1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
73 
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78 
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84  * defined in <linux/topology.h>.
85  */
86 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90 
91 /*
92  * Array of node states.
93  */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 	[N_POSSIBLE] = NODE_MASK_ALL,
96 	[N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 	[N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 	[N_CPU] = { { [0] = 1UL } },
106 #endif	/* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109 
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112 
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117  * When calculating the number of globally allowed dirty pages, there
118  * is a certain number of per-zone reserves that should not be
119  * considered dirtyable memory.  This is the sum of those reserves
120  * over all existing zones that contribute dirtyable memory.
121  */
122 unsigned long dirty_balance_reserve __read_mostly;
123 
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126 
127 #ifdef CONFIG_PM_SLEEP
128 /*
129  * The following functions are used by the suspend/hibernate code to temporarily
130  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131  * while devices are suspended.  To avoid races with the suspend/hibernate code,
132  * they should always be called with pm_mutex held (gfp_allowed_mask also should
133  * only be modified with pm_mutex held, unless the suspend/hibernate code is
134  * guaranteed not to run in parallel with that modification).
135  */
136 
137 static gfp_t saved_gfp_mask;
138 
pm_restore_gfp_mask(void)139 void pm_restore_gfp_mask(void)
140 {
141 	WARN_ON(!mutex_is_locked(&pm_mutex));
142 	if (saved_gfp_mask) {
143 		gfp_allowed_mask = saved_gfp_mask;
144 		saved_gfp_mask = 0;
145 	}
146 }
147 
pm_restrict_gfp_mask(void)148 void pm_restrict_gfp_mask(void)
149 {
150 	WARN_ON(!mutex_is_locked(&pm_mutex));
151 	WARN_ON(saved_gfp_mask);
152 	saved_gfp_mask = gfp_allowed_mask;
153 	gfp_allowed_mask &= ~GFP_IOFS;
154 }
155 
pm_suspended_storage(void)156 bool pm_suspended_storage(void)
157 {
158 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 		return false;
160 	return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163 
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 unsigned int pageblock_order __read_mostly;
166 #endif
167 
168 static void __free_pages_ok(struct page *page, unsigned int order);
169 
170 /*
171  * results with 256, 32 in the lowmem_reserve sysctl:
172  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173  *	1G machine -> (16M dma, 784M normal, 224M high)
174  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177  *
178  * TBD: should special case ZONE_DMA32 machines here - in those we normally
179  * don't need any ZONE_NORMAL reservation
180  */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 	 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 	 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 	 32,
190 #endif
191 	 32,
192 };
193 
194 EXPORT_SYMBOL(totalram_pages);
195 
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 	 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 	 "DMA32",
202 #endif
203 	 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 	 "HighMem",
206 #endif
207 	 "Movable",
208 };
209 
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212 
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216 
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223 
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228 
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235 
236 int page_group_by_mobility_disabled __read_mostly;
237 
set_pageblock_migratetype(struct page * page,int migratetype)238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 	if (unlikely(page_group_by_mobility_disabled &&
241 		     migratetype < MIGRATE_PCPTYPES))
242 		migratetype = MIGRATE_UNMOVABLE;
243 
244 	set_pageblock_flags_group(page, (unsigned long)migratetype,
245 					PB_migrate, PB_migrate_end);
246 }
247 
248 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 	int ret = 0;
252 	unsigned seq;
253 	unsigned long pfn = page_to_pfn(page);
254 	unsigned long sp, start_pfn;
255 
256 	do {
257 		seq = zone_span_seqbegin(zone);
258 		start_pfn = zone->zone_start_pfn;
259 		sp = zone->spanned_pages;
260 		if (!zone_spans_pfn(zone, pfn))
261 			ret = 1;
262 	} while (zone_span_seqretry(zone, seq));
263 
264 	if (ret)
265 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 			pfn, zone_to_nid(zone), zone->name,
267 			start_pfn, start_pfn + sp);
268 
269 	return ret;
270 }
271 
page_is_consistent(struct zone * zone,struct page * page)272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 	if (!pfn_valid_within(page_to_pfn(page)))
275 		return 0;
276 	if (zone != page_zone(page))
277 		return 0;
278 
279 	return 1;
280 }
281 /*
282  * Temporary debugging check for pages not lying within a given zone.
283  */
bad_range(struct zone * zone,struct page * page)284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 	if (page_outside_zone_boundaries(zone, page))
287 		return 1;
288 	if (!page_is_consistent(zone, page))
289 		return 1;
290 
291 	return 0;
292 }
293 #else
bad_range(struct zone * zone,struct page * page)294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 	return 0;
297 }
298 #endif
299 
bad_page(struct page * page,const char * reason,unsigned long bad_flags)300 static void bad_page(struct page *page, const char *reason,
301 		unsigned long bad_flags)
302 {
303 	static unsigned long resume;
304 	static unsigned long nr_shown;
305 	static unsigned long nr_unshown;
306 
307 	/* Don't complain about poisoned pages */
308 	if (PageHWPoison(page)) {
309 		page_mapcount_reset(page); /* remove PageBuddy */
310 		return;
311 	}
312 
313 	/*
314 	 * Allow a burst of 60 reports, then keep quiet for that minute;
315 	 * or allow a steady drip of one report per second.
316 	 */
317 	if (nr_shown == 60) {
318 		if (time_before(jiffies, resume)) {
319 			nr_unshown++;
320 			goto out;
321 		}
322 		if (nr_unshown) {
323 			printk(KERN_ALERT
324 			      "BUG: Bad page state: %lu messages suppressed\n",
325 				nr_unshown);
326 			nr_unshown = 0;
327 		}
328 		nr_shown = 0;
329 	}
330 	if (nr_shown++ == 0)
331 		resume = jiffies + 60 * HZ;
332 
333 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
334 		current->comm, page_to_pfn(page));
335 	dump_page_badflags(page, reason, bad_flags);
336 
337 	print_modules();
338 	dump_stack();
339 out:
340 	/* Leave bad fields for debug, except PageBuddy could make trouble */
341 	page_mapcount_reset(page); /* remove PageBuddy */
342 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344 
345 /*
346  * Higher-order pages are called "compound pages".  They are structured thusly:
347  *
348  * The first PAGE_SIZE page is called the "head page".
349  *
350  * The remaining PAGE_SIZE pages are called "tail pages".
351  *
352  * All pages have PG_compound set.  All tail pages have their ->first_page
353  * pointing at the head page.
354  *
355  * The first tail page's ->lru.next holds the address of the compound page's
356  * put_page() function.  Its ->lru.prev holds the order of allocation.
357  * This usage means that zero-order pages may not be compound.
358  */
359 
free_compound_page(struct page * page)360 static void free_compound_page(struct page *page)
361 {
362 	__free_pages_ok(page, compound_order(page));
363 }
364 
prep_compound_page(struct page * page,unsigned int order)365 void prep_compound_page(struct page *page, unsigned int order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 
370 	set_compound_page_dtor(page, free_compound_page);
371 	set_compound_order(page, order);
372 	__SetPageHead(page);
373 	for (i = 1; i < nr_pages; i++) {
374 		struct page *p = page + i;
375 		set_page_count(p, 0);
376 		p->first_page = page;
377 		/* Make sure p->first_page is always valid for PageTail() */
378 		smp_wmb();
379 		__SetPageTail(p);
380 	}
381 }
382 
prep_zero_page(struct page * page,unsigned int order,gfp_t gfp_flags)383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 							gfp_t gfp_flags)
385 {
386 	int i;
387 
388 	/*
389 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 	 */
392 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 	for (i = 0; i < (1 << order); i++)
394 		clear_highpage(page + i);
395 }
396 
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401 
early_debug_pagealloc(char * buf)402 static int __init early_debug_pagealloc(char *buf)
403 {
404 	if (!buf)
405 		return -EINVAL;
406 
407 	if (strcmp(buf, "on") == 0)
408 		_debug_pagealloc_enabled = true;
409 
410 	return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413 
need_debug_guardpage(void)414 static bool need_debug_guardpage(void)
415 {
416 	/* If we don't use debug_pagealloc, we don't need guard page */
417 	if (!debug_pagealloc_enabled())
418 		return false;
419 
420 	return true;
421 }
422 
init_debug_guardpage(void)423 static void init_debug_guardpage(void)
424 {
425 	if (!debug_pagealloc_enabled())
426 		return;
427 
428 	_debug_guardpage_enabled = true;
429 }
430 
431 struct page_ext_operations debug_guardpage_ops = {
432 	.need = need_debug_guardpage,
433 	.init = init_debug_guardpage,
434 };
435 
debug_guardpage_minorder_setup(char * buf)436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 	unsigned long res;
439 
440 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
441 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 		return 0;
443 	}
444 	_debug_guardpage_minorder = res;
445 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 	return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 				unsigned int order, int migratetype)
452 {
453 	struct page_ext *page_ext;
454 
455 	if (!debug_guardpage_enabled())
456 		return;
457 
458 	page_ext = lookup_page_ext(page);
459 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460 
461 	INIT_LIST_HEAD(&page->lru);
462 	set_page_private(page, order);
463 	/* Guard pages are not available for any usage */
464 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 				unsigned int order, int migratetype)
469 {
470 	struct page_ext *page_ext;
471 
472 	if (!debug_guardpage_enabled())
473 		return;
474 
475 	page_ext = lookup_page_ext(page);
476 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477 
478 	set_page_private(page, 0);
479 	if (!is_migrate_isolate(migratetype))
480 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 				unsigned int order, int migratetype) {}
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 				unsigned int order, int migratetype) {}
488 #endif
489 
set_page_order(struct page * page,unsigned int order)490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 	set_page_private(page, order);
493 	__SetPageBuddy(page);
494 }
495 
rmv_page_order(struct page * page)496 static inline void rmv_page_order(struct page *page)
497 {
498 	__ClearPageBuddy(page);
499 	set_page_private(page, 0);
500 }
501 
502 /*
503  * This function checks whether a page is free && is the buddy
504  * we can do coalesce a page and its buddy if
505  * (a) the buddy is not in a hole &&
506  * (b) the buddy is in the buddy system &&
507  * (c) a page and its buddy have the same order &&
508  * (d) a page and its buddy are in the same zone.
509  *
510  * For recording whether a page is in the buddy system, we set ->_mapcount
511  * PAGE_BUDDY_MAPCOUNT_VALUE.
512  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513  * serialized by zone->lock.
514  *
515  * For recording page's order, we use page_private(page).
516  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 							unsigned int order)
519 {
520 	if (!pfn_valid_within(page_to_pfn(buddy)))
521 		return 0;
522 
523 	if (page_is_guard(buddy) && page_order(buddy) == order) {
524 		if (page_zone_id(page) != page_zone_id(buddy))
525 			return 0;
526 
527 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528 
529 		return 1;
530 	}
531 
532 	if (PageBuddy(buddy) && page_order(buddy) == order) {
533 		/*
534 		 * zone check is done late to avoid uselessly
535 		 * calculating zone/node ids for pages that could
536 		 * never merge.
537 		 */
538 		if (page_zone_id(page) != page_zone_id(buddy))
539 			return 0;
540 
541 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542 
543 		return 1;
544 	}
545 	return 0;
546 }
547 
548 /*
549  * Freeing function for a buddy system allocator.
550  *
551  * The concept of a buddy system is to maintain direct-mapped table
552  * (containing bit values) for memory blocks of various "orders".
553  * The bottom level table contains the map for the smallest allocatable
554  * units of memory (here, pages), and each level above it describes
555  * pairs of units from the levels below, hence, "buddies".
556  * At a high level, all that happens here is marking the table entry
557  * at the bottom level available, and propagating the changes upward
558  * as necessary, plus some accounting needed to play nicely with other
559  * parts of the VM system.
560  * At each level, we keep a list of pages, which are heads of continuous
561  * free pages of length of (1 << order) and marked with _mapcount
562  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563  * field.
564  * So when we are allocating or freeing one, we can derive the state of the
565  * other.  That is, if we allocate a small block, and both were
566  * free, the remainder of the region must be split into blocks.
567  * If a block is freed, and its buddy is also free, then this
568  * triggers coalescing into a block of larger size.
569  *
570  * -- nyc
571  */
572 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)573 static inline void __free_one_page(struct page *page,
574 		unsigned long pfn,
575 		struct zone *zone, unsigned int order,
576 		int migratetype)
577 {
578 	unsigned long page_idx;
579 	unsigned long combined_idx;
580 	unsigned long uninitialized_var(buddy_idx);
581 	struct page *buddy;
582 	unsigned int max_order;
583 
584 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
585 
586 	VM_BUG_ON(!zone_is_initialized(zone));
587 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
588 
589 	VM_BUG_ON(migratetype == -1);
590 	if (likely(!is_migrate_isolate(migratetype)))
591 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
592 
593 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
594 
595 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
596 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
597 
598 continue_merging:
599 	while (order < max_order - 1) {
600 		buddy_idx = __find_buddy_index(page_idx, order);
601 		buddy = page + (buddy_idx - page_idx);
602 		if (!page_is_buddy(page, buddy, order))
603 			goto done_merging;
604 		/*
605 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
606 		 * merge with it and move up one order.
607 		 */
608 		if (page_is_guard(buddy)) {
609 			clear_page_guard(zone, buddy, order, migratetype);
610 		} else {
611 			list_del(&buddy->lru);
612 			zone->free_area[order].nr_free--;
613 			rmv_page_order(buddy);
614 		}
615 		combined_idx = buddy_idx & page_idx;
616 		page = page + (combined_idx - page_idx);
617 		page_idx = combined_idx;
618 		order++;
619 	}
620 	if (max_order < MAX_ORDER) {
621 		/* If we are here, it means order is >= pageblock_order.
622 		 * We want to prevent merge between freepages on isolate
623 		 * pageblock and normal pageblock. Without this, pageblock
624 		 * isolation could cause incorrect freepage or CMA accounting.
625 		 *
626 		 * We don't want to hit this code for the more frequent
627 		 * low-order merging.
628 		 */
629 		if (unlikely(has_isolate_pageblock(zone))) {
630 			int buddy_mt;
631 
632 			buddy_idx = __find_buddy_index(page_idx, order);
633 			buddy = page + (buddy_idx - page_idx);
634 			buddy_mt = get_pageblock_migratetype(buddy);
635 
636 			if (migratetype != buddy_mt
637 					&& (is_migrate_isolate(migratetype) ||
638 						is_migrate_isolate(buddy_mt)))
639 				goto done_merging;
640 		}
641 		max_order++;
642 		goto continue_merging;
643 	}
644 
645 done_merging:
646 	set_page_order(page, order);
647 
648 	/*
649 	 * If this is not the largest possible page, check if the buddy
650 	 * of the next-highest order is free. If it is, it's possible
651 	 * that pages are being freed that will coalesce soon. In case,
652 	 * that is happening, add the free page to the tail of the list
653 	 * so it's less likely to be used soon and more likely to be merged
654 	 * as a higher order page
655 	 */
656 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
657 		struct page *higher_page, *higher_buddy;
658 		combined_idx = buddy_idx & page_idx;
659 		higher_page = page + (combined_idx - page_idx);
660 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
661 		higher_buddy = higher_page + (buddy_idx - combined_idx);
662 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
663 			list_add_tail(&page->lru,
664 				&zone->free_area[order].free_list[migratetype]);
665 			goto out;
666 		}
667 	}
668 
669 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
670 out:
671 	zone->free_area[order].nr_free++;
672 }
673 
free_pages_check(struct page * page)674 static inline int free_pages_check(struct page *page)
675 {
676 	const char *bad_reason = NULL;
677 	unsigned long bad_flags = 0;
678 
679 	if (unlikely(page_mapcount(page)))
680 		bad_reason = "nonzero mapcount";
681 	if (unlikely(page->mapping != NULL))
682 		bad_reason = "non-NULL mapping";
683 	if (unlikely(atomic_read(&page->_count) != 0))
684 		bad_reason = "nonzero _count";
685 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
686 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
687 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
688 	}
689 #ifdef CONFIG_MEMCG
690 	if (unlikely(page->mem_cgroup))
691 		bad_reason = "page still charged to cgroup";
692 #endif
693 	if (unlikely(bad_reason)) {
694 		bad_page(page, bad_reason, bad_flags);
695 		return 1;
696 	}
697 	page_cpupid_reset_last(page);
698 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
699 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
700 	return 0;
701 }
702 
703 /*
704  * Frees a number of pages from the PCP lists
705  * Assumes all pages on list are in same zone, and of same order.
706  * count is the number of pages to free.
707  *
708  * If the zone was previously in an "all pages pinned" state then look to
709  * see if this freeing clears that state.
710  *
711  * And clear the zone's pages_scanned counter, to hold off the "all pages are
712  * pinned" detection logic.
713  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)714 static void free_pcppages_bulk(struct zone *zone, int count,
715 					struct per_cpu_pages *pcp)
716 {
717 	int migratetype = 0;
718 	int batch_free = 0;
719 	int to_free = count;
720 	unsigned long nr_scanned;
721 
722 	spin_lock(&zone->lock);
723 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
724 	if (nr_scanned)
725 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
726 
727 	while (to_free) {
728 		struct page *page;
729 		struct list_head *list;
730 
731 		/*
732 		 * Remove pages from lists in a round-robin fashion. A
733 		 * batch_free count is maintained that is incremented when an
734 		 * empty list is encountered.  This is so more pages are freed
735 		 * off fuller lists instead of spinning excessively around empty
736 		 * lists
737 		 */
738 		do {
739 			batch_free++;
740 			if (++migratetype == MIGRATE_PCPTYPES)
741 				migratetype = 0;
742 			list = &pcp->lists[migratetype];
743 		} while (list_empty(list));
744 
745 		/* This is the only non-empty list. Free them all. */
746 		if (batch_free == MIGRATE_PCPTYPES)
747 			batch_free = to_free;
748 
749 		do {
750 			int mt;	/* migratetype of the to-be-freed page */
751 
752 			page = list_entry(list->prev, struct page, lru);
753 			/* must delete as __free_one_page list manipulates */
754 			list_del(&page->lru);
755 			mt = get_freepage_migratetype(page);
756 			if (unlikely(has_isolate_pageblock(zone)))
757 				mt = get_pageblock_migratetype(page);
758 
759 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
760 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
761 			trace_mm_page_pcpu_drain(page, 0, mt);
762 		} while (--to_free && --batch_free && !list_empty(list));
763 	}
764 	spin_unlock(&zone->lock);
765 }
766 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)767 static void free_one_page(struct zone *zone,
768 				struct page *page, unsigned long pfn,
769 				unsigned int order,
770 				int migratetype)
771 {
772 	unsigned long nr_scanned;
773 	spin_lock(&zone->lock);
774 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
775 	if (nr_scanned)
776 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
777 
778 	if (unlikely(has_isolate_pageblock(zone) ||
779 		is_migrate_isolate(migratetype))) {
780 		migratetype = get_pfnblock_migratetype(page, pfn);
781 	}
782 	__free_one_page(page, pfn, zone, order, migratetype);
783 	spin_unlock(&zone->lock);
784 }
785 
free_tail_pages_check(struct page * head_page,struct page * page)786 static int free_tail_pages_check(struct page *head_page, struct page *page)
787 {
788 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
789 		return 0;
790 	if (unlikely(!PageTail(page))) {
791 		bad_page(page, "PageTail not set", 0);
792 		return 1;
793 	}
794 	if (unlikely(page->first_page != head_page)) {
795 		bad_page(page, "first_page not consistent", 0);
796 		return 1;
797 	}
798 	return 0;
799 }
800 
free_pages_prepare(struct page * page,unsigned int order)801 static bool free_pages_prepare(struct page *page, unsigned int order)
802 {
803 	bool compound = PageCompound(page);
804 	int i, bad = 0;
805 
806 	VM_BUG_ON_PAGE(PageTail(page), page);
807 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
808 
809 	trace_mm_page_free(page, order);
810 	kmemcheck_free_shadow(page, order);
811 	kasan_free_pages(page, order);
812 
813 	if (PageAnon(page))
814 		page->mapping = NULL;
815 	bad += free_pages_check(page);
816 	for (i = 1; i < (1 << order); i++) {
817 		if (compound)
818 			bad += free_tail_pages_check(page, page + i);
819 		bad += free_pages_check(page + i);
820 	}
821 	if (bad)
822 		return false;
823 
824 	reset_page_owner(page, order);
825 
826 	if (!PageHighMem(page)) {
827 		debug_check_no_locks_freed(page_address(page),
828 					   PAGE_SIZE << order);
829 		debug_check_no_obj_freed(page_address(page),
830 					   PAGE_SIZE << order);
831 	}
832 	arch_free_page(page, order);
833 	kernel_map_pages(page, 1 << order, 0);
834 
835 	return true;
836 }
837 
__free_pages_ok(struct page * page,unsigned int order)838 static void __free_pages_ok(struct page *page, unsigned int order)
839 {
840 	unsigned long flags;
841 	int migratetype;
842 	unsigned long pfn = page_to_pfn(page);
843 
844 	if (!free_pages_prepare(page, order))
845 		return;
846 
847 	migratetype = get_pfnblock_migratetype(page, pfn);
848 	local_irq_save(flags);
849 	__count_vm_events(PGFREE, 1 << order);
850 	set_freepage_migratetype(page, migratetype);
851 	free_one_page(page_zone(page), page, pfn, order, migratetype);
852 	local_irq_restore(flags);
853 }
854 
__free_pages_bootmem(struct page * page,unsigned long pfn,unsigned int order)855 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
856 							unsigned int order)
857 {
858 	unsigned int nr_pages = 1 << order;
859 	struct page *p = page;
860 	unsigned int loop;
861 
862 	prefetchw(p);
863 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
864 		prefetchw(p + 1);
865 		__ClearPageReserved(p);
866 		set_page_count(p, 0);
867 	}
868 	__ClearPageReserved(p);
869 	set_page_count(p, 0);
870 
871 	page_zone(page)->managed_pages += nr_pages;
872 	set_page_refcounted(page);
873 	__free_pages(page, order);
874 }
875 
876 #ifdef CONFIG_CMA
877 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)878 void __init init_cma_reserved_pageblock(struct page *page)
879 {
880 	unsigned i = pageblock_nr_pages;
881 	struct page *p = page;
882 
883 	do {
884 		__ClearPageReserved(p);
885 		set_page_count(p, 0);
886 	} while (++p, --i);
887 
888 	set_pageblock_migratetype(page, MIGRATE_CMA);
889 
890 	if (pageblock_order >= MAX_ORDER) {
891 		i = pageblock_nr_pages;
892 		p = page;
893 		do {
894 			set_page_refcounted(p);
895 			__free_pages(p, MAX_ORDER - 1);
896 			p += MAX_ORDER_NR_PAGES;
897 		} while (i -= MAX_ORDER_NR_PAGES);
898 	} else {
899 		set_page_refcounted(page);
900 		__free_pages(page, pageblock_order);
901 	}
902 
903 	adjust_managed_page_count(page, pageblock_nr_pages);
904 }
905 #endif
906 
907 /*
908  * The order of subdivision here is critical for the IO subsystem.
909  * Please do not alter this order without good reasons and regression
910  * testing. Specifically, as large blocks of memory are subdivided,
911  * the order in which smaller blocks are delivered depends on the order
912  * they're subdivided in this function. This is the primary factor
913  * influencing the order in which pages are delivered to the IO
914  * subsystem according to empirical testing, and this is also justified
915  * by considering the behavior of a buddy system containing a single
916  * large block of memory acted on by a series of small allocations.
917  * This behavior is a critical factor in sglist merging's success.
918  *
919  * -- nyc
920  */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)921 static inline void expand(struct zone *zone, struct page *page,
922 	int low, int high, struct free_area *area,
923 	int migratetype)
924 {
925 	unsigned long size = 1 << high;
926 
927 	while (high > low) {
928 		area--;
929 		high--;
930 		size >>= 1;
931 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
932 
933 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
934 			debug_guardpage_enabled() &&
935 			high < debug_guardpage_minorder()) {
936 			/*
937 			 * Mark as guard pages (or page), that will allow to
938 			 * merge back to allocator when buddy will be freed.
939 			 * Corresponding page table entries will not be touched,
940 			 * pages will stay not present in virtual address space
941 			 */
942 			set_page_guard(zone, &page[size], high, migratetype);
943 			continue;
944 		}
945 		list_add(&page[size].lru, &area->free_list[migratetype]);
946 		area->nr_free++;
947 		set_page_order(&page[size], high);
948 	}
949 }
950 
951 /*
952  * This page is about to be returned from the page allocator
953  */
check_new_page(struct page * page)954 static inline int check_new_page(struct page *page)
955 {
956 	const char *bad_reason = NULL;
957 	unsigned long bad_flags = 0;
958 
959 	if (unlikely(page_mapcount(page)))
960 		bad_reason = "nonzero mapcount";
961 	if (unlikely(page->mapping != NULL))
962 		bad_reason = "non-NULL mapping";
963 	if (unlikely(atomic_read(&page->_count) != 0))
964 		bad_reason = "nonzero _count";
965 	if (unlikely(page->flags & __PG_HWPOISON)) {
966 		bad_reason = "HWPoisoned (hardware-corrupted)";
967 		bad_flags = __PG_HWPOISON;
968 	}
969 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
970 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
971 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
972 	}
973 #ifdef CONFIG_MEMCG
974 	if (unlikely(page->mem_cgroup))
975 		bad_reason = "page still charged to cgroup";
976 #endif
977 	if (unlikely(bad_reason)) {
978 		bad_page(page, bad_reason, bad_flags);
979 		return 1;
980 	}
981 	return 0;
982 }
983 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,int alloc_flags)984 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
985 								int alloc_flags)
986 {
987 	int i;
988 
989 	for (i = 0; i < (1 << order); i++) {
990 		struct page *p = page + i;
991 		if (unlikely(check_new_page(p)))
992 			return 1;
993 	}
994 
995 	set_page_private(page, 0);
996 	set_page_refcounted(page);
997 
998 	arch_alloc_page(page, order);
999 	kernel_map_pages(page, 1 << order, 1);
1000 	kasan_alloc_pages(page, order);
1001 
1002 	if (gfp_flags & __GFP_ZERO)
1003 		prep_zero_page(page, order, gfp_flags);
1004 
1005 	if (order && (gfp_flags & __GFP_COMP))
1006 		prep_compound_page(page, order);
1007 
1008 	set_page_owner(page, order, gfp_flags);
1009 
1010 	/*
1011 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1012 	 * allocate the page. The expectation is that the caller is taking
1013 	 * steps that will free more memory. The caller should avoid the page
1014 	 * being used for !PFMEMALLOC purposes.
1015 	 */
1016 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1017 		set_page_pfmemalloc(page);
1018 	else
1019 		clear_page_pfmemalloc(page);
1020 
1021 	return 0;
1022 }
1023 
1024 /*
1025  * Go through the free lists for the given migratetype and remove
1026  * the smallest available page from the freelists
1027  */
1028 static inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1029 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1030 						int migratetype)
1031 {
1032 	unsigned int current_order;
1033 	struct free_area *area;
1034 	struct page *page;
1035 
1036 	/* Find a page of the appropriate size in the preferred list */
1037 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1038 		area = &(zone->free_area[current_order]);
1039 		if (list_empty(&area->free_list[migratetype]))
1040 			continue;
1041 
1042 		page = list_entry(area->free_list[migratetype].next,
1043 							struct page, lru);
1044 		list_del(&page->lru);
1045 		rmv_page_order(page);
1046 		area->nr_free--;
1047 		expand(zone, page, order, current_order, area, migratetype);
1048 		set_freepage_migratetype(page, migratetype);
1049 		return page;
1050 	}
1051 
1052 	return NULL;
1053 }
1054 
1055 
1056 /*
1057  * This array describes the order lists are fallen back to when
1058  * the free lists for the desirable migrate type are depleted
1059  */
1060 static int fallbacks[MIGRATE_TYPES][4] = {
1061 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1062 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1063 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1064 #ifdef CONFIG_CMA
1065 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1066 #endif
1067 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1068 #ifdef CONFIG_MEMORY_ISOLATION
1069 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1070 #endif
1071 };
1072 
1073 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1074 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1075 					unsigned int order)
1076 {
1077 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1078 }
1079 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1080 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1081 					unsigned int order) { return NULL; }
1082 #endif
1083 
1084 /*
1085  * Move the free pages in a range to the free lists of the requested type.
1086  * Note that start_page and end_pages are not aligned on a pageblock
1087  * boundary. If alignment is required, use move_freepages_block()
1088  */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype)1089 int move_freepages(struct zone *zone,
1090 			  struct page *start_page, struct page *end_page,
1091 			  int migratetype)
1092 {
1093 	struct page *page;
1094 	unsigned int order;
1095 	int pages_moved = 0;
1096 
1097 #ifndef CONFIG_HOLES_IN_ZONE
1098 	/*
1099 	 * page_zone is not safe to call in this context when
1100 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1101 	 * anyway as we check zone boundaries in move_freepages_block().
1102 	 * Remove at a later date when no bug reports exist related to
1103 	 * grouping pages by mobility
1104 	 */
1105 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1106 #endif
1107 
1108 	for (page = start_page; page <= end_page;) {
1109 		/* Make sure we are not inadvertently changing nodes */
1110 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1111 
1112 		if (!pfn_valid_within(page_to_pfn(page))) {
1113 			page++;
1114 			continue;
1115 		}
1116 
1117 		if (!PageBuddy(page)) {
1118 			page++;
1119 			continue;
1120 		}
1121 
1122 		order = page_order(page);
1123 		list_move(&page->lru,
1124 			  &zone->free_area[order].free_list[migratetype]);
1125 		set_freepage_migratetype(page, migratetype);
1126 		page += 1 << order;
1127 		pages_moved += 1 << order;
1128 	}
1129 
1130 	return pages_moved;
1131 }
1132 
move_freepages_block(struct zone * zone,struct page * page,int migratetype)1133 int move_freepages_block(struct zone *zone, struct page *page,
1134 				int migratetype)
1135 {
1136 	unsigned long start_pfn, end_pfn;
1137 	struct page *start_page, *end_page;
1138 
1139 	start_pfn = page_to_pfn(page);
1140 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1141 	start_page = pfn_to_page(start_pfn);
1142 	end_page = start_page + pageblock_nr_pages - 1;
1143 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1144 
1145 	/* Do not cross zone boundaries */
1146 	if (!zone_spans_pfn(zone, start_pfn))
1147 		start_page = page;
1148 	if (!zone_spans_pfn(zone, end_pfn))
1149 		return 0;
1150 
1151 	return move_freepages(zone, start_page, end_page, migratetype);
1152 }
1153 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1154 static void change_pageblock_range(struct page *pageblock_page,
1155 					int start_order, int migratetype)
1156 {
1157 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1158 
1159 	while (nr_pageblocks--) {
1160 		set_pageblock_migratetype(pageblock_page, migratetype);
1161 		pageblock_page += pageblock_nr_pages;
1162 	}
1163 }
1164 
1165 /*
1166  * When we are falling back to another migratetype during allocation, try to
1167  * steal extra free pages from the same pageblocks to satisfy further
1168  * allocations, instead of polluting multiple pageblocks.
1169  *
1170  * If we are stealing a relatively large buddy page, it is likely there will
1171  * be more free pages in the pageblock, so try to steal them all. For
1172  * reclaimable and unmovable allocations, we steal regardless of page size,
1173  * as fragmentation caused by those allocations polluting movable pageblocks
1174  * is worse than movable allocations stealing from unmovable and reclaimable
1175  * pageblocks.
1176  */
can_steal_fallback(unsigned int order,int start_mt)1177 static bool can_steal_fallback(unsigned int order, int start_mt)
1178 {
1179 	/*
1180 	 * Leaving this order check is intended, although there is
1181 	 * relaxed order check in next check. The reason is that
1182 	 * we can actually steal whole pageblock if this condition met,
1183 	 * but, below check doesn't guarantee it and that is just heuristic
1184 	 * so could be changed anytime.
1185 	 */
1186 	if (order >= pageblock_order)
1187 		return true;
1188 
1189 	if (order >= pageblock_order / 2 ||
1190 		start_mt == MIGRATE_RECLAIMABLE ||
1191 		start_mt == MIGRATE_UNMOVABLE ||
1192 		page_group_by_mobility_disabled)
1193 		return true;
1194 
1195 	return false;
1196 }
1197 
1198 /*
1199  * This function implements actual steal behaviour. If order is large enough,
1200  * we can steal whole pageblock. If not, we first move freepages in this
1201  * pageblock and check whether half of pages are moved or not. If half of
1202  * pages are moved, we can change migratetype of pageblock and permanently
1203  * use it's pages as requested migratetype in the future.
1204  */
steal_suitable_fallback(struct zone * zone,struct page * page,int start_type)1205 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1206 							  int start_type)
1207 {
1208 	unsigned int current_order = page_order(page);
1209 	int pages;
1210 
1211 	/* Take ownership for orders >= pageblock_order */
1212 	if (current_order >= pageblock_order) {
1213 		change_pageblock_range(page, current_order, start_type);
1214 		return;
1215 	}
1216 
1217 	pages = move_freepages_block(zone, page, start_type);
1218 
1219 	/* Claim the whole block if over half of it is free */
1220 	if (pages >= (1 << (pageblock_order-1)) ||
1221 			page_group_by_mobility_disabled)
1222 		set_pageblock_migratetype(page, start_type);
1223 }
1224 
1225 /*
1226  * Check whether there is a suitable fallback freepage with requested order.
1227  * If only_stealable is true, this function returns fallback_mt only if
1228  * we can steal other freepages all together. This would help to reduce
1229  * fragmentation due to mixed migratetype pages in one pageblock.
1230  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1231 int find_suitable_fallback(struct free_area *area, unsigned int order,
1232 			int migratetype, bool only_stealable, bool *can_steal)
1233 {
1234 	int i;
1235 	int fallback_mt;
1236 
1237 	if (area->nr_free == 0)
1238 		return -1;
1239 
1240 	*can_steal = false;
1241 	for (i = 0;; i++) {
1242 		fallback_mt = fallbacks[migratetype][i];
1243 		if (fallback_mt == MIGRATE_RESERVE)
1244 			break;
1245 
1246 		if (list_empty(&area->free_list[fallback_mt]))
1247 			continue;
1248 
1249 		if (can_steal_fallback(order, migratetype))
1250 			*can_steal = true;
1251 
1252 		if (!only_stealable)
1253 			return fallback_mt;
1254 
1255 		if (*can_steal)
1256 			return fallback_mt;
1257 	}
1258 
1259 	return -1;
1260 }
1261 
1262 /* Remove an element from the buddy allocator from the fallback list */
1263 static inline struct page *
__rmqueue_fallback(struct zone * zone,unsigned int order,int start_migratetype)1264 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1265 {
1266 	struct free_area *area;
1267 	unsigned int current_order;
1268 	struct page *page;
1269 	int fallback_mt;
1270 	bool can_steal;
1271 
1272 	/* Find the largest possible block of pages in the other list */
1273 	for (current_order = MAX_ORDER-1;
1274 				current_order >= order && current_order <= MAX_ORDER-1;
1275 				--current_order) {
1276 		area = &(zone->free_area[current_order]);
1277 		fallback_mt = find_suitable_fallback(area, current_order,
1278 				start_migratetype, false, &can_steal);
1279 		if (fallback_mt == -1)
1280 			continue;
1281 
1282 		page = list_entry(area->free_list[fallback_mt].next,
1283 						struct page, lru);
1284 		if (can_steal)
1285 			steal_suitable_fallback(zone, page, start_migratetype);
1286 
1287 		/* Remove the page from the freelists */
1288 		area->nr_free--;
1289 		list_del(&page->lru);
1290 		rmv_page_order(page);
1291 
1292 		expand(zone, page, order, current_order, area,
1293 					start_migratetype);
1294 		/*
1295 		 * The freepage_migratetype may differ from pageblock's
1296 		 * migratetype depending on the decisions in
1297 		 * try_to_steal_freepages(). This is OK as long as it
1298 		 * does not differ for MIGRATE_CMA pageblocks. For CMA
1299 		 * we need to make sure unallocated pages flushed from
1300 		 * pcp lists are returned to the correct freelist.
1301 		 */
1302 		set_freepage_migratetype(page, start_migratetype);
1303 
1304 		trace_mm_page_alloc_extfrag(page, order, current_order,
1305 			start_migratetype, fallback_mt);
1306 
1307 		return page;
1308 	}
1309 
1310 	return NULL;
1311 }
1312 
1313 /*
1314  * Do the hard work of removing an element from the buddy allocator.
1315  * Call me with the zone->lock already held.
1316  */
__rmqueue(struct zone * zone,unsigned int order,int migratetype)1317 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1318 						int migratetype)
1319 {
1320 	struct page *page;
1321 
1322 retry_reserve:
1323 	page = __rmqueue_smallest(zone, order, migratetype);
1324 
1325 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1326 		if (migratetype == MIGRATE_MOVABLE)
1327 			page = __rmqueue_cma_fallback(zone, order);
1328 
1329 		if (!page)
1330 			page = __rmqueue_fallback(zone, order, migratetype);
1331 
1332 		/*
1333 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1334 		 * is used because __rmqueue_smallest is an inline function
1335 		 * and we want just one call site
1336 		 */
1337 		if (!page) {
1338 			migratetype = MIGRATE_RESERVE;
1339 			goto retry_reserve;
1340 		}
1341 	}
1342 
1343 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1344 	return page;
1345 }
1346 
1347 /*
1348  * Obtain a specified number of elements from the buddy allocator, all under
1349  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1350  * Returns the number of new pages which were placed at *list.
1351  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,bool cold)1352 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1353 			unsigned long count, struct list_head *list,
1354 			int migratetype, bool cold)
1355 {
1356 	int i;
1357 
1358 	spin_lock(&zone->lock);
1359 	for (i = 0; i < count; ++i) {
1360 		struct page *page = __rmqueue(zone, order, migratetype);
1361 		if (unlikely(page == NULL))
1362 			break;
1363 
1364 		/*
1365 		 * Split buddy pages returned by expand() are received here
1366 		 * in physical page order. The page is added to the callers and
1367 		 * list and the list head then moves forward. From the callers
1368 		 * perspective, the linked list is ordered by page number in
1369 		 * some conditions. This is useful for IO devices that can
1370 		 * merge IO requests if the physical pages are ordered
1371 		 * properly.
1372 		 */
1373 		if (likely(!cold))
1374 			list_add(&page->lru, list);
1375 		else
1376 			list_add_tail(&page->lru, list);
1377 		list = &page->lru;
1378 		if (is_migrate_cma(get_freepage_migratetype(page)))
1379 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1380 					      -(1 << order));
1381 	}
1382 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1383 	spin_unlock(&zone->lock);
1384 	return i;
1385 }
1386 
1387 #ifdef CONFIG_NUMA
1388 /*
1389  * Called from the vmstat counter updater to drain pagesets of this
1390  * currently executing processor on remote nodes after they have
1391  * expired.
1392  *
1393  * Note that this function must be called with the thread pinned to
1394  * a single processor.
1395  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)1396 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1397 {
1398 	unsigned long flags;
1399 	int to_drain, batch;
1400 
1401 	local_irq_save(flags);
1402 	batch = READ_ONCE(pcp->batch);
1403 	to_drain = min(pcp->count, batch);
1404 	if (to_drain > 0) {
1405 		free_pcppages_bulk(zone, to_drain, pcp);
1406 		pcp->count -= to_drain;
1407 	}
1408 	local_irq_restore(flags);
1409 }
1410 #endif
1411 
1412 /*
1413  * Drain pcplists of the indicated processor and zone.
1414  *
1415  * The processor must either be the current processor and the
1416  * thread pinned to the current processor or a processor that
1417  * is not online.
1418  */
drain_pages_zone(unsigned int cpu,struct zone * zone)1419 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1420 {
1421 	unsigned long flags;
1422 	struct per_cpu_pageset *pset;
1423 	struct per_cpu_pages *pcp;
1424 
1425 	local_irq_save(flags);
1426 	pset = per_cpu_ptr(zone->pageset, cpu);
1427 
1428 	pcp = &pset->pcp;
1429 	if (pcp->count) {
1430 		free_pcppages_bulk(zone, pcp->count, pcp);
1431 		pcp->count = 0;
1432 	}
1433 	local_irq_restore(flags);
1434 }
1435 
1436 /*
1437  * Drain pcplists of all zones on the indicated processor.
1438  *
1439  * The processor must either be the current processor and the
1440  * thread pinned to the current processor or a processor that
1441  * is not online.
1442  */
drain_pages(unsigned int cpu)1443 static void drain_pages(unsigned int cpu)
1444 {
1445 	struct zone *zone;
1446 
1447 	for_each_populated_zone(zone) {
1448 		drain_pages_zone(cpu, zone);
1449 	}
1450 }
1451 
1452 /*
1453  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1454  *
1455  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1456  * the single zone's pages.
1457  */
drain_local_pages(struct zone * zone)1458 void drain_local_pages(struct zone *zone)
1459 {
1460 	int cpu = smp_processor_id();
1461 
1462 	if (zone)
1463 		drain_pages_zone(cpu, zone);
1464 	else
1465 		drain_pages(cpu);
1466 }
1467 
1468 /*
1469  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1470  *
1471  * When zone parameter is non-NULL, spill just the single zone's pages.
1472  *
1473  * Note that this code is protected against sending an IPI to an offline
1474  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1475  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1476  * nothing keeps CPUs from showing up after we populated the cpumask and
1477  * before the call to on_each_cpu_mask().
1478  */
drain_all_pages(struct zone * zone)1479 void drain_all_pages(struct zone *zone)
1480 {
1481 	int cpu;
1482 
1483 	/*
1484 	 * Allocate in the BSS so we wont require allocation in
1485 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1486 	 */
1487 	static cpumask_t cpus_with_pcps;
1488 
1489 	/*
1490 	 * We don't care about racing with CPU hotplug event
1491 	 * as offline notification will cause the notified
1492 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1493 	 * disables preemption as part of its processing
1494 	 */
1495 	for_each_online_cpu(cpu) {
1496 		struct per_cpu_pageset *pcp;
1497 		struct zone *z;
1498 		bool has_pcps = false;
1499 
1500 		if (zone) {
1501 			pcp = per_cpu_ptr(zone->pageset, cpu);
1502 			if (pcp->pcp.count)
1503 				has_pcps = true;
1504 		} else {
1505 			for_each_populated_zone(z) {
1506 				pcp = per_cpu_ptr(z->pageset, cpu);
1507 				if (pcp->pcp.count) {
1508 					has_pcps = true;
1509 					break;
1510 				}
1511 			}
1512 		}
1513 
1514 		if (has_pcps)
1515 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1516 		else
1517 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1518 	}
1519 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1520 								zone, 1);
1521 }
1522 
1523 #ifdef CONFIG_HIBERNATION
1524 
mark_free_pages(struct zone * zone)1525 void mark_free_pages(struct zone *zone)
1526 {
1527 	unsigned long pfn, max_zone_pfn;
1528 	unsigned long flags;
1529 	unsigned int order, t;
1530 	struct list_head *curr;
1531 
1532 	if (zone_is_empty(zone))
1533 		return;
1534 
1535 	spin_lock_irqsave(&zone->lock, flags);
1536 
1537 	max_zone_pfn = zone_end_pfn(zone);
1538 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1539 		if (pfn_valid(pfn)) {
1540 			struct page *page = pfn_to_page(pfn);
1541 
1542 			if (!swsusp_page_is_forbidden(page))
1543 				swsusp_unset_page_free(page);
1544 		}
1545 
1546 	for_each_migratetype_order(order, t) {
1547 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1548 			unsigned long i;
1549 
1550 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1551 			for (i = 0; i < (1UL << order); i++)
1552 				swsusp_set_page_free(pfn_to_page(pfn + i));
1553 		}
1554 	}
1555 	spin_unlock_irqrestore(&zone->lock, flags);
1556 }
1557 #endif /* CONFIG_PM */
1558 
1559 /*
1560  * Free a 0-order page
1561  * cold == true ? free a cold page : free a hot page
1562  */
free_hot_cold_page(struct page * page,bool cold)1563 void free_hot_cold_page(struct page *page, bool cold)
1564 {
1565 	struct zone *zone = page_zone(page);
1566 	struct per_cpu_pages *pcp;
1567 	unsigned long flags;
1568 	unsigned long pfn = page_to_pfn(page);
1569 	int migratetype;
1570 
1571 	if (!free_pages_prepare(page, 0))
1572 		return;
1573 
1574 	migratetype = get_pfnblock_migratetype(page, pfn);
1575 	set_freepage_migratetype(page, migratetype);
1576 	local_irq_save(flags);
1577 	__count_vm_event(PGFREE);
1578 
1579 	/*
1580 	 * We only track unmovable, reclaimable and movable on pcp lists.
1581 	 * Free ISOLATE pages back to the allocator because they are being
1582 	 * offlined but treat RESERVE as movable pages so we can get those
1583 	 * areas back if necessary. Otherwise, we may have to free
1584 	 * excessively into the page allocator
1585 	 */
1586 	if (migratetype >= MIGRATE_PCPTYPES) {
1587 		if (unlikely(is_migrate_isolate(migratetype))) {
1588 			free_one_page(zone, page, pfn, 0, migratetype);
1589 			goto out;
1590 		}
1591 		migratetype = MIGRATE_MOVABLE;
1592 	}
1593 
1594 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1595 	if (!cold)
1596 		list_add(&page->lru, &pcp->lists[migratetype]);
1597 	else
1598 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1599 	pcp->count++;
1600 	if (pcp->count >= pcp->high) {
1601 		unsigned long batch = READ_ONCE(pcp->batch);
1602 		free_pcppages_bulk(zone, batch, pcp);
1603 		pcp->count -= batch;
1604 	}
1605 
1606 out:
1607 	local_irq_restore(flags);
1608 }
1609 
1610 /*
1611  * Free a list of 0-order pages
1612  */
free_hot_cold_page_list(struct list_head * list,bool cold)1613 void free_hot_cold_page_list(struct list_head *list, bool cold)
1614 {
1615 	struct page *page, *next;
1616 
1617 	list_for_each_entry_safe(page, next, list, lru) {
1618 		trace_mm_page_free_batched(page, cold);
1619 		free_hot_cold_page(page, cold);
1620 	}
1621 }
1622 
1623 /*
1624  * split_page takes a non-compound higher-order page, and splits it into
1625  * n (1<<order) sub-pages: page[0..n]
1626  * Each sub-page must be freed individually.
1627  *
1628  * Note: this is probably too low level an operation for use in drivers.
1629  * Please consult with lkml before using this in your driver.
1630  */
split_page(struct page * page,unsigned int order)1631 void split_page(struct page *page, unsigned int order)
1632 {
1633 	int i;
1634 
1635 	VM_BUG_ON_PAGE(PageCompound(page), page);
1636 	VM_BUG_ON_PAGE(!page_count(page), page);
1637 
1638 #ifdef CONFIG_KMEMCHECK
1639 	/*
1640 	 * Split shadow pages too, because free(page[0]) would
1641 	 * otherwise free the whole shadow.
1642 	 */
1643 	if (kmemcheck_page_is_tracked(page))
1644 		split_page(virt_to_page(page[0].shadow), order);
1645 #endif
1646 
1647 	set_page_owner(page, 0, 0);
1648 	for (i = 1; i < (1 << order); i++) {
1649 		set_page_refcounted(page + i);
1650 		set_page_owner(page + i, 0, 0);
1651 	}
1652 }
1653 EXPORT_SYMBOL_GPL(split_page);
1654 
__isolate_free_page(struct page * page,unsigned int order)1655 int __isolate_free_page(struct page *page, unsigned int order)
1656 {
1657 	unsigned long watermark;
1658 	struct zone *zone;
1659 	int mt;
1660 
1661 	BUG_ON(!PageBuddy(page));
1662 
1663 	zone = page_zone(page);
1664 	mt = get_pageblock_migratetype(page);
1665 
1666 	if (!is_migrate_isolate(mt)) {
1667 		/* Obey watermarks as if the page was being allocated */
1668 		watermark = low_wmark_pages(zone) + (1 << order);
1669 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1670 			return 0;
1671 
1672 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1673 	}
1674 
1675 	/* Remove page from free list */
1676 	list_del(&page->lru);
1677 	zone->free_area[order].nr_free--;
1678 	rmv_page_order(page);
1679 
1680 	/* Set the pageblock if the isolated page is at least a pageblock */
1681 	if (order >= pageblock_order - 1) {
1682 		struct page *endpage = page + (1 << order) - 1;
1683 		for (; page < endpage; page += pageblock_nr_pages) {
1684 			int mt = get_pageblock_migratetype(page);
1685 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1686 				set_pageblock_migratetype(page,
1687 							  MIGRATE_MOVABLE);
1688 		}
1689 	}
1690 
1691 	set_page_owner(page, order, 0);
1692 	return 1UL << order;
1693 }
1694 
1695 /*
1696  * Similar to split_page except the page is already free. As this is only
1697  * being used for migration, the migratetype of the block also changes.
1698  * As this is called with interrupts disabled, the caller is responsible
1699  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1700  * are enabled.
1701  *
1702  * Note: this is probably too low level an operation for use in drivers.
1703  * Please consult with lkml before using this in your driver.
1704  */
split_free_page(struct page * page)1705 int split_free_page(struct page *page)
1706 {
1707 	unsigned int order;
1708 	int nr_pages;
1709 
1710 	order = page_order(page);
1711 
1712 	nr_pages = __isolate_free_page(page, order);
1713 	if (!nr_pages)
1714 		return 0;
1715 
1716 	/* Split into individual pages */
1717 	set_page_refcounted(page);
1718 	split_page(page, order);
1719 	return nr_pages;
1720 }
1721 
1722 /*
1723  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1724  */
1725 static inline
buffered_rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype)1726 struct page *buffered_rmqueue(struct zone *preferred_zone,
1727 			struct zone *zone, unsigned int order,
1728 			gfp_t gfp_flags, int migratetype)
1729 {
1730 	unsigned long flags;
1731 	struct page *page;
1732 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1733 
1734 	if (likely(order == 0)) {
1735 		struct per_cpu_pages *pcp;
1736 		struct list_head *list;
1737 
1738 		local_irq_save(flags);
1739 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1740 		list = &pcp->lists[migratetype];
1741 		if (list_empty(list)) {
1742 			pcp->count += rmqueue_bulk(zone, 0,
1743 					pcp->batch, list,
1744 					migratetype, cold);
1745 			if (unlikely(list_empty(list)))
1746 				goto failed;
1747 		}
1748 
1749 		if (cold)
1750 			page = list_entry(list->prev, struct page, lru);
1751 		else
1752 			page = list_entry(list->next, struct page, lru);
1753 
1754 		list_del(&page->lru);
1755 		pcp->count--;
1756 	} else {
1757 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1758 			/*
1759 			 * __GFP_NOFAIL is not to be used in new code.
1760 			 *
1761 			 * All __GFP_NOFAIL callers should be fixed so that they
1762 			 * properly detect and handle allocation failures.
1763 			 *
1764 			 * We most definitely don't want callers attempting to
1765 			 * allocate greater than order-1 page units with
1766 			 * __GFP_NOFAIL.
1767 			 */
1768 			WARN_ON_ONCE(order > 1);
1769 		}
1770 		spin_lock_irqsave(&zone->lock, flags);
1771 		page = __rmqueue(zone, order, migratetype);
1772 		spin_unlock(&zone->lock);
1773 		if (!page)
1774 			goto failed;
1775 		__mod_zone_freepage_state(zone, -(1 << order),
1776 					  get_freepage_migratetype(page));
1777 	}
1778 
1779 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1780 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1781 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1782 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1783 
1784 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1785 	zone_statistics(preferred_zone, zone, gfp_flags);
1786 	local_irq_restore(flags);
1787 
1788 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1789 	return page;
1790 
1791 failed:
1792 	local_irq_restore(flags);
1793 	return NULL;
1794 }
1795 
1796 #ifdef CONFIG_FAIL_PAGE_ALLOC
1797 
1798 static struct {
1799 	struct fault_attr attr;
1800 
1801 	u32 ignore_gfp_highmem;
1802 	u32 ignore_gfp_wait;
1803 	u32 min_order;
1804 } fail_page_alloc = {
1805 	.attr = FAULT_ATTR_INITIALIZER,
1806 	.ignore_gfp_wait = 1,
1807 	.ignore_gfp_highmem = 1,
1808 	.min_order = 1,
1809 };
1810 
setup_fail_page_alloc(char * str)1811 static int __init setup_fail_page_alloc(char *str)
1812 {
1813 	return setup_fault_attr(&fail_page_alloc.attr, str);
1814 }
1815 __setup("fail_page_alloc=", setup_fail_page_alloc);
1816 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1817 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1818 {
1819 	if (order < fail_page_alloc.min_order)
1820 		return false;
1821 	if (gfp_mask & __GFP_NOFAIL)
1822 		return false;
1823 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1824 		return false;
1825 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1826 		return false;
1827 
1828 	return should_fail(&fail_page_alloc.attr, 1 << order);
1829 }
1830 
1831 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1832 
fail_page_alloc_debugfs(void)1833 static int __init fail_page_alloc_debugfs(void)
1834 {
1835 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1836 	struct dentry *dir;
1837 
1838 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1839 					&fail_page_alloc.attr);
1840 	if (IS_ERR(dir))
1841 		return PTR_ERR(dir);
1842 
1843 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1844 				&fail_page_alloc.ignore_gfp_wait))
1845 		goto fail;
1846 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1847 				&fail_page_alloc.ignore_gfp_highmem))
1848 		goto fail;
1849 	if (!debugfs_create_u32("min-order", mode, dir,
1850 				&fail_page_alloc.min_order))
1851 		goto fail;
1852 
1853 	return 0;
1854 fail:
1855 	debugfs_remove_recursive(dir);
1856 
1857 	return -ENOMEM;
1858 }
1859 
1860 late_initcall(fail_page_alloc_debugfs);
1861 
1862 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1863 
1864 #else /* CONFIG_FAIL_PAGE_ALLOC */
1865 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1866 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1867 {
1868 	return false;
1869 }
1870 
1871 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1872 
1873 /*
1874  * Return true if free pages are above 'mark'. This takes into account the order
1875  * of the allocation.
1876  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags,long free_pages)1877 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1878 			unsigned long mark, int classzone_idx, int alloc_flags,
1879 			long free_pages)
1880 {
1881 	/* free_pages may go negative - that's OK */
1882 	long min = mark;
1883 	int o;
1884 	long free_cma = 0;
1885 
1886 	free_pages -= (1 << order) - 1;
1887 	if (alloc_flags & ALLOC_HIGH)
1888 		min -= min / 2;
1889 	if (alloc_flags & ALLOC_HARDER)
1890 		min -= min / 4;
1891 #ifdef CONFIG_CMA
1892 	/* If allocation can't use CMA areas don't use free CMA pages */
1893 	if (!(alloc_flags & ALLOC_CMA))
1894 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1895 #endif
1896 
1897 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1898 		return false;
1899 	for (o = 0; o < order; o++) {
1900 		/* At the next order, this order's pages become unavailable */
1901 		free_pages -= z->free_area[o].nr_free << o;
1902 
1903 		/* Require fewer higher order pages to be free */
1904 		min >>= 1;
1905 
1906 		if (free_pages <= min)
1907 			return false;
1908 	}
1909 	return true;
1910 }
1911 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags)1912 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1913 		      int classzone_idx, int alloc_flags)
1914 {
1915 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1916 					zone_page_state(z, NR_FREE_PAGES));
1917 }
1918 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags)1919 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1920 			unsigned long mark, int classzone_idx, int alloc_flags)
1921 {
1922 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1923 
1924 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1925 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1926 
1927 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1928 								free_pages);
1929 }
1930 
1931 #ifdef CONFIG_NUMA
1932 /*
1933  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1934  * skip over zones that are not allowed by the cpuset, or that have
1935  * been recently (in last second) found to be nearly full.  See further
1936  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1937  * that have to skip over a lot of full or unallowed zones.
1938  *
1939  * If the zonelist cache is present in the passed zonelist, then
1940  * returns a pointer to the allowed node mask (either the current
1941  * tasks mems_allowed, or node_states[N_MEMORY].)
1942  *
1943  * If the zonelist cache is not available for this zonelist, does
1944  * nothing and returns NULL.
1945  *
1946  * If the fullzones BITMAP in the zonelist cache is stale (more than
1947  * a second since last zap'd) then we zap it out (clear its bits.)
1948  *
1949  * We hold off even calling zlc_setup, until after we've checked the
1950  * first zone in the zonelist, on the theory that most allocations will
1951  * be satisfied from that first zone, so best to examine that zone as
1952  * quickly as we can.
1953  */
zlc_setup(struct zonelist * zonelist,int alloc_flags)1954 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1955 {
1956 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1957 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1958 
1959 	zlc = zonelist->zlcache_ptr;
1960 	if (!zlc)
1961 		return NULL;
1962 
1963 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1964 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1965 		zlc->last_full_zap = jiffies;
1966 	}
1967 
1968 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1969 					&cpuset_current_mems_allowed :
1970 					&node_states[N_MEMORY];
1971 	return allowednodes;
1972 }
1973 
1974 /*
1975  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1976  * if it is worth looking at further for free memory:
1977  *  1) Check that the zone isn't thought to be full (doesn't have its
1978  *     bit set in the zonelist_cache fullzones BITMAP).
1979  *  2) Check that the zones node (obtained from the zonelist_cache
1980  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1981  * Return true (non-zero) if zone is worth looking at further, or
1982  * else return false (zero) if it is not.
1983  *
1984  * This check -ignores- the distinction between various watermarks,
1985  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1986  * found to be full for any variation of these watermarks, it will
1987  * be considered full for up to one second by all requests, unless
1988  * we are so low on memory on all allowed nodes that we are forced
1989  * into the second scan of the zonelist.
1990  *
1991  * In the second scan we ignore this zonelist cache and exactly
1992  * apply the watermarks to all zones, even it is slower to do so.
1993  * We are low on memory in the second scan, and should leave no stone
1994  * unturned looking for a free page.
1995  */
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)1996 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1997 						nodemask_t *allowednodes)
1998 {
1999 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2000 	int i;				/* index of *z in zonelist zones */
2001 	int n;				/* node that zone *z is on */
2002 
2003 	zlc = zonelist->zlcache_ptr;
2004 	if (!zlc)
2005 		return 1;
2006 
2007 	i = z - zonelist->_zonerefs;
2008 	n = zlc->z_to_n[i];
2009 
2010 	/* This zone is worth trying if it is allowed but not full */
2011 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2012 }
2013 
2014 /*
2015  * Given 'z' scanning a zonelist, set the corresponding bit in
2016  * zlc->fullzones, so that subsequent attempts to allocate a page
2017  * from that zone don't waste time re-examining it.
2018  */
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)2019 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2020 {
2021 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2022 	int i;				/* index of *z in zonelist zones */
2023 
2024 	zlc = zonelist->zlcache_ptr;
2025 	if (!zlc)
2026 		return;
2027 
2028 	i = z - zonelist->_zonerefs;
2029 
2030 	set_bit(i, zlc->fullzones);
2031 }
2032 
2033 /*
2034  * clear all zones full, called after direct reclaim makes progress so that
2035  * a zone that was recently full is not skipped over for up to a second
2036  */
zlc_clear_zones_full(struct zonelist * zonelist)2037 static void zlc_clear_zones_full(struct zonelist *zonelist)
2038 {
2039 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2040 
2041 	zlc = zonelist->zlcache_ptr;
2042 	if (!zlc)
2043 		return;
2044 
2045 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2046 }
2047 
zone_local(struct zone * local_zone,struct zone * zone)2048 static bool zone_local(struct zone *local_zone, struct zone *zone)
2049 {
2050 	return local_zone->node == zone->node;
2051 }
2052 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2053 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2054 {
2055 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2056 				RECLAIM_DISTANCE;
2057 }
2058 
2059 #else	/* CONFIG_NUMA */
2060 
zlc_setup(struct zonelist * zonelist,int alloc_flags)2061 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2062 {
2063 	return NULL;
2064 }
2065 
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)2066 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2067 				nodemask_t *allowednodes)
2068 {
2069 	return 1;
2070 }
2071 
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)2072 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2073 {
2074 }
2075 
zlc_clear_zones_full(struct zonelist * zonelist)2076 static void zlc_clear_zones_full(struct zonelist *zonelist)
2077 {
2078 }
2079 
zone_local(struct zone * local_zone,struct zone * zone)2080 static bool zone_local(struct zone *local_zone, struct zone *zone)
2081 {
2082 	return true;
2083 }
2084 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2085 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2086 {
2087 	return true;
2088 }
2089 
2090 #endif	/* CONFIG_NUMA */
2091 
reset_alloc_batches(struct zone * preferred_zone)2092 static void reset_alloc_batches(struct zone *preferred_zone)
2093 {
2094 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2095 
2096 	do {
2097 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2098 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2099 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2100 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2101 	} while (zone++ != preferred_zone);
2102 }
2103 
2104 /*
2105  * get_page_from_freelist goes through the zonelist trying to allocate
2106  * a page.
2107  */
2108 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)2109 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2110 						const struct alloc_context *ac)
2111 {
2112 	struct zonelist *zonelist = ac->zonelist;
2113 	struct zoneref *z;
2114 	struct page *page = NULL;
2115 	struct zone *zone;
2116 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2117 	int zlc_active = 0;		/* set if using zonelist_cache */
2118 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2119 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2120 				(gfp_mask & __GFP_WRITE);
2121 	int nr_fair_skipped = 0;
2122 	bool zonelist_rescan;
2123 
2124 zonelist_scan:
2125 	zonelist_rescan = false;
2126 
2127 	/*
2128 	 * Scan zonelist, looking for a zone with enough free.
2129 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2130 	 */
2131 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2132 								ac->nodemask) {
2133 		unsigned long mark;
2134 
2135 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2136 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2137 				continue;
2138 		if (cpusets_enabled() &&
2139 			(alloc_flags & ALLOC_CPUSET) &&
2140 			!cpuset_zone_allowed(zone, gfp_mask))
2141 				continue;
2142 		/*
2143 		 * Distribute pages in proportion to the individual
2144 		 * zone size to ensure fair page aging.  The zone a
2145 		 * page was allocated in should have no effect on the
2146 		 * time the page has in memory before being reclaimed.
2147 		 */
2148 		if (alloc_flags & ALLOC_FAIR) {
2149 			if (!zone_local(ac->preferred_zone, zone))
2150 				break;
2151 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2152 				nr_fair_skipped++;
2153 				continue;
2154 			}
2155 		}
2156 		/*
2157 		 * When allocating a page cache page for writing, we
2158 		 * want to get it from a zone that is within its dirty
2159 		 * limit, such that no single zone holds more than its
2160 		 * proportional share of globally allowed dirty pages.
2161 		 * The dirty limits take into account the zone's
2162 		 * lowmem reserves and high watermark so that kswapd
2163 		 * should be able to balance it without having to
2164 		 * write pages from its LRU list.
2165 		 *
2166 		 * This may look like it could increase pressure on
2167 		 * lower zones by failing allocations in higher zones
2168 		 * before they are full.  But the pages that do spill
2169 		 * over are limited as the lower zones are protected
2170 		 * by this very same mechanism.  It should not become
2171 		 * a practical burden to them.
2172 		 *
2173 		 * XXX: For now, allow allocations to potentially
2174 		 * exceed the per-zone dirty limit in the slowpath
2175 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2176 		 * which is important when on a NUMA setup the allowed
2177 		 * zones are together not big enough to reach the
2178 		 * global limit.  The proper fix for these situations
2179 		 * will require awareness of zones in the
2180 		 * dirty-throttling and the flusher threads.
2181 		 */
2182 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2183 			continue;
2184 
2185 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2186 		if (!zone_watermark_ok(zone, order, mark,
2187 				       ac->classzone_idx, alloc_flags)) {
2188 			int ret;
2189 
2190 			/* Checked here to keep the fast path fast */
2191 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2192 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2193 				goto try_this_zone;
2194 
2195 			if (IS_ENABLED(CONFIG_NUMA) &&
2196 					!did_zlc_setup && nr_online_nodes > 1) {
2197 				/*
2198 				 * we do zlc_setup if there are multiple nodes
2199 				 * and before considering the first zone allowed
2200 				 * by the cpuset.
2201 				 */
2202 				allowednodes = zlc_setup(zonelist, alloc_flags);
2203 				zlc_active = 1;
2204 				did_zlc_setup = 1;
2205 			}
2206 
2207 			if (zone_reclaim_mode == 0 ||
2208 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2209 				goto this_zone_full;
2210 
2211 			/*
2212 			 * As we may have just activated ZLC, check if the first
2213 			 * eligible zone has failed zone_reclaim recently.
2214 			 */
2215 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2216 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2217 				continue;
2218 
2219 			ret = zone_reclaim(zone, gfp_mask, order);
2220 			switch (ret) {
2221 			case ZONE_RECLAIM_NOSCAN:
2222 				/* did not scan */
2223 				continue;
2224 			case ZONE_RECLAIM_FULL:
2225 				/* scanned but unreclaimable */
2226 				continue;
2227 			default:
2228 				/* did we reclaim enough */
2229 				if (zone_watermark_ok(zone, order, mark,
2230 						ac->classzone_idx, alloc_flags))
2231 					goto try_this_zone;
2232 
2233 				/*
2234 				 * Failed to reclaim enough to meet watermark.
2235 				 * Only mark the zone full if checking the min
2236 				 * watermark or if we failed to reclaim just
2237 				 * 1<<order pages or else the page allocator
2238 				 * fastpath will prematurely mark zones full
2239 				 * when the watermark is between the low and
2240 				 * min watermarks.
2241 				 */
2242 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2243 				    ret == ZONE_RECLAIM_SOME)
2244 					goto this_zone_full;
2245 
2246 				continue;
2247 			}
2248 		}
2249 
2250 try_this_zone:
2251 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2252 						gfp_mask, ac->migratetype);
2253 		if (page) {
2254 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2255 				goto try_this_zone;
2256 			return page;
2257 		}
2258 this_zone_full:
2259 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2260 			zlc_mark_zone_full(zonelist, z);
2261 	}
2262 
2263 	/*
2264 	 * The first pass makes sure allocations are spread fairly within the
2265 	 * local node.  However, the local node might have free pages left
2266 	 * after the fairness batches are exhausted, and remote zones haven't
2267 	 * even been considered yet.  Try once more without fairness, and
2268 	 * include remote zones now, before entering the slowpath and waking
2269 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2270 	 */
2271 	if (alloc_flags & ALLOC_FAIR) {
2272 		alloc_flags &= ~ALLOC_FAIR;
2273 		if (nr_fair_skipped) {
2274 			zonelist_rescan = true;
2275 			reset_alloc_batches(ac->preferred_zone);
2276 		}
2277 		if (nr_online_nodes > 1)
2278 			zonelist_rescan = true;
2279 	}
2280 
2281 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2282 		/* Disable zlc cache for second zonelist scan */
2283 		zlc_active = 0;
2284 		zonelist_rescan = true;
2285 	}
2286 
2287 	if (zonelist_rescan)
2288 		goto zonelist_scan;
2289 
2290 	return NULL;
2291 }
2292 
2293 /*
2294  * Large machines with many possible nodes should not always dump per-node
2295  * meminfo in irq context.
2296  */
should_suppress_show_mem(void)2297 static inline bool should_suppress_show_mem(void)
2298 {
2299 	bool ret = false;
2300 
2301 #if NODES_SHIFT > 8
2302 	ret = in_interrupt();
2303 #endif
2304 	return ret;
2305 }
2306 
2307 static DEFINE_RATELIMIT_STATE(nopage_rs,
2308 		DEFAULT_RATELIMIT_INTERVAL,
2309 		DEFAULT_RATELIMIT_BURST);
2310 
warn_alloc_failed(gfp_t gfp_mask,unsigned int order,const char * fmt,...)2311 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2312 {
2313 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2314 
2315 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2316 	    debug_guardpage_minorder() > 0)
2317 		return;
2318 
2319 	/*
2320 	 * This documents exceptions given to allocations in certain
2321 	 * contexts that are allowed to allocate outside current's set
2322 	 * of allowed nodes.
2323 	 */
2324 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2325 		if (test_thread_flag(TIF_MEMDIE) ||
2326 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2327 			filter &= ~SHOW_MEM_FILTER_NODES;
2328 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2329 		filter &= ~SHOW_MEM_FILTER_NODES;
2330 
2331 	if (fmt) {
2332 		struct va_format vaf;
2333 		va_list args;
2334 
2335 		va_start(args, fmt);
2336 
2337 		vaf.fmt = fmt;
2338 		vaf.va = &args;
2339 
2340 		pr_warn("%pV", &vaf);
2341 
2342 		va_end(args);
2343 	}
2344 
2345 	pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2346 		current->comm, order, gfp_mask);
2347 
2348 	dump_stack();
2349 	if (!should_suppress_show_mem())
2350 		show_mem(filter);
2351 }
2352 
2353 static inline int
should_alloc_retry(gfp_t gfp_mask,unsigned int order,unsigned long did_some_progress,unsigned long pages_reclaimed)2354 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2355 				unsigned long did_some_progress,
2356 				unsigned long pages_reclaimed)
2357 {
2358 	/* Do not loop if specifically requested */
2359 	if (gfp_mask & __GFP_NORETRY)
2360 		return 0;
2361 
2362 	/* Always retry if specifically requested */
2363 	if (gfp_mask & __GFP_NOFAIL)
2364 		return 1;
2365 
2366 	/*
2367 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2368 	 * making forward progress without invoking OOM. Suspend also disables
2369 	 * storage devices so kswapd will not help. Bail if we are suspending.
2370 	 */
2371 	if (!did_some_progress && pm_suspended_storage())
2372 		return 0;
2373 
2374 	/*
2375 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2376 	 * means __GFP_NOFAIL, but that may not be true in other
2377 	 * implementations.
2378 	 */
2379 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2380 		return 1;
2381 
2382 	/*
2383 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2384 	 * specified, then we retry until we no longer reclaim any pages
2385 	 * (above), or we've reclaimed an order of pages at least as
2386 	 * large as the allocation's order. In both cases, if the
2387 	 * allocation still fails, we stop retrying.
2388 	 */
2389 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2390 		return 1;
2391 
2392 	return 0;
2393 }
2394 
2395 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)2396 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2397 	const struct alloc_context *ac, unsigned long *did_some_progress)
2398 {
2399 	struct page *page;
2400 
2401 	*did_some_progress = 0;
2402 
2403 	/*
2404 	 * Acquire the per-zone oom lock for each zone.  If that
2405 	 * fails, somebody else is making progress for us.
2406 	 */
2407 	if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2408 		*did_some_progress = 1;
2409 		schedule_timeout_uninterruptible(1);
2410 		return NULL;
2411 	}
2412 
2413 	/*
2414 	 * Go through the zonelist yet one more time, keep very high watermark
2415 	 * here, this is only to catch a parallel oom killing, we must fail if
2416 	 * we're still under heavy pressure.
2417 	 */
2418 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2419 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2420 	if (page)
2421 		goto out;
2422 
2423 	if (!(gfp_mask & __GFP_NOFAIL)) {
2424 		/* Coredumps can quickly deplete all memory reserves */
2425 		if (current->flags & PF_DUMPCORE)
2426 			goto out;
2427 		/* The OOM killer will not help higher order allocs */
2428 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2429 			goto out;
2430 		/* The OOM killer does not needlessly kill tasks for lowmem */
2431 		if (ac->high_zoneidx < ZONE_NORMAL)
2432 			goto out;
2433 		/* The OOM killer does not compensate for light reclaim */
2434 		if (!(gfp_mask & __GFP_FS)) {
2435 			/*
2436 			 * XXX: Page reclaim didn't yield anything,
2437 			 * and the OOM killer can't be invoked, but
2438 			 * keep looping as per should_alloc_retry().
2439 			 */
2440 			*did_some_progress = 1;
2441 			goto out;
2442 		}
2443 		/* The OOM killer may not free memory on a specific node */
2444 		if (gfp_mask & __GFP_THISNODE)
2445 			goto out;
2446 	}
2447 	/* Exhausted what can be done so it's blamo time */
2448 	if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2449 			|| WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2450 		*did_some_progress = 1;
2451 out:
2452 	oom_zonelist_unlock(ac->zonelist, gfp_mask);
2453 	return page;
2454 }
2455 
2456 #ifdef CONFIG_COMPACTION
2457 /* Try memory compaction for high-order allocations before reclaim */
2458 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2459 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2460 		int alloc_flags, const struct alloc_context *ac,
2461 		enum migrate_mode mode, int *contended_compaction,
2462 		bool *deferred_compaction)
2463 {
2464 	unsigned long compact_result;
2465 	struct page *page;
2466 
2467 	if (!order)
2468 		return NULL;
2469 
2470 	current->flags |= PF_MEMALLOC;
2471 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2472 						mode, contended_compaction);
2473 	current->flags &= ~PF_MEMALLOC;
2474 
2475 	switch (compact_result) {
2476 	case COMPACT_DEFERRED:
2477 		*deferred_compaction = true;
2478 		/* fall-through */
2479 	case COMPACT_SKIPPED:
2480 		return NULL;
2481 	default:
2482 		break;
2483 	}
2484 
2485 	/*
2486 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2487 	 * count a compaction stall
2488 	 */
2489 	count_vm_event(COMPACTSTALL);
2490 
2491 	page = get_page_from_freelist(gfp_mask, order,
2492 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2493 
2494 	if (page) {
2495 		struct zone *zone = page_zone(page);
2496 
2497 		zone->compact_blockskip_flush = false;
2498 		compaction_defer_reset(zone, order, true);
2499 		count_vm_event(COMPACTSUCCESS);
2500 		return page;
2501 	}
2502 
2503 	/*
2504 	 * It's bad if compaction run occurs and fails. The most likely reason
2505 	 * is that pages exist, but not enough to satisfy watermarks.
2506 	 */
2507 	count_vm_event(COMPACTFAIL);
2508 
2509 	cond_resched();
2510 
2511 	return NULL;
2512 }
2513 #else
2514 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2515 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2516 		int alloc_flags, const struct alloc_context *ac,
2517 		enum migrate_mode mode, int *contended_compaction,
2518 		bool *deferred_compaction)
2519 {
2520 	return NULL;
2521 }
2522 #endif /* CONFIG_COMPACTION */
2523 
2524 /* Perform direct synchronous page reclaim */
2525 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)2526 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2527 					const struct alloc_context *ac)
2528 {
2529 	struct reclaim_state reclaim_state;
2530 	int progress;
2531 
2532 	cond_resched();
2533 
2534 	/* We now go into synchronous reclaim */
2535 	cpuset_memory_pressure_bump();
2536 	current->flags |= PF_MEMALLOC;
2537 	lockdep_set_current_reclaim_state(gfp_mask);
2538 	reclaim_state.reclaimed_slab = 0;
2539 	current->reclaim_state = &reclaim_state;
2540 
2541 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2542 								ac->nodemask);
2543 
2544 	current->reclaim_state = NULL;
2545 	lockdep_clear_current_reclaim_state();
2546 	current->flags &= ~PF_MEMALLOC;
2547 
2548 	cond_resched();
2549 
2550 	return progress;
2551 }
2552 
2553 /* The really slow allocator path where we enter direct reclaim */
2554 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)2555 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2556 		int alloc_flags, const struct alloc_context *ac,
2557 		unsigned long *did_some_progress)
2558 {
2559 	struct page *page = NULL;
2560 	bool drained = false;
2561 
2562 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2563 	if (unlikely(!(*did_some_progress)))
2564 		return NULL;
2565 
2566 	/* After successful reclaim, reconsider all zones for allocation */
2567 	if (IS_ENABLED(CONFIG_NUMA))
2568 		zlc_clear_zones_full(ac->zonelist);
2569 
2570 retry:
2571 	page = get_page_from_freelist(gfp_mask, order,
2572 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2573 
2574 	/*
2575 	 * If an allocation failed after direct reclaim, it could be because
2576 	 * pages are pinned on the per-cpu lists. Drain them and try again
2577 	 */
2578 	if (!page && !drained) {
2579 		drain_all_pages(NULL);
2580 		drained = true;
2581 		goto retry;
2582 	}
2583 
2584 	return page;
2585 }
2586 
2587 /*
2588  * This is called in the allocator slow-path if the allocation request is of
2589  * sufficient urgency to ignore watermarks and take other desperate measures
2590  */
2591 static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)2592 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2593 				const struct alloc_context *ac)
2594 {
2595 	struct page *page;
2596 
2597 	do {
2598 		page = get_page_from_freelist(gfp_mask, order,
2599 						ALLOC_NO_WATERMARKS, ac);
2600 
2601 		if (!page && gfp_mask & __GFP_NOFAIL)
2602 			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2603 									HZ/50);
2604 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2605 
2606 	return page;
2607 }
2608 
wake_all_kswapds(unsigned int order,const struct alloc_context * ac)2609 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2610 {
2611 	struct zoneref *z;
2612 	struct zone *zone;
2613 
2614 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2615 						ac->high_zoneidx, ac->nodemask)
2616 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2617 }
2618 
2619 static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)2620 gfp_to_alloc_flags(gfp_t gfp_mask)
2621 {
2622 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2623 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2624 
2625 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2626 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2627 
2628 	/*
2629 	 * The caller may dip into page reserves a bit more if the caller
2630 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2631 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2632 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2633 	 */
2634 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2635 
2636 	if (atomic) {
2637 		/*
2638 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2639 		 * if it can't schedule.
2640 		 */
2641 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2642 			alloc_flags |= ALLOC_HARDER;
2643 		/*
2644 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2645 		 * comment for __cpuset_node_allowed().
2646 		 */
2647 		alloc_flags &= ~ALLOC_CPUSET;
2648 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2649 		alloc_flags |= ALLOC_HARDER;
2650 
2651 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2652 		if (gfp_mask & __GFP_MEMALLOC)
2653 			alloc_flags |= ALLOC_NO_WATERMARKS;
2654 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2655 			alloc_flags |= ALLOC_NO_WATERMARKS;
2656 		else if (!in_interrupt() &&
2657 				((current->flags & PF_MEMALLOC) ||
2658 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2659 			alloc_flags |= ALLOC_NO_WATERMARKS;
2660 	}
2661 #ifdef CONFIG_CMA
2662 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2663 		alloc_flags |= ALLOC_CMA;
2664 #endif
2665 	return alloc_flags;
2666 }
2667 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)2668 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2669 {
2670 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2671 }
2672 
2673 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)2674 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2675 						struct alloc_context *ac)
2676 {
2677 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2678 	struct page *page = NULL;
2679 	int alloc_flags;
2680 	unsigned long pages_reclaimed = 0;
2681 	unsigned long did_some_progress;
2682 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2683 	bool deferred_compaction = false;
2684 	int contended_compaction = COMPACT_CONTENDED_NONE;
2685 
2686 	/*
2687 	 * In the slowpath, we sanity check order to avoid ever trying to
2688 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2689 	 * be using allocators in order of preference for an area that is
2690 	 * too large.
2691 	 */
2692 	if (order >= MAX_ORDER) {
2693 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2694 		return NULL;
2695 	}
2696 
2697 	/*
2698 	 * If this allocation cannot block and it is for a specific node, then
2699 	 * fail early.  There's no need to wakeup kswapd or retry for a
2700 	 * speculative node-specific allocation.
2701 	 */
2702 	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2703 		goto nopage;
2704 
2705 retry:
2706 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2707 		wake_all_kswapds(order, ac);
2708 
2709 	/*
2710 	 * OK, we're below the kswapd watermark and have kicked background
2711 	 * reclaim. Now things get more complex, so set up alloc_flags according
2712 	 * to how we want to proceed.
2713 	 */
2714 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2715 
2716 	/*
2717 	 * Find the true preferred zone if the allocation is unconstrained by
2718 	 * cpusets.
2719 	 */
2720 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2721 		struct zoneref *preferred_zoneref;
2722 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
2723 				ac->high_zoneidx, NULL, &ac->preferred_zone);
2724 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2725 	}
2726 
2727 	/* This is the last chance, in general, before the goto nopage. */
2728 	page = get_page_from_freelist(gfp_mask, order,
2729 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2730 	if (page)
2731 		goto got_pg;
2732 
2733 	/* Allocate without watermarks if the context allows */
2734 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2735 		/*
2736 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2737 		 * the allocation is high priority and these type of
2738 		 * allocations are system rather than user orientated
2739 		 */
2740 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2741 
2742 		page = __alloc_pages_high_priority(gfp_mask, order, ac);
2743 
2744 		if (page) {
2745 			goto got_pg;
2746 		}
2747 	}
2748 
2749 	/* Atomic allocations - we can't balance anything */
2750 	if (!wait) {
2751 		/*
2752 		 * All existing users of the deprecated __GFP_NOFAIL are
2753 		 * blockable, so warn of any new users that actually allow this
2754 		 * type of allocation to fail.
2755 		 */
2756 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2757 		goto nopage;
2758 	}
2759 
2760 	/* Avoid recursion of direct reclaim */
2761 	if (current->flags & PF_MEMALLOC)
2762 		goto nopage;
2763 
2764 	/* Avoid allocations with no watermarks from looping endlessly */
2765 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2766 		goto nopage;
2767 
2768 	/*
2769 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2770 	 * attempts after direct reclaim are synchronous
2771 	 */
2772 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2773 					migration_mode,
2774 					&contended_compaction,
2775 					&deferred_compaction);
2776 	if (page)
2777 		goto got_pg;
2778 
2779 	/* Checks for THP-specific high-order allocations */
2780 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2781 		/*
2782 		 * If compaction is deferred for high-order allocations, it is
2783 		 * because sync compaction recently failed. If this is the case
2784 		 * and the caller requested a THP allocation, we do not want
2785 		 * to heavily disrupt the system, so we fail the allocation
2786 		 * instead of entering direct reclaim.
2787 		 */
2788 		if (deferred_compaction)
2789 			goto nopage;
2790 
2791 		/*
2792 		 * In all zones where compaction was attempted (and not
2793 		 * deferred or skipped), lock contention has been detected.
2794 		 * For THP allocation we do not want to disrupt the others
2795 		 * so we fallback to base pages instead.
2796 		 */
2797 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2798 			goto nopage;
2799 
2800 		/*
2801 		 * If compaction was aborted due to need_resched(), we do not
2802 		 * want to further increase allocation latency, unless it is
2803 		 * khugepaged trying to collapse.
2804 		 */
2805 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2806 			&& !(current->flags & PF_KTHREAD))
2807 			goto nopage;
2808 	}
2809 
2810 	/*
2811 	 * It can become very expensive to allocate transparent hugepages at
2812 	 * fault, so use asynchronous memory compaction for THP unless it is
2813 	 * khugepaged trying to collapse.
2814 	 */
2815 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2816 						(current->flags & PF_KTHREAD))
2817 		migration_mode = MIGRATE_SYNC_LIGHT;
2818 
2819 	/* Try direct reclaim and then allocating */
2820 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2821 							&did_some_progress);
2822 	if (page)
2823 		goto got_pg;
2824 
2825 	/* Check if we should retry the allocation */
2826 	pages_reclaimed += did_some_progress;
2827 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2828 						pages_reclaimed)) {
2829 		/*
2830 		 * If we fail to make progress by freeing individual
2831 		 * pages, but the allocation wants us to keep going,
2832 		 * start OOM killing tasks.
2833 		 */
2834 		if (!did_some_progress) {
2835 			page = __alloc_pages_may_oom(gfp_mask, order, ac,
2836 							&did_some_progress);
2837 			if (page)
2838 				goto got_pg;
2839 			if (!did_some_progress)
2840 				goto nopage;
2841 		}
2842 		/* Wait for some write requests to complete then retry */
2843 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2844 		goto retry;
2845 	} else {
2846 		/*
2847 		 * High-order allocations do not necessarily loop after
2848 		 * direct reclaim and reclaim/compaction depends on compaction
2849 		 * being called after reclaim so call directly if necessary
2850 		 */
2851 		page = __alloc_pages_direct_compact(gfp_mask, order,
2852 					alloc_flags, ac, migration_mode,
2853 					&contended_compaction,
2854 					&deferred_compaction);
2855 		if (page)
2856 			goto got_pg;
2857 	}
2858 
2859 nopage:
2860 	warn_alloc_failed(gfp_mask, order, NULL);
2861 got_pg:
2862 	return page;
2863 }
2864 
2865 /*
2866  * This is the 'heart' of the zoned buddy allocator.
2867  */
2868 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,nodemask_t * nodemask)2869 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2870 			struct zonelist *zonelist, nodemask_t *nodemask)
2871 {
2872 	struct zoneref *preferred_zoneref;
2873 	struct page *page = NULL;
2874 	unsigned int cpuset_mems_cookie;
2875 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2876 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2877 	struct alloc_context ac = {
2878 		.high_zoneidx = gfp_zone(gfp_mask),
2879 		.nodemask = nodemask,
2880 		.migratetype = gfpflags_to_migratetype(gfp_mask),
2881 	};
2882 
2883 	gfp_mask &= gfp_allowed_mask;
2884 
2885 	lockdep_trace_alloc(gfp_mask);
2886 
2887 	might_sleep_if(gfp_mask & __GFP_WAIT);
2888 
2889 	if (should_fail_alloc_page(gfp_mask, order))
2890 		return NULL;
2891 
2892 	/*
2893 	 * Check the zones suitable for the gfp_mask contain at least one
2894 	 * valid zone. It's possible to have an empty zonelist as a result
2895 	 * of __GFP_THISNODE and a memoryless node
2896 	 */
2897 	if (unlikely(!zonelist->_zonerefs->zone))
2898 		return NULL;
2899 
2900 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2901 		alloc_flags |= ALLOC_CMA;
2902 
2903 retry_cpuset:
2904 	cpuset_mems_cookie = read_mems_allowed_begin();
2905 
2906 	/* We set it here, as __alloc_pages_slowpath might have changed it */
2907 	ac.zonelist = zonelist;
2908 	/* The preferred zone is used for statistics later */
2909 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2910 				ac.nodemask ? : &cpuset_current_mems_allowed,
2911 				&ac.preferred_zone);
2912 	if (!ac.preferred_zone)
2913 		goto out;
2914 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2915 
2916 	/* First allocation attempt */
2917 	alloc_mask = gfp_mask|__GFP_HARDWALL;
2918 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2919 	if (unlikely(!page)) {
2920 		/*
2921 		 * Runtime PM, block IO and its error handling path
2922 		 * can deadlock because I/O on the device might not
2923 		 * complete.
2924 		 */
2925 		alloc_mask = memalloc_noio_flags(gfp_mask);
2926 
2927 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2928 	}
2929 
2930 	if (kmemcheck_enabled && page)
2931 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2932 
2933 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2934 
2935 out:
2936 	/*
2937 	 * When updating a task's mems_allowed, it is possible to race with
2938 	 * parallel threads in such a way that an allocation can fail while
2939 	 * the mask is being updated. If a page allocation is about to fail,
2940 	 * check if the cpuset changed during allocation and if so, retry.
2941 	 */
2942 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2943 		goto retry_cpuset;
2944 
2945 	return page;
2946 }
2947 EXPORT_SYMBOL(__alloc_pages_nodemask);
2948 
2949 /*
2950  * Common helper functions.
2951  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)2952 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2953 {
2954 	struct page *page;
2955 
2956 	/*
2957 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2958 	 * a highmem page
2959 	 */
2960 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2961 
2962 	page = alloc_pages(gfp_mask, order);
2963 	if (!page)
2964 		return 0;
2965 	return (unsigned long) page_address(page);
2966 }
2967 EXPORT_SYMBOL(__get_free_pages);
2968 
get_zeroed_page(gfp_t gfp_mask)2969 unsigned long get_zeroed_page(gfp_t gfp_mask)
2970 {
2971 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2972 }
2973 EXPORT_SYMBOL(get_zeroed_page);
2974 
__free_pages(struct page * page,unsigned int order)2975 void __free_pages(struct page *page, unsigned int order)
2976 {
2977 	if (put_page_testzero(page)) {
2978 		if (order == 0)
2979 			free_hot_cold_page(page, false);
2980 		else
2981 			__free_pages_ok(page, order);
2982 	}
2983 }
2984 
2985 EXPORT_SYMBOL(__free_pages);
2986 
free_pages(unsigned long addr,unsigned int order)2987 void free_pages(unsigned long addr, unsigned int order)
2988 {
2989 	if (addr != 0) {
2990 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2991 		__free_pages(virt_to_page((void *)addr), order);
2992 	}
2993 }
2994 
2995 EXPORT_SYMBOL(free_pages);
2996 
2997 /*
2998  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2999  * of the current memory cgroup.
3000  *
3001  * It should be used when the caller would like to use kmalloc, but since the
3002  * allocation is large, it has to fall back to the page allocator.
3003  */
alloc_kmem_pages(gfp_t gfp_mask,unsigned int order)3004 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3005 {
3006 	struct page *page;
3007 	struct mem_cgroup *memcg = NULL;
3008 
3009 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3010 		return NULL;
3011 	page = alloc_pages(gfp_mask, order);
3012 	memcg_kmem_commit_charge(page, memcg, order);
3013 	return page;
3014 }
3015 
alloc_kmem_pages_node(int nid,gfp_t gfp_mask,unsigned int order)3016 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3017 {
3018 	struct page *page;
3019 	struct mem_cgroup *memcg = NULL;
3020 
3021 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3022 		return NULL;
3023 	page = alloc_pages_node(nid, gfp_mask, order);
3024 	memcg_kmem_commit_charge(page, memcg, order);
3025 	return page;
3026 }
3027 
3028 /*
3029  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3030  * alloc_kmem_pages.
3031  */
__free_kmem_pages(struct page * page,unsigned int order)3032 void __free_kmem_pages(struct page *page, unsigned int order)
3033 {
3034 	memcg_kmem_uncharge_pages(page, order);
3035 	__free_pages(page, order);
3036 }
3037 
free_kmem_pages(unsigned long addr,unsigned int order)3038 void free_kmem_pages(unsigned long addr, unsigned int order)
3039 {
3040 	if (addr != 0) {
3041 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3042 		__free_kmem_pages(virt_to_page((void *)addr), order);
3043 	}
3044 }
3045 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)3046 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3047 		size_t size)
3048 {
3049 	if (addr) {
3050 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3051 		unsigned long used = addr + PAGE_ALIGN(size);
3052 
3053 		split_page(virt_to_page((void *)addr), order);
3054 		while (used < alloc_end) {
3055 			free_page(used);
3056 			used += PAGE_SIZE;
3057 		}
3058 	}
3059 	return (void *)addr;
3060 }
3061 
3062 /**
3063  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3064  * @size: the number of bytes to allocate
3065  * @gfp_mask: GFP flags for the allocation
3066  *
3067  * This function is similar to alloc_pages(), except that it allocates the
3068  * minimum number of pages to satisfy the request.  alloc_pages() can only
3069  * allocate memory in power-of-two pages.
3070  *
3071  * This function is also limited by MAX_ORDER.
3072  *
3073  * Memory allocated by this function must be released by free_pages_exact().
3074  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)3075 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3076 {
3077 	unsigned int order = get_order(size);
3078 	unsigned long addr;
3079 
3080 	addr = __get_free_pages(gfp_mask, order);
3081 	return make_alloc_exact(addr, order, size);
3082 }
3083 EXPORT_SYMBOL(alloc_pages_exact);
3084 
3085 /**
3086  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3087  *			   pages on a node.
3088  * @nid: the preferred node ID where memory should be allocated
3089  * @size: the number of bytes to allocate
3090  * @gfp_mask: GFP flags for the allocation
3091  *
3092  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3093  * back.
3094  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3095  * but is not exact.
3096  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)3097 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3098 {
3099 	unsigned int order = get_order(size);
3100 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3101 	if (!p)
3102 		return NULL;
3103 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3104 }
3105 
3106 /**
3107  * free_pages_exact - release memory allocated via alloc_pages_exact()
3108  * @virt: the value returned by alloc_pages_exact.
3109  * @size: size of allocation, same value as passed to alloc_pages_exact().
3110  *
3111  * Release the memory allocated by a previous call to alloc_pages_exact.
3112  */
free_pages_exact(void * virt,size_t size)3113 void free_pages_exact(void *virt, size_t size)
3114 {
3115 	unsigned long addr = (unsigned long)virt;
3116 	unsigned long end = addr + PAGE_ALIGN(size);
3117 
3118 	while (addr < end) {
3119 		free_page(addr);
3120 		addr += PAGE_SIZE;
3121 	}
3122 }
3123 EXPORT_SYMBOL(free_pages_exact);
3124 
3125 /**
3126  * nr_free_zone_pages - count number of pages beyond high watermark
3127  * @offset: The zone index of the highest zone
3128  *
3129  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3130  * high watermark within all zones at or below a given zone index.  For each
3131  * zone, the number of pages is calculated as:
3132  *     managed_pages - high_pages
3133  */
nr_free_zone_pages(int offset)3134 static unsigned long nr_free_zone_pages(int offset)
3135 {
3136 	struct zoneref *z;
3137 	struct zone *zone;
3138 
3139 	/* Just pick one node, since fallback list is circular */
3140 	unsigned long sum = 0;
3141 
3142 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3143 
3144 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3145 		unsigned long size = zone->managed_pages;
3146 		unsigned long high = high_wmark_pages(zone);
3147 		if (size > high)
3148 			sum += size - high;
3149 	}
3150 
3151 	return sum;
3152 }
3153 
3154 /**
3155  * nr_free_buffer_pages - count number of pages beyond high watermark
3156  *
3157  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3158  * watermark within ZONE_DMA and ZONE_NORMAL.
3159  */
nr_free_buffer_pages(void)3160 unsigned long nr_free_buffer_pages(void)
3161 {
3162 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3163 }
3164 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3165 
3166 /**
3167  * nr_free_pagecache_pages - count number of pages beyond high watermark
3168  *
3169  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3170  * high watermark within all zones.
3171  */
nr_free_pagecache_pages(void)3172 unsigned long nr_free_pagecache_pages(void)
3173 {
3174 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3175 }
3176 
show_node(struct zone * zone)3177 static inline void show_node(struct zone *zone)
3178 {
3179 	if (IS_ENABLED(CONFIG_NUMA))
3180 		printk("Node %d ", zone_to_nid(zone));
3181 }
3182 
si_meminfo(struct sysinfo * val)3183 void si_meminfo(struct sysinfo *val)
3184 {
3185 	val->totalram = totalram_pages;
3186 	val->sharedram = global_page_state(NR_SHMEM);
3187 	val->freeram = global_page_state(NR_FREE_PAGES);
3188 	val->bufferram = nr_blockdev_pages();
3189 	val->totalhigh = totalhigh_pages;
3190 	val->freehigh = nr_free_highpages();
3191 	val->mem_unit = PAGE_SIZE;
3192 }
3193 
3194 EXPORT_SYMBOL(si_meminfo);
3195 
3196 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)3197 void si_meminfo_node(struct sysinfo *val, int nid)
3198 {
3199 	int zone_type;		/* needs to be signed */
3200 	unsigned long managed_pages = 0;
3201 	pg_data_t *pgdat = NODE_DATA(nid);
3202 
3203 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3204 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3205 	val->totalram = managed_pages;
3206 	val->sharedram = node_page_state(nid, NR_SHMEM);
3207 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3208 #ifdef CONFIG_HIGHMEM
3209 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3210 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3211 			NR_FREE_PAGES);
3212 #else
3213 	val->totalhigh = 0;
3214 	val->freehigh = 0;
3215 #endif
3216 	val->mem_unit = PAGE_SIZE;
3217 }
3218 #endif
3219 
3220 /*
3221  * Determine whether the node should be displayed or not, depending on whether
3222  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3223  */
skip_free_areas_node(unsigned int flags,int nid)3224 bool skip_free_areas_node(unsigned int flags, int nid)
3225 {
3226 	bool ret = false;
3227 	unsigned int cpuset_mems_cookie;
3228 
3229 	if (!(flags & SHOW_MEM_FILTER_NODES))
3230 		goto out;
3231 
3232 	do {
3233 		cpuset_mems_cookie = read_mems_allowed_begin();
3234 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3235 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3236 out:
3237 	return ret;
3238 }
3239 
3240 #define K(x) ((x) << (PAGE_SHIFT-10))
3241 
show_migration_types(unsigned char type)3242 static void show_migration_types(unsigned char type)
3243 {
3244 	static const char types[MIGRATE_TYPES] = {
3245 		[MIGRATE_UNMOVABLE]	= 'U',
3246 		[MIGRATE_RECLAIMABLE]	= 'E',
3247 		[MIGRATE_MOVABLE]	= 'M',
3248 		[MIGRATE_RESERVE]	= 'R',
3249 #ifdef CONFIG_CMA
3250 		[MIGRATE_CMA]		= 'C',
3251 #endif
3252 #ifdef CONFIG_MEMORY_ISOLATION
3253 		[MIGRATE_ISOLATE]	= 'I',
3254 #endif
3255 	};
3256 	char tmp[MIGRATE_TYPES + 1];
3257 	char *p = tmp;
3258 	int i;
3259 
3260 	for (i = 0; i < MIGRATE_TYPES; i++) {
3261 		if (type & (1 << i))
3262 			*p++ = types[i];
3263 	}
3264 
3265 	*p = '\0';
3266 	printk("(%s) ", tmp);
3267 }
3268 
3269 /*
3270  * Show free area list (used inside shift_scroll-lock stuff)
3271  * We also calculate the percentage fragmentation. We do this by counting the
3272  * memory on each free list with the exception of the first item on the list.
3273  *
3274  * Bits in @filter:
3275  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3276  *   cpuset.
3277  */
show_free_areas(unsigned int filter)3278 void show_free_areas(unsigned int filter)
3279 {
3280 	unsigned long free_pcp = 0;
3281 	int cpu;
3282 	struct zone *zone;
3283 
3284 	for_each_populated_zone(zone) {
3285 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3286 			continue;
3287 
3288 		for_each_online_cpu(cpu)
3289 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3290 	}
3291 
3292 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3293 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3294 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3295 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3296 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3297 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3298 		global_page_state(NR_ACTIVE_ANON),
3299 		global_page_state(NR_INACTIVE_ANON),
3300 		global_page_state(NR_ISOLATED_ANON),
3301 		global_page_state(NR_ACTIVE_FILE),
3302 		global_page_state(NR_INACTIVE_FILE),
3303 		global_page_state(NR_ISOLATED_FILE),
3304 		global_page_state(NR_UNEVICTABLE),
3305 		global_page_state(NR_FILE_DIRTY),
3306 		global_page_state(NR_WRITEBACK),
3307 		global_page_state(NR_UNSTABLE_NFS),
3308 		global_page_state(NR_SLAB_RECLAIMABLE),
3309 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3310 		global_page_state(NR_FILE_MAPPED),
3311 		global_page_state(NR_SHMEM),
3312 		global_page_state(NR_PAGETABLE),
3313 		global_page_state(NR_BOUNCE),
3314 		global_page_state(NR_FREE_PAGES),
3315 		free_pcp,
3316 		global_page_state(NR_FREE_CMA_PAGES));
3317 
3318 	for_each_populated_zone(zone) {
3319 		int i;
3320 
3321 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3322 			continue;
3323 
3324 		free_pcp = 0;
3325 		for_each_online_cpu(cpu)
3326 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3327 
3328 		show_node(zone);
3329 		printk("%s"
3330 			" free:%lukB"
3331 			" min:%lukB"
3332 			" low:%lukB"
3333 			" high:%lukB"
3334 			" active_anon:%lukB"
3335 			" inactive_anon:%lukB"
3336 			" active_file:%lukB"
3337 			" inactive_file:%lukB"
3338 			" unevictable:%lukB"
3339 			" isolated(anon):%lukB"
3340 			" isolated(file):%lukB"
3341 			" present:%lukB"
3342 			" managed:%lukB"
3343 			" mlocked:%lukB"
3344 			" dirty:%lukB"
3345 			" writeback:%lukB"
3346 			" mapped:%lukB"
3347 			" shmem:%lukB"
3348 			" slab_reclaimable:%lukB"
3349 			" slab_unreclaimable:%lukB"
3350 			" kernel_stack:%lukB"
3351 			" pagetables:%lukB"
3352 			" unstable:%lukB"
3353 			" bounce:%lukB"
3354 			" free_pcp:%lukB"
3355 			" local_pcp:%ukB"
3356 			" free_cma:%lukB"
3357 			" writeback_tmp:%lukB"
3358 			" pages_scanned:%lu"
3359 			" all_unreclaimable? %s"
3360 			"\n",
3361 			zone->name,
3362 			K(zone_page_state(zone, NR_FREE_PAGES)),
3363 			K(min_wmark_pages(zone)),
3364 			K(low_wmark_pages(zone)),
3365 			K(high_wmark_pages(zone)),
3366 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3367 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3368 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3369 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3370 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3371 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3372 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3373 			K(zone->present_pages),
3374 			K(zone->managed_pages),
3375 			K(zone_page_state(zone, NR_MLOCK)),
3376 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3377 			K(zone_page_state(zone, NR_WRITEBACK)),
3378 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3379 			K(zone_page_state(zone, NR_SHMEM)),
3380 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3381 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3382 			zone_page_state(zone, NR_KERNEL_STACK) *
3383 				THREAD_SIZE / 1024,
3384 			K(zone_page_state(zone, NR_PAGETABLE)),
3385 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3386 			K(zone_page_state(zone, NR_BOUNCE)),
3387 			K(free_pcp),
3388 			K(this_cpu_read(zone->pageset->pcp.count)),
3389 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3390 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3391 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3392 			(!zone_reclaimable(zone) ? "yes" : "no")
3393 			);
3394 		printk("lowmem_reserve[]:");
3395 		for (i = 0; i < MAX_NR_ZONES; i++)
3396 			printk(" %ld", zone->lowmem_reserve[i]);
3397 		printk("\n");
3398 	}
3399 
3400 	for_each_populated_zone(zone) {
3401 		unsigned int order;
3402 		unsigned long nr[MAX_ORDER], flags, total = 0;
3403 		unsigned char types[MAX_ORDER];
3404 
3405 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3406 			continue;
3407 		show_node(zone);
3408 		printk("%s: ", zone->name);
3409 
3410 		spin_lock_irqsave(&zone->lock, flags);
3411 		for (order = 0; order < MAX_ORDER; order++) {
3412 			struct free_area *area = &zone->free_area[order];
3413 			int type;
3414 
3415 			nr[order] = area->nr_free;
3416 			total += nr[order] << order;
3417 
3418 			types[order] = 0;
3419 			for (type = 0; type < MIGRATE_TYPES; type++) {
3420 				if (!list_empty(&area->free_list[type]))
3421 					types[order] |= 1 << type;
3422 			}
3423 		}
3424 		spin_unlock_irqrestore(&zone->lock, flags);
3425 		for (order = 0; order < MAX_ORDER; order++) {
3426 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3427 			if (nr[order])
3428 				show_migration_types(types[order]);
3429 		}
3430 		printk("= %lukB\n", K(total));
3431 	}
3432 
3433 	hugetlb_show_meminfo();
3434 
3435 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3436 
3437 	show_swap_cache_info();
3438 }
3439 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)3440 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3441 {
3442 	zoneref->zone = zone;
3443 	zoneref->zone_idx = zone_idx(zone);
3444 }
3445 
3446 /*
3447  * Builds allocation fallback zone lists.
3448  *
3449  * Add all populated zones of a node to the zonelist.
3450  */
build_zonelists_node(pg_data_t * pgdat,struct zonelist * zonelist,int nr_zones)3451 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3452 				int nr_zones)
3453 {
3454 	struct zone *zone;
3455 	enum zone_type zone_type = MAX_NR_ZONES;
3456 
3457 	do {
3458 		zone_type--;
3459 		zone = pgdat->node_zones + zone_type;
3460 		if (populated_zone(zone)) {
3461 			zoneref_set_zone(zone,
3462 				&zonelist->_zonerefs[nr_zones++]);
3463 			check_highest_zone(zone_type);
3464 		}
3465 	} while (zone_type);
3466 
3467 	return nr_zones;
3468 }
3469 
3470 
3471 /*
3472  *  zonelist_order:
3473  *  0 = automatic detection of better ordering.
3474  *  1 = order by ([node] distance, -zonetype)
3475  *  2 = order by (-zonetype, [node] distance)
3476  *
3477  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3478  *  the same zonelist. So only NUMA can configure this param.
3479  */
3480 #define ZONELIST_ORDER_DEFAULT  0
3481 #define ZONELIST_ORDER_NODE     1
3482 #define ZONELIST_ORDER_ZONE     2
3483 
3484 /* zonelist order in the kernel.
3485  * set_zonelist_order() will set this to NODE or ZONE.
3486  */
3487 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3488 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3489 
3490 
3491 #ifdef CONFIG_NUMA
3492 /* The value user specified ....changed by config */
3493 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3494 /* string for sysctl */
3495 #define NUMA_ZONELIST_ORDER_LEN	16
3496 char numa_zonelist_order[16] = "default";
3497 
3498 /*
3499  * interface for configure zonelist ordering.
3500  * command line option "numa_zonelist_order"
3501  *	= "[dD]efault	- default, automatic configuration.
3502  *	= "[nN]ode 	- order by node locality, then by zone within node
3503  *	= "[zZ]one      - order by zone, then by locality within zone
3504  */
3505 
__parse_numa_zonelist_order(char * s)3506 static int __parse_numa_zonelist_order(char *s)
3507 {
3508 	if (*s == 'd' || *s == 'D') {
3509 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3510 	} else if (*s == 'n' || *s == 'N') {
3511 		user_zonelist_order = ZONELIST_ORDER_NODE;
3512 	} else if (*s == 'z' || *s == 'Z') {
3513 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3514 	} else {
3515 		printk(KERN_WARNING
3516 			"Ignoring invalid numa_zonelist_order value:  "
3517 			"%s\n", s);
3518 		return -EINVAL;
3519 	}
3520 	return 0;
3521 }
3522 
setup_numa_zonelist_order(char * s)3523 static __init int setup_numa_zonelist_order(char *s)
3524 {
3525 	int ret;
3526 
3527 	if (!s)
3528 		return 0;
3529 
3530 	ret = __parse_numa_zonelist_order(s);
3531 	if (ret == 0)
3532 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3533 
3534 	return ret;
3535 }
3536 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3537 
3538 /*
3539  * sysctl handler for numa_zonelist_order
3540  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3541 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3542 		void __user *buffer, size_t *length,
3543 		loff_t *ppos)
3544 {
3545 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3546 	int ret;
3547 	static DEFINE_MUTEX(zl_order_mutex);
3548 
3549 	mutex_lock(&zl_order_mutex);
3550 	if (write) {
3551 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3552 			ret = -EINVAL;
3553 			goto out;
3554 		}
3555 		strcpy(saved_string, (char *)table->data);
3556 	}
3557 	ret = proc_dostring(table, write, buffer, length, ppos);
3558 	if (ret)
3559 		goto out;
3560 	if (write) {
3561 		int oldval = user_zonelist_order;
3562 
3563 		ret = __parse_numa_zonelist_order((char *)table->data);
3564 		if (ret) {
3565 			/*
3566 			 * bogus value.  restore saved string
3567 			 */
3568 			strncpy((char *)table->data, saved_string,
3569 				NUMA_ZONELIST_ORDER_LEN);
3570 			user_zonelist_order = oldval;
3571 		} else if (oldval != user_zonelist_order) {
3572 			mutex_lock(&zonelists_mutex);
3573 			build_all_zonelists(NULL, NULL);
3574 			mutex_unlock(&zonelists_mutex);
3575 		}
3576 	}
3577 out:
3578 	mutex_unlock(&zl_order_mutex);
3579 	return ret;
3580 }
3581 
3582 
3583 #define MAX_NODE_LOAD (nr_online_nodes)
3584 static int node_load[MAX_NUMNODES];
3585 
3586 /**
3587  * find_next_best_node - find the next node that should appear in a given node's fallback list
3588  * @node: node whose fallback list we're appending
3589  * @used_node_mask: nodemask_t of already used nodes
3590  *
3591  * We use a number of factors to determine which is the next node that should
3592  * appear on a given node's fallback list.  The node should not have appeared
3593  * already in @node's fallback list, and it should be the next closest node
3594  * according to the distance array (which contains arbitrary distance values
3595  * from each node to each node in the system), and should also prefer nodes
3596  * with no CPUs, since presumably they'll have very little allocation pressure
3597  * on them otherwise.
3598  * It returns -1 if no node is found.
3599  */
find_next_best_node(int node,nodemask_t * used_node_mask)3600 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3601 {
3602 	int n, val;
3603 	int min_val = INT_MAX;
3604 	int best_node = NUMA_NO_NODE;
3605 	const struct cpumask *tmp = cpumask_of_node(0);
3606 
3607 	/* Use the local node if we haven't already */
3608 	if (!node_isset(node, *used_node_mask)) {
3609 		node_set(node, *used_node_mask);
3610 		return node;
3611 	}
3612 
3613 	for_each_node_state(n, N_MEMORY) {
3614 
3615 		/* Don't want a node to appear more than once */
3616 		if (node_isset(n, *used_node_mask))
3617 			continue;
3618 
3619 		/* Use the distance array to find the distance */
3620 		val = node_distance(node, n);
3621 
3622 		/* Penalize nodes under us ("prefer the next node") */
3623 		val += (n < node);
3624 
3625 		/* Give preference to headless and unused nodes */
3626 		tmp = cpumask_of_node(n);
3627 		if (!cpumask_empty(tmp))
3628 			val += PENALTY_FOR_NODE_WITH_CPUS;
3629 
3630 		/* Slight preference for less loaded node */
3631 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3632 		val += node_load[n];
3633 
3634 		if (val < min_val) {
3635 			min_val = val;
3636 			best_node = n;
3637 		}
3638 	}
3639 
3640 	if (best_node >= 0)
3641 		node_set(best_node, *used_node_mask);
3642 
3643 	return best_node;
3644 }
3645 
3646 
3647 /*
3648  * Build zonelists ordered by node and zones within node.
3649  * This results in maximum locality--normal zone overflows into local
3650  * DMA zone, if any--but risks exhausting DMA zone.
3651  */
build_zonelists_in_node_order(pg_data_t * pgdat,int node)3652 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3653 {
3654 	int j;
3655 	struct zonelist *zonelist;
3656 
3657 	zonelist = &pgdat->node_zonelists[0];
3658 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3659 		;
3660 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3661 	zonelist->_zonerefs[j].zone = NULL;
3662 	zonelist->_zonerefs[j].zone_idx = 0;
3663 }
3664 
3665 /*
3666  * Build gfp_thisnode zonelists
3667  */
build_thisnode_zonelists(pg_data_t * pgdat)3668 static void build_thisnode_zonelists(pg_data_t *pgdat)
3669 {
3670 	int j;
3671 	struct zonelist *zonelist;
3672 
3673 	zonelist = &pgdat->node_zonelists[1];
3674 	j = build_zonelists_node(pgdat, zonelist, 0);
3675 	zonelist->_zonerefs[j].zone = NULL;
3676 	zonelist->_zonerefs[j].zone_idx = 0;
3677 }
3678 
3679 /*
3680  * Build zonelists ordered by zone and nodes within zones.
3681  * This results in conserving DMA zone[s] until all Normal memory is
3682  * exhausted, but results in overflowing to remote node while memory
3683  * may still exist in local DMA zone.
3684  */
3685 static int node_order[MAX_NUMNODES];
3686 
build_zonelists_in_zone_order(pg_data_t * pgdat,int nr_nodes)3687 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3688 {
3689 	int pos, j, node;
3690 	int zone_type;		/* needs to be signed */
3691 	struct zone *z;
3692 	struct zonelist *zonelist;
3693 
3694 	zonelist = &pgdat->node_zonelists[0];
3695 	pos = 0;
3696 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3697 		for (j = 0; j < nr_nodes; j++) {
3698 			node = node_order[j];
3699 			z = &NODE_DATA(node)->node_zones[zone_type];
3700 			if (populated_zone(z)) {
3701 				zoneref_set_zone(z,
3702 					&zonelist->_zonerefs[pos++]);
3703 				check_highest_zone(zone_type);
3704 			}
3705 		}
3706 	}
3707 	zonelist->_zonerefs[pos].zone = NULL;
3708 	zonelist->_zonerefs[pos].zone_idx = 0;
3709 }
3710 
3711 #if defined(CONFIG_64BIT)
3712 /*
3713  * Devices that require DMA32/DMA are relatively rare and do not justify a
3714  * penalty to every machine in case the specialised case applies. Default
3715  * to Node-ordering on 64-bit NUMA machines
3716  */
default_zonelist_order(void)3717 static int default_zonelist_order(void)
3718 {
3719 	return ZONELIST_ORDER_NODE;
3720 }
3721 #else
3722 /*
3723  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3724  * by the kernel. If processes running on node 0 deplete the low memory zone
3725  * then reclaim will occur more frequency increasing stalls and potentially
3726  * be easier to OOM if a large percentage of the zone is under writeback or
3727  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3728  * Hence, default to zone ordering on 32-bit.
3729  */
default_zonelist_order(void)3730 static int default_zonelist_order(void)
3731 {
3732 	return ZONELIST_ORDER_ZONE;
3733 }
3734 #endif /* CONFIG_64BIT */
3735 
set_zonelist_order(void)3736 static void set_zonelist_order(void)
3737 {
3738 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3739 		current_zonelist_order = default_zonelist_order();
3740 	else
3741 		current_zonelist_order = user_zonelist_order;
3742 }
3743 
build_zonelists(pg_data_t * pgdat)3744 static void build_zonelists(pg_data_t *pgdat)
3745 {
3746 	int j, node, load;
3747 	enum zone_type i;
3748 	nodemask_t used_mask;
3749 	int local_node, prev_node;
3750 	struct zonelist *zonelist;
3751 	unsigned int order = current_zonelist_order;
3752 
3753 	/* initialize zonelists */
3754 	for (i = 0; i < MAX_ZONELISTS; i++) {
3755 		zonelist = pgdat->node_zonelists + i;
3756 		zonelist->_zonerefs[0].zone = NULL;
3757 		zonelist->_zonerefs[0].zone_idx = 0;
3758 	}
3759 
3760 	/* NUMA-aware ordering of nodes */
3761 	local_node = pgdat->node_id;
3762 	load = nr_online_nodes;
3763 	prev_node = local_node;
3764 	nodes_clear(used_mask);
3765 
3766 	memset(node_order, 0, sizeof(node_order));
3767 	j = 0;
3768 
3769 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3770 		/*
3771 		 * We don't want to pressure a particular node.
3772 		 * So adding penalty to the first node in same
3773 		 * distance group to make it round-robin.
3774 		 */
3775 		if (node_distance(local_node, node) !=
3776 		    node_distance(local_node, prev_node))
3777 			node_load[node] = load;
3778 
3779 		prev_node = node;
3780 		load--;
3781 		if (order == ZONELIST_ORDER_NODE)
3782 			build_zonelists_in_node_order(pgdat, node);
3783 		else
3784 			node_order[j++] = node;	/* remember order */
3785 	}
3786 
3787 	if (order == ZONELIST_ORDER_ZONE) {
3788 		/* calculate node order -- i.e., DMA last! */
3789 		build_zonelists_in_zone_order(pgdat, j);
3790 	}
3791 
3792 	build_thisnode_zonelists(pgdat);
3793 }
3794 
3795 /* Construct the zonelist performance cache - see further mmzone.h */
build_zonelist_cache(pg_data_t * pgdat)3796 static void build_zonelist_cache(pg_data_t *pgdat)
3797 {
3798 	struct zonelist *zonelist;
3799 	struct zonelist_cache *zlc;
3800 	struct zoneref *z;
3801 
3802 	zonelist = &pgdat->node_zonelists[0];
3803 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3804 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3805 	for (z = zonelist->_zonerefs; z->zone; z++)
3806 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3807 }
3808 
3809 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3810 /*
3811  * Return node id of node used for "local" allocations.
3812  * I.e., first node id of first zone in arg node's generic zonelist.
3813  * Used for initializing percpu 'numa_mem', which is used primarily
3814  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3815  */
local_memory_node(int node)3816 int local_memory_node(int node)
3817 {
3818 	struct zone *zone;
3819 
3820 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3821 				   gfp_zone(GFP_KERNEL),
3822 				   NULL,
3823 				   &zone);
3824 	return zone->node;
3825 }
3826 #endif
3827 
3828 #else	/* CONFIG_NUMA */
3829 
set_zonelist_order(void)3830 static void set_zonelist_order(void)
3831 {
3832 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3833 }
3834 
build_zonelists(pg_data_t * pgdat)3835 static void build_zonelists(pg_data_t *pgdat)
3836 {
3837 	int node, local_node;
3838 	enum zone_type j;
3839 	struct zonelist *zonelist;
3840 
3841 	local_node = pgdat->node_id;
3842 
3843 	zonelist = &pgdat->node_zonelists[0];
3844 	j = build_zonelists_node(pgdat, zonelist, 0);
3845 
3846 	/*
3847 	 * Now we build the zonelist so that it contains the zones
3848 	 * of all the other nodes.
3849 	 * We don't want to pressure a particular node, so when
3850 	 * building the zones for node N, we make sure that the
3851 	 * zones coming right after the local ones are those from
3852 	 * node N+1 (modulo N)
3853 	 */
3854 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3855 		if (!node_online(node))
3856 			continue;
3857 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3858 	}
3859 	for (node = 0; node < local_node; node++) {
3860 		if (!node_online(node))
3861 			continue;
3862 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3863 	}
3864 
3865 	zonelist->_zonerefs[j].zone = NULL;
3866 	zonelist->_zonerefs[j].zone_idx = 0;
3867 }
3868 
3869 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
build_zonelist_cache(pg_data_t * pgdat)3870 static void build_zonelist_cache(pg_data_t *pgdat)
3871 {
3872 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3873 }
3874 
3875 #endif	/* CONFIG_NUMA */
3876 
3877 /*
3878  * Boot pageset table. One per cpu which is going to be used for all
3879  * zones and all nodes. The parameters will be set in such a way
3880  * that an item put on a list will immediately be handed over to
3881  * the buddy list. This is safe since pageset manipulation is done
3882  * with interrupts disabled.
3883  *
3884  * The boot_pagesets must be kept even after bootup is complete for
3885  * unused processors and/or zones. They do play a role for bootstrapping
3886  * hotplugged processors.
3887  *
3888  * zoneinfo_show() and maybe other functions do
3889  * not check if the processor is online before following the pageset pointer.
3890  * Other parts of the kernel may not check if the zone is available.
3891  */
3892 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3893 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3894 static void setup_zone_pageset(struct zone *zone);
3895 
3896 /*
3897  * Global mutex to protect against size modification of zonelists
3898  * as well as to serialize pageset setup for the new populated zone.
3899  */
3900 DEFINE_MUTEX(zonelists_mutex);
3901 
3902 /* return values int ....just for stop_machine() */
__build_all_zonelists(void * data)3903 static int __build_all_zonelists(void *data)
3904 {
3905 	int nid;
3906 	int cpu;
3907 	pg_data_t *self = data;
3908 
3909 #ifdef CONFIG_NUMA
3910 	memset(node_load, 0, sizeof(node_load));
3911 #endif
3912 
3913 	if (self && !node_online(self->node_id)) {
3914 		build_zonelists(self);
3915 		build_zonelist_cache(self);
3916 	}
3917 
3918 	for_each_online_node(nid) {
3919 		pg_data_t *pgdat = NODE_DATA(nid);
3920 
3921 		build_zonelists(pgdat);
3922 		build_zonelist_cache(pgdat);
3923 	}
3924 
3925 	/*
3926 	 * Initialize the boot_pagesets that are going to be used
3927 	 * for bootstrapping processors. The real pagesets for
3928 	 * each zone will be allocated later when the per cpu
3929 	 * allocator is available.
3930 	 *
3931 	 * boot_pagesets are used also for bootstrapping offline
3932 	 * cpus if the system is already booted because the pagesets
3933 	 * are needed to initialize allocators on a specific cpu too.
3934 	 * F.e. the percpu allocator needs the page allocator which
3935 	 * needs the percpu allocator in order to allocate its pagesets
3936 	 * (a chicken-egg dilemma).
3937 	 */
3938 	for_each_possible_cpu(cpu) {
3939 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3940 
3941 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3942 		/*
3943 		 * We now know the "local memory node" for each node--
3944 		 * i.e., the node of the first zone in the generic zonelist.
3945 		 * Set up numa_mem percpu variable for on-line cpus.  During
3946 		 * boot, only the boot cpu should be on-line;  we'll init the
3947 		 * secondary cpus' numa_mem as they come on-line.  During
3948 		 * node/memory hotplug, we'll fixup all on-line cpus.
3949 		 */
3950 		if (cpu_online(cpu))
3951 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3952 #endif
3953 	}
3954 
3955 	return 0;
3956 }
3957 
3958 static noinline void __init
build_all_zonelists_init(void)3959 build_all_zonelists_init(void)
3960 {
3961 	__build_all_zonelists(NULL);
3962 	mminit_verify_zonelist();
3963 	cpuset_init_current_mems_allowed();
3964 }
3965 
3966 /*
3967  * Called with zonelists_mutex held always
3968  * unless system_state == SYSTEM_BOOTING.
3969  *
3970  * __ref due to (1) call of __meminit annotated setup_zone_pageset
3971  * [we're only called with non-NULL zone through __meminit paths] and
3972  * (2) call of __init annotated helper build_all_zonelists_init
3973  * [protected by SYSTEM_BOOTING].
3974  */
build_all_zonelists(pg_data_t * pgdat,struct zone * zone)3975 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3976 {
3977 	set_zonelist_order();
3978 
3979 	if (system_state == SYSTEM_BOOTING) {
3980 		build_all_zonelists_init();
3981 	} else {
3982 #ifdef CONFIG_MEMORY_HOTPLUG
3983 		if (zone)
3984 			setup_zone_pageset(zone);
3985 #endif
3986 		/* we have to stop all cpus to guarantee there is no user
3987 		   of zonelist */
3988 		stop_machine(__build_all_zonelists, pgdat, NULL);
3989 		/* cpuset refresh routine should be here */
3990 	}
3991 	vm_total_pages = nr_free_pagecache_pages();
3992 	/*
3993 	 * Disable grouping by mobility if the number of pages in the
3994 	 * system is too low to allow the mechanism to work. It would be
3995 	 * more accurate, but expensive to check per-zone. This check is
3996 	 * made on memory-hotadd so a system can start with mobility
3997 	 * disabled and enable it later
3998 	 */
3999 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4000 		page_group_by_mobility_disabled = 1;
4001 	else
4002 		page_group_by_mobility_disabled = 0;
4003 
4004 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
4005 		"Total pages: %ld\n",
4006 			nr_online_nodes,
4007 			zonelist_order_name[current_zonelist_order],
4008 			page_group_by_mobility_disabled ? "off" : "on",
4009 			vm_total_pages);
4010 #ifdef CONFIG_NUMA
4011 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4012 #endif
4013 }
4014 
4015 /*
4016  * Helper functions to size the waitqueue hash table.
4017  * Essentially these want to choose hash table sizes sufficiently
4018  * large so that collisions trying to wait on pages are rare.
4019  * But in fact, the number of active page waitqueues on typical
4020  * systems is ridiculously low, less than 200. So this is even
4021  * conservative, even though it seems large.
4022  *
4023  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4024  * waitqueues, i.e. the size of the waitq table given the number of pages.
4025  */
4026 #define PAGES_PER_WAITQUEUE	256
4027 
4028 #ifndef CONFIG_MEMORY_HOTPLUG
wait_table_hash_nr_entries(unsigned long pages)4029 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4030 {
4031 	unsigned long size = 1;
4032 
4033 	pages /= PAGES_PER_WAITQUEUE;
4034 
4035 	while (size < pages)
4036 		size <<= 1;
4037 
4038 	/*
4039 	 * Once we have dozens or even hundreds of threads sleeping
4040 	 * on IO we've got bigger problems than wait queue collision.
4041 	 * Limit the size of the wait table to a reasonable size.
4042 	 */
4043 	size = min(size, 4096UL);
4044 
4045 	return max(size, 4UL);
4046 }
4047 #else
4048 /*
4049  * A zone's size might be changed by hot-add, so it is not possible to determine
4050  * a suitable size for its wait_table.  So we use the maximum size now.
4051  *
4052  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4053  *
4054  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4055  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4056  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4057  *
4058  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4059  * or more by the traditional way. (See above).  It equals:
4060  *
4061  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4062  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4063  *    powerpc (64K page size)             : =  (32G +16M)byte.
4064  */
wait_table_hash_nr_entries(unsigned long pages)4065 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4066 {
4067 	return 4096UL;
4068 }
4069 #endif
4070 
4071 /*
4072  * This is an integer logarithm so that shifts can be used later
4073  * to extract the more random high bits from the multiplicative
4074  * hash function before the remainder is taken.
4075  */
wait_table_bits(unsigned long size)4076 static inline unsigned long wait_table_bits(unsigned long size)
4077 {
4078 	return ffz(~size);
4079 }
4080 
4081 /*
4082  * Check if a pageblock contains reserved pages
4083  */
pageblock_is_reserved(unsigned long start_pfn,unsigned long end_pfn)4084 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4085 {
4086 	unsigned long pfn;
4087 
4088 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4089 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4090 			return 1;
4091 	}
4092 	return 0;
4093 }
4094 
4095 /*
4096  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4097  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4098  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4099  * higher will lead to a bigger reserve which will get freed as contiguous
4100  * blocks as reclaim kicks in
4101  */
setup_zone_migrate_reserve(struct zone * zone)4102 static void setup_zone_migrate_reserve(struct zone *zone)
4103 {
4104 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4105 	struct page *page;
4106 	unsigned long block_migratetype;
4107 	int reserve;
4108 	int old_reserve;
4109 
4110 	/*
4111 	 * Get the start pfn, end pfn and the number of blocks to reserve
4112 	 * We have to be careful to be aligned to pageblock_nr_pages to
4113 	 * make sure that we always check pfn_valid for the first page in
4114 	 * the block.
4115 	 */
4116 	start_pfn = zone->zone_start_pfn;
4117 	end_pfn = zone_end_pfn(zone);
4118 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4119 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4120 							pageblock_order;
4121 
4122 	/*
4123 	 * Reserve blocks are generally in place to help high-order atomic
4124 	 * allocations that are short-lived. A min_free_kbytes value that
4125 	 * would result in more than 2 reserve blocks for atomic allocations
4126 	 * is assumed to be in place to help anti-fragmentation for the
4127 	 * future allocation of hugepages at runtime.
4128 	 */
4129 	reserve = min(2, reserve);
4130 	old_reserve = zone->nr_migrate_reserve_block;
4131 
4132 	/* When memory hot-add, we almost always need to do nothing */
4133 	if (reserve == old_reserve)
4134 		return;
4135 	zone->nr_migrate_reserve_block = reserve;
4136 
4137 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4138 		if (!pfn_valid(pfn))
4139 			continue;
4140 		page = pfn_to_page(pfn);
4141 
4142 		/* Watch out for overlapping nodes */
4143 		if (page_to_nid(page) != zone_to_nid(zone))
4144 			continue;
4145 
4146 		block_migratetype = get_pageblock_migratetype(page);
4147 
4148 		/* Only test what is necessary when the reserves are not met */
4149 		if (reserve > 0) {
4150 			/*
4151 			 * Blocks with reserved pages will never free, skip
4152 			 * them.
4153 			 */
4154 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4155 			if (pageblock_is_reserved(pfn, block_end_pfn))
4156 				continue;
4157 
4158 			/* If this block is reserved, account for it */
4159 			if (block_migratetype == MIGRATE_RESERVE) {
4160 				reserve--;
4161 				continue;
4162 			}
4163 
4164 			/* Suitable for reserving if this block is movable */
4165 			if (block_migratetype == MIGRATE_MOVABLE) {
4166 				set_pageblock_migratetype(page,
4167 							MIGRATE_RESERVE);
4168 				move_freepages_block(zone, page,
4169 							MIGRATE_RESERVE);
4170 				reserve--;
4171 				continue;
4172 			}
4173 		} else if (!old_reserve) {
4174 			/*
4175 			 * At boot time we don't need to scan the whole zone
4176 			 * for turning off MIGRATE_RESERVE.
4177 			 */
4178 			break;
4179 		}
4180 
4181 		/*
4182 		 * If the reserve is met and this is a previous reserved block,
4183 		 * take it back
4184 		 */
4185 		if (block_migratetype == MIGRATE_RESERVE) {
4186 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4187 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4188 		}
4189 	}
4190 }
4191 
4192 /*
4193  * Initially all pages are reserved - free ones are freed
4194  * up by free_all_bootmem() once the early boot process is
4195  * done. Non-atomic initialization, single-pass.
4196  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context)4197 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4198 		unsigned long start_pfn, enum memmap_context context)
4199 {
4200 	struct page *page;
4201 	unsigned long end_pfn = start_pfn + size;
4202 	unsigned long pfn;
4203 	struct zone *z;
4204 
4205 	if (highest_memmap_pfn < end_pfn - 1)
4206 		highest_memmap_pfn = end_pfn - 1;
4207 
4208 	z = &NODE_DATA(nid)->node_zones[zone];
4209 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4210 		/*
4211 		 * There can be holes in boot-time mem_map[]s
4212 		 * handed to this function.  They do not
4213 		 * exist on hotplugged memory.
4214 		 */
4215 		if (context == MEMMAP_EARLY) {
4216 			if (!early_pfn_valid(pfn))
4217 				continue;
4218 			if (!early_pfn_in_nid(pfn, nid))
4219 				continue;
4220 		}
4221 		page = pfn_to_page(pfn);
4222 		set_page_links(page, zone, nid, pfn);
4223 		mminit_verify_page_links(page, zone, nid, pfn);
4224 		init_page_count(page);
4225 		page_mapcount_reset(page);
4226 		page_cpupid_reset_last(page);
4227 		SetPageReserved(page);
4228 		/*
4229 		 * Mark the block movable so that blocks are reserved for
4230 		 * movable at startup. This will force kernel allocations
4231 		 * to reserve their blocks rather than leaking throughout
4232 		 * the address space during boot when many long-lived
4233 		 * kernel allocations are made. Later some blocks near
4234 		 * the start are marked MIGRATE_RESERVE by
4235 		 * setup_zone_migrate_reserve()
4236 		 *
4237 		 * bitmap is created for zone's valid pfn range. but memmap
4238 		 * can be created for invalid pages (for alignment)
4239 		 * check here not to call set_pageblock_migratetype() against
4240 		 * pfn out of zone.
4241 		 */
4242 		if ((z->zone_start_pfn <= pfn)
4243 		    && (pfn < zone_end_pfn(z))
4244 		    && !(pfn & (pageblock_nr_pages - 1)))
4245 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4246 
4247 		INIT_LIST_HEAD(&page->lru);
4248 #ifdef WANT_PAGE_VIRTUAL
4249 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4250 		if (!is_highmem_idx(zone))
4251 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4252 #endif
4253 	}
4254 }
4255 
zone_init_free_lists(struct zone * zone)4256 static void __meminit zone_init_free_lists(struct zone *zone)
4257 {
4258 	unsigned int order, t;
4259 	for_each_migratetype_order(order, t) {
4260 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4261 		zone->free_area[order].nr_free = 0;
4262 	}
4263 }
4264 
4265 #ifndef __HAVE_ARCH_MEMMAP_INIT
4266 #define memmap_init(size, nid, zone, start_pfn) \
4267 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4268 #endif
4269 
zone_batchsize(struct zone * zone)4270 static int zone_batchsize(struct zone *zone)
4271 {
4272 #ifdef CONFIG_MMU
4273 	int batch;
4274 
4275 	/*
4276 	 * The per-cpu-pages pools are set to around 1000th of the
4277 	 * size of the zone.  But no more than 1/2 of a meg.
4278 	 *
4279 	 * OK, so we don't know how big the cache is.  So guess.
4280 	 */
4281 	batch = zone->managed_pages / 1024;
4282 	if (batch * PAGE_SIZE > 512 * 1024)
4283 		batch = (512 * 1024) / PAGE_SIZE;
4284 	batch /= 4;		/* We effectively *= 4 below */
4285 	if (batch < 1)
4286 		batch = 1;
4287 
4288 	/*
4289 	 * Clamp the batch to a 2^n - 1 value. Having a power
4290 	 * of 2 value was found to be more likely to have
4291 	 * suboptimal cache aliasing properties in some cases.
4292 	 *
4293 	 * For example if 2 tasks are alternately allocating
4294 	 * batches of pages, one task can end up with a lot
4295 	 * of pages of one half of the possible page colors
4296 	 * and the other with pages of the other colors.
4297 	 */
4298 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4299 
4300 	return batch;
4301 
4302 #else
4303 	/* The deferral and batching of frees should be suppressed under NOMMU
4304 	 * conditions.
4305 	 *
4306 	 * The problem is that NOMMU needs to be able to allocate large chunks
4307 	 * of contiguous memory as there's no hardware page translation to
4308 	 * assemble apparent contiguous memory from discontiguous pages.
4309 	 *
4310 	 * Queueing large contiguous runs of pages for batching, however,
4311 	 * causes the pages to actually be freed in smaller chunks.  As there
4312 	 * can be a significant delay between the individual batches being
4313 	 * recycled, this leads to the once large chunks of space being
4314 	 * fragmented and becoming unavailable for high-order allocations.
4315 	 */
4316 	return 0;
4317 #endif
4318 }
4319 
4320 /*
4321  * pcp->high and pcp->batch values are related and dependent on one another:
4322  * ->batch must never be higher then ->high.
4323  * The following function updates them in a safe manner without read side
4324  * locking.
4325  *
4326  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4327  * those fields changing asynchronously (acording the the above rule).
4328  *
4329  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4330  * outside of boot time (or some other assurance that no concurrent updaters
4331  * exist).
4332  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)4333 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4334 		unsigned long batch)
4335 {
4336        /* start with a fail safe value for batch */
4337 	pcp->batch = 1;
4338 	smp_wmb();
4339 
4340        /* Update high, then batch, in order */
4341 	pcp->high = high;
4342 	smp_wmb();
4343 
4344 	pcp->batch = batch;
4345 }
4346 
4347 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)4348 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4349 {
4350 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4351 }
4352 
pageset_init(struct per_cpu_pageset * p)4353 static void pageset_init(struct per_cpu_pageset *p)
4354 {
4355 	struct per_cpu_pages *pcp;
4356 	int migratetype;
4357 
4358 	memset(p, 0, sizeof(*p));
4359 
4360 	pcp = &p->pcp;
4361 	pcp->count = 0;
4362 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4363 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4364 }
4365 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)4366 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4367 {
4368 	pageset_init(p);
4369 	pageset_set_batch(p, batch);
4370 }
4371 
4372 /*
4373  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4374  * to the value high for the pageset p.
4375  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)4376 static void pageset_set_high(struct per_cpu_pageset *p,
4377 				unsigned long high)
4378 {
4379 	unsigned long batch = max(1UL, high / 4);
4380 	if ((high / 4) > (PAGE_SHIFT * 8))
4381 		batch = PAGE_SHIFT * 8;
4382 
4383 	pageset_update(&p->pcp, high, batch);
4384 }
4385 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)4386 static void pageset_set_high_and_batch(struct zone *zone,
4387 				       struct per_cpu_pageset *pcp)
4388 {
4389 	if (percpu_pagelist_fraction)
4390 		pageset_set_high(pcp,
4391 			(zone->managed_pages /
4392 				percpu_pagelist_fraction));
4393 	else
4394 		pageset_set_batch(pcp, zone_batchsize(zone));
4395 }
4396 
zone_pageset_init(struct zone * zone,int cpu)4397 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4398 {
4399 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4400 
4401 	pageset_init(pcp);
4402 	pageset_set_high_and_batch(zone, pcp);
4403 }
4404 
setup_zone_pageset(struct zone * zone)4405 static void __meminit setup_zone_pageset(struct zone *zone)
4406 {
4407 	int cpu;
4408 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4409 	for_each_possible_cpu(cpu)
4410 		zone_pageset_init(zone, cpu);
4411 }
4412 
4413 /*
4414  * Allocate per cpu pagesets and initialize them.
4415  * Before this call only boot pagesets were available.
4416  */
setup_per_cpu_pageset(void)4417 void __init setup_per_cpu_pageset(void)
4418 {
4419 	struct zone *zone;
4420 
4421 	for_each_populated_zone(zone)
4422 		setup_zone_pageset(zone);
4423 }
4424 
4425 static noinline __init_refok
zone_wait_table_init(struct zone * zone,unsigned long zone_size_pages)4426 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4427 {
4428 	int i;
4429 	size_t alloc_size;
4430 
4431 	/*
4432 	 * The per-page waitqueue mechanism uses hashed waitqueues
4433 	 * per zone.
4434 	 */
4435 	zone->wait_table_hash_nr_entries =
4436 		 wait_table_hash_nr_entries(zone_size_pages);
4437 	zone->wait_table_bits =
4438 		wait_table_bits(zone->wait_table_hash_nr_entries);
4439 	alloc_size = zone->wait_table_hash_nr_entries
4440 					* sizeof(wait_queue_head_t);
4441 
4442 	if (!slab_is_available()) {
4443 		zone->wait_table = (wait_queue_head_t *)
4444 			memblock_virt_alloc_node_nopanic(
4445 				alloc_size, zone->zone_pgdat->node_id);
4446 	} else {
4447 		/*
4448 		 * This case means that a zone whose size was 0 gets new memory
4449 		 * via memory hot-add.
4450 		 * But it may be the case that a new node was hot-added.  In
4451 		 * this case vmalloc() will not be able to use this new node's
4452 		 * memory - this wait_table must be initialized to use this new
4453 		 * node itself as well.
4454 		 * To use this new node's memory, further consideration will be
4455 		 * necessary.
4456 		 */
4457 		zone->wait_table = vmalloc(alloc_size);
4458 	}
4459 	if (!zone->wait_table)
4460 		return -ENOMEM;
4461 
4462 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4463 		init_waitqueue_head(zone->wait_table + i);
4464 
4465 	return 0;
4466 }
4467 
zone_pcp_init(struct zone * zone)4468 static __meminit void zone_pcp_init(struct zone *zone)
4469 {
4470 	/*
4471 	 * per cpu subsystem is not up at this point. The following code
4472 	 * relies on the ability of the linker to provide the
4473 	 * offset of a (static) per cpu variable into the per cpu area.
4474 	 */
4475 	zone->pageset = &boot_pageset;
4476 
4477 	if (populated_zone(zone))
4478 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4479 			zone->name, zone->present_pages,
4480 					 zone_batchsize(zone));
4481 }
4482 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size,enum memmap_context context)4483 int __meminit init_currently_empty_zone(struct zone *zone,
4484 					unsigned long zone_start_pfn,
4485 					unsigned long size,
4486 					enum memmap_context context)
4487 {
4488 	struct pglist_data *pgdat = zone->zone_pgdat;
4489 	int ret;
4490 	ret = zone_wait_table_init(zone, size);
4491 	if (ret)
4492 		return ret;
4493 	pgdat->nr_zones = zone_idx(zone) + 1;
4494 
4495 	zone->zone_start_pfn = zone_start_pfn;
4496 
4497 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4498 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4499 			pgdat->node_id,
4500 			(unsigned long)zone_idx(zone),
4501 			zone_start_pfn, (zone_start_pfn + size));
4502 
4503 	zone_init_free_lists(zone);
4504 
4505 	return 0;
4506 }
4507 
4508 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4509 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4510 /*
4511  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4512  */
__early_pfn_to_nid(unsigned long pfn)4513 int __meminit __early_pfn_to_nid(unsigned long pfn)
4514 {
4515 	unsigned long start_pfn, end_pfn;
4516 	int nid;
4517 	/*
4518 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4519 	 * when the kernel is running single-threaded.
4520 	 */
4521 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4522 	static int __meminitdata last_nid;
4523 
4524 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4525 		return last_nid;
4526 
4527 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4528 	if (nid != -1) {
4529 		last_start_pfn = start_pfn;
4530 		last_end_pfn = end_pfn;
4531 		last_nid = nid;
4532 	}
4533 
4534 	return nid;
4535 }
4536 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4537 
early_pfn_to_nid(unsigned long pfn)4538 int __meminit early_pfn_to_nid(unsigned long pfn)
4539 {
4540 	int nid;
4541 
4542 	nid = __early_pfn_to_nid(pfn);
4543 	if (nid >= 0)
4544 		return nid;
4545 	/* just returns 0 */
4546 	return 0;
4547 }
4548 
4549 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
early_pfn_in_nid(unsigned long pfn,int node)4550 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4551 {
4552 	int nid;
4553 
4554 	nid = __early_pfn_to_nid(pfn);
4555 	if (nid >= 0 && nid != node)
4556 		return false;
4557 	return true;
4558 }
4559 #endif
4560 
4561 /**
4562  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4563  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4564  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4565  *
4566  * If an architecture guarantees that all ranges registered contain no holes
4567  * and may be freed, this this function may be used instead of calling
4568  * memblock_free_early_nid() manually.
4569  */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)4570 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4571 {
4572 	unsigned long start_pfn, end_pfn;
4573 	int i, this_nid;
4574 
4575 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4576 		start_pfn = min(start_pfn, max_low_pfn);
4577 		end_pfn = min(end_pfn, max_low_pfn);
4578 
4579 		if (start_pfn < end_pfn)
4580 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4581 					(end_pfn - start_pfn) << PAGE_SHIFT,
4582 					this_nid);
4583 	}
4584 }
4585 
4586 /**
4587  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4588  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4589  *
4590  * If an architecture guarantees that all ranges registered contain no holes and may
4591  * be freed, this function may be used instead of calling memory_present() manually.
4592  */
sparse_memory_present_with_active_regions(int nid)4593 void __init sparse_memory_present_with_active_regions(int nid)
4594 {
4595 	unsigned long start_pfn, end_pfn;
4596 	int i, this_nid;
4597 
4598 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4599 		memory_present(this_nid, start_pfn, end_pfn);
4600 }
4601 
4602 /**
4603  * get_pfn_range_for_nid - Return the start and end page frames for a node
4604  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4605  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4606  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4607  *
4608  * It returns the start and end page frame of a node based on information
4609  * provided by memblock_set_node(). If called for a node
4610  * with no available memory, a warning is printed and the start and end
4611  * PFNs will be 0.
4612  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)4613 void __meminit get_pfn_range_for_nid(unsigned int nid,
4614 			unsigned long *start_pfn, unsigned long *end_pfn)
4615 {
4616 	unsigned long this_start_pfn, this_end_pfn;
4617 	int i;
4618 
4619 	*start_pfn = -1UL;
4620 	*end_pfn = 0;
4621 
4622 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4623 		*start_pfn = min(*start_pfn, this_start_pfn);
4624 		*end_pfn = max(*end_pfn, this_end_pfn);
4625 	}
4626 
4627 	if (*start_pfn == -1UL)
4628 		*start_pfn = 0;
4629 }
4630 
4631 /*
4632  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4633  * assumption is made that zones within a node are ordered in monotonic
4634  * increasing memory addresses so that the "highest" populated zone is used
4635  */
find_usable_zone_for_movable(void)4636 static void __init find_usable_zone_for_movable(void)
4637 {
4638 	int zone_index;
4639 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4640 		if (zone_index == ZONE_MOVABLE)
4641 			continue;
4642 
4643 		if (arch_zone_highest_possible_pfn[zone_index] >
4644 				arch_zone_lowest_possible_pfn[zone_index])
4645 			break;
4646 	}
4647 
4648 	VM_BUG_ON(zone_index == -1);
4649 	movable_zone = zone_index;
4650 }
4651 
4652 /*
4653  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4654  * because it is sized independent of architecture. Unlike the other zones,
4655  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4656  * in each node depending on the size of each node and how evenly kernelcore
4657  * is distributed. This helper function adjusts the zone ranges
4658  * provided by the architecture for a given node by using the end of the
4659  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4660  * zones within a node are in order of monotonic increases memory addresses
4661  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)4662 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4663 					unsigned long zone_type,
4664 					unsigned long node_start_pfn,
4665 					unsigned long node_end_pfn,
4666 					unsigned long *zone_start_pfn,
4667 					unsigned long *zone_end_pfn)
4668 {
4669 	/* Only adjust if ZONE_MOVABLE is on this node */
4670 	if (zone_movable_pfn[nid]) {
4671 		/* Size ZONE_MOVABLE */
4672 		if (zone_type == ZONE_MOVABLE) {
4673 			*zone_start_pfn = zone_movable_pfn[nid];
4674 			*zone_end_pfn = min(node_end_pfn,
4675 				arch_zone_highest_possible_pfn[movable_zone]);
4676 
4677 		/* Adjust for ZONE_MOVABLE starting within this range */
4678 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4679 				*zone_end_pfn > zone_movable_pfn[nid]) {
4680 			*zone_end_pfn = zone_movable_pfn[nid];
4681 
4682 		/* Check if this whole range is within ZONE_MOVABLE */
4683 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4684 			*zone_start_pfn = *zone_end_pfn;
4685 	}
4686 }
4687 
4688 /*
4689  * Return the number of pages a zone spans in a node, including holes
4690  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4691  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)4692 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4693 					unsigned long zone_type,
4694 					unsigned long node_start_pfn,
4695 					unsigned long node_end_pfn,
4696 					unsigned long *ignored)
4697 {
4698 	unsigned long zone_start_pfn, zone_end_pfn;
4699 
4700 	/* Get the start and end of the zone */
4701 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4702 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4703 	adjust_zone_range_for_zone_movable(nid, zone_type,
4704 				node_start_pfn, node_end_pfn,
4705 				&zone_start_pfn, &zone_end_pfn);
4706 
4707 	/* Check that this node has pages within the zone's required range */
4708 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4709 		return 0;
4710 
4711 	/* Move the zone boundaries inside the node if necessary */
4712 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4713 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4714 
4715 	/* Return the spanned pages */
4716 	return zone_end_pfn - zone_start_pfn;
4717 }
4718 
4719 /*
4720  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4721  * then all holes in the requested range will be accounted for.
4722  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)4723 unsigned long __meminit __absent_pages_in_range(int nid,
4724 				unsigned long range_start_pfn,
4725 				unsigned long range_end_pfn)
4726 {
4727 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4728 	unsigned long start_pfn, end_pfn;
4729 	int i;
4730 
4731 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4732 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4733 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4734 		nr_absent -= end_pfn - start_pfn;
4735 	}
4736 	return nr_absent;
4737 }
4738 
4739 /**
4740  * absent_pages_in_range - Return number of page frames in holes within a range
4741  * @start_pfn: The start PFN to start searching for holes
4742  * @end_pfn: The end PFN to stop searching for holes
4743  *
4744  * It returns the number of pages frames in memory holes within a range.
4745  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)4746 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4747 							unsigned long end_pfn)
4748 {
4749 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4750 }
4751 
4752 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)4753 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4754 					unsigned long zone_type,
4755 					unsigned long node_start_pfn,
4756 					unsigned long node_end_pfn,
4757 					unsigned long *ignored)
4758 {
4759 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4760 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4761 	unsigned long zone_start_pfn, zone_end_pfn;
4762 
4763 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4764 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4765 
4766 	adjust_zone_range_for_zone_movable(nid, zone_type,
4767 			node_start_pfn, node_end_pfn,
4768 			&zone_start_pfn, &zone_end_pfn);
4769 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4770 }
4771 
4772 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size)4773 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4774 					unsigned long zone_type,
4775 					unsigned long node_start_pfn,
4776 					unsigned long node_end_pfn,
4777 					unsigned long *zones_size)
4778 {
4779 	return zones_size[zone_type];
4780 }
4781 
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)4782 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4783 						unsigned long zone_type,
4784 						unsigned long node_start_pfn,
4785 						unsigned long node_end_pfn,
4786 						unsigned long *zholes_size)
4787 {
4788 	if (!zholes_size)
4789 		return 0;
4790 
4791 	return zholes_size[zone_type];
4792 }
4793 
4794 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4795 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)4796 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4797 						unsigned long node_start_pfn,
4798 						unsigned long node_end_pfn,
4799 						unsigned long *zones_size,
4800 						unsigned long *zholes_size)
4801 {
4802 	unsigned long realtotalpages, totalpages = 0;
4803 	enum zone_type i;
4804 
4805 	for (i = 0; i < MAX_NR_ZONES; i++)
4806 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4807 							 node_start_pfn,
4808 							 node_end_pfn,
4809 							 zones_size);
4810 	pgdat->node_spanned_pages = totalpages;
4811 
4812 	realtotalpages = totalpages;
4813 	for (i = 0; i < MAX_NR_ZONES; i++)
4814 		realtotalpages -=
4815 			zone_absent_pages_in_node(pgdat->node_id, i,
4816 						  node_start_pfn, node_end_pfn,
4817 						  zholes_size);
4818 	pgdat->node_present_pages = realtotalpages;
4819 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4820 							realtotalpages);
4821 }
4822 
4823 #ifndef CONFIG_SPARSEMEM
4824 /*
4825  * Calculate the size of the zone->blockflags rounded to an unsigned long
4826  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4827  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4828  * round what is now in bits to nearest long in bits, then return it in
4829  * bytes.
4830  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)4831 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4832 {
4833 	unsigned long usemapsize;
4834 
4835 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4836 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4837 	usemapsize = usemapsize >> pageblock_order;
4838 	usemapsize *= NR_PAGEBLOCK_BITS;
4839 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4840 
4841 	return usemapsize / 8;
4842 }
4843 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)4844 static void __init setup_usemap(struct pglist_data *pgdat,
4845 				struct zone *zone,
4846 				unsigned long zone_start_pfn,
4847 				unsigned long zonesize)
4848 {
4849 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4850 	zone->pageblock_flags = NULL;
4851 	if (usemapsize)
4852 		zone->pageblock_flags =
4853 			memblock_virt_alloc_node_nopanic(usemapsize,
4854 							 pgdat->node_id);
4855 }
4856 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)4857 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4858 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4859 #endif /* CONFIG_SPARSEMEM */
4860 
4861 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4862 
4863 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)4864 void __paginginit set_pageblock_order(void)
4865 {
4866 	unsigned int order;
4867 
4868 	/* Check that pageblock_nr_pages has not already been setup */
4869 	if (pageblock_order)
4870 		return;
4871 
4872 	if (HPAGE_SHIFT > PAGE_SHIFT)
4873 		order = HUGETLB_PAGE_ORDER;
4874 	else
4875 		order = MAX_ORDER - 1;
4876 
4877 	/*
4878 	 * Assume the largest contiguous order of interest is a huge page.
4879 	 * This value may be variable depending on boot parameters on IA64 and
4880 	 * powerpc.
4881 	 */
4882 	pageblock_order = order;
4883 }
4884 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4885 
4886 /*
4887  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4888  * is unused as pageblock_order is set at compile-time. See
4889  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4890  * the kernel config
4891  */
set_pageblock_order(void)4892 void __paginginit set_pageblock_order(void)
4893 {
4894 }
4895 
4896 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4897 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)4898 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4899 						   unsigned long present_pages)
4900 {
4901 	unsigned long pages = spanned_pages;
4902 
4903 	/*
4904 	 * Provide a more accurate estimation if there are holes within
4905 	 * the zone and SPARSEMEM is in use. If there are holes within the
4906 	 * zone, each populated memory region may cost us one or two extra
4907 	 * memmap pages due to alignment because memmap pages for each
4908 	 * populated regions may not naturally algined on page boundary.
4909 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4910 	 */
4911 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4912 	    IS_ENABLED(CONFIG_SPARSEMEM))
4913 		pages = present_pages;
4914 
4915 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4916 }
4917 
4918 /*
4919  * Set up the zone data structures:
4920  *   - mark all pages reserved
4921  *   - mark all memory queues empty
4922  *   - clear the memory bitmaps
4923  *
4924  * NOTE: pgdat should get zeroed by caller.
4925  */
free_area_init_core(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)4926 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4927 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4928 		unsigned long *zones_size, unsigned long *zholes_size)
4929 {
4930 	enum zone_type j;
4931 	int nid = pgdat->node_id;
4932 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4933 	int ret;
4934 
4935 	pgdat_resize_init(pgdat);
4936 #ifdef CONFIG_NUMA_BALANCING
4937 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4938 	pgdat->numabalancing_migrate_nr_pages = 0;
4939 	pgdat->numabalancing_migrate_next_window = jiffies;
4940 #endif
4941 	init_waitqueue_head(&pgdat->kswapd_wait);
4942 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4943 	pgdat_page_ext_init(pgdat);
4944 
4945 	for (j = 0; j < MAX_NR_ZONES; j++) {
4946 		struct zone *zone = pgdat->node_zones + j;
4947 		unsigned long size, realsize, freesize, memmap_pages;
4948 
4949 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4950 						  node_end_pfn, zones_size);
4951 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4952 								node_start_pfn,
4953 								node_end_pfn,
4954 								zholes_size);
4955 
4956 		/*
4957 		 * Adjust freesize so that it accounts for how much memory
4958 		 * is used by this zone for memmap. This affects the watermark
4959 		 * and per-cpu initialisations
4960 		 */
4961 		memmap_pages = calc_memmap_size(size, realsize);
4962 		if (!is_highmem_idx(j)) {
4963 			if (freesize >= memmap_pages) {
4964 				freesize -= memmap_pages;
4965 				if (memmap_pages)
4966 					printk(KERN_DEBUG
4967 					       "  %s zone: %lu pages used for memmap\n",
4968 					       zone_names[j], memmap_pages);
4969 			} else
4970 				printk(KERN_WARNING
4971 					"  %s zone: %lu pages exceeds freesize %lu\n",
4972 					zone_names[j], memmap_pages, freesize);
4973 		}
4974 
4975 		/* Account for reserved pages */
4976 		if (j == 0 && freesize > dma_reserve) {
4977 			freesize -= dma_reserve;
4978 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4979 					zone_names[0], dma_reserve);
4980 		}
4981 
4982 		if (!is_highmem_idx(j))
4983 			nr_kernel_pages += freesize;
4984 		/* Charge for highmem memmap if there are enough kernel pages */
4985 		else if (nr_kernel_pages > memmap_pages * 2)
4986 			nr_kernel_pages -= memmap_pages;
4987 		nr_all_pages += freesize;
4988 
4989 		zone->spanned_pages = size;
4990 		zone->present_pages = realsize;
4991 		/*
4992 		 * Set an approximate value for lowmem here, it will be adjusted
4993 		 * when the bootmem allocator frees pages into the buddy system.
4994 		 * And all highmem pages will be managed by the buddy system.
4995 		 */
4996 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4997 #ifdef CONFIG_NUMA
4998 		zone->node = nid;
4999 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5000 						/ 100;
5001 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5002 #endif
5003 		zone->name = zone_names[j];
5004 		spin_lock_init(&zone->lock);
5005 		spin_lock_init(&zone->lru_lock);
5006 		zone_seqlock_init(zone);
5007 		zone->zone_pgdat = pgdat;
5008 		zone_pcp_init(zone);
5009 
5010 		/* For bootup, initialized properly in watermark setup */
5011 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5012 
5013 		lruvec_init(&zone->lruvec);
5014 		if (!size)
5015 			continue;
5016 
5017 		set_pageblock_order();
5018 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5019 		ret = init_currently_empty_zone(zone, zone_start_pfn,
5020 						size, MEMMAP_EARLY);
5021 		BUG_ON(ret);
5022 		memmap_init(size, nid, j, zone_start_pfn);
5023 		zone_start_pfn += size;
5024 	}
5025 }
5026 
alloc_node_mem_map(struct pglist_data * pgdat)5027 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5028 {
5029 	/* Skip empty nodes */
5030 	if (!pgdat->node_spanned_pages)
5031 		return;
5032 
5033 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5034 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5035 	if (!pgdat->node_mem_map) {
5036 		unsigned long size, start, end;
5037 		struct page *map;
5038 
5039 		/*
5040 		 * The zone's endpoints aren't required to be MAX_ORDER
5041 		 * aligned but the node_mem_map endpoints must be in order
5042 		 * for the buddy allocator to function correctly.
5043 		 */
5044 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5045 		end = pgdat_end_pfn(pgdat);
5046 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5047 		size =  (end - start) * sizeof(struct page);
5048 		map = alloc_remap(pgdat->node_id, size);
5049 		if (!map)
5050 			map = memblock_virt_alloc_node_nopanic(size,
5051 							       pgdat->node_id);
5052 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5053 	}
5054 #ifndef CONFIG_NEED_MULTIPLE_NODES
5055 	/*
5056 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5057 	 */
5058 	if (pgdat == NODE_DATA(0)) {
5059 		mem_map = NODE_DATA(0)->node_mem_map;
5060 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5061 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5062 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5063 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5064 	}
5065 #endif
5066 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5067 }
5068 
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)5069 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5070 		unsigned long node_start_pfn, unsigned long *zholes_size)
5071 {
5072 	pg_data_t *pgdat = NODE_DATA(nid);
5073 	unsigned long start_pfn = 0;
5074 	unsigned long end_pfn = 0;
5075 
5076 	/* pg_data_t should be reset to zero when it's allocated */
5077 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5078 
5079 	pgdat->node_id = nid;
5080 	pgdat->node_start_pfn = node_start_pfn;
5081 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5082 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5083 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5084 		(u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5085 #endif
5086 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5087 				  zones_size, zholes_size);
5088 
5089 	alloc_node_mem_map(pgdat);
5090 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5091 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5092 		nid, (unsigned long)pgdat,
5093 		(unsigned long)pgdat->node_mem_map);
5094 #endif
5095 
5096 	free_area_init_core(pgdat, start_pfn, end_pfn,
5097 			    zones_size, zholes_size);
5098 }
5099 
5100 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5101 
5102 #if MAX_NUMNODES > 1
5103 /*
5104  * Figure out the number of possible node ids.
5105  */
setup_nr_node_ids(void)5106 void __init setup_nr_node_ids(void)
5107 {
5108 	unsigned int node;
5109 	unsigned int highest = 0;
5110 
5111 	for_each_node_mask(node, node_possible_map)
5112 		highest = node;
5113 	nr_node_ids = highest + 1;
5114 }
5115 #endif
5116 
5117 /**
5118  * node_map_pfn_alignment - determine the maximum internode alignment
5119  *
5120  * This function should be called after node map is populated and sorted.
5121  * It calculates the maximum power of two alignment which can distinguish
5122  * all the nodes.
5123  *
5124  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5125  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5126  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5127  * shifted, 1GiB is enough and this function will indicate so.
5128  *
5129  * This is used to test whether pfn -> nid mapping of the chosen memory
5130  * model has fine enough granularity to avoid incorrect mapping for the
5131  * populated node map.
5132  *
5133  * Returns the determined alignment in pfn's.  0 if there is no alignment
5134  * requirement (single node).
5135  */
node_map_pfn_alignment(void)5136 unsigned long __init node_map_pfn_alignment(void)
5137 {
5138 	unsigned long accl_mask = 0, last_end = 0;
5139 	unsigned long start, end, mask;
5140 	int last_nid = -1;
5141 	int i, nid;
5142 
5143 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5144 		if (!start || last_nid < 0 || last_nid == nid) {
5145 			last_nid = nid;
5146 			last_end = end;
5147 			continue;
5148 		}
5149 
5150 		/*
5151 		 * Start with a mask granular enough to pin-point to the
5152 		 * start pfn and tick off bits one-by-one until it becomes
5153 		 * too coarse to separate the current node from the last.
5154 		 */
5155 		mask = ~((1 << __ffs(start)) - 1);
5156 		while (mask && last_end <= (start & (mask << 1)))
5157 			mask <<= 1;
5158 
5159 		/* accumulate all internode masks */
5160 		accl_mask |= mask;
5161 	}
5162 
5163 	/* convert mask to number of pages */
5164 	return ~accl_mask + 1;
5165 }
5166 
5167 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)5168 static unsigned long __init find_min_pfn_for_node(int nid)
5169 {
5170 	unsigned long min_pfn = ULONG_MAX;
5171 	unsigned long start_pfn;
5172 	int i;
5173 
5174 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5175 		min_pfn = min(min_pfn, start_pfn);
5176 
5177 	if (min_pfn == ULONG_MAX) {
5178 		printk(KERN_WARNING
5179 			"Could not find start_pfn for node %d\n", nid);
5180 		return 0;
5181 	}
5182 
5183 	return min_pfn;
5184 }
5185 
5186 /**
5187  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5188  *
5189  * It returns the minimum PFN based on information provided via
5190  * memblock_set_node().
5191  */
find_min_pfn_with_active_regions(void)5192 unsigned long __init find_min_pfn_with_active_regions(void)
5193 {
5194 	return find_min_pfn_for_node(MAX_NUMNODES);
5195 }
5196 
5197 /*
5198  * early_calculate_totalpages()
5199  * Sum pages in active regions for movable zone.
5200  * Populate N_MEMORY for calculating usable_nodes.
5201  */
early_calculate_totalpages(void)5202 static unsigned long __init early_calculate_totalpages(void)
5203 {
5204 	unsigned long totalpages = 0;
5205 	unsigned long start_pfn, end_pfn;
5206 	int i, nid;
5207 
5208 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5209 		unsigned long pages = end_pfn - start_pfn;
5210 
5211 		totalpages += pages;
5212 		if (pages)
5213 			node_set_state(nid, N_MEMORY);
5214 	}
5215 	return totalpages;
5216 }
5217 
5218 /*
5219  * Find the PFN the Movable zone begins in each node. Kernel memory
5220  * is spread evenly between nodes as long as the nodes have enough
5221  * memory. When they don't, some nodes will have more kernelcore than
5222  * others
5223  */
find_zone_movable_pfns_for_nodes(void)5224 static void __init find_zone_movable_pfns_for_nodes(void)
5225 {
5226 	int i, nid;
5227 	unsigned long usable_startpfn;
5228 	unsigned long kernelcore_node, kernelcore_remaining;
5229 	/* save the state before borrow the nodemask */
5230 	nodemask_t saved_node_state = node_states[N_MEMORY];
5231 	unsigned long totalpages = early_calculate_totalpages();
5232 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5233 	struct memblock_region *r;
5234 
5235 	/* Need to find movable_zone earlier when movable_node is specified. */
5236 	find_usable_zone_for_movable();
5237 
5238 	/*
5239 	 * If movable_node is specified, ignore kernelcore and movablecore
5240 	 * options.
5241 	 */
5242 	if (movable_node_is_enabled()) {
5243 		for_each_memblock(memory, r) {
5244 			if (!memblock_is_hotpluggable(r))
5245 				continue;
5246 
5247 			nid = r->nid;
5248 
5249 			usable_startpfn = PFN_DOWN(r->base);
5250 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5251 				min(usable_startpfn, zone_movable_pfn[nid]) :
5252 				usable_startpfn;
5253 		}
5254 
5255 		goto out2;
5256 	}
5257 
5258 	/*
5259 	 * If movablecore=nn[KMG] was specified, calculate what size of
5260 	 * kernelcore that corresponds so that memory usable for
5261 	 * any allocation type is evenly spread. If both kernelcore
5262 	 * and movablecore are specified, then the value of kernelcore
5263 	 * will be used for required_kernelcore if it's greater than
5264 	 * what movablecore would have allowed.
5265 	 */
5266 	if (required_movablecore) {
5267 		unsigned long corepages;
5268 
5269 		/*
5270 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5271 		 * was requested by the user
5272 		 */
5273 		required_movablecore =
5274 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5275 		corepages = totalpages - required_movablecore;
5276 
5277 		required_kernelcore = max(required_kernelcore, corepages);
5278 	}
5279 
5280 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5281 	if (!required_kernelcore)
5282 		goto out;
5283 
5284 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5285 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5286 
5287 restart:
5288 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5289 	kernelcore_node = required_kernelcore / usable_nodes;
5290 	for_each_node_state(nid, N_MEMORY) {
5291 		unsigned long start_pfn, end_pfn;
5292 
5293 		/*
5294 		 * Recalculate kernelcore_node if the division per node
5295 		 * now exceeds what is necessary to satisfy the requested
5296 		 * amount of memory for the kernel
5297 		 */
5298 		if (required_kernelcore < kernelcore_node)
5299 			kernelcore_node = required_kernelcore / usable_nodes;
5300 
5301 		/*
5302 		 * As the map is walked, we track how much memory is usable
5303 		 * by the kernel using kernelcore_remaining. When it is
5304 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5305 		 */
5306 		kernelcore_remaining = kernelcore_node;
5307 
5308 		/* Go through each range of PFNs within this node */
5309 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5310 			unsigned long size_pages;
5311 
5312 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5313 			if (start_pfn >= end_pfn)
5314 				continue;
5315 
5316 			/* Account for what is only usable for kernelcore */
5317 			if (start_pfn < usable_startpfn) {
5318 				unsigned long kernel_pages;
5319 				kernel_pages = min(end_pfn, usable_startpfn)
5320 								- start_pfn;
5321 
5322 				kernelcore_remaining -= min(kernel_pages,
5323 							kernelcore_remaining);
5324 				required_kernelcore -= min(kernel_pages,
5325 							required_kernelcore);
5326 
5327 				/* Continue if range is now fully accounted */
5328 				if (end_pfn <= usable_startpfn) {
5329 
5330 					/*
5331 					 * Push zone_movable_pfn to the end so
5332 					 * that if we have to rebalance
5333 					 * kernelcore across nodes, we will
5334 					 * not double account here
5335 					 */
5336 					zone_movable_pfn[nid] = end_pfn;
5337 					continue;
5338 				}
5339 				start_pfn = usable_startpfn;
5340 			}
5341 
5342 			/*
5343 			 * The usable PFN range for ZONE_MOVABLE is from
5344 			 * start_pfn->end_pfn. Calculate size_pages as the
5345 			 * number of pages used as kernelcore
5346 			 */
5347 			size_pages = end_pfn - start_pfn;
5348 			if (size_pages > kernelcore_remaining)
5349 				size_pages = kernelcore_remaining;
5350 			zone_movable_pfn[nid] = start_pfn + size_pages;
5351 
5352 			/*
5353 			 * Some kernelcore has been met, update counts and
5354 			 * break if the kernelcore for this node has been
5355 			 * satisfied
5356 			 */
5357 			required_kernelcore -= min(required_kernelcore,
5358 								size_pages);
5359 			kernelcore_remaining -= size_pages;
5360 			if (!kernelcore_remaining)
5361 				break;
5362 		}
5363 	}
5364 
5365 	/*
5366 	 * If there is still required_kernelcore, we do another pass with one
5367 	 * less node in the count. This will push zone_movable_pfn[nid] further
5368 	 * along on the nodes that still have memory until kernelcore is
5369 	 * satisfied
5370 	 */
5371 	usable_nodes--;
5372 	if (usable_nodes && required_kernelcore > usable_nodes)
5373 		goto restart;
5374 
5375 out2:
5376 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5377 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5378 		zone_movable_pfn[nid] =
5379 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5380 
5381 out:
5382 	/* restore the node_state */
5383 	node_states[N_MEMORY] = saved_node_state;
5384 }
5385 
5386 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)5387 static void check_for_memory(pg_data_t *pgdat, int nid)
5388 {
5389 	enum zone_type zone_type;
5390 
5391 	if (N_MEMORY == N_NORMAL_MEMORY)
5392 		return;
5393 
5394 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5395 		struct zone *zone = &pgdat->node_zones[zone_type];
5396 		if (populated_zone(zone)) {
5397 			node_set_state(nid, N_HIGH_MEMORY);
5398 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5399 			    zone_type <= ZONE_NORMAL)
5400 				node_set_state(nid, N_NORMAL_MEMORY);
5401 			break;
5402 		}
5403 	}
5404 }
5405 
5406 /**
5407  * free_area_init_nodes - Initialise all pg_data_t and zone data
5408  * @max_zone_pfn: an array of max PFNs for each zone
5409  *
5410  * This will call free_area_init_node() for each active node in the system.
5411  * Using the page ranges provided by memblock_set_node(), the size of each
5412  * zone in each node and their holes is calculated. If the maximum PFN
5413  * between two adjacent zones match, it is assumed that the zone is empty.
5414  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5415  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5416  * starts where the previous one ended. For example, ZONE_DMA32 starts
5417  * at arch_max_dma_pfn.
5418  */
free_area_init_nodes(unsigned long * max_zone_pfn)5419 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5420 {
5421 	unsigned long start_pfn, end_pfn;
5422 	int i, nid;
5423 
5424 	/* Record where the zone boundaries are */
5425 	memset(arch_zone_lowest_possible_pfn, 0,
5426 				sizeof(arch_zone_lowest_possible_pfn));
5427 	memset(arch_zone_highest_possible_pfn, 0,
5428 				sizeof(arch_zone_highest_possible_pfn));
5429 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5430 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5431 	for (i = 1; i < MAX_NR_ZONES; i++) {
5432 		if (i == ZONE_MOVABLE)
5433 			continue;
5434 		arch_zone_lowest_possible_pfn[i] =
5435 			arch_zone_highest_possible_pfn[i-1];
5436 		arch_zone_highest_possible_pfn[i] =
5437 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5438 	}
5439 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5440 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5441 
5442 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5443 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5444 	find_zone_movable_pfns_for_nodes();
5445 
5446 	/* Print out the zone ranges */
5447 	pr_info("Zone ranges:\n");
5448 	for (i = 0; i < MAX_NR_ZONES; i++) {
5449 		if (i == ZONE_MOVABLE)
5450 			continue;
5451 		pr_info("  %-8s ", zone_names[i]);
5452 		if (arch_zone_lowest_possible_pfn[i] ==
5453 				arch_zone_highest_possible_pfn[i])
5454 			pr_cont("empty\n");
5455 		else
5456 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5457 				(u64)arch_zone_lowest_possible_pfn[i]
5458 					<< PAGE_SHIFT,
5459 				((u64)arch_zone_highest_possible_pfn[i]
5460 					<< PAGE_SHIFT) - 1);
5461 	}
5462 
5463 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5464 	pr_info("Movable zone start for each node\n");
5465 	for (i = 0; i < MAX_NUMNODES; i++) {
5466 		if (zone_movable_pfn[i])
5467 			pr_info("  Node %d: %#018Lx\n", i,
5468 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5469 	}
5470 
5471 	/* Print out the early node map */
5472 	pr_info("Early memory node ranges\n");
5473 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5474 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5475 			(u64)start_pfn << PAGE_SHIFT,
5476 			((u64)end_pfn << PAGE_SHIFT) - 1);
5477 
5478 	/* Initialise every node */
5479 	mminit_verify_pageflags_layout();
5480 	setup_nr_node_ids();
5481 	for_each_online_node(nid) {
5482 		pg_data_t *pgdat = NODE_DATA(nid);
5483 		free_area_init_node(nid, NULL,
5484 				find_min_pfn_for_node(nid), NULL);
5485 
5486 		/* Any memory on that node */
5487 		if (pgdat->node_present_pages)
5488 			node_set_state(nid, N_MEMORY);
5489 		check_for_memory(pgdat, nid);
5490 	}
5491 }
5492 
cmdline_parse_core(char * p,unsigned long * core)5493 static int __init cmdline_parse_core(char *p, unsigned long *core)
5494 {
5495 	unsigned long long coremem;
5496 	if (!p)
5497 		return -EINVAL;
5498 
5499 	coremem = memparse(p, &p);
5500 	*core = coremem >> PAGE_SHIFT;
5501 
5502 	/* Paranoid check that UL is enough for the coremem value */
5503 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5504 
5505 	return 0;
5506 }
5507 
5508 /*
5509  * kernelcore=size sets the amount of memory for use for allocations that
5510  * cannot be reclaimed or migrated.
5511  */
cmdline_parse_kernelcore(char * p)5512 static int __init cmdline_parse_kernelcore(char *p)
5513 {
5514 	return cmdline_parse_core(p, &required_kernelcore);
5515 }
5516 
5517 /*
5518  * movablecore=size sets the amount of memory for use for allocations that
5519  * can be reclaimed or migrated.
5520  */
cmdline_parse_movablecore(char * p)5521 static int __init cmdline_parse_movablecore(char *p)
5522 {
5523 	return cmdline_parse_core(p, &required_movablecore);
5524 }
5525 
5526 early_param("kernelcore", cmdline_parse_kernelcore);
5527 early_param("movablecore", cmdline_parse_movablecore);
5528 
5529 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5530 
adjust_managed_page_count(struct page * page,long count)5531 void adjust_managed_page_count(struct page *page, long count)
5532 {
5533 	spin_lock(&managed_page_count_lock);
5534 	page_zone(page)->managed_pages += count;
5535 	totalram_pages += count;
5536 #ifdef CONFIG_HIGHMEM
5537 	if (PageHighMem(page))
5538 		totalhigh_pages += count;
5539 #endif
5540 	spin_unlock(&managed_page_count_lock);
5541 }
5542 EXPORT_SYMBOL(adjust_managed_page_count);
5543 
free_reserved_area(void * start,void * end,int poison,char * s)5544 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5545 {
5546 	void *pos;
5547 	unsigned long pages = 0;
5548 
5549 	start = (void *)PAGE_ALIGN((unsigned long)start);
5550 	end = (void *)((unsigned long)end & PAGE_MASK);
5551 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5552 		if ((unsigned int)poison <= 0xFF)
5553 			memset(pos, poison, PAGE_SIZE);
5554 		free_reserved_page(virt_to_page(pos));
5555 	}
5556 
5557 	if (pages && s)
5558 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5559 			s, pages << (PAGE_SHIFT - 10), start, end);
5560 
5561 	return pages;
5562 }
5563 EXPORT_SYMBOL(free_reserved_area);
5564 
5565 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)5566 void free_highmem_page(struct page *page)
5567 {
5568 	__free_reserved_page(page);
5569 	totalram_pages++;
5570 	page_zone(page)->managed_pages++;
5571 	totalhigh_pages++;
5572 }
5573 #endif
5574 
5575 
mem_init_print_info(const char * str)5576 void __init mem_init_print_info(const char *str)
5577 {
5578 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5579 	unsigned long init_code_size, init_data_size;
5580 
5581 	physpages = get_num_physpages();
5582 	codesize = _etext - _stext;
5583 	datasize = _edata - _sdata;
5584 	rosize = __end_rodata - __start_rodata;
5585 	bss_size = __bss_stop - __bss_start;
5586 	init_data_size = __init_end - __init_begin;
5587 	init_code_size = _einittext - _sinittext;
5588 
5589 	/*
5590 	 * Detect special cases and adjust section sizes accordingly:
5591 	 * 1) .init.* may be embedded into .data sections
5592 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5593 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5594 	 * 3) .rodata.* may be embedded into .text or .data sections.
5595 	 */
5596 #define adj_init_size(start, end, size, pos, adj) \
5597 	do { \
5598 		if (start <= pos && pos < end && size > adj) \
5599 			size -= adj; \
5600 	} while (0)
5601 
5602 	adj_init_size(__init_begin, __init_end, init_data_size,
5603 		     _sinittext, init_code_size);
5604 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5605 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5606 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5607 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5608 
5609 #undef	adj_init_size
5610 
5611 	pr_info("Memory: %luK/%luK available "
5612 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5613 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5614 #ifdef	CONFIG_HIGHMEM
5615 	       ", %luK highmem"
5616 #endif
5617 	       "%s%s)\n",
5618 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5619 	       codesize >> 10, datasize >> 10, rosize >> 10,
5620 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5621 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5622 	       totalcma_pages << (PAGE_SHIFT-10),
5623 #ifdef	CONFIG_HIGHMEM
5624 	       totalhigh_pages << (PAGE_SHIFT-10),
5625 #endif
5626 	       str ? ", " : "", str ? str : "");
5627 }
5628 
5629 /**
5630  * set_dma_reserve - set the specified number of pages reserved in the first zone
5631  * @new_dma_reserve: The number of pages to mark reserved
5632  *
5633  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5634  * In the DMA zone, a significant percentage may be consumed by kernel image
5635  * and other unfreeable allocations which can skew the watermarks badly. This
5636  * function may optionally be used to account for unfreeable pages in the
5637  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5638  * smaller per-cpu batchsize.
5639  */
set_dma_reserve(unsigned long new_dma_reserve)5640 void __init set_dma_reserve(unsigned long new_dma_reserve)
5641 {
5642 	dma_reserve = new_dma_reserve;
5643 }
5644 
free_area_init(unsigned long * zones_size)5645 void __init free_area_init(unsigned long *zones_size)
5646 {
5647 	free_area_init_node(0, zones_size,
5648 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5649 }
5650 
page_alloc_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)5651 static int page_alloc_cpu_notify(struct notifier_block *self,
5652 				 unsigned long action, void *hcpu)
5653 {
5654 	int cpu = (unsigned long)hcpu;
5655 
5656 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5657 		lru_add_drain_cpu(cpu);
5658 		drain_pages(cpu);
5659 
5660 		/*
5661 		 * Spill the event counters of the dead processor
5662 		 * into the current processors event counters.
5663 		 * This artificially elevates the count of the current
5664 		 * processor.
5665 		 */
5666 		vm_events_fold_cpu(cpu);
5667 
5668 		/*
5669 		 * Zero the differential counters of the dead processor
5670 		 * so that the vm statistics are consistent.
5671 		 *
5672 		 * This is only okay since the processor is dead and cannot
5673 		 * race with what we are doing.
5674 		 */
5675 		cpu_vm_stats_fold(cpu);
5676 	}
5677 	return NOTIFY_OK;
5678 }
5679 
page_alloc_init(void)5680 void __init page_alloc_init(void)
5681 {
5682 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5683 }
5684 
5685 /*
5686  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5687  *	or min_free_kbytes changes.
5688  */
calculate_totalreserve_pages(void)5689 static void calculate_totalreserve_pages(void)
5690 {
5691 	struct pglist_data *pgdat;
5692 	unsigned long reserve_pages = 0;
5693 	enum zone_type i, j;
5694 
5695 	for_each_online_pgdat(pgdat) {
5696 		for (i = 0; i < MAX_NR_ZONES; i++) {
5697 			struct zone *zone = pgdat->node_zones + i;
5698 			long max = 0;
5699 
5700 			/* Find valid and maximum lowmem_reserve in the zone */
5701 			for (j = i; j < MAX_NR_ZONES; j++) {
5702 				if (zone->lowmem_reserve[j] > max)
5703 					max = zone->lowmem_reserve[j];
5704 			}
5705 
5706 			/* we treat the high watermark as reserved pages. */
5707 			max += high_wmark_pages(zone);
5708 
5709 			if (max > zone->managed_pages)
5710 				max = zone->managed_pages;
5711 			reserve_pages += max;
5712 			/*
5713 			 * Lowmem reserves are not available to
5714 			 * GFP_HIGHUSER page cache allocations and
5715 			 * kswapd tries to balance zones to their high
5716 			 * watermark.  As a result, neither should be
5717 			 * regarded as dirtyable memory, to prevent a
5718 			 * situation where reclaim has to clean pages
5719 			 * in order to balance the zones.
5720 			 */
5721 			zone->dirty_balance_reserve = max;
5722 		}
5723 	}
5724 	dirty_balance_reserve = reserve_pages;
5725 	totalreserve_pages = reserve_pages;
5726 }
5727 
5728 /*
5729  * setup_per_zone_lowmem_reserve - called whenever
5730  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5731  *	has a correct pages reserved value, so an adequate number of
5732  *	pages are left in the zone after a successful __alloc_pages().
5733  */
setup_per_zone_lowmem_reserve(void)5734 static void setup_per_zone_lowmem_reserve(void)
5735 {
5736 	struct pglist_data *pgdat;
5737 	enum zone_type j, idx;
5738 
5739 	for_each_online_pgdat(pgdat) {
5740 		for (j = 0; j < MAX_NR_ZONES; j++) {
5741 			struct zone *zone = pgdat->node_zones + j;
5742 			unsigned long managed_pages = zone->managed_pages;
5743 
5744 			zone->lowmem_reserve[j] = 0;
5745 
5746 			idx = j;
5747 			while (idx) {
5748 				struct zone *lower_zone;
5749 
5750 				idx--;
5751 
5752 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5753 					sysctl_lowmem_reserve_ratio[idx] = 1;
5754 
5755 				lower_zone = pgdat->node_zones + idx;
5756 				lower_zone->lowmem_reserve[j] = managed_pages /
5757 					sysctl_lowmem_reserve_ratio[idx];
5758 				managed_pages += lower_zone->managed_pages;
5759 			}
5760 		}
5761 	}
5762 
5763 	/* update totalreserve_pages */
5764 	calculate_totalreserve_pages();
5765 }
5766 
__setup_per_zone_wmarks(void)5767 static void __setup_per_zone_wmarks(void)
5768 {
5769 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5770 	unsigned long lowmem_pages = 0;
5771 	struct zone *zone;
5772 	unsigned long flags;
5773 
5774 	/* Calculate total number of !ZONE_HIGHMEM pages */
5775 	for_each_zone(zone) {
5776 		if (!is_highmem(zone))
5777 			lowmem_pages += zone->managed_pages;
5778 	}
5779 
5780 	for_each_zone(zone) {
5781 		u64 tmp;
5782 
5783 		spin_lock_irqsave(&zone->lock, flags);
5784 		tmp = (u64)pages_min * zone->managed_pages;
5785 		do_div(tmp, lowmem_pages);
5786 		if (is_highmem(zone)) {
5787 			/*
5788 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5789 			 * need highmem pages, so cap pages_min to a small
5790 			 * value here.
5791 			 *
5792 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5793 			 * deltas control asynch page reclaim, and so should
5794 			 * not be capped for highmem.
5795 			 */
5796 			unsigned long min_pages;
5797 
5798 			min_pages = zone->managed_pages / 1024;
5799 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5800 			zone->watermark[WMARK_MIN] = min_pages;
5801 		} else {
5802 			/*
5803 			 * If it's a lowmem zone, reserve a number of pages
5804 			 * proportionate to the zone's size.
5805 			 */
5806 			zone->watermark[WMARK_MIN] = tmp;
5807 		}
5808 
5809 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5810 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5811 
5812 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5813 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5814 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5815 
5816 		setup_zone_migrate_reserve(zone);
5817 		spin_unlock_irqrestore(&zone->lock, flags);
5818 	}
5819 
5820 	/* update totalreserve_pages */
5821 	calculate_totalreserve_pages();
5822 }
5823 
5824 /**
5825  * setup_per_zone_wmarks - called when min_free_kbytes changes
5826  * or when memory is hot-{added|removed}
5827  *
5828  * Ensures that the watermark[min,low,high] values for each zone are set
5829  * correctly with respect to min_free_kbytes.
5830  */
setup_per_zone_wmarks(void)5831 void setup_per_zone_wmarks(void)
5832 {
5833 	mutex_lock(&zonelists_mutex);
5834 	__setup_per_zone_wmarks();
5835 	mutex_unlock(&zonelists_mutex);
5836 }
5837 
5838 /*
5839  * The inactive anon list should be small enough that the VM never has to
5840  * do too much work, but large enough that each inactive page has a chance
5841  * to be referenced again before it is swapped out.
5842  *
5843  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5844  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5845  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5846  * the anonymous pages are kept on the inactive list.
5847  *
5848  * total     target    max
5849  * memory    ratio     inactive anon
5850  * -------------------------------------
5851  *   10MB       1         5MB
5852  *  100MB       1        50MB
5853  *    1GB       3       250MB
5854  *   10GB      10       0.9GB
5855  *  100GB      31         3GB
5856  *    1TB     101        10GB
5857  *   10TB     320        32GB
5858  */
calculate_zone_inactive_ratio(struct zone * zone)5859 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5860 {
5861 	unsigned int gb, ratio;
5862 
5863 	/* Zone size in gigabytes */
5864 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5865 	if (gb)
5866 		ratio = int_sqrt(10 * gb);
5867 	else
5868 		ratio = 1;
5869 
5870 	zone->inactive_ratio = ratio;
5871 }
5872 
setup_per_zone_inactive_ratio(void)5873 static void __meminit setup_per_zone_inactive_ratio(void)
5874 {
5875 	struct zone *zone;
5876 
5877 	for_each_zone(zone)
5878 		calculate_zone_inactive_ratio(zone);
5879 }
5880 
5881 /*
5882  * Initialise min_free_kbytes.
5883  *
5884  * For small machines we want it small (128k min).  For large machines
5885  * we want it large (64MB max).  But it is not linear, because network
5886  * bandwidth does not increase linearly with machine size.  We use
5887  *
5888  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5889  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5890  *
5891  * which yields
5892  *
5893  * 16MB:	512k
5894  * 32MB:	724k
5895  * 64MB:	1024k
5896  * 128MB:	1448k
5897  * 256MB:	2048k
5898  * 512MB:	2896k
5899  * 1024MB:	4096k
5900  * 2048MB:	5792k
5901  * 4096MB:	8192k
5902  * 8192MB:	11584k
5903  * 16384MB:	16384k
5904  */
init_per_zone_wmark_min(void)5905 int __meminit init_per_zone_wmark_min(void)
5906 {
5907 	unsigned long lowmem_kbytes;
5908 	int new_min_free_kbytes;
5909 
5910 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5911 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5912 
5913 	if (new_min_free_kbytes > user_min_free_kbytes) {
5914 		min_free_kbytes = new_min_free_kbytes;
5915 		if (min_free_kbytes < 128)
5916 			min_free_kbytes = 128;
5917 		if (min_free_kbytes > 65536)
5918 			min_free_kbytes = 65536;
5919 	} else {
5920 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5921 				new_min_free_kbytes, user_min_free_kbytes);
5922 	}
5923 	setup_per_zone_wmarks();
5924 	refresh_zone_stat_thresholds();
5925 	setup_per_zone_lowmem_reserve();
5926 	setup_per_zone_inactive_ratio();
5927 	return 0;
5928 }
module_init(init_per_zone_wmark_min)5929 module_init(init_per_zone_wmark_min)
5930 
5931 /*
5932  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5933  *	that we can call two helper functions whenever min_free_kbytes
5934  *	changes.
5935  */
5936 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5937 	void __user *buffer, size_t *length, loff_t *ppos)
5938 {
5939 	int rc;
5940 
5941 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5942 	if (rc)
5943 		return rc;
5944 
5945 	if (write) {
5946 		user_min_free_kbytes = min_free_kbytes;
5947 		setup_per_zone_wmarks();
5948 	}
5949 	return 0;
5950 }
5951 
5952 #ifdef CONFIG_NUMA
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5953 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5954 	void __user *buffer, size_t *length, loff_t *ppos)
5955 {
5956 	struct zone *zone;
5957 	int rc;
5958 
5959 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5960 	if (rc)
5961 		return rc;
5962 
5963 	for_each_zone(zone)
5964 		zone->min_unmapped_pages = (zone->managed_pages *
5965 				sysctl_min_unmapped_ratio) / 100;
5966 	return 0;
5967 }
5968 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5969 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5970 	void __user *buffer, size_t *length, loff_t *ppos)
5971 {
5972 	struct zone *zone;
5973 	int rc;
5974 
5975 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5976 	if (rc)
5977 		return rc;
5978 
5979 	for_each_zone(zone)
5980 		zone->min_slab_pages = (zone->managed_pages *
5981 				sysctl_min_slab_ratio) / 100;
5982 	return 0;
5983 }
5984 #endif
5985 
5986 /*
5987  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5988  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5989  *	whenever sysctl_lowmem_reserve_ratio changes.
5990  *
5991  * The reserve ratio obviously has absolutely no relation with the
5992  * minimum watermarks. The lowmem reserve ratio can only make sense
5993  * if in function of the boot time zone sizes.
5994  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5995 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5996 	void __user *buffer, size_t *length, loff_t *ppos)
5997 {
5998 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5999 	setup_per_zone_lowmem_reserve();
6000 	return 0;
6001 }
6002 
6003 /*
6004  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6005  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6006  * pagelist can have before it gets flushed back to buddy allocator.
6007  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6008 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6009 	void __user *buffer, size_t *length, loff_t *ppos)
6010 {
6011 	struct zone *zone;
6012 	int old_percpu_pagelist_fraction;
6013 	int ret;
6014 
6015 	mutex_lock(&pcp_batch_high_lock);
6016 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6017 
6018 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6019 	if (!write || ret < 0)
6020 		goto out;
6021 
6022 	/* Sanity checking to avoid pcp imbalance */
6023 	if (percpu_pagelist_fraction &&
6024 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6025 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6026 		ret = -EINVAL;
6027 		goto out;
6028 	}
6029 
6030 	/* No change? */
6031 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6032 		goto out;
6033 
6034 	for_each_populated_zone(zone) {
6035 		unsigned int cpu;
6036 
6037 		for_each_possible_cpu(cpu)
6038 			pageset_set_high_and_batch(zone,
6039 					per_cpu_ptr(zone->pageset, cpu));
6040 	}
6041 out:
6042 	mutex_unlock(&pcp_batch_high_lock);
6043 	return ret;
6044 }
6045 
6046 int hashdist = HASHDIST_DEFAULT;
6047 
6048 #ifdef CONFIG_NUMA
set_hashdist(char * str)6049 static int __init set_hashdist(char *str)
6050 {
6051 	if (!str)
6052 		return 0;
6053 	hashdist = simple_strtoul(str, &str, 0);
6054 	return 1;
6055 }
6056 __setup("hashdist=", set_hashdist);
6057 #endif
6058 
6059 /*
6060  * allocate a large system hash table from bootmem
6061  * - it is assumed that the hash table must contain an exact power-of-2
6062  *   quantity of entries
6063  * - limit is the number of hash buckets, not the total allocation size
6064  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)6065 void *__init alloc_large_system_hash(const char *tablename,
6066 				     unsigned long bucketsize,
6067 				     unsigned long numentries,
6068 				     int scale,
6069 				     int flags,
6070 				     unsigned int *_hash_shift,
6071 				     unsigned int *_hash_mask,
6072 				     unsigned long low_limit,
6073 				     unsigned long high_limit)
6074 {
6075 	unsigned long long max = high_limit;
6076 	unsigned long log2qty, size;
6077 	void *table = NULL;
6078 
6079 	/* allow the kernel cmdline to have a say */
6080 	if (!numentries) {
6081 		/* round applicable memory size up to nearest megabyte */
6082 		numentries = nr_kernel_pages;
6083 
6084 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6085 		if (PAGE_SHIFT < 20)
6086 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6087 
6088 		/* limit to 1 bucket per 2^scale bytes of low memory */
6089 		if (scale > PAGE_SHIFT)
6090 			numentries >>= (scale - PAGE_SHIFT);
6091 		else
6092 			numentries <<= (PAGE_SHIFT - scale);
6093 
6094 		/* Make sure we've got at least a 0-order allocation.. */
6095 		if (unlikely(flags & HASH_SMALL)) {
6096 			/* Makes no sense without HASH_EARLY */
6097 			WARN_ON(!(flags & HASH_EARLY));
6098 			if (!(numentries >> *_hash_shift)) {
6099 				numentries = 1UL << *_hash_shift;
6100 				BUG_ON(!numentries);
6101 			}
6102 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6103 			numentries = PAGE_SIZE / bucketsize;
6104 	}
6105 	numentries = roundup_pow_of_two(numentries);
6106 
6107 	/* limit allocation size to 1/16 total memory by default */
6108 	if (max == 0) {
6109 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6110 		do_div(max, bucketsize);
6111 	}
6112 	max = min(max, 0x80000000ULL);
6113 
6114 	if (numentries < low_limit)
6115 		numentries = low_limit;
6116 	if (numentries > max)
6117 		numentries = max;
6118 
6119 	log2qty = ilog2(numentries);
6120 
6121 	do {
6122 		size = bucketsize << log2qty;
6123 		if (flags & HASH_EARLY)
6124 			table = memblock_virt_alloc_nopanic(size, 0);
6125 		else if (hashdist)
6126 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6127 		else {
6128 			/*
6129 			 * If bucketsize is not a power-of-two, we may free
6130 			 * some pages at the end of hash table which
6131 			 * alloc_pages_exact() automatically does
6132 			 */
6133 			if (get_order(size) < MAX_ORDER) {
6134 				table = alloc_pages_exact(size, GFP_ATOMIC);
6135 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6136 			}
6137 		}
6138 	} while (!table && size > PAGE_SIZE && --log2qty);
6139 
6140 	if (!table)
6141 		panic("Failed to allocate %s hash table\n", tablename);
6142 
6143 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6144 	       tablename,
6145 	       (1UL << log2qty),
6146 	       ilog2(size) - PAGE_SHIFT,
6147 	       size);
6148 
6149 	if (_hash_shift)
6150 		*_hash_shift = log2qty;
6151 	if (_hash_mask)
6152 		*_hash_mask = (1 << log2qty) - 1;
6153 
6154 	return table;
6155 }
6156 
6157 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct zone * zone,unsigned long pfn)6158 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6159 							unsigned long pfn)
6160 {
6161 #ifdef CONFIG_SPARSEMEM
6162 	return __pfn_to_section(pfn)->pageblock_flags;
6163 #else
6164 	return zone->pageblock_flags;
6165 #endif /* CONFIG_SPARSEMEM */
6166 }
6167 
pfn_to_bitidx(struct zone * zone,unsigned long pfn)6168 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6169 {
6170 #ifdef CONFIG_SPARSEMEM
6171 	pfn &= (PAGES_PER_SECTION-1);
6172 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6173 #else
6174 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6175 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6176 #endif /* CONFIG_SPARSEMEM */
6177 }
6178 
6179 /**
6180  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6181  * @page: The page within the block of interest
6182  * @pfn: The target page frame number
6183  * @end_bitidx: The last bit of interest to retrieve
6184  * @mask: mask of bits that the caller is interested in
6185  *
6186  * Return: pageblock_bits flags
6187  */
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6188 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6189 					unsigned long end_bitidx,
6190 					unsigned long mask)
6191 {
6192 	struct zone *zone;
6193 	unsigned long *bitmap;
6194 	unsigned long bitidx, word_bitidx;
6195 	unsigned long word;
6196 
6197 	zone = page_zone(page);
6198 	bitmap = get_pageblock_bitmap(zone, pfn);
6199 	bitidx = pfn_to_bitidx(zone, pfn);
6200 	word_bitidx = bitidx / BITS_PER_LONG;
6201 	bitidx &= (BITS_PER_LONG-1);
6202 
6203 	word = bitmap[word_bitidx];
6204 	bitidx += end_bitidx;
6205 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6206 }
6207 
6208 /**
6209  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6210  * @page: The page within the block of interest
6211  * @flags: The flags to set
6212  * @pfn: The target page frame number
6213  * @end_bitidx: The last bit of interest
6214  * @mask: mask of bits that the caller is interested in
6215  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6216 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6217 					unsigned long pfn,
6218 					unsigned long end_bitidx,
6219 					unsigned long mask)
6220 {
6221 	struct zone *zone;
6222 	unsigned long *bitmap;
6223 	unsigned long bitidx, word_bitidx;
6224 	unsigned long old_word, word;
6225 
6226 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6227 
6228 	zone = page_zone(page);
6229 	bitmap = get_pageblock_bitmap(zone, pfn);
6230 	bitidx = pfn_to_bitidx(zone, pfn);
6231 	word_bitidx = bitidx / BITS_PER_LONG;
6232 	bitidx &= (BITS_PER_LONG-1);
6233 
6234 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6235 
6236 	bitidx += end_bitidx;
6237 	mask <<= (BITS_PER_LONG - bitidx - 1);
6238 	flags <<= (BITS_PER_LONG - bitidx - 1);
6239 
6240 	word = READ_ONCE(bitmap[word_bitidx]);
6241 	for (;;) {
6242 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6243 		if (word == old_word)
6244 			break;
6245 		word = old_word;
6246 	}
6247 }
6248 
6249 /*
6250  * This function checks whether pageblock includes unmovable pages or not.
6251  * If @count is not zero, it is okay to include less @count unmovable pages
6252  *
6253  * PageLRU check without isolation or lru_lock could race so that
6254  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6255  * expect this function should be exact.
6256  */
has_unmovable_pages(struct zone * zone,struct page * page,int count,bool skip_hwpoisoned_pages)6257 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6258 			 bool skip_hwpoisoned_pages)
6259 {
6260 	unsigned long pfn, iter, found;
6261 	int mt;
6262 
6263 	/*
6264 	 * For avoiding noise data, lru_add_drain_all() should be called
6265 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6266 	 */
6267 	if (zone_idx(zone) == ZONE_MOVABLE)
6268 		return false;
6269 	mt = get_pageblock_migratetype(page);
6270 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6271 		return false;
6272 
6273 	pfn = page_to_pfn(page);
6274 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6275 		unsigned long check = pfn + iter;
6276 
6277 		if (!pfn_valid_within(check))
6278 			continue;
6279 
6280 		page = pfn_to_page(check);
6281 
6282 		/*
6283 		 * Hugepages are not in LRU lists, but they're movable.
6284 		 * We need not scan over tail pages bacause we don't
6285 		 * handle each tail page individually in migration.
6286 		 */
6287 		if (PageHuge(page)) {
6288 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6289 			continue;
6290 		}
6291 
6292 		/*
6293 		 * We can't use page_count without pin a page
6294 		 * because another CPU can free compound page.
6295 		 * This check already skips compound tails of THP
6296 		 * because their page->_count is zero at all time.
6297 		 */
6298 		if (!atomic_read(&page->_count)) {
6299 			if (PageBuddy(page))
6300 				iter += (1 << page_order(page)) - 1;
6301 			continue;
6302 		}
6303 
6304 		/*
6305 		 * The HWPoisoned page may be not in buddy system, and
6306 		 * page_count() is not 0.
6307 		 */
6308 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6309 			continue;
6310 
6311 		if (!PageLRU(page))
6312 			found++;
6313 		/*
6314 		 * If there are RECLAIMABLE pages, we need to check
6315 		 * it.  But now, memory offline itself doesn't call
6316 		 * shrink_node_slabs() and it still to be fixed.
6317 		 */
6318 		/*
6319 		 * If the page is not RAM, page_count()should be 0.
6320 		 * we don't need more check. This is an _used_ not-movable page.
6321 		 *
6322 		 * The problematic thing here is PG_reserved pages. PG_reserved
6323 		 * is set to both of a memory hole page and a _used_ kernel
6324 		 * page at boot.
6325 		 */
6326 		if (found > count)
6327 			return true;
6328 	}
6329 	return false;
6330 }
6331 
is_pageblock_removable_nolock(struct page * page)6332 bool is_pageblock_removable_nolock(struct page *page)
6333 {
6334 	struct zone *zone;
6335 	unsigned long pfn;
6336 
6337 	/*
6338 	 * We have to be careful here because we are iterating over memory
6339 	 * sections which are not zone aware so we might end up outside of
6340 	 * the zone but still within the section.
6341 	 * We have to take care about the node as well. If the node is offline
6342 	 * its NODE_DATA will be NULL - see page_zone.
6343 	 */
6344 	if (!node_online(page_to_nid(page)))
6345 		return false;
6346 
6347 	zone = page_zone(page);
6348 	pfn = page_to_pfn(page);
6349 	if (!zone_spans_pfn(zone, pfn))
6350 		return false;
6351 
6352 	return !has_unmovable_pages(zone, page, 0, true);
6353 }
6354 
6355 #ifdef CONFIG_CMA
6356 
pfn_max_align_down(unsigned long pfn)6357 static unsigned long pfn_max_align_down(unsigned long pfn)
6358 {
6359 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6360 			     pageblock_nr_pages) - 1);
6361 }
6362 
pfn_max_align_up(unsigned long pfn)6363 static unsigned long pfn_max_align_up(unsigned long pfn)
6364 {
6365 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6366 				pageblock_nr_pages));
6367 }
6368 
6369 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6370 static int __alloc_contig_migrate_range(struct compact_control *cc,
6371 					unsigned long start, unsigned long end)
6372 {
6373 	/* This function is based on compact_zone() from compaction.c. */
6374 	unsigned long nr_reclaimed;
6375 	unsigned long pfn = start;
6376 	unsigned int tries = 0;
6377 	int ret = 0;
6378 
6379 	migrate_prep();
6380 
6381 	while (pfn < end || !list_empty(&cc->migratepages)) {
6382 		if (fatal_signal_pending(current)) {
6383 			ret = -EINTR;
6384 			break;
6385 		}
6386 
6387 		if (list_empty(&cc->migratepages)) {
6388 			cc->nr_migratepages = 0;
6389 			pfn = isolate_migratepages_range(cc, pfn, end);
6390 			if (!pfn) {
6391 				ret = -EINTR;
6392 				break;
6393 			}
6394 			tries = 0;
6395 		} else if (++tries == 5) {
6396 			ret = ret < 0 ? ret : -EBUSY;
6397 			break;
6398 		}
6399 
6400 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6401 							&cc->migratepages);
6402 		cc->nr_migratepages -= nr_reclaimed;
6403 
6404 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6405 				    NULL, 0, cc->mode, MR_CMA);
6406 	}
6407 	if (ret < 0) {
6408 		putback_movable_pages(&cc->migratepages);
6409 		return ret;
6410 	}
6411 	return 0;
6412 }
6413 
6414 /**
6415  * alloc_contig_range() -- tries to allocate given range of pages
6416  * @start:	start PFN to allocate
6417  * @end:	one-past-the-last PFN to allocate
6418  * @migratetype:	migratetype of the underlaying pageblocks (either
6419  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6420  *			in range must have the same migratetype and it must
6421  *			be either of the two.
6422  *
6423  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6424  * aligned, however it's the caller's responsibility to guarantee that
6425  * we are the only thread that changes migrate type of pageblocks the
6426  * pages fall in.
6427  *
6428  * The PFN range must belong to a single zone.
6429  *
6430  * Returns zero on success or negative error code.  On success all
6431  * pages which PFN is in [start, end) are allocated for the caller and
6432  * need to be freed with free_contig_range().
6433  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype)6434 int alloc_contig_range(unsigned long start, unsigned long end,
6435 		       unsigned migratetype)
6436 {
6437 	unsigned long outer_start, outer_end;
6438 	unsigned int order;
6439 	int ret = 0;
6440 
6441 	struct compact_control cc = {
6442 		.nr_migratepages = 0,
6443 		.order = -1,
6444 		.zone = page_zone(pfn_to_page(start)),
6445 		.mode = MIGRATE_SYNC,
6446 		.ignore_skip_hint = true,
6447 	};
6448 	INIT_LIST_HEAD(&cc.migratepages);
6449 
6450 	/*
6451 	 * What we do here is we mark all pageblocks in range as
6452 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6453 	 * have different sizes, and due to the way page allocator
6454 	 * work, we align the range to biggest of the two pages so
6455 	 * that page allocator won't try to merge buddies from
6456 	 * different pageblocks and change MIGRATE_ISOLATE to some
6457 	 * other migration type.
6458 	 *
6459 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6460 	 * migrate the pages from an unaligned range (ie. pages that
6461 	 * we are interested in).  This will put all the pages in
6462 	 * range back to page allocator as MIGRATE_ISOLATE.
6463 	 *
6464 	 * When this is done, we take the pages in range from page
6465 	 * allocator removing them from the buddy system.  This way
6466 	 * page allocator will never consider using them.
6467 	 *
6468 	 * This lets us mark the pageblocks back as
6469 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6470 	 * aligned range but not in the unaligned, original range are
6471 	 * put back to page allocator so that buddy can use them.
6472 	 */
6473 
6474 	ret = start_isolate_page_range(pfn_max_align_down(start),
6475 				       pfn_max_align_up(end), migratetype,
6476 				       false);
6477 	if (ret)
6478 		return ret;
6479 
6480 	ret = __alloc_contig_migrate_range(&cc, start, end);
6481 	if (ret)
6482 		goto done;
6483 
6484 	/*
6485 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6486 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6487 	 * more, all pages in [start, end) are free in page allocator.
6488 	 * What we are going to do is to allocate all pages from
6489 	 * [start, end) (that is remove them from page allocator).
6490 	 *
6491 	 * The only problem is that pages at the beginning and at the
6492 	 * end of interesting range may be not aligned with pages that
6493 	 * page allocator holds, ie. they can be part of higher order
6494 	 * pages.  Because of this, we reserve the bigger range and
6495 	 * once this is done free the pages we are not interested in.
6496 	 *
6497 	 * We don't have to hold zone->lock here because the pages are
6498 	 * isolated thus they won't get removed from buddy.
6499 	 */
6500 
6501 	lru_add_drain_all();
6502 	drain_all_pages(cc.zone);
6503 
6504 	order = 0;
6505 	outer_start = start;
6506 	while (!PageBuddy(pfn_to_page(outer_start))) {
6507 		if (++order >= MAX_ORDER) {
6508 			ret = -EBUSY;
6509 			goto done;
6510 		}
6511 		outer_start &= ~0UL << order;
6512 	}
6513 
6514 	/* Make sure the range is really isolated. */
6515 	if (test_pages_isolated(outer_start, end, false)) {
6516 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6517 			__func__, outer_start, end);
6518 		ret = -EBUSY;
6519 		goto done;
6520 	}
6521 
6522 	/* Grab isolated pages from freelists. */
6523 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6524 	if (!outer_end) {
6525 		ret = -EBUSY;
6526 		goto done;
6527 	}
6528 
6529 	/* Free head and tail (if any) */
6530 	if (start != outer_start)
6531 		free_contig_range(outer_start, start - outer_start);
6532 	if (end != outer_end)
6533 		free_contig_range(end, outer_end - end);
6534 
6535 done:
6536 	undo_isolate_page_range(pfn_max_align_down(start),
6537 				pfn_max_align_up(end), migratetype);
6538 	return ret;
6539 }
6540 
free_contig_range(unsigned long pfn,unsigned nr_pages)6541 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6542 {
6543 	unsigned int count = 0;
6544 
6545 	for (; nr_pages--; pfn++) {
6546 		struct page *page = pfn_to_page(pfn);
6547 
6548 		count += page_count(page) != 1;
6549 		__free_page(page);
6550 	}
6551 	WARN(count != 0, "%d pages are still in use!\n", count);
6552 }
6553 #endif
6554 
6555 #ifdef CONFIG_MEMORY_HOTPLUG
6556 /*
6557  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6558  * page high values need to be recalulated.
6559  */
zone_pcp_update(struct zone * zone)6560 void __meminit zone_pcp_update(struct zone *zone)
6561 {
6562 	unsigned cpu;
6563 	mutex_lock(&pcp_batch_high_lock);
6564 	for_each_possible_cpu(cpu)
6565 		pageset_set_high_and_batch(zone,
6566 				per_cpu_ptr(zone->pageset, cpu));
6567 	mutex_unlock(&pcp_batch_high_lock);
6568 }
6569 #endif
6570 
zone_pcp_reset(struct zone * zone)6571 void zone_pcp_reset(struct zone *zone)
6572 {
6573 	unsigned long flags;
6574 	int cpu;
6575 	struct per_cpu_pageset *pset;
6576 
6577 	/* avoid races with drain_pages()  */
6578 	local_irq_save(flags);
6579 	if (zone->pageset != &boot_pageset) {
6580 		for_each_online_cpu(cpu) {
6581 			pset = per_cpu_ptr(zone->pageset, cpu);
6582 			drain_zonestat(zone, pset);
6583 		}
6584 		free_percpu(zone->pageset);
6585 		zone->pageset = &boot_pageset;
6586 	}
6587 	local_irq_restore(flags);
6588 }
6589 
6590 #ifdef CONFIG_MEMORY_HOTREMOVE
6591 /*
6592  * All pages in the range must be isolated before calling this.
6593  */
6594 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6595 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6596 {
6597 	struct page *page;
6598 	struct zone *zone;
6599 	unsigned int order, i;
6600 	unsigned long pfn;
6601 	unsigned long flags;
6602 	/* find the first valid pfn */
6603 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6604 		if (pfn_valid(pfn))
6605 			break;
6606 	if (pfn == end_pfn)
6607 		return;
6608 	zone = page_zone(pfn_to_page(pfn));
6609 	spin_lock_irqsave(&zone->lock, flags);
6610 	pfn = start_pfn;
6611 	while (pfn < end_pfn) {
6612 		if (!pfn_valid(pfn)) {
6613 			pfn++;
6614 			continue;
6615 		}
6616 		page = pfn_to_page(pfn);
6617 		/*
6618 		 * The HWPoisoned page may be not in buddy system, and
6619 		 * page_count() is not 0.
6620 		 */
6621 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6622 			pfn++;
6623 			SetPageReserved(page);
6624 			continue;
6625 		}
6626 
6627 		BUG_ON(page_count(page));
6628 		BUG_ON(!PageBuddy(page));
6629 		order = page_order(page);
6630 #ifdef CONFIG_DEBUG_VM
6631 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6632 		       pfn, 1 << order, end_pfn);
6633 #endif
6634 		list_del(&page->lru);
6635 		rmv_page_order(page);
6636 		zone->free_area[order].nr_free--;
6637 		for (i = 0; i < (1 << order); i++)
6638 			SetPageReserved((page+i));
6639 		pfn += (1 << order);
6640 	}
6641 	spin_unlock_irqrestore(&zone->lock, flags);
6642 }
6643 #endif
6644 
6645 #ifdef CONFIG_MEMORY_FAILURE
is_free_buddy_page(struct page * page)6646 bool is_free_buddy_page(struct page *page)
6647 {
6648 	struct zone *zone = page_zone(page);
6649 	unsigned long pfn = page_to_pfn(page);
6650 	unsigned long flags;
6651 	unsigned int order;
6652 
6653 	spin_lock_irqsave(&zone->lock, flags);
6654 	for (order = 0; order < MAX_ORDER; order++) {
6655 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6656 
6657 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6658 			break;
6659 	}
6660 	spin_unlock_irqrestore(&zone->lock, flags);
6661 
6662 	return order < MAX_ORDER;
6663 }
6664 #endif
6665