1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41
42 /* A. Checksumming of received packets by device.
43 *
44 * CHECKSUM_NONE:
45 *
46 * Device failed to checksum this packet e.g. due to lack of capabilities.
47 * The packet contains full (though not verified) checksum in packet but
48 * not in skb->csum. Thus, skb->csum is undefined in this case.
49 *
50 * CHECKSUM_UNNECESSARY:
51 *
52 * The hardware you're dealing with doesn't calculate the full checksum
53 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
54 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
55 * if their checksums are okay. skb->csum is still undefined in this case
56 * though. It is a bad option, but, unfortunately, nowadays most vendors do
57 * this. Apparently with the secret goal to sell you new devices, when you
58 * will add new protocol to your host, f.e. IPv6 8)
59 *
60 * CHECKSUM_UNNECESSARY is applicable to following protocols:
61 * TCP: IPv6 and IPv4.
62 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
63 * zero UDP checksum for either IPv4 or IPv6, the networking stack
64 * may perform further validation in this case.
65 * GRE: only if the checksum is present in the header.
66 * SCTP: indicates the CRC in SCTP header has been validated.
67 *
68 * skb->csum_level indicates the number of consecutive checksums found in
69 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
70 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
71 * and a device is able to verify the checksums for UDP (possibly zero),
72 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
73 * two. If the device were only able to verify the UDP checksum and not
74 * GRE, either because it doesn't support GRE checksum of because GRE
75 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
76 * not considered in this case).
77 *
78 * CHECKSUM_COMPLETE:
79 *
80 * This is the most generic way. The device supplied checksum of the _whole_
81 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
82 * hardware doesn't need to parse L3/L4 headers to implement this.
83 *
84 * Note: Even if device supports only some protocols, but is able to produce
85 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
86 *
87 * CHECKSUM_PARTIAL:
88 *
89 * A checksum is set up to be offloaded to a device as described in the
90 * output description for CHECKSUM_PARTIAL. This may occur on a packet
91 * received directly from another Linux OS, e.g., a virtualized Linux kernel
92 * on the same host, or it may be set in the input path in GRO or remote
93 * checksum offload. For the purposes of checksum verification, the checksum
94 * referred to by skb->csum_start + skb->csum_offset and any preceding
95 * checksums in the packet are considered verified. Any checksums in the
96 * packet that are after the checksum being offloaded are not considered to
97 * be verified.
98 *
99 * B. Checksumming on output.
100 *
101 * CHECKSUM_NONE:
102 *
103 * The skb was already checksummed by the protocol, or a checksum is not
104 * required.
105 *
106 * CHECKSUM_PARTIAL:
107 *
108 * The device is required to checksum the packet as seen by hard_start_xmit()
109 * from skb->csum_start up to the end, and to record/write the checksum at
110 * offset skb->csum_start + skb->csum_offset.
111 *
112 * The device must show its capabilities in dev->features, set up at device
113 * setup time, e.g. netdev_features.h:
114 *
115 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
116 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
117 * IPv4. Sigh. Vendors like this way for an unknown reason.
118 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
119 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
120 * NETIF_F_... - Well, you get the picture.
121 *
122 * CHECKSUM_UNNECESSARY:
123 *
124 * Normally, the device will do per protocol specific checksumming. Protocol
125 * implementations that do not want the NIC to perform the checksum
126 * calculation should use this flag in their outgoing skbs.
127 *
128 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
129 * offload. Correspondingly, the FCoE protocol driver
130 * stack should use CHECKSUM_UNNECESSARY.
131 *
132 * Any questions? No questions, good. --ANK
133 */
134
135 /* Don't change this without changing skb_csum_unnecessary! */
136 #define CHECKSUM_NONE 0
137 #define CHECKSUM_UNNECESSARY 1
138 #define CHECKSUM_COMPLETE 2
139 #define CHECKSUM_PARTIAL 3
140
141 /* Maximum value in skb->csum_level */
142 #define SKB_MAX_CSUM_LEVEL 3
143
144 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
145 #define SKB_WITH_OVERHEAD(X) \
146 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
147 #define SKB_MAX_ORDER(X, ORDER) \
148 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
149 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
150 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
151
152 /* return minimum truesize of one skb containing X bytes of data */
153 #define SKB_TRUESIZE(X) ((X) + \
154 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
155 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
156
157 struct net_device;
158 struct scatterlist;
159 struct pipe_inode_info;
160 struct iov_iter;
161 struct napi_struct;
162
163 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
164 struct nf_conntrack {
165 atomic_t use;
166 };
167 #endif
168
169 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
170 struct nf_bridge_info {
171 atomic_t use;
172 enum {
173 BRNF_PROTO_UNCHANGED,
174 BRNF_PROTO_8021Q,
175 BRNF_PROTO_PPPOE
176 } orig_proto:8;
177 u8 pkt_otherhost:1;
178 u8 in_prerouting:1;
179 u8 bridged_dnat:1;
180 __u16 frag_max_size;
181 struct net_device *physindev;
182
183 /* always valid & non-NULL from FORWARD on, for physdev match */
184 struct net_device *physoutdev;
185 union {
186 /* prerouting: detect dnat in orig/reply direction */
187 __be32 ipv4_daddr;
188 struct in6_addr ipv6_daddr;
189
190 /* after prerouting + nat detected: store original source
191 * mac since neigh resolution overwrites it, only used while
192 * skb is out in neigh layer.
193 */
194 char neigh_header[8];
195 };
196 };
197 #endif
198
199 struct sk_buff_head {
200 /* These two members must be first. */
201 struct sk_buff *next;
202 struct sk_buff *prev;
203
204 __u32 qlen;
205 spinlock_t lock;
206 };
207
208 struct sk_buff;
209
210 /* To allow 64K frame to be packed as single skb without frag_list we
211 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
212 * buffers which do not start on a page boundary.
213 *
214 * Since GRO uses frags we allocate at least 16 regardless of page
215 * size.
216 */
217 #if (65536/PAGE_SIZE + 1) < 16
218 #define MAX_SKB_FRAGS 16UL
219 #else
220 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
221 #endif
222 extern int sysctl_max_skb_frags;
223
224 typedef struct skb_frag_struct skb_frag_t;
225
226 struct skb_frag_struct {
227 struct {
228 struct page *p;
229 } page;
230 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
231 __u32 page_offset;
232 __u32 size;
233 #else
234 __u16 page_offset;
235 __u16 size;
236 #endif
237 };
238
skb_frag_size(const skb_frag_t * frag)239 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
240 {
241 return frag->size;
242 }
243
skb_frag_size_set(skb_frag_t * frag,unsigned int size)244 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
245 {
246 frag->size = size;
247 }
248
skb_frag_size_add(skb_frag_t * frag,int delta)249 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
250 {
251 frag->size += delta;
252 }
253
skb_frag_size_sub(skb_frag_t * frag,int delta)254 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
255 {
256 frag->size -= delta;
257 }
258
259 #define HAVE_HW_TIME_STAMP
260
261 /**
262 * struct skb_shared_hwtstamps - hardware time stamps
263 * @hwtstamp: hardware time stamp transformed into duration
264 * since arbitrary point in time
265 *
266 * Software time stamps generated by ktime_get_real() are stored in
267 * skb->tstamp.
268 *
269 * hwtstamps can only be compared against other hwtstamps from
270 * the same device.
271 *
272 * This structure is attached to packets as part of the
273 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
274 */
275 struct skb_shared_hwtstamps {
276 ktime_t hwtstamp;
277 };
278
279 /* Definitions for tx_flags in struct skb_shared_info */
280 enum {
281 /* generate hardware time stamp */
282 SKBTX_HW_TSTAMP = 1 << 0,
283
284 /* generate software time stamp when queueing packet to NIC */
285 SKBTX_SW_TSTAMP = 1 << 1,
286
287 /* device driver is going to provide hardware time stamp */
288 SKBTX_IN_PROGRESS = 1 << 2,
289
290 /* device driver supports TX zero-copy buffers */
291 SKBTX_DEV_ZEROCOPY = 1 << 3,
292
293 /* generate wifi status information (where possible) */
294 SKBTX_WIFI_STATUS = 1 << 4,
295
296 /* This indicates at least one fragment might be overwritten
297 * (as in vmsplice(), sendfile() ...)
298 * If we need to compute a TX checksum, we'll need to copy
299 * all frags to avoid possible bad checksum
300 */
301 SKBTX_SHARED_FRAG = 1 << 5,
302
303 /* generate software time stamp when entering packet scheduling */
304 SKBTX_SCHED_TSTAMP = 1 << 6,
305
306 /* generate software timestamp on peer data acknowledgment */
307 SKBTX_ACK_TSTAMP = 1 << 7,
308 };
309
310 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
311 SKBTX_SCHED_TSTAMP | \
312 SKBTX_ACK_TSTAMP)
313 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
314
315 /*
316 * The callback notifies userspace to release buffers when skb DMA is done in
317 * lower device, the skb last reference should be 0 when calling this.
318 * The zerocopy_success argument is true if zero copy transmit occurred,
319 * false on data copy or out of memory error caused by data copy attempt.
320 * The ctx field is used to track device context.
321 * The desc field is used to track userspace buffer index.
322 */
323 struct ubuf_info {
324 void (*callback)(struct ubuf_info *, bool zerocopy_success);
325 void *ctx;
326 unsigned long desc;
327 };
328
329 /* This data is invariant across clones and lives at
330 * the end of the header data, ie. at skb->end.
331 */
332 struct skb_shared_info {
333 unsigned char nr_frags;
334 __u8 tx_flags;
335 unsigned short gso_size;
336 /* Warning: this field is not always filled in (UFO)! */
337 unsigned short gso_segs;
338 unsigned short gso_type;
339 struct sk_buff *frag_list;
340 struct skb_shared_hwtstamps hwtstamps;
341 u32 tskey;
342 __be32 ip6_frag_id;
343
344 /*
345 * Warning : all fields before dataref are cleared in __alloc_skb()
346 */
347 atomic_t dataref;
348
349 /* Intermediate layers must ensure that destructor_arg
350 * remains valid until skb destructor */
351 void * destructor_arg;
352
353 /* must be last field, see pskb_expand_head() */
354 skb_frag_t frags[MAX_SKB_FRAGS];
355 };
356
357 /* We divide dataref into two halves. The higher 16 bits hold references
358 * to the payload part of skb->data. The lower 16 bits hold references to
359 * the entire skb->data. A clone of a headerless skb holds the length of
360 * the header in skb->hdr_len.
361 *
362 * All users must obey the rule that the skb->data reference count must be
363 * greater than or equal to the payload reference count.
364 *
365 * Holding a reference to the payload part means that the user does not
366 * care about modifications to the header part of skb->data.
367 */
368 #define SKB_DATAREF_SHIFT 16
369 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
370
371
372 enum {
373 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
374 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
375 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
376 };
377
378 enum {
379 SKB_GSO_TCPV4 = 1 << 0,
380 SKB_GSO_UDP = 1 << 1,
381
382 /* This indicates the skb is from an untrusted source. */
383 SKB_GSO_DODGY = 1 << 2,
384
385 /* This indicates the tcp segment has CWR set. */
386 SKB_GSO_TCP_ECN = 1 << 3,
387
388 SKB_GSO_TCPV6 = 1 << 4,
389
390 SKB_GSO_FCOE = 1 << 5,
391
392 SKB_GSO_GRE = 1 << 6,
393
394 SKB_GSO_GRE_CSUM = 1 << 7,
395
396 SKB_GSO_IPIP = 1 << 8,
397
398 SKB_GSO_SIT = 1 << 9,
399
400 SKB_GSO_UDP_TUNNEL = 1 << 10,
401
402 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
403
404 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
405 };
406
407 #if BITS_PER_LONG > 32
408 #define NET_SKBUFF_DATA_USES_OFFSET 1
409 #endif
410
411 #ifdef NET_SKBUFF_DATA_USES_OFFSET
412 typedef unsigned int sk_buff_data_t;
413 #else
414 typedef unsigned char *sk_buff_data_t;
415 #endif
416
417 /**
418 * struct skb_mstamp - multi resolution time stamps
419 * @stamp_us: timestamp in us resolution
420 * @stamp_jiffies: timestamp in jiffies
421 */
422 struct skb_mstamp {
423 union {
424 u64 v64;
425 struct {
426 u32 stamp_us;
427 u32 stamp_jiffies;
428 };
429 };
430 };
431
432 /**
433 * skb_mstamp_get - get current timestamp
434 * @cl: place to store timestamps
435 */
skb_mstamp_get(struct skb_mstamp * cl)436 static inline void skb_mstamp_get(struct skb_mstamp *cl)
437 {
438 u64 val = local_clock();
439
440 do_div(val, NSEC_PER_USEC);
441 cl->stamp_us = (u32)val;
442 cl->stamp_jiffies = (u32)jiffies;
443 }
444
445 /**
446 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
447 * @t1: pointer to newest sample
448 * @t0: pointer to oldest sample
449 */
skb_mstamp_us_delta(const struct skb_mstamp * t1,const struct skb_mstamp * t0)450 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
451 const struct skb_mstamp *t0)
452 {
453 s32 delta_us = t1->stamp_us - t0->stamp_us;
454 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
455
456 /* If delta_us is negative, this might be because interval is too big,
457 * or local_clock() drift is too big : fallback using jiffies.
458 */
459 if (delta_us <= 0 ||
460 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
461
462 delta_us = jiffies_to_usecs(delta_jiffies);
463
464 return delta_us;
465 }
466
skb_mstamp_after(const struct skb_mstamp * t1,const struct skb_mstamp * t0)467 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
468 const struct skb_mstamp *t0)
469 {
470 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
471
472 if (!diff)
473 diff = t1->stamp_us - t0->stamp_us;
474 return diff > 0;
475 }
476
477 /**
478 * struct sk_buff - socket buffer
479 * @next: Next buffer in list
480 * @prev: Previous buffer in list
481 * @tstamp: Time we arrived/left
482 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
483 * @sk: Socket we are owned by
484 * @dev: Device we arrived on/are leaving by
485 * @cb: Control buffer. Free for use by every layer. Put private vars here
486 * @_skb_refdst: destination entry (with norefcount bit)
487 * @sp: the security path, used for xfrm
488 * @len: Length of actual data
489 * @data_len: Data length
490 * @mac_len: Length of link layer header
491 * @hdr_len: writable header length of cloned skb
492 * @csum: Checksum (must include start/offset pair)
493 * @csum_start: Offset from skb->head where checksumming should start
494 * @csum_offset: Offset from csum_start where checksum should be stored
495 * @priority: Packet queueing priority
496 * @ignore_df: allow local fragmentation
497 * @cloned: Head may be cloned (check refcnt to be sure)
498 * @ip_summed: Driver fed us an IP checksum
499 * @nohdr: Payload reference only, must not modify header
500 * @nfctinfo: Relationship of this skb to the connection
501 * @pkt_type: Packet class
502 * @fclone: skbuff clone status
503 * @ipvs_property: skbuff is owned by ipvs
504 * @peeked: this packet has been seen already, so stats have been
505 * done for it, don't do them again
506 * @nf_trace: netfilter packet trace flag
507 * @protocol: Packet protocol from driver
508 * @destructor: Destruct function
509 * @nfct: Associated connection, if any
510 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
511 * @skb_iif: ifindex of device we arrived on
512 * @tc_index: Traffic control index
513 * @tc_verd: traffic control verdict
514 * @hash: the packet hash
515 * @queue_mapping: Queue mapping for multiqueue devices
516 * @xmit_more: More SKBs are pending for this queue
517 * @ndisc_nodetype: router type (from link layer)
518 * @ooo_okay: allow the mapping of a socket to a queue to be changed
519 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
520 * ports.
521 * @sw_hash: indicates hash was computed in software stack
522 * @wifi_acked_valid: wifi_acked was set
523 * @wifi_acked: whether frame was acked on wifi or not
524 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
525 * @napi_id: id of the NAPI struct this skb came from
526 * @secmark: security marking
527 * @offload_fwd_mark: fwding offload mark
528 * @mark: Generic packet mark
529 * @vlan_proto: vlan encapsulation protocol
530 * @vlan_tci: vlan tag control information
531 * @inner_protocol: Protocol (encapsulation)
532 * @inner_transport_header: Inner transport layer header (encapsulation)
533 * @inner_network_header: Network layer header (encapsulation)
534 * @inner_mac_header: Link layer header (encapsulation)
535 * @transport_header: Transport layer header
536 * @network_header: Network layer header
537 * @mac_header: Link layer header
538 * @tail: Tail pointer
539 * @end: End pointer
540 * @head: Head of buffer
541 * @data: Data head pointer
542 * @truesize: Buffer size
543 * @users: User count - see {datagram,tcp}.c
544 */
545
546 struct sk_buff {
547 union {
548 struct {
549 /* These two members must be first. */
550 struct sk_buff *next;
551 struct sk_buff *prev;
552
553 union {
554 ktime_t tstamp;
555 struct skb_mstamp skb_mstamp;
556 };
557 };
558 struct rb_node rbnode; /* used in netem & tcp stack */
559 };
560 struct sock *sk;
561 struct net_device *dev;
562
563 /*
564 * This is the control buffer. It is free to use for every
565 * layer. Please put your private variables there. If you
566 * want to keep them across layers you have to do a skb_clone()
567 * first. This is owned by whoever has the skb queued ATM.
568 */
569 char cb[48] __aligned(8);
570
571 unsigned long _skb_refdst;
572 void (*destructor)(struct sk_buff *skb);
573 #ifdef CONFIG_XFRM
574 struct sec_path *sp;
575 #endif
576 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
577 struct nf_conntrack *nfct;
578 #endif
579 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
580 struct nf_bridge_info *nf_bridge;
581 #endif
582 unsigned int len,
583 data_len;
584 __u16 mac_len,
585 hdr_len;
586
587 /* Following fields are _not_ copied in __copy_skb_header()
588 * Note that queue_mapping is here mostly to fill a hole.
589 */
590 kmemcheck_bitfield_begin(flags1);
591 __u16 queue_mapping;
592 __u8 cloned:1,
593 nohdr:1,
594 fclone:2,
595 peeked:1,
596 head_frag:1,
597 xmit_more:1;
598 /* one bit hole */
599 kmemcheck_bitfield_end(flags1);
600
601 /* fields enclosed in headers_start/headers_end are copied
602 * using a single memcpy() in __copy_skb_header()
603 */
604 /* private: */
605 __u32 headers_start[0];
606 /* public: */
607
608 /* if you move pkt_type around you also must adapt those constants */
609 #ifdef __BIG_ENDIAN_BITFIELD
610 #define PKT_TYPE_MAX (7 << 5)
611 #else
612 #define PKT_TYPE_MAX 7
613 #endif
614 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
615
616 __u8 __pkt_type_offset[0];
617 __u8 pkt_type:3;
618 __u8 pfmemalloc:1;
619 __u8 ignore_df:1;
620 __u8 nfctinfo:3;
621
622 __u8 nf_trace:1;
623 __u8 ip_summed:2;
624 __u8 ooo_okay:1;
625 __u8 l4_hash:1;
626 __u8 sw_hash:1;
627 __u8 wifi_acked_valid:1;
628 __u8 wifi_acked:1;
629
630 __u8 no_fcs:1;
631 /* Indicates the inner headers are valid in the skbuff. */
632 __u8 encapsulation:1;
633 __u8 encap_hdr_csum:1;
634 __u8 csum_valid:1;
635 __u8 csum_complete_sw:1;
636 __u8 csum_level:2;
637 __u8 csum_bad:1;
638
639 #ifdef CONFIG_IPV6_NDISC_NODETYPE
640 __u8 ndisc_nodetype:2;
641 #endif
642 __u8 ipvs_property:1;
643 __u8 inner_protocol_type:1;
644 __u8 remcsum_offload:1;
645 /* 3 or 5 bit hole */
646
647 #ifdef CONFIG_NET_SCHED
648 __u16 tc_index; /* traffic control index */
649 #ifdef CONFIG_NET_CLS_ACT
650 __u16 tc_verd; /* traffic control verdict */
651 #endif
652 #endif
653
654 union {
655 __wsum csum;
656 struct {
657 __u16 csum_start;
658 __u16 csum_offset;
659 };
660 };
661 __u32 priority;
662 int skb_iif;
663 __u32 hash;
664 __be16 vlan_proto;
665 __u16 vlan_tci;
666 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
667 union {
668 unsigned int napi_id;
669 unsigned int sender_cpu;
670 };
671 #endif
672 union {
673 #ifdef CONFIG_NETWORK_SECMARK
674 __u32 secmark;
675 #endif
676 #ifdef CONFIG_NET_SWITCHDEV
677 __u32 offload_fwd_mark;
678 #endif
679 };
680
681 union {
682 __u32 mark;
683 __u32 reserved_tailroom;
684 };
685
686 union {
687 __be16 inner_protocol;
688 __u8 inner_ipproto;
689 };
690
691 __u16 inner_transport_header;
692 __u16 inner_network_header;
693 __u16 inner_mac_header;
694
695 __be16 protocol;
696 __u16 transport_header;
697 __u16 network_header;
698 __u16 mac_header;
699
700 /* private: */
701 __u32 headers_end[0];
702 /* public: */
703
704 /* These elements must be at the end, see alloc_skb() for details. */
705 sk_buff_data_t tail;
706 sk_buff_data_t end;
707 unsigned char *head,
708 *data;
709 unsigned int truesize;
710 atomic_t users;
711 };
712
713 #ifdef __KERNEL__
714 /*
715 * Handling routines are only of interest to the kernel
716 */
717 #include <linux/slab.h>
718
719
720 #define SKB_ALLOC_FCLONE 0x01
721 #define SKB_ALLOC_RX 0x02
722 #define SKB_ALLOC_NAPI 0x04
723
724 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)725 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
726 {
727 return unlikely(skb->pfmemalloc);
728 }
729
730 /*
731 * skb might have a dst pointer attached, refcounted or not.
732 * _skb_refdst low order bit is set if refcount was _not_ taken
733 */
734 #define SKB_DST_NOREF 1UL
735 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
736
737 /**
738 * skb_dst - returns skb dst_entry
739 * @skb: buffer
740 *
741 * Returns skb dst_entry, regardless of reference taken or not.
742 */
skb_dst(const struct sk_buff * skb)743 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
744 {
745 /* If refdst was not refcounted, check we still are in a
746 * rcu_read_lock section
747 */
748 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
749 !rcu_read_lock_held() &&
750 !rcu_read_lock_bh_held());
751 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
752 }
753
754 /**
755 * skb_dst_set - sets skb dst
756 * @skb: buffer
757 * @dst: dst entry
758 *
759 * Sets skb dst, assuming a reference was taken on dst and should
760 * be released by skb_dst_drop()
761 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)762 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
763 {
764 skb->_skb_refdst = (unsigned long)dst;
765 }
766
767 /**
768 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
769 * @skb: buffer
770 * @dst: dst entry
771 *
772 * Sets skb dst, assuming a reference was not taken on dst.
773 * If dst entry is cached, we do not take reference and dst_release
774 * will be avoided by refdst_drop. If dst entry is not cached, we take
775 * reference, so that last dst_release can destroy the dst immediately.
776 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)777 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
778 {
779 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
780 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
781 }
782
783 /**
784 * skb_dst_is_noref - Test if skb dst isn't refcounted
785 * @skb: buffer
786 */
skb_dst_is_noref(const struct sk_buff * skb)787 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
788 {
789 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
790 }
791
skb_rtable(const struct sk_buff * skb)792 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
793 {
794 return (struct rtable *)skb_dst(skb);
795 }
796
797 void kfree_skb(struct sk_buff *skb);
798 void kfree_skb_list(struct sk_buff *segs);
799 void skb_tx_error(struct sk_buff *skb);
800 void consume_skb(struct sk_buff *skb);
801 void __kfree_skb(struct sk_buff *skb);
802 extern struct kmem_cache *skbuff_head_cache;
803
804 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
805 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
806 bool *fragstolen, int *delta_truesize);
807
808 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
809 int node);
810 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
811 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)812 static inline struct sk_buff *alloc_skb(unsigned int size,
813 gfp_t priority)
814 {
815 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
816 }
817
818 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
819 unsigned long data_len,
820 int max_page_order,
821 int *errcode,
822 gfp_t gfp_mask);
823
824 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
825 struct sk_buff_fclones {
826 struct sk_buff skb1;
827
828 struct sk_buff skb2;
829
830 atomic_t fclone_ref;
831 };
832
833 /**
834 * skb_fclone_busy - check if fclone is busy
835 * @skb: buffer
836 *
837 * Returns true is skb is a fast clone, and its clone is not freed.
838 * Some drivers call skb_orphan() in their ndo_start_xmit(),
839 * so we also check that this didnt happen.
840 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)841 static inline bool skb_fclone_busy(const struct sock *sk,
842 const struct sk_buff *skb)
843 {
844 const struct sk_buff_fclones *fclones;
845
846 fclones = container_of(skb, struct sk_buff_fclones, skb1);
847
848 return skb->fclone == SKB_FCLONE_ORIG &&
849 atomic_read(&fclones->fclone_ref) > 1 &&
850 fclones->skb2.sk == sk;
851 }
852
alloc_skb_fclone(unsigned int size,gfp_t priority)853 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
854 gfp_t priority)
855 {
856 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
857 }
858
859 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
alloc_skb_head(gfp_t priority)860 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
861 {
862 return __alloc_skb_head(priority, -1);
863 }
864
865 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
866 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
867 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
868 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
869 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
870 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)871 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
872 gfp_t gfp_mask)
873 {
874 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
875 }
876
877 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
878 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
879 unsigned int headroom);
880 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
881 int newtailroom, gfp_t priority);
882 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
883 int offset, int len);
884 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
885 int len);
886 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
887 int skb_pad(struct sk_buff *skb, int pad);
888 #define dev_kfree_skb(a) consume_skb(a)
889
890 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
891 int getfrag(void *from, char *to, int offset,
892 int len, int odd, struct sk_buff *skb),
893 void *from, int length);
894
895 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
896 int offset, size_t size);
897
898 struct skb_seq_state {
899 __u32 lower_offset;
900 __u32 upper_offset;
901 __u32 frag_idx;
902 __u32 stepped_offset;
903 struct sk_buff *root_skb;
904 struct sk_buff *cur_skb;
905 __u8 *frag_data;
906 };
907
908 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
909 unsigned int to, struct skb_seq_state *st);
910 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
911 struct skb_seq_state *st);
912 void skb_abort_seq_read(struct skb_seq_state *st);
913
914 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
915 unsigned int to, struct ts_config *config);
916
917 /*
918 * Packet hash types specify the type of hash in skb_set_hash.
919 *
920 * Hash types refer to the protocol layer addresses which are used to
921 * construct a packet's hash. The hashes are used to differentiate or identify
922 * flows of the protocol layer for the hash type. Hash types are either
923 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
924 *
925 * Properties of hashes:
926 *
927 * 1) Two packets in different flows have different hash values
928 * 2) Two packets in the same flow should have the same hash value
929 *
930 * A hash at a higher layer is considered to be more specific. A driver should
931 * set the most specific hash possible.
932 *
933 * A driver cannot indicate a more specific hash than the layer at which a hash
934 * was computed. For instance an L3 hash cannot be set as an L4 hash.
935 *
936 * A driver may indicate a hash level which is less specific than the
937 * actual layer the hash was computed on. For instance, a hash computed
938 * at L4 may be considered an L3 hash. This should only be done if the
939 * driver can't unambiguously determine that the HW computed the hash at
940 * the higher layer. Note that the "should" in the second property above
941 * permits this.
942 */
943 enum pkt_hash_types {
944 PKT_HASH_TYPE_NONE, /* Undefined type */
945 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
946 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
947 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
948 };
949
skb_clear_hash(struct sk_buff * skb)950 static inline void skb_clear_hash(struct sk_buff *skb)
951 {
952 skb->hash = 0;
953 skb->sw_hash = 0;
954 skb->l4_hash = 0;
955 }
956
skb_clear_hash_if_not_l4(struct sk_buff * skb)957 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
958 {
959 if (!skb->l4_hash)
960 skb_clear_hash(skb);
961 }
962
963 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)964 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
965 {
966 skb->l4_hash = is_l4;
967 skb->sw_hash = is_sw;
968 skb->hash = hash;
969 }
970
971 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)972 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
973 {
974 /* Used by drivers to set hash from HW */
975 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
976 }
977
978 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)979 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
980 {
981 __skb_set_hash(skb, hash, true, is_l4);
982 }
983
984 void __skb_get_hash(struct sk_buff *skb);
985 u32 skb_get_poff(const struct sk_buff *skb);
986 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
987 const struct flow_keys *keys, int hlen);
988 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
989 void *data, int hlen_proto);
990
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)991 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
992 int thoff, u8 ip_proto)
993 {
994 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
995 }
996
997 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
998 const struct flow_dissector_key *key,
999 unsigned int key_count);
1000
1001 bool __skb_flow_dissect(const struct sk_buff *skb,
1002 struct flow_dissector *flow_dissector,
1003 void *target_container,
1004 void *data, __be16 proto, int nhoff, int hlen,
1005 unsigned int flags);
1006
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1007 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1008 struct flow_dissector *flow_dissector,
1009 void *target_container, unsigned int flags)
1010 {
1011 return __skb_flow_dissect(skb, flow_dissector, target_container,
1012 NULL, 0, 0, 0, flags);
1013 }
1014
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1015 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1016 struct flow_keys *flow,
1017 unsigned int flags)
1018 {
1019 memset(flow, 0, sizeof(*flow));
1020 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1021 NULL, 0, 0, 0, flags);
1022 }
1023
skb_flow_dissect_flow_keys_buf(struct flow_keys * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1024 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1025 void *data, __be16 proto,
1026 int nhoff, int hlen,
1027 unsigned int flags)
1028 {
1029 memset(flow, 0, sizeof(*flow));
1030 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1031 data, proto, nhoff, hlen, flags);
1032 }
1033
skb_get_hash(struct sk_buff * skb)1034 static inline __u32 skb_get_hash(struct sk_buff *skb)
1035 {
1036 if (!skb->l4_hash && !skb->sw_hash)
1037 __skb_get_hash(skb);
1038
1039 return skb->hash;
1040 }
1041
1042 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1043
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1044 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1045 {
1046 if (!skb->l4_hash && !skb->sw_hash) {
1047 struct flow_keys keys;
1048 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1049
1050 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1051 }
1052
1053 return skb->hash;
1054 }
1055
1056 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1057
skb_get_hash_flowi4(struct sk_buff * skb,const struct flowi4 * fl4)1058 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1059 {
1060 if (!skb->l4_hash && !skb->sw_hash) {
1061 struct flow_keys keys;
1062 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1063
1064 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1065 }
1066
1067 return skb->hash;
1068 }
1069
1070 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1071
skb_get_hash_raw(const struct sk_buff * skb)1072 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1073 {
1074 return skb->hash;
1075 }
1076
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1077 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1078 {
1079 to->hash = from->hash;
1080 to->sw_hash = from->sw_hash;
1081 to->l4_hash = from->l4_hash;
1082 };
1083
skb_sender_cpu_clear(struct sk_buff * skb)1084 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1085 {
1086 #ifdef CONFIG_XPS
1087 skb->sender_cpu = 0;
1088 #endif
1089 }
1090
1091 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1092 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1093 {
1094 return skb->head + skb->end;
1095 }
1096
skb_end_offset(const struct sk_buff * skb)1097 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1098 {
1099 return skb->end;
1100 }
1101 #else
skb_end_pointer(const struct sk_buff * skb)1102 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1103 {
1104 return skb->end;
1105 }
1106
skb_end_offset(const struct sk_buff * skb)1107 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1108 {
1109 return skb->end - skb->head;
1110 }
1111 #endif
1112
1113 /* Internal */
1114 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1115
skb_hwtstamps(struct sk_buff * skb)1116 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1117 {
1118 return &skb_shinfo(skb)->hwtstamps;
1119 }
1120
1121 /**
1122 * skb_queue_empty - check if a queue is empty
1123 * @list: queue head
1124 *
1125 * Returns true if the queue is empty, false otherwise.
1126 */
skb_queue_empty(const struct sk_buff_head * list)1127 static inline int skb_queue_empty(const struct sk_buff_head *list)
1128 {
1129 return list->next == (const struct sk_buff *) list;
1130 }
1131
1132 /**
1133 * skb_queue_is_last - check if skb is the last entry in the queue
1134 * @list: queue head
1135 * @skb: buffer
1136 *
1137 * Returns true if @skb is the last buffer on the list.
1138 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1139 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1140 const struct sk_buff *skb)
1141 {
1142 return skb->next == (const struct sk_buff *) list;
1143 }
1144
1145 /**
1146 * skb_queue_is_first - check if skb is the first entry in the queue
1147 * @list: queue head
1148 * @skb: buffer
1149 *
1150 * Returns true if @skb is the first buffer on the list.
1151 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1152 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1153 const struct sk_buff *skb)
1154 {
1155 return skb->prev == (const struct sk_buff *) list;
1156 }
1157
1158 /**
1159 * skb_queue_next - return the next packet in the queue
1160 * @list: queue head
1161 * @skb: current buffer
1162 *
1163 * Return the next packet in @list after @skb. It is only valid to
1164 * call this if skb_queue_is_last() evaluates to false.
1165 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1166 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1167 const struct sk_buff *skb)
1168 {
1169 /* This BUG_ON may seem severe, but if we just return then we
1170 * are going to dereference garbage.
1171 */
1172 BUG_ON(skb_queue_is_last(list, skb));
1173 return skb->next;
1174 }
1175
1176 /**
1177 * skb_queue_prev - return the prev packet in the queue
1178 * @list: queue head
1179 * @skb: current buffer
1180 *
1181 * Return the prev packet in @list before @skb. It is only valid to
1182 * call this if skb_queue_is_first() evaluates to false.
1183 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1184 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1185 const struct sk_buff *skb)
1186 {
1187 /* This BUG_ON may seem severe, but if we just return then we
1188 * are going to dereference garbage.
1189 */
1190 BUG_ON(skb_queue_is_first(list, skb));
1191 return skb->prev;
1192 }
1193
1194 /**
1195 * skb_get - reference buffer
1196 * @skb: buffer to reference
1197 *
1198 * Makes another reference to a socket buffer and returns a pointer
1199 * to the buffer.
1200 */
skb_get(struct sk_buff * skb)1201 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1202 {
1203 atomic_inc(&skb->users);
1204 return skb;
1205 }
1206
1207 /*
1208 * If users == 1, we are the only owner and are can avoid redundant
1209 * atomic change.
1210 */
1211
1212 /**
1213 * skb_cloned - is the buffer a clone
1214 * @skb: buffer to check
1215 *
1216 * Returns true if the buffer was generated with skb_clone() and is
1217 * one of multiple shared copies of the buffer. Cloned buffers are
1218 * shared data so must not be written to under normal circumstances.
1219 */
skb_cloned(const struct sk_buff * skb)1220 static inline int skb_cloned(const struct sk_buff *skb)
1221 {
1222 return skb->cloned &&
1223 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1224 }
1225
skb_unclone(struct sk_buff * skb,gfp_t pri)1226 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1227 {
1228 might_sleep_if(gfpflags_allow_blocking(pri));
1229
1230 if (skb_cloned(skb))
1231 return pskb_expand_head(skb, 0, 0, pri);
1232
1233 return 0;
1234 }
1235
1236 /**
1237 * skb_header_cloned - is the header a clone
1238 * @skb: buffer to check
1239 *
1240 * Returns true if modifying the header part of the buffer requires
1241 * the data to be copied.
1242 */
skb_header_cloned(const struct sk_buff * skb)1243 static inline int skb_header_cloned(const struct sk_buff *skb)
1244 {
1245 int dataref;
1246
1247 if (!skb->cloned)
1248 return 0;
1249
1250 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1251 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1252 return dataref != 1;
1253 }
1254
1255 /**
1256 * skb_header_release - release reference to header
1257 * @skb: buffer to operate on
1258 *
1259 * Drop a reference to the header part of the buffer. This is done
1260 * by acquiring a payload reference. You must not read from the header
1261 * part of skb->data after this.
1262 * Note : Check if you can use __skb_header_release() instead.
1263 */
skb_header_release(struct sk_buff * skb)1264 static inline void skb_header_release(struct sk_buff *skb)
1265 {
1266 BUG_ON(skb->nohdr);
1267 skb->nohdr = 1;
1268 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1269 }
1270
1271 /**
1272 * __skb_header_release - release reference to header
1273 * @skb: buffer to operate on
1274 *
1275 * Variant of skb_header_release() assuming skb is private to caller.
1276 * We can avoid one atomic operation.
1277 */
__skb_header_release(struct sk_buff * skb)1278 static inline void __skb_header_release(struct sk_buff *skb)
1279 {
1280 skb->nohdr = 1;
1281 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1282 }
1283
1284
1285 /**
1286 * skb_shared - is the buffer shared
1287 * @skb: buffer to check
1288 *
1289 * Returns true if more than one person has a reference to this
1290 * buffer.
1291 */
skb_shared(const struct sk_buff * skb)1292 static inline int skb_shared(const struct sk_buff *skb)
1293 {
1294 return atomic_read(&skb->users) != 1;
1295 }
1296
1297 /**
1298 * skb_share_check - check if buffer is shared and if so clone it
1299 * @skb: buffer to check
1300 * @pri: priority for memory allocation
1301 *
1302 * If the buffer is shared the buffer is cloned and the old copy
1303 * drops a reference. A new clone with a single reference is returned.
1304 * If the buffer is not shared the original buffer is returned. When
1305 * being called from interrupt status or with spinlocks held pri must
1306 * be GFP_ATOMIC.
1307 *
1308 * NULL is returned on a memory allocation failure.
1309 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1310 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1311 {
1312 might_sleep_if(gfpflags_allow_blocking(pri));
1313 if (skb_shared(skb)) {
1314 struct sk_buff *nskb = skb_clone(skb, pri);
1315
1316 if (likely(nskb))
1317 consume_skb(skb);
1318 else
1319 kfree_skb(skb);
1320 skb = nskb;
1321 }
1322 return skb;
1323 }
1324
1325 /*
1326 * Copy shared buffers into a new sk_buff. We effectively do COW on
1327 * packets to handle cases where we have a local reader and forward
1328 * and a couple of other messy ones. The normal one is tcpdumping
1329 * a packet thats being forwarded.
1330 */
1331
1332 /**
1333 * skb_unshare - make a copy of a shared buffer
1334 * @skb: buffer to check
1335 * @pri: priority for memory allocation
1336 *
1337 * If the socket buffer is a clone then this function creates a new
1338 * copy of the data, drops a reference count on the old copy and returns
1339 * the new copy with the reference count at 1. If the buffer is not a clone
1340 * the original buffer is returned. When called with a spinlock held or
1341 * from interrupt state @pri must be %GFP_ATOMIC
1342 *
1343 * %NULL is returned on a memory allocation failure.
1344 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1345 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1346 gfp_t pri)
1347 {
1348 might_sleep_if(gfpflags_allow_blocking(pri));
1349 if (skb_cloned(skb)) {
1350 struct sk_buff *nskb = skb_copy(skb, pri);
1351
1352 /* Free our shared copy */
1353 if (likely(nskb))
1354 consume_skb(skb);
1355 else
1356 kfree_skb(skb);
1357 skb = nskb;
1358 }
1359 return skb;
1360 }
1361
1362 /**
1363 * skb_peek - peek at the head of an &sk_buff_head
1364 * @list_: list to peek at
1365 *
1366 * Peek an &sk_buff. Unlike most other operations you _MUST_
1367 * be careful with this one. A peek leaves the buffer on the
1368 * list and someone else may run off with it. You must hold
1369 * the appropriate locks or have a private queue to do this.
1370 *
1371 * Returns %NULL for an empty list or a pointer to the head element.
1372 * The reference count is not incremented and the reference is therefore
1373 * volatile. Use with caution.
1374 */
skb_peek(const struct sk_buff_head * list_)1375 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1376 {
1377 struct sk_buff *skb = list_->next;
1378
1379 if (skb == (struct sk_buff *)list_)
1380 skb = NULL;
1381 return skb;
1382 }
1383
1384 /**
1385 * skb_peek_next - peek skb following the given one from a queue
1386 * @skb: skb to start from
1387 * @list_: list to peek at
1388 *
1389 * Returns %NULL when the end of the list is met or a pointer to the
1390 * next element. The reference count is not incremented and the
1391 * reference is therefore volatile. Use with caution.
1392 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1393 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1394 const struct sk_buff_head *list_)
1395 {
1396 struct sk_buff *next = skb->next;
1397
1398 if (next == (struct sk_buff *)list_)
1399 next = NULL;
1400 return next;
1401 }
1402
1403 /**
1404 * skb_peek_tail - peek at the tail of an &sk_buff_head
1405 * @list_: list to peek at
1406 *
1407 * Peek an &sk_buff. Unlike most other operations you _MUST_
1408 * be careful with this one. A peek leaves the buffer on the
1409 * list and someone else may run off with it. You must hold
1410 * the appropriate locks or have a private queue to do this.
1411 *
1412 * Returns %NULL for an empty list or a pointer to the tail element.
1413 * The reference count is not incremented and the reference is therefore
1414 * volatile. Use with caution.
1415 */
skb_peek_tail(const struct sk_buff_head * list_)1416 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1417 {
1418 struct sk_buff *skb = list_->prev;
1419
1420 if (skb == (struct sk_buff *)list_)
1421 skb = NULL;
1422 return skb;
1423
1424 }
1425
1426 /**
1427 * skb_queue_len - get queue length
1428 * @list_: list to measure
1429 *
1430 * Return the length of an &sk_buff queue.
1431 */
skb_queue_len(const struct sk_buff_head * list_)1432 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1433 {
1434 return list_->qlen;
1435 }
1436
1437 /**
1438 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1439 * @list: queue to initialize
1440 *
1441 * This initializes only the list and queue length aspects of
1442 * an sk_buff_head object. This allows to initialize the list
1443 * aspects of an sk_buff_head without reinitializing things like
1444 * the spinlock. It can also be used for on-stack sk_buff_head
1445 * objects where the spinlock is known to not be used.
1446 */
__skb_queue_head_init(struct sk_buff_head * list)1447 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1448 {
1449 list->prev = list->next = (struct sk_buff *)list;
1450 list->qlen = 0;
1451 }
1452
1453 /*
1454 * This function creates a split out lock class for each invocation;
1455 * this is needed for now since a whole lot of users of the skb-queue
1456 * infrastructure in drivers have different locking usage (in hardirq)
1457 * than the networking core (in softirq only). In the long run either the
1458 * network layer or drivers should need annotation to consolidate the
1459 * main types of usage into 3 classes.
1460 */
skb_queue_head_init(struct sk_buff_head * list)1461 static inline void skb_queue_head_init(struct sk_buff_head *list)
1462 {
1463 spin_lock_init(&list->lock);
1464 __skb_queue_head_init(list);
1465 }
1466
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1467 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1468 struct lock_class_key *class)
1469 {
1470 skb_queue_head_init(list);
1471 lockdep_set_class(&list->lock, class);
1472 }
1473
1474 /*
1475 * Insert an sk_buff on a list.
1476 *
1477 * The "__skb_xxxx()" functions are the non-atomic ones that
1478 * can only be called with interrupts disabled.
1479 */
1480 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1481 struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1482 static inline void __skb_insert(struct sk_buff *newsk,
1483 struct sk_buff *prev, struct sk_buff *next,
1484 struct sk_buff_head *list)
1485 {
1486 newsk->next = next;
1487 newsk->prev = prev;
1488 next->prev = prev->next = newsk;
1489 list->qlen++;
1490 }
1491
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1492 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1493 struct sk_buff *prev,
1494 struct sk_buff *next)
1495 {
1496 struct sk_buff *first = list->next;
1497 struct sk_buff *last = list->prev;
1498
1499 first->prev = prev;
1500 prev->next = first;
1501
1502 last->next = next;
1503 next->prev = last;
1504 }
1505
1506 /**
1507 * skb_queue_splice - join two skb lists, this is designed for stacks
1508 * @list: the new list to add
1509 * @head: the place to add it in the first list
1510 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1511 static inline void skb_queue_splice(const struct sk_buff_head *list,
1512 struct sk_buff_head *head)
1513 {
1514 if (!skb_queue_empty(list)) {
1515 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1516 head->qlen += list->qlen;
1517 }
1518 }
1519
1520 /**
1521 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1522 * @list: the new list to add
1523 * @head: the place to add it in the first list
1524 *
1525 * The list at @list is reinitialised
1526 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1527 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1528 struct sk_buff_head *head)
1529 {
1530 if (!skb_queue_empty(list)) {
1531 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1532 head->qlen += list->qlen;
1533 __skb_queue_head_init(list);
1534 }
1535 }
1536
1537 /**
1538 * skb_queue_splice_tail - join two skb lists, each list being a queue
1539 * @list: the new list to add
1540 * @head: the place to add it in the first list
1541 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1542 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1543 struct sk_buff_head *head)
1544 {
1545 if (!skb_queue_empty(list)) {
1546 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1547 head->qlen += list->qlen;
1548 }
1549 }
1550
1551 /**
1552 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1553 * @list: the new list to add
1554 * @head: the place to add it in the first list
1555 *
1556 * Each of the lists is a queue.
1557 * The list at @list is reinitialised
1558 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1559 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1560 struct sk_buff_head *head)
1561 {
1562 if (!skb_queue_empty(list)) {
1563 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1564 head->qlen += list->qlen;
1565 __skb_queue_head_init(list);
1566 }
1567 }
1568
1569 /**
1570 * __skb_queue_after - queue a buffer at the list head
1571 * @list: list to use
1572 * @prev: place after this buffer
1573 * @newsk: buffer to queue
1574 *
1575 * Queue a buffer int the middle of a list. This function takes no locks
1576 * and you must therefore hold required locks before calling it.
1577 *
1578 * A buffer cannot be placed on two lists at the same time.
1579 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1580 static inline void __skb_queue_after(struct sk_buff_head *list,
1581 struct sk_buff *prev,
1582 struct sk_buff *newsk)
1583 {
1584 __skb_insert(newsk, prev, prev->next, list);
1585 }
1586
1587 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1588 struct sk_buff_head *list);
1589
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1590 static inline void __skb_queue_before(struct sk_buff_head *list,
1591 struct sk_buff *next,
1592 struct sk_buff *newsk)
1593 {
1594 __skb_insert(newsk, next->prev, next, list);
1595 }
1596
1597 /**
1598 * __skb_queue_head - queue a buffer at the list head
1599 * @list: list to use
1600 * @newsk: buffer to queue
1601 *
1602 * Queue a buffer at the start of a list. This function takes no locks
1603 * and you must therefore hold required locks before calling it.
1604 *
1605 * A buffer cannot be placed on two lists at the same time.
1606 */
1607 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1608 static inline void __skb_queue_head(struct sk_buff_head *list,
1609 struct sk_buff *newsk)
1610 {
1611 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1612 }
1613
1614 /**
1615 * __skb_queue_tail - queue a buffer at the list tail
1616 * @list: list to use
1617 * @newsk: buffer to queue
1618 *
1619 * Queue a buffer at the end of a list. This function takes no locks
1620 * and you must therefore hold required locks before calling it.
1621 *
1622 * A buffer cannot be placed on two lists at the same time.
1623 */
1624 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1625 static inline void __skb_queue_tail(struct sk_buff_head *list,
1626 struct sk_buff *newsk)
1627 {
1628 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1629 }
1630
1631 /*
1632 * remove sk_buff from list. _Must_ be called atomically, and with
1633 * the list known..
1634 */
1635 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1636 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1637 {
1638 struct sk_buff *next, *prev;
1639
1640 list->qlen--;
1641 next = skb->next;
1642 prev = skb->prev;
1643 skb->next = skb->prev = NULL;
1644 next->prev = prev;
1645 prev->next = next;
1646 }
1647
1648 /**
1649 * __skb_dequeue - remove from the head of the queue
1650 * @list: list to dequeue from
1651 *
1652 * Remove the head of the list. This function does not take any locks
1653 * so must be used with appropriate locks held only. The head item is
1654 * returned or %NULL if the list is empty.
1655 */
1656 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1657 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1658 {
1659 struct sk_buff *skb = skb_peek(list);
1660 if (skb)
1661 __skb_unlink(skb, list);
1662 return skb;
1663 }
1664
1665 /**
1666 * __skb_dequeue_tail - remove from the tail of the queue
1667 * @list: list to dequeue from
1668 *
1669 * Remove the tail of the list. This function does not take any locks
1670 * so must be used with appropriate locks held only. The tail item is
1671 * returned or %NULL if the list is empty.
1672 */
1673 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1674 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1675 {
1676 struct sk_buff *skb = skb_peek_tail(list);
1677 if (skb)
1678 __skb_unlink(skb, list);
1679 return skb;
1680 }
1681
1682
skb_is_nonlinear(const struct sk_buff * skb)1683 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1684 {
1685 return skb->data_len;
1686 }
1687
skb_headlen(const struct sk_buff * skb)1688 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1689 {
1690 return skb->len - skb->data_len;
1691 }
1692
skb_pagelen(const struct sk_buff * skb)1693 static inline int skb_pagelen(const struct sk_buff *skb)
1694 {
1695 int i, len = 0;
1696
1697 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1698 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1699 return len + skb_headlen(skb);
1700 }
1701
1702 /**
1703 * __skb_fill_page_desc - initialise a paged fragment in an skb
1704 * @skb: buffer containing fragment to be initialised
1705 * @i: paged fragment index to initialise
1706 * @page: the page to use for this fragment
1707 * @off: the offset to the data with @page
1708 * @size: the length of the data
1709 *
1710 * Initialises the @i'th fragment of @skb to point to &size bytes at
1711 * offset @off within @page.
1712 *
1713 * Does not take any additional reference on the fragment.
1714 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1715 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1716 struct page *page, int off, int size)
1717 {
1718 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1719
1720 /*
1721 * Propagate page pfmemalloc to the skb if we can. The problem is
1722 * that not all callers have unique ownership of the page but rely
1723 * on page_is_pfmemalloc doing the right thing(tm).
1724 */
1725 frag->page.p = page;
1726 frag->page_offset = off;
1727 skb_frag_size_set(frag, size);
1728
1729 page = compound_head(page);
1730 if (page_is_pfmemalloc(page))
1731 skb->pfmemalloc = true;
1732 }
1733
1734 /**
1735 * skb_fill_page_desc - initialise a paged fragment in an skb
1736 * @skb: buffer containing fragment to be initialised
1737 * @i: paged fragment index to initialise
1738 * @page: the page to use for this fragment
1739 * @off: the offset to the data with @page
1740 * @size: the length of the data
1741 *
1742 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1743 * @skb to point to @size bytes at offset @off within @page. In
1744 * addition updates @skb such that @i is the last fragment.
1745 *
1746 * Does not take any additional reference on the fragment.
1747 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1748 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1749 struct page *page, int off, int size)
1750 {
1751 __skb_fill_page_desc(skb, i, page, off, size);
1752 skb_shinfo(skb)->nr_frags = i + 1;
1753 }
1754
1755 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1756 int size, unsigned int truesize);
1757
1758 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1759 unsigned int truesize);
1760
1761 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1762 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1763 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1764
1765 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1766 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1767 {
1768 return skb->head + skb->tail;
1769 }
1770
skb_reset_tail_pointer(struct sk_buff * skb)1771 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1772 {
1773 skb->tail = skb->data - skb->head;
1774 }
1775
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1776 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1777 {
1778 skb_reset_tail_pointer(skb);
1779 skb->tail += offset;
1780 }
1781
1782 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1783 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1784 {
1785 return skb->tail;
1786 }
1787
skb_reset_tail_pointer(struct sk_buff * skb)1788 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1789 {
1790 skb->tail = skb->data;
1791 }
1792
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1793 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1794 {
1795 skb->tail = skb->data + offset;
1796 }
1797
1798 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1799
1800 /*
1801 * Add data to an sk_buff
1802 */
1803 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1804 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)1805 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1806 {
1807 unsigned char *tmp = skb_tail_pointer(skb);
1808 SKB_LINEAR_ASSERT(skb);
1809 skb->tail += len;
1810 skb->len += len;
1811 return tmp;
1812 }
1813
1814 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)1815 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1816 {
1817 skb->data -= len;
1818 skb->len += len;
1819 return skb->data;
1820 }
1821
1822 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)1823 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1824 {
1825 skb->len -= len;
1826 BUG_ON(skb->len < skb->data_len);
1827 return skb->data += len;
1828 }
1829
skb_pull_inline(struct sk_buff * skb,unsigned int len)1830 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1831 {
1832 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1833 }
1834
1835 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1836
__pskb_pull(struct sk_buff * skb,unsigned int len)1837 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1838 {
1839 if (len > skb_headlen(skb) &&
1840 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1841 return NULL;
1842 skb->len -= len;
1843 return skb->data += len;
1844 }
1845
pskb_pull(struct sk_buff * skb,unsigned int len)1846 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1847 {
1848 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1849 }
1850
pskb_may_pull(struct sk_buff * skb,unsigned int len)1851 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1852 {
1853 if (likely(len <= skb_headlen(skb)))
1854 return 1;
1855 if (unlikely(len > skb->len))
1856 return 0;
1857 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1858 }
1859
1860 /**
1861 * skb_headroom - bytes at buffer head
1862 * @skb: buffer to check
1863 *
1864 * Return the number of bytes of free space at the head of an &sk_buff.
1865 */
skb_headroom(const struct sk_buff * skb)1866 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1867 {
1868 return skb->data - skb->head;
1869 }
1870
1871 /**
1872 * skb_tailroom - bytes at buffer end
1873 * @skb: buffer to check
1874 *
1875 * Return the number of bytes of free space at the tail of an sk_buff
1876 */
skb_tailroom(const struct sk_buff * skb)1877 static inline int skb_tailroom(const struct sk_buff *skb)
1878 {
1879 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1880 }
1881
1882 /**
1883 * skb_availroom - bytes at buffer end
1884 * @skb: buffer to check
1885 *
1886 * Return the number of bytes of free space at the tail of an sk_buff
1887 * allocated by sk_stream_alloc()
1888 */
skb_availroom(const struct sk_buff * skb)1889 static inline int skb_availroom(const struct sk_buff *skb)
1890 {
1891 if (skb_is_nonlinear(skb))
1892 return 0;
1893
1894 return skb->end - skb->tail - skb->reserved_tailroom;
1895 }
1896
1897 /**
1898 * skb_reserve - adjust headroom
1899 * @skb: buffer to alter
1900 * @len: bytes to move
1901 *
1902 * Increase the headroom of an empty &sk_buff by reducing the tail
1903 * room. This is only allowed for an empty buffer.
1904 */
skb_reserve(struct sk_buff * skb,int len)1905 static inline void skb_reserve(struct sk_buff *skb, int len)
1906 {
1907 skb->data += len;
1908 skb->tail += len;
1909 }
1910
1911 /**
1912 * skb_tailroom_reserve - adjust reserved_tailroom
1913 * @skb: buffer to alter
1914 * @mtu: maximum amount of headlen permitted
1915 * @needed_tailroom: minimum amount of reserved_tailroom
1916 *
1917 * Set reserved_tailroom so that headlen can be as large as possible but
1918 * not larger than mtu and tailroom cannot be smaller than
1919 * needed_tailroom.
1920 * The required headroom should already have been reserved before using
1921 * this function.
1922 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)1923 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
1924 unsigned int needed_tailroom)
1925 {
1926 SKB_LINEAR_ASSERT(skb);
1927 if (mtu < skb_tailroom(skb) - needed_tailroom)
1928 /* use at most mtu */
1929 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
1930 else
1931 /* use up to all available space */
1932 skb->reserved_tailroom = needed_tailroom;
1933 }
1934
1935 #define ENCAP_TYPE_ETHER 0
1936 #define ENCAP_TYPE_IPPROTO 1
1937
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)1938 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1939 __be16 protocol)
1940 {
1941 skb->inner_protocol = protocol;
1942 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1943 }
1944
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)1945 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1946 __u8 ipproto)
1947 {
1948 skb->inner_ipproto = ipproto;
1949 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1950 }
1951
skb_reset_inner_headers(struct sk_buff * skb)1952 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1953 {
1954 skb->inner_mac_header = skb->mac_header;
1955 skb->inner_network_header = skb->network_header;
1956 skb->inner_transport_header = skb->transport_header;
1957 }
1958
skb_reset_mac_len(struct sk_buff * skb)1959 static inline void skb_reset_mac_len(struct sk_buff *skb)
1960 {
1961 skb->mac_len = skb->network_header - skb->mac_header;
1962 }
1963
skb_inner_transport_header(const struct sk_buff * skb)1964 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1965 *skb)
1966 {
1967 return skb->head + skb->inner_transport_header;
1968 }
1969
skb_reset_inner_transport_header(struct sk_buff * skb)1970 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1971 {
1972 skb->inner_transport_header = skb->data - skb->head;
1973 }
1974
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)1975 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1976 const int offset)
1977 {
1978 skb_reset_inner_transport_header(skb);
1979 skb->inner_transport_header += offset;
1980 }
1981
skb_inner_network_header(const struct sk_buff * skb)1982 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1983 {
1984 return skb->head + skb->inner_network_header;
1985 }
1986
skb_reset_inner_network_header(struct sk_buff * skb)1987 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1988 {
1989 skb->inner_network_header = skb->data - skb->head;
1990 }
1991
skb_set_inner_network_header(struct sk_buff * skb,const int offset)1992 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1993 const int offset)
1994 {
1995 skb_reset_inner_network_header(skb);
1996 skb->inner_network_header += offset;
1997 }
1998
skb_inner_mac_header(const struct sk_buff * skb)1999 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2000 {
2001 return skb->head + skb->inner_mac_header;
2002 }
2003
skb_reset_inner_mac_header(struct sk_buff * skb)2004 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2005 {
2006 skb->inner_mac_header = skb->data - skb->head;
2007 }
2008
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2009 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2010 const int offset)
2011 {
2012 skb_reset_inner_mac_header(skb);
2013 skb->inner_mac_header += offset;
2014 }
skb_transport_header_was_set(const struct sk_buff * skb)2015 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2016 {
2017 return skb->transport_header != (typeof(skb->transport_header))~0U;
2018 }
2019
skb_transport_header(const struct sk_buff * skb)2020 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2021 {
2022 return skb->head + skb->transport_header;
2023 }
2024
skb_reset_transport_header(struct sk_buff * skb)2025 static inline void skb_reset_transport_header(struct sk_buff *skb)
2026 {
2027 skb->transport_header = skb->data - skb->head;
2028 }
2029
skb_set_transport_header(struct sk_buff * skb,const int offset)2030 static inline void skb_set_transport_header(struct sk_buff *skb,
2031 const int offset)
2032 {
2033 skb_reset_transport_header(skb);
2034 skb->transport_header += offset;
2035 }
2036
skb_network_header(const struct sk_buff * skb)2037 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2038 {
2039 return skb->head + skb->network_header;
2040 }
2041
skb_reset_network_header(struct sk_buff * skb)2042 static inline void skb_reset_network_header(struct sk_buff *skb)
2043 {
2044 skb->network_header = skb->data - skb->head;
2045 }
2046
skb_set_network_header(struct sk_buff * skb,const int offset)2047 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2048 {
2049 skb_reset_network_header(skb);
2050 skb->network_header += offset;
2051 }
2052
skb_mac_header(const struct sk_buff * skb)2053 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2054 {
2055 return skb->head + skb->mac_header;
2056 }
2057
skb_mac_header_was_set(const struct sk_buff * skb)2058 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2059 {
2060 return skb->mac_header != (typeof(skb->mac_header))~0U;
2061 }
2062
skb_reset_mac_header(struct sk_buff * skb)2063 static inline void skb_reset_mac_header(struct sk_buff *skb)
2064 {
2065 skb->mac_header = skb->data - skb->head;
2066 }
2067
skb_set_mac_header(struct sk_buff * skb,const int offset)2068 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2069 {
2070 skb_reset_mac_header(skb);
2071 skb->mac_header += offset;
2072 }
2073
skb_pop_mac_header(struct sk_buff * skb)2074 static inline void skb_pop_mac_header(struct sk_buff *skb)
2075 {
2076 skb->mac_header = skb->network_header;
2077 }
2078
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)2079 static inline void skb_probe_transport_header(struct sk_buff *skb,
2080 const int offset_hint)
2081 {
2082 struct flow_keys keys;
2083
2084 if (skb_transport_header_was_set(skb))
2085 return;
2086 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2087 skb_set_transport_header(skb, keys.control.thoff);
2088 else
2089 skb_set_transport_header(skb, offset_hint);
2090 }
2091
skb_mac_header_rebuild(struct sk_buff * skb)2092 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2093 {
2094 if (skb_mac_header_was_set(skb)) {
2095 const unsigned char *old_mac = skb_mac_header(skb);
2096
2097 skb_set_mac_header(skb, -skb->mac_len);
2098 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2099 }
2100 }
2101
skb_checksum_start_offset(const struct sk_buff * skb)2102 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2103 {
2104 return skb->csum_start - skb_headroom(skb);
2105 }
2106
skb_transport_offset(const struct sk_buff * skb)2107 static inline int skb_transport_offset(const struct sk_buff *skb)
2108 {
2109 return skb_transport_header(skb) - skb->data;
2110 }
2111
skb_network_header_len(const struct sk_buff * skb)2112 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2113 {
2114 return skb->transport_header - skb->network_header;
2115 }
2116
skb_inner_network_header_len(const struct sk_buff * skb)2117 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2118 {
2119 return skb->inner_transport_header - skb->inner_network_header;
2120 }
2121
skb_network_offset(const struct sk_buff * skb)2122 static inline int skb_network_offset(const struct sk_buff *skb)
2123 {
2124 return skb_network_header(skb) - skb->data;
2125 }
2126
skb_inner_network_offset(const struct sk_buff * skb)2127 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2128 {
2129 return skb_inner_network_header(skb) - skb->data;
2130 }
2131
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2132 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2133 {
2134 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2135 }
2136
2137 /*
2138 * CPUs often take a performance hit when accessing unaligned memory
2139 * locations. The actual performance hit varies, it can be small if the
2140 * hardware handles it or large if we have to take an exception and fix it
2141 * in software.
2142 *
2143 * Since an ethernet header is 14 bytes network drivers often end up with
2144 * the IP header at an unaligned offset. The IP header can be aligned by
2145 * shifting the start of the packet by 2 bytes. Drivers should do this
2146 * with:
2147 *
2148 * skb_reserve(skb, NET_IP_ALIGN);
2149 *
2150 * The downside to this alignment of the IP header is that the DMA is now
2151 * unaligned. On some architectures the cost of an unaligned DMA is high
2152 * and this cost outweighs the gains made by aligning the IP header.
2153 *
2154 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2155 * to be overridden.
2156 */
2157 #ifndef NET_IP_ALIGN
2158 #define NET_IP_ALIGN 2
2159 #endif
2160
2161 /*
2162 * The networking layer reserves some headroom in skb data (via
2163 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2164 * the header has to grow. In the default case, if the header has to grow
2165 * 32 bytes or less we avoid the reallocation.
2166 *
2167 * Unfortunately this headroom changes the DMA alignment of the resulting
2168 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2169 * on some architectures. An architecture can override this value,
2170 * perhaps setting it to a cacheline in size (since that will maintain
2171 * cacheline alignment of the DMA). It must be a power of 2.
2172 *
2173 * Various parts of the networking layer expect at least 32 bytes of
2174 * headroom, you should not reduce this.
2175 *
2176 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2177 * to reduce average number of cache lines per packet.
2178 * get_rps_cpus() for example only access one 64 bytes aligned block :
2179 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2180 */
2181 #ifndef NET_SKB_PAD
2182 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2183 #endif
2184
2185 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2186
__skb_trim(struct sk_buff * skb,unsigned int len)2187 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2188 {
2189 if (unlikely(skb_is_nonlinear(skb))) {
2190 WARN_ON(1);
2191 return;
2192 }
2193 skb->len = len;
2194 skb_set_tail_pointer(skb, len);
2195 }
2196
2197 void skb_trim(struct sk_buff *skb, unsigned int len);
2198
__pskb_trim(struct sk_buff * skb,unsigned int len)2199 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2200 {
2201 if (skb->data_len)
2202 return ___pskb_trim(skb, len);
2203 __skb_trim(skb, len);
2204 return 0;
2205 }
2206
pskb_trim(struct sk_buff * skb,unsigned int len)2207 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2208 {
2209 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2210 }
2211
2212 /**
2213 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2214 * @skb: buffer to alter
2215 * @len: new length
2216 *
2217 * This is identical to pskb_trim except that the caller knows that
2218 * the skb is not cloned so we should never get an error due to out-
2219 * of-memory.
2220 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2221 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2222 {
2223 int err = pskb_trim(skb, len);
2224 BUG_ON(err);
2225 }
2226
2227 /**
2228 * skb_orphan - orphan a buffer
2229 * @skb: buffer to orphan
2230 *
2231 * If a buffer currently has an owner then we call the owner's
2232 * destructor function and make the @skb unowned. The buffer continues
2233 * to exist but is no longer charged to its former owner.
2234 */
skb_orphan(struct sk_buff * skb)2235 static inline void skb_orphan(struct sk_buff *skb)
2236 {
2237 if (skb->destructor) {
2238 skb->destructor(skb);
2239 skb->destructor = NULL;
2240 skb->sk = NULL;
2241 } else {
2242 BUG_ON(skb->sk);
2243 }
2244 }
2245
2246 /**
2247 * skb_orphan_frags - orphan the frags contained in a buffer
2248 * @skb: buffer to orphan frags from
2249 * @gfp_mask: allocation mask for replacement pages
2250 *
2251 * For each frag in the SKB which needs a destructor (i.e. has an
2252 * owner) create a copy of that frag and release the original
2253 * page by calling the destructor.
2254 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2255 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2256 {
2257 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2258 return 0;
2259 return skb_copy_ubufs(skb, gfp_mask);
2260 }
2261
2262 /**
2263 * __skb_queue_purge - empty a list
2264 * @list: list to empty
2265 *
2266 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2267 * the list and one reference dropped. This function does not take the
2268 * list lock and the caller must hold the relevant locks to use it.
2269 */
2270 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2271 static inline void __skb_queue_purge(struct sk_buff_head *list)
2272 {
2273 struct sk_buff *skb;
2274 while ((skb = __skb_dequeue(list)) != NULL)
2275 kfree_skb(skb);
2276 }
2277
2278 void *netdev_alloc_frag(unsigned int fragsz);
2279
2280 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2281 gfp_t gfp_mask);
2282
2283 /**
2284 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2285 * @dev: network device to receive on
2286 * @length: length to allocate
2287 *
2288 * Allocate a new &sk_buff and assign it a usage count of one. The
2289 * buffer has unspecified headroom built in. Users should allocate
2290 * the headroom they think they need without accounting for the
2291 * built in space. The built in space is used for optimisations.
2292 *
2293 * %NULL is returned if there is no free memory. Although this function
2294 * allocates memory it can be called from an interrupt.
2295 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2296 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2297 unsigned int length)
2298 {
2299 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2300 }
2301
2302 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2303 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2304 gfp_t gfp_mask)
2305 {
2306 return __netdev_alloc_skb(NULL, length, gfp_mask);
2307 }
2308
2309 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2310 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2311 {
2312 return netdev_alloc_skb(NULL, length);
2313 }
2314
2315
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2316 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2317 unsigned int length, gfp_t gfp)
2318 {
2319 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2320
2321 if (NET_IP_ALIGN && skb)
2322 skb_reserve(skb, NET_IP_ALIGN);
2323 return skb;
2324 }
2325
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2326 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2327 unsigned int length)
2328 {
2329 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2330 }
2331
skb_free_frag(void * addr)2332 static inline void skb_free_frag(void *addr)
2333 {
2334 __free_page_frag(addr);
2335 }
2336
2337 void *napi_alloc_frag(unsigned int fragsz);
2338 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2339 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2340 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2341 unsigned int length)
2342 {
2343 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2344 }
2345
2346 /**
2347 * __dev_alloc_pages - allocate page for network Rx
2348 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2349 * @order: size of the allocation
2350 *
2351 * Allocate a new page.
2352 *
2353 * %NULL is returned if there is no free memory.
2354 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2355 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2356 unsigned int order)
2357 {
2358 /* This piece of code contains several assumptions.
2359 * 1. This is for device Rx, therefor a cold page is preferred.
2360 * 2. The expectation is the user wants a compound page.
2361 * 3. If requesting a order 0 page it will not be compound
2362 * due to the check to see if order has a value in prep_new_page
2363 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2364 * code in gfp_to_alloc_flags that should be enforcing this.
2365 */
2366 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2367
2368 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2369 }
2370
dev_alloc_pages(unsigned int order)2371 static inline struct page *dev_alloc_pages(unsigned int order)
2372 {
2373 return __dev_alloc_pages(GFP_ATOMIC, order);
2374 }
2375
2376 /**
2377 * __dev_alloc_page - allocate a page for network Rx
2378 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2379 *
2380 * Allocate a new page.
2381 *
2382 * %NULL is returned if there is no free memory.
2383 */
__dev_alloc_page(gfp_t gfp_mask)2384 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2385 {
2386 return __dev_alloc_pages(gfp_mask, 0);
2387 }
2388
dev_alloc_page(void)2389 static inline struct page *dev_alloc_page(void)
2390 {
2391 return __dev_alloc_page(GFP_ATOMIC);
2392 }
2393
2394 /**
2395 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2396 * @page: The page that was allocated from skb_alloc_page
2397 * @skb: The skb that may need pfmemalloc set
2398 */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2399 static inline void skb_propagate_pfmemalloc(struct page *page,
2400 struct sk_buff *skb)
2401 {
2402 if (page_is_pfmemalloc(page))
2403 skb->pfmemalloc = true;
2404 }
2405
2406 /**
2407 * skb_frag_page - retrieve the page referred to by a paged fragment
2408 * @frag: the paged fragment
2409 *
2410 * Returns the &struct page associated with @frag.
2411 */
skb_frag_page(const skb_frag_t * frag)2412 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2413 {
2414 return frag->page.p;
2415 }
2416
2417 /**
2418 * __skb_frag_ref - take an addition reference on a paged fragment.
2419 * @frag: the paged fragment
2420 *
2421 * Takes an additional reference on the paged fragment @frag.
2422 */
__skb_frag_ref(skb_frag_t * frag)2423 static inline void __skb_frag_ref(skb_frag_t *frag)
2424 {
2425 get_page(skb_frag_page(frag));
2426 }
2427
2428 /**
2429 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2430 * @skb: the buffer
2431 * @f: the fragment offset.
2432 *
2433 * Takes an additional reference on the @f'th paged fragment of @skb.
2434 */
skb_frag_ref(struct sk_buff * skb,int f)2435 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2436 {
2437 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2438 }
2439
2440 /**
2441 * __skb_frag_unref - release a reference on a paged fragment.
2442 * @frag: the paged fragment
2443 *
2444 * Releases a reference on the paged fragment @frag.
2445 */
__skb_frag_unref(skb_frag_t * frag)2446 static inline void __skb_frag_unref(skb_frag_t *frag)
2447 {
2448 put_page(skb_frag_page(frag));
2449 }
2450
2451 /**
2452 * skb_frag_unref - release a reference on a paged fragment of an skb.
2453 * @skb: the buffer
2454 * @f: the fragment offset
2455 *
2456 * Releases a reference on the @f'th paged fragment of @skb.
2457 */
skb_frag_unref(struct sk_buff * skb,int f)2458 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2459 {
2460 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2461 }
2462
2463 /**
2464 * skb_frag_address - gets the address of the data contained in a paged fragment
2465 * @frag: the paged fragment buffer
2466 *
2467 * Returns the address of the data within @frag. The page must already
2468 * be mapped.
2469 */
skb_frag_address(const skb_frag_t * frag)2470 static inline void *skb_frag_address(const skb_frag_t *frag)
2471 {
2472 return page_address(skb_frag_page(frag)) + frag->page_offset;
2473 }
2474
2475 /**
2476 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2477 * @frag: the paged fragment buffer
2478 *
2479 * Returns the address of the data within @frag. Checks that the page
2480 * is mapped and returns %NULL otherwise.
2481 */
skb_frag_address_safe(const skb_frag_t * frag)2482 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2483 {
2484 void *ptr = page_address(skb_frag_page(frag));
2485 if (unlikely(!ptr))
2486 return NULL;
2487
2488 return ptr + frag->page_offset;
2489 }
2490
2491 /**
2492 * __skb_frag_set_page - sets the page contained in a paged fragment
2493 * @frag: the paged fragment
2494 * @page: the page to set
2495 *
2496 * Sets the fragment @frag to contain @page.
2497 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2498 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2499 {
2500 frag->page.p = page;
2501 }
2502
2503 /**
2504 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2505 * @skb: the buffer
2506 * @f: the fragment offset
2507 * @page: the page to set
2508 *
2509 * Sets the @f'th fragment of @skb to contain @page.
2510 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2511 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2512 struct page *page)
2513 {
2514 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2515 }
2516
2517 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2518
2519 /**
2520 * skb_frag_dma_map - maps a paged fragment via the DMA API
2521 * @dev: the device to map the fragment to
2522 * @frag: the paged fragment to map
2523 * @offset: the offset within the fragment (starting at the
2524 * fragment's own offset)
2525 * @size: the number of bytes to map
2526 * @dir: the direction of the mapping (%PCI_DMA_*)
2527 *
2528 * Maps the page associated with @frag to @device.
2529 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2530 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2531 const skb_frag_t *frag,
2532 size_t offset, size_t size,
2533 enum dma_data_direction dir)
2534 {
2535 return dma_map_page(dev, skb_frag_page(frag),
2536 frag->page_offset + offset, size, dir);
2537 }
2538
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2539 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2540 gfp_t gfp_mask)
2541 {
2542 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2543 }
2544
2545
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2546 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2547 gfp_t gfp_mask)
2548 {
2549 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2550 }
2551
2552
2553 /**
2554 * skb_clone_writable - is the header of a clone writable
2555 * @skb: buffer to check
2556 * @len: length up to which to write
2557 *
2558 * Returns true if modifying the header part of the cloned buffer
2559 * does not requires the data to be copied.
2560 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2561 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2562 {
2563 return !skb_header_cloned(skb) &&
2564 skb_headroom(skb) + len <= skb->hdr_len;
2565 }
2566
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2567 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2568 int cloned)
2569 {
2570 int delta = 0;
2571
2572 if (headroom > skb_headroom(skb))
2573 delta = headroom - skb_headroom(skb);
2574
2575 if (delta || cloned)
2576 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2577 GFP_ATOMIC);
2578 return 0;
2579 }
2580
2581 /**
2582 * skb_cow - copy header of skb when it is required
2583 * @skb: buffer to cow
2584 * @headroom: needed headroom
2585 *
2586 * If the skb passed lacks sufficient headroom or its data part
2587 * is shared, data is reallocated. If reallocation fails, an error
2588 * is returned and original skb is not changed.
2589 *
2590 * The result is skb with writable area skb->head...skb->tail
2591 * and at least @headroom of space at head.
2592 */
skb_cow(struct sk_buff * skb,unsigned int headroom)2593 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2594 {
2595 return __skb_cow(skb, headroom, skb_cloned(skb));
2596 }
2597
2598 /**
2599 * skb_cow_head - skb_cow but only making the head writable
2600 * @skb: buffer to cow
2601 * @headroom: needed headroom
2602 *
2603 * This function is identical to skb_cow except that we replace the
2604 * skb_cloned check by skb_header_cloned. It should be used when
2605 * you only need to push on some header and do not need to modify
2606 * the data.
2607 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)2608 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2609 {
2610 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2611 }
2612
2613 /**
2614 * skb_padto - pad an skbuff up to a minimal size
2615 * @skb: buffer to pad
2616 * @len: minimal length
2617 *
2618 * Pads up a buffer to ensure the trailing bytes exist and are
2619 * blanked. If the buffer already contains sufficient data it
2620 * is untouched. Otherwise it is extended. Returns zero on
2621 * success. The skb is freed on error.
2622 */
skb_padto(struct sk_buff * skb,unsigned int len)2623 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2624 {
2625 unsigned int size = skb->len;
2626 if (likely(size >= len))
2627 return 0;
2628 return skb_pad(skb, len - size);
2629 }
2630
2631 /**
2632 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2633 * @skb: buffer to pad
2634 * @len: minimal length
2635 *
2636 * Pads up a buffer to ensure the trailing bytes exist and are
2637 * blanked. If the buffer already contains sufficient data it
2638 * is untouched. Otherwise it is extended. Returns zero on
2639 * success. The skb is freed on error.
2640 */
skb_put_padto(struct sk_buff * skb,unsigned int len)2641 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2642 {
2643 unsigned int size = skb->len;
2644
2645 if (unlikely(size < len)) {
2646 len -= size;
2647 if (skb_pad(skb, len))
2648 return -ENOMEM;
2649 __skb_put(skb, len);
2650 }
2651 return 0;
2652 }
2653
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)2654 static inline int skb_add_data(struct sk_buff *skb,
2655 struct iov_iter *from, int copy)
2656 {
2657 const int off = skb->len;
2658
2659 if (skb->ip_summed == CHECKSUM_NONE) {
2660 __wsum csum = 0;
2661 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2662 &csum, from) == copy) {
2663 skb->csum = csum_block_add(skb->csum, csum, off);
2664 return 0;
2665 }
2666 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2667 return 0;
2668
2669 __skb_trim(skb, off);
2670 return -EFAULT;
2671 }
2672
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)2673 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2674 const struct page *page, int off)
2675 {
2676 if (i) {
2677 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2678
2679 return page == skb_frag_page(frag) &&
2680 off == frag->page_offset + skb_frag_size(frag);
2681 }
2682 return false;
2683 }
2684
__skb_linearize(struct sk_buff * skb)2685 static inline int __skb_linearize(struct sk_buff *skb)
2686 {
2687 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2688 }
2689
2690 /**
2691 * skb_linearize - convert paged skb to linear one
2692 * @skb: buffer to linarize
2693 *
2694 * If there is no free memory -ENOMEM is returned, otherwise zero
2695 * is returned and the old skb data released.
2696 */
skb_linearize(struct sk_buff * skb)2697 static inline int skb_linearize(struct sk_buff *skb)
2698 {
2699 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2700 }
2701
2702 /**
2703 * skb_has_shared_frag - can any frag be overwritten
2704 * @skb: buffer to test
2705 *
2706 * Return true if the skb has at least one frag that might be modified
2707 * by an external entity (as in vmsplice()/sendfile())
2708 */
skb_has_shared_frag(const struct sk_buff * skb)2709 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2710 {
2711 return skb_is_nonlinear(skb) &&
2712 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2713 }
2714
2715 /**
2716 * skb_linearize_cow - make sure skb is linear and writable
2717 * @skb: buffer to process
2718 *
2719 * If there is no free memory -ENOMEM is returned, otherwise zero
2720 * is returned and the old skb data released.
2721 */
skb_linearize_cow(struct sk_buff * skb)2722 static inline int skb_linearize_cow(struct sk_buff *skb)
2723 {
2724 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2725 __skb_linearize(skb) : 0;
2726 }
2727
2728 /**
2729 * skb_postpull_rcsum - update checksum for received skb after pull
2730 * @skb: buffer to update
2731 * @start: start of data before pull
2732 * @len: length of data pulled
2733 *
2734 * After doing a pull on a received packet, you need to call this to
2735 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2736 * CHECKSUM_NONE so that it can be recomputed from scratch.
2737 */
2738
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2739 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2740 const void *start, unsigned int len)
2741 {
2742 if (skb->ip_summed == CHECKSUM_COMPLETE)
2743 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2744 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2745 skb_checksum_start_offset(skb) < 0)
2746 skb->ip_summed = CHECKSUM_NONE;
2747 }
2748
2749 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2750
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2751 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2752 const void *start, unsigned int len)
2753 {
2754 /* For performing the reverse operation to skb_postpull_rcsum(),
2755 * we can instead of ...
2756 *
2757 * skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2758 *
2759 * ... just use this equivalent version here to save a few
2760 * instructions. Feeding csum of 0 in csum_partial() and later
2761 * on adding skb->csum is equivalent to feed skb->csum in the
2762 * first place.
2763 */
2764 if (skb->ip_summed == CHECKSUM_COMPLETE)
2765 skb->csum = csum_partial(start, len, skb->csum);
2766 }
2767
2768 /**
2769 * pskb_trim_rcsum - trim received skb and update checksum
2770 * @skb: buffer to trim
2771 * @len: new length
2772 *
2773 * This is exactly the same as pskb_trim except that it ensures the
2774 * checksum of received packets are still valid after the operation.
2775 */
2776
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)2777 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2778 {
2779 if (likely(len >= skb->len))
2780 return 0;
2781 if (skb->ip_summed == CHECKSUM_COMPLETE)
2782 skb->ip_summed = CHECKSUM_NONE;
2783 return __pskb_trim(skb, len);
2784 }
2785
2786 #define skb_queue_walk(queue, skb) \
2787 for (skb = (queue)->next; \
2788 skb != (struct sk_buff *)(queue); \
2789 skb = skb->next)
2790
2791 #define skb_queue_walk_safe(queue, skb, tmp) \
2792 for (skb = (queue)->next, tmp = skb->next; \
2793 skb != (struct sk_buff *)(queue); \
2794 skb = tmp, tmp = skb->next)
2795
2796 #define skb_queue_walk_from(queue, skb) \
2797 for (; skb != (struct sk_buff *)(queue); \
2798 skb = skb->next)
2799
2800 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2801 for (tmp = skb->next; \
2802 skb != (struct sk_buff *)(queue); \
2803 skb = tmp, tmp = skb->next)
2804
2805 #define skb_queue_reverse_walk(queue, skb) \
2806 for (skb = (queue)->prev; \
2807 skb != (struct sk_buff *)(queue); \
2808 skb = skb->prev)
2809
2810 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2811 for (skb = (queue)->prev, tmp = skb->prev; \
2812 skb != (struct sk_buff *)(queue); \
2813 skb = tmp, tmp = skb->prev)
2814
2815 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2816 for (tmp = skb->prev; \
2817 skb != (struct sk_buff *)(queue); \
2818 skb = tmp, tmp = skb->prev)
2819
skb_has_frag_list(const struct sk_buff * skb)2820 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2821 {
2822 return skb_shinfo(skb)->frag_list != NULL;
2823 }
2824
skb_frag_list_init(struct sk_buff * skb)2825 static inline void skb_frag_list_init(struct sk_buff *skb)
2826 {
2827 skb_shinfo(skb)->frag_list = NULL;
2828 }
2829
2830 #define skb_walk_frags(skb, iter) \
2831 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2832
2833 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2834 int *peeked, int *off, int *err);
2835 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2836 int *err);
2837 unsigned int datagram_poll(struct file *file, struct socket *sock,
2838 struct poll_table_struct *wait);
2839 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2840 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)2841 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2842 struct msghdr *msg, int size)
2843 {
2844 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2845 }
2846 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2847 struct msghdr *msg);
2848 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2849 struct iov_iter *from, int len);
2850 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2851 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2852 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2853 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2854 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2855 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2856 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2857 int len, __wsum csum);
2858 ssize_t skb_socket_splice(struct sock *sk,
2859 struct pipe_inode_info *pipe,
2860 struct splice_pipe_desc *spd);
2861 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2862 struct pipe_inode_info *pipe, unsigned int len,
2863 unsigned int flags,
2864 ssize_t (*splice_cb)(struct sock *,
2865 struct pipe_inode_info *,
2866 struct splice_pipe_desc *));
2867 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2868 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2869 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2870 int len, int hlen);
2871 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2872 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2873 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2874 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2875 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2876 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2877 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2878 int skb_vlan_pop(struct sk_buff *skb);
2879 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2880
memcpy_from_msg(void * data,struct msghdr * msg,int len)2881 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2882 {
2883 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2884 }
2885
memcpy_to_msg(struct msghdr * msg,void * data,int len)2886 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2887 {
2888 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2889 }
2890
2891 struct skb_checksum_ops {
2892 __wsum (*update)(const void *mem, int len, __wsum wsum);
2893 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2894 };
2895
2896 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2897 __wsum csum, const struct skb_checksum_ops *ops);
2898 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2899 __wsum csum);
2900
2901 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)2902 __skb_header_pointer(const struct sk_buff *skb, int offset,
2903 int len, void *data, int hlen, void *buffer)
2904 {
2905 if (hlen - offset >= len)
2906 return data + offset;
2907
2908 if (!skb ||
2909 skb_copy_bits(skb, offset, buffer, len) < 0)
2910 return NULL;
2911
2912 return buffer;
2913 }
2914
2915 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)2916 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
2917 {
2918 return __skb_header_pointer(skb, offset, len, skb->data,
2919 skb_headlen(skb), buffer);
2920 }
2921
2922 /**
2923 * skb_needs_linearize - check if we need to linearize a given skb
2924 * depending on the given device features.
2925 * @skb: socket buffer to check
2926 * @features: net device features
2927 *
2928 * Returns true if either:
2929 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2930 * 2. skb is fragmented and the device does not support SG.
2931 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)2932 static inline bool skb_needs_linearize(struct sk_buff *skb,
2933 netdev_features_t features)
2934 {
2935 return skb_is_nonlinear(skb) &&
2936 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2937 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2938 }
2939
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)2940 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2941 void *to,
2942 const unsigned int len)
2943 {
2944 memcpy(to, skb->data, len);
2945 }
2946
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)2947 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2948 const int offset, void *to,
2949 const unsigned int len)
2950 {
2951 memcpy(to, skb->data + offset, len);
2952 }
2953
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)2954 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2955 const void *from,
2956 const unsigned int len)
2957 {
2958 memcpy(skb->data, from, len);
2959 }
2960
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)2961 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2962 const int offset,
2963 const void *from,
2964 const unsigned int len)
2965 {
2966 memcpy(skb->data + offset, from, len);
2967 }
2968
2969 void skb_init(void);
2970
skb_get_ktime(const struct sk_buff * skb)2971 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2972 {
2973 return skb->tstamp;
2974 }
2975
2976 /**
2977 * skb_get_timestamp - get timestamp from a skb
2978 * @skb: skb to get stamp from
2979 * @stamp: pointer to struct timeval to store stamp in
2980 *
2981 * Timestamps are stored in the skb as offsets to a base timestamp.
2982 * This function converts the offset back to a struct timeval and stores
2983 * it in stamp.
2984 */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)2985 static inline void skb_get_timestamp(const struct sk_buff *skb,
2986 struct timeval *stamp)
2987 {
2988 *stamp = ktime_to_timeval(skb->tstamp);
2989 }
2990
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)2991 static inline void skb_get_timestampns(const struct sk_buff *skb,
2992 struct timespec *stamp)
2993 {
2994 *stamp = ktime_to_timespec(skb->tstamp);
2995 }
2996
__net_timestamp(struct sk_buff * skb)2997 static inline void __net_timestamp(struct sk_buff *skb)
2998 {
2999 skb->tstamp = ktime_get_real();
3000 }
3001
net_timedelta(ktime_t t)3002 static inline ktime_t net_timedelta(ktime_t t)
3003 {
3004 return ktime_sub(ktime_get_real(), t);
3005 }
3006
net_invalid_timestamp(void)3007 static inline ktime_t net_invalid_timestamp(void)
3008 {
3009 return ktime_set(0, 0);
3010 }
3011
3012 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3013
3014 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3015
3016 void skb_clone_tx_timestamp(struct sk_buff *skb);
3017 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3018
3019 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3020
skb_clone_tx_timestamp(struct sk_buff * skb)3021 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3022 {
3023 }
3024
skb_defer_rx_timestamp(struct sk_buff * skb)3025 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3026 {
3027 return false;
3028 }
3029
3030 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3031
3032 /**
3033 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3034 *
3035 * PHY drivers may accept clones of transmitted packets for
3036 * timestamping via their phy_driver.txtstamp method. These drivers
3037 * must call this function to return the skb back to the stack with a
3038 * timestamp.
3039 *
3040 * @skb: clone of the the original outgoing packet
3041 * @hwtstamps: hardware time stamps
3042 *
3043 */
3044 void skb_complete_tx_timestamp(struct sk_buff *skb,
3045 struct skb_shared_hwtstamps *hwtstamps);
3046
3047 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3048 struct skb_shared_hwtstamps *hwtstamps,
3049 struct sock *sk, int tstype);
3050
3051 /**
3052 * skb_tstamp_tx - queue clone of skb with send time stamps
3053 * @orig_skb: the original outgoing packet
3054 * @hwtstamps: hardware time stamps, may be NULL if not available
3055 *
3056 * If the skb has a socket associated, then this function clones the
3057 * skb (thus sharing the actual data and optional structures), stores
3058 * the optional hardware time stamping information (if non NULL) or
3059 * generates a software time stamp (otherwise), then queues the clone
3060 * to the error queue of the socket. Errors are silently ignored.
3061 */
3062 void skb_tstamp_tx(struct sk_buff *orig_skb,
3063 struct skb_shared_hwtstamps *hwtstamps);
3064
sw_tx_timestamp(struct sk_buff * skb)3065 static inline void sw_tx_timestamp(struct sk_buff *skb)
3066 {
3067 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3068 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3069 skb_tstamp_tx(skb, NULL);
3070 }
3071
3072 /**
3073 * skb_tx_timestamp() - Driver hook for transmit timestamping
3074 *
3075 * Ethernet MAC Drivers should call this function in their hard_xmit()
3076 * function immediately before giving the sk_buff to the MAC hardware.
3077 *
3078 * Specifically, one should make absolutely sure that this function is
3079 * called before TX completion of this packet can trigger. Otherwise
3080 * the packet could potentially already be freed.
3081 *
3082 * @skb: A socket buffer.
3083 */
skb_tx_timestamp(struct sk_buff * skb)3084 static inline void skb_tx_timestamp(struct sk_buff *skb)
3085 {
3086 skb_clone_tx_timestamp(skb);
3087 sw_tx_timestamp(skb);
3088 }
3089
3090 /**
3091 * skb_complete_wifi_ack - deliver skb with wifi status
3092 *
3093 * @skb: the original outgoing packet
3094 * @acked: ack status
3095 *
3096 */
3097 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3098
3099 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3100 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3101
skb_csum_unnecessary(const struct sk_buff * skb)3102 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3103 {
3104 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3105 skb->csum_valid ||
3106 (skb->ip_summed == CHECKSUM_PARTIAL &&
3107 skb_checksum_start_offset(skb) >= 0));
3108 }
3109
3110 /**
3111 * skb_checksum_complete - Calculate checksum of an entire packet
3112 * @skb: packet to process
3113 *
3114 * This function calculates the checksum over the entire packet plus
3115 * the value of skb->csum. The latter can be used to supply the
3116 * checksum of a pseudo header as used by TCP/UDP. It returns the
3117 * checksum.
3118 *
3119 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3120 * this function can be used to verify that checksum on received
3121 * packets. In that case the function should return zero if the
3122 * checksum is correct. In particular, this function will return zero
3123 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3124 * hardware has already verified the correctness of the checksum.
3125 */
skb_checksum_complete(struct sk_buff * skb)3126 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3127 {
3128 return skb_csum_unnecessary(skb) ?
3129 0 : __skb_checksum_complete(skb);
3130 }
3131
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3132 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3133 {
3134 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3135 if (skb->csum_level == 0)
3136 skb->ip_summed = CHECKSUM_NONE;
3137 else
3138 skb->csum_level--;
3139 }
3140 }
3141
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3142 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3143 {
3144 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3145 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3146 skb->csum_level++;
3147 } else if (skb->ip_summed == CHECKSUM_NONE) {
3148 skb->ip_summed = CHECKSUM_UNNECESSARY;
3149 skb->csum_level = 0;
3150 }
3151 }
3152
__skb_mark_checksum_bad(struct sk_buff * skb)3153 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3154 {
3155 /* Mark current checksum as bad (typically called from GRO
3156 * path). In the case that ip_summed is CHECKSUM_NONE
3157 * this must be the first checksum encountered in the packet.
3158 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3159 * checksum after the last one validated. For UDP, a zero
3160 * checksum can not be marked as bad.
3161 */
3162
3163 if (skb->ip_summed == CHECKSUM_NONE ||
3164 skb->ip_summed == CHECKSUM_UNNECESSARY)
3165 skb->csum_bad = 1;
3166 }
3167
3168 /* Check if we need to perform checksum complete validation.
3169 *
3170 * Returns true if checksum complete is needed, false otherwise
3171 * (either checksum is unnecessary or zero checksum is allowed).
3172 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3173 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3174 bool zero_okay,
3175 __sum16 check)
3176 {
3177 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3178 skb->csum_valid = 1;
3179 __skb_decr_checksum_unnecessary(skb);
3180 return false;
3181 }
3182
3183 return true;
3184 }
3185
3186 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3187 * in checksum_init.
3188 */
3189 #define CHECKSUM_BREAK 76
3190
3191 /* Unset checksum-complete
3192 *
3193 * Unset checksum complete can be done when packet is being modified
3194 * (uncompressed for instance) and checksum-complete value is
3195 * invalidated.
3196 */
skb_checksum_complete_unset(struct sk_buff * skb)3197 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3198 {
3199 if (skb->ip_summed == CHECKSUM_COMPLETE)
3200 skb->ip_summed = CHECKSUM_NONE;
3201 }
3202
3203 /* Validate (init) checksum based on checksum complete.
3204 *
3205 * Return values:
3206 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3207 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3208 * checksum is stored in skb->csum for use in __skb_checksum_complete
3209 * non-zero: value of invalid checksum
3210 *
3211 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3212 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3213 bool complete,
3214 __wsum psum)
3215 {
3216 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3217 if (!csum_fold(csum_add(psum, skb->csum))) {
3218 skb->csum_valid = 1;
3219 return 0;
3220 }
3221 } else if (skb->csum_bad) {
3222 /* ip_summed == CHECKSUM_NONE in this case */
3223 return (__force __sum16)1;
3224 }
3225
3226 skb->csum = psum;
3227
3228 if (complete || skb->len <= CHECKSUM_BREAK) {
3229 __sum16 csum;
3230
3231 csum = __skb_checksum_complete(skb);
3232 skb->csum_valid = !csum;
3233 return csum;
3234 }
3235
3236 return 0;
3237 }
3238
null_compute_pseudo(struct sk_buff * skb,int proto)3239 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3240 {
3241 return 0;
3242 }
3243
3244 /* Perform checksum validate (init). Note that this is a macro since we only
3245 * want to calculate the pseudo header which is an input function if necessary.
3246 * First we try to validate without any computation (checksum unnecessary) and
3247 * then calculate based on checksum complete calling the function to compute
3248 * pseudo header.
3249 *
3250 * Return values:
3251 * 0: checksum is validated or try to in skb_checksum_complete
3252 * non-zero: value of invalid checksum
3253 */
3254 #define __skb_checksum_validate(skb, proto, complete, \
3255 zero_okay, check, compute_pseudo) \
3256 ({ \
3257 __sum16 __ret = 0; \
3258 skb->csum_valid = 0; \
3259 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3260 __ret = __skb_checksum_validate_complete(skb, \
3261 complete, compute_pseudo(skb, proto)); \
3262 __ret; \
3263 })
3264
3265 #define skb_checksum_init(skb, proto, compute_pseudo) \
3266 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3267
3268 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3269 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3270
3271 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3272 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3273
3274 #define skb_checksum_validate_zero_check(skb, proto, check, \
3275 compute_pseudo) \
3276 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3277
3278 #define skb_checksum_simple_validate(skb) \
3279 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3280
__skb_checksum_convert_check(struct sk_buff * skb)3281 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3282 {
3283 return (skb->ip_summed == CHECKSUM_NONE &&
3284 skb->csum_valid && !skb->csum_bad);
3285 }
3286
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3287 static inline void __skb_checksum_convert(struct sk_buff *skb,
3288 __sum16 check, __wsum pseudo)
3289 {
3290 skb->csum = ~pseudo;
3291 skb->ip_summed = CHECKSUM_COMPLETE;
3292 }
3293
3294 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3295 do { \
3296 if (__skb_checksum_convert_check(skb)) \
3297 __skb_checksum_convert(skb, check, \
3298 compute_pseudo(skb, proto)); \
3299 } while (0)
3300
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)3301 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3302 u16 start, u16 offset)
3303 {
3304 skb->ip_summed = CHECKSUM_PARTIAL;
3305 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3306 skb->csum_offset = offset - start;
3307 }
3308
3309 /* Update skbuf and packet to reflect the remote checksum offload operation.
3310 * When called, ptr indicates the starting point for skb->csum when
3311 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3312 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3313 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)3314 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3315 int start, int offset, bool nopartial)
3316 {
3317 __wsum delta;
3318
3319 if (!nopartial) {
3320 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3321 return;
3322 }
3323
3324 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3325 __skb_checksum_complete(skb);
3326 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3327 }
3328
3329 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3330
3331 /* Adjust skb->csum since we changed the packet */
3332 skb->csum = csum_add(skb->csum, delta);
3333 }
3334
3335 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3336 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3337 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3338 {
3339 if (nfct && atomic_dec_and_test(&nfct->use))
3340 nf_conntrack_destroy(nfct);
3341 }
nf_conntrack_get(struct nf_conntrack * nfct)3342 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3343 {
3344 if (nfct)
3345 atomic_inc(&nfct->use);
3346 }
3347 #endif
3348 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3349 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3350 {
3351 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3352 kfree(nf_bridge);
3353 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3354 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3355 {
3356 if (nf_bridge)
3357 atomic_inc(&nf_bridge->use);
3358 }
3359 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3360 static inline void nf_reset(struct sk_buff *skb)
3361 {
3362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3363 nf_conntrack_put(skb->nfct);
3364 skb->nfct = NULL;
3365 #endif
3366 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3367 nf_bridge_put(skb->nf_bridge);
3368 skb->nf_bridge = NULL;
3369 #endif
3370 }
3371
nf_reset_trace(struct sk_buff * skb)3372 static inline void nf_reset_trace(struct sk_buff *skb)
3373 {
3374 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3375 skb->nf_trace = 0;
3376 #endif
3377 }
3378
3379 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3380 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3381 bool copy)
3382 {
3383 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3384 dst->nfct = src->nfct;
3385 nf_conntrack_get(src->nfct);
3386 if (copy)
3387 dst->nfctinfo = src->nfctinfo;
3388 #endif
3389 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3390 dst->nf_bridge = src->nf_bridge;
3391 nf_bridge_get(src->nf_bridge);
3392 #endif
3393 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3394 if (copy)
3395 dst->nf_trace = src->nf_trace;
3396 #endif
3397 }
3398
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3399 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3400 {
3401 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3402 nf_conntrack_put(dst->nfct);
3403 #endif
3404 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3405 nf_bridge_put(dst->nf_bridge);
3406 #endif
3407 __nf_copy(dst, src, true);
3408 }
3409
3410 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3411 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3412 {
3413 to->secmark = from->secmark;
3414 }
3415
skb_init_secmark(struct sk_buff * skb)3416 static inline void skb_init_secmark(struct sk_buff *skb)
3417 {
3418 skb->secmark = 0;
3419 }
3420 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3421 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3422 { }
3423
skb_init_secmark(struct sk_buff * skb)3424 static inline void skb_init_secmark(struct sk_buff *skb)
3425 { }
3426 #endif
3427
skb_irq_freeable(const struct sk_buff * skb)3428 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3429 {
3430 return !skb->destructor &&
3431 #if IS_ENABLED(CONFIG_XFRM)
3432 !skb->sp &&
3433 #endif
3434 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3435 !skb->nfct &&
3436 #endif
3437 !skb->_skb_refdst &&
3438 !skb_has_frag_list(skb);
3439 }
3440
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)3441 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3442 {
3443 skb->queue_mapping = queue_mapping;
3444 }
3445
skb_get_queue_mapping(const struct sk_buff * skb)3446 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3447 {
3448 return skb->queue_mapping;
3449 }
3450
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)3451 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3452 {
3453 to->queue_mapping = from->queue_mapping;
3454 }
3455
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)3456 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3457 {
3458 skb->queue_mapping = rx_queue + 1;
3459 }
3460
skb_get_rx_queue(const struct sk_buff * skb)3461 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3462 {
3463 return skb->queue_mapping - 1;
3464 }
3465
skb_rx_queue_recorded(const struct sk_buff * skb)3466 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3467 {
3468 return skb->queue_mapping != 0;
3469 }
3470
skb_sec_path(struct sk_buff * skb)3471 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3472 {
3473 #ifdef CONFIG_XFRM
3474 return skb->sp;
3475 #else
3476 return NULL;
3477 #endif
3478 }
3479
3480 /* Keeps track of mac header offset relative to skb->head.
3481 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3482 * For non-tunnel skb it points to skb_mac_header() and for
3483 * tunnel skb it points to outer mac header.
3484 * Keeps track of level of encapsulation of network headers.
3485 */
3486 struct skb_gso_cb {
3487 int mac_offset;
3488 int encap_level;
3489 __u16 csum_start;
3490 };
3491 #define SKB_SGO_CB_OFFSET 32
3492 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3493
skb_tnl_header_len(const struct sk_buff * inner_skb)3494 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3495 {
3496 return (skb_mac_header(inner_skb) - inner_skb->head) -
3497 SKB_GSO_CB(inner_skb)->mac_offset;
3498 }
3499
gso_pskb_expand_head(struct sk_buff * skb,int extra)3500 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3501 {
3502 int new_headroom, headroom;
3503 int ret;
3504
3505 headroom = skb_headroom(skb);
3506 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3507 if (ret)
3508 return ret;
3509
3510 new_headroom = skb_headroom(skb);
3511 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3512 return 0;
3513 }
3514
3515 /* Compute the checksum for a gso segment. First compute the checksum value
3516 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3517 * then add in skb->csum (checksum from csum_start to end of packet).
3518 * skb->csum and csum_start are then updated to reflect the checksum of the
3519 * resultant packet starting from the transport header-- the resultant checksum
3520 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3521 * header.
3522 */
gso_make_checksum(struct sk_buff * skb,__wsum res)3523 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3524 {
3525 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3526 skb_transport_offset(skb);
3527 __wsum partial;
3528
3529 partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3530 skb->csum = res;
3531 SKB_GSO_CB(skb)->csum_start -= plen;
3532
3533 return csum_fold(partial);
3534 }
3535
skb_is_gso(const struct sk_buff * skb)3536 static inline bool skb_is_gso(const struct sk_buff *skb)
3537 {
3538 return skb_shinfo(skb)->gso_size;
3539 }
3540
3541 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)3542 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3543 {
3544 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3545 }
3546
3547 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3548
skb_warn_if_lro(const struct sk_buff * skb)3549 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3550 {
3551 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3552 * wanted then gso_type will be set. */
3553 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3554
3555 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3556 unlikely(shinfo->gso_type == 0)) {
3557 __skb_warn_lro_forwarding(skb);
3558 return true;
3559 }
3560 return false;
3561 }
3562
skb_forward_csum(struct sk_buff * skb)3563 static inline void skb_forward_csum(struct sk_buff *skb)
3564 {
3565 /* Unfortunately we don't support this one. Any brave souls? */
3566 if (skb->ip_summed == CHECKSUM_COMPLETE)
3567 skb->ip_summed = CHECKSUM_NONE;
3568 }
3569
3570 /**
3571 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3572 * @skb: skb to check
3573 *
3574 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3575 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3576 * use this helper, to document places where we make this assertion.
3577 */
skb_checksum_none_assert(const struct sk_buff * skb)3578 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3579 {
3580 #ifdef DEBUG
3581 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3582 #endif
3583 }
3584
3585 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3586
3587 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3588 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3589 unsigned int transport_len,
3590 __sum16(*skb_chkf)(struct sk_buff *skb));
3591
3592 /**
3593 * skb_head_is_locked - Determine if the skb->head is locked down
3594 * @skb: skb to check
3595 *
3596 * The head on skbs build around a head frag can be removed if they are
3597 * not cloned. This function returns true if the skb head is locked down
3598 * due to either being allocated via kmalloc, or by being a clone with
3599 * multiple references to the head.
3600 */
skb_head_is_locked(const struct sk_buff * skb)3601 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3602 {
3603 return !skb->head_frag || skb_cloned(skb);
3604 }
3605
3606 /**
3607 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3608 *
3609 * @skb: GSO skb
3610 *
3611 * skb_gso_network_seglen is used to determine the real size of the
3612 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3613 *
3614 * The MAC/L2 header is not accounted for.
3615 */
skb_gso_network_seglen(const struct sk_buff * skb)3616 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3617 {
3618 unsigned int hdr_len = skb_transport_header(skb) -
3619 skb_network_header(skb);
3620 return hdr_len + skb_gso_transport_seglen(skb);
3621 }
3622
3623 #endif /* __KERNEL__ */
3624 #endif /* _LINUX_SKBUFF_H */
3625