1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/netdevice.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <net/net_namespace.h>
107 #include <net/icmp.h>
108 #include <net/inet_hashtables.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
117 
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120 
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123 
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int log)136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 			       const struct udp_hslot *hslot,
138 			       unsigned long *bitmap,
139 			       struct sock *sk,
140 			       int (*saddr_comp)(const struct sock *sk1,
141 						 const struct sock *sk2),
142 			       unsigned int log)
143 {
144 	struct sock *sk2;
145 	struct hlist_nulls_node *node;
146 	kuid_t uid = sock_i_uid(sk);
147 
148 	sk_nulls_for_each(sk2, node, &hslot->head) {
149 		if (net_eq(sock_net(sk2), net) &&
150 		    sk2 != sk &&
151 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 		     !uid_eq(uid, sock_i_uid(sk2))) &&
157 		    saddr_comp(sk, sk2)) {
158 			if (!bitmap)
159 				return 1;
160 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
161 		}
162 	}
163 	return 0;
164 }
165 
166 /*
167  * Note: we still hold spinlock of primary hash chain, so no other writer
168  * can insert/delete a socket with local_port == num
169  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2))170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 				struct udp_hslot *hslot2,
172 				struct sock *sk,
173 				int (*saddr_comp)(const struct sock *sk1,
174 						  const struct sock *sk2))
175 {
176 	struct sock *sk2;
177 	struct hlist_nulls_node *node;
178 	kuid_t uid = sock_i_uid(sk);
179 	int res = 0;
180 
181 	spin_lock(&hslot2->lock);
182 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
183 		if (net_eq(sock_net(sk2), net) &&
184 		    sk2 != sk &&
185 		    (udp_sk(sk2)->udp_port_hash == num) &&
186 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
187 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 		     !uid_eq(uid, sock_i_uid(sk2))) &&
191 		    saddr_comp(sk, sk2)) {
192 			res = 1;
193 			break;
194 		}
195 	}
196 	spin_unlock(&hslot2->lock);
197 	return res;
198 }
199 
200 /**
201  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
202  *
203  *  @sk:          socket struct in question
204  *  @snum:        port number to look up
205  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
206  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207  *                   with NULL address
208  */
udp_lib_get_port(struct sock * sk,unsigned short snum,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int hash2_nulladdr)209 int udp_lib_get_port(struct sock *sk, unsigned short snum,
210 		     int (*saddr_comp)(const struct sock *sk1,
211 				       const struct sock *sk2),
212 		     unsigned int hash2_nulladdr)
213 {
214 	struct udp_hslot *hslot, *hslot2;
215 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
216 	int    error = 1;
217 	struct net *net = sock_net(sk);
218 
219 	if (!snum) {
220 		int low, high, remaining;
221 		unsigned int rand;
222 		unsigned short first, last;
223 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
224 
225 		inet_get_local_port_range(net, &low, &high);
226 		remaining = (high - low) + 1;
227 
228 		rand = prandom_u32();
229 		first = reciprocal_scale(rand, remaining) + low;
230 		/*
231 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
232 		 */
233 		rand = (rand | 1) * (udptable->mask + 1);
234 		last = first + udptable->mask + 1;
235 		do {
236 			hslot = udp_hashslot(udptable, net, first);
237 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
238 			spin_lock_bh(&hslot->lock);
239 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
240 					    saddr_comp, udptable->log);
241 
242 			snum = first;
243 			/*
244 			 * Iterate on all possible values of snum for this hash.
245 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
246 			 * give us randomization and full range coverage.
247 			 */
248 			do {
249 				if (low <= snum && snum <= high &&
250 				    !test_bit(snum >> udptable->log, bitmap) &&
251 				    !inet_is_local_reserved_port(net, snum))
252 					goto found;
253 				snum += rand;
254 			} while (snum != first);
255 			spin_unlock_bh(&hslot->lock);
256 		} while (++first != last);
257 		goto fail;
258 	} else {
259 		hslot = udp_hashslot(udptable, net, snum);
260 		spin_lock_bh(&hslot->lock);
261 		if (hslot->count > 10) {
262 			int exist;
263 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
264 
265 			slot2          &= udptable->mask;
266 			hash2_nulladdr &= udptable->mask;
267 
268 			hslot2 = udp_hashslot2(udptable, slot2);
269 			if (hslot->count < hslot2->count)
270 				goto scan_primary_hash;
271 
272 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 						     sk, saddr_comp);
274 			if (!exist && (hash2_nulladdr != slot2)) {
275 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
276 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
277 							     sk, saddr_comp);
278 			}
279 			if (exist)
280 				goto fail_unlock;
281 			else
282 				goto found;
283 		}
284 scan_primary_hash:
285 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
286 					saddr_comp, 0))
287 			goto fail_unlock;
288 	}
289 found:
290 	inet_sk(sk)->inet_num = snum;
291 	udp_sk(sk)->udp_port_hash = snum;
292 	udp_sk(sk)->udp_portaddr_hash ^= snum;
293 	if (sk_unhashed(sk)) {
294 		sk_nulls_add_node_rcu(sk, &hslot->head);
295 		hslot->count++;
296 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
297 
298 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
299 		spin_lock(&hslot2->lock);
300 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
301 					 &hslot2->head);
302 		hslot2->count++;
303 		spin_unlock(&hslot2->lock);
304 	}
305 	error = 0;
306 fail_unlock:
307 	spin_unlock_bh(&hslot->lock);
308 fail:
309 	return error;
310 }
311 EXPORT_SYMBOL(udp_lib_get_port);
312 
ipv4_rcv_saddr_equal(const struct sock * sk1,const struct sock * sk2)313 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
314 {
315 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
316 
317 	return 	(!ipv6_only_sock(sk2)  &&
318 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
319 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
320 }
321 
udp4_portaddr_hash(const struct net * net,__be32 saddr,unsigned int port)322 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
323 			      unsigned int port)
324 {
325 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
326 }
327 
udp_v4_get_port(struct sock * sk,unsigned short snum)328 int udp_v4_get_port(struct sock *sk, unsigned short snum)
329 {
330 	unsigned int hash2_nulladdr =
331 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
332 	unsigned int hash2_partial =
333 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
334 
335 	/* precompute partial secondary hash */
336 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
337 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
338 }
339 
compute_score(struct sock * sk,struct net * net,__be32 saddr,unsigned short hnum,__be16 sport,__be32 daddr,__be16 dport,int dif)340 static inline int compute_score(struct sock *sk, struct net *net,
341 				__be32 saddr, unsigned short hnum, __be16 sport,
342 				__be32 daddr, __be16 dport, int dif)
343 {
344 	int score;
345 	struct inet_sock *inet;
346 
347 	if (!net_eq(sock_net(sk), net) ||
348 	    udp_sk(sk)->udp_port_hash != hnum ||
349 	    ipv6_only_sock(sk))
350 		return -1;
351 
352 	score = (sk->sk_family == PF_INET) ? 2 : 1;
353 	inet = inet_sk(sk);
354 
355 	if (inet->inet_rcv_saddr) {
356 		if (inet->inet_rcv_saddr != daddr)
357 			return -1;
358 		score += 4;
359 	}
360 
361 	if (inet->inet_daddr) {
362 		if (inet->inet_daddr != saddr)
363 			return -1;
364 		score += 4;
365 	}
366 
367 	if (inet->inet_dport) {
368 		if (inet->inet_dport != sport)
369 			return -1;
370 		score += 4;
371 	}
372 
373 	if (sk->sk_bound_dev_if) {
374 		if (sk->sk_bound_dev_if != dif)
375 			return -1;
376 		score += 4;
377 	}
378 
379 	return score;
380 }
381 
382 /*
383  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
384  */
compute_score2(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif)385 static inline int compute_score2(struct sock *sk, struct net *net,
386 				 __be32 saddr, __be16 sport,
387 				 __be32 daddr, unsigned int hnum, int dif)
388 {
389 	int score;
390 	struct inet_sock *inet;
391 
392 	if (!net_eq(sock_net(sk), net) ||
393 	    ipv6_only_sock(sk))
394 		return -1;
395 
396 	inet = inet_sk(sk);
397 
398 	if (inet->inet_rcv_saddr != daddr ||
399 	    inet->inet_num != hnum)
400 		return -1;
401 
402 	score = (sk->sk_family == PF_INET) ? 2 : 1;
403 
404 	if (inet->inet_daddr) {
405 		if (inet->inet_daddr != saddr)
406 			return -1;
407 		score += 4;
408 	}
409 
410 	if (inet->inet_dport) {
411 		if (inet->inet_dport != sport)
412 			return -1;
413 		score += 4;
414 	}
415 
416 	if (sk->sk_bound_dev_if) {
417 		if (sk->sk_bound_dev_if != dif)
418 			return -1;
419 		score += 4;
420 	}
421 
422 	return score;
423 }
424 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 		       const __u16 lport, const __be32 faddr,
427 		       const __be16 fport)
428 {
429 	static u32 udp_ehash_secret __read_mostly;
430 
431 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432 
433 	return __inet_ehashfn(laddr, lport, faddr, fport,
434 			      udp_ehash_secret + net_hash_mix(net));
435 }
436 
437 /* called with read_rcu_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,struct udp_hslot * hslot2,unsigned int slot2)438 static struct sock *udp4_lib_lookup2(struct net *net,
439 		__be32 saddr, __be16 sport,
440 		__be32 daddr, unsigned int hnum, int dif,
441 		struct udp_hslot *hslot2, unsigned int slot2)
442 {
443 	struct sock *sk, *result;
444 	struct hlist_nulls_node *node;
445 	int score, badness, matches = 0, reuseport = 0;
446 	u32 hash = 0;
447 
448 begin:
449 	result = NULL;
450 	badness = 0;
451 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
452 		score = compute_score2(sk, net, saddr, sport,
453 				      daddr, hnum, dif);
454 		if (score > badness) {
455 			result = sk;
456 			badness = score;
457 			reuseport = sk->sk_reuseport;
458 			if (reuseport) {
459 				hash = udp_ehashfn(net, daddr, hnum,
460 						   saddr, sport);
461 				matches = 1;
462 			}
463 		} else if (score == badness && reuseport) {
464 			matches++;
465 			if (reciprocal_scale(hash, matches) == 0)
466 				result = sk;
467 			hash = next_pseudo_random32(hash);
468 		}
469 	}
470 	/*
471 	 * if the nulls value we got at the end of this lookup is
472 	 * not the expected one, we must restart lookup.
473 	 * We probably met an item that was moved to another chain.
474 	 */
475 	if (get_nulls_value(node) != slot2)
476 		goto begin;
477 	if (result) {
478 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
479 			result = NULL;
480 		else if (unlikely(compute_score2(result, net, saddr, sport,
481 				  daddr, hnum, dif) < badness)) {
482 			sock_put(result);
483 			goto begin;
484 		}
485 	}
486 	return result;
487 }
488 
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490  * harder than this. -DaveM
491  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,struct udp_table * udptable)492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 		__be16 sport, __be32 daddr, __be16 dport,
494 		int dif, struct udp_table *udptable)
495 {
496 	struct sock *sk, *result;
497 	struct hlist_nulls_node *node;
498 	unsigned short hnum = ntohs(dport);
499 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
500 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
501 	int score, badness, matches = 0, reuseport = 0;
502 	u32 hash = 0;
503 
504 	rcu_read_lock();
505 	if (hslot->count > 10) {
506 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
507 		slot2 = hash2 & udptable->mask;
508 		hslot2 = &udptable->hash2[slot2];
509 		if (hslot->count < hslot2->count)
510 			goto begin;
511 
512 		result = udp4_lib_lookup2(net, saddr, sport,
513 					  daddr, hnum, dif,
514 					  hslot2, slot2);
515 		if (!result) {
516 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
517 			slot2 = hash2 & udptable->mask;
518 			hslot2 = &udptable->hash2[slot2];
519 			if (hslot->count < hslot2->count)
520 				goto begin;
521 
522 			result = udp4_lib_lookup2(net, saddr, sport,
523 						  htonl(INADDR_ANY), hnum, dif,
524 						  hslot2, slot2);
525 		}
526 		rcu_read_unlock();
527 		return result;
528 	}
529 begin:
530 	result = NULL;
531 	badness = 0;
532 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
533 		score = compute_score(sk, net, saddr, hnum, sport,
534 				      daddr, dport, dif);
535 		if (score > badness) {
536 			result = sk;
537 			badness = score;
538 			reuseport = sk->sk_reuseport;
539 			if (reuseport) {
540 				hash = udp_ehashfn(net, daddr, hnum,
541 						   saddr, sport);
542 				matches = 1;
543 			}
544 		} else if (score == badness && reuseport) {
545 			matches++;
546 			if (reciprocal_scale(hash, matches) == 0)
547 				result = sk;
548 			hash = next_pseudo_random32(hash);
549 		}
550 	}
551 	/*
552 	 * if the nulls value we got at the end of this lookup is
553 	 * not the expected one, we must restart lookup.
554 	 * We probably met an item that was moved to another chain.
555 	 */
556 	if (get_nulls_value(node) != slot)
557 		goto begin;
558 
559 	if (result) {
560 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
561 			result = NULL;
562 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
563 				  daddr, dport, dif) < badness)) {
564 			sock_put(result);
565 			goto begin;
566 		}
567 	}
568 	rcu_read_unlock();
569 	return result;
570 }
571 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
572 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)573 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
574 						 __be16 sport, __be16 dport,
575 						 struct udp_table *udptable)
576 {
577 	const struct iphdr *iph = ip_hdr(skb);
578 
579 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
580 				 iph->daddr, dport, inet_iif(skb),
581 				 udptable);
582 }
583 
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 			     __be32 daddr, __be16 dport, int dif)
586 {
587 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
588 }
589 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
590 
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,unsigned short hnum)591 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
592 				       __be16 loc_port, __be32 loc_addr,
593 				       __be16 rmt_port, __be32 rmt_addr,
594 				       int dif, unsigned short hnum)
595 {
596 	struct inet_sock *inet = inet_sk(sk);
597 
598 	if (!net_eq(sock_net(sk), net) ||
599 	    udp_sk(sk)->udp_port_hash != hnum ||
600 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
601 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
602 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
603 	    ipv6_only_sock(sk) ||
604 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
605 		return false;
606 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
607 		return false;
608 	return true;
609 }
610 
611 /*
612  * This routine is called by the ICMP module when it gets some
613  * sort of error condition.  If err < 0 then the socket should
614  * be closed and the error returned to the user.  If err > 0
615  * it's just the icmp type << 8 | icmp code.
616  * Header points to the ip header of the error packet. We move
617  * on past this. Then (as it used to claim before adjustment)
618  * header points to the first 8 bytes of the udp header.  We need
619  * to find the appropriate port.
620  */
621 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 	struct inet_sock *inet;
625 	const struct iphdr *iph = (const struct iphdr *)skb->data;
626 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 	const int type = icmp_hdr(skb)->type;
628 	const int code = icmp_hdr(skb)->code;
629 	struct sock *sk;
630 	int harderr;
631 	int err;
632 	struct net *net = dev_net(skb->dev);
633 
634 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
636 	if (!sk) {
637 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
638 		return;	/* No socket for error */
639 	}
640 
641 	err = 0;
642 	harderr = 0;
643 	inet = inet_sk(sk);
644 
645 	switch (type) {
646 	default:
647 	case ICMP_TIME_EXCEEDED:
648 		err = EHOSTUNREACH;
649 		break;
650 	case ICMP_SOURCE_QUENCH:
651 		goto out;
652 	case ICMP_PARAMETERPROB:
653 		err = EPROTO;
654 		harderr = 1;
655 		break;
656 	case ICMP_DEST_UNREACH:
657 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
658 			ipv4_sk_update_pmtu(skb, sk, info);
659 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
660 				err = EMSGSIZE;
661 				harderr = 1;
662 				break;
663 			}
664 			goto out;
665 		}
666 		err = EHOSTUNREACH;
667 		if (code <= NR_ICMP_UNREACH) {
668 			harderr = icmp_err_convert[code].fatal;
669 			err = icmp_err_convert[code].errno;
670 		}
671 		break;
672 	case ICMP_REDIRECT:
673 		ipv4_sk_redirect(skb, sk);
674 		goto out;
675 	}
676 
677 	/*
678 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
679 	 *	4.1.3.3.
680 	 */
681 	if (!inet->recverr) {
682 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
683 			goto out;
684 	} else
685 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
686 
687 	sk->sk_err = err;
688 	sk->sk_error_report(sk);
689 out:
690 	sock_put(sk);
691 }
692 
udp_err(struct sk_buff * skb,u32 info)693 void udp_err(struct sk_buff *skb, u32 info)
694 {
695 	__udp4_lib_err(skb, info, &udp_table);
696 }
697 
698 /*
699  * Throw away all pending data and cancel the corking. Socket is locked.
700  */
udp_flush_pending_frames(struct sock * sk)701 void udp_flush_pending_frames(struct sock *sk)
702 {
703 	struct udp_sock *up = udp_sk(sk);
704 
705 	if (up->pending) {
706 		up->len = 0;
707 		up->pending = 0;
708 		ip_flush_pending_frames(sk);
709 	}
710 }
711 EXPORT_SYMBOL(udp_flush_pending_frames);
712 
713 /**
714  * 	udp4_hwcsum  -  handle outgoing HW checksumming
715  * 	@skb: 	sk_buff containing the filled-in UDP header
716  * 	        (checksum field must be zeroed out)
717  *	@src:	source IP address
718  *	@dst:	destination IP address
719  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)720 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
721 {
722 	struct udphdr *uh = udp_hdr(skb);
723 	int offset = skb_transport_offset(skb);
724 	int len = skb->len - offset;
725 	int hlen = len;
726 	__wsum csum = 0;
727 
728 	if (!skb_has_frag_list(skb)) {
729 		/*
730 		 * Only one fragment on the socket.
731 		 */
732 		skb->csum_start = skb_transport_header(skb) - skb->head;
733 		skb->csum_offset = offsetof(struct udphdr, check);
734 		uh->check = ~csum_tcpudp_magic(src, dst, len,
735 					       IPPROTO_UDP, 0);
736 	} else {
737 		struct sk_buff *frags;
738 
739 		/*
740 		 * HW-checksum won't work as there are two or more
741 		 * fragments on the socket so that all csums of sk_buffs
742 		 * should be together
743 		 */
744 		skb_walk_frags(skb, frags) {
745 			csum = csum_add(csum, frags->csum);
746 			hlen -= frags->len;
747 		}
748 
749 		csum = skb_checksum(skb, offset, hlen, csum);
750 		skb->ip_summed = CHECKSUM_NONE;
751 
752 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
753 		if (uh->check == 0)
754 			uh->check = CSUM_MANGLED_0;
755 	}
756 }
757 EXPORT_SYMBOL_GPL(udp4_hwcsum);
758 
759 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
760  * for the simple case like when setting the checksum for a UDP tunnel.
761  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)762 void udp_set_csum(bool nocheck, struct sk_buff *skb,
763 		  __be32 saddr, __be32 daddr, int len)
764 {
765 	struct udphdr *uh = udp_hdr(skb);
766 
767 	if (nocheck)
768 		uh->check = 0;
769 	else if (skb_is_gso(skb))
770 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
771 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
772 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
773 
774 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
775 
776 		skb->ip_summed = CHECKSUM_PARTIAL;
777 		skb->csum_start = skb_transport_header(skb) - skb->head;
778 		skb->csum_offset = offsetof(struct udphdr, check);
779 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 	} else {
781 		__wsum csum;
782 
783 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
784 
785 		uh->check = 0;
786 		csum = skb_checksum(skb, 0, len, 0);
787 		uh->check = udp_v4_check(len, saddr, daddr, csum);
788 		if (uh->check == 0)
789 			uh->check = CSUM_MANGLED_0;
790 
791 		skb->ip_summed = CHECKSUM_UNNECESSARY;
792 	}
793 }
794 EXPORT_SYMBOL(udp_set_csum);
795 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4)796 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
797 {
798 	struct sock *sk = skb->sk;
799 	struct inet_sock *inet = inet_sk(sk);
800 	struct udphdr *uh;
801 	int err = 0;
802 	int is_udplite = IS_UDPLITE(sk);
803 	int offset = skb_transport_offset(skb);
804 	int len = skb->len - offset;
805 	__wsum csum = 0;
806 
807 	/*
808 	 * Create a UDP header
809 	 */
810 	uh = udp_hdr(skb);
811 	uh->source = inet->inet_sport;
812 	uh->dest = fl4->fl4_dport;
813 	uh->len = htons(len);
814 	uh->check = 0;
815 
816 	if (is_udplite)  				 /*     UDP-Lite      */
817 		csum = udplite_csum(skb);
818 
819 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
820 
821 		skb->ip_summed = CHECKSUM_NONE;
822 		goto send;
823 
824 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
825 
826 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
827 		goto send;
828 
829 	} else
830 		csum = udp_csum(skb);
831 
832 	/* add protocol-dependent pseudo-header */
833 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
834 				      sk->sk_protocol, csum);
835 	if (uh->check == 0)
836 		uh->check = CSUM_MANGLED_0;
837 
838 send:
839 	err = ip_send_skb(sock_net(sk), skb);
840 	if (err) {
841 		if (err == -ENOBUFS && !inet->recverr) {
842 			UDP_INC_STATS_USER(sock_net(sk),
843 					   UDP_MIB_SNDBUFERRORS, is_udplite);
844 			err = 0;
845 		}
846 	} else
847 		UDP_INC_STATS_USER(sock_net(sk),
848 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
849 	return err;
850 }
851 
852 /*
853  * Push out all pending data as one UDP datagram. Socket is locked.
854  */
udp_push_pending_frames(struct sock * sk)855 int udp_push_pending_frames(struct sock *sk)
856 {
857 	struct udp_sock  *up = udp_sk(sk);
858 	struct inet_sock *inet = inet_sk(sk);
859 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
860 	struct sk_buff *skb;
861 	int err = 0;
862 
863 	skb = ip_finish_skb(sk, fl4);
864 	if (!skb)
865 		goto out;
866 
867 	err = udp_send_skb(skb, fl4);
868 
869 out:
870 	up->len = 0;
871 	up->pending = 0;
872 	return err;
873 }
874 EXPORT_SYMBOL(udp_push_pending_frames);
875 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)876 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
877 {
878 	struct inet_sock *inet = inet_sk(sk);
879 	struct udp_sock *up = udp_sk(sk);
880 	struct flowi4 fl4_stack;
881 	struct flowi4 *fl4;
882 	int ulen = len;
883 	struct ipcm_cookie ipc;
884 	struct rtable *rt = NULL;
885 	int free = 0;
886 	int connected = 0;
887 	__be32 daddr, faddr, saddr;
888 	__be16 dport;
889 	u8  tos;
890 	int err, is_udplite = IS_UDPLITE(sk);
891 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
892 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
893 	struct sk_buff *skb;
894 	struct ip_options_data opt_copy;
895 
896 	if (len > 0xFFFF)
897 		return -EMSGSIZE;
898 
899 	/*
900 	 *	Check the flags.
901 	 */
902 
903 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
904 		return -EOPNOTSUPP;
905 
906 	ipc.opt = NULL;
907 	ipc.tx_flags = 0;
908 	ipc.ttl = 0;
909 	ipc.tos = -1;
910 
911 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
912 
913 	fl4 = &inet->cork.fl.u.ip4;
914 	if (up->pending) {
915 		/*
916 		 * There are pending frames.
917 		 * The socket lock must be held while it's corked.
918 		 */
919 		lock_sock(sk);
920 		if (likely(up->pending)) {
921 			if (unlikely(up->pending != AF_INET)) {
922 				release_sock(sk);
923 				return -EINVAL;
924 			}
925 			goto do_append_data;
926 		}
927 		release_sock(sk);
928 	}
929 	ulen += sizeof(struct udphdr);
930 
931 	/*
932 	 *	Get and verify the address.
933 	 */
934 	if (msg->msg_name) {
935 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936 		if (msg->msg_namelen < sizeof(*usin))
937 			return -EINVAL;
938 		if (usin->sin_family != AF_INET) {
939 			if (usin->sin_family != AF_UNSPEC)
940 				return -EAFNOSUPPORT;
941 		}
942 
943 		daddr = usin->sin_addr.s_addr;
944 		dport = usin->sin_port;
945 		if (dport == 0)
946 			return -EINVAL;
947 	} else {
948 		if (sk->sk_state != TCP_ESTABLISHED)
949 			return -EDESTADDRREQ;
950 		daddr = inet->inet_daddr;
951 		dport = inet->inet_dport;
952 		/* Open fast path for connected socket.
953 		   Route will not be used, if at least one option is set.
954 		 */
955 		connected = 1;
956 	}
957 	ipc.addr = inet->inet_saddr;
958 
959 	ipc.oif = sk->sk_bound_dev_if;
960 
961 	sock_tx_timestamp(sk, &ipc.tx_flags);
962 
963 	if (msg->msg_controllen) {
964 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
965 				   sk->sk_family == AF_INET6);
966 		if (unlikely(err)) {
967 			kfree(ipc.opt);
968 			return err;
969 		}
970 		if (ipc.opt)
971 			free = 1;
972 		connected = 0;
973 	}
974 	if (!ipc.opt) {
975 		struct ip_options_rcu *inet_opt;
976 
977 		rcu_read_lock();
978 		inet_opt = rcu_dereference(inet->inet_opt);
979 		if (inet_opt) {
980 			memcpy(&opt_copy, inet_opt,
981 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
982 			ipc.opt = &opt_copy.opt;
983 		}
984 		rcu_read_unlock();
985 	}
986 
987 	saddr = ipc.addr;
988 	ipc.addr = faddr = daddr;
989 
990 	if (ipc.opt && ipc.opt->opt.srr) {
991 		if (!daddr)
992 			return -EINVAL;
993 		faddr = ipc.opt->opt.faddr;
994 		connected = 0;
995 	}
996 	tos = get_rttos(&ipc, inet);
997 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
998 	    (msg->msg_flags & MSG_DONTROUTE) ||
999 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1000 		tos |= RTO_ONLINK;
1001 		connected = 0;
1002 	}
1003 
1004 	if (ipv4_is_multicast(daddr)) {
1005 		if (!ipc.oif)
1006 			ipc.oif = inet->mc_index;
1007 		if (!saddr)
1008 			saddr = inet->mc_addr;
1009 		connected = 0;
1010 	} else if (!ipc.oif)
1011 		ipc.oif = inet->uc_index;
1012 
1013 	if (connected)
1014 		rt = (struct rtable *)sk_dst_check(sk, 0);
1015 
1016 	if (!rt) {
1017 		struct net *net = sock_net(sk);
1018 
1019 		fl4 = &fl4_stack;
1020 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1021 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1022 				   inet_sk_flowi_flags(sk),
1023 				   faddr, saddr, dport, inet->inet_sport);
1024 
1025 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1026 		rt = ip_route_output_flow(net, fl4, sk);
1027 		if (IS_ERR(rt)) {
1028 			err = PTR_ERR(rt);
1029 			rt = NULL;
1030 			if (err == -ENETUNREACH)
1031 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1032 			goto out;
1033 		}
1034 
1035 		err = -EACCES;
1036 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1037 		    !sock_flag(sk, SOCK_BROADCAST))
1038 			goto out;
1039 		if (connected)
1040 			sk_dst_set(sk, dst_clone(&rt->dst));
1041 	}
1042 
1043 	if (msg->msg_flags&MSG_CONFIRM)
1044 		goto do_confirm;
1045 back_from_confirm:
1046 
1047 	saddr = fl4->saddr;
1048 	if (!ipc.addr)
1049 		daddr = ipc.addr = fl4->daddr;
1050 
1051 	/* Lockless fast path for the non-corking case. */
1052 	if (!corkreq) {
1053 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1054 				  sizeof(struct udphdr), &ipc, &rt,
1055 				  msg->msg_flags);
1056 		err = PTR_ERR(skb);
1057 		if (!IS_ERR_OR_NULL(skb))
1058 			err = udp_send_skb(skb, fl4);
1059 		goto out;
1060 	}
1061 
1062 	lock_sock(sk);
1063 	if (unlikely(up->pending)) {
1064 		/* The socket is already corked while preparing it. */
1065 		/* ... which is an evident application bug. --ANK */
1066 		release_sock(sk);
1067 
1068 		net_dbg_ratelimited("cork app bug 2\n");
1069 		err = -EINVAL;
1070 		goto out;
1071 	}
1072 	/*
1073 	 *	Now cork the socket to pend data.
1074 	 */
1075 	fl4 = &inet->cork.fl.u.ip4;
1076 	fl4->daddr = daddr;
1077 	fl4->saddr = saddr;
1078 	fl4->fl4_dport = dport;
1079 	fl4->fl4_sport = inet->inet_sport;
1080 	up->pending = AF_INET;
1081 
1082 do_append_data:
1083 	up->len += ulen;
1084 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1085 			     sizeof(struct udphdr), &ipc, &rt,
1086 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1087 	if (err)
1088 		udp_flush_pending_frames(sk);
1089 	else if (!corkreq)
1090 		err = udp_push_pending_frames(sk);
1091 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1092 		up->pending = 0;
1093 	release_sock(sk);
1094 
1095 out:
1096 	ip_rt_put(rt);
1097 	if (free)
1098 		kfree(ipc.opt);
1099 	if (!err)
1100 		return len;
1101 	/*
1102 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1103 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1104 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1105 	 * things).  We could add another new stat but at least for now that
1106 	 * seems like overkill.
1107 	 */
1108 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1109 		UDP_INC_STATS_USER(sock_net(sk),
1110 				UDP_MIB_SNDBUFERRORS, is_udplite);
1111 	}
1112 	return err;
1113 
1114 do_confirm:
1115 	dst_confirm(&rt->dst);
1116 	if (!(msg->msg_flags&MSG_PROBE) || len)
1117 		goto back_from_confirm;
1118 	err = 0;
1119 	goto out;
1120 }
1121 EXPORT_SYMBOL(udp_sendmsg);
1122 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1123 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1124 		 size_t size, int flags)
1125 {
1126 	struct inet_sock *inet = inet_sk(sk);
1127 	struct udp_sock *up = udp_sk(sk);
1128 	int ret;
1129 
1130 	if (flags & MSG_SENDPAGE_NOTLAST)
1131 		flags |= MSG_MORE;
1132 
1133 	if (!up->pending) {
1134 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1135 
1136 		/* Call udp_sendmsg to specify destination address which
1137 		 * sendpage interface can't pass.
1138 		 * This will succeed only when the socket is connected.
1139 		 */
1140 		ret = udp_sendmsg(sk, &msg, 0);
1141 		if (ret < 0)
1142 			return ret;
1143 	}
1144 
1145 	lock_sock(sk);
1146 
1147 	if (unlikely(!up->pending)) {
1148 		release_sock(sk);
1149 
1150 		net_dbg_ratelimited("udp cork app bug 3\n");
1151 		return -EINVAL;
1152 	}
1153 
1154 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1155 			     page, offset, size, flags);
1156 	if (ret == -EOPNOTSUPP) {
1157 		release_sock(sk);
1158 		return sock_no_sendpage(sk->sk_socket, page, offset,
1159 					size, flags);
1160 	}
1161 	if (ret < 0) {
1162 		udp_flush_pending_frames(sk);
1163 		goto out;
1164 	}
1165 
1166 	up->len += size;
1167 	if (!(up->corkflag || (flags&MSG_MORE)))
1168 		ret = udp_push_pending_frames(sk);
1169 	if (!ret)
1170 		ret = size;
1171 out:
1172 	release_sock(sk);
1173 	return ret;
1174 }
1175 
1176 /**
1177  *	first_packet_length	- return length of first packet in receive queue
1178  *	@sk: socket
1179  *
1180  *	Drops all bad checksum frames, until a valid one is found.
1181  *	Returns the length of found skb, or 0 if none is found.
1182  */
first_packet_length(struct sock * sk)1183 static unsigned int first_packet_length(struct sock *sk)
1184 {
1185 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1186 	struct sk_buff *skb;
1187 	unsigned int res;
1188 
1189 	__skb_queue_head_init(&list_kill);
1190 
1191 	spin_lock_bh(&rcvq->lock);
1192 	while ((skb = skb_peek(rcvq)) != NULL &&
1193 		udp_lib_checksum_complete(skb)) {
1194 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1195 				 IS_UDPLITE(sk));
1196 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1197 				 IS_UDPLITE(sk));
1198 		atomic_inc(&sk->sk_drops);
1199 		__skb_unlink(skb, rcvq);
1200 		__skb_queue_tail(&list_kill, skb);
1201 	}
1202 	res = skb ? skb->len : 0;
1203 	spin_unlock_bh(&rcvq->lock);
1204 
1205 	if (!skb_queue_empty(&list_kill)) {
1206 		bool slow = lock_sock_fast(sk);
1207 
1208 		__skb_queue_purge(&list_kill);
1209 		sk_mem_reclaim_partial(sk);
1210 		unlock_sock_fast(sk, slow);
1211 	}
1212 	return res;
1213 }
1214 
1215 /*
1216  *	IOCTL requests applicable to the UDP protocol
1217  */
1218 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1219 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1220 {
1221 	switch (cmd) {
1222 	case SIOCOUTQ:
1223 	{
1224 		int amount = sk_wmem_alloc_get(sk);
1225 
1226 		return put_user(amount, (int __user *)arg);
1227 	}
1228 
1229 	case SIOCINQ:
1230 	{
1231 		unsigned int amount = first_packet_length(sk);
1232 
1233 		if (amount)
1234 			/*
1235 			 * We will only return the amount
1236 			 * of this packet since that is all
1237 			 * that will be read.
1238 			 */
1239 			amount -= sizeof(struct udphdr);
1240 
1241 		return put_user(amount, (int __user *)arg);
1242 	}
1243 
1244 	default:
1245 		return -ENOIOCTLCMD;
1246 	}
1247 
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL(udp_ioctl);
1251 
1252 /*
1253  * 	This should be easy, if there is something there we
1254  * 	return it, otherwise we block.
1255  */
1256 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1257 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1258 		int flags, int *addr_len)
1259 {
1260 	struct inet_sock *inet = inet_sk(sk);
1261 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1262 	struct sk_buff *skb;
1263 	unsigned int ulen, copied;
1264 	int peeked, off = 0;
1265 	int err;
1266 	int is_udplite = IS_UDPLITE(sk);
1267 	bool slow;
1268 
1269 	if (flags & MSG_ERRQUEUE)
1270 		return ip_recv_error(sk, msg, len, addr_len);
1271 
1272 try_again:
1273 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1274 				  &peeked, &off, &err);
1275 	if (!skb)
1276 		goto out;
1277 
1278 	ulen = skb->len - sizeof(struct udphdr);
1279 	copied = len;
1280 	if (copied > ulen)
1281 		copied = ulen;
1282 	else if (copied < ulen)
1283 		msg->msg_flags |= MSG_TRUNC;
1284 
1285 	/*
1286 	 * If checksum is needed at all, try to do it while copying the
1287 	 * data.  If the data is truncated, or if we only want a partial
1288 	 * coverage checksum (UDP-Lite), do it before the copy.
1289 	 */
1290 
1291 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1292 		if (udp_lib_checksum_complete(skb))
1293 			goto csum_copy_err;
1294 	}
1295 
1296 	if (skb_csum_unnecessary(skb))
1297 		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1298 					    msg, copied);
1299 	else {
1300 		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1301 						     msg);
1302 
1303 		if (err == -EINVAL)
1304 			goto csum_copy_err;
1305 	}
1306 
1307 	if (unlikely(err)) {
1308 		trace_kfree_skb(skb, udp_recvmsg);
1309 		if (!peeked) {
1310 			atomic_inc(&sk->sk_drops);
1311 			UDP_INC_STATS_USER(sock_net(sk),
1312 					   UDP_MIB_INERRORS, is_udplite);
1313 		}
1314 		goto out_free;
1315 	}
1316 
1317 	if (!peeked)
1318 		UDP_INC_STATS_USER(sock_net(sk),
1319 				UDP_MIB_INDATAGRAMS, is_udplite);
1320 
1321 	sock_recv_ts_and_drops(msg, sk, skb);
1322 
1323 	/* Copy the address. */
1324 	if (sin) {
1325 		sin->sin_family = AF_INET;
1326 		sin->sin_port = udp_hdr(skb)->source;
1327 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1328 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1329 		*addr_len = sizeof(*sin);
1330 	}
1331 	if (inet->cmsg_flags)
1332 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1333 
1334 	err = copied;
1335 	if (flags & MSG_TRUNC)
1336 		err = ulen;
1337 
1338 out_free:
1339 	skb_free_datagram_locked(sk, skb);
1340 out:
1341 	return err;
1342 
1343 csum_copy_err:
1344 	slow = lock_sock_fast(sk);
1345 	if (!skb_kill_datagram(sk, skb, flags)) {
1346 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1347 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1348 	}
1349 	unlock_sock_fast(sk, slow);
1350 
1351 	/* starting over for a new packet, but check if we need to yield */
1352 	cond_resched();
1353 	msg->msg_flags &= ~MSG_TRUNC;
1354 	goto try_again;
1355 }
1356 
udp_disconnect(struct sock * sk,int flags)1357 int udp_disconnect(struct sock *sk, int flags)
1358 {
1359 	struct inet_sock *inet = inet_sk(sk);
1360 	/*
1361 	 *	1003.1g - break association.
1362 	 */
1363 
1364 	sk->sk_state = TCP_CLOSE;
1365 	inet->inet_daddr = 0;
1366 	inet->inet_dport = 0;
1367 	sock_rps_reset_rxhash(sk);
1368 	sk->sk_bound_dev_if = 0;
1369 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1370 		inet_reset_saddr(sk);
1371 
1372 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1373 		sk->sk_prot->unhash(sk);
1374 		inet->inet_sport = 0;
1375 	}
1376 	sk_dst_reset(sk);
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL(udp_disconnect);
1380 
udp_lib_unhash(struct sock * sk)1381 void udp_lib_unhash(struct sock *sk)
1382 {
1383 	if (sk_hashed(sk)) {
1384 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1385 		struct udp_hslot *hslot, *hslot2;
1386 
1387 		hslot  = udp_hashslot(udptable, sock_net(sk),
1388 				      udp_sk(sk)->udp_port_hash);
1389 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1390 
1391 		spin_lock_bh(&hslot->lock);
1392 		if (sk_nulls_del_node_init_rcu(sk)) {
1393 			hslot->count--;
1394 			inet_sk(sk)->inet_num = 0;
1395 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1396 
1397 			spin_lock(&hslot2->lock);
1398 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1399 			hslot2->count--;
1400 			spin_unlock(&hslot2->lock);
1401 		}
1402 		spin_unlock_bh(&hslot->lock);
1403 	}
1404 }
1405 EXPORT_SYMBOL(udp_lib_unhash);
1406 
1407 /*
1408  * inet_rcv_saddr was changed, we must rehash secondary hash
1409  */
udp_lib_rehash(struct sock * sk,u16 newhash)1410 void udp_lib_rehash(struct sock *sk, u16 newhash)
1411 {
1412 	if (sk_hashed(sk)) {
1413 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1414 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1415 
1416 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1417 		nhslot2 = udp_hashslot2(udptable, newhash);
1418 		udp_sk(sk)->udp_portaddr_hash = newhash;
1419 		if (hslot2 != nhslot2) {
1420 			hslot = udp_hashslot(udptable, sock_net(sk),
1421 					     udp_sk(sk)->udp_port_hash);
1422 			/* we must lock primary chain too */
1423 			spin_lock_bh(&hslot->lock);
1424 
1425 			spin_lock(&hslot2->lock);
1426 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1427 			hslot2->count--;
1428 			spin_unlock(&hslot2->lock);
1429 
1430 			spin_lock(&nhslot2->lock);
1431 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1432 						 &nhslot2->head);
1433 			nhslot2->count++;
1434 			spin_unlock(&nhslot2->lock);
1435 
1436 			spin_unlock_bh(&hslot->lock);
1437 		}
1438 	}
1439 }
1440 EXPORT_SYMBOL(udp_lib_rehash);
1441 
udp_v4_rehash(struct sock * sk)1442 static void udp_v4_rehash(struct sock *sk)
1443 {
1444 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1445 					  inet_sk(sk)->inet_rcv_saddr,
1446 					  inet_sk(sk)->inet_num);
1447 	udp_lib_rehash(sk, new_hash);
1448 }
1449 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1450 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1451 {
1452 	int rc;
1453 
1454 	if (inet_sk(sk)->inet_daddr) {
1455 		sock_rps_save_rxhash(sk, skb);
1456 		sk_mark_napi_id(sk, skb);
1457 		sk_incoming_cpu_update(sk);
1458 	}
1459 
1460 	rc = sock_queue_rcv_skb(sk, skb);
1461 	if (rc < 0) {
1462 		int is_udplite = IS_UDPLITE(sk);
1463 
1464 		/* Note that an ENOMEM error is charged twice */
1465 		if (rc == -ENOMEM)
1466 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1467 					 is_udplite);
1468 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1469 		kfree_skb(skb);
1470 		trace_udp_fail_queue_rcv_skb(rc, sk);
1471 		return -1;
1472 	}
1473 
1474 	return 0;
1475 
1476 }
1477 
1478 static struct static_key udp_encap_needed __read_mostly;
udp_encap_enable(void)1479 void udp_encap_enable(void)
1480 {
1481 	if (!static_key_enabled(&udp_encap_needed))
1482 		static_key_slow_inc(&udp_encap_needed);
1483 }
1484 EXPORT_SYMBOL(udp_encap_enable);
1485 
1486 /* returns:
1487  *  -1: error
1488  *   0: success
1489  *  >0: "udp encap" protocol resubmission
1490  *
1491  * Note that in the success and error cases, the skb is assumed to
1492  * have either been requeued or freed.
1493  */
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1494 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1495 {
1496 	struct udp_sock *up = udp_sk(sk);
1497 	int rc;
1498 	int is_udplite = IS_UDPLITE(sk);
1499 
1500 	/*
1501 	 *	Charge it to the socket, dropping if the queue is full.
1502 	 */
1503 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1504 		goto drop;
1505 	nf_reset(skb);
1506 
1507 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1508 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1509 
1510 		/*
1511 		 * This is an encapsulation socket so pass the skb to
1512 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1513 		 * fall through and pass this up the UDP socket.
1514 		 * up->encap_rcv() returns the following value:
1515 		 * =0 if skb was successfully passed to the encap
1516 		 *    handler or was discarded by it.
1517 		 * >0 if skb should be passed on to UDP.
1518 		 * <0 if skb should be resubmitted as proto -N
1519 		 */
1520 
1521 		/* if we're overly short, let UDP handle it */
1522 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1523 		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1524 			int ret;
1525 
1526 			/* Verify checksum before giving to encap */
1527 			if (udp_lib_checksum_complete(skb))
1528 				goto csum_error;
1529 
1530 			ret = encap_rcv(sk, skb);
1531 			if (ret <= 0) {
1532 				UDP_INC_STATS_BH(sock_net(sk),
1533 						 UDP_MIB_INDATAGRAMS,
1534 						 is_udplite);
1535 				return -ret;
1536 			}
1537 		}
1538 
1539 		/* FALLTHROUGH -- it's a UDP Packet */
1540 	}
1541 
1542 	/*
1543 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1544 	 */
1545 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1546 
1547 		/*
1548 		 * MIB statistics other than incrementing the error count are
1549 		 * disabled for the following two types of errors: these depend
1550 		 * on the application settings, not on the functioning of the
1551 		 * protocol stack as such.
1552 		 *
1553 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1554 		 * way ... to ... at least let the receiving application block
1555 		 * delivery of packets with coverage values less than a value
1556 		 * provided by the application."
1557 		 */
1558 		if (up->pcrlen == 0) {          /* full coverage was set  */
1559 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1560 					    UDP_SKB_CB(skb)->cscov, skb->len);
1561 			goto drop;
1562 		}
1563 		/* The next case involves violating the min. coverage requested
1564 		 * by the receiver. This is subtle: if receiver wants x and x is
1565 		 * greater than the buffersize/MTU then receiver will complain
1566 		 * that it wants x while sender emits packets of smaller size y.
1567 		 * Therefore the above ...()->partial_cov statement is essential.
1568 		 */
1569 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1570 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1571 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1572 			goto drop;
1573 		}
1574 	}
1575 
1576 	if (rcu_access_pointer(sk->sk_filter) &&
1577 	    udp_lib_checksum_complete(skb))
1578 		goto csum_error;
1579 
1580 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1581 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1582 				 is_udplite);
1583 		goto drop;
1584 	}
1585 
1586 	rc = 0;
1587 
1588 	ipv4_pktinfo_prepare(sk, skb);
1589 	bh_lock_sock(sk);
1590 	if (!sock_owned_by_user(sk))
1591 		rc = __udp_queue_rcv_skb(sk, skb);
1592 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1593 		bh_unlock_sock(sk);
1594 		goto drop;
1595 	}
1596 	bh_unlock_sock(sk);
1597 
1598 	return rc;
1599 
1600 csum_error:
1601 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1602 drop:
1603 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1604 	atomic_inc(&sk->sk_drops);
1605 	kfree_skb(skb);
1606 	return -1;
1607 }
1608 
flush_stack(struct sock ** stack,unsigned int count,struct sk_buff * skb,unsigned int final)1609 static void flush_stack(struct sock **stack, unsigned int count,
1610 			struct sk_buff *skb, unsigned int final)
1611 {
1612 	unsigned int i;
1613 	struct sk_buff *skb1 = NULL;
1614 	struct sock *sk;
1615 
1616 	for (i = 0; i < count; i++) {
1617 		sk = stack[i];
1618 		if (likely(!skb1))
1619 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1620 
1621 		if (!skb1) {
1622 			atomic_inc(&sk->sk_drops);
1623 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1624 					 IS_UDPLITE(sk));
1625 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1626 					 IS_UDPLITE(sk));
1627 		}
1628 
1629 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1630 			skb1 = NULL;
1631 
1632 		sock_put(sk);
1633 	}
1634 	if (unlikely(skb1))
1635 		kfree_skb(skb1);
1636 }
1637 
1638 /* For TCP sockets, sk_rx_dst is protected by socket lock
1639  * For UDP, we use xchg() to guard against concurrent changes.
1640  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)1641 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1642 {
1643 	struct dst_entry *old;
1644 
1645 	dst_hold(dst);
1646 	old = xchg(&sk->sk_rx_dst, dst);
1647 	dst_release(old);
1648 }
1649 
1650 /*
1651  *	Multicasts and broadcasts go to each listener.
1652  *
1653  *	Note: called only from the BH handler context.
1654  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)1655 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1656 				    struct udphdr  *uh,
1657 				    __be32 saddr, __be32 daddr,
1658 				    struct udp_table *udptable,
1659 				    int proto)
1660 {
1661 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1662 	struct hlist_nulls_node *node;
1663 	unsigned short hnum = ntohs(uh->dest);
1664 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1665 	int dif = skb->dev->ifindex;
1666 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1667 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1668 	bool inner_flushed = false;
1669 
1670 	if (use_hash2) {
1671 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1672 			    udp_table.mask;
1673 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1674 start_lookup:
1675 		hslot = &udp_table.hash2[hash2];
1676 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1677 	}
1678 
1679 	spin_lock(&hslot->lock);
1680 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1681 		if (__udp_is_mcast_sock(net, sk,
1682 					uh->dest, daddr,
1683 					uh->source, saddr,
1684 					dif, hnum)) {
1685 			if (unlikely(count == ARRAY_SIZE(stack))) {
1686 				flush_stack(stack, count, skb, ~0);
1687 				inner_flushed = true;
1688 				count = 0;
1689 			}
1690 			stack[count++] = sk;
1691 			sock_hold(sk);
1692 		}
1693 	}
1694 
1695 	spin_unlock(&hslot->lock);
1696 
1697 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1698 	if (use_hash2 && hash2 != hash2_any) {
1699 		hash2 = hash2_any;
1700 		goto start_lookup;
1701 	}
1702 
1703 	/*
1704 	 * do the slow work with no lock held
1705 	 */
1706 	if (count) {
1707 		flush_stack(stack, count, skb, count - 1);
1708 	} else {
1709 		if (!inner_flushed)
1710 			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1711 					 proto == IPPROTO_UDPLITE);
1712 		consume_skb(skb);
1713 	}
1714 	return 0;
1715 }
1716 
1717 /* Initialize UDP checksum. If exited with zero value (success),
1718  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1719  * Otherwise, csum completion requires chacksumming packet body,
1720  * including udp header and folding it to skb->csum.
1721  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)1722 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1723 				 int proto)
1724 {
1725 	int err;
1726 
1727 	UDP_SKB_CB(skb)->partial_cov = 0;
1728 	UDP_SKB_CB(skb)->cscov = skb->len;
1729 
1730 	if (proto == IPPROTO_UDPLITE) {
1731 		err = udplite_checksum_init(skb, uh);
1732 		if (err)
1733 			return err;
1734 	}
1735 
1736 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1737 					    inet_compute_pseudo);
1738 }
1739 
1740 /*
1741  *	All we need to do is get the socket, and then do a checksum.
1742  */
1743 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)1744 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1745 		   int proto)
1746 {
1747 	struct sock *sk;
1748 	struct udphdr *uh;
1749 	unsigned short ulen;
1750 	struct rtable *rt = skb_rtable(skb);
1751 	__be32 saddr, daddr;
1752 	struct net *net = dev_net(skb->dev);
1753 
1754 	/*
1755 	 *  Validate the packet.
1756 	 */
1757 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1758 		goto drop;		/* No space for header. */
1759 
1760 	uh   = udp_hdr(skb);
1761 	ulen = ntohs(uh->len);
1762 	saddr = ip_hdr(skb)->saddr;
1763 	daddr = ip_hdr(skb)->daddr;
1764 
1765 	if (ulen > skb->len)
1766 		goto short_packet;
1767 
1768 	if (proto == IPPROTO_UDP) {
1769 		/* UDP validates ulen. */
1770 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1771 			goto short_packet;
1772 		uh = udp_hdr(skb);
1773 	}
1774 
1775 	if (udp4_csum_init(skb, uh, proto))
1776 		goto csum_error;
1777 
1778 	sk = skb_steal_sock(skb);
1779 	if (sk) {
1780 		struct dst_entry *dst = skb_dst(skb);
1781 		int ret;
1782 
1783 		if (unlikely(sk->sk_rx_dst != dst))
1784 			udp_sk_rx_dst_set(sk, dst);
1785 
1786 		ret = udp_queue_rcv_skb(sk, skb);
1787 		sock_put(sk);
1788 		/* a return value > 0 means to resubmit the input, but
1789 		 * it wants the return to be -protocol, or 0
1790 		 */
1791 		if (ret > 0)
1792 			return -ret;
1793 		return 0;
1794 	}
1795 
1796 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1797 		return __udp4_lib_mcast_deliver(net, skb, uh,
1798 						saddr, daddr, udptable, proto);
1799 
1800 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1801 	if (sk) {
1802 		int ret;
1803 
1804 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1805 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1806 						 inet_compute_pseudo);
1807 
1808 		ret = udp_queue_rcv_skb(sk, skb);
1809 		sock_put(sk);
1810 
1811 		/* a return value > 0 means to resubmit the input, but
1812 		 * it wants the return to be -protocol, or 0
1813 		 */
1814 		if (ret > 0)
1815 			return -ret;
1816 		return 0;
1817 	}
1818 
1819 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1820 		goto drop;
1821 	nf_reset(skb);
1822 
1823 	/* No socket. Drop packet silently, if checksum is wrong */
1824 	if (udp_lib_checksum_complete(skb))
1825 		goto csum_error;
1826 
1827 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1828 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1829 
1830 	/*
1831 	 * Hmm.  We got an UDP packet to a port to which we
1832 	 * don't wanna listen.  Ignore it.
1833 	 */
1834 	kfree_skb(skb);
1835 	return 0;
1836 
1837 short_packet:
1838 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1839 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1840 			    &saddr, ntohs(uh->source),
1841 			    ulen, skb->len,
1842 			    &daddr, ntohs(uh->dest));
1843 	goto drop;
1844 
1845 csum_error:
1846 	/*
1847 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1848 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1849 	 */
1850 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1851 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1852 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1853 			    ulen);
1854 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1855 drop:
1856 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1857 	kfree_skb(skb);
1858 	return 0;
1859 }
1860 
1861 /* We can only early demux multicast if there is a single matching socket.
1862  * If more than one socket found returns NULL
1863  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)1864 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1865 						  __be16 loc_port, __be32 loc_addr,
1866 						  __be16 rmt_port, __be32 rmt_addr,
1867 						  int dif)
1868 {
1869 	struct sock *sk, *result;
1870 	struct hlist_nulls_node *node;
1871 	unsigned short hnum = ntohs(loc_port);
1872 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1873 	struct udp_hslot *hslot = &udp_table.hash[slot];
1874 
1875 	/* Do not bother scanning a too big list */
1876 	if (hslot->count > 10)
1877 		return NULL;
1878 
1879 	rcu_read_lock();
1880 begin:
1881 	count = 0;
1882 	result = NULL;
1883 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1884 		if (__udp_is_mcast_sock(net, sk,
1885 					loc_port, loc_addr,
1886 					rmt_port, rmt_addr,
1887 					dif, hnum)) {
1888 			result = sk;
1889 			++count;
1890 		}
1891 	}
1892 	/*
1893 	 * if the nulls value we got at the end of this lookup is
1894 	 * not the expected one, we must restart lookup.
1895 	 * We probably met an item that was moved to another chain.
1896 	 */
1897 	if (get_nulls_value(node) != slot)
1898 		goto begin;
1899 
1900 	if (result) {
1901 		if (count != 1 ||
1902 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1903 			result = NULL;
1904 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1905 						       loc_port, loc_addr,
1906 						       rmt_port, rmt_addr,
1907 						       dif, hnum))) {
1908 			sock_put(result);
1909 			result = NULL;
1910 		}
1911 	}
1912 	rcu_read_unlock();
1913 	return result;
1914 }
1915 
1916 /* For unicast we should only early demux connected sockets or we can
1917  * break forwarding setups.  The chains here can be long so only check
1918  * if the first socket is an exact match and if not move on.
1919  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)1920 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1921 					    __be16 loc_port, __be32 loc_addr,
1922 					    __be16 rmt_port, __be32 rmt_addr,
1923 					    int dif)
1924 {
1925 	struct sock *sk, *result;
1926 	struct hlist_nulls_node *node;
1927 	unsigned short hnum = ntohs(loc_port);
1928 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1929 	unsigned int slot2 = hash2 & udp_table.mask;
1930 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1931 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1932 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1933 
1934 	rcu_read_lock();
1935 	result = NULL;
1936 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1937 		if (INET_MATCH(sk, net, acookie,
1938 			       rmt_addr, loc_addr, ports, dif))
1939 			result = sk;
1940 		/* Only check first socket in chain */
1941 		break;
1942 	}
1943 
1944 	if (result) {
1945 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1946 			result = NULL;
1947 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1948 					      rmt_addr, loc_addr,
1949 					      ports, dif))) {
1950 			sock_put(result);
1951 			result = NULL;
1952 		}
1953 	}
1954 	rcu_read_unlock();
1955 	return result;
1956 }
1957 
udp_v4_early_demux(struct sk_buff * skb)1958 void udp_v4_early_demux(struct sk_buff *skb)
1959 {
1960 	struct net *net = dev_net(skb->dev);
1961 	const struct iphdr *iph;
1962 	const struct udphdr *uh;
1963 	struct sock *sk;
1964 	struct dst_entry *dst;
1965 	int dif = skb->dev->ifindex;
1966 	int ours;
1967 
1968 	/* validate the packet */
1969 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1970 		return;
1971 
1972 	iph = ip_hdr(skb);
1973 	uh = udp_hdr(skb);
1974 
1975 	if (skb->pkt_type == PACKET_BROADCAST ||
1976 	    skb->pkt_type == PACKET_MULTICAST) {
1977 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1978 
1979 		if (!in_dev)
1980 			return;
1981 
1982 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1983 				       iph->protocol);
1984 		if (!ours)
1985 			return;
1986 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1987 						   uh->source, iph->saddr, dif);
1988 	} else if (skb->pkt_type == PACKET_HOST) {
1989 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1990 					     uh->source, iph->saddr, dif);
1991 	} else {
1992 		return;
1993 	}
1994 
1995 	if (!sk)
1996 		return;
1997 
1998 	skb->sk = sk;
1999 	skb->destructor = sock_efree;
2000 	dst = READ_ONCE(sk->sk_rx_dst);
2001 
2002 	if (dst)
2003 		dst = dst_check(dst, 0);
2004 	if (dst) {
2005 		/* DST_NOCACHE can not be used without taking a reference */
2006 		if (dst->flags & DST_NOCACHE) {
2007 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2008 				skb_dst_set(skb, dst);
2009 		} else {
2010 			skb_dst_set_noref(skb, dst);
2011 		}
2012 	}
2013 }
2014 
udp_rcv(struct sk_buff * skb)2015 int udp_rcv(struct sk_buff *skb)
2016 {
2017 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2018 }
2019 
udp_destroy_sock(struct sock * sk)2020 void udp_destroy_sock(struct sock *sk)
2021 {
2022 	struct udp_sock *up = udp_sk(sk);
2023 	bool slow = lock_sock_fast(sk);
2024 	udp_flush_pending_frames(sk);
2025 	unlock_sock_fast(sk, slow);
2026 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2027 		void (*encap_destroy)(struct sock *sk);
2028 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2029 		if (encap_destroy)
2030 			encap_destroy(sk);
2031 	}
2032 }
2033 
2034 /*
2035  *	Socket option code for UDP
2036  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2037 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2038 		       char __user *optval, unsigned int optlen,
2039 		       int (*push_pending_frames)(struct sock *))
2040 {
2041 	struct udp_sock *up = udp_sk(sk);
2042 	int val, valbool;
2043 	int err = 0;
2044 	int is_udplite = IS_UDPLITE(sk);
2045 
2046 	if (optlen < sizeof(int))
2047 		return -EINVAL;
2048 
2049 	if (get_user(val, (int __user *)optval))
2050 		return -EFAULT;
2051 
2052 	valbool = val ? 1 : 0;
2053 
2054 	switch (optname) {
2055 	case UDP_CORK:
2056 		if (val != 0) {
2057 			up->corkflag = 1;
2058 		} else {
2059 			up->corkflag = 0;
2060 			lock_sock(sk);
2061 			push_pending_frames(sk);
2062 			release_sock(sk);
2063 		}
2064 		break;
2065 
2066 	case UDP_ENCAP:
2067 		switch (val) {
2068 		case 0:
2069 		case UDP_ENCAP_ESPINUDP:
2070 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2071 			up->encap_rcv = xfrm4_udp_encap_rcv;
2072 			/* FALLTHROUGH */
2073 		case UDP_ENCAP_L2TPINUDP:
2074 			up->encap_type = val;
2075 			udp_encap_enable();
2076 			break;
2077 		default:
2078 			err = -ENOPROTOOPT;
2079 			break;
2080 		}
2081 		break;
2082 
2083 	case UDP_NO_CHECK6_TX:
2084 		up->no_check6_tx = valbool;
2085 		break;
2086 
2087 	case UDP_NO_CHECK6_RX:
2088 		up->no_check6_rx = valbool;
2089 		break;
2090 
2091 	/*
2092 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2093 	 */
2094 	/* The sender sets actual checksum coverage length via this option.
2095 	 * The case coverage > packet length is handled by send module. */
2096 	case UDPLITE_SEND_CSCOV:
2097 		if (!is_udplite)         /* Disable the option on UDP sockets */
2098 			return -ENOPROTOOPT;
2099 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2100 			val = 8;
2101 		else if (val > USHRT_MAX)
2102 			val = USHRT_MAX;
2103 		up->pcslen = val;
2104 		up->pcflag |= UDPLITE_SEND_CC;
2105 		break;
2106 
2107 	/* The receiver specifies a minimum checksum coverage value. To make
2108 	 * sense, this should be set to at least 8 (as done below). If zero is
2109 	 * used, this again means full checksum coverage.                     */
2110 	case UDPLITE_RECV_CSCOV:
2111 		if (!is_udplite)         /* Disable the option on UDP sockets */
2112 			return -ENOPROTOOPT;
2113 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2114 			val = 8;
2115 		else if (val > USHRT_MAX)
2116 			val = USHRT_MAX;
2117 		up->pcrlen = val;
2118 		up->pcflag |= UDPLITE_RECV_CC;
2119 		break;
2120 
2121 	default:
2122 		err = -ENOPROTOOPT;
2123 		break;
2124 	}
2125 
2126 	return err;
2127 }
2128 EXPORT_SYMBOL(udp_lib_setsockopt);
2129 
udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2130 int udp_setsockopt(struct sock *sk, int level, int optname,
2131 		   char __user *optval, unsigned int optlen)
2132 {
2133 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2134 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2135 					  udp_push_pending_frames);
2136 	return ip_setsockopt(sk, level, optname, optval, optlen);
2137 }
2138 
2139 #ifdef CONFIG_COMPAT
compat_udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2140 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2141 			  char __user *optval, unsigned int optlen)
2142 {
2143 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2144 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2145 					  udp_push_pending_frames);
2146 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2147 }
2148 #endif
2149 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2150 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2151 		       char __user *optval, int __user *optlen)
2152 {
2153 	struct udp_sock *up = udp_sk(sk);
2154 	int val, len;
2155 
2156 	if (get_user(len, optlen))
2157 		return -EFAULT;
2158 
2159 	len = min_t(unsigned int, len, sizeof(int));
2160 
2161 	if (len < 0)
2162 		return -EINVAL;
2163 
2164 	switch (optname) {
2165 	case UDP_CORK:
2166 		val = up->corkflag;
2167 		break;
2168 
2169 	case UDP_ENCAP:
2170 		val = up->encap_type;
2171 		break;
2172 
2173 	case UDP_NO_CHECK6_TX:
2174 		val = up->no_check6_tx;
2175 		break;
2176 
2177 	case UDP_NO_CHECK6_RX:
2178 		val = up->no_check6_rx;
2179 		break;
2180 
2181 	/* The following two cannot be changed on UDP sockets, the return is
2182 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2183 	case UDPLITE_SEND_CSCOV:
2184 		val = up->pcslen;
2185 		break;
2186 
2187 	case UDPLITE_RECV_CSCOV:
2188 		val = up->pcrlen;
2189 		break;
2190 
2191 	default:
2192 		return -ENOPROTOOPT;
2193 	}
2194 
2195 	if (put_user(len, optlen))
2196 		return -EFAULT;
2197 	if (copy_to_user(optval, &val, len))
2198 		return -EFAULT;
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL(udp_lib_getsockopt);
2202 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2203 int udp_getsockopt(struct sock *sk, int level, int optname,
2204 		   char __user *optval, int __user *optlen)
2205 {
2206 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2207 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2208 	return ip_getsockopt(sk, level, optname, optval, optlen);
2209 }
2210 
2211 #ifdef CONFIG_COMPAT
compat_udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2212 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2213 				 char __user *optval, int __user *optlen)
2214 {
2215 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2216 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2217 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2218 }
2219 #endif
2220 /**
2221  * 	udp_poll - wait for a UDP event.
2222  *	@file - file struct
2223  *	@sock - socket
2224  *	@wait - poll table
2225  *
2226  *	This is same as datagram poll, except for the special case of
2227  *	blocking sockets. If application is using a blocking fd
2228  *	and a packet with checksum error is in the queue;
2229  *	then it could get return from select indicating data available
2230  *	but then block when reading it. Add special case code
2231  *	to work around these arguably broken applications.
2232  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2233 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2234 {
2235 	unsigned int mask = datagram_poll(file, sock, wait);
2236 	struct sock *sk = sock->sk;
2237 
2238 	sock_rps_record_flow(sk);
2239 
2240 	/* Check for false positives due to checksum errors */
2241 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2242 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2243 		mask &= ~(POLLIN | POLLRDNORM);
2244 
2245 	return mask;
2246 
2247 }
2248 EXPORT_SYMBOL(udp_poll);
2249 
2250 struct proto udp_prot = {
2251 	.name		   = "UDP",
2252 	.owner		   = THIS_MODULE,
2253 	.close		   = udp_lib_close,
2254 	.connect	   = ip4_datagram_connect,
2255 	.disconnect	   = udp_disconnect,
2256 	.ioctl		   = udp_ioctl,
2257 	.destroy	   = udp_destroy_sock,
2258 	.setsockopt	   = udp_setsockopt,
2259 	.getsockopt	   = udp_getsockopt,
2260 	.sendmsg	   = udp_sendmsg,
2261 	.recvmsg	   = udp_recvmsg,
2262 	.sendpage	   = udp_sendpage,
2263 	.backlog_rcv	   = __udp_queue_rcv_skb,
2264 	.release_cb	   = ip4_datagram_release_cb,
2265 	.hash		   = udp_lib_hash,
2266 	.unhash		   = udp_lib_unhash,
2267 	.rehash		   = udp_v4_rehash,
2268 	.get_port	   = udp_v4_get_port,
2269 	.memory_allocated  = &udp_memory_allocated,
2270 	.sysctl_mem	   = sysctl_udp_mem,
2271 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2272 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2273 	.obj_size	   = sizeof(struct udp_sock),
2274 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2275 	.h.udp_table	   = &udp_table,
2276 #ifdef CONFIG_COMPAT
2277 	.compat_setsockopt = compat_udp_setsockopt,
2278 	.compat_getsockopt = compat_udp_getsockopt,
2279 #endif
2280 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2281 };
2282 EXPORT_SYMBOL(udp_prot);
2283 
2284 /* ------------------------------------------------------------------------ */
2285 #ifdef CONFIG_PROC_FS
2286 
udp_get_first(struct seq_file * seq,int start)2287 static struct sock *udp_get_first(struct seq_file *seq, int start)
2288 {
2289 	struct sock *sk;
2290 	struct udp_iter_state *state = seq->private;
2291 	struct net *net = seq_file_net(seq);
2292 
2293 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2294 	     ++state->bucket) {
2295 		struct hlist_nulls_node *node;
2296 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2297 
2298 		if (hlist_nulls_empty(&hslot->head))
2299 			continue;
2300 
2301 		spin_lock_bh(&hslot->lock);
2302 		sk_nulls_for_each(sk, node, &hslot->head) {
2303 			if (!net_eq(sock_net(sk), net))
2304 				continue;
2305 			if (sk->sk_family == state->family)
2306 				goto found;
2307 		}
2308 		spin_unlock_bh(&hslot->lock);
2309 	}
2310 	sk = NULL;
2311 found:
2312 	return sk;
2313 }
2314 
udp_get_next(struct seq_file * seq,struct sock * sk)2315 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2316 {
2317 	struct udp_iter_state *state = seq->private;
2318 	struct net *net = seq_file_net(seq);
2319 
2320 	do {
2321 		sk = sk_nulls_next(sk);
2322 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2323 
2324 	if (!sk) {
2325 		if (state->bucket <= state->udp_table->mask)
2326 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2327 		return udp_get_first(seq, state->bucket + 1);
2328 	}
2329 	return sk;
2330 }
2331 
udp_get_idx(struct seq_file * seq,loff_t pos)2332 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2333 {
2334 	struct sock *sk = udp_get_first(seq, 0);
2335 
2336 	if (sk)
2337 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2338 			--pos;
2339 	return pos ? NULL : sk;
2340 }
2341 
udp_seq_start(struct seq_file * seq,loff_t * pos)2342 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2343 {
2344 	struct udp_iter_state *state = seq->private;
2345 	state->bucket = MAX_UDP_PORTS;
2346 
2347 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2348 }
2349 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2350 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2351 {
2352 	struct sock *sk;
2353 
2354 	if (v == SEQ_START_TOKEN)
2355 		sk = udp_get_idx(seq, 0);
2356 	else
2357 		sk = udp_get_next(seq, v);
2358 
2359 	++*pos;
2360 	return sk;
2361 }
2362 
udp_seq_stop(struct seq_file * seq,void * v)2363 static void udp_seq_stop(struct seq_file *seq, void *v)
2364 {
2365 	struct udp_iter_state *state = seq->private;
2366 
2367 	if (state->bucket <= state->udp_table->mask)
2368 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2369 }
2370 
udp_seq_open(struct inode * inode,struct file * file)2371 int udp_seq_open(struct inode *inode, struct file *file)
2372 {
2373 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2374 	struct udp_iter_state *s;
2375 	int err;
2376 
2377 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2378 			   sizeof(struct udp_iter_state));
2379 	if (err < 0)
2380 		return err;
2381 
2382 	s = ((struct seq_file *)file->private_data)->private;
2383 	s->family		= afinfo->family;
2384 	s->udp_table		= afinfo->udp_table;
2385 	return err;
2386 }
2387 EXPORT_SYMBOL(udp_seq_open);
2388 
2389 /* ------------------------------------------------------------------------ */
udp_proc_register(struct net * net,struct udp_seq_afinfo * afinfo)2390 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2391 {
2392 	struct proc_dir_entry *p;
2393 	int rc = 0;
2394 
2395 	afinfo->seq_ops.start		= udp_seq_start;
2396 	afinfo->seq_ops.next		= udp_seq_next;
2397 	afinfo->seq_ops.stop		= udp_seq_stop;
2398 
2399 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2400 			     afinfo->seq_fops, afinfo);
2401 	if (!p)
2402 		rc = -ENOMEM;
2403 	return rc;
2404 }
2405 EXPORT_SYMBOL(udp_proc_register);
2406 
udp_proc_unregister(struct net * net,struct udp_seq_afinfo * afinfo)2407 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2408 {
2409 	remove_proc_entry(afinfo->name, net->proc_net);
2410 }
2411 EXPORT_SYMBOL(udp_proc_unregister);
2412 
2413 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)2414 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2415 		int bucket)
2416 {
2417 	struct inet_sock *inet = inet_sk(sp);
2418 	__be32 dest = inet->inet_daddr;
2419 	__be32 src  = inet->inet_rcv_saddr;
2420 	__u16 destp	  = ntohs(inet->inet_dport);
2421 	__u16 srcp	  = ntohs(inet->inet_sport);
2422 
2423 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2424 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2425 		bucket, src, srcp, dest, destp, sp->sk_state,
2426 		sk_wmem_alloc_get(sp),
2427 		sk_rmem_alloc_get(sp),
2428 		0, 0L, 0,
2429 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2430 		0, sock_i_ino(sp),
2431 		atomic_read(&sp->sk_refcnt), sp,
2432 		atomic_read(&sp->sk_drops));
2433 }
2434 
udp4_seq_show(struct seq_file * seq,void * v)2435 int udp4_seq_show(struct seq_file *seq, void *v)
2436 {
2437 	seq_setwidth(seq, 127);
2438 	if (v == SEQ_START_TOKEN)
2439 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2440 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2441 			   "inode ref pointer drops");
2442 	else {
2443 		struct udp_iter_state *state = seq->private;
2444 
2445 		udp4_format_sock(v, seq, state->bucket);
2446 	}
2447 	seq_pad(seq, '\n');
2448 	return 0;
2449 }
2450 
2451 static const struct file_operations udp_afinfo_seq_fops = {
2452 	.owner    = THIS_MODULE,
2453 	.open     = udp_seq_open,
2454 	.read     = seq_read,
2455 	.llseek   = seq_lseek,
2456 	.release  = seq_release_net
2457 };
2458 
2459 /* ------------------------------------------------------------------------ */
2460 static struct udp_seq_afinfo udp4_seq_afinfo = {
2461 	.name		= "udp",
2462 	.family		= AF_INET,
2463 	.udp_table	= &udp_table,
2464 	.seq_fops	= &udp_afinfo_seq_fops,
2465 	.seq_ops	= {
2466 		.show		= udp4_seq_show,
2467 	},
2468 };
2469 
udp4_proc_init_net(struct net * net)2470 static int __net_init udp4_proc_init_net(struct net *net)
2471 {
2472 	return udp_proc_register(net, &udp4_seq_afinfo);
2473 }
2474 
udp4_proc_exit_net(struct net * net)2475 static void __net_exit udp4_proc_exit_net(struct net *net)
2476 {
2477 	udp_proc_unregister(net, &udp4_seq_afinfo);
2478 }
2479 
2480 static struct pernet_operations udp4_net_ops = {
2481 	.init = udp4_proc_init_net,
2482 	.exit = udp4_proc_exit_net,
2483 };
2484 
udp4_proc_init(void)2485 int __init udp4_proc_init(void)
2486 {
2487 	return register_pernet_subsys(&udp4_net_ops);
2488 }
2489 
udp4_proc_exit(void)2490 void udp4_proc_exit(void)
2491 {
2492 	unregister_pernet_subsys(&udp4_net_ops);
2493 }
2494 #endif /* CONFIG_PROC_FS */
2495 
2496 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)2497 static int __init set_uhash_entries(char *str)
2498 {
2499 	ssize_t ret;
2500 
2501 	if (!str)
2502 		return 0;
2503 
2504 	ret = kstrtoul(str, 0, &uhash_entries);
2505 	if (ret)
2506 		return 0;
2507 
2508 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2509 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2510 	return 1;
2511 }
2512 __setup("uhash_entries=", set_uhash_entries);
2513 
udp_table_init(struct udp_table * table,const char * name)2514 void __init udp_table_init(struct udp_table *table, const char *name)
2515 {
2516 	unsigned int i;
2517 
2518 	table->hash = alloc_large_system_hash(name,
2519 					      2 * sizeof(struct udp_hslot),
2520 					      uhash_entries,
2521 					      21, /* one slot per 2 MB */
2522 					      0,
2523 					      &table->log,
2524 					      &table->mask,
2525 					      UDP_HTABLE_SIZE_MIN,
2526 					      64 * 1024);
2527 
2528 	table->hash2 = table->hash + (table->mask + 1);
2529 	for (i = 0; i <= table->mask; i++) {
2530 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2531 		table->hash[i].count = 0;
2532 		spin_lock_init(&table->hash[i].lock);
2533 	}
2534 	for (i = 0; i <= table->mask; i++) {
2535 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2536 		table->hash2[i].count = 0;
2537 		spin_lock_init(&table->hash2[i].lock);
2538 	}
2539 }
2540 
udp_flow_hashrnd(void)2541 u32 udp_flow_hashrnd(void)
2542 {
2543 	static u32 hashrnd __read_mostly;
2544 
2545 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2546 
2547 	return hashrnd;
2548 }
2549 EXPORT_SYMBOL(udp_flow_hashrnd);
2550 
udp_init(void)2551 void __init udp_init(void)
2552 {
2553 	unsigned long limit;
2554 
2555 	udp_table_init(&udp_table, "UDP");
2556 	limit = nr_free_buffer_pages() / 8;
2557 	limit = max(limit, 128UL);
2558 	sysctl_udp_mem[0] = limit / 4 * 3;
2559 	sysctl_udp_mem[1] = limit;
2560 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2561 
2562 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2563 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2564 }
2565