1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 
135 #include <linux/filter.h>
136 
137 #include <trace/events/sock.h>
138 
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142 
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)158 bool sk_ns_capable(const struct sock *sk,
159 		   struct user_namespace *user_ns, int cap)
160 {
161 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 		ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capability to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
sk_capable(const struct sock * sk,int cap)175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 	return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socket was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
sk_net_capable(const struct sock * sk,int cap)190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 
197 #ifdef CONFIG_MEMCG_KMEM
mem_cgroup_sockets_init(struct mem_cgroup * memcg,struct cgroup_subsys * ss)198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 	struct proto *proto;
201 	int ret = 0;
202 
203 	mutex_lock(&proto_list_mutex);
204 	list_for_each_entry(proto, &proto_list, node) {
205 		if (proto->init_cgroup) {
206 			ret = proto->init_cgroup(memcg, ss);
207 			if (ret)
208 				goto out;
209 		}
210 	}
211 
212 	mutex_unlock(&proto_list_mutex);
213 	return ret;
214 out:
215 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 		if (proto->destroy_cgroup)
217 			proto->destroy_cgroup(memcg);
218 	mutex_unlock(&proto_list_mutex);
219 	return ret;
220 }
221 
mem_cgroup_sockets_destroy(struct mem_cgroup * memcg)222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 	struct proto *proto;
225 
226 	mutex_lock(&proto_list_mutex);
227 	list_for_each_entry_reverse(proto, &proto_list, node)
228 		if (proto->destroy_cgroup)
229 			proto->destroy_cgroup(memcg);
230 	mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233 
234 /*
235  * Each address family might have different locking rules, so we have
236  * one slock key per address family:
237  */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240 
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245 
246 /*
247  * Make lock validator output more readable. (we pre-construct these
248  * strings build-time, so that runtime initialization of socket
249  * locks is fast):
250  */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
253   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
254   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
255   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
256   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
257   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
258   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
259   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
260   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
261   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
262   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
263   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
264   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
265   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
269   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
270   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
271   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
272   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
273   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
274   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
275   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
276   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
277   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
278   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
279   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
280   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
281   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
285   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
286   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
287   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
288   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
289   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
290   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
291   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
292   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
293   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
294   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
295   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
296   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
297   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
298 };
299 
300 /*
301  * sk_callback_lock locking rules are per-address-family,
302  * so split the lock classes by using a per-AF key:
303  */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 
306 /* Take into consideration the size of the struct sk_buff overhead in the
307  * determination of these values, since that is non-constant across
308  * platforms.  This makes socket queueing behavior and performance
309  * not depend upon such differences.
310  */
311 #define _SK_MEM_PACKETS		256
312 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323 
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327 
328 int sysctl_tstamp_allow_data __read_mostly = 1;
329 
330 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
331 EXPORT_SYMBOL_GPL(memalloc_socks);
332 
333 /**
334  * sk_set_memalloc - sets %SOCK_MEMALLOC
335  * @sk: socket to set it on
336  *
337  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
338  * It's the responsibility of the admin to adjust min_free_kbytes
339  * to meet the requirements
340  */
sk_set_memalloc(struct sock * sk)341 void sk_set_memalloc(struct sock *sk)
342 {
343 	sock_set_flag(sk, SOCK_MEMALLOC);
344 	sk->sk_allocation |= __GFP_MEMALLOC;
345 	static_key_slow_inc(&memalloc_socks);
346 }
347 EXPORT_SYMBOL_GPL(sk_set_memalloc);
348 
sk_clear_memalloc(struct sock * sk)349 void sk_clear_memalloc(struct sock *sk)
350 {
351 	sock_reset_flag(sk, SOCK_MEMALLOC);
352 	sk->sk_allocation &= ~__GFP_MEMALLOC;
353 	static_key_slow_dec(&memalloc_socks);
354 
355 	/*
356 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
357 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
358 	 * it has rmem allocations due to the last swapfile being deactivated
359 	 * but there is a risk that the socket is unusable due to exceeding
360 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
361 	 */
362 	sk_mem_reclaim(sk);
363 }
364 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
365 
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)366 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
367 {
368 	int ret;
369 	unsigned long pflags = current->flags;
370 
371 	/* these should have been dropped before queueing */
372 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
373 
374 	current->flags |= PF_MEMALLOC;
375 	ret = sk->sk_backlog_rcv(sk, skb);
376 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
377 
378 	return ret;
379 }
380 EXPORT_SYMBOL(__sk_backlog_rcv);
381 
sock_set_timeout(long * timeo_p,char __user * optval,int optlen)382 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
383 {
384 	struct timeval tv;
385 
386 	if (optlen < sizeof(tv))
387 		return -EINVAL;
388 	if (copy_from_user(&tv, optval, sizeof(tv)))
389 		return -EFAULT;
390 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
391 		return -EDOM;
392 
393 	if (tv.tv_sec < 0) {
394 		static int warned __read_mostly;
395 
396 		*timeo_p = 0;
397 		if (warned < 10 && net_ratelimit()) {
398 			warned++;
399 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
400 				__func__, current->comm, task_pid_nr(current));
401 		}
402 		return 0;
403 	}
404 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
405 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
406 		return 0;
407 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
408 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
409 	return 0;
410 }
411 
sock_warn_obsolete_bsdism(const char * name)412 static void sock_warn_obsolete_bsdism(const char *name)
413 {
414 	static int warned;
415 	static char warncomm[TASK_COMM_LEN];
416 	if (strcmp(warncomm, current->comm) && warned < 5) {
417 		strcpy(warncomm,  current->comm);
418 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
419 			warncomm, name);
420 		warned++;
421 	}
422 }
423 
sock_disable_timestamp(struct sock * sk,unsigned long flags)424 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
425 {
426 	if (sk->sk_flags & flags) {
427 		sk->sk_flags &= ~flags;
428 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
429 			net_disable_timestamp();
430 	}
431 }
432 
433 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)434 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
435 {
436 	int err;
437 	unsigned long flags;
438 	struct sk_buff_head *list = &sk->sk_receive_queue;
439 
440 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
441 		atomic_inc(&sk->sk_drops);
442 		trace_sock_rcvqueue_full(sk, skb);
443 		return -ENOMEM;
444 	}
445 
446 	err = sk_filter(sk, skb);
447 	if (err)
448 		return err;
449 
450 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
451 		atomic_inc(&sk->sk_drops);
452 		return -ENOBUFS;
453 	}
454 
455 	skb->dev = NULL;
456 	skb_set_owner_r(skb, sk);
457 
458 	/* we escape from rcu protected region, make sure we dont leak
459 	 * a norefcounted dst
460 	 */
461 	skb_dst_force(skb);
462 
463 	spin_lock_irqsave(&list->lock, flags);
464 	sock_skb_set_dropcount(sk, skb);
465 	__skb_queue_tail(list, skb);
466 	spin_unlock_irqrestore(&list->lock, flags);
467 
468 	if (!sock_flag(sk, SOCK_DEAD))
469 		sk->sk_data_ready(sk);
470 	return 0;
471 }
472 EXPORT_SYMBOL(sock_queue_rcv_skb);
473 
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)474 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
475 {
476 	int rc = NET_RX_SUCCESS;
477 
478 	if (sk_filter(sk, skb))
479 		goto discard_and_relse;
480 
481 	skb->dev = NULL;
482 
483 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
484 		atomic_inc(&sk->sk_drops);
485 		goto discard_and_relse;
486 	}
487 	if (nested)
488 		bh_lock_sock_nested(sk);
489 	else
490 		bh_lock_sock(sk);
491 	if (!sock_owned_by_user(sk)) {
492 		/*
493 		 * trylock + unlock semantics:
494 		 */
495 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
496 
497 		rc = sk_backlog_rcv(sk, skb);
498 
499 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
500 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
501 		bh_unlock_sock(sk);
502 		atomic_inc(&sk->sk_drops);
503 		goto discard_and_relse;
504 	}
505 
506 	bh_unlock_sock(sk);
507 out:
508 	sock_put(sk);
509 	return rc;
510 discard_and_relse:
511 	kfree_skb(skb);
512 	goto out;
513 }
514 EXPORT_SYMBOL(sk_receive_skb);
515 
__sk_dst_check(struct sock * sk,u32 cookie)516 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
517 {
518 	struct dst_entry *dst = __sk_dst_get(sk);
519 
520 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
521 		sk_tx_queue_clear(sk);
522 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
523 		dst_release(dst);
524 		return NULL;
525 	}
526 
527 	return dst;
528 }
529 EXPORT_SYMBOL(__sk_dst_check);
530 
sk_dst_check(struct sock * sk,u32 cookie)531 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
532 {
533 	struct dst_entry *dst = sk_dst_get(sk);
534 
535 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
536 		sk_dst_reset(sk);
537 		dst_release(dst);
538 		return NULL;
539 	}
540 
541 	return dst;
542 }
543 EXPORT_SYMBOL(sk_dst_check);
544 
sock_setbindtodevice(struct sock * sk,char __user * optval,int optlen)545 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
546 				int optlen)
547 {
548 	int ret = -ENOPROTOOPT;
549 #ifdef CONFIG_NETDEVICES
550 	struct net *net = sock_net(sk);
551 	char devname[IFNAMSIZ];
552 	int index;
553 
554 	/* Sorry... */
555 	ret = -EPERM;
556 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
557 		goto out;
558 
559 	ret = -EINVAL;
560 	if (optlen < 0)
561 		goto out;
562 
563 	/* Bind this socket to a particular device like "eth0",
564 	 * as specified in the passed interface name. If the
565 	 * name is "" or the option length is zero the socket
566 	 * is not bound.
567 	 */
568 	if (optlen > IFNAMSIZ - 1)
569 		optlen = IFNAMSIZ - 1;
570 	memset(devname, 0, sizeof(devname));
571 
572 	ret = -EFAULT;
573 	if (copy_from_user(devname, optval, optlen))
574 		goto out;
575 
576 	index = 0;
577 	if (devname[0] != '\0') {
578 		struct net_device *dev;
579 
580 		rcu_read_lock();
581 		dev = dev_get_by_name_rcu(net, devname);
582 		if (dev)
583 			index = dev->ifindex;
584 		rcu_read_unlock();
585 		ret = -ENODEV;
586 		if (!dev)
587 			goto out;
588 	}
589 
590 	lock_sock(sk);
591 	sk->sk_bound_dev_if = index;
592 	sk_dst_reset(sk);
593 	release_sock(sk);
594 
595 	ret = 0;
596 
597 out:
598 #endif
599 
600 	return ret;
601 }
602 
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)603 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
604 				int __user *optlen, int len)
605 {
606 	int ret = -ENOPROTOOPT;
607 #ifdef CONFIG_NETDEVICES
608 	struct net *net = sock_net(sk);
609 	char devname[IFNAMSIZ];
610 
611 	if (sk->sk_bound_dev_if == 0) {
612 		len = 0;
613 		goto zero;
614 	}
615 
616 	ret = -EINVAL;
617 	if (len < IFNAMSIZ)
618 		goto out;
619 
620 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
621 	if (ret)
622 		goto out;
623 
624 	len = strlen(devname) + 1;
625 
626 	ret = -EFAULT;
627 	if (copy_to_user(optval, devname, len))
628 		goto out;
629 
630 zero:
631 	ret = -EFAULT;
632 	if (put_user(len, optlen))
633 		goto out;
634 
635 	ret = 0;
636 
637 out:
638 #endif
639 
640 	return ret;
641 }
642 
sock_valbool_flag(struct sock * sk,int bit,int valbool)643 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
644 {
645 	if (valbool)
646 		sock_set_flag(sk, bit);
647 	else
648 		sock_reset_flag(sk, bit);
649 }
650 
sk_mc_loop(struct sock * sk)651 bool sk_mc_loop(struct sock *sk)
652 {
653 	if (dev_recursion_level())
654 		return false;
655 	if (!sk)
656 		return true;
657 	switch (sk->sk_family) {
658 	case AF_INET:
659 		return inet_sk(sk)->mc_loop;
660 #if IS_ENABLED(CONFIG_IPV6)
661 	case AF_INET6:
662 		return inet6_sk(sk)->mc_loop;
663 #endif
664 	}
665 	WARN_ON(1);
666 	return true;
667 }
668 EXPORT_SYMBOL(sk_mc_loop);
669 
670 /*
671  *	This is meant for all protocols to use and covers goings on
672  *	at the socket level. Everything here is generic.
673  */
674 
sock_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)675 int sock_setsockopt(struct socket *sock, int level, int optname,
676 		    char __user *optval, unsigned int optlen)
677 {
678 	struct sock *sk = sock->sk;
679 	int val;
680 	int valbool;
681 	struct linger ling;
682 	int ret = 0;
683 
684 	/*
685 	 *	Options without arguments
686 	 */
687 
688 	if (optname == SO_BINDTODEVICE)
689 		return sock_setbindtodevice(sk, optval, optlen);
690 
691 	if (optlen < sizeof(int))
692 		return -EINVAL;
693 
694 	if (get_user(val, (int __user *)optval))
695 		return -EFAULT;
696 
697 	valbool = val ? 1 : 0;
698 
699 	lock_sock(sk);
700 
701 	switch (optname) {
702 	case SO_DEBUG:
703 		if (val && !capable(CAP_NET_ADMIN))
704 			ret = -EACCES;
705 		else
706 			sock_valbool_flag(sk, SOCK_DBG, valbool);
707 		break;
708 	case SO_REUSEADDR:
709 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
710 		break;
711 	case SO_REUSEPORT:
712 		sk->sk_reuseport = valbool;
713 		break;
714 	case SO_TYPE:
715 	case SO_PROTOCOL:
716 	case SO_DOMAIN:
717 	case SO_ERROR:
718 		ret = -ENOPROTOOPT;
719 		break;
720 	case SO_DONTROUTE:
721 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
722 		break;
723 	case SO_BROADCAST:
724 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
725 		break;
726 	case SO_SNDBUF:
727 		/* Don't error on this BSD doesn't and if you think
728 		 * about it this is right. Otherwise apps have to
729 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
730 		 * are treated in BSD as hints
731 		 */
732 		val = min_t(u32, val, sysctl_wmem_max);
733 set_sndbuf:
734 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
735 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
736 		/* Wake up sending tasks if we upped the value. */
737 		sk->sk_write_space(sk);
738 		break;
739 
740 	case SO_SNDBUFFORCE:
741 		if (!capable(CAP_NET_ADMIN)) {
742 			ret = -EPERM;
743 			break;
744 		}
745 		goto set_sndbuf;
746 
747 	case SO_RCVBUF:
748 		/* Don't error on this BSD doesn't and if you think
749 		 * about it this is right. Otherwise apps have to
750 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
751 		 * are treated in BSD as hints
752 		 */
753 		val = min_t(u32, val, sysctl_rmem_max);
754 set_rcvbuf:
755 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
756 		/*
757 		 * We double it on the way in to account for
758 		 * "struct sk_buff" etc. overhead.   Applications
759 		 * assume that the SO_RCVBUF setting they make will
760 		 * allow that much actual data to be received on that
761 		 * socket.
762 		 *
763 		 * Applications are unaware that "struct sk_buff" and
764 		 * other overheads allocate from the receive buffer
765 		 * during socket buffer allocation.
766 		 *
767 		 * And after considering the possible alternatives,
768 		 * returning the value we actually used in getsockopt
769 		 * is the most desirable behavior.
770 		 */
771 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
772 		break;
773 
774 	case SO_RCVBUFFORCE:
775 		if (!capable(CAP_NET_ADMIN)) {
776 			ret = -EPERM;
777 			break;
778 		}
779 		goto set_rcvbuf;
780 
781 	case SO_KEEPALIVE:
782 #ifdef CONFIG_INET
783 		if (sk->sk_protocol == IPPROTO_TCP &&
784 		    sk->sk_type == SOCK_STREAM)
785 			tcp_set_keepalive(sk, valbool);
786 #endif
787 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
788 		break;
789 
790 	case SO_OOBINLINE:
791 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
792 		break;
793 
794 	case SO_NO_CHECK:
795 		sk->sk_no_check_tx = valbool;
796 		break;
797 
798 	case SO_PRIORITY:
799 		if ((val >= 0 && val <= 6) ||
800 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
801 			sk->sk_priority = val;
802 		else
803 			ret = -EPERM;
804 		break;
805 
806 	case SO_LINGER:
807 		if (optlen < sizeof(ling)) {
808 			ret = -EINVAL;	/* 1003.1g */
809 			break;
810 		}
811 		if (copy_from_user(&ling, optval, sizeof(ling))) {
812 			ret = -EFAULT;
813 			break;
814 		}
815 		if (!ling.l_onoff)
816 			sock_reset_flag(sk, SOCK_LINGER);
817 		else {
818 #if (BITS_PER_LONG == 32)
819 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
820 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
821 			else
822 #endif
823 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
824 			sock_set_flag(sk, SOCK_LINGER);
825 		}
826 		break;
827 
828 	case SO_BSDCOMPAT:
829 		sock_warn_obsolete_bsdism("setsockopt");
830 		break;
831 
832 	case SO_PASSCRED:
833 		if (valbool)
834 			set_bit(SOCK_PASSCRED, &sock->flags);
835 		else
836 			clear_bit(SOCK_PASSCRED, &sock->flags);
837 		break;
838 
839 	case SO_TIMESTAMP:
840 	case SO_TIMESTAMPNS:
841 		if (valbool)  {
842 			if (optname == SO_TIMESTAMP)
843 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
844 			else
845 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
846 			sock_set_flag(sk, SOCK_RCVTSTAMP);
847 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
848 		} else {
849 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
850 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
851 		}
852 		break;
853 
854 	case SO_TIMESTAMPING:
855 		if (val & ~SOF_TIMESTAMPING_MASK) {
856 			ret = -EINVAL;
857 			break;
858 		}
859 
860 		if (val & SOF_TIMESTAMPING_OPT_ID &&
861 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
862 			if (sk->sk_protocol == IPPROTO_TCP &&
863 			    sk->sk_type == SOCK_STREAM) {
864 				if (sk->sk_state != TCP_ESTABLISHED) {
865 					ret = -EINVAL;
866 					break;
867 				}
868 				sk->sk_tskey = tcp_sk(sk)->snd_una;
869 			} else {
870 				sk->sk_tskey = 0;
871 			}
872 		}
873 		sk->sk_tsflags = val;
874 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
875 			sock_enable_timestamp(sk,
876 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
877 		else
878 			sock_disable_timestamp(sk,
879 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
880 		break;
881 
882 	case SO_RCVLOWAT:
883 		if (val < 0)
884 			val = INT_MAX;
885 		sk->sk_rcvlowat = val ? : 1;
886 		break;
887 
888 	case SO_RCVTIMEO:
889 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
890 		break;
891 
892 	case SO_SNDTIMEO:
893 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
894 		break;
895 
896 	case SO_ATTACH_FILTER:
897 		ret = -EINVAL;
898 		if (optlen == sizeof(struct sock_fprog)) {
899 			struct sock_fprog fprog;
900 
901 			ret = -EFAULT;
902 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
903 				break;
904 
905 			ret = sk_attach_filter(&fprog, sk);
906 		}
907 		break;
908 
909 	case SO_ATTACH_BPF:
910 		ret = -EINVAL;
911 		if (optlen == sizeof(u32)) {
912 			u32 ufd;
913 
914 			ret = -EFAULT;
915 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
916 				break;
917 
918 			ret = sk_attach_bpf(ufd, sk);
919 		}
920 		break;
921 
922 	case SO_DETACH_FILTER:
923 		ret = sk_detach_filter(sk);
924 		break;
925 
926 	case SO_LOCK_FILTER:
927 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
928 			ret = -EPERM;
929 		else
930 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
931 		break;
932 
933 	case SO_PASSSEC:
934 		if (valbool)
935 			set_bit(SOCK_PASSSEC, &sock->flags);
936 		else
937 			clear_bit(SOCK_PASSSEC, &sock->flags);
938 		break;
939 	case SO_MARK:
940 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
941 			ret = -EPERM;
942 		else
943 			sk->sk_mark = val;
944 		break;
945 
946 	case SO_RXQ_OVFL:
947 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
948 		break;
949 
950 	case SO_WIFI_STATUS:
951 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
952 		break;
953 
954 	case SO_PEEK_OFF:
955 		if (sock->ops->set_peek_off)
956 			ret = sock->ops->set_peek_off(sk, val);
957 		else
958 			ret = -EOPNOTSUPP;
959 		break;
960 
961 	case SO_NOFCS:
962 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
963 		break;
964 
965 	case SO_SELECT_ERR_QUEUE:
966 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
967 		break;
968 
969 #ifdef CONFIG_NET_RX_BUSY_POLL
970 	case SO_BUSY_POLL:
971 		/* allow unprivileged users to decrease the value */
972 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
973 			ret = -EPERM;
974 		else {
975 			if (val < 0)
976 				ret = -EINVAL;
977 			else
978 				sk->sk_ll_usec = val;
979 		}
980 		break;
981 #endif
982 
983 	case SO_MAX_PACING_RATE:
984 		sk->sk_max_pacing_rate = val;
985 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
986 					 sk->sk_max_pacing_rate);
987 		break;
988 
989 	default:
990 		ret = -ENOPROTOOPT;
991 		break;
992 	}
993 	release_sock(sk);
994 	return ret;
995 }
996 EXPORT_SYMBOL(sock_setsockopt);
997 
998 
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)999 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1000 			  struct ucred *ucred)
1001 {
1002 	ucred->pid = pid_vnr(pid);
1003 	ucred->uid = ucred->gid = -1;
1004 	if (cred) {
1005 		struct user_namespace *current_ns = current_user_ns();
1006 
1007 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1008 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1009 	}
1010 }
1011 
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1012 int sock_getsockopt(struct socket *sock, int level, int optname,
1013 		    char __user *optval, int __user *optlen)
1014 {
1015 	struct sock *sk = sock->sk;
1016 
1017 	union {
1018 		int val;
1019 		struct linger ling;
1020 		struct timeval tm;
1021 	} v;
1022 
1023 	int lv = sizeof(int);
1024 	int len;
1025 
1026 	if (get_user(len, optlen))
1027 		return -EFAULT;
1028 	if (len < 0)
1029 		return -EINVAL;
1030 
1031 	memset(&v, 0, sizeof(v));
1032 
1033 	switch (optname) {
1034 	case SO_DEBUG:
1035 		v.val = sock_flag(sk, SOCK_DBG);
1036 		break;
1037 
1038 	case SO_DONTROUTE:
1039 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1040 		break;
1041 
1042 	case SO_BROADCAST:
1043 		v.val = sock_flag(sk, SOCK_BROADCAST);
1044 		break;
1045 
1046 	case SO_SNDBUF:
1047 		v.val = sk->sk_sndbuf;
1048 		break;
1049 
1050 	case SO_RCVBUF:
1051 		v.val = sk->sk_rcvbuf;
1052 		break;
1053 
1054 	case SO_REUSEADDR:
1055 		v.val = sk->sk_reuse;
1056 		break;
1057 
1058 	case SO_REUSEPORT:
1059 		v.val = sk->sk_reuseport;
1060 		break;
1061 
1062 	case SO_KEEPALIVE:
1063 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1064 		break;
1065 
1066 	case SO_TYPE:
1067 		v.val = sk->sk_type;
1068 		break;
1069 
1070 	case SO_PROTOCOL:
1071 		v.val = sk->sk_protocol;
1072 		break;
1073 
1074 	case SO_DOMAIN:
1075 		v.val = sk->sk_family;
1076 		break;
1077 
1078 	case SO_ERROR:
1079 		v.val = -sock_error(sk);
1080 		if (v.val == 0)
1081 			v.val = xchg(&sk->sk_err_soft, 0);
1082 		break;
1083 
1084 	case SO_OOBINLINE:
1085 		v.val = sock_flag(sk, SOCK_URGINLINE);
1086 		break;
1087 
1088 	case SO_NO_CHECK:
1089 		v.val = sk->sk_no_check_tx;
1090 		break;
1091 
1092 	case SO_PRIORITY:
1093 		v.val = sk->sk_priority;
1094 		break;
1095 
1096 	case SO_LINGER:
1097 		lv		= sizeof(v.ling);
1098 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1099 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1100 		break;
1101 
1102 	case SO_BSDCOMPAT:
1103 		sock_warn_obsolete_bsdism("getsockopt");
1104 		break;
1105 
1106 	case SO_TIMESTAMP:
1107 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1108 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1109 		break;
1110 
1111 	case SO_TIMESTAMPNS:
1112 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1113 		break;
1114 
1115 	case SO_TIMESTAMPING:
1116 		v.val = sk->sk_tsflags;
1117 		break;
1118 
1119 	case SO_RCVTIMEO:
1120 		lv = sizeof(struct timeval);
1121 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1122 			v.tm.tv_sec = 0;
1123 			v.tm.tv_usec = 0;
1124 		} else {
1125 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1126 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1127 		}
1128 		break;
1129 
1130 	case SO_SNDTIMEO:
1131 		lv = sizeof(struct timeval);
1132 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1133 			v.tm.tv_sec = 0;
1134 			v.tm.tv_usec = 0;
1135 		} else {
1136 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1137 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1138 		}
1139 		break;
1140 
1141 	case SO_RCVLOWAT:
1142 		v.val = sk->sk_rcvlowat;
1143 		break;
1144 
1145 	case SO_SNDLOWAT:
1146 		v.val = 1;
1147 		break;
1148 
1149 	case SO_PASSCRED:
1150 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1151 		break;
1152 
1153 	case SO_PEERCRED:
1154 	{
1155 		struct ucred peercred;
1156 		if (len > sizeof(peercred))
1157 			len = sizeof(peercred);
1158 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1159 		if (copy_to_user(optval, &peercred, len))
1160 			return -EFAULT;
1161 		goto lenout;
1162 	}
1163 
1164 	case SO_PEERNAME:
1165 	{
1166 		char address[128];
1167 
1168 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1169 			return -ENOTCONN;
1170 		if (lv < len)
1171 			return -EINVAL;
1172 		if (copy_to_user(optval, address, len))
1173 			return -EFAULT;
1174 		goto lenout;
1175 	}
1176 
1177 	/* Dubious BSD thing... Probably nobody even uses it, but
1178 	 * the UNIX standard wants it for whatever reason... -DaveM
1179 	 */
1180 	case SO_ACCEPTCONN:
1181 		v.val = sk->sk_state == TCP_LISTEN;
1182 		break;
1183 
1184 	case SO_PASSSEC:
1185 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1186 		break;
1187 
1188 	case SO_PEERSEC:
1189 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1190 
1191 	case SO_MARK:
1192 		v.val = sk->sk_mark;
1193 		break;
1194 
1195 	case SO_RXQ_OVFL:
1196 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1197 		break;
1198 
1199 	case SO_WIFI_STATUS:
1200 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1201 		break;
1202 
1203 	case SO_PEEK_OFF:
1204 		if (!sock->ops->set_peek_off)
1205 			return -EOPNOTSUPP;
1206 
1207 		v.val = sk->sk_peek_off;
1208 		break;
1209 	case SO_NOFCS:
1210 		v.val = sock_flag(sk, SOCK_NOFCS);
1211 		break;
1212 
1213 	case SO_BINDTODEVICE:
1214 		return sock_getbindtodevice(sk, optval, optlen, len);
1215 
1216 	case SO_GET_FILTER:
1217 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1218 		if (len < 0)
1219 			return len;
1220 
1221 		goto lenout;
1222 
1223 	case SO_LOCK_FILTER:
1224 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1225 		break;
1226 
1227 	case SO_BPF_EXTENSIONS:
1228 		v.val = bpf_tell_extensions();
1229 		break;
1230 
1231 	case SO_SELECT_ERR_QUEUE:
1232 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1233 		break;
1234 
1235 #ifdef CONFIG_NET_RX_BUSY_POLL
1236 	case SO_BUSY_POLL:
1237 		v.val = sk->sk_ll_usec;
1238 		break;
1239 #endif
1240 
1241 	case SO_MAX_PACING_RATE:
1242 		v.val = sk->sk_max_pacing_rate;
1243 		break;
1244 
1245 	case SO_INCOMING_CPU:
1246 		v.val = sk->sk_incoming_cpu;
1247 		break;
1248 
1249 	default:
1250 		/* We implement the SO_SNDLOWAT etc to not be settable
1251 		 * (1003.1g 7).
1252 		 */
1253 		return -ENOPROTOOPT;
1254 	}
1255 
1256 	if (len > lv)
1257 		len = lv;
1258 	if (copy_to_user(optval, &v, len))
1259 		return -EFAULT;
1260 lenout:
1261 	if (put_user(len, optlen))
1262 		return -EFAULT;
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Initialize an sk_lock.
1268  *
1269  * (We also register the sk_lock with the lock validator.)
1270  */
sock_lock_init(struct sock * sk)1271 static inline void sock_lock_init(struct sock *sk)
1272 {
1273 	sock_lock_init_class_and_name(sk,
1274 			af_family_slock_key_strings[sk->sk_family],
1275 			af_family_slock_keys + sk->sk_family,
1276 			af_family_key_strings[sk->sk_family],
1277 			af_family_keys + sk->sk_family);
1278 }
1279 
1280 /*
1281  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1282  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1283  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1284  */
sock_copy(struct sock * nsk,const struct sock * osk)1285 static void sock_copy(struct sock *nsk, const struct sock *osk)
1286 {
1287 #ifdef CONFIG_SECURITY_NETWORK
1288 	void *sptr = nsk->sk_security;
1289 #endif
1290 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1291 
1292 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1293 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1294 
1295 #ifdef CONFIG_SECURITY_NETWORK
1296 	nsk->sk_security = sptr;
1297 	security_sk_clone(osk, nsk);
1298 #endif
1299 }
1300 
sk_prot_clear_portaddr_nulls(struct sock * sk,int size)1301 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1302 {
1303 	unsigned long nulls1, nulls2;
1304 
1305 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1306 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1307 	if (nulls1 > nulls2)
1308 		swap(nulls1, nulls2);
1309 
1310 	if (nulls1 != 0)
1311 		memset((char *)sk, 0, nulls1);
1312 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1313 	       nulls2 - nulls1 - sizeof(void *));
1314 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1315 	       size - nulls2 - sizeof(void *));
1316 }
1317 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1318 
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1319 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1320 		int family)
1321 {
1322 	struct sock *sk;
1323 	struct kmem_cache *slab;
1324 
1325 	slab = prot->slab;
1326 	if (slab != NULL) {
1327 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1328 		if (!sk)
1329 			return sk;
1330 		if (priority & __GFP_ZERO) {
1331 			if (prot->clear_sk)
1332 				prot->clear_sk(sk, prot->obj_size);
1333 			else
1334 				sk_prot_clear_nulls(sk, prot->obj_size);
1335 		}
1336 	} else
1337 		sk = kmalloc(prot->obj_size, priority);
1338 
1339 	if (sk != NULL) {
1340 		kmemcheck_annotate_bitfield(sk, flags);
1341 
1342 		if (security_sk_alloc(sk, family, priority))
1343 			goto out_free;
1344 
1345 		if (!try_module_get(prot->owner))
1346 			goto out_free_sec;
1347 		sk_tx_queue_clear(sk);
1348 	}
1349 
1350 	return sk;
1351 
1352 out_free_sec:
1353 	security_sk_free(sk);
1354 out_free:
1355 	if (slab != NULL)
1356 		kmem_cache_free(slab, sk);
1357 	else
1358 		kfree(sk);
1359 	return NULL;
1360 }
1361 
sk_prot_free(struct proto * prot,struct sock * sk)1362 static void sk_prot_free(struct proto *prot, struct sock *sk)
1363 {
1364 	struct kmem_cache *slab;
1365 	struct module *owner;
1366 
1367 	owner = prot->owner;
1368 	slab = prot->slab;
1369 
1370 	security_sk_free(sk);
1371 	if (slab != NULL)
1372 		kmem_cache_free(slab, sk);
1373 	else
1374 		kfree(sk);
1375 	module_put(owner);
1376 }
1377 
1378 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
sock_update_netprioidx(struct sock * sk)1379 void sock_update_netprioidx(struct sock *sk)
1380 {
1381 	if (in_interrupt())
1382 		return;
1383 
1384 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1385 }
1386 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1387 #endif
1388 
1389 /**
1390  *	sk_alloc - All socket objects are allocated here
1391  *	@net: the applicable net namespace
1392  *	@family: protocol family
1393  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1394  *	@prot: struct proto associated with this new sock instance
1395  */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot)1396 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1397 		      struct proto *prot)
1398 {
1399 	struct sock *sk;
1400 
1401 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1402 	if (sk) {
1403 		sk->sk_family = family;
1404 		/*
1405 		 * See comment in struct sock definition to understand
1406 		 * why we need sk_prot_creator -acme
1407 		 */
1408 		sk->sk_prot = sk->sk_prot_creator = prot;
1409 		sock_lock_init(sk);
1410 		sock_net_set(sk, get_net(net));
1411 		atomic_set(&sk->sk_wmem_alloc, 1);
1412 
1413 		sock_update_classid(sk);
1414 		sock_update_netprioidx(sk);
1415 	}
1416 
1417 	return sk;
1418 }
1419 EXPORT_SYMBOL(sk_alloc);
1420 
__sk_free(struct sock * sk)1421 static void __sk_free(struct sock *sk)
1422 {
1423 	struct sk_filter *filter;
1424 
1425 	if (sk->sk_destruct)
1426 		sk->sk_destruct(sk);
1427 
1428 	filter = rcu_dereference_check(sk->sk_filter,
1429 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1430 	if (filter) {
1431 		sk_filter_uncharge(sk, filter);
1432 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1433 	}
1434 
1435 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1436 
1437 	if (atomic_read(&sk->sk_omem_alloc))
1438 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1439 			 __func__, atomic_read(&sk->sk_omem_alloc));
1440 
1441 	if (sk->sk_peer_cred)
1442 		put_cred(sk->sk_peer_cred);
1443 	put_pid(sk->sk_peer_pid);
1444 	put_net(sock_net(sk));
1445 	sk_prot_free(sk->sk_prot_creator, sk);
1446 }
1447 
sk_free(struct sock * sk)1448 void sk_free(struct sock *sk)
1449 {
1450 	/*
1451 	 * We subtract one from sk_wmem_alloc and can know if
1452 	 * some packets are still in some tx queue.
1453 	 * If not null, sock_wfree() will call __sk_free(sk) later
1454 	 */
1455 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1456 		__sk_free(sk);
1457 }
1458 EXPORT_SYMBOL(sk_free);
1459 
1460 /*
1461  * Last sock_put should drop reference to sk->sk_net. It has already
1462  * been dropped in sk_change_net. Taking reference to stopping namespace
1463  * is not an option.
1464  * Take reference to a socket to remove it from hash _alive_ and after that
1465  * destroy it in the context of init_net.
1466  */
sk_release_kernel(struct sock * sk)1467 void sk_release_kernel(struct sock *sk)
1468 {
1469 	if (sk == NULL || sk->sk_socket == NULL)
1470 		return;
1471 
1472 	sock_hold(sk);
1473 	sock_release(sk->sk_socket);
1474 	sock_net_set(sk, get_net(&init_net));
1475 	sock_put(sk);
1476 }
1477 EXPORT_SYMBOL(sk_release_kernel);
1478 
sk_update_clone(const struct sock * sk,struct sock * newsk)1479 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1480 {
1481 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1482 		sock_update_memcg(newsk);
1483 }
1484 
1485 /**
1486  *	sk_clone_lock - clone a socket, and lock its clone
1487  *	@sk: the socket to clone
1488  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1489  *
1490  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1491  */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1492 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1493 {
1494 	struct sock *newsk;
1495 	bool is_charged = true;
1496 
1497 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1498 	if (newsk != NULL) {
1499 		struct sk_filter *filter;
1500 
1501 		sock_copy(newsk, sk);
1502 
1503 		/* SANITY */
1504 		get_net(sock_net(newsk));
1505 		sk_node_init(&newsk->sk_node);
1506 		sock_lock_init(newsk);
1507 		bh_lock_sock(newsk);
1508 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1509 		newsk->sk_backlog.len = 0;
1510 
1511 		atomic_set(&newsk->sk_rmem_alloc, 0);
1512 		/*
1513 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1514 		 */
1515 		atomic_set(&newsk->sk_wmem_alloc, 1);
1516 		atomic_set(&newsk->sk_omem_alloc, 0);
1517 		skb_queue_head_init(&newsk->sk_receive_queue);
1518 		skb_queue_head_init(&newsk->sk_write_queue);
1519 
1520 		spin_lock_init(&newsk->sk_dst_lock);
1521 		rwlock_init(&newsk->sk_callback_lock);
1522 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1523 				af_callback_keys + newsk->sk_family,
1524 				af_family_clock_key_strings[newsk->sk_family]);
1525 
1526 		newsk->sk_dst_cache	= NULL;
1527 		newsk->sk_wmem_queued	= 0;
1528 		newsk->sk_forward_alloc = 0;
1529 		newsk->sk_send_head	= NULL;
1530 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1531 
1532 		sock_reset_flag(newsk, SOCK_DONE);
1533 		skb_queue_head_init(&newsk->sk_error_queue);
1534 
1535 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1536 		if (filter != NULL)
1537 			/* though it's an empty new sock, the charging may fail
1538 			 * if sysctl_optmem_max was changed between creation of
1539 			 * original socket and cloning
1540 			 */
1541 			is_charged = sk_filter_charge(newsk, filter);
1542 
1543 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1544 			/* It is still raw copy of parent, so invalidate
1545 			 * destructor and make plain sk_free() */
1546 			newsk->sk_destruct = NULL;
1547 			bh_unlock_sock(newsk);
1548 			sk_free(newsk);
1549 			newsk = NULL;
1550 			goto out;
1551 		}
1552 
1553 		newsk->sk_err	   = 0;
1554 		newsk->sk_priority = 0;
1555 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1556 		atomic64_set(&newsk->sk_cookie, 0);
1557 		/*
1558 		 * Before updating sk_refcnt, we must commit prior changes to memory
1559 		 * (Documentation/RCU/rculist_nulls.txt for details)
1560 		 */
1561 		smp_wmb();
1562 		atomic_set(&newsk->sk_refcnt, 2);
1563 
1564 		/*
1565 		 * Increment the counter in the same struct proto as the master
1566 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1567 		 * is the same as sk->sk_prot->socks, as this field was copied
1568 		 * with memcpy).
1569 		 *
1570 		 * This _changes_ the previous behaviour, where
1571 		 * tcp_create_openreq_child always was incrementing the
1572 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1573 		 * to be taken into account in all callers. -acme
1574 		 */
1575 		sk_refcnt_debug_inc(newsk);
1576 		sk_set_socket(newsk, NULL);
1577 		newsk->sk_wq = NULL;
1578 
1579 		sk_update_clone(sk, newsk);
1580 
1581 		if (newsk->sk_prot->sockets_allocated)
1582 			sk_sockets_allocated_inc(newsk);
1583 
1584 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1585 			net_enable_timestamp();
1586 	}
1587 out:
1588 	return newsk;
1589 }
1590 EXPORT_SYMBOL_GPL(sk_clone_lock);
1591 
sk_setup_caps(struct sock * sk,struct dst_entry * dst)1592 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1593 {
1594 	__sk_dst_set(sk, dst);
1595 	sk->sk_route_caps = dst->dev->features;
1596 	if (sk->sk_route_caps & NETIF_F_GSO)
1597 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1598 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1599 	if (sk_can_gso(sk)) {
1600 		if (dst->header_len) {
1601 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1602 		} else {
1603 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1604 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1605 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1606 		}
1607 	}
1608 }
1609 EXPORT_SYMBOL_GPL(sk_setup_caps);
1610 
1611 /*
1612  *	Simple resource managers for sockets.
1613  */
1614 
1615 
1616 /*
1617  * Write buffer destructor automatically called from kfree_skb.
1618  */
sock_wfree(struct sk_buff * skb)1619 void sock_wfree(struct sk_buff *skb)
1620 {
1621 	struct sock *sk = skb->sk;
1622 	unsigned int len = skb->truesize;
1623 
1624 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1625 		/*
1626 		 * Keep a reference on sk_wmem_alloc, this will be released
1627 		 * after sk_write_space() call
1628 		 */
1629 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1630 		sk->sk_write_space(sk);
1631 		len = 1;
1632 	}
1633 	/*
1634 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1635 	 * could not do because of in-flight packets
1636 	 */
1637 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1638 		__sk_free(sk);
1639 }
1640 EXPORT_SYMBOL(sock_wfree);
1641 
skb_orphan_partial(struct sk_buff * skb)1642 void skb_orphan_partial(struct sk_buff *skb)
1643 {
1644 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1645 	 * so we do not completely orphan skb, but transfert all
1646 	 * accounted bytes but one, to avoid unexpected reorders.
1647 	 */
1648 	if (skb->destructor == sock_wfree
1649 #ifdef CONFIG_INET
1650 	    || skb->destructor == tcp_wfree
1651 #endif
1652 		) {
1653 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1654 		skb->truesize = 1;
1655 	} else {
1656 		skb_orphan(skb);
1657 	}
1658 }
1659 EXPORT_SYMBOL(skb_orphan_partial);
1660 
1661 /*
1662  * Read buffer destructor automatically called from kfree_skb.
1663  */
sock_rfree(struct sk_buff * skb)1664 void sock_rfree(struct sk_buff *skb)
1665 {
1666 	struct sock *sk = skb->sk;
1667 	unsigned int len = skb->truesize;
1668 
1669 	atomic_sub(len, &sk->sk_rmem_alloc);
1670 	sk_mem_uncharge(sk, len);
1671 }
1672 EXPORT_SYMBOL(sock_rfree);
1673 
1674 /*
1675  * Buffer destructor for skbs that are not used directly in read or write
1676  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1677  */
sock_efree(struct sk_buff * skb)1678 void sock_efree(struct sk_buff *skb)
1679 {
1680 	sock_put(skb->sk);
1681 }
1682 EXPORT_SYMBOL(sock_efree);
1683 
sock_i_uid(struct sock * sk)1684 kuid_t sock_i_uid(struct sock *sk)
1685 {
1686 	kuid_t uid;
1687 
1688 	read_lock_bh(&sk->sk_callback_lock);
1689 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1690 	read_unlock_bh(&sk->sk_callback_lock);
1691 	return uid;
1692 }
1693 EXPORT_SYMBOL(sock_i_uid);
1694 
sock_i_ino(struct sock * sk)1695 unsigned long sock_i_ino(struct sock *sk)
1696 {
1697 	unsigned long ino;
1698 
1699 	read_lock_bh(&sk->sk_callback_lock);
1700 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1701 	read_unlock_bh(&sk->sk_callback_lock);
1702 	return ino;
1703 }
1704 EXPORT_SYMBOL(sock_i_ino);
1705 
1706 /*
1707  * Allocate a skb from the socket's send buffer.
1708  */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1709 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1710 			     gfp_t priority)
1711 {
1712 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1713 		struct sk_buff *skb = alloc_skb(size, priority);
1714 		if (skb) {
1715 			skb_set_owner_w(skb, sk);
1716 			return skb;
1717 		}
1718 	}
1719 	return NULL;
1720 }
1721 EXPORT_SYMBOL(sock_wmalloc);
1722 
1723 /*
1724  * Allocate a memory block from the socket's option memory buffer.
1725  */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)1726 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1727 {
1728 	if ((unsigned int)size <= sysctl_optmem_max &&
1729 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1730 		void *mem;
1731 		/* First do the add, to avoid the race if kmalloc
1732 		 * might sleep.
1733 		 */
1734 		atomic_add(size, &sk->sk_omem_alloc);
1735 		mem = kmalloc(size, priority);
1736 		if (mem)
1737 			return mem;
1738 		atomic_sub(size, &sk->sk_omem_alloc);
1739 	}
1740 	return NULL;
1741 }
1742 EXPORT_SYMBOL(sock_kmalloc);
1743 
1744 /* Free an option memory block. Note, we actually want the inline
1745  * here as this allows gcc to detect the nullify and fold away the
1746  * condition entirely.
1747  */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)1748 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1749 				  const bool nullify)
1750 {
1751 	if (WARN_ON_ONCE(!mem))
1752 		return;
1753 	if (nullify)
1754 		kzfree(mem);
1755 	else
1756 		kfree(mem);
1757 	atomic_sub(size, &sk->sk_omem_alloc);
1758 }
1759 
sock_kfree_s(struct sock * sk,void * mem,int size)1760 void sock_kfree_s(struct sock *sk, void *mem, int size)
1761 {
1762 	__sock_kfree_s(sk, mem, size, false);
1763 }
1764 EXPORT_SYMBOL(sock_kfree_s);
1765 
sock_kzfree_s(struct sock * sk,void * mem,int size)1766 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1767 {
1768 	__sock_kfree_s(sk, mem, size, true);
1769 }
1770 EXPORT_SYMBOL(sock_kzfree_s);
1771 
1772 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1773    I think, these locks should be removed for datagram sockets.
1774  */
sock_wait_for_wmem(struct sock * sk,long timeo)1775 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1776 {
1777 	DEFINE_WAIT(wait);
1778 
1779 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1780 	for (;;) {
1781 		if (!timeo)
1782 			break;
1783 		if (signal_pending(current))
1784 			break;
1785 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1786 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1787 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1788 			break;
1789 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1790 			break;
1791 		if (sk->sk_err)
1792 			break;
1793 		timeo = schedule_timeout(timeo);
1794 	}
1795 	finish_wait(sk_sleep(sk), &wait);
1796 	return timeo;
1797 }
1798 
1799 
1800 /*
1801  *	Generic send/receive buffer handlers
1802  */
1803 
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)1804 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1805 				     unsigned long data_len, int noblock,
1806 				     int *errcode, int max_page_order)
1807 {
1808 	struct sk_buff *skb;
1809 	long timeo;
1810 	int err;
1811 
1812 	timeo = sock_sndtimeo(sk, noblock);
1813 	for (;;) {
1814 		err = sock_error(sk);
1815 		if (err != 0)
1816 			goto failure;
1817 
1818 		err = -EPIPE;
1819 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1820 			goto failure;
1821 
1822 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1823 			break;
1824 
1825 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1826 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1827 		err = -EAGAIN;
1828 		if (!timeo)
1829 			goto failure;
1830 		if (signal_pending(current))
1831 			goto interrupted;
1832 		timeo = sock_wait_for_wmem(sk, timeo);
1833 	}
1834 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1835 				   errcode, sk->sk_allocation);
1836 	if (skb)
1837 		skb_set_owner_w(skb, sk);
1838 	return skb;
1839 
1840 interrupted:
1841 	err = sock_intr_errno(timeo);
1842 failure:
1843 	*errcode = err;
1844 	return NULL;
1845 }
1846 EXPORT_SYMBOL(sock_alloc_send_pskb);
1847 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1848 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1849 				    int noblock, int *errcode)
1850 {
1851 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1852 }
1853 EXPORT_SYMBOL(sock_alloc_send_skb);
1854 
1855 /* On 32bit arches, an skb frag is limited to 2^15 */
1856 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1857 
1858 /**
1859  * skb_page_frag_refill - check that a page_frag contains enough room
1860  * @sz: minimum size of the fragment we want to get
1861  * @pfrag: pointer to page_frag
1862  * @gfp: priority for memory allocation
1863  *
1864  * Note: While this allocator tries to use high order pages, there is
1865  * no guarantee that allocations succeed. Therefore, @sz MUST be
1866  * less or equal than PAGE_SIZE.
1867  */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)1868 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1869 {
1870 	if (pfrag->page) {
1871 		if (atomic_read(&pfrag->page->_count) == 1) {
1872 			pfrag->offset = 0;
1873 			return true;
1874 		}
1875 		if (pfrag->offset + sz <= pfrag->size)
1876 			return true;
1877 		put_page(pfrag->page);
1878 	}
1879 
1880 	pfrag->offset = 0;
1881 	if (SKB_FRAG_PAGE_ORDER) {
1882 		pfrag->page = alloc_pages((gfp & ~__GFP_WAIT) | __GFP_COMP |
1883 					  __GFP_NOWARN | __GFP_NORETRY,
1884 					  SKB_FRAG_PAGE_ORDER);
1885 		if (likely(pfrag->page)) {
1886 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1887 			return true;
1888 		}
1889 	}
1890 	pfrag->page = alloc_page(gfp);
1891 	if (likely(pfrag->page)) {
1892 		pfrag->size = PAGE_SIZE;
1893 		return true;
1894 	}
1895 	return false;
1896 }
1897 EXPORT_SYMBOL(skb_page_frag_refill);
1898 
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1899 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1900 {
1901 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1902 		return true;
1903 
1904 	sk_enter_memory_pressure(sk);
1905 	sk_stream_moderate_sndbuf(sk);
1906 	return false;
1907 }
1908 EXPORT_SYMBOL(sk_page_frag_refill);
1909 
__lock_sock(struct sock * sk)1910 static void __lock_sock(struct sock *sk)
1911 	__releases(&sk->sk_lock.slock)
1912 	__acquires(&sk->sk_lock.slock)
1913 {
1914 	DEFINE_WAIT(wait);
1915 
1916 	for (;;) {
1917 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1918 					TASK_UNINTERRUPTIBLE);
1919 		spin_unlock_bh(&sk->sk_lock.slock);
1920 		schedule();
1921 		spin_lock_bh(&sk->sk_lock.slock);
1922 		if (!sock_owned_by_user(sk))
1923 			break;
1924 	}
1925 	finish_wait(&sk->sk_lock.wq, &wait);
1926 }
1927 
__release_sock(struct sock * sk)1928 static void __release_sock(struct sock *sk)
1929 	__releases(&sk->sk_lock.slock)
1930 	__acquires(&sk->sk_lock.slock)
1931 {
1932 	struct sk_buff *skb = sk->sk_backlog.head;
1933 
1934 	do {
1935 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1936 		bh_unlock_sock(sk);
1937 
1938 		do {
1939 			struct sk_buff *next = skb->next;
1940 
1941 			prefetch(next);
1942 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1943 			skb->next = NULL;
1944 			sk_backlog_rcv(sk, skb);
1945 
1946 			/*
1947 			 * We are in process context here with softirqs
1948 			 * disabled, use cond_resched_softirq() to preempt.
1949 			 * This is safe to do because we've taken the backlog
1950 			 * queue private:
1951 			 */
1952 			cond_resched_softirq();
1953 
1954 			skb = next;
1955 		} while (skb != NULL);
1956 
1957 		bh_lock_sock(sk);
1958 	} while ((skb = sk->sk_backlog.head) != NULL);
1959 
1960 	/*
1961 	 * Doing the zeroing here guarantee we can not loop forever
1962 	 * while a wild producer attempts to flood us.
1963 	 */
1964 	sk->sk_backlog.len = 0;
1965 }
1966 
1967 /**
1968  * sk_wait_data - wait for data to arrive at sk_receive_queue
1969  * @sk:    sock to wait on
1970  * @timeo: for how long
1971  *
1972  * Now socket state including sk->sk_err is changed only under lock,
1973  * hence we may omit checks after joining wait queue.
1974  * We check receive queue before schedule() only as optimization;
1975  * it is very likely that release_sock() added new data.
1976  */
sk_wait_data(struct sock * sk,long * timeo)1977 int sk_wait_data(struct sock *sk, long *timeo)
1978 {
1979 	int rc;
1980 	DEFINE_WAIT(wait);
1981 
1982 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1983 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1984 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1985 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1986 	finish_wait(sk_sleep(sk), &wait);
1987 	return rc;
1988 }
1989 EXPORT_SYMBOL(sk_wait_data);
1990 
1991 /**
1992  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1993  *	@sk: socket
1994  *	@size: memory size to allocate
1995  *	@kind: allocation type
1996  *
1997  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1998  *	rmem allocation. This function assumes that protocols which have
1999  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2000  */
__sk_mem_schedule(struct sock * sk,int size,int kind)2001 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2002 {
2003 	struct proto *prot = sk->sk_prot;
2004 	int amt = sk_mem_pages(size);
2005 	long allocated;
2006 	int parent_status = UNDER_LIMIT;
2007 
2008 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2009 
2010 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2011 
2012 	/* Under limit. */
2013 	if (parent_status == UNDER_LIMIT &&
2014 			allocated <= sk_prot_mem_limits(sk, 0)) {
2015 		sk_leave_memory_pressure(sk);
2016 		return 1;
2017 	}
2018 
2019 	/* Under pressure. (we or our parents) */
2020 	if ((parent_status > SOFT_LIMIT) ||
2021 			allocated > sk_prot_mem_limits(sk, 1))
2022 		sk_enter_memory_pressure(sk);
2023 
2024 	/* Over hard limit (we or our parents) */
2025 	if ((parent_status == OVER_LIMIT) ||
2026 			(allocated > sk_prot_mem_limits(sk, 2)))
2027 		goto suppress_allocation;
2028 
2029 	/* guarantee minimum buffer size under pressure */
2030 	if (kind == SK_MEM_RECV) {
2031 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2032 			return 1;
2033 
2034 	} else { /* SK_MEM_SEND */
2035 		if (sk->sk_type == SOCK_STREAM) {
2036 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2037 				return 1;
2038 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2039 			   prot->sysctl_wmem[0])
2040 				return 1;
2041 	}
2042 
2043 	if (sk_has_memory_pressure(sk)) {
2044 		int alloc;
2045 
2046 		if (!sk_under_memory_pressure(sk))
2047 			return 1;
2048 		alloc = sk_sockets_allocated_read_positive(sk);
2049 		if (sk_prot_mem_limits(sk, 2) > alloc *
2050 		    sk_mem_pages(sk->sk_wmem_queued +
2051 				 atomic_read(&sk->sk_rmem_alloc) +
2052 				 sk->sk_forward_alloc))
2053 			return 1;
2054 	}
2055 
2056 suppress_allocation:
2057 
2058 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2059 		sk_stream_moderate_sndbuf(sk);
2060 
2061 		/* Fail only if socket is _under_ its sndbuf.
2062 		 * In this case we cannot block, so that we have to fail.
2063 		 */
2064 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2065 			return 1;
2066 	}
2067 
2068 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2069 
2070 	/* Alas. Undo changes. */
2071 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2072 
2073 	sk_memory_allocated_sub(sk, amt);
2074 
2075 	return 0;
2076 }
2077 EXPORT_SYMBOL(__sk_mem_schedule);
2078 
2079 /**
2080  *	__sk_reclaim - reclaim memory_allocated
2081  *	@sk: socket
2082  */
__sk_mem_reclaim(struct sock * sk)2083 void __sk_mem_reclaim(struct sock *sk)
2084 {
2085 	sk_memory_allocated_sub(sk,
2086 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2087 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2088 
2089 	if (sk_under_memory_pressure(sk) &&
2090 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2091 		sk_leave_memory_pressure(sk);
2092 }
2093 EXPORT_SYMBOL(__sk_mem_reclaim);
2094 
2095 
2096 /*
2097  * Set of default routines for initialising struct proto_ops when
2098  * the protocol does not support a particular function. In certain
2099  * cases where it makes no sense for a protocol to have a "do nothing"
2100  * function, some default processing is provided.
2101  */
2102 
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2103 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2104 {
2105 	return -EOPNOTSUPP;
2106 }
2107 EXPORT_SYMBOL(sock_no_bind);
2108 
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2109 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2110 		    int len, int flags)
2111 {
2112 	return -EOPNOTSUPP;
2113 }
2114 EXPORT_SYMBOL(sock_no_connect);
2115 
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2116 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2117 {
2118 	return -EOPNOTSUPP;
2119 }
2120 EXPORT_SYMBOL(sock_no_socketpair);
2121 
sock_no_accept(struct socket * sock,struct socket * newsock,int flags)2122 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2123 {
2124 	return -EOPNOTSUPP;
2125 }
2126 EXPORT_SYMBOL(sock_no_accept);
2127 
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int * len,int peer)2128 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2129 		    int *len, int peer)
2130 {
2131 	return -EOPNOTSUPP;
2132 }
2133 EXPORT_SYMBOL(sock_no_getname);
2134 
sock_no_poll(struct file * file,struct socket * sock,poll_table * pt)2135 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2136 {
2137 	return 0;
2138 }
2139 EXPORT_SYMBOL(sock_no_poll);
2140 
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2141 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2142 {
2143 	return -EOPNOTSUPP;
2144 }
2145 EXPORT_SYMBOL(sock_no_ioctl);
2146 
sock_no_listen(struct socket * sock,int backlog)2147 int sock_no_listen(struct socket *sock, int backlog)
2148 {
2149 	return -EOPNOTSUPP;
2150 }
2151 EXPORT_SYMBOL(sock_no_listen);
2152 
sock_no_shutdown(struct socket * sock,int how)2153 int sock_no_shutdown(struct socket *sock, int how)
2154 {
2155 	return -EOPNOTSUPP;
2156 }
2157 EXPORT_SYMBOL(sock_no_shutdown);
2158 
sock_no_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2159 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2160 		    char __user *optval, unsigned int optlen)
2161 {
2162 	return -EOPNOTSUPP;
2163 }
2164 EXPORT_SYMBOL(sock_no_setsockopt);
2165 
sock_no_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2166 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2167 		    char __user *optval, int __user *optlen)
2168 {
2169 	return -EOPNOTSUPP;
2170 }
2171 EXPORT_SYMBOL(sock_no_getsockopt);
2172 
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2173 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2174 {
2175 	return -EOPNOTSUPP;
2176 }
2177 EXPORT_SYMBOL(sock_no_sendmsg);
2178 
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2179 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2180 		    int flags)
2181 {
2182 	return -EOPNOTSUPP;
2183 }
2184 EXPORT_SYMBOL(sock_no_recvmsg);
2185 
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2186 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2187 {
2188 	/* Mirror missing mmap method error code */
2189 	return -ENODEV;
2190 }
2191 EXPORT_SYMBOL(sock_no_mmap);
2192 
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2193 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2194 {
2195 	ssize_t res;
2196 	struct msghdr msg = {.msg_flags = flags};
2197 	struct kvec iov;
2198 	char *kaddr = kmap(page);
2199 	iov.iov_base = kaddr + offset;
2200 	iov.iov_len = size;
2201 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2202 	kunmap(page);
2203 	return res;
2204 }
2205 EXPORT_SYMBOL(sock_no_sendpage);
2206 
2207 /*
2208  *	Default Socket Callbacks
2209  */
2210 
sock_def_wakeup(struct sock * sk)2211 static void sock_def_wakeup(struct sock *sk)
2212 {
2213 	struct socket_wq *wq;
2214 
2215 	rcu_read_lock();
2216 	wq = rcu_dereference(sk->sk_wq);
2217 	if (wq_has_sleeper(wq))
2218 		wake_up_interruptible_all(&wq->wait);
2219 	rcu_read_unlock();
2220 }
2221 
sock_def_error_report(struct sock * sk)2222 static void sock_def_error_report(struct sock *sk)
2223 {
2224 	struct socket_wq *wq;
2225 
2226 	rcu_read_lock();
2227 	wq = rcu_dereference(sk->sk_wq);
2228 	if (wq_has_sleeper(wq))
2229 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2230 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2231 	rcu_read_unlock();
2232 }
2233 
sock_def_readable(struct sock * sk)2234 static void sock_def_readable(struct sock *sk)
2235 {
2236 	struct socket_wq *wq;
2237 
2238 	rcu_read_lock();
2239 	wq = rcu_dereference(sk->sk_wq);
2240 	if (wq_has_sleeper(wq))
2241 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2242 						POLLRDNORM | POLLRDBAND);
2243 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2244 	rcu_read_unlock();
2245 }
2246 
sock_def_write_space(struct sock * sk)2247 static void sock_def_write_space(struct sock *sk)
2248 {
2249 	struct socket_wq *wq;
2250 
2251 	rcu_read_lock();
2252 
2253 	/* Do not wake up a writer until he can make "significant"
2254 	 * progress.  --DaveM
2255 	 */
2256 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2257 		wq = rcu_dereference(sk->sk_wq);
2258 		if (wq_has_sleeper(wq))
2259 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2260 						POLLWRNORM | POLLWRBAND);
2261 
2262 		/* Should agree with poll, otherwise some programs break */
2263 		if (sock_writeable(sk))
2264 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2265 	}
2266 
2267 	rcu_read_unlock();
2268 }
2269 
sock_def_destruct(struct sock * sk)2270 static void sock_def_destruct(struct sock *sk)
2271 {
2272 	kfree(sk->sk_protinfo);
2273 }
2274 
sk_send_sigurg(struct sock * sk)2275 void sk_send_sigurg(struct sock *sk)
2276 {
2277 	if (sk->sk_socket && sk->sk_socket->file)
2278 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2279 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2280 }
2281 EXPORT_SYMBOL(sk_send_sigurg);
2282 
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2283 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2284 		    unsigned long expires)
2285 {
2286 	if (!mod_timer(timer, expires))
2287 		sock_hold(sk);
2288 }
2289 EXPORT_SYMBOL(sk_reset_timer);
2290 
sk_stop_timer(struct sock * sk,struct timer_list * timer)2291 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2292 {
2293 	if (del_timer(timer))
2294 		__sock_put(sk);
2295 }
2296 EXPORT_SYMBOL(sk_stop_timer);
2297 
sock_init_data(struct socket * sock,struct sock * sk)2298 void sock_init_data(struct socket *sock, struct sock *sk)
2299 {
2300 	skb_queue_head_init(&sk->sk_receive_queue);
2301 	skb_queue_head_init(&sk->sk_write_queue);
2302 	skb_queue_head_init(&sk->sk_error_queue);
2303 
2304 	sk->sk_send_head	=	NULL;
2305 
2306 	init_timer(&sk->sk_timer);
2307 
2308 	sk->sk_allocation	=	GFP_KERNEL;
2309 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2310 	sk->sk_sndbuf		=	sysctl_wmem_default;
2311 	sk->sk_state		=	TCP_CLOSE;
2312 	sk_set_socket(sk, sock);
2313 
2314 	sock_set_flag(sk, SOCK_ZAPPED);
2315 
2316 	if (sock) {
2317 		sk->sk_type	=	sock->type;
2318 		sk->sk_wq	=	sock->wq;
2319 		sock->sk	=	sk;
2320 	} else
2321 		sk->sk_wq	=	NULL;
2322 
2323 	spin_lock_init(&sk->sk_dst_lock);
2324 	rwlock_init(&sk->sk_callback_lock);
2325 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2326 			af_callback_keys + sk->sk_family,
2327 			af_family_clock_key_strings[sk->sk_family]);
2328 
2329 	sk->sk_state_change	=	sock_def_wakeup;
2330 	sk->sk_data_ready	=	sock_def_readable;
2331 	sk->sk_write_space	=	sock_def_write_space;
2332 	sk->sk_error_report	=	sock_def_error_report;
2333 	sk->sk_destruct		=	sock_def_destruct;
2334 
2335 	sk->sk_frag.page	=	NULL;
2336 	sk->sk_frag.offset	=	0;
2337 	sk->sk_peek_off		=	-1;
2338 
2339 	sk->sk_peer_pid 	=	NULL;
2340 	sk->sk_peer_cred	=	NULL;
2341 	sk->sk_write_pending	=	0;
2342 	sk->sk_rcvlowat		=	1;
2343 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2344 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2345 
2346 	sk->sk_stamp = ktime_set(-1L, 0);
2347 
2348 #ifdef CONFIG_NET_RX_BUSY_POLL
2349 	sk->sk_napi_id		=	0;
2350 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2351 #endif
2352 
2353 	sk->sk_max_pacing_rate = ~0U;
2354 	sk->sk_pacing_rate = ~0U;
2355 	/*
2356 	 * Before updating sk_refcnt, we must commit prior changes to memory
2357 	 * (Documentation/RCU/rculist_nulls.txt for details)
2358 	 */
2359 	smp_wmb();
2360 	atomic_set(&sk->sk_refcnt, 1);
2361 	atomic_set(&sk->sk_drops, 0);
2362 }
2363 EXPORT_SYMBOL(sock_init_data);
2364 
lock_sock_nested(struct sock * sk,int subclass)2365 void lock_sock_nested(struct sock *sk, int subclass)
2366 {
2367 	might_sleep();
2368 	spin_lock_bh(&sk->sk_lock.slock);
2369 	if (sk->sk_lock.owned)
2370 		__lock_sock(sk);
2371 	sk->sk_lock.owned = 1;
2372 	spin_unlock(&sk->sk_lock.slock);
2373 	/*
2374 	 * The sk_lock has mutex_lock() semantics here:
2375 	 */
2376 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2377 	local_bh_enable();
2378 }
2379 EXPORT_SYMBOL(lock_sock_nested);
2380 
release_sock(struct sock * sk)2381 void release_sock(struct sock *sk)
2382 {
2383 	/*
2384 	 * The sk_lock has mutex_unlock() semantics:
2385 	 */
2386 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2387 
2388 	spin_lock_bh(&sk->sk_lock.slock);
2389 	if (sk->sk_backlog.tail)
2390 		__release_sock(sk);
2391 
2392 	/* Warning : release_cb() might need to release sk ownership,
2393 	 * ie call sock_release_ownership(sk) before us.
2394 	 */
2395 	if (sk->sk_prot->release_cb)
2396 		sk->sk_prot->release_cb(sk);
2397 
2398 	sock_release_ownership(sk);
2399 	if (waitqueue_active(&sk->sk_lock.wq))
2400 		wake_up(&sk->sk_lock.wq);
2401 	spin_unlock_bh(&sk->sk_lock.slock);
2402 }
2403 EXPORT_SYMBOL(release_sock);
2404 
2405 /**
2406  * lock_sock_fast - fast version of lock_sock
2407  * @sk: socket
2408  *
2409  * This version should be used for very small section, where process wont block
2410  * return false if fast path is taken
2411  *   sk_lock.slock locked, owned = 0, BH disabled
2412  * return true if slow path is taken
2413  *   sk_lock.slock unlocked, owned = 1, BH enabled
2414  */
lock_sock_fast(struct sock * sk)2415 bool lock_sock_fast(struct sock *sk)
2416 {
2417 	might_sleep();
2418 	spin_lock_bh(&sk->sk_lock.slock);
2419 
2420 	if (!sk->sk_lock.owned)
2421 		/*
2422 		 * Note : We must disable BH
2423 		 */
2424 		return false;
2425 
2426 	__lock_sock(sk);
2427 	sk->sk_lock.owned = 1;
2428 	spin_unlock(&sk->sk_lock.slock);
2429 	/*
2430 	 * The sk_lock has mutex_lock() semantics here:
2431 	 */
2432 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2433 	local_bh_enable();
2434 	return true;
2435 }
2436 EXPORT_SYMBOL(lock_sock_fast);
2437 
sock_get_timestamp(struct sock * sk,struct timeval __user * userstamp)2438 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2439 {
2440 	struct timeval tv;
2441 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2442 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2443 	tv = ktime_to_timeval(sk->sk_stamp);
2444 	if (tv.tv_sec == -1)
2445 		return -ENOENT;
2446 	if (tv.tv_sec == 0) {
2447 		sk->sk_stamp = ktime_get_real();
2448 		tv = ktime_to_timeval(sk->sk_stamp);
2449 	}
2450 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2451 }
2452 EXPORT_SYMBOL(sock_get_timestamp);
2453 
sock_get_timestampns(struct sock * sk,struct timespec __user * userstamp)2454 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2455 {
2456 	struct timespec ts;
2457 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2458 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2459 	ts = ktime_to_timespec(sk->sk_stamp);
2460 	if (ts.tv_sec == -1)
2461 		return -ENOENT;
2462 	if (ts.tv_sec == 0) {
2463 		sk->sk_stamp = ktime_get_real();
2464 		ts = ktime_to_timespec(sk->sk_stamp);
2465 	}
2466 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2467 }
2468 EXPORT_SYMBOL(sock_get_timestampns);
2469 
sock_enable_timestamp(struct sock * sk,int flag)2470 void sock_enable_timestamp(struct sock *sk, int flag)
2471 {
2472 	if (!sock_flag(sk, flag)) {
2473 		unsigned long previous_flags = sk->sk_flags;
2474 
2475 		sock_set_flag(sk, flag);
2476 		/*
2477 		 * we just set one of the two flags which require net
2478 		 * time stamping, but time stamping might have been on
2479 		 * already because of the other one
2480 		 */
2481 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2482 			net_enable_timestamp();
2483 	}
2484 }
2485 
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)2486 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2487 		       int level, int type)
2488 {
2489 	struct sock_exterr_skb *serr;
2490 	struct sk_buff *skb;
2491 	int copied, err;
2492 
2493 	err = -EAGAIN;
2494 	skb = sock_dequeue_err_skb(sk);
2495 	if (skb == NULL)
2496 		goto out;
2497 
2498 	copied = skb->len;
2499 	if (copied > len) {
2500 		msg->msg_flags |= MSG_TRUNC;
2501 		copied = len;
2502 	}
2503 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2504 	if (err)
2505 		goto out_free_skb;
2506 
2507 	sock_recv_timestamp(msg, sk, skb);
2508 
2509 	serr = SKB_EXT_ERR(skb);
2510 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2511 
2512 	msg->msg_flags |= MSG_ERRQUEUE;
2513 	err = copied;
2514 
2515 out_free_skb:
2516 	kfree_skb(skb);
2517 out:
2518 	return err;
2519 }
2520 EXPORT_SYMBOL(sock_recv_errqueue);
2521 
2522 /*
2523  *	Get a socket option on an socket.
2524  *
2525  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2526  *	asynchronous errors should be reported by getsockopt. We assume
2527  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2528  */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2529 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2530 			   char __user *optval, int __user *optlen)
2531 {
2532 	struct sock *sk = sock->sk;
2533 
2534 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2535 }
2536 EXPORT_SYMBOL(sock_common_getsockopt);
2537 
2538 #ifdef CONFIG_COMPAT
compat_sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2539 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2540 				  char __user *optval, int __user *optlen)
2541 {
2542 	struct sock *sk = sock->sk;
2543 
2544 	if (sk->sk_prot->compat_getsockopt != NULL)
2545 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2546 						      optval, optlen);
2547 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2548 }
2549 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2550 #endif
2551 
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)2552 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2553 			int flags)
2554 {
2555 	struct sock *sk = sock->sk;
2556 	int addr_len = 0;
2557 	int err;
2558 
2559 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2560 				   flags & ~MSG_DONTWAIT, &addr_len);
2561 	if (err >= 0)
2562 		msg->msg_namelen = addr_len;
2563 	return err;
2564 }
2565 EXPORT_SYMBOL(sock_common_recvmsg);
2566 
2567 /*
2568  *	Set socket options on an inet socket.
2569  */
sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2570 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2571 			   char __user *optval, unsigned int optlen)
2572 {
2573 	struct sock *sk = sock->sk;
2574 
2575 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2576 }
2577 EXPORT_SYMBOL(sock_common_setsockopt);
2578 
2579 #ifdef CONFIG_COMPAT
compat_sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2580 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2581 				  char __user *optval, unsigned int optlen)
2582 {
2583 	struct sock *sk = sock->sk;
2584 
2585 	if (sk->sk_prot->compat_setsockopt != NULL)
2586 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2587 						      optval, optlen);
2588 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2589 }
2590 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2591 #endif
2592 
sk_common_release(struct sock * sk)2593 void sk_common_release(struct sock *sk)
2594 {
2595 	if (sk->sk_prot->destroy)
2596 		sk->sk_prot->destroy(sk);
2597 
2598 	/*
2599 	 * Observation: when sock_common_release is called, processes have
2600 	 * no access to socket. But net still has.
2601 	 * Step one, detach it from networking:
2602 	 *
2603 	 * A. Remove from hash tables.
2604 	 */
2605 
2606 	sk->sk_prot->unhash(sk);
2607 
2608 	/*
2609 	 * In this point socket cannot receive new packets, but it is possible
2610 	 * that some packets are in flight because some CPU runs receiver and
2611 	 * did hash table lookup before we unhashed socket. They will achieve
2612 	 * receive queue and will be purged by socket destructor.
2613 	 *
2614 	 * Also we still have packets pending on receive queue and probably,
2615 	 * our own packets waiting in device queues. sock_destroy will drain
2616 	 * receive queue, but transmitted packets will delay socket destruction
2617 	 * until the last reference will be released.
2618 	 */
2619 
2620 	sock_orphan(sk);
2621 
2622 	xfrm_sk_free_policy(sk);
2623 
2624 	sk_refcnt_debug_release(sk);
2625 
2626 	if (sk->sk_frag.page) {
2627 		put_page(sk->sk_frag.page);
2628 		sk->sk_frag.page = NULL;
2629 	}
2630 
2631 	sock_put(sk);
2632 }
2633 EXPORT_SYMBOL(sk_common_release);
2634 
2635 #ifdef CONFIG_PROC_FS
2636 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2637 struct prot_inuse {
2638 	int val[PROTO_INUSE_NR];
2639 };
2640 
2641 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2642 
2643 #ifdef CONFIG_NET_NS
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2644 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2645 {
2646 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2647 }
2648 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2649 
sock_prot_inuse_get(struct net * net,struct proto * prot)2650 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2651 {
2652 	int cpu, idx = prot->inuse_idx;
2653 	int res = 0;
2654 
2655 	for_each_possible_cpu(cpu)
2656 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2657 
2658 	return res >= 0 ? res : 0;
2659 }
2660 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2661 
sock_inuse_init_net(struct net * net)2662 static int __net_init sock_inuse_init_net(struct net *net)
2663 {
2664 	net->core.inuse = alloc_percpu(struct prot_inuse);
2665 	return net->core.inuse ? 0 : -ENOMEM;
2666 }
2667 
sock_inuse_exit_net(struct net * net)2668 static void __net_exit sock_inuse_exit_net(struct net *net)
2669 {
2670 	free_percpu(net->core.inuse);
2671 }
2672 
2673 static struct pernet_operations net_inuse_ops = {
2674 	.init = sock_inuse_init_net,
2675 	.exit = sock_inuse_exit_net,
2676 };
2677 
net_inuse_init(void)2678 static __init int net_inuse_init(void)
2679 {
2680 	if (register_pernet_subsys(&net_inuse_ops))
2681 		panic("Cannot initialize net inuse counters");
2682 
2683 	return 0;
2684 }
2685 
2686 core_initcall(net_inuse_init);
2687 #else
2688 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2689 
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2690 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2691 {
2692 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2693 }
2694 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2695 
sock_prot_inuse_get(struct net * net,struct proto * prot)2696 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2697 {
2698 	int cpu, idx = prot->inuse_idx;
2699 	int res = 0;
2700 
2701 	for_each_possible_cpu(cpu)
2702 		res += per_cpu(prot_inuse, cpu).val[idx];
2703 
2704 	return res >= 0 ? res : 0;
2705 }
2706 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2707 #endif
2708 
assign_proto_idx(struct proto * prot)2709 static void assign_proto_idx(struct proto *prot)
2710 {
2711 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2712 
2713 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2714 		pr_err("PROTO_INUSE_NR exhausted\n");
2715 		return;
2716 	}
2717 
2718 	set_bit(prot->inuse_idx, proto_inuse_idx);
2719 }
2720 
release_proto_idx(struct proto * prot)2721 static void release_proto_idx(struct proto *prot)
2722 {
2723 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2724 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2725 }
2726 #else
assign_proto_idx(struct proto * prot)2727 static inline void assign_proto_idx(struct proto *prot)
2728 {
2729 }
2730 
release_proto_idx(struct proto * prot)2731 static inline void release_proto_idx(struct proto *prot)
2732 {
2733 }
2734 #endif
2735 
req_prot_cleanup(struct request_sock_ops * rsk_prot)2736 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2737 {
2738 	if (!rsk_prot)
2739 		return;
2740 	kfree(rsk_prot->slab_name);
2741 	rsk_prot->slab_name = NULL;
2742 	if (rsk_prot->slab) {
2743 		kmem_cache_destroy(rsk_prot->slab);
2744 		rsk_prot->slab = NULL;
2745 	}
2746 }
2747 
req_prot_init(const struct proto * prot)2748 static int req_prot_init(const struct proto *prot)
2749 {
2750 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2751 
2752 	if (!rsk_prot)
2753 		return 0;
2754 
2755 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2756 					prot->name);
2757 	if (!rsk_prot->slab_name)
2758 		return -ENOMEM;
2759 
2760 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2761 					   rsk_prot->obj_size, 0,
2762 					   0, NULL);
2763 
2764 	if (!rsk_prot->slab) {
2765 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2766 			prot->name);
2767 		return -ENOMEM;
2768 	}
2769 	return 0;
2770 }
2771 
proto_register(struct proto * prot,int alloc_slab)2772 int proto_register(struct proto *prot, int alloc_slab)
2773 {
2774 	if (alloc_slab) {
2775 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2776 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2777 					NULL);
2778 
2779 		if (prot->slab == NULL) {
2780 			pr_crit("%s: Can't create sock SLAB cache!\n",
2781 				prot->name);
2782 			goto out;
2783 		}
2784 
2785 		if (req_prot_init(prot))
2786 			goto out_free_request_sock_slab;
2787 
2788 		if (prot->twsk_prot != NULL) {
2789 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2790 
2791 			if (prot->twsk_prot->twsk_slab_name == NULL)
2792 				goto out_free_request_sock_slab;
2793 
2794 			prot->twsk_prot->twsk_slab =
2795 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2796 						  prot->twsk_prot->twsk_obj_size,
2797 						  0,
2798 						  prot->slab_flags,
2799 						  NULL);
2800 			if (prot->twsk_prot->twsk_slab == NULL)
2801 				goto out_free_timewait_sock_slab_name;
2802 		}
2803 	}
2804 
2805 	mutex_lock(&proto_list_mutex);
2806 	list_add(&prot->node, &proto_list);
2807 	assign_proto_idx(prot);
2808 	mutex_unlock(&proto_list_mutex);
2809 	return 0;
2810 
2811 out_free_timewait_sock_slab_name:
2812 	kfree(prot->twsk_prot->twsk_slab_name);
2813 out_free_request_sock_slab:
2814 	req_prot_cleanup(prot->rsk_prot);
2815 
2816 	kmem_cache_destroy(prot->slab);
2817 	prot->slab = NULL;
2818 out:
2819 	return -ENOBUFS;
2820 }
2821 EXPORT_SYMBOL(proto_register);
2822 
proto_unregister(struct proto * prot)2823 void proto_unregister(struct proto *prot)
2824 {
2825 	mutex_lock(&proto_list_mutex);
2826 	release_proto_idx(prot);
2827 	list_del(&prot->node);
2828 	mutex_unlock(&proto_list_mutex);
2829 
2830 	if (prot->slab != NULL) {
2831 		kmem_cache_destroy(prot->slab);
2832 		prot->slab = NULL;
2833 	}
2834 
2835 	req_prot_cleanup(prot->rsk_prot);
2836 
2837 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2838 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2839 		kfree(prot->twsk_prot->twsk_slab_name);
2840 		prot->twsk_prot->twsk_slab = NULL;
2841 	}
2842 }
2843 EXPORT_SYMBOL(proto_unregister);
2844 
2845 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)2846 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2847 	__acquires(proto_list_mutex)
2848 {
2849 	mutex_lock(&proto_list_mutex);
2850 	return seq_list_start_head(&proto_list, *pos);
2851 }
2852 
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)2853 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2854 {
2855 	return seq_list_next(v, &proto_list, pos);
2856 }
2857 
proto_seq_stop(struct seq_file * seq,void * v)2858 static void proto_seq_stop(struct seq_file *seq, void *v)
2859 	__releases(proto_list_mutex)
2860 {
2861 	mutex_unlock(&proto_list_mutex);
2862 }
2863 
proto_method_implemented(const void * method)2864 static char proto_method_implemented(const void *method)
2865 {
2866 	return method == NULL ? 'n' : 'y';
2867 }
sock_prot_memory_allocated(struct proto * proto)2868 static long sock_prot_memory_allocated(struct proto *proto)
2869 {
2870 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2871 }
2872 
sock_prot_memory_pressure(struct proto * proto)2873 static char *sock_prot_memory_pressure(struct proto *proto)
2874 {
2875 	return proto->memory_pressure != NULL ?
2876 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2877 }
2878 
proto_seq_printf(struct seq_file * seq,struct proto * proto)2879 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2880 {
2881 
2882 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2883 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2884 		   proto->name,
2885 		   proto->obj_size,
2886 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2887 		   sock_prot_memory_allocated(proto),
2888 		   sock_prot_memory_pressure(proto),
2889 		   proto->max_header,
2890 		   proto->slab == NULL ? "no" : "yes",
2891 		   module_name(proto->owner),
2892 		   proto_method_implemented(proto->close),
2893 		   proto_method_implemented(proto->connect),
2894 		   proto_method_implemented(proto->disconnect),
2895 		   proto_method_implemented(proto->accept),
2896 		   proto_method_implemented(proto->ioctl),
2897 		   proto_method_implemented(proto->init),
2898 		   proto_method_implemented(proto->destroy),
2899 		   proto_method_implemented(proto->shutdown),
2900 		   proto_method_implemented(proto->setsockopt),
2901 		   proto_method_implemented(proto->getsockopt),
2902 		   proto_method_implemented(proto->sendmsg),
2903 		   proto_method_implemented(proto->recvmsg),
2904 		   proto_method_implemented(proto->sendpage),
2905 		   proto_method_implemented(proto->bind),
2906 		   proto_method_implemented(proto->backlog_rcv),
2907 		   proto_method_implemented(proto->hash),
2908 		   proto_method_implemented(proto->unhash),
2909 		   proto_method_implemented(proto->get_port),
2910 		   proto_method_implemented(proto->enter_memory_pressure));
2911 }
2912 
proto_seq_show(struct seq_file * seq,void * v)2913 static int proto_seq_show(struct seq_file *seq, void *v)
2914 {
2915 	if (v == &proto_list)
2916 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2917 			   "protocol",
2918 			   "size",
2919 			   "sockets",
2920 			   "memory",
2921 			   "press",
2922 			   "maxhdr",
2923 			   "slab",
2924 			   "module",
2925 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2926 	else
2927 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2928 	return 0;
2929 }
2930 
2931 static const struct seq_operations proto_seq_ops = {
2932 	.start  = proto_seq_start,
2933 	.next   = proto_seq_next,
2934 	.stop   = proto_seq_stop,
2935 	.show   = proto_seq_show,
2936 };
2937 
proto_seq_open(struct inode * inode,struct file * file)2938 static int proto_seq_open(struct inode *inode, struct file *file)
2939 {
2940 	return seq_open_net(inode, file, &proto_seq_ops,
2941 			    sizeof(struct seq_net_private));
2942 }
2943 
2944 static const struct file_operations proto_seq_fops = {
2945 	.owner		= THIS_MODULE,
2946 	.open		= proto_seq_open,
2947 	.read		= seq_read,
2948 	.llseek		= seq_lseek,
2949 	.release	= seq_release_net,
2950 };
2951 
proto_init_net(struct net * net)2952 static __net_init int proto_init_net(struct net *net)
2953 {
2954 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2955 		return -ENOMEM;
2956 
2957 	return 0;
2958 }
2959 
proto_exit_net(struct net * net)2960 static __net_exit void proto_exit_net(struct net *net)
2961 {
2962 	remove_proc_entry("protocols", net->proc_net);
2963 }
2964 
2965 
2966 static __net_initdata struct pernet_operations proto_net_ops = {
2967 	.init = proto_init_net,
2968 	.exit = proto_exit_net,
2969 };
2970 
proto_init(void)2971 static int __init proto_init(void)
2972 {
2973 	return register_pernet_subsys(&proto_net_ops);
2974 }
2975 
2976 subsys_initcall(proto_init);
2977 
2978 #endif /* PROC_FS */
2979