1 /*
2  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4  *
5  * Copyright (C) 2005, Intec Automation Inc.
6  * Copyright (C) 2014, Freescale Semiconductor, Inc.
7  *
8  * This code is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/math64.h>
19 
20 #include <linux/mtd/cfi.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/of_platform.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
25 
26 /* Define max times to check status register before we give up. */
27 #define	MAX_READY_WAIT_JIFFIES	(40 * HZ) /* M25P16 specs 40s max chip erase */
28 
29 #define SPI_NOR_MAX_ID_LEN	6
30 
31 struct flash_info {
32 	/*
33 	 * This array stores the ID bytes.
34 	 * The first three bytes are the JEDIC ID.
35 	 * JEDEC ID zero means "no ID" (mostly older chips).
36 	 */
37 	u8		id[SPI_NOR_MAX_ID_LEN];
38 	u8		id_len;
39 
40 	/* The size listed here is what works with SPINOR_OP_SE, which isn't
41 	 * necessarily called a "sector" by the vendor.
42 	 */
43 	unsigned	sector_size;
44 	u16		n_sectors;
45 
46 	u16		page_size;
47 	u16		addr_width;
48 
49 	u16		flags;
50 #define	SECT_4K			0x01	/* SPINOR_OP_BE_4K works uniformly */
51 #define	SPI_NOR_NO_ERASE	0x02	/* No erase command needed */
52 #define	SST_WRITE		0x04	/* use SST byte programming */
53 #define	SPI_NOR_NO_FR		0x08	/* Can't do fastread */
54 #define	SECT_4K_PMC		0x10	/* SPINOR_OP_BE_4K_PMC works uniformly */
55 #define	SPI_NOR_DUAL_READ	0x20    /* Flash supports Dual Read */
56 #define	SPI_NOR_QUAD_READ	0x40    /* Flash supports Quad Read */
57 #define	USE_FSR			0x80	/* use flag status register */
58 };
59 
60 #define JEDEC_MFR(info)	((info)->id[0])
61 
62 static const struct spi_device_id *spi_nor_match_id(const char *name);
63 
64 /*
65  * Read the status register, returning its value in the location
66  * Return the status register value.
67  * Returns negative if error occurred.
68  */
read_sr(struct spi_nor * nor)69 static int read_sr(struct spi_nor *nor)
70 {
71 	int ret;
72 	u8 val;
73 
74 	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
75 	if (ret < 0) {
76 		pr_err("error %d reading SR\n", (int) ret);
77 		return ret;
78 	}
79 
80 	return val;
81 }
82 
83 /*
84  * Read the flag status register, returning its value in the location
85  * Return the status register value.
86  * Returns negative if error occurred.
87  */
read_fsr(struct spi_nor * nor)88 static int read_fsr(struct spi_nor *nor)
89 {
90 	int ret;
91 	u8 val;
92 
93 	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
94 	if (ret < 0) {
95 		pr_err("error %d reading FSR\n", ret);
96 		return ret;
97 	}
98 
99 	return val;
100 }
101 
102 /*
103  * Read configuration register, returning its value in the
104  * location. Return the configuration register value.
105  * Returns negative if error occured.
106  */
read_cr(struct spi_nor * nor)107 static int read_cr(struct spi_nor *nor)
108 {
109 	int ret;
110 	u8 val;
111 
112 	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
113 	if (ret < 0) {
114 		dev_err(nor->dev, "error %d reading CR\n", ret);
115 		return ret;
116 	}
117 
118 	return val;
119 }
120 
121 /*
122  * Dummy Cycle calculation for different type of read.
123  * It can be used to support more commands with
124  * different dummy cycle requirements.
125  */
spi_nor_read_dummy_cycles(struct spi_nor * nor)126 static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
127 {
128 	switch (nor->flash_read) {
129 	case SPI_NOR_FAST:
130 	case SPI_NOR_DUAL:
131 	case SPI_NOR_QUAD:
132 		return 8;
133 	case SPI_NOR_NORMAL:
134 		return 0;
135 	}
136 	return 0;
137 }
138 
139 /*
140  * Write status register 1 byte
141  * Returns negative if error occurred.
142  */
write_sr(struct spi_nor * nor,u8 val)143 static inline int write_sr(struct spi_nor *nor, u8 val)
144 {
145 	nor->cmd_buf[0] = val;
146 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
147 }
148 
149 /*
150  * Set write enable latch with Write Enable command.
151  * Returns negative if error occurred.
152  */
write_enable(struct spi_nor * nor)153 static inline int write_enable(struct spi_nor *nor)
154 {
155 	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
156 }
157 
158 /*
159  * Send write disble instruction to the chip.
160  */
write_disable(struct spi_nor * nor)161 static inline int write_disable(struct spi_nor *nor)
162 {
163 	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
164 }
165 
mtd_to_spi_nor(struct mtd_info * mtd)166 static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
167 {
168 	return mtd->priv;
169 }
170 
171 /* Enable/disable 4-byte addressing mode. */
set_4byte(struct spi_nor * nor,struct flash_info * info,int enable)172 static inline int set_4byte(struct spi_nor *nor, struct flash_info *info,
173 			    int enable)
174 {
175 	int status;
176 	bool need_wren = false;
177 	u8 cmd;
178 
179 	switch (JEDEC_MFR(info)) {
180 	case CFI_MFR_ST: /* Micron, actually */
181 		/* Some Micron need WREN command; all will accept it */
182 		need_wren = true;
183 	case CFI_MFR_MACRONIX:
184 	case 0xEF /* winbond */:
185 		if (need_wren)
186 			write_enable(nor);
187 
188 		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
189 		status = nor->write_reg(nor, cmd, NULL, 0, 0);
190 		if (need_wren)
191 			write_disable(nor);
192 
193 		return status;
194 	default:
195 		/* Spansion style */
196 		nor->cmd_buf[0] = enable << 7;
197 		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
198 	}
199 }
spi_nor_sr_ready(struct spi_nor * nor)200 static inline int spi_nor_sr_ready(struct spi_nor *nor)
201 {
202 	int sr = read_sr(nor);
203 	if (sr < 0)
204 		return sr;
205 	else
206 		return !(sr & SR_WIP);
207 }
208 
spi_nor_fsr_ready(struct spi_nor * nor)209 static inline int spi_nor_fsr_ready(struct spi_nor *nor)
210 {
211 	int fsr = read_fsr(nor);
212 	if (fsr < 0)
213 		return fsr;
214 	else
215 		return fsr & FSR_READY;
216 }
217 
spi_nor_ready(struct spi_nor * nor)218 static int spi_nor_ready(struct spi_nor *nor)
219 {
220 	int sr, fsr;
221 	sr = spi_nor_sr_ready(nor);
222 	if (sr < 0)
223 		return sr;
224 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
225 	if (fsr < 0)
226 		return fsr;
227 	return sr && fsr;
228 }
229 
230 /*
231  * Service routine to read status register until ready, or timeout occurs.
232  * Returns non-zero if error.
233  */
spi_nor_wait_till_ready(struct spi_nor * nor)234 static int spi_nor_wait_till_ready(struct spi_nor *nor)
235 {
236 	unsigned long deadline;
237 	int timeout = 0, ret;
238 
239 	deadline = jiffies + MAX_READY_WAIT_JIFFIES;
240 
241 	while (!timeout) {
242 		if (time_after_eq(jiffies, deadline))
243 			timeout = 1;
244 
245 		ret = spi_nor_ready(nor);
246 		if (ret < 0)
247 			return ret;
248 		if (ret)
249 			return 0;
250 
251 		cond_resched();
252 	}
253 
254 	dev_err(nor->dev, "flash operation timed out\n");
255 
256 	return -ETIMEDOUT;
257 }
258 
259 /*
260  * Erase the whole flash memory
261  *
262  * Returns 0 if successful, non-zero otherwise.
263  */
erase_chip(struct spi_nor * nor)264 static int erase_chip(struct spi_nor *nor)
265 {
266 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
267 
268 	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
269 }
270 
spi_nor_lock_and_prep(struct spi_nor * nor,enum spi_nor_ops ops)271 static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
272 {
273 	int ret = 0;
274 
275 	mutex_lock(&nor->lock);
276 
277 	if (nor->prepare) {
278 		ret = nor->prepare(nor, ops);
279 		if (ret) {
280 			dev_err(nor->dev, "failed in the preparation.\n");
281 			mutex_unlock(&nor->lock);
282 			return ret;
283 		}
284 	}
285 	return ret;
286 }
287 
spi_nor_unlock_and_unprep(struct spi_nor * nor,enum spi_nor_ops ops)288 static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
289 {
290 	if (nor->unprepare)
291 		nor->unprepare(nor, ops);
292 	mutex_unlock(&nor->lock);
293 }
294 
295 /*
296  * Erase an address range on the nor chip.  The address range may extend
297  * one or more erase sectors.  Return an error is there is a problem erasing.
298  */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)299 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
300 {
301 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
302 	u32 addr, len;
303 	uint32_t rem;
304 	int ret;
305 
306 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
307 			(long long)instr->len);
308 
309 	div_u64_rem(instr->len, mtd->erasesize, &rem);
310 	if (rem)
311 		return -EINVAL;
312 
313 	addr = instr->addr;
314 	len = instr->len;
315 
316 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
317 	if (ret)
318 		return ret;
319 
320 	/* whole-chip erase? */
321 	if (len == mtd->size) {
322 		write_enable(nor);
323 
324 		if (erase_chip(nor)) {
325 			ret = -EIO;
326 			goto erase_err;
327 		}
328 
329 		ret = spi_nor_wait_till_ready(nor);
330 		if (ret)
331 			goto erase_err;
332 
333 	/* REVISIT in some cases we could speed up erasing large regions
334 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
335 	 * to use "small sector erase", but that's not always optimal.
336 	 */
337 
338 	/* "sector"-at-a-time erase */
339 	} else {
340 		while (len) {
341 			write_enable(nor);
342 
343 			if (nor->erase(nor, addr)) {
344 				ret = -EIO;
345 				goto erase_err;
346 			}
347 
348 			addr += mtd->erasesize;
349 			len -= mtd->erasesize;
350 
351 			ret = spi_nor_wait_till_ready(nor);
352 			if (ret)
353 				goto erase_err;
354 		}
355 	}
356 
357 	write_disable(nor);
358 
359 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
360 
361 	instr->state = MTD_ERASE_DONE;
362 	mtd_erase_callback(instr);
363 
364 	return ret;
365 
366 erase_err:
367 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
368 	instr->state = MTD_ERASE_FAILED;
369 	return ret;
370 }
371 
stm_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)372 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
373 {
374 	struct mtd_info *mtd = nor->mtd;
375 	uint32_t offset = ofs;
376 	uint8_t status_old, status_new;
377 	int ret = 0;
378 
379 	status_old = read_sr(nor);
380 
381 	if (offset < mtd->size - (mtd->size / 2))
382 		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
383 	else if (offset < mtd->size - (mtd->size / 4))
384 		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
385 	else if (offset < mtd->size - (mtd->size / 8))
386 		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
387 	else if (offset < mtd->size - (mtd->size / 16))
388 		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
389 	else if (offset < mtd->size - (mtd->size / 32))
390 		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
391 	else if (offset < mtd->size - (mtd->size / 64))
392 		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
393 	else
394 		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
395 
396 	/* Only modify protection if it will not unlock other areas */
397 	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
398 				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
399 		write_enable(nor);
400 		ret = write_sr(nor, status_new);
401 	}
402 
403 	return ret;
404 }
405 
stm_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)406 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
407 {
408 	struct mtd_info *mtd = nor->mtd;
409 	uint32_t offset = ofs;
410 	uint8_t status_old, status_new;
411 	int ret = 0;
412 
413 	status_old = read_sr(nor);
414 
415 	if (offset+len > mtd->size - (mtd->size / 64))
416 		status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
417 	else if (offset+len > mtd->size - (mtd->size / 32))
418 		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
419 	else if (offset+len > mtd->size - (mtd->size / 16))
420 		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
421 	else if (offset+len > mtd->size - (mtd->size / 8))
422 		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
423 	else if (offset+len > mtd->size - (mtd->size / 4))
424 		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
425 	else if (offset+len > mtd->size - (mtd->size / 2))
426 		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
427 	else
428 		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
429 
430 	/* Only modify protection if it will not lock other areas */
431 	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
432 				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
433 		write_enable(nor);
434 		ret = write_sr(nor, status_new);
435 	}
436 
437 	return ret;
438 }
439 
spi_nor_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)440 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
441 {
442 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
443 	int ret;
444 
445 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
446 	if (ret)
447 		return ret;
448 
449 	ret = nor->flash_lock(nor, ofs, len);
450 
451 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
452 	return ret;
453 }
454 
spi_nor_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)455 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
456 {
457 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
458 	int ret;
459 
460 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
461 	if (ret)
462 		return ret;
463 
464 	ret = nor->flash_unlock(nor, ofs, len);
465 
466 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
467 	return ret;
468 }
469 
470 /* Used when the "_ext_id" is two bytes at most */
471 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
472 	((kernel_ulong_t)&(struct flash_info) {				\
473 		.id = {							\
474 			((_jedec_id) >> 16) & 0xff,			\
475 			((_jedec_id) >> 8) & 0xff,			\
476 			(_jedec_id) & 0xff,				\
477 			((_ext_id) >> 8) & 0xff,			\
478 			(_ext_id) & 0xff,				\
479 			},						\
480 		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
481 		.sector_size = (_sector_size),				\
482 		.n_sectors = (_n_sectors),				\
483 		.page_size = 256,					\
484 		.flags = (_flags),					\
485 	})
486 
487 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
488 	((kernel_ulong_t)&(struct flash_info) {				\
489 		.id = {							\
490 			((_jedec_id) >> 16) & 0xff,			\
491 			((_jedec_id) >> 8) & 0xff,			\
492 			(_jedec_id) & 0xff,				\
493 			((_ext_id) >> 16) & 0xff,			\
494 			((_ext_id) >> 8) & 0xff,			\
495 			(_ext_id) & 0xff,				\
496 			},						\
497 		.id_len = 6,						\
498 		.sector_size = (_sector_size),				\
499 		.n_sectors = (_n_sectors),				\
500 		.page_size = 256,					\
501 		.flags = (_flags),					\
502 	})
503 
504 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
505 	((kernel_ulong_t)&(struct flash_info) {				\
506 		.sector_size = (_sector_size),				\
507 		.n_sectors = (_n_sectors),				\
508 		.page_size = (_page_size),				\
509 		.addr_width = (_addr_width),				\
510 		.flags = (_flags),					\
511 	})
512 
513 /* NOTE: double check command sets and memory organization when you add
514  * more nor chips.  This current list focusses on newer chips, which
515  * have been converging on command sets which including JEDEC ID.
516  */
517 static const struct spi_device_id spi_nor_ids[] = {
518 	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
519 	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
520 	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
521 
522 	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
523 	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
524 	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
525 
526 	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
527 	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
528 	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
529 	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
530 
531 	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
532 
533 	/* EON -- en25xxx */
534 	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
535 	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
536 	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
537 	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
538 	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
539 	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
540 	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
541 	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, 0) },
542 
543 	/* ESMT */
544 	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
545 
546 	/* Everspin */
547 	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
548 	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
549 
550 	/* Fujitsu */
551 	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
552 
553 	/* GigaDevice */
554 	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
555 	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
556 	{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
557 
558 	/* Intel/Numonyx -- xxxs33b */
559 	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
560 	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
561 	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
562 
563 	/* Macronix */
564 	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
565 	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
566 	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
567 	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
568 	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
569 	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
570 	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
571 	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
572 	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
573 	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
574 	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
575 	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
576 	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
577 	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
578 
579 	/* Micron */
580 	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
581 	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SPI_NOR_QUAD_READ) },
582 	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
583 	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
584 	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
585 	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
586 	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
587 	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
588 
589 	/* PMC */
590 	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
591 	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
592 	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
593 
594 	/* Spansion -- single (large) sector size only, at least
595 	 * for the chips listed here (without boot sectors).
596 	 */
597 	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
598 	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
599 	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
600 	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
601 	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
602 	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
603 	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
604 	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
605 	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
606 	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
607 	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
608 	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
609 	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
610 	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
611 	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
612 	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
613 	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K) },
614 	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
615 	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
616 	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, 0) },
617 
618 	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
619 	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
620 	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
621 	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
622 	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
623 	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
624 	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
625 	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
626 	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
627 	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
628 	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
629 
630 	/* ST Microelectronics -- newer production may have feature updates */
631 	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
632 	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
633 	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
634 	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
635 	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
636 	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
637 	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
638 	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
639 	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
640 
641 	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
642 	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
643 	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
644 	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
645 	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
646 	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
647 	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
648 	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
649 	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },
650 
651 	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
652 	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
653 	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },
654 
655 	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
656 	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
657 	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
658 
659 	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
660 	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
661 	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
662 	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
663 	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
664 	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
665 
666 	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
667 	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
668 	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
669 	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
670 	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
671 	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
672 	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
673 	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
674 	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
675 	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
676 	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
677 	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
678 	{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) },
679 	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
680 	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
681 	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
682 	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
683 
684 	/* Catalyst / On Semiconductor -- non-JEDEC */
685 	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
686 	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
687 	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
688 	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
689 	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
690 	{ },
691 };
692 
spi_nor_read_id(struct spi_nor * nor)693 static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
694 {
695 	int			tmp;
696 	u8			id[SPI_NOR_MAX_ID_LEN];
697 	struct flash_info	*info;
698 
699 	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
700 	if (tmp < 0) {
701 		dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
702 		return ERR_PTR(tmp);
703 	}
704 
705 	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
706 		info = (void *)spi_nor_ids[tmp].driver_data;
707 		if (info->id_len) {
708 			if (!memcmp(info->id, id, info->id_len))
709 				return &spi_nor_ids[tmp];
710 		}
711 	}
712 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
713 		id[0], id[1], id[2]);
714 	return ERR_PTR(-ENODEV);
715 }
716 
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)717 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
718 			size_t *retlen, u_char *buf)
719 {
720 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
721 	int ret;
722 
723 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
724 
725 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
726 	if (ret)
727 		return ret;
728 
729 	ret = nor->read(nor, from, len, retlen, buf);
730 
731 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
732 	return ret;
733 }
734 
sst_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)735 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
736 		size_t *retlen, const u_char *buf)
737 {
738 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
739 	size_t actual;
740 	int ret;
741 
742 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
743 
744 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
745 	if (ret)
746 		return ret;
747 
748 	write_enable(nor);
749 
750 	nor->sst_write_second = false;
751 
752 	actual = to % 2;
753 	/* Start write from odd address. */
754 	if (actual) {
755 		nor->program_opcode = SPINOR_OP_BP;
756 
757 		/* write one byte. */
758 		nor->write(nor, to, 1, retlen, buf);
759 		ret = spi_nor_wait_till_ready(nor);
760 		if (ret)
761 			goto time_out;
762 	}
763 	to += actual;
764 
765 	/* Write out most of the data here. */
766 	for (; actual < len - 1; actual += 2) {
767 		nor->program_opcode = SPINOR_OP_AAI_WP;
768 
769 		/* write two bytes. */
770 		nor->write(nor, to, 2, retlen, buf + actual);
771 		ret = spi_nor_wait_till_ready(nor);
772 		if (ret)
773 			goto time_out;
774 		to += 2;
775 		nor->sst_write_second = true;
776 	}
777 	nor->sst_write_second = false;
778 
779 	write_disable(nor);
780 	ret = spi_nor_wait_till_ready(nor);
781 	if (ret)
782 		goto time_out;
783 
784 	/* Write out trailing byte if it exists. */
785 	if (actual != len) {
786 		write_enable(nor);
787 
788 		nor->program_opcode = SPINOR_OP_BP;
789 		nor->write(nor, to, 1, retlen, buf + actual);
790 
791 		ret = spi_nor_wait_till_ready(nor);
792 		if (ret)
793 			goto time_out;
794 		write_disable(nor);
795 	}
796 time_out:
797 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
798 	return ret;
799 }
800 
801 /*
802  * Write an address range to the nor chip.  Data must be written in
803  * FLASH_PAGESIZE chunks.  The address range may be any size provided
804  * it is within the physical boundaries.
805  */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)806 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
807 	size_t *retlen, const u_char *buf)
808 {
809 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
810 	u32 page_offset, page_size, i;
811 	int ret;
812 
813 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
814 
815 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
816 	if (ret)
817 		return ret;
818 
819 	write_enable(nor);
820 
821 	page_offset = to & (nor->page_size - 1);
822 
823 	/* do all the bytes fit onto one page? */
824 	if (page_offset + len <= nor->page_size) {
825 		nor->write(nor, to, len, retlen, buf);
826 	} else {
827 		/* the size of data remaining on the first page */
828 		page_size = nor->page_size - page_offset;
829 		nor->write(nor, to, page_size, retlen, buf);
830 
831 		/* write everything in nor->page_size chunks */
832 		for (i = page_size; i < len; i += page_size) {
833 			page_size = len - i;
834 			if (page_size > nor->page_size)
835 				page_size = nor->page_size;
836 
837 			ret = spi_nor_wait_till_ready(nor);
838 			if (ret)
839 				goto write_err;
840 
841 			write_enable(nor);
842 
843 			nor->write(nor, to + i, page_size, retlen, buf + i);
844 		}
845 	}
846 
847 	ret = spi_nor_wait_till_ready(nor);
848 write_err:
849 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
850 	return ret;
851 }
852 
macronix_quad_enable(struct spi_nor * nor)853 static int macronix_quad_enable(struct spi_nor *nor)
854 {
855 	int ret, val;
856 
857 	val = read_sr(nor);
858 	write_enable(nor);
859 
860 	nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
861 	nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
862 
863 	if (spi_nor_wait_till_ready(nor))
864 		return 1;
865 
866 	ret = read_sr(nor);
867 	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
868 		dev_err(nor->dev, "Macronix Quad bit not set\n");
869 		return -EINVAL;
870 	}
871 
872 	return 0;
873 }
874 
875 /*
876  * Write status Register and configuration register with 2 bytes
877  * The first byte will be written to the status register, while the
878  * second byte will be written to the configuration register.
879  * Return negative if error occured.
880  */
write_sr_cr(struct spi_nor * nor,u16 val)881 static int write_sr_cr(struct spi_nor *nor, u16 val)
882 {
883 	nor->cmd_buf[0] = val & 0xff;
884 	nor->cmd_buf[1] = (val >> 8);
885 
886 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
887 }
888 
spansion_quad_enable(struct spi_nor * nor)889 static int spansion_quad_enable(struct spi_nor *nor)
890 {
891 	int ret;
892 	int quad_en = CR_QUAD_EN_SPAN << 8;
893 
894 	write_enable(nor);
895 
896 	ret = write_sr_cr(nor, quad_en);
897 	if (ret < 0) {
898 		dev_err(nor->dev,
899 			"error while writing configuration register\n");
900 		return -EINVAL;
901 	}
902 
903 	/* read back and check it */
904 	ret = read_cr(nor);
905 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
906 		dev_err(nor->dev, "Spansion Quad bit not set\n");
907 		return -EINVAL;
908 	}
909 
910 	return 0;
911 }
912 
micron_quad_enable(struct spi_nor * nor)913 static int micron_quad_enable(struct spi_nor *nor)
914 {
915 	int ret;
916 	u8 val;
917 
918 	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
919 	if (ret < 0) {
920 		dev_err(nor->dev, "error %d reading EVCR\n", ret);
921 		return ret;
922 	}
923 
924 	write_enable(nor);
925 
926 	/* set EVCR, enable quad I/O */
927 	nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
928 	ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1, 0);
929 	if (ret < 0) {
930 		dev_err(nor->dev, "error while writing EVCR register\n");
931 		return ret;
932 	}
933 
934 	ret = spi_nor_wait_till_ready(nor);
935 	if (ret)
936 		return ret;
937 
938 	/* read EVCR and check it */
939 	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
940 	if (ret < 0) {
941 		dev_err(nor->dev, "error %d reading EVCR\n", ret);
942 		return ret;
943 	}
944 	if (val & EVCR_QUAD_EN_MICRON) {
945 		dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
946 		return -EINVAL;
947 	}
948 
949 	return 0;
950 }
951 
set_quad_mode(struct spi_nor * nor,struct flash_info * info)952 static int set_quad_mode(struct spi_nor *nor, struct flash_info *info)
953 {
954 	int status;
955 
956 	switch (JEDEC_MFR(info)) {
957 	case CFI_MFR_MACRONIX:
958 		status = macronix_quad_enable(nor);
959 		if (status) {
960 			dev_err(nor->dev, "Macronix quad-read not enabled\n");
961 			return -EINVAL;
962 		}
963 		return status;
964 	case CFI_MFR_ST:
965 		status = micron_quad_enable(nor);
966 		if (status) {
967 			dev_err(nor->dev, "Micron quad-read not enabled\n");
968 			return -EINVAL;
969 		}
970 		return status;
971 	default:
972 		status = spansion_quad_enable(nor);
973 		if (status) {
974 			dev_err(nor->dev, "Spansion quad-read not enabled\n");
975 			return -EINVAL;
976 		}
977 		return status;
978 	}
979 }
980 
spi_nor_check(struct spi_nor * nor)981 static int spi_nor_check(struct spi_nor *nor)
982 {
983 	if (!nor->dev || !nor->read || !nor->write ||
984 		!nor->read_reg || !nor->write_reg || !nor->erase) {
985 		pr_err("spi-nor: please fill all the necessary fields!\n");
986 		return -EINVAL;
987 	}
988 
989 	return 0;
990 }
991 
spi_nor_scan(struct spi_nor * nor,const char * name,enum read_mode mode)992 int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
993 {
994 	const struct spi_device_id	*id = NULL;
995 	struct flash_info		*info;
996 	struct device *dev = nor->dev;
997 	struct mtd_info *mtd = nor->mtd;
998 	struct device_node *np = dev->of_node;
999 	int ret;
1000 	int i;
1001 
1002 	ret = spi_nor_check(nor);
1003 	if (ret)
1004 		return ret;
1005 
1006 	/* Try to auto-detect if chip name wasn't specified */
1007 	if (!name)
1008 		id = spi_nor_read_id(nor);
1009 	else
1010 		id = spi_nor_match_id(name);
1011 	if (IS_ERR_OR_NULL(id))
1012 		return -ENOENT;
1013 
1014 	info = (void *)id->driver_data;
1015 
1016 	/*
1017 	 * If caller has specified name of flash model that can normally be
1018 	 * detected using JEDEC, let's verify it.
1019 	 */
1020 	if (name && info->id_len) {
1021 		const struct spi_device_id *jid;
1022 
1023 		jid = spi_nor_read_id(nor);
1024 		if (IS_ERR(jid)) {
1025 			return PTR_ERR(jid);
1026 		} else if (jid != id) {
1027 			/*
1028 			 * JEDEC knows better, so overwrite platform ID. We
1029 			 * can't trust partitions any longer, but we'll let
1030 			 * mtd apply them anyway, since some partitions may be
1031 			 * marked read-only, and we don't want to lose that
1032 			 * information, even if it's not 100% accurate.
1033 			 */
1034 			dev_warn(dev, "found %s, expected %s\n",
1035 				 jid->name, id->name);
1036 			id = jid;
1037 			info = (void *)jid->driver_data;
1038 		}
1039 	}
1040 
1041 	mutex_init(&nor->lock);
1042 
1043 	/*
1044 	 * Atmel, SST and Intel/Numonyx serial nor tend to power
1045 	 * up with the software protection bits set
1046 	 */
1047 
1048 	if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
1049 	    JEDEC_MFR(info) == CFI_MFR_INTEL ||
1050 	    JEDEC_MFR(info) == CFI_MFR_SST) {
1051 		write_enable(nor);
1052 		write_sr(nor, 0);
1053 	}
1054 
1055 	if (!mtd->name)
1056 		mtd->name = dev_name(dev);
1057 	mtd->type = MTD_NORFLASH;
1058 	mtd->writesize = 1;
1059 	mtd->flags = MTD_CAP_NORFLASH;
1060 	mtd->size = info->sector_size * info->n_sectors;
1061 	mtd->_erase = spi_nor_erase;
1062 	mtd->_read = spi_nor_read;
1063 
1064 	/* nor protection support for STmicro chips */
1065 	if (JEDEC_MFR(info) == CFI_MFR_ST) {
1066 		nor->flash_lock = stm_lock;
1067 		nor->flash_unlock = stm_unlock;
1068 	}
1069 
1070 	if (nor->flash_lock && nor->flash_unlock) {
1071 		mtd->_lock = spi_nor_lock;
1072 		mtd->_unlock = spi_nor_unlock;
1073 	}
1074 
1075 	/* sst nor chips use AAI word program */
1076 	if (info->flags & SST_WRITE)
1077 		mtd->_write = sst_write;
1078 	else
1079 		mtd->_write = spi_nor_write;
1080 
1081 	if (info->flags & USE_FSR)
1082 		nor->flags |= SNOR_F_USE_FSR;
1083 
1084 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1085 	/* prefer "small sector" erase if possible */
1086 	if (info->flags & SECT_4K) {
1087 		nor->erase_opcode = SPINOR_OP_BE_4K;
1088 		mtd->erasesize = 4096;
1089 	} else if (info->flags & SECT_4K_PMC) {
1090 		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1091 		mtd->erasesize = 4096;
1092 	} else
1093 #endif
1094 	{
1095 		nor->erase_opcode = SPINOR_OP_SE;
1096 		mtd->erasesize = info->sector_size;
1097 	}
1098 
1099 	if (info->flags & SPI_NOR_NO_ERASE)
1100 		mtd->flags |= MTD_NO_ERASE;
1101 
1102 	mtd->dev.parent = dev;
1103 	nor->page_size = info->page_size;
1104 	mtd->writebufsize = nor->page_size;
1105 
1106 	if (np) {
1107 		/* If we were instantiated by DT, use it */
1108 		if (of_property_read_bool(np, "m25p,fast-read"))
1109 			nor->flash_read = SPI_NOR_FAST;
1110 		else
1111 			nor->flash_read = SPI_NOR_NORMAL;
1112 	} else {
1113 		/* If we weren't instantiated by DT, default to fast-read */
1114 		nor->flash_read = SPI_NOR_FAST;
1115 	}
1116 
1117 	/* Some devices cannot do fast-read, no matter what DT tells us */
1118 	if (info->flags & SPI_NOR_NO_FR)
1119 		nor->flash_read = SPI_NOR_NORMAL;
1120 
1121 	/* Quad/Dual-read mode takes precedence over fast/normal */
1122 	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1123 		ret = set_quad_mode(nor, info);
1124 		if (ret) {
1125 			dev_err(dev, "quad mode not supported\n");
1126 			return ret;
1127 		}
1128 		nor->flash_read = SPI_NOR_QUAD;
1129 	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1130 		nor->flash_read = SPI_NOR_DUAL;
1131 	}
1132 
1133 	/* Default commands */
1134 	switch (nor->flash_read) {
1135 	case SPI_NOR_QUAD:
1136 		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1137 		break;
1138 	case SPI_NOR_DUAL:
1139 		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1140 		break;
1141 	case SPI_NOR_FAST:
1142 		nor->read_opcode = SPINOR_OP_READ_FAST;
1143 		break;
1144 	case SPI_NOR_NORMAL:
1145 		nor->read_opcode = SPINOR_OP_READ;
1146 		break;
1147 	default:
1148 		dev_err(dev, "No Read opcode defined\n");
1149 		return -EINVAL;
1150 	}
1151 
1152 	nor->program_opcode = SPINOR_OP_PP;
1153 
1154 	if (info->addr_width)
1155 		nor->addr_width = info->addr_width;
1156 	else if (mtd->size > 0x1000000) {
1157 		/* enable 4-byte addressing if the device exceeds 16MiB */
1158 		nor->addr_width = 4;
1159 		if (JEDEC_MFR(info) == CFI_MFR_AMD) {
1160 			/* Dedicated 4-byte command set */
1161 			switch (nor->flash_read) {
1162 			case SPI_NOR_QUAD:
1163 				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1164 				break;
1165 			case SPI_NOR_DUAL:
1166 				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1167 				break;
1168 			case SPI_NOR_FAST:
1169 				nor->read_opcode = SPINOR_OP_READ4_FAST;
1170 				break;
1171 			case SPI_NOR_NORMAL:
1172 				nor->read_opcode = SPINOR_OP_READ4;
1173 				break;
1174 			}
1175 			nor->program_opcode = SPINOR_OP_PP_4B;
1176 			/* No small sector erase for 4-byte command set */
1177 			nor->erase_opcode = SPINOR_OP_SE_4B;
1178 			mtd->erasesize = info->sector_size;
1179 		} else
1180 			set_4byte(nor, info, 1);
1181 	} else {
1182 		nor->addr_width = 3;
1183 	}
1184 
1185 	nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1186 
1187 	dev_info(dev, "%s (%lld Kbytes)\n", id->name,
1188 			(long long)mtd->size >> 10);
1189 
1190 	dev_dbg(dev,
1191 		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
1192 		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1193 		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1194 		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1195 
1196 	if (mtd->numeraseregions)
1197 		for (i = 0; i < mtd->numeraseregions; i++)
1198 			dev_dbg(dev,
1199 				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
1200 				".erasesize = 0x%.8x (%uKiB), "
1201 				".numblocks = %d }\n",
1202 				i, (long long)mtd->eraseregions[i].offset,
1203 				mtd->eraseregions[i].erasesize,
1204 				mtd->eraseregions[i].erasesize / 1024,
1205 				mtd->eraseregions[i].numblocks);
1206 	return 0;
1207 }
1208 EXPORT_SYMBOL_GPL(spi_nor_scan);
1209 
spi_nor_match_id(const char * name)1210 static const struct spi_device_id *spi_nor_match_id(const char *name)
1211 {
1212 	const struct spi_device_id *id = spi_nor_ids;
1213 
1214 	while (id->name[0]) {
1215 		if (!strcmp(name, id->name))
1216 			return id;
1217 		id++;
1218 	}
1219 	return NULL;
1220 }
1221 
1222 MODULE_LICENSE("GPL");
1223 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1224 MODULE_AUTHOR("Mike Lavender");
1225 MODULE_DESCRIPTION("framework for SPI NOR");
1226