }
3568 
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu)3569 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu)
3570 {
3571 	return;
3572 }
3573 
svm_sync_pir_to_irr(struct kvm_vcpu * vcpu)3574 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3575 {
3576 	return;
3577 }
3578 
svm_nmi_allowed(struct kvm_vcpu * vcpu)3579 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3580 {
3581 	struct vcpu_svm *svm = to_svm(vcpu);
3582 	struct vmcb *vmcb = svm->vmcb;
3583 	int ret;
3584 	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3585 	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3586 	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3587 
3588 	return ret;
3589 }
3590 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3591 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3592 {
3593 	struct vcpu_svm *svm = to_svm(vcpu);
3594 
3595 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3596 }
3597 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3598 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3599 {
3600 	struct vcpu_svm *svm = to_svm(vcpu);
3601 
3602 	if (masked) {
3603 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3604 		set_intercept(svm, INTERCEPT_IRET);
3605 	} else {
3606 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3607 		clr_intercept(svm, INTERCEPT_IRET);
3608 	}
3609 }
3610 
svm_interrupt_allowed(struct kvm_vcpu * vcpu)3611 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3612 {
3613 	struct vcpu_svm *svm = to_svm(vcpu);
3614 	struct vmcb *vmcb = svm->vmcb;
3615 	int ret;
3616 
3617 	if (!gif_set(svm) ||
3618 	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3619 		return 0;
3620 
3621 	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3622 
3623 	if (is_guest_mode(vcpu))
3624 		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3625 
3626 	return ret;
3627 }
3628 
enable_irq_window(struct kvm_vcpu * vcpu)3629 static void enable_irq_window(struct kvm_vcpu *vcpu)
3630 {
3631 	struct vcpu_svm *svm = to_svm(vcpu);
3632 
3633 	/*
3634 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3635 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3636 	 * get that intercept, this function will be called again though and
3637 	 * we'll get the vintr intercept.
3638 	 */
3639 	if (gif_set(svm) && nested_svm_intr(svm)) {
3640 		svm_set_vintr(svm);
3641 		svm_inject_irq(svm, 0x0);
3642 	}
3643 }
3644 
enable_nmi_window(struct kvm_vcpu * vcpu)3645 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3646 {
3647 	struct vcpu_svm *svm = to_svm(vcpu);
3648 
3649 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3650 	    == HF_NMI_MASK)
3651 		return; /* IRET will cause a vm exit */
3652 
3653 	/*
3654 	 * Something prevents NMI from been injected. Single step over possible
3655 	 * problem (IRET or exception injection or interrupt shadow)
3656 	 */
3657 	svm->nmi_singlestep = true;
3658 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3659 }
3660 
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)3661 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3662 {
3663 	return 0;
3664 }
3665 
svm_flush_tlb(struct kvm_vcpu * vcpu)3666 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3667 {
3668 	struct vcpu_svm *svm = to_svm(vcpu);
3669 
3670 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3671 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3672 	else
3673 		svm->asid_generation--;
3674 }
3675 
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)3676 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3677 {
3678 }
3679 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3680 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3681 {
3682 	struct vcpu_svm *svm = to_svm(vcpu);
3683 
3684 	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3685 		return;
3686 
3687 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3688 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3689 		kvm_set_cr8(vcpu, cr8);
3690 	}
3691 }
3692 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3693 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3694 {
3695 	struct vcpu_svm *svm = to_svm(vcpu);
3696 	u64 cr8;
3697 
3698 	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3699 		return;
3700 
3701 	cr8 = kvm_get_cr8(vcpu);
3702 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3703 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3704 }
3705 
svm_complete_interrupts(struct vcpu_svm * svm)3706 static void svm_complete_interrupts(struct vcpu_svm *svm)
3707 {
3708 	u8 vector;
3709 	int type;
3710 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3711 	unsigned int3_injected = svm->int3_injected;
3712 
3713 	svm->int3_injected = 0;
3714 
3715 	/*
3716 	 * If we've made progress since setting HF_IRET_MASK, we've
3717 	 * executed an IRET and can allow NMI injection.
3718 	 */
3719 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3720 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3721 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3722 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3723 	}
3724 
3725 	svm->vcpu.arch.nmi_injected = false;
3726 	kvm_clear_exception_queue(&svm->vcpu);
3727 	kvm_clear_interrupt_queue(&svm->vcpu);
3728 
3729 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3730 		return;
3731 
3732 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3733 
3734 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3735 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3736 
3737 	switch (type) {
3738 	case SVM_EXITINTINFO_TYPE_NMI:
3739 		svm->vcpu.arch.nmi_injected = true;
3740 		break;
3741 	case SVM_EXITINTINFO_TYPE_EXEPT:
3742 		/*
3743 		 * In case of software exceptions, do not reinject the vector,
3744 		 * but re-execute the instruction instead. Rewind RIP first
3745 		 * if we emulated INT3 before.
3746 		 */
3747 		if (kvm_exception_is_soft(vector)) {
3748 			if (vector == BP_VECTOR && int3_injected &&
3749 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3750 				kvm_rip_write(&svm->vcpu,
3751 					      kvm_rip_read(&svm->vcpu) -
3752 					      int3_injected);
3753 			break;
3754 		}
3755 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3756 			u32 err = svm->vmcb->control.exit_int_info_err;
3757 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3758 
3759 		} else
3760 			kvm_requeue_exception(&svm->vcpu, vector);
3761 		break;
3762 	case SVM_EXITINTINFO_TYPE_INTR:
3763 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3764 		break;
3765 	default:
3766 		break;
3767 	}
3768 }
3769 
svm_cancel_injection(struct kvm_vcpu * vcpu)3770 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3771 {
3772 	struct vcpu_svm *svm = to_svm(vcpu);
3773 	struct vmcb_control_area *control = &svm->vmcb->control;
3774 
3775 	control->exit_int_info = control->event_inj;
3776 	control->exit_int_info_err = control->event_inj_err;
3777 	control->event_inj = 0;
3778 	svm_complete_interrupts(svm);
3779 }
3780 
svm_vcpu_run(struct kvm_vcpu * vcpu)3781 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3782 {
3783 	struct vcpu_svm *svm = to_svm(vcpu);
3784 
3785 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3786 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3787 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3788 
3789 	/*
3790 	 * A vmexit emulation is required before the vcpu can be executed
3791 	 * again.
3792 	 */
3793 	if (unlikely(svm->nested.exit_required))
3794 		return;
3795 
3796 	pre_svm_run(svm);
3797 
3798 	sync_lapic_to_cr8(vcpu);
3799 
3800 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3801 
3802 	clgi();
3803 
3804 	local_irq_enable();
3805 
3806 	asm volatile (
3807 		"push %%" _ASM_BP "; \n\t"
3808 		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3809 		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3810 		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3811 		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3812 		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3813 		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3814 #ifdef CONFIG_X86_64
3815 		"mov %c[r8](%[svm]),  %%r8  \n\t"
3816 		"mov %c[r9](%[svm]),  %%r9  \n\t"
3817 		"mov %c[r10](%[svm]), %%r10 \n\t"
3818 		"mov %c[r11](%[svm]), %%r11 \n\t"
3819 		"mov %c[r12](%[svm]), %%r12 \n\t"
3820 		"mov %c[r13](%[svm]), %%r13 \n\t"
3821 		"mov %c[r14](%[svm]), %%r14 \n\t"
3822 		"mov %c[r15](%[svm]), %%r15 \n\t"
3823 #endif
3824 
3825 		/* Enter guest mode */
3826 		"push %%" _ASM_AX " \n\t"
3827 		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3828 		__ex(SVM_VMLOAD) "\n\t"
3829 		__ex(SVM_VMRUN) "\n\t"
3830 		__ex(SVM_VMSAVE) "\n\t"
3831 		"pop %%" _ASM_AX " \n\t"
3832 
3833 		/* Save guest registers, load host registers */
3834 		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3835 		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3836 		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3837 		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3838 		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3839 		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3840 #ifdef CONFIG_X86_64
3841 		"mov %%r8,  %c[r8](%[svm]) \n\t"
3842 		"mov %%r9,  %c[r9](%[svm]) \n\t"
3843 		"mov %%r10, %c[r10](%[svm]) \n\t"
3844 		"mov %%r11, %c[r11](%[svm]) \n\t"
3845 		"mov %%r12, %c[r12](%[svm]) \n\t"
3846 		"mov %%r13, %c[r13](%[svm]) \n\t"
3847 		"mov %%r14, %c[r14](%[svm]) \n\t"
3848 		"mov %%r15, %c[r15](%[svm]) \n\t"
3849 #endif
3850 		"pop %%" _ASM_BP
3851 		:
3852 		: [svm]"a"(svm),
3853 		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3854 		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3855 		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3856 		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3857 		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3858 		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3859 		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3860 #ifdef CONFIG_X86_64
3861 		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3862 		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3863 		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3864 		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3865 		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3866 		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3867 		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3868 		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3869 #endif
3870 		: "cc", "memory"
3871 #ifdef CONFIG_X86_64
3872 		, "rbx", "rcx", "rdx", "rsi", "rdi"
3873 		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3874 #else
3875 		, "ebx", "ecx", "edx", "esi", "edi"
3876 #endif
3877 		);
3878 
3879 #ifdef CONFIG_X86_64
3880 	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3881 #else
3882 	loadsegment(fs, svm->host.fs);
3883 #ifndef CONFIG_X86_32_LAZY_GS
3884 	loadsegment(gs, svm->host.gs);
3885 #endif
3886 #endif
3887 
3888 	reload_tss(vcpu);
3889 
3890 	local_irq_disable();
3891 
3892 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3893 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3894 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3895 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3896 
3897 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3898 		kvm_before_handle_nmi(&svm->vcpu);
3899 
3900 	stgi();
3901 
3902 	/* Any pending NMI will happen here */
3903 
3904 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3905 		kvm_after_handle_nmi(&svm->vcpu);
3906 
3907 	sync_cr8_to_lapic(vcpu);
3908 
3909 	svm->next_rip = 0;
3910 
3911 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3912 
3913 	/* if exit due to PF check for async PF */
3914 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3915 		svm->apf_reason = kvm_read_and_reset_pf_reason();
3916 
3917 	if (npt_enabled) {
3918 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3919 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3920 	}
3921 
3922 	/*
3923 	 * We need to handle MC intercepts here before the vcpu has a chance to
3924 	 * change the physical cpu
3925 	 */
3926 	if (unlikely(svm->vmcb->control.exit_code ==
3927 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3928 		svm_handle_mce(svm);
3929 
3930 	mark_all_clean(svm->vmcb);
3931 }
3932 
svm_set_cr3(struct kvm_vcpu * vcpu,unsigned long root)3933 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3934 {
3935 	struct vcpu_svm *svm = to_svm(vcpu);
3936 
3937 	svm->vmcb->save.cr3 = root;
3938 	mark_dirty(svm->vmcb, VMCB_CR);
3939 	svm_flush_tlb(vcpu);
3940 }
3941 
set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)3942 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3943 {
3944 	struct vcpu_svm *svm = to_svm(vcpu);
3945 
3946 	svm->vmcb->control.nested_cr3 = root;
3947 	mark_dirty(svm->vmcb, VMCB_NPT);
3948 
3949 	/* Also sync guest cr3 here in case we live migrate */
3950 	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3951 	mark_dirty(svm->vmcb, VMCB_CR);
3952 
3953 	svm_flush_tlb(vcpu);
3954 }
3955 
is_disabled(void)3956 static int is_disabled(void)
3957 {
3958 	u64 vm_cr;
3959 
3960 	rdmsrl(MSR_VM_CR, vm_cr);
3961 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3962 		return 1;
3963 
3964 	return 0;
3965 }
3966 
3967 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)3968 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3969 {
3970 	/*
3971 	 * Patch in the VMMCALL instruction:
3972 	 */
3973 	hypercall[0] = 0x0f;
3974 	hypercall[1] = 0x01;
3975 	hypercall[2] = 0xd9;
3976 }
3977 
svm_check_processor_compat(void * rtn)3978 static void svm_check_processor_compat(void *rtn)
3979 {
3980 	*(int *)rtn = 0;
3981 }
3982 
svm_cpu_has_accelerated_tpr(void)3983 static bool svm_cpu_has_accelerated_tpr(void)
3984 {
3985 	return false;
3986 }
3987 
svm_has_high_real_mode_segbase(void)3988 static bool svm_has_high_real_mode_segbase(void)
3989 {
3990 	return true;
3991 }
3992 
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)3993 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3994 {
3995 	return 0;
3996 }
3997 
svm_cpuid_update(struct kvm_vcpu * vcpu)3998 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3999 {
4000 	struct vcpu_svm *svm = to_svm(vcpu);
4001 
4002 	/* Update nrips enabled cache */
4003 	svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4004 }
4005 
svm_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)4006 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4007 {
4008 	switch (func) {
4009 	case 0x80000001:
4010 		if (nested)
4011 			entry->ecx |= (1 << 2); /* Set SVM bit */
4012 		break;
4013 	case 0x8000000A:
4014 		entry->eax = 1; /* SVM revision 1 */
4015 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4016 				   ASID emulation to nested SVM */
4017 		entry->ecx = 0; /* Reserved */
4018 		entry->edx = 0; /* Per default do not support any
4019 				   additional features */
4020 
4021 		/* Support next_rip if host supports it */
4022 		if (boot_cpu_has(X86_FEATURE_NRIPS))
4023 			entry->edx |= SVM_FEATURE_NRIP;
4024 
4025 		/* Support NPT for the guest if enabled */
4026 		if (npt_enabled)
4027 			entry->edx |= SVM_FEATURE_NPT;
4028 
4029 		break;
4030 	}
4031 }
4032 
svm_get_lpage_level(void)4033 static int svm_get_lpage_level(void)
4034 {
4035 	return PT_PDPE_LEVEL;
4036 }
4037 
svm_rdtscp_supported(void)4038 static bool svm_rdtscp_supported(void)
4039 {
4040 	return false;
4041 }
4042 
svm_invpcid_supported(void)4043 static bool svm_invpcid_supported(void)
4044 {
4045 	return false;
4046 }
4047 
svm_mpx_supported(void)4048 static bool svm_mpx_supported(void)
4049 {
4050 	return false;
4051 }
4052 
svm_xsaves_supported(void)4053 static bool svm_xsaves_supported(void)
4054 {
4055 	return false;
4056 }
4057 
svm_has_wbinvd_exit(void)4058 static bool svm_has_wbinvd_exit(void)
4059 {
4060 	return true;
4061 }
4062 
svm_fpu_deactivate(struct kvm_vcpu * vcpu)4063 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4064 {
4065 	struct vcpu_svm *svm = to_svm(vcpu);
4066 
4067 	set_exception_intercept(svm, NM_VECTOR);
4068 	update_cr0_intercept(svm);
4069 }
4070 
4071 #define PRE_EX(exit)  { .exit_code = (exit), \
4072 			.stage = X86_ICPT_PRE_EXCEPT, }
4073 #define POST_EX(exit) { .exit_code = (exit), \
4074 			.stage = X86_ICPT_POST_EXCEPT, }
4075 #define POST_MEM(exit) { .exit_code = (exit), \
4076 			.stage = X86_ICPT_POST_MEMACCESS, }
4077 
4078 static const struct __x86_intercept {
4079 	u32 exit_code;
4080 	enum x86_intercept_stage stage;
4081 } x86_intercept_map[] = {
4082 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4083 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4084 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4085 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4086 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4087 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4088 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4089 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4090 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4091 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4092 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4093 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4094 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4095 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4096 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4097 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4098 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4099 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4100 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4101 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4102 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4103 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4104 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4105 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4106 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4107 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4108 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4109 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4110 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4111 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4112 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4113 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4114 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4115 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4116 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4117 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4118 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4119 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4120 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4121 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4122 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4123 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4124 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4125 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4126 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4127 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4128 };
4129 
4130 #undef PRE_EX
4131 #undef POST_EX
4132 #undef POST_MEM
4133 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)4134 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4135 			       struct x86_instruction_info *info,
4136 			       enum x86_intercept_stage stage)
4137 {
4138 	struct vcpu_svm *svm = to_svm(vcpu);
4139 	int vmexit, ret = X86EMUL_CONTINUE;
4140 	struct __x86_intercept icpt_info;
4141 	struct vmcb *vmcb = svm->vmcb;
4142 
4143 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4144 		goto out;
4145 
4146 	icpt_info = x86_intercept_map[info->intercept];
4147 
4148 	if (stage != icpt_info.stage)
4149 		goto out;
4150 
4151 	switch (icpt_info.exit_code) {
4152 	case SVM_EXIT_READ_CR0:
4153 		if (info->intercept == x86_intercept_cr_read)
4154 			icpt_info.exit_code += info->modrm_reg;
4155 		break;
4156 	case SVM_EXIT_WRITE_CR0: {
4157 		unsigned long cr0, val;
4158 		u64 intercept;
4159 
4160 		if (info->intercept == x86_intercept_cr_write)
4161 			icpt_info.exit_code += info->modrm_reg;
4162 
4163 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4164 		    info->intercept == x86_intercept_clts)
4165 			break;
4166 
4167 		intercept = svm->nested.intercept;
4168 
4169 		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4170 			break;
4171 
4172 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4173 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4174 
4175 		if (info->intercept == x86_intercept_lmsw) {
4176 			cr0 &= 0xfUL;
4177 			val &= 0xfUL;
4178 			/* lmsw can't clear PE - catch this here */
4179 			if (cr0 & X86_CR0_PE)
4180 				val |= X86_CR0_PE;
4181 		}
4182 
4183 		if (cr0 ^ val)
4184 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4185 
4186 		break;
4187 	}
4188 	case SVM_EXIT_READ_DR0:
4189 	case SVM_EXIT_WRITE_DR0:
4190 		icpt_info.exit_code += info->modrm_reg;
4191 		break;
4192 	case SVM_EXIT_MSR:
4193 		if (info->intercept == x86_intercept_wrmsr)
4194 			vmcb->control.exit_info_1 = 1;
4195 		else
4196 			vmcb->control.exit_info_1 = 0;
4197 		break;
4198 	case SVM_EXIT_PAUSE:
4199 		/*
4200 		 * We get this for NOP only, but pause
4201 		 * is rep not, check this here
4202 		 */
4203 		if (info->rep_prefix != REPE_PREFIX)
4204 			goto out;
4205 	case SVM_EXIT_IOIO: {
4206 		u64 exit_info;
4207 		u32 bytes;
4208 
4209 		if (info->intercept == x86_intercept_in ||
4210 		    info->intercept == x86_intercept_ins) {
4211 			exit_info = ((info->src_val & 0xffff) << 16) |
4212 				SVM_IOIO_TYPE_MASK;
4213 			bytes = info->dst_bytes;
4214 		} else {
4215 			exit_info = (info->dst_val & 0xffff) << 16;
4216 			bytes = info->src_bytes;
4217 		}
4218 
4219 		if (info->intercept == x86_intercept_outs ||
4220 		    info->intercept == x86_intercept_ins)
4221 			exit_info |= SVM_IOIO_STR_MASK;
4222 
4223 		if (info->rep_prefix)
4224 			exit_info |= SVM_IOIO_REP_MASK;
4225 
4226 		bytes = min(bytes, 4u);
4227 
4228 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4229 
4230 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4231 
4232 		vmcb->control.exit_info_1 = exit_info;
4233 		vmcb->control.exit_info_2 = info->next_rip;
4234 
4235 		break;
4236 	}
4237 	default:
4238 		break;
4239 	}
4240 
4241 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4242 	if (static_cpu_has(X86_FEATURE_NRIPS))
4243 		vmcb->control.next_rip  = info->next_rip;
4244 	vmcb->control.exit_code = icpt_info.exit_code;
4245 	vmexit = nested_svm_exit_handled(svm);
4246 
4247 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4248 					   : X86EMUL_CONTINUE;
4249 
4250 out:
4251 	return ret;
4252 }
4253 
svm_handle_external_intr(struct kvm_vcpu * vcpu)4254 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4255 {
4256 	local_irq_enable();
4257 }
4258 
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)4259 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4260 {
4261 }
4262 
4263 static struct kvm_x86_ops svm_x86_ops = {
4264 	.cpu_has_kvm_support = has_svm,
4265 	.disabled_by_bios = is_disabled,
4266 	.hardware_setup = svm_hardware_setup,
4267 	.hardware_unsetup = svm_hardware_unsetup,
4268 	.check_processor_compatibility = svm_check_processor_compat,
4269 	.hardware_enable = svm_hardware_enable,
4270 	.hardware_disable = svm_hardware_disable,
4271 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4272 	.cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4273 
4274 	.vcpu_create = svm_create_vcpu,
4275 	.vcpu_free = svm_free_vcpu,
4276 	.vcpu_reset = svm_vcpu_reset,
4277 
4278 	.prepare_guest_switch = svm_prepare_guest_switch,
4279 	.vcpu_load = svm_vcpu_load,
4280 	.vcpu_put = svm_vcpu_put,
4281 
4282 	.update_bp_intercept = update_bp_intercept,
4283 	.get_msr = svm_get_msr,
4284 	.set_msr = svm_set_msr,
4285 	.get_segment_base = svm_get_segment_base,
4286 	.get_segment = svm_get_segment,
4287 	.set_segment = svm_set_segment,
4288 	.get_cpl = svm_get_cpl,
4289 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4290 	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4291 	.decache_cr3 = svm_decache_cr3,
4292 	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4293 	.set_cr0 = svm_set_cr0,
4294 	.set_cr3 = svm_set_cr3,
4295 	.set_cr4 = svm_set_cr4,
4296 	.set_efer = svm_set_efer,
4297 	.get_idt = svm_get_idt,
4298 	.set_idt = svm_set_idt,
4299 	.get_gdt = svm_get_gdt,
4300 	.set_gdt = svm_set_gdt,
4301 	.get_dr6 = svm_get_dr6,
4302 	.set_dr6 = svm_set_dr6,
4303 	.set_dr7 = svm_set_dr7,
4304 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4305 	.cache_reg = svm_cache_reg,
4306 	.get_rflags = svm_get_rflags,
4307 	.set_rflags = svm_set_rflags,
4308 	.fpu_activate = svm_fpu_activate,
4309 	.fpu_deactivate = svm_fpu_deactivate,
4310 
4311 	.tlb_flush = svm_flush_tlb,
4312 
4313 	.run = svm_vcpu_run,
4314 	.handle_exit = handle_exit,
4315 	.skip_emulated_instruction = skip_emulated_instruction,
4316 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4317 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4318 	.patch_hypercall = svm_patch_hypercall,
4319 	.set_irq = svm_set_irq,
4320 	.set_nmi = svm_inject_nmi,
4321 	.queue_exception = svm_queue_exception,
4322 	.cancel_injection = svm_cancel_injection,
4323 	.interrupt_allowed = svm_interrupt_allowed,
4324 	.nmi_allowed = svm_nmi_allowed,
4325 	.get_nmi_mask = svm_get_nmi_mask,
4326 	.set_nmi_mask = svm_set_nmi_mask,
4327 	.enable_nmi_window = enable_nmi_window,
4328 	.enable_irq_window = enable_irq_window,
4329 	.update_cr8_intercept = update_cr8_intercept,
4330 	.set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4331 	.cpu_uses_apicv = svm_cpu_uses_apicv,
4332 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4333 	.sync_pir_to_irr = svm_sync_pir_to_irr,
4334 
4335 	.set_tss_addr = svm_set_tss_addr,
4336 	.get_tdp_level = get_npt_level,
4337 	.get_mt_mask = svm_get_mt_mask,
4338 
4339 	.get_exit_info = svm_get_exit_info,
4340 
4341 	.get_lpage_level = svm_get_lpage_level,
4342 
4343 	.cpuid_update = svm_cpuid_update,
4344 
4345 	.rdtscp_supported = svm_rdtscp_supported,
4346 	.invpcid_supported = svm_invpcid_supported,
4347 	.mpx_supported = svm_mpx_supported,
4348 	.xsaves_supported = svm_xsaves_supported,
4349 
4350 	.set_supported_cpuid = svm_set_supported_cpuid,
4351 
4352 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4353 
4354 	.read_tsc_offset = svm_read_tsc_offset,
4355 	.write_tsc_offset = svm_write_tsc_offset,
4356 	.adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
4357 	.read_l1_tsc = svm_read_l1_tsc,
4358 
4359 	.set_tdp_cr3 = set_tdp_cr3,
4360 
4361 	.check_intercept = svm_check_intercept,
4362 	.handle_external_intr = svm_handle_external_intr,
4363 
4364 	.sched_in = svm_sched_in,
4365 
4366 	.pmu_ops = &amd_pmu_ops,
4367 };
4368 
svm_init(void)4369 static int __init svm_init(void)
4370 {
4371 	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4372 			__alignof__(struct vcpu_svm), THIS_MODULE);
4373 }
4374 
svm_exit(void)4375 static void __exit svm_exit(void)
4376 {
4377 	kvm_exit();
4378 }
4379 
4380 module_init(svm_init)
4381 module_exit(svm_exit)
4382