1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	bool is_orphan;
234 	struct list_head update_refs;
235 };
236 
237 struct waiting_dir_move {
238 	struct rb_node node;
239 	u64 ino;
240 	/*
241 	 * There might be some directory that could not be removed because it
242 	 * was waiting for this directory inode to be moved first. Therefore
243 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 	 */
245 	u64 rmdir_ino;
246 };
247 
248 struct orphan_dir_info {
249 	struct rb_node node;
250 	u64 ino;
251 	u64 gen;
252 };
253 
254 struct name_cache_entry {
255 	struct list_head list;
256 	/*
257 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
258 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
259 	 * more then one inum would fall into the same entry, we use radix_list
260 	 * to store the additional entries. radix_list is also used to store
261 	 * entries where two entries have the same inum but different
262 	 * generations.
263 	 */
264 	struct list_head radix_list;
265 	u64 ino;
266 	u64 gen;
267 	u64 parent_ino;
268 	u64 parent_gen;
269 	int ret;
270 	int need_later_update;
271 	int name_len;
272 	char name[];
273 };
274 
275 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
276 
277 static struct waiting_dir_move *
278 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
279 
280 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
281 
need_send_hole(struct send_ctx * sctx)282 static int need_send_hole(struct send_ctx *sctx)
283 {
284 	return (sctx->parent_root && !sctx->cur_inode_new &&
285 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
286 		S_ISREG(sctx->cur_inode_mode));
287 }
288 
fs_path_reset(struct fs_path * p)289 static void fs_path_reset(struct fs_path *p)
290 {
291 	if (p->reversed) {
292 		p->start = p->buf + p->buf_len - 1;
293 		p->end = p->start;
294 		*p->start = 0;
295 	} else {
296 		p->start = p->buf;
297 		p->end = p->start;
298 		*p->start = 0;
299 	}
300 }
301 
fs_path_alloc(void)302 static struct fs_path *fs_path_alloc(void)
303 {
304 	struct fs_path *p;
305 
306 	p = kmalloc(sizeof(*p), GFP_NOFS);
307 	if (!p)
308 		return NULL;
309 	p->reversed = 0;
310 	p->buf = p->inline_buf;
311 	p->buf_len = FS_PATH_INLINE_SIZE;
312 	fs_path_reset(p);
313 	return p;
314 }
315 
fs_path_alloc_reversed(void)316 static struct fs_path *fs_path_alloc_reversed(void)
317 {
318 	struct fs_path *p;
319 
320 	p = fs_path_alloc();
321 	if (!p)
322 		return NULL;
323 	p->reversed = 1;
324 	fs_path_reset(p);
325 	return p;
326 }
327 
fs_path_free(struct fs_path * p)328 static void fs_path_free(struct fs_path *p)
329 {
330 	if (!p)
331 		return;
332 	if (p->buf != p->inline_buf)
333 		kfree(p->buf);
334 	kfree(p);
335 }
336 
fs_path_len(struct fs_path * p)337 static int fs_path_len(struct fs_path *p)
338 {
339 	return p->end - p->start;
340 }
341 
fs_path_ensure_buf(struct fs_path * p,int len)342 static int fs_path_ensure_buf(struct fs_path *p, int len)
343 {
344 	char *tmp_buf;
345 	int path_len;
346 	int old_buf_len;
347 
348 	len++;
349 
350 	if (p->buf_len >= len)
351 		return 0;
352 
353 	if (len > PATH_MAX) {
354 		WARN_ON(1);
355 		return -ENOMEM;
356 	}
357 
358 	path_len = p->end - p->start;
359 	old_buf_len = p->buf_len;
360 
361 	/*
362 	 * First time the inline_buf does not suffice
363 	 */
364 	if (p->buf == p->inline_buf) {
365 		tmp_buf = kmalloc(len, GFP_NOFS);
366 		if (tmp_buf)
367 			memcpy(tmp_buf, p->buf, old_buf_len);
368 	} else {
369 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
370 	}
371 	if (!tmp_buf)
372 		return -ENOMEM;
373 	p->buf = tmp_buf;
374 	/*
375 	 * The real size of the buffer is bigger, this will let the fast path
376 	 * happen most of the time
377 	 */
378 	p->buf_len = ksize(p->buf);
379 
380 	if (p->reversed) {
381 		tmp_buf = p->buf + old_buf_len - path_len - 1;
382 		p->end = p->buf + p->buf_len - 1;
383 		p->start = p->end - path_len;
384 		memmove(p->start, tmp_buf, path_len + 1);
385 	} else {
386 		p->start = p->buf;
387 		p->end = p->start + path_len;
388 	}
389 	return 0;
390 }
391 
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)392 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
393 				   char **prepared)
394 {
395 	int ret;
396 	int new_len;
397 
398 	new_len = p->end - p->start + name_len;
399 	if (p->start != p->end)
400 		new_len++;
401 	ret = fs_path_ensure_buf(p, new_len);
402 	if (ret < 0)
403 		goto out;
404 
405 	if (p->reversed) {
406 		if (p->start != p->end)
407 			*--p->start = '/';
408 		p->start -= name_len;
409 		*prepared = p->start;
410 	} else {
411 		if (p->start != p->end)
412 			*p->end++ = '/';
413 		*prepared = p->end;
414 		p->end += name_len;
415 		*p->end = 0;
416 	}
417 
418 out:
419 	return ret;
420 }
421 
fs_path_add(struct fs_path * p,const char * name,int name_len)422 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
423 {
424 	int ret;
425 	char *prepared;
426 
427 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
428 	if (ret < 0)
429 		goto out;
430 	memcpy(prepared, name, name_len);
431 
432 out:
433 	return ret;
434 }
435 
fs_path_add_path(struct fs_path * p,struct fs_path * p2)436 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
437 {
438 	int ret;
439 	char *prepared;
440 
441 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
442 	if (ret < 0)
443 		goto out;
444 	memcpy(prepared, p2->start, p2->end - p2->start);
445 
446 out:
447 	return ret;
448 }
449 
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)450 static int fs_path_add_from_extent_buffer(struct fs_path *p,
451 					  struct extent_buffer *eb,
452 					  unsigned long off, int len)
453 {
454 	int ret;
455 	char *prepared;
456 
457 	ret = fs_path_prepare_for_add(p, len, &prepared);
458 	if (ret < 0)
459 		goto out;
460 
461 	read_extent_buffer(eb, prepared, off, len);
462 
463 out:
464 	return ret;
465 }
466 
fs_path_copy(struct fs_path * p,struct fs_path * from)467 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
468 {
469 	int ret;
470 
471 	p->reversed = from->reversed;
472 	fs_path_reset(p);
473 
474 	ret = fs_path_add_path(p, from);
475 
476 	return ret;
477 }
478 
479 
fs_path_unreverse(struct fs_path * p)480 static void fs_path_unreverse(struct fs_path *p)
481 {
482 	char *tmp;
483 	int len;
484 
485 	if (!p->reversed)
486 		return;
487 
488 	tmp = p->start;
489 	len = p->end - p->start;
490 	p->start = p->buf;
491 	p->end = p->start + len;
492 	memmove(p->start, tmp, len + 1);
493 	p->reversed = 0;
494 }
495 
alloc_path_for_send(void)496 static struct btrfs_path *alloc_path_for_send(void)
497 {
498 	struct btrfs_path *path;
499 
500 	path = btrfs_alloc_path();
501 	if (!path)
502 		return NULL;
503 	path->search_commit_root = 1;
504 	path->skip_locking = 1;
505 	path->need_commit_sem = 1;
506 	return path;
507 }
508 
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)509 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
510 {
511 	int ret;
512 	mm_segment_t old_fs;
513 	u32 pos = 0;
514 
515 	old_fs = get_fs();
516 	set_fs(KERNEL_DS);
517 
518 	while (pos < len) {
519 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
520 				len - pos, off);
521 		/* TODO handle that correctly */
522 		/*if (ret == -ERESTARTSYS) {
523 			continue;
524 		}*/
525 		if (ret < 0)
526 			goto out;
527 		if (ret == 0) {
528 			ret = -EIO;
529 			goto out;
530 		}
531 		pos += ret;
532 	}
533 
534 	ret = 0;
535 
536 out:
537 	set_fs(old_fs);
538 	return ret;
539 }
540 
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)541 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
542 {
543 	struct btrfs_tlv_header *hdr;
544 	int total_len = sizeof(*hdr) + len;
545 	int left = sctx->send_max_size - sctx->send_size;
546 
547 	if (unlikely(left < total_len))
548 		return -EOVERFLOW;
549 
550 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
551 	hdr->tlv_type = cpu_to_le16(attr);
552 	hdr->tlv_len = cpu_to_le16(len);
553 	memcpy(hdr + 1, data, len);
554 	sctx->send_size += total_len;
555 
556 	return 0;
557 }
558 
559 #define TLV_PUT_DEFINE_INT(bits) \
560 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
561 			u##bits attr, u##bits value)			\
562 	{								\
563 		__le##bits __tmp = cpu_to_le##bits(value);		\
564 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
565 	}
566 
567 TLV_PUT_DEFINE_INT(64)
568 
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)569 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
570 			  const char *str, int len)
571 {
572 	if (len == -1)
573 		len = strlen(str);
574 	return tlv_put(sctx, attr, str, len);
575 }
576 
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)577 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
578 			const u8 *uuid)
579 {
580 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
581 }
582 
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)583 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
584 				  struct extent_buffer *eb,
585 				  struct btrfs_timespec *ts)
586 {
587 	struct btrfs_timespec bts;
588 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
589 	return tlv_put(sctx, attr, &bts, sizeof(bts));
590 }
591 
592 
593 #define TLV_PUT(sctx, attrtype, attrlen, data) \
594 	do { \
595 		ret = tlv_put(sctx, attrtype, attrlen, data); \
596 		if (ret < 0) \
597 			goto tlv_put_failure; \
598 	} while (0)
599 
600 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
601 	do { \
602 		ret = tlv_put_u##bits(sctx, attrtype, value); \
603 		if (ret < 0) \
604 			goto tlv_put_failure; \
605 	} while (0)
606 
607 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
608 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
609 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
610 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
611 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
612 	do { \
613 		ret = tlv_put_string(sctx, attrtype, str, len); \
614 		if (ret < 0) \
615 			goto tlv_put_failure; \
616 	} while (0)
617 #define TLV_PUT_PATH(sctx, attrtype, p) \
618 	do { \
619 		ret = tlv_put_string(sctx, attrtype, p->start, \
620 			p->end - p->start); \
621 		if (ret < 0) \
622 			goto tlv_put_failure; \
623 	} while(0)
624 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
625 	do { \
626 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
627 		if (ret < 0) \
628 			goto tlv_put_failure; \
629 	} while (0)
630 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
631 	do { \
632 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while (0)
636 
send_header(struct send_ctx * sctx)637 static int send_header(struct send_ctx *sctx)
638 {
639 	struct btrfs_stream_header hdr;
640 
641 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
642 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
643 
644 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
645 					&sctx->send_off);
646 }
647 
648 /*
649  * For each command/item we want to send to userspace, we call this function.
650  */
begin_cmd(struct send_ctx * sctx,int cmd)651 static int begin_cmd(struct send_ctx *sctx, int cmd)
652 {
653 	struct btrfs_cmd_header *hdr;
654 
655 	if (WARN_ON(!sctx->send_buf))
656 		return -EINVAL;
657 
658 	BUG_ON(sctx->send_size);
659 
660 	sctx->send_size += sizeof(*hdr);
661 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
662 	hdr->cmd = cpu_to_le16(cmd);
663 
664 	return 0;
665 }
666 
send_cmd(struct send_ctx * sctx)667 static int send_cmd(struct send_ctx *sctx)
668 {
669 	int ret;
670 	struct btrfs_cmd_header *hdr;
671 	u32 crc;
672 
673 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
675 	hdr->crc = 0;
676 
677 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
678 	hdr->crc = cpu_to_le32(crc);
679 
680 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
681 					&sctx->send_off);
682 
683 	sctx->total_send_size += sctx->send_size;
684 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
685 	sctx->send_size = 0;
686 
687 	return ret;
688 }
689 
690 /*
691  * Sends a move instruction to user space
692  */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)693 static int send_rename(struct send_ctx *sctx,
694 		     struct fs_path *from, struct fs_path *to)
695 {
696 	int ret;
697 
698 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
699 
700 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
701 	if (ret < 0)
702 		goto out;
703 
704 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
705 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
706 
707 	ret = send_cmd(sctx);
708 
709 tlv_put_failure:
710 out:
711 	return ret;
712 }
713 
714 /*
715  * Sends a link instruction to user space
716  */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)717 static int send_link(struct send_ctx *sctx,
718 		     struct fs_path *path, struct fs_path *lnk)
719 {
720 	int ret;
721 
722 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
723 
724 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
725 	if (ret < 0)
726 		goto out;
727 
728 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
729 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
730 
731 	ret = send_cmd(sctx);
732 
733 tlv_put_failure:
734 out:
735 	return ret;
736 }
737 
738 /*
739  * Sends an unlink instruction to user space
740  */
send_unlink(struct send_ctx * sctx,struct fs_path * path)741 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
742 {
743 	int ret;
744 
745 verbose_printk("btrfs: send_unlink %s\n", path->start);
746 
747 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
748 	if (ret < 0)
749 		goto out;
750 
751 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752 
753 	ret = send_cmd(sctx);
754 
755 tlv_put_failure:
756 out:
757 	return ret;
758 }
759 
760 /*
761  * Sends a rmdir instruction to user space
762  */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)763 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
764 {
765 	int ret;
766 
767 verbose_printk("btrfs: send_rmdir %s\n", path->start);
768 
769 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
770 	if (ret < 0)
771 		goto out;
772 
773 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
774 
775 	ret = send_cmd(sctx);
776 
777 tlv_put_failure:
778 out:
779 	return ret;
780 }
781 
782 /*
783  * Helper function to retrieve some fields from an inode item.
784  */
__get_inode_info(struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)785 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
786 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
787 			  u64 *gid, u64 *rdev)
788 {
789 	int ret;
790 	struct btrfs_inode_item *ii;
791 	struct btrfs_key key;
792 
793 	key.objectid = ino;
794 	key.type = BTRFS_INODE_ITEM_KEY;
795 	key.offset = 0;
796 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
797 	if (ret) {
798 		if (ret > 0)
799 			ret = -ENOENT;
800 		return ret;
801 	}
802 
803 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
804 			struct btrfs_inode_item);
805 	if (size)
806 		*size = btrfs_inode_size(path->nodes[0], ii);
807 	if (gen)
808 		*gen = btrfs_inode_generation(path->nodes[0], ii);
809 	if (mode)
810 		*mode = btrfs_inode_mode(path->nodes[0], ii);
811 	if (uid)
812 		*uid = btrfs_inode_uid(path->nodes[0], ii);
813 	if (gid)
814 		*gid = btrfs_inode_gid(path->nodes[0], ii);
815 	if (rdev)
816 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
817 
818 	return ret;
819 }
820 
get_inode_info(struct btrfs_root * root,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)821 static int get_inode_info(struct btrfs_root *root,
822 			  u64 ino, u64 *size, u64 *gen,
823 			  u64 *mode, u64 *uid, u64 *gid,
824 			  u64 *rdev)
825 {
826 	struct btrfs_path *path;
827 	int ret;
828 
829 	path = alloc_path_for_send();
830 	if (!path)
831 		return -ENOMEM;
832 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
833 			       rdev);
834 	btrfs_free_path(path);
835 	return ret;
836 }
837 
838 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
839 				   struct fs_path *p,
840 				   void *ctx);
841 
842 /*
843  * Helper function to iterate the entries in ONE btrfs_inode_ref or
844  * btrfs_inode_extref.
845  * The iterate callback may return a non zero value to stop iteration. This can
846  * be a negative value for error codes or 1 to simply stop it.
847  *
848  * path must point to the INODE_REF or INODE_EXTREF when called.
849  */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)850 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
851 			     struct btrfs_key *found_key, int resolve,
852 			     iterate_inode_ref_t iterate, void *ctx)
853 {
854 	struct extent_buffer *eb = path->nodes[0];
855 	struct btrfs_item *item;
856 	struct btrfs_inode_ref *iref;
857 	struct btrfs_inode_extref *extref;
858 	struct btrfs_path *tmp_path;
859 	struct fs_path *p;
860 	u32 cur = 0;
861 	u32 total;
862 	int slot = path->slots[0];
863 	u32 name_len;
864 	char *start;
865 	int ret = 0;
866 	int num = 0;
867 	int index;
868 	u64 dir;
869 	unsigned long name_off;
870 	unsigned long elem_size;
871 	unsigned long ptr;
872 
873 	p = fs_path_alloc_reversed();
874 	if (!p)
875 		return -ENOMEM;
876 
877 	tmp_path = alloc_path_for_send();
878 	if (!tmp_path) {
879 		fs_path_free(p);
880 		return -ENOMEM;
881 	}
882 
883 
884 	if (found_key->type == BTRFS_INODE_REF_KEY) {
885 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
886 						    struct btrfs_inode_ref);
887 		item = btrfs_item_nr(slot);
888 		total = btrfs_item_size(eb, item);
889 		elem_size = sizeof(*iref);
890 	} else {
891 		ptr = btrfs_item_ptr_offset(eb, slot);
892 		total = btrfs_item_size_nr(eb, slot);
893 		elem_size = sizeof(*extref);
894 	}
895 
896 	while (cur < total) {
897 		fs_path_reset(p);
898 
899 		if (found_key->type == BTRFS_INODE_REF_KEY) {
900 			iref = (struct btrfs_inode_ref *)(ptr + cur);
901 			name_len = btrfs_inode_ref_name_len(eb, iref);
902 			name_off = (unsigned long)(iref + 1);
903 			index = btrfs_inode_ref_index(eb, iref);
904 			dir = found_key->offset;
905 		} else {
906 			extref = (struct btrfs_inode_extref *)(ptr + cur);
907 			name_len = btrfs_inode_extref_name_len(eb, extref);
908 			name_off = (unsigned long)&extref->name;
909 			index = btrfs_inode_extref_index(eb, extref);
910 			dir = btrfs_inode_extref_parent(eb, extref);
911 		}
912 
913 		if (resolve) {
914 			start = btrfs_ref_to_path(root, tmp_path, name_len,
915 						  name_off, eb, dir,
916 						  p->buf, p->buf_len);
917 			if (IS_ERR(start)) {
918 				ret = PTR_ERR(start);
919 				goto out;
920 			}
921 			if (start < p->buf) {
922 				/* overflow , try again with larger buffer */
923 				ret = fs_path_ensure_buf(p,
924 						p->buf_len + p->buf - start);
925 				if (ret < 0)
926 					goto out;
927 				start = btrfs_ref_to_path(root, tmp_path,
928 							  name_len, name_off,
929 							  eb, dir,
930 							  p->buf, p->buf_len);
931 				if (IS_ERR(start)) {
932 					ret = PTR_ERR(start);
933 					goto out;
934 				}
935 				BUG_ON(start < p->buf);
936 			}
937 			p->start = start;
938 		} else {
939 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
940 							     name_len);
941 			if (ret < 0)
942 				goto out;
943 		}
944 
945 		cur += elem_size + name_len;
946 		ret = iterate(num, dir, index, p, ctx);
947 		if (ret)
948 			goto out;
949 		num++;
950 	}
951 
952 out:
953 	btrfs_free_path(tmp_path);
954 	fs_path_free(p);
955 	return ret;
956 }
957 
958 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
959 				  const char *name, int name_len,
960 				  const char *data, int data_len,
961 				  u8 type, void *ctx);
962 
963 /*
964  * Helper function to iterate the entries in ONE btrfs_dir_item.
965  * The iterate callback may return a non zero value to stop iteration. This can
966  * be a negative value for error codes or 1 to simply stop it.
967  *
968  * path must point to the dir item when called.
969  */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,iterate_dir_item_t iterate,void * ctx)970 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
971 			    struct btrfs_key *found_key,
972 			    iterate_dir_item_t iterate, void *ctx)
973 {
974 	int ret = 0;
975 	struct extent_buffer *eb;
976 	struct btrfs_item *item;
977 	struct btrfs_dir_item *di;
978 	struct btrfs_key di_key;
979 	char *buf = NULL;
980 	int buf_len;
981 	u32 name_len;
982 	u32 data_len;
983 	u32 cur;
984 	u32 len;
985 	u32 total;
986 	int slot;
987 	int num;
988 	u8 type;
989 
990 	/*
991 	 * Start with a small buffer (1 page). If later we end up needing more
992 	 * space, which can happen for xattrs on a fs with a leaf size greater
993 	 * then the page size, attempt to increase the buffer. Typically xattr
994 	 * values are small.
995 	 */
996 	buf_len = PATH_MAX;
997 	buf = kmalloc(buf_len, GFP_NOFS);
998 	if (!buf) {
999 		ret = -ENOMEM;
1000 		goto out;
1001 	}
1002 
1003 	eb = path->nodes[0];
1004 	slot = path->slots[0];
1005 	item = btrfs_item_nr(slot);
1006 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1007 	cur = 0;
1008 	len = 0;
1009 	total = btrfs_item_size(eb, item);
1010 
1011 	num = 0;
1012 	while (cur < total) {
1013 		name_len = btrfs_dir_name_len(eb, di);
1014 		data_len = btrfs_dir_data_len(eb, di);
1015 		type = btrfs_dir_type(eb, di);
1016 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1017 
1018 		if (type == BTRFS_FT_XATTR) {
1019 			if (name_len > XATTR_NAME_MAX) {
1020 				ret = -ENAMETOOLONG;
1021 				goto out;
1022 			}
1023 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1024 				ret = -E2BIG;
1025 				goto out;
1026 			}
1027 		} else {
1028 			/*
1029 			 * Path too long
1030 			 */
1031 			if (name_len + data_len > PATH_MAX) {
1032 				ret = -ENAMETOOLONG;
1033 				goto out;
1034 			}
1035 		}
1036 
1037 		if (name_len + data_len > buf_len) {
1038 			buf_len = name_len + data_len;
1039 			if (is_vmalloc_addr(buf)) {
1040 				vfree(buf);
1041 				buf = NULL;
1042 			} else {
1043 				char *tmp = krealloc(buf, buf_len,
1044 						     GFP_NOFS | __GFP_NOWARN);
1045 
1046 				if (!tmp)
1047 					kfree(buf);
1048 				buf = tmp;
1049 			}
1050 			if (!buf) {
1051 				buf = vmalloc(buf_len);
1052 				if (!buf) {
1053 					ret = -ENOMEM;
1054 					goto out;
1055 				}
1056 			}
1057 		}
1058 
1059 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1060 				name_len + data_len);
1061 
1062 		len = sizeof(*di) + name_len + data_len;
1063 		di = (struct btrfs_dir_item *)((char *)di + len);
1064 		cur += len;
1065 
1066 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1067 				data_len, type, ctx);
1068 		if (ret < 0)
1069 			goto out;
1070 		if (ret) {
1071 			ret = 0;
1072 			goto out;
1073 		}
1074 
1075 		num++;
1076 	}
1077 
1078 out:
1079 	kvfree(buf);
1080 	return ret;
1081 }
1082 
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1083 static int __copy_first_ref(int num, u64 dir, int index,
1084 			    struct fs_path *p, void *ctx)
1085 {
1086 	int ret;
1087 	struct fs_path *pt = ctx;
1088 
1089 	ret = fs_path_copy(pt, p);
1090 	if (ret < 0)
1091 		return ret;
1092 
1093 	/* we want the first only */
1094 	return 1;
1095 }
1096 
1097 /*
1098  * Retrieve the first path of an inode. If an inode has more then one
1099  * ref/hardlink, this is ignored.
1100  */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1101 static int get_inode_path(struct btrfs_root *root,
1102 			  u64 ino, struct fs_path *path)
1103 {
1104 	int ret;
1105 	struct btrfs_key key, found_key;
1106 	struct btrfs_path *p;
1107 
1108 	p = alloc_path_for_send();
1109 	if (!p)
1110 		return -ENOMEM;
1111 
1112 	fs_path_reset(path);
1113 
1114 	key.objectid = ino;
1115 	key.type = BTRFS_INODE_REF_KEY;
1116 	key.offset = 0;
1117 
1118 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1119 	if (ret < 0)
1120 		goto out;
1121 	if (ret) {
1122 		ret = 1;
1123 		goto out;
1124 	}
1125 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1126 	if (found_key.objectid != ino ||
1127 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1128 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1129 		ret = -ENOENT;
1130 		goto out;
1131 	}
1132 
1133 	ret = iterate_inode_ref(root, p, &found_key, 1,
1134 				__copy_first_ref, path);
1135 	if (ret < 0)
1136 		goto out;
1137 	ret = 0;
1138 
1139 out:
1140 	btrfs_free_path(p);
1141 	return ret;
1142 }
1143 
1144 struct backref_ctx {
1145 	struct send_ctx *sctx;
1146 
1147 	struct btrfs_path *path;
1148 	/* number of total found references */
1149 	u64 found;
1150 
1151 	/*
1152 	 * used for clones found in send_root. clones found behind cur_objectid
1153 	 * and cur_offset are not considered as allowed clones.
1154 	 */
1155 	u64 cur_objectid;
1156 	u64 cur_offset;
1157 
1158 	/* may be truncated in case it's the last extent in a file */
1159 	u64 extent_len;
1160 
1161 	/* Just to check for bugs in backref resolving */
1162 	int found_itself;
1163 };
1164 
__clone_root_cmp_bsearch(const void * key,const void * elt)1165 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1166 {
1167 	u64 root = (u64)(uintptr_t)key;
1168 	struct clone_root *cr = (struct clone_root *)elt;
1169 
1170 	if (root < cr->root->objectid)
1171 		return -1;
1172 	if (root > cr->root->objectid)
1173 		return 1;
1174 	return 0;
1175 }
1176 
__clone_root_cmp_sort(const void * e1,const void * e2)1177 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1178 {
1179 	struct clone_root *cr1 = (struct clone_root *)e1;
1180 	struct clone_root *cr2 = (struct clone_root *)e2;
1181 
1182 	if (cr1->root->objectid < cr2->root->objectid)
1183 		return -1;
1184 	if (cr1->root->objectid > cr2->root->objectid)
1185 		return 1;
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Called for every backref that is found for the current extent.
1191  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1192  */
__iterate_backrefs(u64 ino,u64 offset,u64 root,void * ctx_)1193 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1194 {
1195 	struct backref_ctx *bctx = ctx_;
1196 	struct clone_root *found;
1197 	int ret;
1198 	u64 i_size;
1199 
1200 	/* First check if the root is in the list of accepted clone sources */
1201 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1202 			bctx->sctx->clone_roots_cnt,
1203 			sizeof(struct clone_root),
1204 			__clone_root_cmp_bsearch);
1205 	if (!found)
1206 		return 0;
1207 
1208 	if (found->root == bctx->sctx->send_root &&
1209 	    ino == bctx->cur_objectid &&
1210 	    offset == bctx->cur_offset) {
1211 		bctx->found_itself = 1;
1212 	}
1213 
1214 	/*
1215 	 * There are inodes that have extents that lie behind its i_size. Don't
1216 	 * accept clones from these extents.
1217 	 */
1218 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1219 			       NULL, NULL, NULL);
1220 	btrfs_release_path(bctx->path);
1221 	if (ret < 0)
1222 		return ret;
1223 
1224 	if (offset + bctx->extent_len > i_size)
1225 		return 0;
1226 
1227 	/*
1228 	 * Make sure we don't consider clones from send_root that are
1229 	 * behind the current inode/offset.
1230 	 */
1231 	if (found->root == bctx->sctx->send_root) {
1232 		/*
1233 		 * TODO for the moment we don't accept clones from the inode
1234 		 * that is currently send. We may change this when
1235 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1236 		 * file.
1237 		 */
1238 		if (ino >= bctx->cur_objectid)
1239 			return 0;
1240 #if 0
1241 		if (ino > bctx->cur_objectid)
1242 			return 0;
1243 		if (offset + bctx->extent_len > bctx->cur_offset)
1244 			return 0;
1245 #endif
1246 	}
1247 
1248 	bctx->found++;
1249 	found->found_refs++;
1250 	if (ino < found->ino) {
1251 		found->ino = ino;
1252 		found->offset = offset;
1253 	} else if (found->ino == ino) {
1254 		/*
1255 		 * same extent found more then once in the same file.
1256 		 */
1257 		if (found->offset > offset + bctx->extent_len)
1258 			found->offset = offset;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /*
1265  * Given an inode, offset and extent item, it finds a good clone for a clone
1266  * instruction. Returns -ENOENT when none could be found. The function makes
1267  * sure that the returned clone is usable at the point where sending is at the
1268  * moment. This means, that no clones are accepted which lie behind the current
1269  * inode+offset.
1270  *
1271  * path must point to the extent item when called.
1272  */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1273 static int find_extent_clone(struct send_ctx *sctx,
1274 			     struct btrfs_path *path,
1275 			     u64 ino, u64 data_offset,
1276 			     u64 ino_size,
1277 			     struct clone_root **found)
1278 {
1279 	int ret;
1280 	int extent_type;
1281 	u64 logical;
1282 	u64 disk_byte;
1283 	u64 num_bytes;
1284 	u64 extent_item_pos;
1285 	u64 flags = 0;
1286 	struct btrfs_file_extent_item *fi;
1287 	struct extent_buffer *eb = path->nodes[0];
1288 	struct backref_ctx *backref_ctx = NULL;
1289 	struct clone_root *cur_clone_root;
1290 	struct btrfs_key found_key;
1291 	struct btrfs_path *tmp_path;
1292 	int compressed;
1293 	u32 i;
1294 
1295 	tmp_path = alloc_path_for_send();
1296 	if (!tmp_path)
1297 		return -ENOMEM;
1298 
1299 	/* We only use this path under the commit sem */
1300 	tmp_path->need_commit_sem = 0;
1301 
1302 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1303 	if (!backref_ctx) {
1304 		ret = -ENOMEM;
1305 		goto out;
1306 	}
1307 
1308 	backref_ctx->path = tmp_path;
1309 
1310 	if (data_offset >= ino_size) {
1311 		/*
1312 		 * There may be extents that lie behind the file's size.
1313 		 * I at least had this in combination with snapshotting while
1314 		 * writing large files.
1315 		 */
1316 		ret = 0;
1317 		goto out;
1318 	}
1319 
1320 	fi = btrfs_item_ptr(eb, path->slots[0],
1321 			struct btrfs_file_extent_item);
1322 	extent_type = btrfs_file_extent_type(eb, fi);
1323 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1324 		ret = -ENOENT;
1325 		goto out;
1326 	}
1327 	compressed = btrfs_file_extent_compression(eb, fi);
1328 
1329 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1330 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1331 	if (disk_byte == 0) {
1332 		ret = -ENOENT;
1333 		goto out;
1334 	}
1335 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1336 
1337 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1338 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1339 				  &found_key, &flags);
1340 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1341 	btrfs_release_path(tmp_path);
1342 
1343 	if (ret < 0)
1344 		goto out;
1345 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1346 		ret = -EIO;
1347 		goto out;
1348 	}
1349 
1350 	/*
1351 	 * Setup the clone roots.
1352 	 */
1353 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1354 		cur_clone_root = sctx->clone_roots + i;
1355 		cur_clone_root->ino = (u64)-1;
1356 		cur_clone_root->offset = 0;
1357 		cur_clone_root->found_refs = 0;
1358 	}
1359 
1360 	backref_ctx->sctx = sctx;
1361 	backref_ctx->found = 0;
1362 	backref_ctx->cur_objectid = ino;
1363 	backref_ctx->cur_offset = data_offset;
1364 	backref_ctx->found_itself = 0;
1365 	backref_ctx->extent_len = num_bytes;
1366 
1367 	/*
1368 	 * The last extent of a file may be too large due to page alignment.
1369 	 * We need to adjust extent_len in this case so that the checks in
1370 	 * __iterate_backrefs work.
1371 	 */
1372 	if (data_offset + num_bytes >= ino_size)
1373 		backref_ctx->extent_len = ino_size - data_offset;
1374 
1375 	/*
1376 	 * Now collect all backrefs.
1377 	 */
1378 	if (compressed == BTRFS_COMPRESS_NONE)
1379 		extent_item_pos = logical - found_key.objectid;
1380 	else
1381 		extent_item_pos = 0;
1382 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1383 					found_key.objectid, extent_item_pos, 1,
1384 					__iterate_backrefs, backref_ctx);
1385 
1386 	if (ret < 0)
1387 		goto out;
1388 
1389 	if (!backref_ctx->found_itself) {
1390 		/* found a bug in backref code? */
1391 		ret = -EIO;
1392 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1393 				"send_root. inode=%llu, offset=%llu, "
1394 				"disk_byte=%llu found extent=%llu",
1395 				ino, data_offset, disk_byte, found_key.objectid);
1396 		goto out;
1397 	}
1398 
1399 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1400 		"ino=%llu, "
1401 		"num_bytes=%llu, logical=%llu\n",
1402 		data_offset, ino, num_bytes, logical);
1403 
1404 	if (!backref_ctx->found)
1405 		verbose_printk("btrfs:    no clones found\n");
1406 
1407 	cur_clone_root = NULL;
1408 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1409 		if (sctx->clone_roots[i].found_refs) {
1410 			if (!cur_clone_root)
1411 				cur_clone_root = sctx->clone_roots + i;
1412 			else if (sctx->clone_roots[i].root == sctx->send_root)
1413 				/* prefer clones from send_root over others */
1414 				cur_clone_root = sctx->clone_roots + i;
1415 		}
1416 
1417 	}
1418 
1419 	if (cur_clone_root) {
1420 		if (compressed != BTRFS_COMPRESS_NONE) {
1421 			/*
1422 			 * Offsets given by iterate_extent_inodes() are relative
1423 			 * to the start of the extent, we need to add logical
1424 			 * offset from the file extent item.
1425 			 * (See why at backref.c:check_extent_in_eb())
1426 			 */
1427 			cur_clone_root->offset += btrfs_file_extent_offset(eb,
1428 									   fi);
1429 		}
1430 		*found = cur_clone_root;
1431 		ret = 0;
1432 	} else {
1433 		ret = -ENOENT;
1434 	}
1435 
1436 out:
1437 	btrfs_free_path(tmp_path);
1438 	kfree(backref_ctx);
1439 	return ret;
1440 }
1441 
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1442 static int read_symlink(struct btrfs_root *root,
1443 			u64 ino,
1444 			struct fs_path *dest)
1445 {
1446 	int ret;
1447 	struct btrfs_path *path;
1448 	struct btrfs_key key;
1449 	struct btrfs_file_extent_item *ei;
1450 	u8 type;
1451 	u8 compression;
1452 	unsigned long off;
1453 	int len;
1454 
1455 	path = alloc_path_for_send();
1456 	if (!path)
1457 		return -ENOMEM;
1458 
1459 	key.objectid = ino;
1460 	key.type = BTRFS_EXTENT_DATA_KEY;
1461 	key.offset = 0;
1462 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1463 	if (ret < 0)
1464 		goto out;
1465 	if (ret) {
1466 		/*
1467 		 * An empty symlink inode. Can happen in rare error paths when
1468 		 * creating a symlink (transaction committed before the inode
1469 		 * eviction handler removed the symlink inode items and a crash
1470 		 * happened in between or the subvol was snapshoted in between).
1471 		 * Print an informative message to dmesg/syslog so that the user
1472 		 * can delete the symlink.
1473 		 */
1474 		btrfs_err(root->fs_info,
1475 			  "Found empty symlink inode %llu at root %llu",
1476 			  ino, root->root_key.objectid);
1477 		ret = -EIO;
1478 		goto out;
1479 	}
1480 
1481 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1482 			struct btrfs_file_extent_item);
1483 	type = btrfs_file_extent_type(path->nodes[0], ei);
1484 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1485 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1486 	BUG_ON(compression);
1487 
1488 	off = btrfs_file_extent_inline_start(ei);
1489 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1490 
1491 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1492 
1493 out:
1494 	btrfs_free_path(path);
1495 	return ret;
1496 }
1497 
1498 /*
1499  * Helper function to generate a file name that is unique in the root of
1500  * send_root and parent_root. This is used to generate names for orphan inodes.
1501  */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1502 static int gen_unique_name(struct send_ctx *sctx,
1503 			   u64 ino, u64 gen,
1504 			   struct fs_path *dest)
1505 {
1506 	int ret = 0;
1507 	struct btrfs_path *path;
1508 	struct btrfs_dir_item *di;
1509 	char tmp[64];
1510 	int len;
1511 	u64 idx = 0;
1512 
1513 	path = alloc_path_for_send();
1514 	if (!path)
1515 		return -ENOMEM;
1516 
1517 	while (1) {
1518 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1519 				ino, gen, idx);
1520 		ASSERT(len < sizeof(tmp));
1521 
1522 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1523 				path, BTRFS_FIRST_FREE_OBJECTID,
1524 				tmp, strlen(tmp), 0);
1525 		btrfs_release_path(path);
1526 		if (IS_ERR(di)) {
1527 			ret = PTR_ERR(di);
1528 			goto out;
1529 		}
1530 		if (di) {
1531 			/* not unique, try again */
1532 			idx++;
1533 			continue;
1534 		}
1535 
1536 		if (!sctx->parent_root) {
1537 			/* unique */
1538 			ret = 0;
1539 			break;
1540 		}
1541 
1542 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1543 				path, BTRFS_FIRST_FREE_OBJECTID,
1544 				tmp, strlen(tmp), 0);
1545 		btrfs_release_path(path);
1546 		if (IS_ERR(di)) {
1547 			ret = PTR_ERR(di);
1548 			goto out;
1549 		}
1550 		if (di) {
1551 			/* not unique, try again */
1552 			idx++;
1553 			continue;
1554 		}
1555 		/* unique */
1556 		break;
1557 	}
1558 
1559 	ret = fs_path_add(dest, tmp, strlen(tmp));
1560 
1561 out:
1562 	btrfs_free_path(path);
1563 	return ret;
1564 }
1565 
1566 enum inode_state {
1567 	inode_state_no_change,
1568 	inode_state_will_create,
1569 	inode_state_did_create,
1570 	inode_state_will_delete,
1571 	inode_state_did_delete,
1572 };
1573 
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen)1574 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1575 {
1576 	int ret;
1577 	int left_ret;
1578 	int right_ret;
1579 	u64 left_gen;
1580 	u64 right_gen;
1581 
1582 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1583 			NULL, NULL);
1584 	if (ret < 0 && ret != -ENOENT)
1585 		goto out;
1586 	left_ret = ret;
1587 
1588 	if (!sctx->parent_root) {
1589 		right_ret = -ENOENT;
1590 	} else {
1591 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1592 				NULL, NULL, NULL, NULL);
1593 		if (ret < 0 && ret != -ENOENT)
1594 			goto out;
1595 		right_ret = ret;
1596 	}
1597 
1598 	if (!left_ret && !right_ret) {
1599 		if (left_gen == gen && right_gen == gen) {
1600 			ret = inode_state_no_change;
1601 		} else if (left_gen == gen) {
1602 			if (ino < sctx->send_progress)
1603 				ret = inode_state_did_create;
1604 			else
1605 				ret = inode_state_will_create;
1606 		} else if (right_gen == gen) {
1607 			if (ino < sctx->send_progress)
1608 				ret = inode_state_did_delete;
1609 			else
1610 				ret = inode_state_will_delete;
1611 		} else  {
1612 			ret = -ENOENT;
1613 		}
1614 	} else if (!left_ret) {
1615 		if (left_gen == gen) {
1616 			if (ino < sctx->send_progress)
1617 				ret = inode_state_did_create;
1618 			else
1619 				ret = inode_state_will_create;
1620 		} else {
1621 			ret = -ENOENT;
1622 		}
1623 	} else if (!right_ret) {
1624 		if (right_gen == gen) {
1625 			if (ino < sctx->send_progress)
1626 				ret = inode_state_did_delete;
1627 			else
1628 				ret = inode_state_will_delete;
1629 		} else {
1630 			ret = -ENOENT;
1631 		}
1632 	} else {
1633 		ret = -ENOENT;
1634 	}
1635 
1636 out:
1637 	return ret;
1638 }
1639 
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen)1640 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1641 {
1642 	int ret;
1643 
1644 	ret = get_cur_inode_state(sctx, ino, gen);
1645 	if (ret < 0)
1646 		goto out;
1647 
1648 	if (ret == inode_state_no_change ||
1649 	    ret == inode_state_did_create ||
1650 	    ret == inode_state_will_delete)
1651 		ret = 1;
1652 	else
1653 		ret = 0;
1654 
1655 out:
1656 	return ret;
1657 }
1658 
1659 /*
1660  * Helper function to lookup a dir item in a dir.
1661  */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode,u8 * found_type)1662 static int lookup_dir_item_inode(struct btrfs_root *root,
1663 				 u64 dir, const char *name, int name_len,
1664 				 u64 *found_inode,
1665 				 u8 *found_type)
1666 {
1667 	int ret = 0;
1668 	struct btrfs_dir_item *di;
1669 	struct btrfs_key key;
1670 	struct btrfs_path *path;
1671 
1672 	path = alloc_path_for_send();
1673 	if (!path)
1674 		return -ENOMEM;
1675 
1676 	di = btrfs_lookup_dir_item(NULL, root, path,
1677 			dir, name, name_len, 0);
1678 	if (!di) {
1679 		ret = -ENOENT;
1680 		goto out;
1681 	}
1682 	if (IS_ERR(di)) {
1683 		ret = PTR_ERR(di);
1684 		goto out;
1685 	}
1686 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1687 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1688 		ret = -ENOENT;
1689 		goto out;
1690 	}
1691 	*found_inode = key.objectid;
1692 	*found_type = btrfs_dir_type(path->nodes[0], di);
1693 
1694 out:
1695 	btrfs_free_path(path);
1696 	return ret;
1697 }
1698 
1699 /*
1700  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1701  * generation of the parent dir and the name of the dir entry.
1702  */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1703 static int get_first_ref(struct btrfs_root *root, u64 ino,
1704 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1705 {
1706 	int ret;
1707 	struct btrfs_key key;
1708 	struct btrfs_key found_key;
1709 	struct btrfs_path *path;
1710 	int len;
1711 	u64 parent_dir;
1712 
1713 	path = alloc_path_for_send();
1714 	if (!path)
1715 		return -ENOMEM;
1716 
1717 	key.objectid = ino;
1718 	key.type = BTRFS_INODE_REF_KEY;
1719 	key.offset = 0;
1720 
1721 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1722 	if (ret < 0)
1723 		goto out;
1724 	if (!ret)
1725 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1726 				path->slots[0]);
1727 	if (ret || found_key.objectid != ino ||
1728 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1729 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1730 		ret = -ENOENT;
1731 		goto out;
1732 	}
1733 
1734 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1735 		struct btrfs_inode_ref *iref;
1736 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1737 				      struct btrfs_inode_ref);
1738 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1739 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1740 						     (unsigned long)(iref + 1),
1741 						     len);
1742 		parent_dir = found_key.offset;
1743 	} else {
1744 		struct btrfs_inode_extref *extref;
1745 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1746 					struct btrfs_inode_extref);
1747 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1748 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1749 					(unsigned long)&extref->name, len);
1750 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1751 	}
1752 	if (ret < 0)
1753 		goto out;
1754 	btrfs_release_path(path);
1755 
1756 	if (dir_gen) {
1757 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1758 				     NULL, NULL, NULL);
1759 		if (ret < 0)
1760 			goto out;
1761 	}
1762 
1763 	*dir = parent_dir;
1764 
1765 out:
1766 	btrfs_free_path(path);
1767 	return ret;
1768 }
1769 
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)1770 static int is_first_ref(struct btrfs_root *root,
1771 			u64 ino, u64 dir,
1772 			const char *name, int name_len)
1773 {
1774 	int ret;
1775 	struct fs_path *tmp_name;
1776 	u64 tmp_dir;
1777 
1778 	tmp_name = fs_path_alloc();
1779 	if (!tmp_name)
1780 		return -ENOMEM;
1781 
1782 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1783 	if (ret < 0)
1784 		goto out;
1785 
1786 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1787 		ret = 0;
1788 		goto out;
1789 	}
1790 
1791 	ret = !memcmp(tmp_name->start, name, name_len);
1792 
1793 out:
1794 	fs_path_free(tmp_name);
1795 	return ret;
1796 }
1797 
1798 /*
1799  * Used by process_recorded_refs to determine if a new ref would overwrite an
1800  * already existing ref. In case it detects an overwrite, it returns the
1801  * inode/gen in who_ino/who_gen.
1802  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1803  * to make sure later references to the overwritten inode are possible.
1804  * Orphanizing is however only required for the first ref of an inode.
1805  * process_recorded_refs does an additional is_first_ref check to see if
1806  * orphanizing is really required.
1807  */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen)1808 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1809 			      const char *name, int name_len,
1810 			      u64 *who_ino, u64 *who_gen)
1811 {
1812 	int ret = 0;
1813 	u64 gen;
1814 	u64 other_inode = 0;
1815 	u8 other_type = 0;
1816 
1817 	if (!sctx->parent_root)
1818 		goto out;
1819 
1820 	ret = is_inode_existent(sctx, dir, dir_gen);
1821 	if (ret <= 0)
1822 		goto out;
1823 
1824 	/*
1825 	 * If we have a parent root we need to verify that the parent dir was
1826 	 * not delted and then re-created, if it was then we have no overwrite
1827 	 * and we can just unlink this entry.
1828 	 */
1829 	if (sctx->parent_root) {
1830 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1831 				     NULL, NULL, NULL);
1832 		if (ret < 0 && ret != -ENOENT)
1833 			goto out;
1834 		if (ret) {
1835 			ret = 0;
1836 			goto out;
1837 		}
1838 		if (gen != dir_gen)
1839 			goto out;
1840 	}
1841 
1842 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1843 			&other_inode, &other_type);
1844 	if (ret < 0 && ret != -ENOENT)
1845 		goto out;
1846 	if (ret) {
1847 		ret = 0;
1848 		goto out;
1849 	}
1850 
1851 	/*
1852 	 * Check if the overwritten ref was already processed. If yes, the ref
1853 	 * was already unlinked/moved, so we can safely assume that we will not
1854 	 * overwrite anything at this point in time.
1855 	 */
1856 	if (other_inode > sctx->send_progress) {
1857 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1858 				who_gen, NULL, NULL, NULL, NULL);
1859 		if (ret < 0)
1860 			goto out;
1861 
1862 		ret = 1;
1863 		*who_ino = other_inode;
1864 	} else {
1865 		ret = 0;
1866 	}
1867 
1868 out:
1869 	return ret;
1870 }
1871 
1872 /*
1873  * Checks if the ref was overwritten by an already processed inode. This is
1874  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1875  * thus the orphan name needs be used.
1876  * process_recorded_refs also uses it to avoid unlinking of refs that were
1877  * overwritten.
1878  */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)1879 static int did_overwrite_ref(struct send_ctx *sctx,
1880 			    u64 dir, u64 dir_gen,
1881 			    u64 ino, u64 ino_gen,
1882 			    const char *name, int name_len)
1883 {
1884 	int ret = 0;
1885 	u64 gen;
1886 	u64 ow_inode;
1887 	u8 other_type;
1888 
1889 	if (!sctx->parent_root)
1890 		goto out;
1891 
1892 	ret = is_inode_existent(sctx, dir, dir_gen);
1893 	if (ret <= 0)
1894 		goto out;
1895 
1896 	/* check if the ref was overwritten by another ref */
1897 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1898 			&ow_inode, &other_type);
1899 	if (ret < 0 && ret != -ENOENT)
1900 		goto out;
1901 	if (ret) {
1902 		/* was never and will never be overwritten */
1903 		ret = 0;
1904 		goto out;
1905 	}
1906 
1907 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1908 			NULL, NULL);
1909 	if (ret < 0)
1910 		goto out;
1911 
1912 	if (ow_inode == ino && gen == ino_gen) {
1913 		ret = 0;
1914 		goto out;
1915 	}
1916 
1917 	/* we know that it is or will be overwritten. check this now */
1918 	if (ow_inode < sctx->send_progress)
1919 		ret = 1;
1920 	else
1921 		ret = 0;
1922 
1923 out:
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1929  * that got overwritten. This is used by process_recorded_refs to determine
1930  * if it has to use the path as returned by get_cur_path or the orphan name.
1931  */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)1932 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1933 {
1934 	int ret = 0;
1935 	struct fs_path *name = NULL;
1936 	u64 dir;
1937 	u64 dir_gen;
1938 
1939 	if (!sctx->parent_root)
1940 		goto out;
1941 
1942 	name = fs_path_alloc();
1943 	if (!name)
1944 		return -ENOMEM;
1945 
1946 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1947 	if (ret < 0)
1948 		goto out;
1949 
1950 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1951 			name->start, fs_path_len(name));
1952 
1953 out:
1954 	fs_path_free(name);
1955 	return ret;
1956 }
1957 
1958 /*
1959  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1960  * so we need to do some special handling in case we have clashes. This function
1961  * takes care of this with the help of name_cache_entry::radix_list.
1962  * In case of error, nce is kfreed.
1963  */
name_cache_insert(struct send_ctx * sctx,struct name_cache_entry * nce)1964 static int name_cache_insert(struct send_ctx *sctx,
1965 			     struct name_cache_entry *nce)
1966 {
1967 	int ret = 0;
1968 	struct list_head *nce_head;
1969 
1970 	nce_head = radix_tree_lookup(&sctx->name_cache,
1971 			(unsigned long)nce->ino);
1972 	if (!nce_head) {
1973 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1974 		if (!nce_head) {
1975 			kfree(nce);
1976 			return -ENOMEM;
1977 		}
1978 		INIT_LIST_HEAD(nce_head);
1979 
1980 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1981 		if (ret < 0) {
1982 			kfree(nce_head);
1983 			kfree(nce);
1984 			return ret;
1985 		}
1986 	}
1987 	list_add_tail(&nce->radix_list, nce_head);
1988 	list_add_tail(&nce->list, &sctx->name_cache_list);
1989 	sctx->name_cache_size++;
1990 
1991 	return ret;
1992 }
1993 
name_cache_delete(struct send_ctx * sctx,struct name_cache_entry * nce)1994 static void name_cache_delete(struct send_ctx *sctx,
1995 			      struct name_cache_entry *nce)
1996 {
1997 	struct list_head *nce_head;
1998 
1999 	nce_head = radix_tree_lookup(&sctx->name_cache,
2000 			(unsigned long)nce->ino);
2001 	if (!nce_head) {
2002 		btrfs_err(sctx->send_root->fs_info,
2003 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2004 			nce->ino, sctx->name_cache_size);
2005 	}
2006 
2007 	list_del(&nce->radix_list);
2008 	list_del(&nce->list);
2009 	sctx->name_cache_size--;
2010 
2011 	/*
2012 	 * We may not get to the final release of nce_head if the lookup fails
2013 	 */
2014 	if (nce_head && list_empty(nce_head)) {
2015 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2016 		kfree(nce_head);
2017 	}
2018 }
2019 
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2020 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2021 						    u64 ino, u64 gen)
2022 {
2023 	struct list_head *nce_head;
2024 	struct name_cache_entry *cur;
2025 
2026 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2027 	if (!nce_head)
2028 		return NULL;
2029 
2030 	list_for_each_entry(cur, nce_head, radix_list) {
2031 		if (cur->ino == ino && cur->gen == gen)
2032 			return cur;
2033 	}
2034 	return NULL;
2035 }
2036 
2037 /*
2038  * Removes the entry from the list and adds it back to the end. This marks the
2039  * entry as recently used so that name_cache_clean_unused does not remove it.
2040  */
name_cache_used(struct send_ctx * sctx,struct name_cache_entry * nce)2041 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2042 {
2043 	list_del(&nce->list);
2044 	list_add_tail(&nce->list, &sctx->name_cache_list);
2045 }
2046 
2047 /*
2048  * Remove some entries from the beginning of name_cache_list.
2049  */
name_cache_clean_unused(struct send_ctx * sctx)2050 static void name_cache_clean_unused(struct send_ctx *sctx)
2051 {
2052 	struct name_cache_entry *nce;
2053 
2054 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2055 		return;
2056 
2057 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2058 		nce = list_entry(sctx->name_cache_list.next,
2059 				struct name_cache_entry, list);
2060 		name_cache_delete(sctx, nce);
2061 		kfree(nce);
2062 	}
2063 }
2064 
name_cache_free(struct send_ctx * sctx)2065 static void name_cache_free(struct send_ctx *sctx)
2066 {
2067 	struct name_cache_entry *nce;
2068 
2069 	while (!list_empty(&sctx->name_cache_list)) {
2070 		nce = list_entry(sctx->name_cache_list.next,
2071 				struct name_cache_entry, list);
2072 		name_cache_delete(sctx, nce);
2073 		kfree(nce);
2074 	}
2075 }
2076 
2077 /*
2078  * Used by get_cur_path for each ref up to the root.
2079  * Returns 0 if it succeeded.
2080  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2081  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2082  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2083  * Returns <0 in case of error.
2084  */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2085 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2086 				     u64 ino, u64 gen,
2087 				     u64 *parent_ino,
2088 				     u64 *parent_gen,
2089 				     struct fs_path *dest)
2090 {
2091 	int ret;
2092 	int nce_ret;
2093 	struct name_cache_entry *nce = NULL;
2094 
2095 	/*
2096 	 * First check if we already did a call to this function with the same
2097 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2098 	 * return the cached result.
2099 	 */
2100 	nce = name_cache_search(sctx, ino, gen);
2101 	if (nce) {
2102 		if (ino < sctx->send_progress && nce->need_later_update) {
2103 			name_cache_delete(sctx, nce);
2104 			kfree(nce);
2105 			nce = NULL;
2106 		} else {
2107 			name_cache_used(sctx, nce);
2108 			*parent_ino = nce->parent_ino;
2109 			*parent_gen = nce->parent_gen;
2110 			ret = fs_path_add(dest, nce->name, nce->name_len);
2111 			if (ret < 0)
2112 				goto out;
2113 			ret = nce->ret;
2114 			goto out;
2115 		}
2116 	}
2117 
2118 	/*
2119 	 * If the inode is not existent yet, add the orphan name and return 1.
2120 	 * This should only happen for the parent dir that we determine in
2121 	 * __record_new_ref
2122 	 */
2123 	ret = is_inode_existent(sctx, ino, gen);
2124 	if (ret < 0)
2125 		goto out;
2126 
2127 	if (!ret) {
2128 		ret = gen_unique_name(sctx, ino, gen, dest);
2129 		if (ret < 0)
2130 			goto out;
2131 		ret = 1;
2132 		goto out_cache;
2133 	}
2134 
2135 	/*
2136 	 * Depending on whether the inode was already processed or not, use
2137 	 * send_root or parent_root for ref lookup.
2138 	 */
2139 	if (ino < sctx->send_progress)
2140 		ret = get_first_ref(sctx->send_root, ino,
2141 				    parent_ino, parent_gen, dest);
2142 	else
2143 		ret = get_first_ref(sctx->parent_root, ino,
2144 				    parent_ino, parent_gen, dest);
2145 	if (ret < 0)
2146 		goto out;
2147 
2148 	/*
2149 	 * Check if the ref was overwritten by an inode's ref that was processed
2150 	 * earlier. If yes, treat as orphan and return 1.
2151 	 */
2152 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2153 			dest->start, dest->end - dest->start);
2154 	if (ret < 0)
2155 		goto out;
2156 	if (ret) {
2157 		fs_path_reset(dest);
2158 		ret = gen_unique_name(sctx, ino, gen, dest);
2159 		if (ret < 0)
2160 			goto out;
2161 		ret = 1;
2162 	}
2163 
2164 out_cache:
2165 	/*
2166 	 * Store the result of the lookup in the name cache.
2167 	 */
2168 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2169 	if (!nce) {
2170 		ret = -ENOMEM;
2171 		goto out;
2172 	}
2173 
2174 	nce->ino = ino;
2175 	nce->gen = gen;
2176 	nce->parent_ino = *parent_ino;
2177 	nce->parent_gen = *parent_gen;
2178 	nce->name_len = fs_path_len(dest);
2179 	nce->ret = ret;
2180 	strcpy(nce->name, dest->start);
2181 
2182 	if (ino < sctx->send_progress)
2183 		nce->need_later_update = 0;
2184 	else
2185 		nce->need_later_update = 1;
2186 
2187 	nce_ret = name_cache_insert(sctx, nce);
2188 	if (nce_ret < 0)
2189 		ret = nce_ret;
2190 	name_cache_clean_unused(sctx);
2191 
2192 out:
2193 	return ret;
2194 }
2195 
2196 /*
2197  * Magic happens here. This function returns the first ref to an inode as it
2198  * would look like while receiving the stream at this point in time.
2199  * We walk the path up to the root. For every inode in between, we check if it
2200  * was already processed/sent. If yes, we continue with the parent as found
2201  * in send_root. If not, we continue with the parent as found in parent_root.
2202  * If we encounter an inode that was deleted at this point in time, we use the
2203  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2204  * that were not created yet and overwritten inodes/refs.
2205  *
2206  * When do we have have orphan inodes:
2207  * 1. When an inode is freshly created and thus no valid refs are available yet
2208  * 2. When a directory lost all it's refs (deleted) but still has dir items
2209  *    inside which were not processed yet (pending for move/delete). If anyone
2210  *    tried to get the path to the dir items, it would get a path inside that
2211  *    orphan directory.
2212  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2213  *    of an unprocessed inode. If in that case the first ref would be
2214  *    overwritten, the overwritten inode gets "orphanized". Later when we
2215  *    process this overwritten inode, it is restored at a new place by moving
2216  *    the orphan inode.
2217  *
2218  * sctx->send_progress tells this function at which point in time receiving
2219  * would be.
2220  */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2221 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2222 			struct fs_path *dest)
2223 {
2224 	int ret = 0;
2225 	struct fs_path *name = NULL;
2226 	u64 parent_inode = 0;
2227 	u64 parent_gen = 0;
2228 	int stop = 0;
2229 
2230 	name = fs_path_alloc();
2231 	if (!name) {
2232 		ret = -ENOMEM;
2233 		goto out;
2234 	}
2235 
2236 	dest->reversed = 1;
2237 	fs_path_reset(dest);
2238 
2239 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2240 		fs_path_reset(name);
2241 
2242 		if (is_waiting_for_rm(sctx, ino)) {
2243 			ret = gen_unique_name(sctx, ino, gen, name);
2244 			if (ret < 0)
2245 				goto out;
2246 			ret = fs_path_add_path(dest, name);
2247 			break;
2248 		}
2249 
2250 		if (is_waiting_for_move(sctx, ino)) {
2251 			ret = get_first_ref(sctx->parent_root, ino,
2252 					    &parent_inode, &parent_gen, name);
2253 		} else {
2254 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2255 							&parent_inode,
2256 							&parent_gen, name);
2257 			if (ret)
2258 				stop = 1;
2259 		}
2260 
2261 		if (ret < 0)
2262 			goto out;
2263 
2264 		ret = fs_path_add_path(dest, name);
2265 		if (ret < 0)
2266 			goto out;
2267 
2268 		ino = parent_inode;
2269 		gen = parent_gen;
2270 	}
2271 
2272 out:
2273 	fs_path_free(name);
2274 	if (!ret)
2275 		fs_path_unreverse(dest);
2276 	return ret;
2277 }
2278 
2279 /*
2280  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2281  */
send_subvol_begin(struct send_ctx * sctx)2282 static int send_subvol_begin(struct send_ctx *sctx)
2283 {
2284 	int ret;
2285 	struct btrfs_root *send_root = sctx->send_root;
2286 	struct btrfs_root *parent_root = sctx->parent_root;
2287 	struct btrfs_path *path;
2288 	struct btrfs_key key;
2289 	struct btrfs_root_ref *ref;
2290 	struct extent_buffer *leaf;
2291 	char *name = NULL;
2292 	int namelen;
2293 
2294 	path = btrfs_alloc_path();
2295 	if (!path)
2296 		return -ENOMEM;
2297 
2298 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2299 	if (!name) {
2300 		btrfs_free_path(path);
2301 		return -ENOMEM;
2302 	}
2303 
2304 	key.objectid = send_root->objectid;
2305 	key.type = BTRFS_ROOT_BACKREF_KEY;
2306 	key.offset = 0;
2307 
2308 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2309 				&key, path, 1, 0);
2310 	if (ret < 0)
2311 		goto out;
2312 	if (ret) {
2313 		ret = -ENOENT;
2314 		goto out;
2315 	}
2316 
2317 	leaf = path->nodes[0];
2318 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2319 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2320 	    key.objectid != send_root->objectid) {
2321 		ret = -ENOENT;
2322 		goto out;
2323 	}
2324 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2325 	namelen = btrfs_root_ref_name_len(leaf, ref);
2326 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2327 	btrfs_release_path(path);
2328 
2329 	if (parent_root) {
2330 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2331 		if (ret < 0)
2332 			goto out;
2333 	} else {
2334 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2335 		if (ret < 0)
2336 			goto out;
2337 	}
2338 
2339 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2340 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2341 			sctx->send_root->root_item.uuid);
2342 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2343 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2344 	if (parent_root) {
2345 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2346 				sctx->parent_root->root_item.uuid);
2347 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2348 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2349 	}
2350 
2351 	ret = send_cmd(sctx);
2352 
2353 tlv_put_failure:
2354 out:
2355 	btrfs_free_path(path);
2356 	kfree(name);
2357 	return ret;
2358 }
2359 
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2360 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2361 {
2362 	int ret = 0;
2363 	struct fs_path *p;
2364 
2365 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2366 
2367 	p = fs_path_alloc();
2368 	if (!p)
2369 		return -ENOMEM;
2370 
2371 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2372 	if (ret < 0)
2373 		goto out;
2374 
2375 	ret = get_cur_path(sctx, ino, gen, p);
2376 	if (ret < 0)
2377 		goto out;
2378 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2379 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2380 
2381 	ret = send_cmd(sctx);
2382 
2383 tlv_put_failure:
2384 out:
2385 	fs_path_free(p);
2386 	return ret;
2387 }
2388 
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2389 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2390 {
2391 	int ret = 0;
2392 	struct fs_path *p;
2393 
2394 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2395 
2396 	p = fs_path_alloc();
2397 	if (!p)
2398 		return -ENOMEM;
2399 
2400 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2401 	if (ret < 0)
2402 		goto out;
2403 
2404 	ret = get_cur_path(sctx, ino, gen, p);
2405 	if (ret < 0)
2406 		goto out;
2407 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2408 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2409 
2410 	ret = send_cmd(sctx);
2411 
2412 tlv_put_failure:
2413 out:
2414 	fs_path_free(p);
2415 	return ret;
2416 }
2417 
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2418 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2419 {
2420 	int ret = 0;
2421 	struct fs_path *p;
2422 
2423 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2424 
2425 	p = fs_path_alloc();
2426 	if (!p)
2427 		return -ENOMEM;
2428 
2429 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2430 	if (ret < 0)
2431 		goto out;
2432 
2433 	ret = get_cur_path(sctx, ino, gen, p);
2434 	if (ret < 0)
2435 		goto out;
2436 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2437 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2438 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2439 
2440 	ret = send_cmd(sctx);
2441 
2442 tlv_put_failure:
2443 out:
2444 	fs_path_free(p);
2445 	return ret;
2446 }
2447 
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2448 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2449 {
2450 	int ret = 0;
2451 	struct fs_path *p = NULL;
2452 	struct btrfs_inode_item *ii;
2453 	struct btrfs_path *path = NULL;
2454 	struct extent_buffer *eb;
2455 	struct btrfs_key key;
2456 	int slot;
2457 
2458 verbose_printk("btrfs: send_utimes %llu\n", ino);
2459 
2460 	p = fs_path_alloc();
2461 	if (!p)
2462 		return -ENOMEM;
2463 
2464 	path = alloc_path_for_send();
2465 	if (!path) {
2466 		ret = -ENOMEM;
2467 		goto out;
2468 	}
2469 
2470 	key.objectid = ino;
2471 	key.type = BTRFS_INODE_ITEM_KEY;
2472 	key.offset = 0;
2473 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2474 	if (ret < 0)
2475 		goto out;
2476 
2477 	eb = path->nodes[0];
2478 	slot = path->slots[0];
2479 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2480 
2481 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2482 	if (ret < 0)
2483 		goto out;
2484 
2485 	ret = get_cur_path(sctx, ino, gen, p);
2486 	if (ret < 0)
2487 		goto out;
2488 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2489 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2490 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2491 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2492 	/* TODO Add otime support when the otime patches get into upstream */
2493 
2494 	ret = send_cmd(sctx);
2495 
2496 tlv_put_failure:
2497 out:
2498 	fs_path_free(p);
2499 	btrfs_free_path(path);
2500 	return ret;
2501 }
2502 
2503 /*
2504  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2505  * a valid path yet because we did not process the refs yet. So, the inode
2506  * is created as orphan.
2507  */
send_create_inode(struct send_ctx * sctx,u64 ino)2508 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2509 {
2510 	int ret = 0;
2511 	struct fs_path *p;
2512 	int cmd;
2513 	u64 gen;
2514 	u64 mode;
2515 	u64 rdev;
2516 
2517 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2518 
2519 	p = fs_path_alloc();
2520 	if (!p)
2521 		return -ENOMEM;
2522 
2523 	if (ino != sctx->cur_ino) {
2524 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2525 				     NULL, NULL, &rdev);
2526 		if (ret < 0)
2527 			goto out;
2528 	} else {
2529 		gen = sctx->cur_inode_gen;
2530 		mode = sctx->cur_inode_mode;
2531 		rdev = sctx->cur_inode_rdev;
2532 	}
2533 
2534 	if (S_ISREG(mode)) {
2535 		cmd = BTRFS_SEND_C_MKFILE;
2536 	} else if (S_ISDIR(mode)) {
2537 		cmd = BTRFS_SEND_C_MKDIR;
2538 	} else if (S_ISLNK(mode)) {
2539 		cmd = BTRFS_SEND_C_SYMLINK;
2540 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2541 		cmd = BTRFS_SEND_C_MKNOD;
2542 	} else if (S_ISFIFO(mode)) {
2543 		cmd = BTRFS_SEND_C_MKFIFO;
2544 	} else if (S_ISSOCK(mode)) {
2545 		cmd = BTRFS_SEND_C_MKSOCK;
2546 	} else {
2547 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2548 				(int)(mode & S_IFMT));
2549 		ret = -ENOTSUPP;
2550 		goto out;
2551 	}
2552 
2553 	ret = begin_cmd(sctx, cmd);
2554 	if (ret < 0)
2555 		goto out;
2556 
2557 	ret = gen_unique_name(sctx, ino, gen, p);
2558 	if (ret < 0)
2559 		goto out;
2560 
2561 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2562 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2563 
2564 	if (S_ISLNK(mode)) {
2565 		fs_path_reset(p);
2566 		ret = read_symlink(sctx->send_root, ino, p);
2567 		if (ret < 0)
2568 			goto out;
2569 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2570 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2571 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2572 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2573 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2574 	}
2575 
2576 	ret = send_cmd(sctx);
2577 	if (ret < 0)
2578 		goto out;
2579 
2580 
2581 tlv_put_failure:
2582 out:
2583 	fs_path_free(p);
2584 	return ret;
2585 }
2586 
2587 /*
2588  * We need some special handling for inodes that get processed before the parent
2589  * directory got created. See process_recorded_refs for details.
2590  * This function does the check if we already created the dir out of order.
2591  */
did_create_dir(struct send_ctx * sctx,u64 dir)2592 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2593 {
2594 	int ret = 0;
2595 	struct btrfs_path *path = NULL;
2596 	struct btrfs_key key;
2597 	struct btrfs_key found_key;
2598 	struct btrfs_key di_key;
2599 	struct extent_buffer *eb;
2600 	struct btrfs_dir_item *di;
2601 	int slot;
2602 
2603 	path = alloc_path_for_send();
2604 	if (!path) {
2605 		ret = -ENOMEM;
2606 		goto out;
2607 	}
2608 
2609 	key.objectid = dir;
2610 	key.type = BTRFS_DIR_INDEX_KEY;
2611 	key.offset = 0;
2612 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2613 	if (ret < 0)
2614 		goto out;
2615 
2616 	while (1) {
2617 		eb = path->nodes[0];
2618 		slot = path->slots[0];
2619 		if (slot >= btrfs_header_nritems(eb)) {
2620 			ret = btrfs_next_leaf(sctx->send_root, path);
2621 			if (ret < 0) {
2622 				goto out;
2623 			} else if (ret > 0) {
2624 				ret = 0;
2625 				break;
2626 			}
2627 			continue;
2628 		}
2629 
2630 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2631 		if (found_key.objectid != key.objectid ||
2632 		    found_key.type != key.type) {
2633 			ret = 0;
2634 			goto out;
2635 		}
2636 
2637 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2638 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2639 
2640 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2641 		    di_key.objectid < sctx->send_progress) {
2642 			ret = 1;
2643 			goto out;
2644 		}
2645 
2646 		path->slots[0]++;
2647 	}
2648 
2649 out:
2650 	btrfs_free_path(path);
2651 	return ret;
2652 }
2653 
2654 /*
2655  * Only creates the inode if it is:
2656  * 1. Not a directory
2657  * 2. Or a directory which was not created already due to out of order
2658  *    directories. See did_create_dir and process_recorded_refs for details.
2659  */
send_create_inode_if_needed(struct send_ctx * sctx)2660 static int send_create_inode_if_needed(struct send_ctx *sctx)
2661 {
2662 	int ret;
2663 
2664 	if (S_ISDIR(sctx->cur_inode_mode)) {
2665 		ret = did_create_dir(sctx, sctx->cur_ino);
2666 		if (ret < 0)
2667 			goto out;
2668 		if (ret) {
2669 			ret = 0;
2670 			goto out;
2671 		}
2672 	}
2673 
2674 	ret = send_create_inode(sctx, sctx->cur_ino);
2675 	if (ret < 0)
2676 		goto out;
2677 
2678 out:
2679 	return ret;
2680 }
2681 
2682 struct recorded_ref {
2683 	struct list_head list;
2684 	char *dir_path;
2685 	char *name;
2686 	struct fs_path *full_path;
2687 	u64 dir;
2688 	u64 dir_gen;
2689 	int dir_path_len;
2690 	int name_len;
2691 };
2692 
2693 /*
2694  * We need to process new refs before deleted refs, but compare_tree gives us
2695  * everything mixed. So we first record all refs and later process them.
2696  * This function is a helper to record one ref.
2697  */
__record_ref(struct list_head * head,u64 dir,u64 dir_gen,struct fs_path * path)2698 static int __record_ref(struct list_head *head, u64 dir,
2699 		      u64 dir_gen, struct fs_path *path)
2700 {
2701 	struct recorded_ref *ref;
2702 
2703 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2704 	if (!ref)
2705 		return -ENOMEM;
2706 
2707 	ref->dir = dir;
2708 	ref->dir_gen = dir_gen;
2709 	ref->full_path = path;
2710 
2711 	ref->name = (char *)kbasename(ref->full_path->start);
2712 	ref->name_len = ref->full_path->end - ref->name;
2713 	ref->dir_path = ref->full_path->start;
2714 	if (ref->name == ref->full_path->start)
2715 		ref->dir_path_len = 0;
2716 	else
2717 		ref->dir_path_len = ref->full_path->end -
2718 				ref->full_path->start - 1 - ref->name_len;
2719 
2720 	list_add_tail(&ref->list, head);
2721 	return 0;
2722 }
2723 
dup_ref(struct recorded_ref * ref,struct list_head * list)2724 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2725 {
2726 	struct recorded_ref *new;
2727 
2728 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2729 	if (!new)
2730 		return -ENOMEM;
2731 
2732 	new->dir = ref->dir;
2733 	new->dir_gen = ref->dir_gen;
2734 	new->full_path = NULL;
2735 	INIT_LIST_HEAD(&new->list);
2736 	list_add_tail(&new->list, list);
2737 	return 0;
2738 }
2739 
__free_recorded_refs(struct list_head * head)2740 static void __free_recorded_refs(struct list_head *head)
2741 {
2742 	struct recorded_ref *cur;
2743 
2744 	while (!list_empty(head)) {
2745 		cur = list_entry(head->next, struct recorded_ref, list);
2746 		fs_path_free(cur->full_path);
2747 		list_del(&cur->list);
2748 		kfree(cur);
2749 	}
2750 }
2751 
free_recorded_refs(struct send_ctx * sctx)2752 static void free_recorded_refs(struct send_ctx *sctx)
2753 {
2754 	__free_recorded_refs(&sctx->new_refs);
2755 	__free_recorded_refs(&sctx->deleted_refs);
2756 }
2757 
2758 /*
2759  * Renames/moves a file/dir to its orphan name. Used when the first
2760  * ref of an unprocessed inode gets overwritten and for all non empty
2761  * directories.
2762  */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)2763 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2764 			  struct fs_path *path)
2765 {
2766 	int ret;
2767 	struct fs_path *orphan;
2768 
2769 	orphan = fs_path_alloc();
2770 	if (!orphan)
2771 		return -ENOMEM;
2772 
2773 	ret = gen_unique_name(sctx, ino, gen, orphan);
2774 	if (ret < 0)
2775 		goto out;
2776 
2777 	ret = send_rename(sctx, path, orphan);
2778 
2779 out:
2780 	fs_path_free(orphan);
2781 	return ret;
2782 }
2783 
2784 static struct orphan_dir_info *
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2785 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2786 {
2787 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2788 	struct rb_node *parent = NULL;
2789 	struct orphan_dir_info *entry, *odi;
2790 
2791 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2792 	if (!odi)
2793 		return ERR_PTR(-ENOMEM);
2794 	odi->ino = dir_ino;
2795 	odi->gen = 0;
2796 
2797 	while (*p) {
2798 		parent = *p;
2799 		entry = rb_entry(parent, struct orphan_dir_info, node);
2800 		if (dir_ino < entry->ino) {
2801 			p = &(*p)->rb_left;
2802 		} else if (dir_ino > entry->ino) {
2803 			p = &(*p)->rb_right;
2804 		} else {
2805 			kfree(odi);
2806 			return entry;
2807 		}
2808 	}
2809 
2810 	rb_link_node(&odi->node, parent, p);
2811 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2812 	return odi;
2813 }
2814 
2815 static struct orphan_dir_info *
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2816 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2817 {
2818 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2819 	struct orphan_dir_info *entry;
2820 
2821 	while (n) {
2822 		entry = rb_entry(n, struct orphan_dir_info, node);
2823 		if (dir_ino < entry->ino)
2824 			n = n->rb_left;
2825 		else if (dir_ino > entry->ino)
2826 			n = n->rb_right;
2827 		else
2828 			return entry;
2829 	}
2830 	return NULL;
2831 }
2832 
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino)2833 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2834 {
2835 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2836 
2837 	return odi != NULL;
2838 }
2839 
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)2840 static void free_orphan_dir_info(struct send_ctx *sctx,
2841 				 struct orphan_dir_info *odi)
2842 {
2843 	if (!odi)
2844 		return;
2845 	rb_erase(&odi->node, &sctx->orphan_dirs);
2846 	kfree(odi);
2847 }
2848 
2849 /*
2850  * Returns 1 if a directory can be removed at this point in time.
2851  * We check this by iterating all dir items and checking if the inode behind
2852  * the dir item was already processed.
2853  */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 send_progress)2854 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2855 		     u64 send_progress)
2856 {
2857 	int ret = 0;
2858 	struct btrfs_root *root = sctx->parent_root;
2859 	struct btrfs_path *path;
2860 	struct btrfs_key key;
2861 	struct btrfs_key found_key;
2862 	struct btrfs_key loc;
2863 	struct btrfs_dir_item *di;
2864 
2865 	/*
2866 	 * Don't try to rmdir the top/root subvolume dir.
2867 	 */
2868 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2869 		return 0;
2870 
2871 	path = alloc_path_for_send();
2872 	if (!path)
2873 		return -ENOMEM;
2874 
2875 	key.objectid = dir;
2876 	key.type = BTRFS_DIR_INDEX_KEY;
2877 	key.offset = 0;
2878 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2879 	if (ret < 0)
2880 		goto out;
2881 
2882 	while (1) {
2883 		struct waiting_dir_move *dm;
2884 
2885 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2886 			ret = btrfs_next_leaf(root, path);
2887 			if (ret < 0)
2888 				goto out;
2889 			else if (ret > 0)
2890 				break;
2891 			continue;
2892 		}
2893 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2894 				      path->slots[0]);
2895 		if (found_key.objectid != key.objectid ||
2896 		    found_key.type != key.type)
2897 			break;
2898 
2899 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2900 				struct btrfs_dir_item);
2901 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2902 
2903 		dm = get_waiting_dir_move(sctx, loc.objectid);
2904 		if (dm) {
2905 			struct orphan_dir_info *odi;
2906 
2907 			odi = add_orphan_dir_info(sctx, dir);
2908 			if (IS_ERR(odi)) {
2909 				ret = PTR_ERR(odi);
2910 				goto out;
2911 			}
2912 			odi->gen = dir_gen;
2913 			dm->rmdir_ino = dir;
2914 			ret = 0;
2915 			goto out;
2916 		}
2917 
2918 		if (loc.objectid > send_progress) {
2919 			ret = 0;
2920 			goto out;
2921 		}
2922 
2923 		path->slots[0]++;
2924 	}
2925 
2926 	ret = 1;
2927 
2928 out:
2929 	btrfs_free_path(path);
2930 	return ret;
2931 }
2932 
is_waiting_for_move(struct send_ctx * sctx,u64 ino)2933 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2934 {
2935 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2936 
2937 	return entry != NULL;
2938 }
2939 
add_waiting_dir_move(struct send_ctx * sctx,u64 ino)2940 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2941 {
2942 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2943 	struct rb_node *parent = NULL;
2944 	struct waiting_dir_move *entry, *dm;
2945 
2946 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2947 	if (!dm)
2948 		return -ENOMEM;
2949 	dm->ino = ino;
2950 	dm->rmdir_ino = 0;
2951 
2952 	while (*p) {
2953 		parent = *p;
2954 		entry = rb_entry(parent, struct waiting_dir_move, node);
2955 		if (ino < entry->ino) {
2956 			p = &(*p)->rb_left;
2957 		} else if (ino > entry->ino) {
2958 			p = &(*p)->rb_right;
2959 		} else {
2960 			kfree(dm);
2961 			return -EEXIST;
2962 		}
2963 	}
2964 
2965 	rb_link_node(&dm->node, parent, p);
2966 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2967 	return 0;
2968 }
2969 
2970 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)2971 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2972 {
2973 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2974 	struct waiting_dir_move *entry;
2975 
2976 	while (n) {
2977 		entry = rb_entry(n, struct waiting_dir_move, node);
2978 		if (ino < entry->ino)
2979 			n = n->rb_left;
2980 		else if (ino > entry->ino)
2981 			n = n->rb_right;
2982 		else
2983 			return entry;
2984 	}
2985 	return NULL;
2986 }
2987 
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)2988 static void free_waiting_dir_move(struct send_ctx *sctx,
2989 				  struct waiting_dir_move *dm)
2990 {
2991 	if (!dm)
2992 		return;
2993 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
2994 	kfree(dm);
2995 }
2996 
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)2997 static int add_pending_dir_move(struct send_ctx *sctx,
2998 				u64 ino,
2999 				u64 ino_gen,
3000 				u64 parent_ino,
3001 				struct list_head *new_refs,
3002 				struct list_head *deleted_refs,
3003 				const bool is_orphan)
3004 {
3005 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3006 	struct rb_node *parent = NULL;
3007 	struct pending_dir_move *entry = NULL, *pm;
3008 	struct recorded_ref *cur;
3009 	int exists = 0;
3010 	int ret;
3011 
3012 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
3013 	if (!pm)
3014 		return -ENOMEM;
3015 	pm->parent_ino = parent_ino;
3016 	pm->ino = ino;
3017 	pm->gen = ino_gen;
3018 	pm->is_orphan = is_orphan;
3019 	INIT_LIST_HEAD(&pm->list);
3020 	INIT_LIST_HEAD(&pm->update_refs);
3021 	RB_CLEAR_NODE(&pm->node);
3022 
3023 	while (*p) {
3024 		parent = *p;
3025 		entry = rb_entry(parent, struct pending_dir_move, node);
3026 		if (parent_ino < entry->parent_ino) {
3027 			p = &(*p)->rb_left;
3028 		} else if (parent_ino > entry->parent_ino) {
3029 			p = &(*p)->rb_right;
3030 		} else {
3031 			exists = 1;
3032 			break;
3033 		}
3034 	}
3035 
3036 	list_for_each_entry(cur, deleted_refs, list) {
3037 		ret = dup_ref(cur, &pm->update_refs);
3038 		if (ret < 0)
3039 			goto out;
3040 	}
3041 	list_for_each_entry(cur, new_refs, list) {
3042 		ret = dup_ref(cur, &pm->update_refs);
3043 		if (ret < 0)
3044 			goto out;
3045 	}
3046 
3047 	ret = add_waiting_dir_move(sctx, pm->ino);
3048 	if (ret)
3049 		goto out;
3050 
3051 	if (exists) {
3052 		list_add_tail(&pm->list, &entry->list);
3053 	} else {
3054 		rb_link_node(&pm->node, parent, p);
3055 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3056 	}
3057 	ret = 0;
3058 out:
3059 	if (ret) {
3060 		__free_recorded_refs(&pm->update_refs);
3061 		kfree(pm);
3062 	}
3063 	return ret;
3064 }
3065 
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3066 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3067 						      u64 parent_ino)
3068 {
3069 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3070 	struct pending_dir_move *entry;
3071 
3072 	while (n) {
3073 		entry = rb_entry(n, struct pending_dir_move, node);
3074 		if (parent_ino < entry->parent_ino)
3075 			n = n->rb_left;
3076 		else if (parent_ino > entry->parent_ino)
3077 			n = n->rb_right;
3078 		else
3079 			return entry;
3080 	}
3081 	return NULL;
3082 }
3083 
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3084 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3085 {
3086 	struct fs_path *from_path = NULL;
3087 	struct fs_path *to_path = NULL;
3088 	struct fs_path *name = NULL;
3089 	u64 orig_progress = sctx->send_progress;
3090 	struct recorded_ref *cur;
3091 	u64 parent_ino, parent_gen;
3092 	struct waiting_dir_move *dm = NULL;
3093 	u64 rmdir_ino = 0;
3094 	int ret;
3095 
3096 	name = fs_path_alloc();
3097 	from_path = fs_path_alloc();
3098 	if (!name || !from_path) {
3099 		ret = -ENOMEM;
3100 		goto out;
3101 	}
3102 
3103 	dm = get_waiting_dir_move(sctx, pm->ino);
3104 	ASSERT(dm);
3105 	rmdir_ino = dm->rmdir_ino;
3106 	free_waiting_dir_move(sctx, dm);
3107 
3108 	if (pm->is_orphan) {
3109 		ret = gen_unique_name(sctx, pm->ino,
3110 				      pm->gen, from_path);
3111 	} else {
3112 		ret = get_first_ref(sctx->parent_root, pm->ino,
3113 				    &parent_ino, &parent_gen, name);
3114 		if (ret < 0)
3115 			goto out;
3116 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3117 				   from_path);
3118 		if (ret < 0)
3119 			goto out;
3120 		ret = fs_path_add_path(from_path, name);
3121 	}
3122 	if (ret < 0)
3123 		goto out;
3124 
3125 	sctx->send_progress = sctx->cur_ino + 1;
3126 	fs_path_reset(name);
3127 	to_path = name;
3128 	name = NULL;
3129 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3130 	if (ret < 0)
3131 		goto out;
3132 
3133 	ret = send_rename(sctx, from_path, to_path);
3134 	if (ret < 0)
3135 		goto out;
3136 
3137 	if (rmdir_ino) {
3138 		struct orphan_dir_info *odi;
3139 
3140 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3141 		if (!odi) {
3142 			/* already deleted */
3143 			goto finish;
3144 		}
3145 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3146 		if (ret < 0)
3147 			goto out;
3148 		if (!ret)
3149 			goto finish;
3150 
3151 		name = fs_path_alloc();
3152 		if (!name) {
3153 			ret = -ENOMEM;
3154 			goto out;
3155 		}
3156 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3157 		if (ret < 0)
3158 			goto out;
3159 		ret = send_rmdir(sctx, name);
3160 		if (ret < 0)
3161 			goto out;
3162 		free_orphan_dir_info(sctx, odi);
3163 	}
3164 
3165 finish:
3166 	ret = send_utimes(sctx, pm->ino, pm->gen);
3167 	if (ret < 0)
3168 		goto out;
3169 
3170 	/*
3171 	 * After rename/move, need to update the utimes of both new parent(s)
3172 	 * and old parent(s).
3173 	 */
3174 	list_for_each_entry(cur, &pm->update_refs, list) {
3175 		if (cur->dir == rmdir_ino)
3176 			continue;
3177 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3178 		if (ret < 0)
3179 			goto out;
3180 	}
3181 
3182 out:
3183 	fs_path_free(name);
3184 	fs_path_free(from_path);
3185 	fs_path_free(to_path);
3186 	sctx->send_progress = orig_progress;
3187 
3188 	return ret;
3189 }
3190 
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3191 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3192 {
3193 	if (!list_empty(&m->list))
3194 		list_del(&m->list);
3195 	if (!RB_EMPTY_NODE(&m->node))
3196 		rb_erase(&m->node, &sctx->pending_dir_moves);
3197 	__free_recorded_refs(&m->update_refs);
3198 	kfree(m);
3199 }
3200 
tail_append_pending_moves(struct pending_dir_move * moves,struct list_head * stack)3201 static void tail_append_pending_moves(struct pending_dir_move *moves,
3202 				      struct list_head *stack)
3203 {
3204 	if (list_empty(&moves->list)) {
3205 		list_add_tail(&moves->list, stack);
3206 	} else {
3207 		LIST_HEAD(list);
3208 		list_splice_init(&moves->list, &list);
3209 		list_add_tail(&moves->list, stack);
3210 		list_splice_tail(&list, stack);
3211 	}
3212 }
3213 
apply_children_dir_moves(struct send_ctx * sctx)3214 static int apply_children_dir_moves(struct send_ctx *sctx)
3215 {
3216 	struct pending_dir_move *pm;
3217 	struct list_head stack;
3218 	u64 parent_ino = sctx->cur_ino;
3219 	int ret = 0;
3220 
3221 	pm = get_pending_dir_moves(sctx, parent_ino);
3222 	if (!pm)
3223 		return 0;
3224 
3225 	INIT_LIST_HEAD(&stack);
3226 	tail_append_pending_moves(pm, &stack);
3227 
3228 	while (!list_empty(&stack)) {
3229 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3230 		parent_ino = pm->ino;
3231 		ret = apply_dir_move(sctx, pm);
3232 		free_pending_move(sctx, pm);
3233 		if (ret)
3234 			goto out;
3235 		pm = get_pending_dir_moves(sctx, parent_ino);
3236 		if (pm)
3237 			tail_append_pending_moves(pm, &stack);
3238 	}
3239 	return 0;
3240 
3241 out:
3242 	while (!list_empty(&stack)) {
3243 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3244 		free_pending_move(sctx, pm);
3245 	}
3246 	return ret;
3247 }
3248 
3249 /*
3250  * We might need to delay a directory rename even when no ancestor directory
3251  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3252  * renamed. This happens when we rename a directory to the old name (the name
3253  * in the parent root) of some other unrelated directory that got its rename
3254  * delayed due to some ancestor with higher number that got renamed.
3255  *
3256  * Example:
3257  *
3258  * Parent snapshot:
3259  * .                                       (ino 256)
3260  * |---- a/                                (ino 257)
3261  * |     |---- file                        (ino 260)
3262  * |
3263  * |---- b/                                (ino 258)
3264  * |---- c/                                (ino 259)
3265  *
3266  * Send snapshot:
3267  * .                                       (ino 256)
3268  * |---- a/                                (ino 258)
3269  * |---- x/                                (ino 259)
3270  *       |---- y/                          (ino 257)
3271  *             |----- file                 (ino 260)
3272  *
3273  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3274  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3275  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3276  * must issue is:
3277  *
3278  * 1 - rename 259 from 'c' to 'x'
3279  * 2 - rename 257 from 'a' to 'x/y'
3280  * 3 - rename 258 from 'b' to 'a'
3281  *
3282  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3283  * be done right away and < 0 on error.
3284  */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3285 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3286 				  struct recorded_ref *parent_ref,
3287 				  const bool is_orphan)
3288 {
3289 	struct btrfs_path *path;
3290 	struct btrfs_key key;
3291 	struct btrfs_key di_key;
3292 	struct btrfs_dir_item *di;
3293 	u64 left_gen;
3294 	u64 right_gen;
3295 	int ret = 0;
3296 
3297 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3298 		return 0;
3299 
3300 	path = alloc_path_for_send();
3301 	if (!path)
3302 		return -ENOMEM;
3303 
3304 	key.objectid = parent_ref->dir;
3305 	key.type = BTRFS_DIR_ITEM_KEY;
3306 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3307 
3308 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3309 	if (ret < 0) {
3310 		goto out;
3311 	} else if (ret > 0) {
3312 		ret = 0;
3313 		goto out;
3314 	}
3315 
3316 	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3317 				       parent_ref->name, parent_ref->name_len);
3318 	if (!di) {
3319 		ret = 0;
3320 		goto out;
3321 	}
3322 	/*
3323 	 * di_key.objectid has the number of the inode that has a dentry in the
3324 	 * parent directory with the same name that sctx->cur_ino is being
3325 	 * renamed to. We need to check if that inode is in the send root as
3326 	 * well and if it is currently marked as an inode with a pending rename,
3327 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3328 	 * that it happens after that other inode is renamed.
3329 	 */
3330 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3331 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3332 		ret = 0;
3333 		goto out;
3334 	}
3335 
3336 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3337 			     &left_gen, NULL, NULL, NULL, NULL);
3338 	if (ret < 0)
3339 		goto out;
3340 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3341 			     &right_gen, NULL, NULL, NULL, NULL);
3342 	if (ret < 0) {
3343 		if (ret == -ENOENT)
3344 			ret = 0;
3345 		goto out;
3346 	}
3347 
3348 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3349 	if (right_gen != left_gen) {
3350 		ret = 0;
3351 		goto out;
3352 	}
3353 
3354 	if (is_waiting_for_move(sctx, di_key.objectid)) {
3355 		ret = add_pending_dir_move(sctx,
3356 					   sctx->cur_ino,
3357 					   sctx->cur_inode_gen,
3358 					   di_key.objectid,
3359 					   &sctx->new_refs,
3360 					   &sctx->deleted_refs,
3361 					   is_orphan);
3362 		if (!ret)
3363 			ret = 1;
3364 	}
3365 out:
3366 	btrfs_free_path(path);
3367 	return ret;
3368 }
3369 
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref)3370 static int wait_for_parent_move(struct send_ctx *sctx,
3371 				struct recorded_ref *parent_ref)
3372 {
3373 	int ret = 0;
3374 	u64 ino = parent_ref->dir;
3375 	u64 parent_ino_before, parent_ino_after;
3376 	struct fs_path *path_before = NULL;
3377 	struct fs_path *path_after = NULL;
3378 	int len1, len2;
3379 
3380 	path_after = fs_path_alloc();
3381 	path_before = fs_path_alloc();
3382 	if (!path_after || !path_before) {
3383 		ret = -ENOMEM;
3384 		goto out;
3385 	}
3386 
3387 	/*
3388 	 * Our current directory inode may not yet be renamed/moved because some
3389 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3390 	 * such ancestor exists and make sure our own rename/move happens after
3391 	 * that ancestor is processed.
3392 	 */
3393 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3394 		if (is_waiting_for_move(sctx, ino)) {
3395 			ret = 1;
3396 			break;
3397 		}
3398 
3399 		fs_path_reset(path_before);
3400 		fs_path_reset(path_after);
3401 
3402 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3403 				    NULL, path_after);
3404 		if (ret < 0)
3405 			goto out;
3406 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3407 				    NULL, path_before);
3408 		if (ret < 0 && ret != -ENOENT) {
3409 			goto out;
3410 		} else if (ret == -ENOENT) {
3411 			ret = 0;
3412 			break;
3413 		}
3414 
3415 		len1 = fs_path_len(path_before);
3416 		len2 = fs_path_len(path_after);
3417 		if (ino > sctx->cur_ino &&
3418 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3419 		     memcmp(path_before->start, path_after->start, len1))) {
3420 			ret = 1;
3421 			break;
3422 		}
3423 		ino = parent_ino_after;
3424 	}
3425 
3426 out:
3427 	fs_path_free(path_before);
3428 	fs_path_free(path_after);
3429 
3430 	if (ret == 1) {
3431 		ret = add_pending_dir_move(sctx,
3432 					   sctx->cur_ino,
3433 					   sctx->cur_inode_gen,
3434 					   ino,
3435 					   &sctx->new_refs,
3436 					   &sctx->deleted_refs,
3437 					   false);
3438 		if (!ret)
3439 			ret = 1;
3440 	}
3441 
3442 	return ret;
3443 }
3444 
3445 /*
3446  * This does all the move/link/unlink/rmdir magic.
3447  */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)3448 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3449 {
3450 	int ret = 0;
3451 	struct recorded_ref *cur;
3452 	struct recorded_ref *cur2;
3453 	struct list_head check_dirs;
3454 	struct fs_path *valid_path = NULL;
3455 	u64 ow_inode = 0;
3456 	u64 ow_gen;
3457 	int did_overwrite = 0;
3458 	int is_orphan = 0;
3459 	u64 last_dir_ino_rm = 0;
3460 	bool can_rename = true;
3461 
3462 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3463 
3464 	/*
3465 	 * This should never happen as the root dir always has the same ref
3466 	 * which is always '..'
3467 	 */
3468 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3469 	INIT_LIST_HEAD(&check_dirs);
3470 
3471 	valid_path = fs_path_alloc();
3472 	if (!valid_path) {
3473 		ret = -ENOMEM;
3474 		goto out;
3475 	}
3476 
3477 	/*
3478 	 * First, check if the first ref of the current inode was overwritten
3479 	 * before. If yes, we know that the current inode was already orphanized
3480 	 * and thus use the orphan name. If not, we can use get_cur_path to
3481 	 * get the path of the first ref as it would like while receiving at
3482 	 * this point in time.
3483 	 * New inodes are always orphan at the beginning, so force to use the
3484 	 * orphan name in this case.
3485 	 * The first ref is stored in valid_path and will be updated if it
3486 	 * gets moved around.
3487 	 */
3488 	if (!sctx->cur_inode_new) {
3489 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3490 				sctx->cur_inode_gen);
3491 		if (ret < 0)
3492 			goto out;
3493 		if (ret)
3494 			did_overwrite = 1;
3495 	}
3496 	if (sctx->cur_inode_new || did_overwrite) {
3497 		ret = gen_unique_name(sctx, sctx->cur_ino,
3498 				sctx->cur_inode_gen, valid_path);
3499 		if (ret < 0)
3500 			goto out;
3501 		is_orphan = 1;
3502 	} else {
3503 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3504 				valid_path);
3505 		if (ret < 0)
3506 			goto out;
3507 	}
3508 
3509 	list_for_each_entry(cur, &sctx->new_refs, list) {
3510 		/*
3511 		 * We may have refs where the parent directory does not exist
3512 		 * yet. This happens if the parent directories inum is higher
3513 		 * the the current inum. To handle this case, we create the
3514 		 * parent directory out of order. But we need to check if this
3515 		 * did already happen before due to other refs in the same dir.
3516 		 */
3517 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3518 		if (ret < 0)
3519 			goto out;
3520 		if (ret == inode_state_will_create) {
3521 			ret = 0;
3522 			/*
3523 			 * First check if any of the current inodes refs did
3524 			 * already create the dir.
3525 			 */
3526 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3527 				if (cur == cur2)
3528 					break;
3529 				if (cur2->dir == cur->dir) {
3530 					ret = 1;
3531 					break;
3532 				}
3533 			}
3534 
3535 			/*
3536 			 * If that did not happen, check if a previous inode
3537 			 * did already create the dir.
3538 			 */
3539 			if (!ret)
3540 				ret = did_create_dir(sctx, cur->dir);
3541 			if (ret < 0)
3542 				goto out;
3543 			if (!ret) {
3544 				ret = send_create_inode(sctx, cur->dir);
3545 				if (ret < 0)
3546 					goto out;
3547 			}
3548 		}
3549 
3550 		/*
3551 		 * Check if this new ref would overwrite the first ref of
3552 		 * another unprocessed inode. If yes, orphanize the
3553 		 * overwritten inode. If we find an overwritten ref that is
3554 		 * not the first ref, simply unlink it.
3555 		 */
3556 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3557 				cur->name, cur->name_len,
3558 				&ow_inode, &ow_gen);
3559 		if (ret < 0)
3560 			goto out;
3561 		if (ret) {
3562 			ret = is_first_ref(sctx->parent_root,
3563 					   ow_inode, cur->dir, cur->name,
3564 					   cur->name_len);
3565 			if (ret < 0)
3566 				goto out;
3567 			if (ret) {
3568 				struct name_cache_entry *nce;
3569 
3570 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3571 						cur->full_path);
3572 				if (ret < 0)
3573 					goto out;
3574 				/*
3575 				 * Make sure we clear our orphanized inode's
3576 				 * name from the name cache. This is because the
3577 				 * inode ow_inode might be an ancestor of some
3578 				 * other inode that will be orphanized as well
3579 				 * later and has an inode number greater than
3580 				 * sctx->send_progress. We need to prevent
3581 				 * future name lookups from using the old name
3582 				 * and get instead the orphan name.
3583 				 */
3584 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3585 				if (nce) {
3586 					name_cache_delete(sctx, nce);
3587 					kfree(nce);
3588 				}
3589 			} else {
3590 				ret = send_unlink(sctx, cur->full_path);
3591 				if (ret < 0)
3592 					goto out;
3593 			}
3594 		}
3595 
3596 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3597 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3598 			if (ret < 0)
3599 				goto out;
3600 			if (ret == 1) {
3601 				can_rename = false;
3602 				*pending_move = 1;
3603 			}
3604 		}
3605 
3606 		/*
3607 		 * link/move the ref to the new place. If we have an orphan
3608 		 * inode, move it and update valid_path. If not, link or move
3609 		 * it depending on the inode mode.
3610 		 */
3611 		if (is_orphan && can_rename) {
3612 			ret = send_rename(sctx, valid_path, cur->full_path);
3613 			if (ret < 0)
3614 				goto out;
3615 			is_orphan = 0;
3616 			ret = fs_path_copy(valid_path, cur->full_path);
3617 			if (ret < 0)
3618 				goto out;
3619 		} else if (can_rename) {
3620 			if (S_ISDIR(sctx->cur_inode_mode)) {
3621 				/*
3622 				 * Dirs can't be linked, so move it. For moved
3623 				 * dirs, we always have one new and one deleted
3624 				 * ref. The deleted ref is ignored later.
3625 				 */
3626 				ret = wait_for_parent_move(sctx, cur);
3627 				if (ret < 0)
3628 					goto out;
3629 				if (ret) {
3630 					*pending_move = 1;
3631 				} else {
3632 					ret = send_rename(sctx, valid_path,
3633 							  cur->full_path);
3634 					if (!ret)
3635 						ret = fs_path_copy(valid_path,
3636 							       cur->full_path);
3637 				}
3638 				if (ret < 0)
3639 					goto out;
3640 			} else {
3641 				ret = send_link(sctx, cur->full_path,
3642 						valid_path);
3643 				if (ret < 0)
3644 					goto out;
3645 			}
3646 		}
3647 		ret = dup_ref(cur, &check_dirs);
3648 		if (ret < 0)
3649 			goto out;
3650 	}
3651 
3652 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3653 		/*
3654 		 * Check if we can already rmdir the directory. If not,
3655 		 * orphanize it. For every dir item inside that gets deleted
3656 		 * later, we do this check again and rmdir it then if possible.
3657 		 * See the use of check_dirs for more details.
3658 		 */
3659 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3660 				sctx->cur_ino);
3661 		if (ret < 0)
3662 			goto out;
3663 		if (ret) {
3664 			ret = send_rmdir(sctx, valid_path);
3665 			if (ret < 0)
3666 				goto out;
3667 		} else if (!is_orphan) {
3668 			ret = orphanize_inode(sctx, sctx->cur_ino,
3669 					sctx->cur_inode_gen, valid_path);
3670 			if (ret < 0)
3671 				goto out;
3672 			is_orphan = 1;
3673 		}
3674 
3675 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3676 			ret = dup_ref(cur, &check_dirs);
3677 			if (ret < 0)
3678 				goto out;
3679 		}
3680 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3681 		   !list_empty(&sctx->deleted_refs)) {
3682 		/*
3683 		 * We have a moved dir. Add the old parent to check_dirs
3684 		 */
3685 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3686 				list);
3687 		ret = dup_ref(cur, &check_dirs);
3688 		if (ret < 0)
3689 			goto out;
3690 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3691 		/*
3692 		 * We have a non dir inode. Go through all deleted refs and
3693 		 * unlink them if they were not already overwritten by other
3694 		 * inodes.
3695 		 */
3696 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3697 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3698 					sctx->cur_ino, sctx->cur_inode_gen,
3699 					cur->name, cur->name_len);
3700 			if (ret < 0)
3701 				goto out;
3702 			if (!ret) {
3703 				ret = send_unlink(sctx, cur->full_path);
3704 				if (ret < 0)
3705 					goto out;
3706 			}
3707 			ret = dup_ref(cur, &check_dirs);
3708 			if (ret < 0)
3709 				goto out;
3710 		}
3711 		/*
3712 		 * If the inode is still orphan, unlink the orphan. This may
3713 		 * happen when a previous inode did overwrite the first ref
3714 		 * of this inode and no new refs were added for the current
3715 		 * inode. Unlinking does not mean that the inode is deleted in
3716 		 * all cases. There may still be links to this inode in other
3717 		 * places.
3718 		 */
3719 		if (is_orphan) {
3720 			ret = send_unlink(sctx, valid_path);
3721 			if (ret < 0)
3722 				goto out;
3723 		}
3724 	}
3725 
3726 	/*
3727 	 * We did collect all parent dirs where cur_inode was once located. We
3728 	 * now go through all these dirs and check if they are pending for
3729 	 * deletion and if it's finally possible to perform the rmdir now.
3730 	 * We also update the inode stats of the parent dirs here.
3731 	 */
3732 	list_for_each_entry(cur, &check_dirs, list) {
3733 		/*
3734 		 * In case we had refs into dirs that were not processed yet,
3735 		 * we don't need to do the utime and rmdir logic for these dirs.
3736 		 * The dir will be processed later.
3737 		 */
3738 		if (cur->dir > sctx->cur_ino)
3739 			continue;
3740 
3741 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3742 		if (ret < 0)
3743 			goto out;
3744 
3745 		if (ret == inode_state_did_create ||
3746 		    ret == inode_state_no_change) {
3747 			/* TODO delayed utimes */
3748 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3749 			if (ret < 0)
3750 				goto out;
3751 		} else if (ret == inode_state_did_delete &&
3752 			   cur->dir != last_dir_ino_rm) {
3753 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3754 					sctx->cur_ino);
3755 			if (ret < 0)
3756 				goto out;
3757 			if (ret) {
3758 				ret = get_cur_path(sctx, cur->dir,
3759 						   cur->dir_gen, valid_path);
3760 				if (ret < 0)
3761 					goto out;
3762 				ret = send_rmdir(sctx, valid_path);
3763 				if (ret < 0)
3764 					goto out;
3765 				last_dir_ino_rm = cur->dir;
3766 			}
3767 		}
3768 	}
3769 
3770 	ret = 0;
3771 
3772 out:
3773 	__free_recorded_refs(&check_dirs);
3774 	free_recorded_refs(sctx);
3775 	fs_path_free(valid_path);
3776 	return ret;
3777 }
3778 
record_ref(struct btrfs_root * root,int num,u64 dir,int index,struct fs_path * name,void * ctx,struct list_head * refs)3779 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3780 		      struct fs_path *name, void *ctx, struct list_head *refs)
3781 {
3782 	int ret = 0;
3783 	struct send_ctx *sctx = ctx;
3784 	struct fs_path *p;
3785 	u64 gen;
3786 
3787 	p = fs_path_alloc();
3788 	if (!p)
3789 		return -ENOMEM;
3790 
3791 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3792 			NULL, NULL);
3793 	if (ret < 0)
3794 		goto out;
3795 
3796 	ret = get_cur_path(sctx, dir, gen, p);
3797 	if (ret < 0)
3798 		goto out;
3799 	ret = fs_path_add_path(p, name);
3800 	if (ret < 0)
3801 		goto out;
3802 
3803 	ret = __record_ref(refs, dir, gen, p);
3804 
3805 out:
3806 	if (ret)
3807 		fs_path_free(p);
3808 	return ret;
3809 }
3810 
__record_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)3811 static int __record_new_ref(int num, u64 dir, int index,
3812 			    struct fs_path *name,
3813 			    void *ctx)
3814 {
3815 	struct send_ctx *sctx = ctx;
3816 	return record_ref(sctx->send_root, num, dir, index, name,
3817 			  ctx, &sctx->new_refs);
3818 }
3819 
3820 
__record_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)3821 static int __record_deleted_ref(int num, u64 dir, int index,
3822 				struct fs_path *name,
3823 				void *ctx)
3824 {
3825 	struct send_ctx *sctx = ctx;
3826 	return record_ref(sctx->parent_root, num, dir, index, name,
3827 			  ctx, &sctx->deleted_refs);
3828 }
3829 
record_new_ref(struct send_ctx * sctx)3830 static int record_new_ref(struct send_ctx *sctx)
3831 {
3832 	int ret;
3833 
3834 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3835 				sctx->cmp_key, 0, __record_new_ref, sctx);
3836 	if (ret < 0)
3837 		goto out;
3838 	ret = 0;
3839 
3840 out:
3841 	return ret;
3842 }
3843 
record_deleted_ref(struct send_ctx * sctx)3844 static int record_deleted_ref(struct send_ctx *sctx)
3845 {
3846 	int ret;
3847 
3848 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3849 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3850 	if (ret < 0)
3851 		goto out;
3852 	ret = 0;
3853 
3854 out:
3855 	return ret;
3856 }
3857 
3858 struct find_ref_ctx {
3859 	u64 dir;
3860 	u64 dir_gen;
3861 	struct btrfs_root *root;
3862 	struct fs_path *name;
3863 	int found_idx;
3864 };
3865 
__find_iref(int num,u64 dir,int index,struct fs_path * name,void * ctx_)3866 static int __find_iref(int num, u64 dir, int index,
3867 		       struct fs_path *name,
3868 		       void *ctx_)
3869 {
3870 	struct find_ref_ctx *ctx = ctx_;
3871 	u64 dir_gen;
3872 	int ret;
3873 
3874 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3875 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3876 		/*
3877 		 * To avoid doing extra lookups we'll only do this if everything
3878 		 * else matches.
3879 		 */
3880 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3881 				     NULL, NULL, NULL);
3882 		if (ret)
3883 			return ret;
3884 		if (dir_gen != ctx->dir_gen)
3885 			return 0;
3886 		ctx->found_idx = num;
3887 		return 1;
3888 	}
3889 	return 0;
3890 }
3891 
find_iref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,u64 dir,u64 dir_gen,struct fs_path * name)3892 static int find_iref(struct btrfs_root *root,
3893 		     struct btrfs_path *path,
3894 		     struct btrfs_key *key,
3895 		     u64 dir, u64 dir_gen, struct fs_path *name)
3896 {
3897 	int ret;
3898 	struct find_ref_ctx ctx;
3899 
3900 	ctx.dir = dir;
3901 	ctx.name = name;
3902 	ctx.dir_gen = dir_gen;
3903 	ctx.found_idx = -1;
3904 	ctx.root = root;
3905 
3906 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3907 	if (ret < 0)
3908 		return ret;
3909 
3910 	if (ctx.found_idx == -1)
3911 		return -ENOENT;
3912 
3913 	return ctx.found_idx;
3914 }
3915 
__record_changed_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)3916 static int __record_changed_new_ref(int num, u64 dir, int index,
3917 				    struct fs_path *name,
3918 				    void *ctx)
3919 {
3920 	u64 dir_gen;
3921 	int ret;
3922 	struct send_ctx *sctx = ctx;
3923 
3924 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3925 			     NULL, NULL, NULL);
3926 	if (ret)
3927 		return ret;
3928 
3929 	ret = find_iref(sctx->parent_root, sctx->right_path,
3930 			sctx->cmp_key, dir, dir_gen, name);
3931 	if (ret == -ENOENT)
3932 		ret = __record_new_ref(num, dir, index, name, sctx);
3933 	else if (ret > 0)
3934 		ret = 0;
3935 
3936 	return ret;
3937 }
3938 
__record_changed_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)3939 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3940 					struct fs_path *name,
3941 					void *ctx)
3942 {
3943 	u64 dir_gen;
3944 	int ret;
3945 	struct send_ctx *sctx = ctx;
3946 
3947 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3948 			     NULL, NULL, NULL);
3949 	if (ret)
3950 		return ret;
3951 
3952 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3953 			dir, dir_gen, name);
3954 	if (ret == -ENOENT)
3955 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3956 	else if (ret > 0)
3957 		ret = 0;
3958 
3959 	return ret;
3960 }
3961 
record_changed_ref(struct send_ctx * sctx)3962 static int record_changed_ref(struct send_ctx *sctx)
3963 {
3964 	int ret = 0;
3965 
3966 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3967 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3968 	if (ret < 0)
3969 		goto out;
3970 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3971 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3972 	if (ret < 0)
3973 		goto out;
3974 	ret = 0;
3975 
3976 out:
3977 	return ret;
3978 }
3979 
3980 /*
3981  * Record and process all refs at once. Needed when an inode changes the
3982  * generation number, which means that it was deleted and recreated.
3983  */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)3984 static int process_all_refs(struct send_ctx *sctx,
3985 			    enum btrfs_compare_tree_result cmd)
3986 {
3987 	int ret;
3988 	struct btrfs_root *root;
3989 	struct btrfs_path *path;
3990 	struct btrfs_key key;
3991 	struct btrfs_key found_key;
3992 	struct extent_buffer *eb;
3993 	int slot;
3994 	iterate_inode_ref_t cb;
3995 	int pending_move = 0;
3996 
3997 	path = alloc_path_for_send();
3998 	if (!path)
3999 		return -ENOMEM;
4000 
4001 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4002 		root = sctx->send_root;
4003 		cb = __record_new_ref;
4004 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4005 		root = sctx->parent_root;
4006 		cb = __record_deleted_ref;
4007 	} else {
4008 		btrfs_err(sctx->send_root->fs_info,
4009 				"Wrong command %d in process_all_refs", cmd);
4010 		ret = -EINVAL;
4011 		goto out;
4012 	}
4013 
4014 	key.objectid = sctx->cmp_key->objectid;
4015 	key.type = BTRFS_INODE_REF_KEY;
4016 	key.offset = 0;
4017 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4018 	if (ret < 0)
4019 		goto out;
4020 
4021 	while (1) {
4022 		eb = path->nodes[0];
4023 		slot = path->slots[0];
4024 		if (slot >= btrfs_header_nritems(eb)) {
4025 			ret = btrfs_next_leaf(root, path);
4026 			if (ret < 0)
4027 				goto out;
4028 			else if (ret > 0)
4029 				break;
4030 			continue;
4031 		}
4032 
4033 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4034 
4035 		if (found_key.objectid != key.objectid ||
4036 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4037 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4038 			break;
4039 
4040 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4041 		if (ret < 0)
4042 			goto out;
4043 
4044 		path->slots[0]++;
4045 	}
4046 	btrfs_release_path(path);
4047 
4048 	ret = process_recorded_refs(sctx, &pending_move);
4049 	/* Only applicable to an incremental send. */
4050 	ASSERT(pending_move == 0);
4051 
4052 out:
4053 	btrfs_free_path(path);
4054 	return ret;
4055 }
4056 
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4057 static int send_set_xattr(struct send_ctx *sctx,
4058 			  struct fs_path *path,
4059 			  const char *name, int name_len,
4060 			  const char *data, int data_len)
4061 {
4062 	int ret = 0;
4063 
4064 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4065 	if (ret < 0)
4066 		goto out;
4067 
4068 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4069 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4070 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4071 
4072 	ret = send_cmd(sctx);
4073 
4074 tlv_put_failure:
4075 out:
4076 	return ret;
4077 }
4078 
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4079 static int send_remove_xattr(struct send_ctx *sctx,
4080 			  struct fs_path *path,
4081 			  const char *name, int name_len)
4082 {
4083 	int ret = 0;
4084 
4085 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4086 	if (ret < 0)
4087 		goto out;
4088 
4089 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4090 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4091 
4092 	ret = send_cmd(sctx);
4093 
4094 tlv_put_failure:
4095 out:
4096 	return ret;
4097 }
4098 
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4099 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4100 			       const char *name, int name_len,
4101 			       const char *data, int data_len,
4102 			       u8 type, void *ctx)
4103 {
4104 	int ret;
4105 	struct send_ctx *sctx = ctx;
4106 	struct fs_path *p;
4107 	posix_acl_xattr_header dummy_acl;
4108 
4109 	p = fs_path_alloc();
4110 	if (!p)
4111 		return -ENOMEM;
4112 
4113 	/*
4114 	 * This hack is needed because empty acl's are stored as zero byte
4115 	 * data in xattrs. Problem with that is, that receiving these zero byte
4116 	 * acl's will fail later. To fix this, we send a dummy acl list that
4117 	 * only contains the version number and no entries.
4118 	 */
4119 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4120 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4121 		if (data_len == 0) {
4122 			dummy_acl.a_version =
4123 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4124 			data = (char *)&dummy_acl;
4125 			data_len = sizeof(dummy_acl);
4126 		}
4127 	}
4128 
4129 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4130 	if (ret < 0)
4131 		goto out;
4132 
4133 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4134 
4135 out:
4136 	fs_path_free(p);
4137 	return ret;
4138 }
4139 
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4140 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4141 				   const char *name, int name_len,
4142 				   const char *data, int data_len,
4143 				   u8 type, void *ctx)
4144 {
4145 	int ret;
4146 	struct send_ctx *sctx = ctx;
4147 	struct fs_path *p;
4148 
4149 	p = fs_path_alloc();
4150 	if (!p)
4151 		return -ENOMEM;
4152 
4153 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4154 	if (ret < 0)
4155 		goto out;
4156 
4157 	ret = send_remove_xattr(sctx, p, name, name_len);
4158 
4159 out:
4160 	fs_path_free(p);
4161 	return ret;
4162 }
4163 
process_new_xattr(struct send_ctx * sctx)4164 static int process_new_xattr(struct send_ctx *sctx)
4165 {
4166 	int ret = 0;
4167 
4168 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4169 			       sctx->cmp_key, __process_new_xattr, sctx);
4170 
4171 	return ret;
4172 }
4173 
process_deleted_xattr(struct send_ctx * sctx)4174 static int process_deleted_xattr(struct send_ctx *sctx)
4175 {
4176 	int ret;
4177 
4178 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4179 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4180 
4181 	return ret;
4182 }
4183 
4184 struct find_xattr_ctx {
4185 	const char *name;
4186 	int name_len;
4187 	int found_idx;
4188 	char *found_data;
4189 	int found_data_len;
4190 };
4191 
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * vctx)4192 static int __find_xattr(int num, struct btrfs_key *di_key,
4193 			const char *name, int name_len,
4194 			const char *data, int data_len,
4195 			u8 type, void *vctx)
4196 {
4197 	struct find_xattr_ctx *ctx = vctx;
4198 
4199 	if (name_len == ctx->name_len &&
4200 	    strncmp(name, ctx->name, name_len) == 0) {
4201 		ctx->found_idx = num;
4202 		ctx->found_data_len = data_len;
4203 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4204 		if (!ctx->found_data)
4205 			return -ENOMEM;
4206 		return 1;
4207 	}
4208 	return 0;
4209 }
4210 
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4211 static int find_xattr(struct btrfs_root *root,
4212 		      struct btrfs_path *path,
4213 		      struct btrfs_key *key,
4214 		      const char *name, int name_len,
4215 		      char **data, int *data_len)
4216 {
4217 	int ret;
4218 	struct find_xattr_ctx ctx;
4219 
4220 	ctx.name = name;
4221 	ctx.name_len = name_len;
4222 	ctx.found_idx = -1;
4223 	ctx.found_data = NULL;
4224 	ctx.found_data_len = 0;
4225 
4226 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4227 	if (ret < 0)
4228 		return ret;
4229 
4230 	if (ctx.found_idx == -1)
4231 		return -ENOENT;
4232 	if (data) {
4233 		*data = ctx.found_data;
4234 		*data_len = ctx.found_data_len;
4235 	} else {
4236 		kfree(ctx.found_data);
4237 	}
4238 	return ctx.found_idx;
4239 }
4240 
4241 
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4242 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4243 				       const char *name, int name_len,
4244 				       const char *data, int data_len,
4245 				       u8 type, void *ctx)
4246 {
4247 	int ret;
4248 	struct send_ctx *sctx = ctx;
4249 	char *found_data = NULL;
4250 	int found_data_len  = 0;
4251 
4252 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4253 			 sctx->cmp_key, name, name_len, &found_data,
4254 			 &found_data_len);
4255 	if (ret == -ENOENT) {
4256 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4257 				data_len, type, ctx);
4258 	} else if (ret >= 0) {
4259 		if (data_len != found_data_len ||
4260 		    memcmp(data, found_data, data_len)) {
4261 			ret = __process_new_xattr(num, di_key, name, name_len,
4262 					data, data_len, type, ctx);
4263 		} else {
4264 			ret = 0;
4265 		}
4266 	}
4267 
4268 	kfree(found_data);
4269 	return ret;
4270 }
4271 
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4272 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4273 					   const char *name, int name_len,
4274 					   const char *data, int data_len,
4275 					   u8 type, void *ctx)
4276 {
4277 	int ret;
4278 	struct send_ctx *sctx = ctx;
4279 
4280 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4281 			 name, name_len, NULL, NULL);
4282 	if (ret == -ENOENT)
4283 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4284 				data_len, type, ctx);
4285 	else if (ret >= 0)
4286 		ret = 0;
4287 
4288 	return ret;
4289 }
4290 
process_changed_xattr(struct send_ctx * sctx)4291 static int process_changed_xattr(struct send_ctx *sctx)
4292 {
4293 	int ret = 0;
4294 
4295 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4296 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4297 	if (ret < 0)
4298 		goto out;
4299 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4300 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4301 
4302 out:
4303 	return ret;
4304 }
4305 
process_all_new_xattrs(struct send_ctx * sctx)4306 static int process_all_new_xattrs(struct send_ctx *sctx)
4307 {
4308 	int ret;
4309 	struct btrfs_root *root;
4310 	struct btrfs_path *path;
4311 	struct btrfs_key key;
4312 	struct btrfs_key found_key;
4313 	struct extent_buffer *eb;
4314 	int slot;
4315 
4316 	path = alloc_path_for_send();
4317 	if (!path)
4318 		return -ENOMEM;
4319 
4320 	root = sctx->send_root;
4321 
4322 	key.objectid = sctx->cmp_key->objectid;
4323 	key.type = BTRFS_XATTR_ITEM_KEY;
4324 	key.offset = 0;
4325 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4326 	if (ret < 0)
4327 		goto out;
4328 
4329 	while (1) {
4330 		eb = path->nodes[0];
4331 		slot = path->slots[0];
4332 		if (slot >= btrfs_header_nritems(eb)) {
4333 			ret = btrfs_next_leaf(root, path);
4334 			if (ret < 0) {
4335 				goto out;
4336 			} else if (ret > 0) {
4337 				ret = 0;
4338 				break;
4339 			}
4340 			continue;
4341 		}
4342 
4343 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4344 		if (found_key.objectid != key.objectid ||
4345 		    found_key.type != key.type) {
4346 			ret = 0;
4347 			goto out;
4348 		}
4349 
4350 		ret = iterate_dir_item(root, path, &found_key,
4351 				       __process_new_xattr, sctx);
4352 		if (ret < 0)
4353 			goto out;
4354 
4355 		path->slots[0]++;
4356 	}
4357 
4358 out:
4359 	btrfs_free_path(path);
4360 	return ret;
4361 }
4362 
fill_read_buf(struct send_ctx * sctx,u64 offset,u32 len)4363 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4364 {
4365 	struct btrfs_root *root = sctx->send_root;
4366 	struct btrfs_fs_info *fs_info = root->fs_info;
4367 	struct inode *inode;
4368 	struct page *page;
4369 	char *addr;
4370 	struct btrfs_key key;
4371 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4372 	pgoff_t last_index;
4373 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4374 	ssize_t ret = 0;
4375 
4376 	key.objectid = sctx->cur_ino;
4377 	key.type = BTRFS_INODE_ITEM_KEY;
4378 	key.offset = 0;
4379 
4380 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4381 	if (IS_ERR(inode))
4382 		return PTR_ERR(inode);
4383 
4384 	if (offset + len > i_size_read(inode)) {
4385 		if (offset > i_size_read(inode))
4386 			len = 0;
4387 		else
4388 			len = offset - i_size_read(inode);
4389 	}
4390 	if (len == 0)
4391 		goto out;
4392 
4393 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4394 
4395 	/* initial readahead */
4396 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4397 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4398 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4399 		       last_index - index + 1);
4400 
4401 	while (index <= last_index) {
4402 		unsigned cur_len = min_t(unsigned, len,
4403 					 PAGE_CACHE_SIZE - pg_offset);
4404 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4405 		if (!page) {
4406 			ret = -ENOMEM;
4407 			break;
4408 		}
4409 
4410 		if (!PageUptodate(page)) {
4411 			btrfs_readpage(NULL, page);
4412 			lock_page(page);
4413 			if (!PageUptodate(page)) {
4414 				unlock_page(page);
4415 				page_cache_release(page);
4416 				ret = -EIO;
4417 				break;
4418 			}
4419 		}
4420 
4421 		addr = kmap(page);
4422 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4423 		kunmap(page);
4424 		unlock_page(page);
4425 		page_cache_release(page);
4426 		index++;
4427 		pg_offset = 0;
4428 		len -= cur_len;
4429 		ret += cur_len;
4430 	}
4431 out:
4432 	iput(inode);
4433 	return ret;
4434 }
4435 
4436 /*
4437  * Read some bytes from the current inode/file and send a write command to
4438  * user space.
4439  */
send_write(struct send_ctx * sctx,u64 offset,u32 len)4440 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4441 {
4442 	int ret = 0;
4443 	struct fs_path *p;
4444 	ssize_t num_read = 0;
4445 
4446 	p = fs_path_alloc();
4447 	if (!p)
4448 		return -ENOMEM;
4449 
4450 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4451 
4452 	num_read = fill_read_buf(sctx, offset, len);
4453 	if (num_read <= 0) {
4454 		if (num_read < 0)
4455 			ret = num_read;
4456 		goto out;
4457 	}
4458 
4459 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4460 	if (ret < 0)
4461 		goto out;
4462 
4463 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4464 	if (ret < 0)
4465 		goto out;
4466 
4467 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4468 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4469 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4470 
4471 	ret = send_cmd(sctx);
4472 
4473 tlv_put_failure:
4474 out:
4475 	fs_path_free(p);
4476 	if (ret < 0)
4477 		return ret;
4478 	return num_read;
4479 }
4480 
4481 /*
4482  * Send a clone command to user space.
4483  */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)4484 static int send_clone(struct send_ctx *sctx,
4485 		      u64 offset, u32 len,
4486 		      struct clone_root *clone_root)
4487 {
4488 	int ret = 0;
4489 	struct fs_path *p;
4490 	u64 gen;
4491 
4492 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4493 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4494 		clone_root->root->objectid, clone_root->ino,
4495 		clone_root->offset);
4496 
4497 	p = fs_path_alloc();
4498 	if (!p)
4499 		return -ENOMEM;
4500 
4501 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4502 	if (ret < 0)
4503 		goto out;
4504 
4505 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4506 	if (ret < 0)
4507 		goto out;
4508 
4509 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4510 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4511 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4512 
4513 	if (clone_root->root == sctx->send_root) {
4514 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4515 				&gen, NULL, NULL, NULL, NULL);
4516 		if (ret < 0)
4517 			goto out;
4518 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4519 	} else {
4520 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4521 	}
4522 	if (ret < 0)
4523 		goto out;
4524 
4525 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4526 			clone_root->root->root_item.uuid);
4527 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4528 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4529 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4530 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4531 			clone_root->offset);
4532 
4533 	ret = send_cmd(sctx);
4534 
4535 tlv_put_failure:
4536 out:
4537 	fs_path_free(p);
4538 	return ret;
4539 }
4540 
4541 /*
4542  * Send an update extent command to user space.
4543  */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)4544 static int send_update_extent(struct send_ctx *sctx,
4545 			      u64 offset, u32 len)
4546 {
4547 	int ret = 0;
4548 	struct fs_path *p;
4549 
4550 	p = fs_path_alloc();
4551 	if (!p)
4552 		return -ENOMEM;
4553 
4554 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4555 	if (ret < 0)
4556 		goto out;
4557 
4558 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4559 	if (ret < 0)
4560 		goto out;
4561 
4562 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4563 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4564 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4565 
4566 	ret = send_cmd(sctx);
4567 
4568 tlv_put_failure:
4569 out:
4570 	fs_path_free(p);
4571 	return ret;
4572 }
4573 
send_hole(struct send_ctx * sctx,u64 end)4574 static int send_hole(struct send_ctx *sctx, u64 end)
4575 {
4576 	struct fs_path *p = NULL;
4577 	u64 offset = sctx->cur_inode_last_extent;
4578 	u64 len;
4579 	int ret = 0;
4580 
4581 	p = fs_path_alloc();
4582 	if (!p)
4583 		return -ENOMEM;
4584 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4585 	if (ret < 0)
4586 		goto tlv_put_failure;
4587 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4588 	while (offset < end) {
4589 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4590 
4591 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4592 		if (ret < 0)
4593 			break;
4594 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4595 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4596 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4597 		ret = send_cmd(sctx);
4598 		if (ret < 0)
4599 			break;
4600 		offset += len;
4601 	}
4602 tlv_put_failure:
4603 	fs_path_free(p);
4604 	return ret;
4605 }
4606 
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)4607 static int send_write_or_clone(struct send_ctx *sctx,
4608 			       struct btrfs_path *path,
4609 			       struct btrfs_key *key,
4610 			       struct clone_root *clone_root)
4611 {
4612 	int ret = 0;
4613 	struct btrfs_file_extent_item *ei;
4614 	u64 offset = key->offset;
4615 	u64 pos = 0;
4616 	u64 len;
4617 	u32 l;
4618 	u8 type;
4619 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4620 
4621 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4622 			struct btrfs_file_extent_item);
4623 	type = btrfs_file_extent_type(path->nodes[0], ei);
4624 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4625 		len = btrfs_file_extent_inline_len(path->nodes[0],
4626 						   path->slots[0], ei);
4627 		/*
4628 		 * it is possible the inline item won't cover the whole page,
4629 		 * but there may be items after this page.  Make
4630 		 * sure to send the whole thing
4631 		 */
4632 		len = PAGE_CACHE_ALIGN(len);
4633 	} else {
4634 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4635 	}
4636 
4637 	if (offset + len > sctx->cur_inode_size)
4638 		len = sctx->cur_inode_size - offset;
4639 	if (len == 0) {
4640 		ret = 0;
4641 		goto out;
4642 	}
4643 
4644 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4645 		ret = send_clone(sctx, offset, len, clone_root);
4646 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4647 		ret = send_update_extent(sctx, offset, len);
4648 	} else {
4649 		while (pos < len) {
4650 			l = len - pos;
4651 			if (l > BTRFS_SEND_READ_SIZE)
4652 				l = BTRFS_SEND_READ_SIZE;
4653 			ret = send_write(sctx, pos + offset, l);
4654 			if (ret < 0)
4655 				goto out;
4656 			if (!ret)
4657 				break;
4658 			pos += ret;
4659 		}
4660 		ret = 0;
4661 	}
4662 out:
4663 	return ret;
4664 }
4665 
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)4666 static int is_extent_unchanged(struct send_ctx *sctx,
4667 			       struct btrfs_path *left_path,
4668 			       struct btrfs_key *ekey)
4669 {
4670 	int ret = 0;
4671 	struct btrfs_key key;
4672 	struct btrfs_path *path = NULL;
4673 	struct extent_buffer *eb;
4674 	int slot;
4675 	struct btrfs_key found_key;
4676 	struct btrfs_file_extent_item *ei;
4677 	u64 left_disknr;
4678 	u64 right_disknr;
4679 	u64 left_offset;
4680 	u64 right_offset;
4681 	u64 left_offset_fixed;
4682 	u64 left_len;
4683 	u64 right_len;
4684 	u64 left_gen;
4685 	u64 right_gen;
4686 	u8 left_type;
4687 	u8 right_type;
4688 
4689 	path = alloc_path_for_send();
4690 	if (!path)
4691 		return -ENOMEM;
4692 
4693 	eb = left_path->nodes[0];
4694 	slot = left_path->slots[0];
4695 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4696 	left_type = btrfs_file_extent_type(eb, ei);
4697 
4698 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4699 		ret = 0;
4700 		goto out;
4701 	}
4702 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4703 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4704 	left_offset = btrfs_file_extent_offset(eb, ei);
4705 	left_gen = btrfs_file_extent_generation(eb, ei);
4706 
4707 	/*
4708 	 * Following comments will refer to these graphics. L is the left
4709 	 * extents which we are checking at the moment. 1-8 are the right
4710 	 * extents that we iterate.
4711 	 *
4712 	 *       |-----L-----|
4713 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4714 	 *
4715 	 *       |-----L-----|
4716 	 * |--1--|-2b-|...(same as above)
4717 	 *
4718 	 * Alternative situation. Happens on files where extents got split.
4719 	 *       |-----L-----|
4720 	 * |-----------7-----------|-6-|
4721 	 *
4722 	 * Alternative situation. Happens on files which got larger.
4723 	 *       |-----L-----|
4724 	 * |-8-|
4725 	 * Nothing follows after 8.
4726 	 */
4727 
4728 	key.objectid = ekey->objectid;
4729 	key.type = BTRFS_EXTENT_DATA_KEY;
4730 	key.offset = ekey->offset;
4731 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4732 	if (ret < 0)
4733 		goto out;
4734 	if (ret) {
4735 		ret = 0;
4736 		goto out;
4737 	}
4738 
4739 	/*
4740 	 * Handle special case where the right side has no extents at all.
4741 	 */
4742 	eb = path->nodes[0];
4743 	slot = path->slots[0];
4744 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4745 	if (found_key.objectid != key.objectid ||
4746 	    found_key.type != key.type) {
4747 		/* If we're a hole then just pretend nothing changed */
4748 		ret = (left_disknr) ? 0 : 1;
4749 		goto out;
4750 	}
4751 
4752 	/*
4753 	 * We're now on 2a, 2b or 7.
4754 	 */
4755 	key = found_key;
4756 	while (key.offset < ekey->offset + left_len) {
4757 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4758 		right_type = btrfs_file_extent_type(eb, ei);
4759 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4760 			ret = 0;
4761 			goto out;
4762 		}
4763 
4764 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4765 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4766 		right_offset = btrfs_file_extent_offset(eb, ei);
4767 		right_gen = btrfs_file_extent_generation(eb, ei);
4768 
4769 		/*
4770 		 * Are we at extent 8? If yes, we know the extent is changed.
4771 		 * This may only happen on the first iteration.
4772 		 */
4773 		if (found_key.offset + right_len <= ekey->offset) {
4774 			/* If we're a hole just pretend nothing changed */
4775 			ret = (left_disknr) ? 0 : 1;
4776 			goto out;
4777 		}
4778 
4779 		left_offset_fixed = left_offset;
4780 		if (key.offset < ekey->offset) {
4781 			/* Fix the right offset for 2a and 7. */
4782 			right_offset += ekey->offset - key.offset;
4783 		} else {
4784 			/* Fix the left offset for all behind 2a and 2b */
4785 			left_offset_fixed += key.offset - ekey->offset;
4786 		}
4787 
4788 		/*
4789 		 * Check if we have the same extent.
4790 		 */
4791 		if (left_disknr != right_disknr ||
4792 		    left_offset_fixed != right_offset ||
4793 		    left_gen != right_gen) {
4794 			ret = 0;
4795 			goto out;
4796 		}
4797 
4798 		/*
4799 		 * Go to the next extent.
4800 		 */
4801 		ret = btrfs_next_item(sctx->parent_root, path);
4802 		if (ret < 0)
4803 			goto out;
4804 		if (!ret) {
4805 			eb = path->nodes[0];
4806 			slot = path->slots[0];
4807 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4808 		}
4809 		if (ret || found_key.objectid != key.objectid ||
4810 		    found_key.type != key.type) {
4811 			key.offset += right_len;
4812 			break;
4813 		}
4814 		if (found_key.offset != key.offset + right_len) {
4815 			ret = 0;
4816 			goto out;
4817 		}
4818 		key = found_key;
4819 	}
4820 
4821 	/*
4822 	 * We're now behind the left extent (treat as unchanged) or at the end
4823 	 * of the right side (treat as changed).
4824 	 */
4825 	if (key.offset >= ekey->offset + left_len)
4826 		ret = 1;
4827 	else
4828 		ret = 0;
4829 
4830 
4831 out:
4832 	btrfs_free_path(path);
4833 	return ret;
4834 }
4835 
get_last_extent(struct send_ctx * sctx,u64 offset)4836 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4837 {
4838 	struct btrfs_path *path;
4839 	struct btrfs_root *root = sctx->send_root;
4840 	struct btrfs_file_extent_item *fi;
4841 	struct btrfs_key key;
4842 	u64 extent_end;
4843 	u8 type;
4844 	int ret;
4845 
4846 	path = alloc_path_for_send();
4847 	if (!path)
4848 		return -ENOMEM;
4849 
4850 	sctx->cur_inode_last_extent = 0;
4851 
4852 	key.objectid = sctx->cur_ino;
4853 	key.type = BTRFS_EXTENT_DATA_KEY;
4854 	key.offset = offset;
4855 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4856 	if (ret < 0)
4857 		goto out;
4858 	ret = 0;
4859 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4860 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4861 		goto out;
4862 
4863 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4864 			    struct btrfs_file_extent_item);
4865 	type = btrfs_file_extent_type(path->nodes[0], fi);
4866 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4867 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4868 							path->slots[0], fi);
4869 		extent_end = ALIGN(key.offset + size,
4870 				   sctx->send_root->sectorsize);
4871 	} else {
4872 		extent_end = key.offset +
4873 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4874 	}
4875 	sctx->cur_inode_last_extent = extent_end;
4876 out:
4877 	btrfs_free_path(path);
4878 	return ret;
4879 }
4880 
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)4881 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4882 			   struct btrfs_key *key)
4883 {
4884 	struct btrfs_file_extent_item *fi;
4885 	u64 extent_end;
4886 	u8 type;
4887 	int ret = 0;
4888 
4889 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4890 		return 0;
4891 
4892 	if (sctx->cur_inode_last_extent == (u64)-1) {
4893 		ret = get_last_extent(sctx, key->offset - 1);
4894 		if (ret)
4895 			return ret;
4896 	}
4897 
4898 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4899 			    struct btrfs_file_extent_item);
4900 	type = btrfs_file_extent_type(path->nodes[0], fi);
4901 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4902 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4903 							path->slots[0], fi);
4904 		extent_end = ALIGN(key->offset + size,
4905 				   sctx->send_root->sectorsize);
4906 	} else {
4907 		extent_end = key->offset +
4908 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4909 	}
4910 
4911 	if (path->slots[0] == 0 &&
4912 	    sctx->cur_inode_last_extent < key->offset) {
4913 		/*
4914 		 * We might have skipped entire leafs that contained only
4915 		 * file extent items for our current inode. These leafs have
4916 		 * a generation number smaller (older) than the one in the
4917 		 * current leaf and the leaf our last extent came from, and
4918 		 * are located between these 2 leafs.
4919 		 */
4920 		ret = get_last_extent(sctx, key->offset - 1);
4921 		if (ret)
4922 			return ret;
4923 	}
4924 
4925 	if (sctx->cur_inode_last_extent < key->offset)
4926 		ret = send_hole(sctx, key->offset);
4927 	sctx->cur_inode_last_extent = extent_end;
4928 	return ret;
4929 }
4930 
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)4931 static int process_extent(struct send_ctx *sctx,
4932 			  struct btrfs_path *path,
4933 			  struct btrfs_key *key)
4934 {
4935 	struct clone_root *found_clone = NULL;
4936 	int ret = 0;
4937 
4938 	if (S_ISLNK(sctx->cur_inode_mode))
4939 		return 0;
4940 
4941 	if (sctx->parent_root && !sctx->cur_inode_new) {
4942 		ret = is_extent_unchanged(sctx, path, key);
4943 		if (ret < 0)
4944 			goto out;
4945 		if (ret) {
4946 			ret = 0;
4947 			goto out_hole;
4948 		}
4949 	} else {
4950 		struct btrfs_file_extent_item *ei;
4951 		u8 type;
4952 
4953 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4954 				    struct btrfs_file_extent_item);
4955 		type = btrfs_file_extent_type(path->nodes[0], ei);
4956 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4957 		    type == BTRFS_FILE_EXTENT_REG) {
4958 			/*
4959 			 * The send spec does not have a prealloc command yet,
4960 			 * so just leave a hole for prealloc'ed extents until
4961 			 * we have enough commands queued up to justify rev'ing
4962 			 * the send spec.
4963 			 */
4964 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4965 				ret = 0;
4966 				goto out;
4967 			}
4968 
4969 			/* Have a hole, just skip it. */
4970 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4971 				ret = 0;
4972 				goto out;
4973 			}
4974 		}
4975 	}
4976 
4977 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4978 			sctx->cur_inode_size, &found_clone);
4979 	if (ret != -ENOENT && ret < 0)
4980 		goto out;
4981 
4982 	ret = send_write_or_clone(sctx, path, key, found_clone);
4983 	if (ret)
4984 		goto out;
4985 out_hole:
4986 	ret = maybe_send_hole(sctx, path, key);
4987 out:
4988 	return ret;
4989 }
4990 
process_all_extents(struct send_ctx * sctx)4991 static int process_all_extents(struct send_ctx *sctx)
4992 {
4993 	int ret;
4994 	struct btrfs_root *root;
4995 	struct btrfs_path *path;
4996 	struct btrfs_key key;
4997 	struct btrfs_key found_key;
4998 	struct extent_buffer *eb;
4999 	int slot;
5000 
5001 	root = sctx->send_root;
5002 	path = alloc_path_for_send();
5003 	if (!path)
5004 		return -ENOMEM;
5005 
5006 	key.objectid = sctx->cmp_key->objectid;
5007 	key.type = BTRFS_EXTENT_DATA_KEY;
5008 	key.offset = 0;
5009 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5010 	if (ret < 0)
5011 		goto out;
5012 
5013 	while (1) {
5014 		eb = path->nodes[0];
5015 		slot = path->slots[0];
5016 
5017 		if (slot >= btrfs_header_nritems(eb)) {
5018 			ret = btrfs_next_leaf(root, path);
5019 			if (ret < 0) {
5020 				goto out;
5021 			} else if (ret > 0) {
5022 				ret = 0;
5023 				break;
5024 			}
5025 			continue;
5026 		}
5027 
5028 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5029 
5030 		if (found_key.objectid != key.objectid ||
5031 		    found_key.type != key.type) {
5032 			ret = 0;
5033 			goto out;
5034 		}
5035 
5036 		ret = process_extent(sctx, path, &found_key);
5037 		if (ret < 0)
5038 			goto out;
5039 
5040 		path->slots[0]++;
5041 	}
5042 
5043 out:
5044 	btrfs_free_path(path);
5045 	return ret;
5046 }
5047 
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)5048 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5049 					   int *pending_move,
5050 					   int *refs_processed)
5051 {
5052 	int ret = 0;
5053 
5054 	if (sctx->cur_ino == 0)
5055 		goto out;
5056 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5057 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5058 		goto out;
5059 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5060 		goto out;
5061 
5062 	ret = process_recorded_refs(sctx, pending_move);
5063 	if (ret < 0)
5064 		goto out;
5065 
5066 	*refs_processed = 1;
5067 out:
5068 	return ret;
5069 }
5070 
finish_inode_if_needed(struct send_ctx * sctx,int at_end)5071 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5072 {
5073 	int ret = 0;
5074 	u64 left_mode;
5075 	u64 left_uid;
5076 	u64 left_gid;
5077 	u64 right_mode;
5078 	u64 right_uid;
5079 	u64 right_gid;
5080 	int need_chmod = 0;
5081 	int need_chown = 0;
5082 	int pending_move = 0;
5083 	int refs_processed = 0;
5084 
5085 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5086 					      &refs_processed);
5087 	if (ret < 0)
5088 		goto out;
5089 
5090 	/*
5091 	 * We have processed the refs and thus need to advance send_progress.
5092 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5093 	 * inode into account.
5094 	 *
5095 	 * On the other hand, if our current inode is a directory and couldn't
5096 	 * be moved/renamed because its parent was renamed/moved too and it has
5097 	 * a higher inode number, we can only move/rename our current inode
5098 	 * after we moved/renamed its parent. Therefore in this case operate on
5099 	 * the old path (pre move/rename) of our current inode, and the
5100 	 * move/rename will be performed later.
5101 	 */
5102 	if (refs_processed && !pending_move)
5103 		sctx->send_progress = sctx->cur_ino + 1;
5104 
5105 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5106 		goto out;
5107 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5108 		goto out;
5109 
5110 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5111 			&left_mode, &left_uid, &left_gid, NULL);
5112 	if (ret < 0)
5113 		goto out;
5114 
5115 	if (!sctx->parent_root || sctx->cur_inode_new) {
5116 		need_chown = 1;
5117 		if (!S_ISLNK(sctx->cur_inode_mode))
5118 			need_chmod = 1;
5119 	} else {
5120 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5121 				NULL, NULL, &right_mode, &right_uid,
5122 				&right_gid, NULL);
5123 		if (ret < 0)
5124 			goto out;
5125 
5126 		if (left_uid != right_uid || left_gid != right_gid)
5127 			need_chown = 1;
5128 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5129 			need_chmod = 1;
5130 	}
5131 
5132 	if (S_ISREG(sctx->cur_inode_mode)) {
5133 		if (need_send_hole(sctx)) {
5134 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5135 			    sctx->cur_inode_last_extent <
5136 			    sctx->cur_inode_size) {
5137 				ret = get_last_extent(sctx, (u64)-1);
5138 				if (ret)
5139 					goto out;
5140 			}
5141 			if (sctx->cur_inode_last_extent <
5142 			    sctx->cur_inode_size) {
5143 				ret = send_hole(sctx, sctx->cur_inode_size);
5144 				if (ret)
5145 					goto out;
5146 			}
5147 		}
5148 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5149 				sctx->cur_inode_size);
5150 		if (ret < 0)
5151 			goto out;
5152 	}
5153 
5154 	if (need_chown) {
5155 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5156 				left_uid, left_gid);
5157 		if (ret < 0)
5158 			goto out;
5159 	}
5160 	if (need_chmod) {
5161 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5162 				left_mode);
5163 		if (ret < 0)
5164 			goto out;
5165 	}
5166 
5167 	/*
5168 	 * If other directory inodes depended on our current directory
5169 	 * inode's move/rename, now do their move/rename operations.
5170 	 */
5171 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5172 		ret = apply_children_dir_moves(sctx);
5173 		if (ret)
5174 			goto out;
5175 		/*
5176 		 * Need to send that every time, no matter if it actually
5177 		 * changed between the two trees as we have done changes to
5178 		 * the inode before. If our inode is a directory and it's
5179 		 * waiting to be moved/renamed, we will send its utimes when
5180 		 * it's moved/renamed, therefore we don't need to do it here.
5181 		 */
5182 		sctx->send_progress = sctx->cur_ino + 1;
5183 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5184 		if (ret < 0)
5185 			goto out;
5186 	}
5187 
5188 out:
5189 	return ret;
5190 }
5191 
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5192 static int changed_inode(struct send_ctx *sctx,
5193 			 enum btrfs_compare_tree_result result)
5194 {
5195 	int ret = 0;
5196 	struct btrfs_key *key = sctx->cmp_key;
5197 	struct btrfs_inode_item *left_ii = NULL;
5198 	struct btrfs_inode_item *right_ii = NULL;
5199 	u64 left_gen = 0;
5200 	u64 right_gen = 0;
5201 
5202 	sctx->cur_ino = key->objectid;
5203 	sctx->cur_inode_new_gen = 0;
5204 	sctx->cur_inode_last_extent = (u64)-1;
5205 
5206 	/*
5207 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5208 	 * functions that the current inode's refs are not updated yet. Later,
5209 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5210 	 */
5211 	sctx->send_progress = sctx->cur_ino;
5212 
5213 	if (result == BTRFS_COMPARE_TREE_NEW ||
5214 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5215 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5216 				sctx->left_path->slots[0],
5217 				struct btrfs_inode_item);
5218 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5219 				left_ii);
5220 	} else {
5221 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5222 				sctx->right_path->slots[0],
5223 				struct btrfs_inode_item);
5224 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5225 				right_ii);
5226 	}
5227 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5228 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5229 				sctx->right_path->slots[0],
5230 				struct btrfs_inode_item);
5231 
5232 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5233 				right_ii);
5234 
5235 		/*
5236 		 * The cur_ino = root dir case is special here. We can't treat
5237 		 * the inode as deleted+reused because it would generate a
5238 		 * stream that tries to delete/mkdir the root dir.
5239 		 */
5240 		if (left_gen != right_gen &&
5241 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5242 			sctx->cur_inode_new_gen = 1;
5243 	}
5244 
5245 	if (result == BTRFS_COMPARE_TREE_NEW) {
5246 		sctx->cur_inode_gen = left_gen;
5247 		sctx->cur_inode_new = 1;
5248 		sctx->cur_inode_deleted = 0;
5249 		sctx->cur_inode_size = btrfs_inode_size(
5250 				sctx->left_path->nodes[0], left_ii);
5251 		sctx->cur_inode_mode = btrfs_inode_mode(
5252 				sctx->left_path->nodes[0], left_ii);
5253 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5254 				sctx->left_path->nodes[0], left_ii);
5255 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5256 			ret = send_create_inode_if_needed(sctx);
5257 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5258 		sctx->cur_inode_gen = right_gen;
5259 		sctx->cur_inode_new = 0;
5260 		sctx->cur_inode_deleted = 1;
5261 		sctx->cur_inode_size = btrfs_inode_size(
5262 				sctx->right_path->nodes[0], right_ii);
5263 		sctx->cur_inode_mode = btrfs_inode_mode(
5264 				sctx->right_path->nodes[0], right_ii);
5265 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5266 		/*
5267 		 * We need to do some special handling in case the inode was
5268 		 * reported as changed with a changed generation number. This
5269 		 * means that the original inode was deleted and new inode
5270 		 * reused the same inum. So we have to treat the old inode as
5271 		 * deleted and the new one as new.
5272 		 */
5273 		if (sctx->cur_inode_new_gen) {
5274 			/*
5275 			 * First, process the inode as if it was deleted.
5276 			 */
5277 			sctx->cur_inode_gen = right_gen;
5278 			sctx->cur_inode_new = 0;
5279 			sctx->cur_inode_deleted = 1;
5280 			sctx->cur_inode_size = btrfs_inode_size(
5281 					sctx->right_path->nodes[0], right_ii);
5282 			sctx->cur_inode_mode = btrfs_inode_mode(
5283 					sctx->right_path->nodes[0], right_ii);
5284 			ret = process_all_refs(sctx,
5285 					BTRFS_COMPARE_TREE_DELETED);
5286 			if (ret < 0)
5287 				goto out;
5288 
5289 			/*
5290 			 * Now process the inode as if it was new.
5291 			 */
5292 			sctx->cur_inode_gen = left_gen;
5293 			sctx->cur_inode_new = 1;
5294 			sctx->cur_inode_deleted = 0;
5295 			sctx->cur_inode_size = btrfs_inode_size(
5296 					sctx->left_path->nodes[0], left_ii);
5297 			sctx->cur_inode_mode = btrfs_inode_mode(
5298 					sctx->left_path->nodes[0], left_ii);
5299 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5300 					sctx->left_path->nodes[0], left_ii);
5301 			ret = send_create_inode_if_needed(sctx);
5302 			if (ret < 0)
5303 				goto out;
5304 
5305 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5306 			if (ret < 0)
5307 				goto out;
5308 			/*
5309 			 * Advance send_progress now as we did not get into
5310 			 * process_recorded_refs_if_needed in the new_gen case.
5311 			 */
5312 			sctx->send_progress = sctx->cur_ino + 1;
5313 
5314 			/*
5315 			 * Now process all extents and xattrs of the inode as if
5316 			 * they were all new.
5317 			 */
5318 			ret = process_all_extents(sctx);
5319 			if (ret < 0)
5320 				goto out;
5321 			ret = process_all_new_xattrs(sctx);
5322 			if (ret < 0)
5323 				goto out;
5324 		} else {
5325 			sctx->cur_inode_gen = left_gen;
5326 			sctx->cur_inode_new = 0;
5327 			sctx->cur_inode_new_gen = 0;
5328 			sctx->cur_inode_deleted = 0;
5329 			sctx->cur_inode_size = btrfs_inode_size(
5330 					sctx->left_path->nodes[0], left_ii);
5331 			sctx->cur_inode_mode = btrfs_inode_mode(
5332 					sctx->left_path->nodes[0], left_ii);
5333 		}
5334 	}
5335 
5336 out:
5337 	return ret;
5338 }
5339 
5340 /*
5341  * We have to process new refs before deleted refs, but compare_trees gives us
5342  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5343  * first and later process them in process_recorded_refs.
5344  * For the cur_inode_new_gen case, we skip recording completely because
5345  * changed_inode did already initiate processing of refs. The reason for this is
5346  * that in this case, compare_tree actually compares the refs of 2 different
5347  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5348  * refs of the right tree as deleted and all refs of the left tree as new.
5349  */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5350 static int changed_ref(struct send_ctx *sctx,
5351 		       enum btrfs_compare_tree_result result)
5352 {
5353 	int ret = 0;
5354 
5355 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5356 
5357 	if (!sctx->cur_inode_new_gen &&
5358 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5359 		if (result == BTRFS_COMPARE_TREE_NEW)
5360 			ret = record_new_ref(sctx);
5361 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5362 			ret = record_deleted_ref(sctx);
5363 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5364 			ret = record_changed_ref(sctx);
5365 	}
5366 
5367 	return ret;
5368 }
5369 
5370 /*
5371  * Process new/deleted/changed xattrs. We skip processing in the
5372  * cur_inode_new_gen case because changed_inode did already initiate processing
5373  * of xattrs. The reason is the same as in changed_ref
5374  */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5375 static int changed_xattr(struct send_ctx *sctx,
5376 			 enum btrfs_compare_tree_result result)
5377 {
5378 	int ret = 0;
5379 
5380 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5381 
5382 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5383 		if (result == BTRFS_COMPARE_TREE_NEW)
5384 			ret = process_new_xattr(sctx);
5385 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5386 			ret = process_deleted_xattr(sctx);
5387 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5388 			ret = process_changed_xattr(sctx);
5389 	}
5390 
5391 	return ret;
5392 }
5393 
5394 /*
5395  * Process new/deleted/changed extents. We skip processing in the
5396  * cur_inode_new_gen case because changed_inode did already initiate processing
5397  * of extents. The reason is the same as in changed_ref
5398  */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5399 static int changed_extent(struct send_ctx *sctx,
5400 			  enum btrfs_compare_tree_result result)
5401 {
5402 	int ret = 0;
5403 
5404 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5405 
5406 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5407 		if (result != BTRFS_COMPARE_TREE_DELETED)
5408 			ret = process_extent(sctx, sctx->left_path,
5409 					sctx->cmp_key);
5410 	}
5411 
5412 	return ret;
5413 }
5414 
dir_changed(struct send_ctx * sctx,u64 dir)5415 static int dir_changed(struct send_ctx *sctx, u64 dir)
5416 {
5417 	u64 orig_gen, new_gen;
5418 	int ret;
5419 
5420 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5421 			     NULL, NULL);
5422 	if (ret)
5423 		return ret;
5424 
5425 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5426 			     NULL, NULL, NULL);
5427 	if (ret)
5428 		return ret;
5429 
5430 	return (orig_gen != new_gen) ? 1 : 0;
5431 }
5432 
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5433 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5434 			struct btrfs_key *key)
5435 {
5436 	struct btrfs_inode_extref *extref;
5437 	struct extent_buffer *leaf;
5438 	u64 dirid = 0, last_dirid = 0;
5439 	unsigned long ptr;
5440 	u32 item_size;
5441 	u32 cur_offset = 0;
5442 	int ref_name_len;
5443 	int ret = 0;
5444 
5445 	/* Easy case, just check this one dirid */
5446 	if (key->type == BTRFS_INODE_REF_KEY) {
5447 		dirid = key->offset;
5448 
5449 		ret = dir_changed(sctx, dirid);
5450 		goto out;
5451 	}
5452 
5453 	leaf = path->nodes[0];
5454 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5455 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5456 	while (cur_offset < item_size) {
5457 		extref = (struct btrfs_inode_extref *)(ptr +
5458 						       cur_offset);
5459 		dirid = btrfs_inode_extref_parent(leaf, extref);
5460 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5461 		cur_offset += ref_name_len + sizeof(*extref);
5462 		if (dirid == last_dirid)
5463 			continue;
5464 		ret = dir_changed(sctx, dirid);
5465 		if (ret)
5466 			break;
5467 		last_dirid = dirid;
5468 	}
5469 out:
5470 	return ret;
5471 }
5472 
5473 /*
5474  * Updates compare related fields in sctx and simply forwards to the actual
5475  * changed_xxx functions.
5476  */
changed_cb(struct btrfs_root * left_root,struct btrfs_root * right_root,struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,void * ctx)5477 static int changed_cb(struct btrfs_root *left_root,
5478 		      struct btrfs_root *right_root,
5479 		      struct btrfs_path *left_path,
5480 		      struct btrfs_path *right_path,
5481 		      struct btrfs_key *key,
5482 		      enum btrfs_compare_tree_result result,
5483 		      void *ctx)
5484 {
5485 	int ret = 0;
5486 	struct send_ctx *sctx = ctx;
5487 
5488 	if (result == BTRFS_COMPARE_TREE_SAME) {
5489 		if (key->type == BTRFS_INODE_REF_KEY ||
5490 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5491 			ret = compare_refs(sctx, left_path, key);
5492 			if (!ret)
5493 				return 0;
5494 			if (ret < 0)
5495 				return ret;
5496 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5497 			return maybe_send_hole(sctx, left_path, key);
5498 		} else {
5499 			return 0;
5500 		}
5501 		result = BTRFS_COMPARE_TREE_CHANGED;
5502 		ret = 0;
5503 	}
5504 
5505 	sctx->left_path = left_path;
5506 	sctx->right_path = right_path;
5507 	sctx->cmp_key = key;
5508 
5509 	ret = finish_inode_if_needed(sctx, 0);
5510 	if (ret < 0)
5511 		goto out;
5512 
5513 	/* Ignore non-FS objects */
5514 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5515 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5516 		goto out;
5517 
5518 	if (key->type == BTRFS_INODE_ITEM_KEY)
5519 		ret = changed_inode(sctx, result);
5520 	else if (key->type == BTRFS_INODE_REF_KEY ||
5521 		 key->type == BTRFS_INODE_EXTREF_KEY)
5522 		ret = changed_ref(sctx, result);
5523 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5524 		ret = changed_xattr(sctx, result);
5525 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5526 		ret = changed_extent(sctx, result);
5527 
5528 out:
5529 	return ret;
5530 }
5531 
full_send_tree(struct send_ctx * sctx)5532 static int full_send_tree(struct send_ctx *sctx)
5533 {
5534 	int ret;
5535 	struct btrfs_root *send_root = sctx->send_root;
5536 	struct btrfs_key key;
5537 	struct btrfs_key found_key;
5538 	struct btrfs_path *path;
5539 	struct extent_buffer *eb;
5540 	int slot;
5541 
5542 	path = alloc_path_for_send();
5543 	if (!path)
5544 		return -ENOMEM;
5545 
5546 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5547 	key.type = BTRFS_INODE_ITEM_KEY;
5548 	key.offset = 0;
5549 
5550 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5551 	if (ret < 0)
5552 		goto out;
5553 	if (ret)
5554 		goto out_finish;
5555 
5556 	while (1) {
5557 		eb = path->nodes[0];
5558 		slot = path->slots[0];
5559 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5560 
5561 		ret = changed_cb(send_root, NULL, path, NULL,
5562 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5563 		if (ret < 0)
5564 			goto out;
5565 
5566 		key.objectid = found_key.objectid;
5567 		key.type = found_key.type;
5568 		key.offset = found_key.offset + 1;
5569 
5570 		ret = btrfs_next_item(send_root, path);
5571 		if (ret < 0)
5572 			goto out;
5573 		if (ret) {
5574 			ret  = 0;
5575 			break;
5576 		}
5577 	}
5578 
5579 out_finish:
5580 	ret = finish_inode_if_needed(sctx, 1);
5581 
5582 out:
5583 	btrfs_free_path(path);
5584 	return ret;
5585 }
5586 
send_subvol(struct send_ctx * sctx)5587 static int send_subvol(struct send_ctx *sctx)
5588 {
5589 	int ret;
5590 
5591 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5592 		ret = send_header(sctx);
5593 		if (ret < 0)
5594 			goto out;
5595 	}
5596 
5597 	ret = send_subvol_begin(sctx);
5598 	if (ret < 0)
5599 		goto out;
5600 
5601 	if (sctx->parent_root) {
5602 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5603 				changed_cb, sctx);
5604 		if (ret < 0)
5605 			goto out;
5606 		ret = finish_inode_if_needed(sctx, 1);
5607 		if (ret < 0)
5608 			goto out;
5609 	} else {
5610 		ret = full_send_tree(sctx);
5611 		if (ret < 0)
5612 			goto out;
5613 	}
5614 
5615 out:
5616 	free_recorded_refs(sctx);
5617 	return ret;
5618 }
5619 
5620 /*
5621  * If orphan cleanup did remove any orphans from a root, it means the tree
5622  * was modified and therefore the commit root is not the same as the current
5623  * root anymore. This is a problem, because send uses the commit root and
5624  * therefore can see inode items that don't exist in the current root anymore,
5625  * and for example make calls to btrfs_iget, which will do tree lookups based
5626  * on the current root and not on the commit root. Those lookups will fail,
5627  * returning a -ESTALE error, and making send fail with that error. So make
5628  * sure a send does not see any orphans we have just removed, and that it will
5629  * see the same inodes regardless of whether a transaction commit happened
5630  * before it started (meaning that the commit root will be the same as the
5631  * current root) or not.
5632  */
ensure_commit_roots_uptodate(struct send_ctx * sctx)5633 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5634 {
5635 	int i;
5636 	struct btrfs_trans_handle *trans = NULL;
5637 
5638 again:
5639 	if (sctx->parent_root &&
5640 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5641 		goto commit_trans;
5642 
5643 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5644 		if (sctx->clone_roots[i].root->node !=
5645 		    sctx->clone_roots[i].root->commit_root)
5646 			goto commit_trans;
5647 
5648 	if (trans)
5649 		return btrfs_end_transaction(trans, sctx->send_root);
5650 
5651 	return 0;
5652 
5653 commit_trans:
5654 	/* Use any root, all fs roots will get their commit roots updated. */
5655 	if (!trans) {
5656 		trans = btrfs_join_transaction(sctx->send_root);
5657 		if (IS_ERR(trans))
5658 			return PTR_ERR(trans);
5659 		goto again;
5660 	}
5661 
5662 	return btrfs_commit_transaction(trans, sctx->send_root);
5663 }
5664 
btrfs_root_dec_send_in_progress(struct btrfs_root * root)5665 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5666 {
5667 	spin_lock(&root->root_item_lock);
5668 	root->send_in_progress--;
5669 	/*
5670 	 * Not much left to do, we don't know why it's unbalanced and
5671 	 * can't blindly reset it to 0.
5672 	 */
5673 	if (root->send_in_progress < 0)
5674 		btrfs_err(root->fs_info,
5675 			"send_in_progres unbalanced %d root %llu",
5676 			root->send_in_progress, root->root_key.objectid);
5677 	spin_unlock(&root->root_item_lock);
5678 }
5679 
btrfs_ioctl_send(struct file * mnt_file,void __user * arg_)5680 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5681 {
5682 	int ret = 0;
5683 	struct btrfs_root *send_root;
5684 	struct btrfs_root *clone_root;
5685 	struct btrfs_fs_info *fs_info;
5686 	struct btrfs_ioctl_send_args *arg = NULL;
5687 	struct btrfs_key key;
5688 	struct send_ctx *sctx = NULL;
5689 	u32 i;
5690 	u64 *clone_sources_tmp = NULL;
5691 	int clone_sources_to_rollback = 0;
5692 	int sort_clone_roots = 0;
5693 	int index;
5694 
5695 	if (!capable(CAP_SYS_ADMIN))
5696 		return -EPERM;
5697 
5698 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5699 	fs_info = send_root->fs_info;
5700 
5701 	/*
5702 	 * The subvolume must remain read-only during send, protect against
5703 	 * making it RW. This also protects against deletion.
5704 	 */
5705 	spin_lock(&send_root->root_item_lock);
5706 	send_root->send_in_progress++;
5707 	spin_unlock(&send_root->root_item_lock);
5708 
5709 	/*
5710 	 * This is done when we lookup the root, it should already be complete
5711 	 * by the time we get here.
5712 	 */
5713 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5714 
5715 	/*
5716 	 * Userspace tools do the checks and warn the user if it's
5717 	 * not RO.
5718 	 */
5719 	if (!btrfs_root_readonly(send_root)) {
5720 		ret = -EPERM;
5721 		goto out;
5722 	}
5723 
5724 	arg = memdup_user(arg_, sizeof(*arg));
5725 	if (IS_ERR(arg)) {
5726 		ret = PTR_ERR(arg);
5727 		arg = NULL;
5728 		goto out;
5729 	}
5730 
5731 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5732 			sizeof(*arg->clone_sources) *
5733 			arg->clone_sources_count)) {
5734 		ret = -EFAULT;
5735 		goto out;
5736 	}
5737 
5738 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5739 		ret = -EINVAL;
5740 		goto out;
5741 	}
5742 
5743 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5744 	if (!sctx) {
5745 		ret = -ENOMEM;
5746 		goto out;
5747 	}
5748 
5749 	INIT_LIST_HEAD(&sctx->new_refs);
5750 	INIT_LIST_HEAD(&sctx->deleted_refs);
5751 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5752 	INIT_LIST_HEAD(&sctx->name_cache_list);
5753 
5754 	sctx->flags = arg->flags;
5755 
5756 	sctx->send_filp = fget(arg->send_fd);
5757 	if (!sctx->send_filp) {
5758 		ret = -EBADF;
5759 		goto out;
5760 	}
5761 
5762 	sctx->send_root = send_root;
5763 	/*
5764 	 * Unlikely but possible, if the subvolume is marked for deletion but
5765 	 * is slow to remove the directory entry, send can still be started
5766 	 */
5767 	if (btrfs_root_dead(sctx->send_root)) {
5768 		ret = -EPERM;
5769 		goto out;
5770 	}
5771 
5772 	sctx->clone_roots_cnt = arg->clone_sources_count;
5773 
5774 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5775 	sctx->send_buf = vmalloc(sctx->send_max_size);
5776 	if (!sctx->send_buf) {
5777 		ret = -ENOMEM;
5778 		goto out;
5779 	}
5780 
5781 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5782 	if (!sctx->read_buf) {
5783 		ret = -ENOMEM;
5784 		goto out;
5785 	}
5786 
5787 	sctx->pending_dir_moves = RB_ROOT;
5788 	sctx->waiting_dir_moves = RB_ROOT;
5789 	sctx->orphan_dirs = RB_ROOT;
5790 
5791 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5792 			(arg->clone_sources_count + 1));
5793 	if (!sctx->clone_roots) {
5794 		ret = -ENOMEM;
5795 		goto out;
5796 	}
5797 
5798 	if (arg->clone_sources_count) {
5799 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5800 				sizeof(*arg->clone_sources));
5801 		if (!clone_sources_tmp) {
5802 			ret = -ENOMEM;
5803 			goto out;
5804 		}
5805 
5806 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5807 				arg->clone_sources_count *
5808 				sizeof(*arg->clone_sources));
5809 		if (ret) {
5810 			ret = -EFAULT;
5811 			goto out;
5812 		}
5813 
5814 		for (i = 0; i < arg->clone_sources_count; i++) {
5815 			key.objectid = clone_sources_tmp[i];
5816 			key.type = BTRFS_ROOT_ITEM_KEY;
5817 			key.offset = (u64)-1;
5818 
5819 			index = srcu_read_lock(&fs_info->subvol_srcu);
5820 
5821 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5822 			if (IS_ERR(clone_root)) {
5823 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5824 				ret = PTR_ERR(clone_root);
5825 				goto out;
5826 			}
5827 			spin_lock(&clone_root->root_item_lock);
5828 			if (!btrfs_root_readonly(clone_root) ||
5829 			    btrfs_root_dead(clone_root)) {
5830 				spin_unlock(&clone_root->root_item_lock);
5831 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5832 				ret = -EPERM;
5833 				goto out;
5834 			}
5835 			clone_root->send_in_progress++;
5836 			spin_unlock(&clone_root->root_item_lock);
5837 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5838 
5839 			sctx->clone_roots[i].root = clone_root;
5840 			clone_sources_to_rollback = i + 1;
5841 		}
5842 		vfree(clone_sources_tmp);
5843 		clone_sources_tmp = NULL;
5844 	}
5845 
5846 	if (arg->parent_root) {
5847 		key.objectid = arg->parent_root;
5848 		key.type = BTRFS_ROOT_ITEM_KEY;
5849 		key.offset = (u64)-1;
5850 
5851 		index = srcu_read_lock(&fs_info->subvol_srcu);
5852 
5853 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5854 		if (IS_ERR(sctx->parent_root)) {
5855 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5856 			ret = PTR_ERR(sctx->parent_root);
5857 			goto out;
5858 		}
5859 
5860 		spin_lock(&sctx->parent_root->root_item_lock);
5861 		sctx->parent_root->send_in_progress++;
5862 		if (!btrfs_root_readonly(sctx->parent_root) ||
5863 				btrfs_root_dead(sctx->parent_root)) {
5864 			spin_unlock(&sctx->parent_root->root_item_lock);
5865 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5866 			ret = -EPERM;
5867 			goto out;
5868 		}
5869 		spin_unlock(&sctx->parent_root->root_item_lock);
5870 
5871 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5872 	}
5873 
5874 	/*
5875 	 * Clones from send_root are allowed, but only if the clone source
5876 	 * is behind the current send position. This is checked while searching
5877 	 * for possible clone sources.
5878 	 */
5879 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5880 
5881 	/* We do a bsearch later */
5882 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5883 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5884 			NULL);
5885 	sort_clone_roots = 1;
5886 
5887 	ret = ensure_commit_roots_uptodate(sctx);
5888 	if (ret)
5889 		goto out;
5890 
5891 	current->journal_info = BTRFS_SEND_TRANS_STUB;
5892 	ret = send_subvol(sctx);
5893 	current->journal_info = NULL;
5894 	if (ret < 0)
5895 		goto out;
5896 
5897 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5898 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5899 		if (ret < 0)
5900 			goto out;
5901 		ret = send_cmd(sctx);
5902 		if (ret < 0)
5903 			goto out;
5904 	}
5905 
5906 out:
5907 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5908 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5909 		struct rb_node *n;
5910 		struct pending_dir_move *pm;
5911 
5912 		n = rb_first(&sctx->pending_dir_moves);
5913 		pm = rb_entry(n, struct pending_dir_move, node);
5914 		while (!list_empty(&pm->list)) {
5915 			struct pending_dir_move *pm2;
5916 
5917 			pm2 = list_first_entry(&pm->list,
5918 					       struct pending_dir_move, list);
5919 			free_pending_move(sctx, pm2);
5920 		}
5921 		free_pending_move(sctx, pm);
5922 	}
5923 
5924 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5925 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5926 		struct rb_node *n;
5927 		struct waiting_dir_move *dm;
5928 
5929 		n = rb_first(&sctx->waiting_dir_moves);
5930 		dm = rb_entry(n, struct waiting_dir_move, node);
5931 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
5932 		kfree(dm);
5933 	}
5934 
5935 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5936 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5937 		struct rb_node *n;
5938 		struct orphan_dir_info *odi;
5939 
5940 		n = rb_first(&sctx->orphan_dirs);
5941 		odi = rb_entry(n, struct orphan_dir_info, node);
5942 		free_orphan_dir_info(sctx, odi);
5943 	}
5944 
5945 	if (sort_clone_roots) {
5946 		for (i = 0; i < sctx->clone_roots_cnt; i++)
5947 			btrfs_root_dec_send_in_progress(
5948 					sctx->clone_roots[i].root);
5949 	} else {
5950 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5951 			btrfs_root_dec_send_in_progress(
5952 					sctx->clone_roots[i].root);
5953 
5954 		btrfs_root_dec_send_in_progress(send_root);
5955 	}
5956 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5957 		btrfs_root_dec_send_in_progress(sctx->parent_root);
5958 
5959 	kfree(arg);
5960 	vfree(clone_sources_tmp);
5961 
5962 	if (sctx) {
5963 		if (sctx->send_filp)
5964 			fput(sctx->send_filp);
5965 
5966 		vfree(sctx->clone_roots);
5967 		vfree(sctx->send_buf);
5968 		vfree(sctx->read_buf);
5969 
5970 		name_cache_free(sctx);
5971 
5972 		kfree(sctx);
5973 	}
5974 
5975 	return ret;
5976 }
5977