1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108 
sctp_enter_memory_pressure(struct sock * sk)109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 	sctp_memory_pressure = 1;
112 }
113 
114 
115 /* Get the sndbuf space available at the time on the association.  */
sctp_wspace(struct sctp_association * asoc)116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 	int amt;
119 
120 	if (asoc->ep->sndbuf_policy)
121 		amt = asoc->sndbuf_used;
122 	else
123 		amt = sk_wmem_alloc_get(asoc->base.sk);
124 
125 	if (amt >= asoc->base.sk->sk_sndbuf) {
126 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 			amt = 0;
128 		else {
129 			amt = sk_stream_wspace(asoc->base.sk);
130 			if (amt < 0)
131 				amt = 0;
132 		}
133 	} else {
134 		amt = asoc->base.sk->sk_sndbuf - amt;
135 	}
136 	return amt;
137 }
138 
139 /* Increment the used sndbuf space count of the corresponding association by
140  * the size of the outgoing data chunk.
141  * Also, set the skb destructor for sndbuf accounting later.
142  *
143  * Since it is always 1-1 between chunk and skb, and also a new skb is always
144  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145  * destructor in the data chunk skb for the purpose of the sndbuf space
146  * tracking.
147  */
sctp_set_owner_w(struct sctp_chunk * chunk)148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 	struct sctp_association *asoc = chunk->asoc;
151 	struct sock *sk = asoc->base.sk;
152 
153 	/* The sndbuf space is tracked per association.  */
154 	sctp_association_hold(asoc);
155 
156 	skb_set_owner_w(chunk->skb, sk);
157 
158 	chunk->skb->destructor = sctp_wfree;
159 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
160 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
161 
162 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 				sizeof(struct sk_buff) +
164 				sizeof(struct sctp_chunk);
165 
166 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 	sk->sk_wmem_queued += chunk->skb->truesize;
168 	sk_mem_charge(sk, chunk->skb->truesize);
169 }
170 
171 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 				   int len)
174 {
175 	struct sctp_af *af;
176 
177 	/* Verify basic sockaddr. */
178 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 	if (!af)
180 		return -EINVAL;
181 
182 	/* Is this a valid SCTP address?  */
183 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 		return -EINVAL;
185 
186 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 /* Look up the association by its id.  If this is not a UDP-style
193  * socket, the ID field is always ignored.
194  */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 	struct sctp_association *asoc = NULL;
198 
199 	/* If this is not a UDP-style socket, assoc id should be ignored. */
200 	if (!sctp_style(sk, UDP)) {
201 		/* Return NULL if the socket state is not ESTABLISHED. It
202 		 * could be a TCP-style listening socket or a socket which
203 		 * hasn't yet called connect() to establish an association.
204 		 */
205 		if (!sctp_sstate(sk, ESTABLISHED))
206 			return NULL;
207 
208 		/* Get the first and the only association from the list. */
209 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 					  struct sctp_association, asocs);
212 		return asoc;
213 	}
214 
215 	/* Otherwise this is a UDP-style socket. */
216 	if (!id || (id == (sctp_assoc_t)-1))
217 		return NULL;
218 
219 	spin_lock_bh(&sctp_assocs_id_lock);
220 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 	spin_unlock_bh(&sctp_assocs_id_lock);
222 
223 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 		return NULL;
225 
226 	return asoc;
227 }
228 
229 /* Look up the transport from an address and an assoc id. If both address and
230  * id are specified, the associations matching the address and the id should be
231  * the same.
232  */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 					      struct sockaddr_storage *addr,
235 					      sctp_assoc_t id)
236 {
237 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 	struct sctp_transport *transport;
239 	union sctp_addr *laddr = (union sctp_addr *)addr;
240 
241 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 					       laddr,
243 					       &transport);
244 
245 	if (!addr_asoc)
246 		return NULL;
247 
248 	id_asoc = sctp_id2assoc(sk, id);
249 	if (id_asoc && (id_asoc != addr_asoc))
250 		return NULL;
251 
252 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 						(union sctp_addr *)addr);
254 
255 	return transport;
256 }
257 
258 /* API 3.1.2 bind() - UDP Style Syntax
259  * The syntax of bind() is,
260  *
261  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
262  *
263  *   sd      - the socket descriptor returned by socket().
264  *   addr    - the address structure (struct sockaddr_in or struct
265  *             sockaddr_in6 [RFC 2553]),
266  *   addr_len - the size of the address structure.
267  */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 	int retval = 0;
271 
272 	lock_sock(sk);
273 
274 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 		 addr, addr_len);
276 
277 	/* Disallow binding twice. */
278 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 				      addr_len);
281 	else
282 		retval = -EINVAL;
283 
284 	release_sock(sk);
285 
286 	return retval;
287 }
288 
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290 
291 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 					union sctp_addr *addr, int len)
294 {
295 	struct sctp_af *af;
296 
297 	/* Check minimum size.  */
298 	if (len < sizeof (struct sockaddr))
299 		return NULL;
300 
301 	/* V4 mapped address are really of AF_INET family */
302 	if (addr->sa.sa_family == AF_INET6 &&
303 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 		if (!opt->pf->af_supported(AF_INET, opt))
305 			return NULL;
306 	} else {
307 		/* Does this PF support this AF? */
308 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 			return NULL;
310 	}
311 
312 	/* If we get this far, af is valid. */
313 	af = sctp_get_af_specific(addr->sa.sa_family);
314 
315 	if (len < af->sockaddr_len)
316 		return NULL;
317 
318 	return af;
319 }
320 
321 /* Bind a local address either to an endpoint or to an association.  */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 	struct net *net = sock_net(sk);
325 	struct sctp_sock *sp = sctp_sk(sk);
326 	struct sctp_endpoint *ep = sp->ep;
327 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 	struct sctp_af *af;
329 	unsigned short snum;
330 	int ret = 0;
331 
332 	/* Common sockaddr verification. */
333 	af = sctp_sockaddr_af(sp, addr, len);
334 	if (!af) {
335 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 			 __func__, sk, addr, len);
337 		return -EINVAL;
338 	}
339 
340 	snum = ntohs(addr->v4.sin_port);
341 
342 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 		 __func__, sk, &addr->sa, bp->port, snum, len);
344 
345 	/* PF specific bind() address verification. */
346 	if (!sp->pf->bind_verify(sp, addr))
347 		return -EADDRNOTAVAIL;
348 
349 	/* We must either be unbound, or bind to the same port.
350 	 * It's OK to allow 0 ports if we are already bound.
351 	 * We'll just inhert an already bound port in this case
352 	 */
353 	if (bp->port) {
354 		if (!snum)
355 			snum = bp->port;
356 		else if (snum != bp->port) {
357 			pr_debug("%s: new port %d doesn't match existing port "
358 				 "%d\n", __func__, snum, bp->port);
359 			return -EINVAL;
360 		}
361 	}
362 
363 	if (snum && snum < PROT_SOCK &&
364 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 		return -EACCES;
366 
367 	/* See if the address matches any of the addresses we may have
368 	 * already bound before checking against other endpoints.
369 	 */
370 	if (sctp_bind_addr_match(bp, addr, sp))
371 		return -EINVAL;
372 
373 	/* Make sure we are allowed to bind here.
374 	 * The function sctp_get_port_local() does duplicate address
375 	 * detection.
376 	 */
377 	addr->v4.sin_port = htons(snum);
378 	if ((ret = sctp_get_port_local(sk, addr))) {
379 		return -EADDRINUSE;
380 	}
381 
382 	/* Refresh ephemeral port.  */
383 	if (!bp->port)
384 		bp->port = inet_sk(sk)->inet_num;
385 
386 	/* Add the address to the bind address list.
387 	 * Use GFP_ATOMIC since BHs will be disabled.
388 	 */
389 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
390 
391 	/* Copy back into socket for getsockname() use. */
392 	if (!ret) {
393 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
394 		sp->pf->to_sk_saddr(addr, sk);
395 	}
396 
397 	return ret;
398 }
399 
400  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
401  *
402  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
403  * at any one time.  If a sender, after sending an ASCONF chunk, decides
404  * it needs to transfer another ASCONF Chunk, it MUST wait until the
405  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
406  * subsequent ASCONF. Note this restriction binds each side, so at any
407  * time two ASCONF may be in-transit on any given association (one sent
408  * from each endpoint).
409  */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)410 static int sctp_send_asconf(struct sctp_association *asoc,
411 			    struct sctp_chunk *chunk)
412 {
413 	struct net 	*net = sock_net(asoc->base.sk);
414 	int		retval = 0;
415 
416 	/* If there is an outstanding ASCONF chunk, queue it for later
417 	 * transmission.
418 	 */
419 	if (asoc->addip_last_asconf) {
420 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
421 		goto out;
422 	}
423 
424 	/* Hold the chunk until an ASCONF_ACK is received. */
425 	sctp_chunk_hold(chunk);
426 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
427 	if (retval)
428 		sctp_chunk_free(chunk);
429 	else
430 		asoc->addip_last_asconf = chunk;
431 
432 out:
433 	return retval;
434 }
435 
436 /* Add a list of addresses as bind addresses to local endpoint or
437  * association.
438  *
439  * Basically run through each address specified in the addrs/addrcnt
440  * array/length pair, determine if it is IPv6 or IPv4 and call
441  * sctp_do_bind() on it.
442  *
443  * If any of them fails, then the operation will be reversed and the
444  * ones that were added will be removed.
445  *
446  * Only sctp_setsockopt_bindx() is supposed to call this function.
447  */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)448 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
449 {
450 	int cnt;
451 	int retval = 0;
452 	void *addr_buf;
453 	struct sockaddr *sa_addr;
454 	struct sctp_af *af;
455 
456 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
457 		 addrs, addrcnt);
458 
459 	addr_buf = addrs;
460 	for (cnt = 0; cnt < addrcnt; cnt++) {
461 		/* The list may contain either IPv4 or IPv6 address;
462 		 * determine the address length for walking thru the list.
463 		 */
464 		sa_addr = addr_buf;
465 		af = sctp_get_af_specific(sa_addr->sa_family);
466 		if (!af) {
467 			retval = -EINVAL;
468 			goto err_bindx_add;
469 		}
470 
471 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
472 				      af->sockaddr_len);
473 
474 		addr_buf += af->sockaddr_len;
475 
476 err_bindx_add:
477 		if (retval < 0) {
478 			/* Failed. Cleanup the ones that have been added */
479 			if (cnt > 0)
480 				sctp_bindx_rem(sk, addrs, cnt);
481 			return retval;
482 		}
483 	}
484 
485 	return retval;
486 }
487 
488 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
489  * associations that are part of the endpoint indicating that a list of local
490  * addresses are added to the endpoint.
491  *
492  * If any of the addresses is already in the bind address list of the
493  * association, we do not send the chunk for that association.  But it will not
494  * affect other associations.
495  *
496  * Only sctp_setsockopt_bindx() is supposed to call this function.
497  */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)498 static int sctp_send_asconf_add_ip(struct sock		*sk,
499 				   struct sockaddr	*addrs,
500 				   int 			addrcnt)
501 {
502 	struct net *net = sock_net(sk);
503 	struct sctp_sock		*sp;
504 	struct sctp_endpoint		*ep;
505 	struct sctp_association		*asoc;
506 	struct sctp_bind_addr		*bp;
507 	struct sctp_chunk		*chunk;
508 	struct sctp_sockaddr_entry	*laddr;
509 	union sctp_addr			*addr;
510 	union sctp_addr			saveaddr;
511 	void				*addr_buf;
512 	struct sctp_af			*af;
513 	struct list_head		*p;
514 	int 				i;
515 	int 				retval = 0;
516 
517 	if (!net->sctp.addip_enable)
518 		return retval;
519 
520 	sp = sctp_sk(sk);
521 	ep = sp->ep;
522 
523 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
524 		 __func__, sk, addrs, addrcnt);
525 
526 	list_for_each_entry(asoc, &ep->asocs, asocs) {
527 		if (!asoc->peer.asconf_capable)
528 			continue;
529 
530 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
531 			continue;
532 
533 		if (!sctp_state(asoc, ESTABLISHED))
534 			continue;
535 
536 		/* Check if any address in the packed array of addresses is
537 		 * in the bind address list of the association. If so,
538 		 * do not send the asconf chunk to its peer, but continue with
539 		 * other associations.
540 		 */
541 		addr_buf = addrs;
542 		for (i = 0; i < addrcnt; i++) {
543 			addr = addr_buf;
544 			af = sctp_get_af_specific(addr->v4.sin_family);
545 			if (!af) {
546 				retval = -EINVAL;
547 				goto out;
548 			}
549 
550 			if (sctp_assoc_lookup_laddr(asoc, addr))
551 				break;
552 
553 			addr_buf += af->sockaddr_len;
554 		}
555 		if (i < addrcnt)
556 			continue;
557 
558 		/* Use the first valid address in bind addr list of
559 		 * association as Address Parameter of ASCONF CHUNK.
560 		 */
561 		bp = &asoc->base.bind_addr;
562 		p = bp->address_list.next;
563 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
564 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
565 						   addrcnt, SCTP_PARAM_ADD_IP);
566 		if (!chunk) {
567 			retval = -ENOMEM;
568 			goto out;
569 		}
570 
571 		/* Add the new addresses to the bind address list with
572 		 * use_as_src set to 0.
573 		 */
574 		addr_buf = addrs;
575 		for (i = 0; i < addrcnt; i++) {
576 			addr = addr_buf;
577 			af = sctp_get_af_specific(addr->v4.sin_family);
578 			memcpy(&saveaddr, addr, af->sockaddr_len);
579 			retval = sctp_add_bind_addr(bp, &saveaddr,
580 						    SCTP_ADDR_NEW, GFP_ATOMIC);
581 			addr_buf += af->sockaddr_len;
582 		}
583 		if (asoc->src_out_of_asoc_ok) {
584 			struct sctp_transport *trans;
585 
586 			list_for_each_entry(trans,
587 			    &asoc->peer.transport_addr_list, transports) {
588 				/* Clear the source and route cache */
589 				dst_release(trans->dst);
590 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
591 				    2*asoc->pathmtu, 4380));
592 				trans->ssthresh = asoc->peer.i.a_rwnd;
593 				trans->rto = asoc->rto_initial;
594 				sctp_max_rto(asoc, trans);
595 				trans->rtt = trans->srtt = trans->rttvar = 0;
596 				sctp_transport_route(trans, NULL,
597 				    sctp_sk(asoc->base.sk));
598 			}
599 		}
600 		retval = sctp_send_asconf(asoc, chunk);
601 	}
602 
603 out:
604 	return retval;
605 }
606 
607 /* Remove a list of addresses from bind addresses list.  Do not remove the
608  * last address.
609  *
610  * Basically run through each address specified in the addrs/addrcnt
611  * array/length pair, determine if it is IPv6 or IPv4 and call
612  * sctp_del_bind() on it.
613  *
614  * If any of them fails, then the operation will be reversed and the
615  * ones that were removed will be added back.
616  *
617  * At least one address has to be left; if only one address is
618  * available, the operation will return -EBUSY.
619  *
620  * Only sctp_setsockopt_bindx() is supposed to call this function.
621  */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)622 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
623 {
624 	struct sctp_sock *sp = sctp_sk(sk);
625 	struct sctp_endpoint *ep = sp->ep;
626 	int cnt;
627 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
628 	int retval = 0;
629 	void *addr_buf;
630 	union sctp_addr *sa_addr;
631 	struct sctp_af *af;
632 
633 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
634 		 __func__, sk, addrs, addrcnt);
635 
636 	addr_buf = addrs;
637 	for (cnt = 0; cnt < addrcnt; cnt++) {
638 		/* If the bind address list is empty or if there is only one
639 		 * bind address, there is nothing more to be removed (we need
640 		 * at least one address here).
641 		 */
642 		if (list_empty(&bp->address_list) ||
643 		    (sctp_list_single_entry(&bp->address_list))) {
644 			retval = -EBUSY;
645 			goto err_bindx_rem;
646 		}
647 
648 		sa_addr = addr_buf;
649 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
650 		if (!af) {
651 			retval = -EINVAL;
652 			goto err_bindx_rem;
653 		}
654 
655 		if (!af->addr_valid(sa_addr, sp, NULL)) {
656 			retval = -EADDRNOTAVAIL;
657 			goto err_bindx_rem;
658 		}
659 
660 		if (sa_addr->v4.sin_port &&
661 		    sa_addr->v4.sin_port != htons(bp->port)) {
662 			retval = -EINVAL;
663 			goto err_bindx_rem;
664 		}
665 
666 		if (!sa_addr->v4.sin_port)
667 			sa_addr->v4.sin_port = htons(bp->port);
668 
669 		/* FIXME - There is probably a need to check if sk->sk_saddr and
670 		 * sk->sk_rcv_addr are currently set to one of the addresses to
671 		 * be removed. This is something which needs to be looked into
672 		 * when we are fixing the outstanding issues with multi-homing
673 		 * socket routing and failover schemes. Refer to comments in
674 		 * sctp_do_bind(). -daisy
675 		 */
676 		retval = sctp_del_bind_addr(bp, sa_addr);
677 
678 		addr_buf += af->sockaddr_len;
679 err_bindx_rem:
680 		if (retval < 0) {
681 			/* Failed. Add the ones that has been removed back */
682 			if (cnt > 0)
683 				sctp_bindx_add(sk, addrs, cnt);
684 			return retval;
685 		}
686 	}
687 
688 	return retval;
689 }
690 
691 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
692  * the associations that are part of the endpoint indicating that a list of
693  * local addresses are removed from the endpoint.
694  *
695  * If any of the addresses is already in the bind address list of the
696  * association, we do not send the chunk for that association.  But it will not
697  * affect other associations.
698  *
699  * Only sctp_setsockopt_bindx() is supposed to call this function.
700  */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)701 static int sctp_send_asconf_del_ip(struct sock		*sk,
702 				   struct sockaddr	*addrs,
703 				   int			addrcnt)
704 {
705 	struct net *net = sock_net(sk);
706 	struct sctp_sock	*sp;
707 	struct sctp_endpoint	*ep;
708 	struct sctp_association	*asoc;
709 	struct sctp_transport	*transport;
710 	struct sctp_bind_addr	*bp;
711 	struct sctp_chunk	*chunk;
712 	union sctp_addr		*laddr;
713 	void			*addr_buf;
714 	struct sctp_af		*af;
715 	struct sctp_sockaddr_entry *saddr;
716 	int 			i;
717 	int 			retval = 0;
718 	int			stored = 0;
719 
720 	chunk = NULL;
721 	if (!net->sctp.addip_enable)
722 		return retval;
723 
724 	sp = sctp_sk(sk);
725 	ep = sp->ep;
726 
727 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
728 		 __func__, sk, addrs, addrcnt);
729 
730 	list_for_each_entry(asoc, &ep->asocs, asocs) {
731 
732 		if (!asoc->peer.asconf_capable)
733 			continue;
734 
735 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
736 			continue;
737 
738 		if (!sctp_state(asoc, ESTABLISHED))
739 			continue;
740 
741 		/* Check if any address in the packed array of addresses is
742 		 * not present in the bind address list of the association.
743 		 * If so, do not send the asconf chunk to its peer, but
744 		 * continue with other associations.
745 		 */
746 		addr_buf = addrs;
747 		for (i = 0; i < addrcnt; i++) {
748 			laddr = addr_buf;
749 			af = sctp_get_af_specific(laddr->v4.sin_family);
750 			if (!af) {
751 				retval = -EINVAL;
752 				goto out;
753 			}
754 
755 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
756 				break;
757 
758 			addr_buf += af->sockaddr_len;
759 		}
760 		if (i < addrcnt)
761 			continue;
762 
763 		/* Find one address in the association's bind address list
764 		 * that is not in the packed array of addresses. This is to
765 		 * make sure that we do not delete all the addresses in the
766 		 * association.
767 		 */
768 		bp = &asoc->base.bind_addr;
769 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
770 					       addrcnt, sp);
771 		if ((laddr == NULL) && (addrcnt == 1)) {
772 			if (asoc->asconf_addr_del_pending)
773 				continue;
774 			asoc->asconf_addr_del_pending =
775 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
776 			if (asoc->asconf_addr_del_pending == NULL) {
777 				retval = -ENOMEM;
778 				goto out;
779 			}
780 			asoc->asconf_addr_del_pending->sa.sa_family =
781 				    addrs->sa_family;
782 			asoc->asconf_addr_del_pending->v4.sin_port =
783 				    htons(bp->port);
784 			if (addrs->sa_family == AF_INET) {
785 				struct sockaddr_in *sin;
786 
787 				sin = (struct sockaddr_in *)addrs;
788 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
789 			} else if (addrs->sa_family == AF_INET6) {
790 				struct sockaddr_in6 *sin6;
791 
792 				sin6 = (struct sockaddr_in6 *)addrs;
793 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
794 			}
795 
796 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
797 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
798 				 asoc->asconf_addr_del_pending);
799 
800 			asoc->src_out_of_asoc_ok = 1;
801 			stored = 1;
802 			goto skip_mkasconf;
803 		}
804 
805 		if (laddr == NULL)
806 			return -EINVAL;
807 
808 		/* We do not need RCU protection throughout this loop
809 		 * because this is done under a socket lock from the
810 		 * setsockopt call.
811 		 */
812 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
813 						   SCTP_PARAM_DEL_IP);
814 		if (!chunk) {
815 			retval = -ENOMEM;
816 			goto out;
817 		}
818 
819 skip_mkasconf:
820 		/* Reset use_as_src flag for the addresses in the bind address
821 		 * list that are to be deleted.
822 		 */
823 		addr_buf = addrs;
824 		for (i = 0; i < addrcnt; i++) {
825 			laddr = addr_buf;
826 			af = sctp_get_af_specific(laddr->v4.sin_family);
827 			list_for_each_entry(saddr, &bp->address_list, list) {
828 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
829 					saddr->state = SCTP_ADDR_DEL;
830 			}
831 			addr_buf += af->sockaddr_len;
832 		}
833 
834 		/* Update the route and saddr entries for all the transports
835 		 * as some of the addresses in the bind address list are
836 		 * about to be deleted and cannot be used as source addresses.
837 		 */
838 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
839 					transports) {
840 			dst_release(transport->dst);
841 			sctp_transport_route(transport, NULL,
842 					     sctp_sk(asoc->base.sk));
843 		}
844 
845 		if (stored)
846 			/* We don't need to transmit ASCONF */
847 			continue;
848 		retval = sctp_send_asconf(asoc, chunk);
849 	}
850 out:
851 	return retval;
852 }
853 
854 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)855 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
856 {
857 	struct sock *sk = sctp_opt2sk(sp);
858 	union sctp_addr *addr;
859 	struct sctp_af *af;
860 
861 	/* It is safe to write port space in caller. */
862 	addr = &addrw->a;
863 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
864 	af = sctp_get_af_specific(addr->sa.sa_family);
865 	if (!af)
866 		return -EINVAL;
867 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
868 		return -EINVAL;
869 
870 	if (addrw->state == SCTP_ADDR_NEW)
871 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
872 	else
873 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
874 }
875 
876 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
877  *
878  * API 8.1
879  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
880  *                int flags);
881  *
882  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
883  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
884  * or IPv6 addresses.
885  *
886  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
887  * Section 3.1.2 for this usage.
888  *
889  * addrs is a pointer to an array of one or more socket addresses. Each
890  * address is contained in its appropriate structure (i.e. struct
891  * sockaddr_in or struct sockaddr_in6) the family of the address type
892  * must be used to distinguish the address length (note that this
893  * representation is termed a "packed array" of addresses). The caller
894  * specifies the number of addresses in the array with addrcnt.
895  *
896  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
897  * -1, and sets errno to the appropriate error code.
898  *
899  * For SCTP, the port given in each socket address must be the same, or
900  * sctp_bindx() will fail, setting errno to EINVAL.
901  *
902  * The flags parameter is formed from the bitwise OR of zero or more of
903  * the following currently defined flags:
904  *
905  * SCTP_BINDX_ADD_ADDR
906  *
907  * SCTP_BINDX_REM_ADDR
908  *
909  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
910  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
911  * addresses from the association. The two flags are mutually exclusive;
912  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
913  * not remove all addresses from an association; sctp_bindx() will
914  * reject such an attempt with EINVAL.
915  *
916  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
917  * additional addresses with an endpoint after calling bind().  Or use
918  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
919  * socket is associated with so that no new association accepted will be
920  * associated with those addresses. If the endpoint supports dynamic
921  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
922  * endpoint to send the appropriate message to the peer to change the
923  * peers address lists.
924  *
925  * Adding and removing addresses from a connected association is
926  * optional functionality. Implementations that do not support this
927  * functionality should return EOPNOTSUPP.
928  *
929  * Basically do nothing but copying the addresses from user to kernel
930  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
931  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
932  * from userspace.
933  *
934  * We don't use copy_from_user() for optimization: we first do the
935  * sanity checks (buffer size -fast- and access check-healthy
936  * pointer); if all of those succeed, then we can alloc the memory
937  * (expensive operation) needed to copy the data to kernel. Then we do
938  * the copying without checking the user space area
939  * (__copy_from_user()).
940  *
941  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
942  * it.
943  *
944  * sk        The sk of the socket
945  * addrs     The pointer to the addresses in user land
946  * addrssize Size of the addrs buffer
947  * op        Operation to perform (add or remove, see the flags of
948  *           sctp_bindx)
949  *
950  * Returns 0 if ok, <0 errno code on error.
951  */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr __user * addrs,int addrs_size,int op)952 static int sctp_setsockopt_bindx(struct sock *sk,
953 				 struct sockaddr __user *addrs,
954 				 int addrs_size, int op)
955 {
956 	struct sockaddr *kaddrs;
957 	int err;
958 	int addrcnt = 0;
959 	int walk_size = 0;
960 	struct sockaddr *sa_addr;
961 	void *addr_buf;
962 	struct sctp_af *af;
963 
964 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
965 		 __func__, sk, addrs, addrs_size, op);
966 
967 	if (unlikely(addrs_size <= 0))
968 		return -EINVAL;
969 
970 	/* Check the user passed a healthy pointer.  */
971 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
972 		return -EFAULT;
973 
974 	/* Alloc space for the address array in kernel memory.  */
975 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
976 	if (unlikely(!kaddrs))
977 		return -ENOMEM;
978 
979 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
980 		kfree(kaddrs);
981 		return -EFAULT;
982 	}
983 
984 	/* Walk through the addrs buffer and count the number of addresses. */
985 	addr_buf = kaddrs;
986 	while (walk_size < addrs_size) {
987 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
988 			kfree(kaddrs);
989 			return -EINVAL;
990 		}
991 
992 		sa_addr = addr_buf;
993 		af = sctp_get_af_specific(sa_addr->sa_family);
994 
995 		/* If the address family is not supported or if this address
996 		 * causes the address buffer to overflow return EINVAL.
997 		 */
998 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
999 			kfree(kaddrs);
1000 			return -EINVAL;
1001 		}
1002 		addrcnt++;
1003 		addr_buf += af->sockaddr_len;
1004 		walk_size += af->sockaddr_len;
1005 	}
1006 
1007 	/* Do the work. */
1008 	switch (op) {
1009 	case SCTP_BINDX_ADD_ADDR:
1010 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1011 		if (err)
1012 			goto out;
1013 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1014 		break;
1015 
1016 	case SCTP_BINDX_REM_ADDR:
1017 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1018 		if (err)
1019 			goto out;
1020 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1021 		break;
1022 
1023 	default:
1024 		err = -EINVAL;
1025 		break;
1026 	}
1027 
1028 out:
1029 	kfree(kaddrs);
1030 
1031 	return err;
1032 }
1033 
1034 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1035  *
1036  * Common routine for handling connect() and sctp_connectx().
1037  * Connect will come in with just a single address.
1038  */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1039 static int __sctp_connect(struct sock *sk,
1040 			  struct sockaddr *kaddrs,
1041 			  int addrs_size,
1042 			  sctp_assoc_t *assoc_id)
1043 {
1044 	struct net *net = sock_net(sk);
1045 	struct sctp_sock *sp;
1046 	struct sctp_endpoint *ep;
1047 	struct sctp_association *asoc = NULL;
1048 	struct sctp_association *asoc2;
1049 	struct sctp_transport *transport;
1050 	union sctp_addr to;
1051 	sctp_scope_t scope;
1052 	long timeo;
1053 	int err = 0;
1054 	int addrcnt = 0;
1055 	int walk_size = 0;
1056 	union sctp_addr *sa_addr = NULL;
1057 	void *addr_buf;
1058 	unsigned short port;
1059 	unsigned int f_flags = 0;
1060 
1061 	sp = sctp_sk(sk);
1062 	ep = sp->ep;
1063 
1064 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1065 	 * state - UDP-style peeled off socket or a TCP-style socket that
1066 	 * is already connected.
1067 	 * It cannot be done even on a TCP-style listening socket.
1068 	 */
1069 	if (sctp_sstate(sk, ESTABLISHED) ||
1070 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1071 		err = -EISCONN;
1072 		goto out_free;
1073 	}
1074 
1075 	/* Walk through the addrs buffer and count the number of addresses. */
1076 	addr_buf = kaddrs;
1077 	while (walk_size < addrs_size) {
1078 		struct sctp_af *af;
1079 
1080 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1081 			err = -EINVAL;
1082 			goto out_free;
1083 		}
1084 
1085 		sa_addr = addr_buf;
1086 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1087 
1088 		/* If the address family is not supported or if this address
1089 		 * causes the address buffer to overflow return EINVAL.
1090 		 */
1091 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1092 			err = -EINVAL;
1093 			goto out_free;
1094 		}
1095 
1096 		port = ntohs(sa_addr->v4.sin_port);
1097 
1098 		/* Save current address so we can work with it */
1099 		memcpy(&to, sa_addr, af->sockaddr_len);
1100 
1101 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1102 		if (err)
1103 			goto out_free;
1104 
1105 		/* Make sure the destination port is correctly set
1106 		 * in all addresses.
1107 		 */
1108 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1109 			err = -EINVAL;
1110 			goto out_free;
1111 		}
1112 
1113 		/* Check if there already is a matching association on the
1114 		 * endpoint (other than the one created here).
1115 		 */
1116 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1117 		if (asoc2 && asoc2 != asoc) {
1118 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1119 				err = -EISCONN;
1120 			else
1121 				err = -EALREADY;
1122 			goto out_free;
1123 		}
1124 
1125 		/* If we could not find a matching association on the endpoint,
1126 		 * make sure that there is no peeled-off association matching
1127 		 * the peer address even on another socket.
1128 		 */
1129 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1130 			err = -EADDRNOTAVAIL;
1131 			goto out_free;
1132 		}
1133 
1134 		if (!asoc) {
1135 			/* If a bind() or sctp_bindx() is not called prior to
1136 			 * an sctp_connectx() call, the system picks an
1137 			 * ephemeral port and will choose an address set
1138 			 * equivalent to binding with a wildcard address.
1139 			 */
1140 			if (!ep->base.bind_addr.port) {
1141 				if (sctp_autobind(sk)) {
1142 					err = -EAGAIN;
1143 					goto out_free;
1144 				}
1145 			} else {
1146 				/*
1147 				 * If an unprivileged user inherits a 1-many
1148 				 * style socket with open associations on a
1149 				 * privileged port, it MAY be permitted to
1150 				 * accept new associations, but it SHOULD NOT
1151 				 * be permitted to open new associations.
1152 				 */
1153 				if (ep->base.bind_addr.port < PROT_SOCK &&
1154 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1155 					err = -EACCES;
1156 					goto out_free;
1157 				}
1158 			}
1159 
1160 			scope = sctp_scope(&to);
1161 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1162 			if (!asoc) {
1163 				err = -ENOMEM;
1164 				goto out_free;
1165 			}
1166 
1167 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1168 							      GFP_KERNEL);
1169 			if (err < 0) {
1170 				goto out_free;
1171 			}
1172 
1173 		}
1174 
1175 		/* Prime the peer's transport structures.  */
1176 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1177 						SCTP_UNKNOWN);
1178 		if (!transport) {
1179 			err = -ENOMEM;
1180 			goto out_free;
1181 		}
1182 
1183 		addrcnt++;
1184 		addr_buf += af->sockaddr_len;
1185 		walk_size += af->sockaddr_len;
1186 	}
1187 
1188 	/* In case the user of sctp_connectx() wants an association
1189 	 * id back, assign one now.
1190 	 */
1191 	if (assoc_id) {
1192 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1193 		if (err < 0)
1194 			goto out_free;
1195 	}
1196 
1197 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1198 	if (err < 0) {
1199 		goto out_free;
1200 	}
1201 
1202 	/* Initialize sk's dport and daddr for getpeername() */
1203 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1204 	sp->pf->to_sk_daddr(sa_addr, sk);
1205 	sk->sk_err = 0;
1206 
1207 	/* in-kernel sockets don't generally have a file allocated to them
1208 	 * if all they do is call sock_create_kern().
1209 	 */
1210 	if (sk->sk_socket->file)
1211 		f_flags = sk->sk_socket->file->f_flags;
1212 
1213 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1214 
1215 	err = sctp_wait_for_connect(asoc, &timeo);
1216 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1217 		*assoc_id = asoc->assoc_id;
1218 
1219 	/* Don't free association on exit. */
1220 	asoc = NULL;
1221 
1222 out_free:
1223 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1224 		 __func__, asoc, kaddrs, err);
1225 
1226 	if (asoc) {
1227 		/* sctp_primitive_ASSOCIATE may have added this association
1228 		 * To the hash table, try to unhash it, just in case, its a noop
1229 		 * if it wasn't hashed so we're safe
1230 		 */
1231 		sctp_unhash_established(asoc);
1232 		sctp_association_free(asoc);
1233 	}
1234 	return err;
1235 }
1236 
1237 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1238  *
1239  * API 8.9
1240  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1241  * 			sctp_assoc_t *asoc);
1242  *
1243  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1244  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1245  * or IPv6 addresses.
1246  *
1247  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1248  * Section 3.1.2 for this usage.
1249  *
1250  * addrs is a pointer to an array of one or more socket addresses. Each
1251  * address is contained in its appropriate structure (i.e. struct
1252  * sockaddr_in or struct sockaddr_in6) the family of the address type
1253  * must be used to distengish the address length (note that this
1254  * representation is termed a "packed array" of addresses). The caller
1255  * specifies the number of addresses in the array with addrcnt.
1256  *
1257  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1258  * the association id of the new association.  On failure, sctp_connectx()
1259  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1260  * is not touched by the kernel.
1261  *
1262  * For SCTP, the port given in each socket address must be the same, or
1263  * sctp_connectx() will fail, setting errno to EINVAL.
1264  *
1265  * An application can use sctp_connectx to initiate an association with
1266  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1267  * allows a caller to specify multiple addresses at which a peer can be
1268  * reached.  The way the SCTP stack uses the list of addresses to set up
1269  * the association is implementation dependent.  This function only
1270  * specifies that the stack will try to make use of all the addresses in
1271  * the list when needed.
1272  *
1273  * Note that the list of addresses passed in is only used for setting up
1274  * the association.  It does not necessarily equal the set of addresses
1275  * the peer uses for the resulting association.  If the caller wants to
1276  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1277  * retrieve them after the association has been set up.
1278  *
1279  * Basically do nothing but copying the addresses from user to kernel
1280  * land and invoking either sctp_connectx(). This is used for tunneling
1281  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1282  *
1283  * We don't use copy_from_user() for optimization: we first do the
1284  * sanity checks (buffer size -fast- and access check-healthy
1285  * pointer); if all of those succeed, then we can alloc the memory
1286  * (expensive operation) needed to copy the data to kernel. Then we do
1287  * the copying without checking the user space area
1288  * (__copy_from_user()).
1289  *
1290  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1291  * it.
1292  *
1293  * sk        The sk of the socket
1294  * addrs     The pointer to the addresses in user land
1295  * addrssize Size of the addrs buffer
1296  *
1297  * Returns >=0 if ok, <0 errno code on error.
1298  */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr __user * addrs,int addrs_size,sctp_assoc_t * assoc_id)1299 static int __sctp_setsockopt_connectx(struct sock *sk,
1300 				      struct sockaddr __user *addrs,
1301 				      int addrs_size,
1302 				      sctp_assoc_t *assoc_id)
1303 {
1304 	int err = 0;
1305 	struct sockaddr *kaddrs;
1306 
1307 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1308 		 __func__, sk, addrs, addrs_size);
1309 
1310 	if (unlikely(addrs_size <= 0))
1311 		return -EINVAL;
1312 
1313 	/* Check the user passed a healthy pointer.  */
1314 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1315 		return -EFAULT;
1316 
1317 	/* Alloc space for the address array in kernel memory.  */
1318 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1319 	if (unlikely(!kaddrs))
1320 		return -ENOMEM;
1321 
1322 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1323 		err = -EFAULT;
1324 	} else {
1325 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1326 	}
1327 
1328 	kfree(kaddrs);
1329 
1330 	return err;
1331 }
1332 
1333 /*
1334  * This is an older interface.  It's kept for backward compatibility
1335  * to the option that doesn't provide association id.
1336  */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr __user * addrs,int addrs_size)1337 static int sctp_setsockopt_connectx_old(struct sock *sk,
1338 					struct sockaddr __user *addrs,
1339 					int addrs_size)
1340 {
1341 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1342 }
1343 
1344 /*
1345  * New interface for the API.  The since the API is done with a socket
1346  * option, to make it simple we feed back the association id is as a return
1347  * indication to the call.  Error is always negative and association id is
1348  * always positive.
1349  */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr __user * addrs,int addrs_size)1350 static int sctp_setsockopt_connectx(struct sock *sk,
1351 				    struct sockaddr __user *addrs,
1352 				    int addrs_size)
1353 {
1354 	sctp_assoc_t assoc_id = 0;
1355 	int err = 0;
1356 
1357 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1358 
1359 	if (err)
1360 		return err;
1361 	else
1362 		return assoc_id;
1363 }
1364 
1365 /*
1366  * New (hopefully final) interface for the API.
1367  * We use the sctp_getaddrs_old structure so that use-space library
1368  * can avoid any unnecessary allocations. The only different part
1369  * is that we store the actual length of the address buffer into the
1370  * addrs_num structure member. That way we can re-use the existing
1371  * code.
1372  */
1373 #ifdef CONFIG_COMPAT
1374 struct compat_sctp_getaddrs_old {
1375 	sctp_assoc_t	assoc_id;
1376 	s32		addr_num;
1377 	compat_uptr_t	addrs;		/* struct sockaddr * */
1378 };
1379 #endif
1380 
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1381 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1382 				     char __user *optval,
1383 				     int __user *optlen)
1384 {
1385 	struct sctp_getaddrs_old param;
1386 	sctp_assoc_t assoc_id = 0;
1387 	int err = 0;
1388 
1389 #ifdef CONFIG_COMPAT
1390 	if (is_compat_task()) {
1391 		struct compat_sctp_getaddrs_old param32;
1392 
1393 		if (len < sizeof(param32))
1394 			return -EINVAL;
1395 		if (copy_from_user(&param32, optval, sizeof(param32)))
1396 			return -EFAULT;
1397 
1398 		param.assoc_id = param32.assoc_id;
1399 		param.addr_num = param32.addr_num;
1400 		param.addrs = compat_ptr(param32.addrs);
1401 	} else
1402 #endif
1403 	{
1404 		if (len < sizeof(param))
1405 			return -EINVAL;
1406 		if (copy_from_user(&param, optval, sizeof(param)))
1407 			return -EFAULT;
1408 	}
1409 
1410 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1411 					 param.addrs, param.addr_num,
1412 					 &assoc_id);
1413 	if (err == 0 || err == -EINPROGRESS) {
1414 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1415 			return -EFAULT;
1416 		if (put_user(sizeof(assoc_id), optlen))
1417 			return -EFAULT;
1418 	}
1419 
1420 	return err;
1421 }
1422 
1423 /* API 3.1.4 close() - UDP Style Syntax
1424  * Applications use close() to perform graceful shutdown (as described in
1425  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1426  * by a UDP-style socket.
1427  *
1428  * The syntax is
1429  *
1430  *   ret = close(int sd);
1431  *
1432  *   sd      - the socket descriptor of the associations to be closed.
1433  *
1434  * To gracefully shutdown a specific association represented by the
1435  * UDP-style socket, an application should use the sendmsg() call,
1436  * passing no user data, but including the appropriate flag in the
1437  * ancillary data (see Section xxxx).
1438  *
1439  * If sd in the close() call is a branched-off socket representing only
1440  * one association, the shutdown is performed on that association only.
1441  *
1442  * 4.1.6 close() - TCP Style Syntax
1443  *
1444  * Applications use close() to gracefully close down an association.
1445  *
1446  * The syntax is:
1447  *
1448  *    int close(int sd);
1449  *
1450  *      sd      - the socket descriptor of the association to be closed.
1451  *
1452  * After an application calls close() on a socket descriptor, no further
1453  * socket operations will succeed on that descriptor.
1454  *
1455  * API 7.1.4 SO_LINGER
1456  *
1457  * An application using the TCP-style socket can use this option to
1458  * perform the SCTP ABORT primitive.  The linger option structure is:
1459  *
1460  *  struct  linger {
1461  *     int     l_onoff;                // option on/off
1462  *     int     l_linger;               // linger time
1463  * };
1464  *
1465  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1466  * to 0, calling close() is the same as the ABORT primitive.  If the
1467  * value is set to a negative value, the setsockopt() call will return
1468  * an error.  If the value is set to a positive value linger_time, the
1469  * close() can be blocked for at most linger_time ms.  If the graceful
1470  * shutdown phase does not finish during this period, close() will
1471  * return but the graceful shutdown phase continues in the system.
1472  */
sctp_close(struct sock * sk,long timeout)1473 static void sctp_close(struct sock *sk, long timeout)
1474 {
1475 	struct net *net = sock_net(sk);
1476 	struct sctp_endpoint *ep;
1477 	struct sctp_association *asoc;
1478 	struct list_head *pos, *temp;
1479 	unsigned int data_was_unread;
1480 
1481 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1482 
1483 	lock_sock(sk);
1484 	sk->sk_shutdown = SHUTDOWN_MASK;
1485 	sk->sk_state = SCTP_SS_CLOSING;
1486 
1487 	ep = sctp_sk(sk)->ep;
1488 
1489 	/* Clean up any skbs sitting on the receive queue.  */
1490 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1491 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1492 
1493 	/* Walk all associations on an endpoint.  */
1494 	list_for_each_safe(pos, temp, &ep->asocs) {
1495 		asoc = list_entry(pos, struct sctp_association, asocs);
1496 
1497 		if (sctp_style(sk, TCP)) {
1498 			/* A closed association can still be in the list if
1499 			 * it belongs to a TCP-style listening socket that is
1500 			 * not yet accepted. If so, free it. If not, send an
1501 			 * ABORT or SHUTDOWN based on the linger options.
1502 			 */
1503 			if (sctp_state(asoc, CLOSED)) {
1504 				sctp_unhash_established(asoc);
1505 				sctp_association_free(asoc);
1506 				continue;
1507 			}
1508 		}
1509 
1510 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1511 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1512 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1513 			struct sctp_chunk *chunk;
1514 
1515 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1516 			sctp_primitive_ABORT(net, asoc, chunk);
1517 		} else
1518 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1519 	}
1520 
1521 	/* On a TCP-style socket, block for at most linger_time if set. */
1522 	if (sctp_style(sk, TCP) && timeout)
1523 		sctp_wait_for_close(sk, timeout);
1524 
1525 	/* This will run the backlog queue.  */
1526 	release_sock(sk);
1527 
1528 	/* Supposedly, no process has access to the socket, but
1529 	 * the net layers still may.
1530 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1531 	 * held and that should be grabbed before socket lock.
1532 	 */
1533 	spin_lock_bh(&net->sctp.addr_wq_lock);
1534 	bh_lock_sock(sk);
1535 
1536 	/* Hold the sock, since sk_common_release() will put sock_put()
1537 	 * and we have just a little more cleanup.
1538 	 */
1539 	sock_hold(sk);
1540 	sk_common_release(sk);
1541 
1542 	bh_unlock_sock(sk);
1543 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1544 
1545 	sock_put(sk);
1546 
1547 	SCTP_DBG_OBJCNT_DEC(sock);
1548 }
1549 
1550 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1551 static int sctp_error(struct sock *sk, int flags, int err)
1552 {
1553 	if (err == -EPIPE)
1554 		err = sock_error(sk) ? : -EPIPE;
1555 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1556 		send_sig(SIGPIPE, current, 0);
1557 	return err;
1558 }
1559 
1560 /* API 3.1.3 sendmsg() - UDP Style Syntax
1561  *
1562  * An application uses sendmsg() and recvmsg() calls to transmit data to
1563  * and receive data from its peer.
1564  *
1565  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1566  *                  int flags);
1567  *
1568  *  socket  - the socket descriptor of the endpoint.
1569  *  message - pointer to the msghdr structure which contains a single
1570  *            user message and possibly some ancillary data.
1571  *
1572  *            See Section 5 for complete description of the data
1573  *            structures.
1574  *
1575  *  flags   - flags sent or received with the user message, see Section
1576  *            5 for complete description of the flags.
1577  *
1578  * Note:  This function could use a rewrite especially when explicit
1579  * connect support comes in.
1580  */
1581 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1582 
1583 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1584 
sctp_sendmsg(struct sock * sk,struct msghdr * msg,size_t msg_len)1585 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1586 {
1587 	struct net *net = sock_net(sk);
1588 	struct sctp_sock *sp;
1589 	struct sctp_endpoint *ep;
1590 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1591 	struct sctp_transport *transport, *chunk_tp;
1592 	struct sctp_chunk *chunk;
1593 	union sctp_addr to;
1594 	struct sockaddr *msg_name = NULL;
1595 	struct sctp_sndrcvinfo default_sinfo;
1596 	struct sctp_sndrcvinfo *sinfo;
1597 	struct sctp_initmsg *sinit;
1598 	sctp_assoc_t associd = 0;
1599 	sctp_cmsgs_t cmsgs = { NULL };
1600 	sctp_scope_t scope;
1601 	bool fill_sinfo_ttl = false, wait_connect = false;
1602 	struct sctp_datamsg *datamsg;
1603 	int msg_flags = msg->msg_flags;
1604 	__u16 sinfo_flags = 0;
1605 	long timeo;
1606 	int err;
1607 
1608 	err = 0;
1609 	sp = sctp_sk(sk);
1610 	ep = sp->ep;
1611 
1612 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1613 		 msg, msg_len, ep);
1614 
1615 	/* We cannot send a message over a TCP-style listening socket. */
1616 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1617 		err = -EPIPE;
1618 		goto out_nounlock;
1619 	}
1620 
1621 	/* Parse out the SCTP CMSGs.  */
1622 	err = sctp_msghdr_parse(msg, &cmsgs);
1623 	if (err) {
1624 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1625 		goto out_nounlock;
1626 	}
1627 
1628 	/* Fetch the destination address for this packet.  This
1629 	 * address only selects the association--it is not necessarily
1630 	 * the address we will send to.
1631 	 * For a peeled-off socket, msg_name is ignored.
1632 	 */
1633 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1634 		int msg_namelen = msg->msg_namelen;
1635 
1636 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1637 				       msg_namelen);
1638 		if (err)
1639 			return err;
1640 
1641 		if (msg_namelen > sizeof(to))
1642 			msg_namelen = sizeof(to);
1643 		memcpy(&to, msg->msg_name, msg_namelen);
1644 		msg_name = msg->msg_name;
1645 	}
1646 
1647 	sinit = cmsgs.init;
1648 	if (cmsgs.sinfo != NULL) {
1649 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1650 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1651 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1652 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1653 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1654 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1655 
1656 		sinfo = &default_sinfo;
1657 		fill_sinfo_ttl = true;
1658 	} else {
1659 		sinfo = cmsgs.srinfo;
1660 	}
1661 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1662 	if (sinfo) {
1663 		sinfo_flags = sinfo->sinfo_flags;
1664 		associd = sinfo->sinfo_assoc_id;
1665 	}
1666 
1667 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1668 		 msg_len, sinfo_flags);
1669 
1670 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1671 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1672 		err = -EINVAL;
1673 		goto out_nounlock;
1674 	}
1675 
1676 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1677 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1678 	 * If SCTP_ABORT is set, the message length could be non zero with
1679 	 * the msg_iov set to the user abort reason.
1680 	 */
1681 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1682 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1683 		err = -EINVAL;
1684 		goto out_nounlock;
1685 	}
1686 
1687 	/* If SCTP_ADDR_OVER is set, there must be an address
1688 	 * specified in msg_name.
1689 	 */
1690 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1691 		err = -EINVAL;
1692 		goto out_nounlock;
1693 	}
1694 
1695 	transport = NULL;
1696 
1697 	pr_debug("%s: about to look up association\n", __func__);
1698 
1699 	lock_sock(sk);
1700 
1701 	/* If a msg_name has been specified, assume this is to be used.  */
1702 	if (msg_name) {
1703 		/* Look for a matching association on the endpoint. */
1704 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1705 		if (!asoc) {
1706 			/* If we could not find a matching association on the
1707 			 * endpoint, make sure that it is not a TCP-style
1708 			 * socket that already has an association or there is
1709 			 * no peeled-off association on another socket.
1710 			 */
1711 			if ((sctp_style(sk, TCP) &&
1712 			     sctp_sstate(sk, ESTABLISHED)) ||
1713 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1714 				err = -EADDRNOTAVAIL;
1715 				goto out_unlock;
1716 			}
1717 		}
1718 	} else {
1719 		asoc = sctp_id2assoc(sk, associd);
1720 		if (!asoc) {
1721 			err = -EPIPE;
1722 			goto out_unlock;
1723 		}
1724 	}
1725 
1726 	if (asoc) {
1727 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1728 
1729 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1730 		 * socket that has an association in CLOSED state. This can
1731 		 * happen when an accepted socket has an association that is
1732 		 * already CLOSED.
1733 		 */
1734 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1735 			err = -EPIPE;
1736 			goto out_unlock;
1737 		}
1738 
1739 		if (sinfo_flags & SCTP_EOF) {
1740 			pr_debug("%s: shutting down association:%p\n",
1741 				 __func__, asoc);
1742 
1743 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1744 			err = 0;
1745 			goto out_unlock;
1746 		}
1747 		if (sinfo_flags & SCTP_ABORT) {
1748 
1749 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1750 			if (!chunk) {
1751 				err = -ENOMEM;
1752 				goto out_unlock;
1753 			}
1754 
1755 			pr_debug("%s: aborting association:%p\n",
1756 				 __func__, asoc);
1757 
1758 			sctp_primitive_ABORT(net, asoc, chunk);
1759 			err = 0;
1760 			goto out_unlock;
1761 		}
1762 	}
1763 
1764 	/* Do we need to create the association?  */
1765 	if (!asoc) {
1766 		pr_debug("%s: there is no association yet\n", __func__);
1767 
1768 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1769 			err = -EINVAL;
1770 			goto out_unlock;
1771 		}
1772 
1773 		/* Check for invalid stream against the stream counts,
1774 		 * either the default or the user specified stream counts.
1775 		 */
1776 		if (sinfo) {
1777 			if (!sinit || !sinit->sinit_num_ostreams) {
1778 				/* Check against the defaults. */
1779 				if (sinfo->sinfo_stream >=
1780 				    sp->initmsg.sinit_num_ostreams) {
1781 					err = -EINVAL;
1782 					goto out_unlock;
1783 				}
1784 			} else {
1785 				/* Check against the requested.  */
1786 				if (sinfo->sinfo_stream >=
1787 				    sinit->sinit_num_ostreams) {
1788 					err = -EINVAL;
1789 					goto out_unlock;
1790 				}
1791 			}
1792 		}
1793 
1794 		/*
1795 		 * API 3.1.2 bind() - UDP Style Syntax
1796 		 * If a bind() or sctp_bindx() is not called prior to a
1797 		 * sendmsg() call that initiates a new association, the
1798 		 * system picks an ephemeral port and will choose an address
1799 		 * set equivalent to binding with a wildcard address.
1800 		 */
1801 		if (!ep->base.bind_addr.port) {
1802 			if (sctp_autobind(sk)) {
1803 				err = -EAGAIN;
1804 				goto out_unlock;
1805 			}
1806 		} else {
1807 			/*
1808 			 * If an unprivileged user inherits a one-to-many
1809 			 * style socket with open associations on a privileged
1810 			 * port, it MAY be permitted to accept new associations,
1811 			 * but it SHOULD NOT be permitted to open new
1812 			 * associations.
1813 			 */
1814 			if (ep->base.bind_addr.port < PROT_SOCK &&
1815 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1816 				err = -EACCES;
1817 				goto out_unlock;
1818 			}
1819 		}
1820 
1821 		scope = sctp_scope(&to);
1822 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1823 		if (!new_asoc) {
1824 			err = -ENOMEM;
1825 			goto out_unlock;
1826 		}
1827 		asoc = new_asoc;
1828 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1829 		if (err < 0) {
1830 			err = -ENOMEM;
1831 			goto out_free;
1832 		}
1833 
1834 		/* If the SCTP_INIT ancillary data is specified, set all
1835 		 * the association init values accordingly.
1836 		 */
1837 		if (sinit) {
1838 			if (sinit->sinit_num_ostreams) {
1839 				asoc->c.sinit_num_ostreams =
1840 					sinit->sinit_num_ostreams;
1841 			}
1842 			if (sinit->sinit_max_instreams) {
1843 				asoc->c.sinit_max_instreams =
1844 					sinit->sinit_max_instreams;
1845 			}
1846 			if (sinit->sinit_max_attempts) {
1847 				asoc->max_init_attempts
1848 					= sinit->sinit_max_attempts;
1849 			}
1850 			if (sinit->sinit_max_init_timeo) {
1851 				asoc->max_init_timeo =
1852 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1853 			}
1854 		}
1855 
1856 		/* Prime the peer's transport structures.  */
1857 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1858 		if (!transport) {
1859 			err = -ENOMEM;
1860 			goto out_free;
1861 		}
1862 	}
1863 
1864 	/* ASSERT: we have a valid association at this point.  */
1865 	pr_debug("%s: we have a valid association\n", __func__);
1866 
1867 	if (!sinfo) {
1868 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1869 		 * one with some defaults.
1870 		 */
1871 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1872 		default_sinfo.sinfo_stream = asoc->default_stream;
1873 		default_sinfo.sinfo_flags = asoc->default_flags;
1874 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1875 		default_sinfo.sinfo_context = asoc->default_context;
1876 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1877 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1878 
1879 		sinfo = &default_sinfo;
1880 	} else if (fill_sinfo_ttl) {
1881 		/* In case SNDINFO was specified, we still need to fill
1882 		 * it with a default ttl from the assoc here.
1883 		 */
1884 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1885 	}
1886 
1887 	/* API 7.1.7, the sndbuf size per association bounds the
1888 	 * maximum size of data that can be sent in a single send call.
1889 	 */
1890 	if (msg_len > sk->sk_sndbuf) {
1891 		err = -EMSGSIZE;
1892 		goto out_free;
1893 	}
1894 
1895 	if (asoc->pmtu_pending)
1896 		sctp_assoc_pending_pmtu(sk, asoc);
1897 
1898 	/* If fragmentation is disabled and the message length exceeds the
1899 	 * association fragmentation point, return EMSGSIZE.  The I-D
1900 	 * does not specify what this error is, but this looks like
1901 	 * a great fit.
1902 	 */
1903 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1904 		err = -EMSGSIZE;
1905 		goto out_free;
1906 	}
1907 
1908 	/* Check for invalid stream. */
1909 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1910 		err = -EINVAL;
1911 		goto out_free;
1912 	}
1913 
1914 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1915 	if (!sctp_wspace(asoc)) {
1916 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1917 		if (err)
1918 			goto out_free;
1919 	}
1920 
1921 	/* If an address is passed with the sendto/sendmsg call, it is used
1922 	 * to override the primary destination address in the TCP model, or
1923 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1924 	 */
1925 	if ((sctp_style(sk, TCP) && msg_name) ||
1926 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1927 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1928 		if (!chunk_tp) {
1929 			err = -EINVAL;
1930 			goto out_free;
1931 		}
1932 	} else
1933 		chunk_tp = NULL;
1934 
1935 	/* Auto-connect, if we aren't connected already. */
1936 	if (sctp_state(asoc, CLOSED)) {
1937 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1938 		if (err < 0)
1939 			goto out_free;
1940 
1941 		wait_connect = true;
1942 		pr_debug("%s: we associated primitively\n", __func__);
1943 	}
1944 
1945 	/* Break the message into multiple chunks of maximum size. */
1946 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1947 	if (IS_ERR(datamsg)) {
1948 		err = PTR_ERR(datamsg);
1949 		goto out_free;
1950 	}
1951 
1952 	/* Now send the (possibly) fragmented message. */
1953 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1954 		sctp_chunk_hold(chunk);
1955 
1956 		/* Do accounting for the write space.  */
1957 		sctp_set_owner_w(chunk);
1958 
1959 		chunk->transport = chunk_tp;
1960 	}
1961 
1962 	/* Send it to the lower layers.  Note:  all chunks
1963 	 * must either fail or succeed.   The lower layer
1964 	 * works that way today.  Keep it that way or this
1965 	 * breaks.
1966 	 */
1967 	err = sctp_primitive_SEND(net, asoc, datamsg);
1968 	/* Did the lower layer accept the chunk? */
1969 	if (err) {
1970 		sctp_datamsg_free(datamsg);
1971 		goto out_free;
1972 	}
1973 
1974 	pr_debug("%s: we sent primitively\n", __func__);
1975 
1976 	sctp_datamsg_put(datamsg);
1977 	err = msg_len;
1978 
1979 	if (unlikely(wait_connect)) {
1980 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1981 		sctp_wait_for_connect(asoc, &timeo);
1982 	}
1983 
1984 	/* If we are already past ASSOCIATE, the lower
1985 	 * layers are responsible for association cleanup.
1986 	 */
1987 	goto out_unlock;
1988 
1989 out_free:
1990 	if (new_asoc) {
1991 		sctp_unhash_established(asoc);
1992 		sctp_association_free(asoc);
1993 	}
1994 out_unlock:
1995 	release_sock(sk);
1996 
1997 out_nounlock:
1998 	return sctp_error(sk, msg_flags, err);
1999 
2000 #if 0
2001 do_sock_err:
2002 	if (msg_len)
2003 		err = msg_len;
2004 	else
2005 		err = sock_error(sk);
2006 	goto out;
2007 
2008 do_interrupted:
2009 	if (msg_len)
2010 		err = msg_len;
2011 	goto out;
2012 #endif /* 0 */
2013 }
2014 
2015 /* This is an extended version of skb_pull() that removes the data from the
2016  * start of a skb even when data is spread across the list of skb's in the
2017  * frag_list. len specifies the total amount of data that needs to be removed.
2018  * when 'len' bytes could be removed from the skb, it returns 0.
2019  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2020  * could not be removed.
2021  */
sctp_skb_pull(struct sk_buff * skb,int len)2022 static int sctp_skb_pull(struct sk_buff *skb, int len)
2023 {
2024 	struct sk_buff *list;
2025 	int skb_len = skb_headlen(skb);
2026 	int rlen;
2027 
2028 	if (len <= skb_len) {
2029 		__skb_pull(skb, len);
2030 		return 0;
2031 	}
2032 	len -= skb_len;
2033 	__skb_pull(skb, skb_len);
2034 
2035 	skb_walk_frags(skb, list) {
2036 		rlen = sctp_skb_pull(list, len);
2037 		skb->len -= (len-rlen);
2038 		skb->data_len -= (len-rlen);
2039 
2040 		if (!rlen)
2041 			return 0;
2042 
2043 		len = rlen;
2044 	}
2045 
2046 	return len;
2047 }
2048 
2049 /* API 3.1.3  recvmsg() - UDP Style Syntax
2050  *
2051  *  ssize_t recvmsg(int socket, struct msghdr *message,
2052  *                    int flags);
2053  *
2054  *  socket  - the socket descriptor of the endpoint.
2055  *  message - pointer to the msghdr structure which contains a single
2056  *            user message and possibly some ancillary data.
2057  *
2058  *            See Section 5 for complete description of the data
2059  *            structures.
2060  *
2061  *  flags   - flags sent or received with the user message, see Section
2062  *            5 for complete description of the flags.
2063  */
sctp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)2064 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2065 			int noblock, int flags, int *addr_len)
2066 {
2067 	struct sctp_ulpevent *event = NULL;
2068 	struct sctp_sock *sp = sctp_sk(sk);
2069 	struct sk_buff *skb;
2070 	int copied;
2071 	int err = 0;
2072 	int skb_len;
2073 
2074 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2075 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2076 		 addr_len);
2077 
2078 	lock_sock(sk);
2079 
2080 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2081 		err = -ENOTCONN;
2082 		goto out;
2083 	}
2084 
2085 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2086 	if (!skb)
2087 		goto out;
2088 
2089 	/* Get the total length of the skb including any skb's in the
2090 	 * frag_list.
2091 	 */
2092 	skb_len = skb->len;
2093 
2094 	copied = skb_len;
2095 	if (copied > len)
2096 		copied = len;
2097 
2098 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2099 
2100 	event = sctp_skb2event(skb);
2101 
2102 	if (err)
2103 		goto out_free;
2104 
2105 	sock_recv_ts_and_drops(msg, sk, skb);
2106 	if (sctp_ulpevent_is_notification(event)) {
2107 		msg->msg_flags |= MSG_NOTIFICATION;
2108 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2109 	} else {
2110 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2111 	}
2112 
2113 	/* Check if we allow SCTP_NXTINFO. */
2114 	if (sp->recvnxtinfo)
2115 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2116 	/* Check if we allow SCTP_RCVINFO. */
2117 	if (sp->recvrcvinfo)
2118 		sctp_ulpevent_read_rcvinfo(event, msg);
2119 	/* Check if we allow SCTP_SNDRCVINFO. */
2120 	if (sp->subscribe.sctp_data_io_event)
2121 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2122 
2123 #if 0
2124 	/* FIXME: we should be calling IP/IPv6 layers.  */
2125 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2126 		ip_cmsg_recv(msg, skb);
2127 #endif
2128 
2129 	err = copied;
2130 
2131 	/* If skb's length exceeds the user's buffer, update the skb and
2132 	 * push it back to the receive_queue so that the next call to
2133 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2134 	 */
2135 	if (skb_len > copied) {
2136 		msg->msg_flags &= ~MSG_EOR;
2137 		if (flags & MSG_PEEK)
2138 			goto out_free;
2139 		sctp_skb_pull(skb, copied);
2140 		skb_queue_head(&sk->sk_receive_queue, skb);
2141 
2142 		/* When only partial message is copied to the user, increase
2143 		 * rwnd by that amount. If all the data in the skb is read,
2144 		 * rwnd is updated when the event is freed.
2145 		 */
2146 		if (!sctp_ulpevent_is_notification(event))
2147 			sctp_assoc_rwnd_increase(event->asoc, copied);
2148 		goto out;
2149 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2150 		   (event->msg_flags & MSG_EOR))
2151 		msg->msg_flags |= MSG_EOR;
2152 	else
2153 		msg->msg_flags &= ~MSG_EOR;
2154 
2155 out_free:
2156 	if (flags & MSG_PEEK) {
2157 		/* Release the skb reference acquired after peeking the skb in
2158 		 * sctp_skb_recv_datagram().
2159 		 */
2160 		kfree_skb(skb);
2161 	} else {
2162 		/* Free the event which includes releasing the reference to
2163 		 * the owner of the skb, freeing the skb and updating the
2164 		 * rwnd.
2165 		 */
2166 		sctp_ulpevent_free(event);
2167 	}
2168 out:
2169 	release_sock(sk);
2170 	return err;
2171 }
2172 
2173 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2174  *
2175  * This option is a on/off flag.  If enabled no SCTP message
2176  * fragmentation will be performed.  Instead if a message being sent
2177  * exceeds the current PMTU size, the message will NOT be sent and
2178  * instead a error will be indicated to the user.
2179  */
sctp_setsockopt_disable_fragments(struct sock * sk,char __user * optval,unsigned int optlen)2180 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2181 					     char __user *optval,
2182 					     unsigned int optlen)
2183 {
2184 	int val;
2185 
2186 	if (optlen < sizeof(int))
2187 		return -EINVAL;
2188 
2189 	if (get_user(val, (int __user *)optval))
2190 		return -EFAULT;
2191 
2192 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2193 
2194 	return 0;
2195 }
2196 
sctp_setsockopt_events(struct sock * sk,char __user * optval,unsigned int optlen)2197 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2198 				  unsigned int optlen)
2199 {
2200 	struct sctp_association *asoc;
2201 	struct sctp_ulpevent *event;
2202 
2203 	if (optlen > sizeof(struct sctp_event_subscribe))
2204 		return -EINVAL;
2205 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2206 		return -EFAULT;
2207 
2208 	if (sctp_sk(sk)->subscribe.sctp_data_io_event)
2209 		pr_warn_ratelimited(DEPRECATED "%s (pid %d) "
2210 				    "Requested SCTP_SNDRCVINFO event.\n"
2211 				    "Use SCTP_RCVINFO through SCTP_RECVRCVINFO option instead.\n",
2212 				    current->comm, task_pid_nr(current));
2213 
2214 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2215 	 * if there is no data to be sent or retransmit, the stack will
2216 	 * immediately send up this notification.
2217 	 */
2218 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2219 				       &sctp_sk(sk)->subscribe)) {
2220 		asoc = sctp_id2assoc(sk, 0);
2221 
2222 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2223 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2224 					GFP_ATOMIC);
2225 			if (!event)
2226 				return -ENOMEM;
2227 
2228 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2229 		}
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2236  *
2237  * This socket option is applicable to the UDP-style socket only.  When
2238  * set it will cause associations that are idle for more than the
2239  * specified number of seconds to automatically close.  An association
2240  * being idle is defined an association that has NOT sent or received
2241  * user data.  The special value of '0' indicates that no automatic
2242  * close of any associations should be performed.  The option expects an
2243  * integer defining the number of seconds of idle time before an
2244  * association is closed.
2245  */
sctp_setsockopt_autoclose(struct sock * sk,char __user * optval,unsigned int optlen)2246 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2247 				     unsigned int optlen)
2248 {
2249 	struct sctp_sock *sp = sctp_sk(sk);
2250 	struct net *net = sock_net(sk);
2251 
2252 	/* Applicable to UDP-style socket only */
2253 	if (sctp_style(sk, TCP))
2254 		return -EOPNOTSUPP;
2255 	if (optlen != sizeof(int))
2256 		return -EINVAL;
2257 	if (copy_from_user(&sp->autoclose, optval, optlen))
2258 		return -EFAULT;
2259 
2260 	if (sp->autoclose > net->sctp.max_autoclose)
2261 		sp->autoclose = net->sctp.max_autoclose;
2262 
2263 	return 0;
2264 }
2265 
2266 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2267  *
2268  * Applications can enable or disable heartbeats for any peer address of
2269  * an association, modify an address's heartbeat interval, force a
2270  * heartbeat to be sent immediately, and adjust the address's maximum
2271  * number of retransmissions sent before an address is considered
2272  * unreachable.  The following structure is used to access and modify an
2273  * address's parameters:
2274  *
2275  *  struct sctp_paddrparams {
2276  *     sctp_assoc_t            spp_assoc_id;
2277  *     struct sockaddr_storage spp_address;
2278  *     uint32_t                spp_hbinterval;
2279  *     uint16_t                spp_pathmaxrxt;
2280  *     uint32_t                spp_pathmtu;
2281  *     uint32_t                spp_sackdelay;
2282  *     uint32_t                spp_flags;
2283  * };
2284  *
2285  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2286  *                     application, and identifies the association for
2287  *                     this query.
2288  *   spp_address     - This specifies which address is of interest.
2289  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2290  *                     in milliseconds.  If a  value of zero
2291  *                     is present in this field then no changes are to
2292  *                     be made to this parameter.
2293  *   spp_pathmaxrxt  - This contains the maximum number of
2294  *                     retransmissions before this address shall be
2295  *                     considered unreachable. If a  value of zero
2296  *                     is present in this field then no changes are to
2297  *                     be made to this parameter.
2298  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2299  *                     specified here will be the "fixed" path mtu.
2300  *                     Note that if the spp_address field is empty
2301  *                     then all associations on this address will
2302  *                     have this fixed path mtu set upon them.
2303  *
2304  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2305  *                     the number of milliseconds that sacks will be delayed
2306  *                     for. This value will apply to all addresses of an
2307  *                     association if the spp_address field is empty. Note
2308  *                     also, that if delayed sack is enabled and this
2309  *                     value is set to 0, no change is made to the last
2310  *                     recorded delayed sack timer value.
2311  *
2312  *   spp_flags       - These flags are used to control various features
2313  *                     on an association. The flag field may contain
2314  *                     zero or more of the following options.
2315  *
2316  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2317  *                     specified address. Note that if the address
2318  *                     field is empty all addresses for the association
2319  *                     have heartbeats enabled upon them.
2320  *
2321  *                     SPP_HB_DISABLE - Disable heartbeats on the
2322  *                     speicifed address. Note that if the address
2323  *                     field is empty all addresses for the association
2324  *                     will have their heartbeats disabled. Note also
2325  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2326  *                     mutually exclusive, only one of these two should
2327  *                     be specified. Enabling both fields will have
2328  *                     undetermined results.
2329  *
2330  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2331  *                     to be made immediately.
2332  *
2333  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2334  *                     heartbeat delayis to be set to the value of 0
2335  *                     milliseconds.
2336  *
2337  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2338  *                     discovery upon the specified address. Note that
2339  *                     if the address feild is empty then all addresses
2340  *                     on the association are effected.
2341  *
2342  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2343  *                     discovery upon the specified address. Note that
2344  *                     if the address feild is empty then all addresses
2345  *                     on the association are effected. Not also that
2346  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2347  *                     exclusive. Enabling both will have undetermined
2348  *                     results.
2349  *
2350  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2351  *                     on delayed sack. The time specified in spp_sackdelay
2352  *                     is used to specify the sack delay for this address. Note
2353  *                     that if spp_address is empty then all addresses will
2354  *                     enable delayed sack and take on the sack delay
2355  *                     value specified in spp_sackdelay.
2356  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2357  *                     off delayed sack. If the spp_address field is blank then
2358  *                     delayed sack is disabled for the entire association. Note
2359  *                     also that this field is mutually exclusive to
2360  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2361  *                     results.
2362  */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2363 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2364 				       struct sctp_transport   *trans,
2365 				       struct sctp_association *asoc,
2366 				       struct sctp_sock        *sp,
2367 				       int                      hb_change,
2368 				       int                      pmtud_change,
2369 				       int                      sackdelay_change)
2370 {
2371 	int error;
2372 
2373 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2374 		struct net *net = sock_net(trans->asoc->base.sk);
2375 
2376 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2377 		if (error)
2378 			return error;
2379 	}
2380 
2381 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2382 	 * this field is ignored.  Note also that a value of zero indicates
2383 	 * the current setting should be left unchanged.
2384 	 */
2385 	if (params->spp_flags & SPP_HB_ENABLE) {
2386 
2387 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2388 		 * set.  This lets us use 0 value when this flag
2389 		 * is set.
2390 		 */
2391 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2392 			params->spp_hbinterval = 0;
2393 
2394 		if (params->spp_hbinterval ||
2395 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2396 			if (trans) {
2397 				trans->hbinterval =
2398 				    msecs_to_jiffies(params->spp_hbinterval);
2399 			} else if (asoc) {
2400 				asoc->hbinterval =
2401 				    msecs_to_jiffies(params->spp_hbinterval);
2402 			} else {
2403 				sp->hbinterval = params->spp_hbinterval;
2404 			}
2405 		}
2406 	}
2407 
2408 	if (hb_change) {
2409 		if (trans) {
2410 			trans->param_flags =
2411 				(trans->param_flags & ~SPP_HB) | hb_change;
2412 		} else if (asoc) {
2413 			asoc->param_flags =
2414 				(asoc->param_flags & ~SPP_HB) | hb_change;
2415 		} else {
2416 			sp->param_flags =
2417 				(sp->param_flags & ~SPP_HB) | hb_change;
2418 		}
2419 	}
2420 
2421 	/* When Path MTU discovery is disabled the value specified here will
2422 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2423 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2424 	 * effect).
2425 	 */
2426 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2427 		if (trans) {
2428 			trans->pathmtu = params->spp_pathmtu;
2429 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2430 		} else if (asoc) {
2431 			asoc->pathmtu = params->spp_pathmtu;
2432 			sctp_frag_point(asoc, params->spp_pathmtu);
2433 		} else {
2434 			sp->pathmtu = params->spp_pathmtu;
2435 		}
2436 	}
2437 
2438 	if (pmtud_change) {
2439 		if (trans) {
2440 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2441 				(params->spp_flags & SPP_PMTUD_ENABLE);
2442 			trans->param_flags =
2443 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2444 			if (update) {
2445 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2446 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2447 			}
2448 		} else if (asoc) {
2449 			asoc->param_flags =
2450 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2451 		} else {
2452 			sp->param_flags =
2453 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2454 		}
2455 	}
2456 
2457 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2458 	 * value of this field is ignored.  Note also that a value of zero
2459 	 * indicates the current setting should be left unchanged.
2460 	 */
2461 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2462 		if (trans) {
2463 			trans->sackdelay =
2464 				msecs_to_jiffies(params->spp_sackdelay);
2465 		} else if (asoc) {
2466 			asoc->sackdelay =
2467 				msecs_to_jiffies(params->spp_sackdelay);
2468 		} else {
2469 			sp->sackdelay = params->spp_sackdelay;
2470 		}
2471 	}
2472 
2473 	if (sackdelay_change) {
2474 		if (trans) {
2475 			trans->param_flags =
2476 				(trans->param_flags & ~SPP_SACKDELAY) |
2477 				sackdelay_change;
2478 		} else if (asoc) {
2479 			asoc->param_flags =
2480 				(asoc->param_flags & ~SPP_SACKDELAY) |
2481 				sackdelay_change;
2482 		} else {
2483 			sp->param_flags =
2484 				(sp->param_flags & ~SPP_SACKDELAY) |
2485 				sackdelay_change;
2486 		}
2487 	}
2488 
2489 	/* Note that a value of zero indicates the current setting should be
2490 	   left unchanged.
2491 	 */
2492 	if (params->spp_pathmaxrxt) {
2493 		if (trans) {
2494 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2495 		} else if (asoc) {
2496 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2497 		} else {
2498 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2499 		}
2500 	}
2501 
2502 	return 0;
2503 }
2504 
sctp_setsockopt_peer_addr_params(struct sock * sk,char __user * optval,unsigned int optlen)2505 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2506 					    char __user *optval,
2507 					    unsigned int optlen)
2508 {
2509 	struct sctp_paddrparams  params;
2510 	struct sctp_transport   *trans = NULL;
2511 	struct sctp_association *asoc = NULL;
2512 	struct sctp_sock        *sp = sctp_sk(sk);
2513 	int error;
2514 	int hb_change, pmtud_change, sackdelay_change;
2515 
2516 	if (optlen != sizeof(struct sctp_paddrparams))
2517 		return -EINVAL;
2518 
2519 	if (copy_from_user(&params, optval, optlen))
2520 		return -EFAULT;
2521 
2522 	/* Validate flags and value parameters. */
2523 	hb_change        = params.spp_flags & SPP_HB;
2524 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2525 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2526 
2527 	if (hb_change        == SPP_HB ||
2528 	    pmtud_change     == SPP_PMTUD ||
2529 	    sackdelay_change == SPP_SACKDELAY ||
2530 	    params.spp_sackdelay > 500 ||
2531 	    (params.spp_pathmtu &&
2532 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2533 		return -EINVAL;
2534 
2535 	/* If an address other than INADDR_ANY is specified, and
2536 	 * no transport is found, then the request is invalid.
2537 	 */
2538 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2539 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2540 					       params.spp_assoc_id);
2541 		if (!trans)
2542 			return -EINVAL;
2543 	}
2544 
2545 	/* Get association, if assoc_id != 0 and the socket is a one
2546 	 * to many style socket, and an association was not found, then
2547 	 * the id was invalid.
2548 	 */
2549 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2550 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2551 		return -EINVAL;
2552 
2553 	/* Heartbeat demand can only be sent on a transport or
2554 	 * association, but not a socket.
2555 	 */
2556 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2557 		return -EINVAL;
2558 
2559 	/* Process parameters. */
2560 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2561 					    hb_change, pmtud_change,
2562 					    sackdelay_change);
2563 
2564 	if (error)
2565 		return error;
2566 
2567 	/* If changes are for association, also apply parameters to each
2568 	 * transport.
2569 	 */
2570 	if (!trans && asoc) {
2571 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2572 				transports) {
2573 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2574 						    hb_change, pmtud_change,
2575 						    sackdelay_change);
2576 		}
2577 	}
2578 
2579 	return 0;
2580 }
2581 
sctp_spp_sackdelay_enable(__u32 param_flags)2582 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2583 {
2584 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2585 }
2586 
sctp_spp_sackdelay_disable(__u32 param_flags)2587 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2588 {
2589 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2590 }
2591 
2592 /*
2593  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2594  *
2595  * This option will effect the way delayed acks are performed.  This
2596  * option allows you to get or set the delayed ack time, in
2597  * milliseconds.  It also allows changing the delayed ack frequency.
2598  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2599  * the assoc_id is 0, then this sets or gets the endpoints default
2600  * values.  If the assoc_id field is non-zero, then the set or get
2601  * effects the specified association for the one to many model (the
2602  * assoc_id field is ignored by the one to one model).  Note that if
2603  * sack_delay or sack_freq are 0 when setting this option, then the
2604  * current values will remain unchanged.
2605  *
2606  * struct sctp_sack_info {
2607  *     sctp_assoc_t            sack_assoc_id;
2608  *     uint32_t                sack_delay;
2609  *     uint32_t                sack_freq;
2610  * };
2611  *
2612  * sack_assoc_id -  This parameter, indicates which association the user
2613  *    is performing an action upon.  Note that if this field's value is
2614  *    zero then the endpoints default value is changed (effecting future
2615  *    associations only).
2616  *
2617  * sack_delay -  This parameter contains the number of milliseconds that
2618  *    the user is requesting the delayed ACK timer be set to.  Note that
2619  *    this value is defined in the standard to be between 200 and 500
2620  *    milliseconds.
2621  *
2622  * sack_freq -  This parameter contains the number of packets that must
2623  *    be received before a sack is sent without waiting for the delay
2624  *    timer to expire.  The default value for this is 2, setting this
2625  *    value to 1 will disable the delayed sack algorithm.
2626  */
2627 
sctp_setsockopt_delayed_ack(struct sock * sk,char __user * optval,unsigned int optlen)2628 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2629 				       char __user *optval, unsigned int optlen)
2630 {
2631 	struct sctp_sack_info    params;
2632 	struct sctp_transport   *trans = NULL;
2633 	struct sctp_association *asoc = NULL;
2634 	struct sctp_sock        *sp = sctp_sk(sk);
2635 
2636 	if (optlen == sizeof(struct sctp_sack_info)) {
2637 		if (copy_from_user(&params, optval, optlen))
2638 			return -EFAULT;
2639 
2640 		if (params.sack_delay == 0 && params.sack_freq == 0)
2641 			return 0;
2642 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2643 		pr_warn_ratelimited(DEPRECATED
2644 				    "%s (pid %d) "
2645 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2646 				    "Use struct sctp_sack_info instead\n",
2647 				    current->comm, task_pid_nr(current));
2648 		if (copy_from_user(&params, optval, optlen))
2649 			return -EFAULT;
2650 
2651 		if (params.sack_delay == 0)
2652 			params.sack_freq = 1;
2653 		else
2654 			params.sack_freq = 0;
2655 	} else
2656 		return -EINVAL;
2657 
2658 	/* Validate value parameter. */
2659 	if (params.sack_delay > 500)
2660 		return -EINVAL;
2661 
2662 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2663 	 * to many style socket, and an association was not found, then
2664 	 * the id was invalid.
2665 	 */
2666 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2667 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2668 		return -EINVAL;
2669 
2670 	if (params.sack_delay) {
2671 		if (asoc) {
2672 			asoc->sackdelay =
2673 				msecs_to_jiffies(params.sack_delay);
2674 			asoc->param_flags =
2675 				sctp_spp_sackdelay_enable(asoc->param_flags);
2676 		} else {
2677 			sp->sackdelay = params.sack_delay;
2678 			sp->param_flags =
2679 				sctp_spp_sackdelay_enable(sp->param_flags);
2680 		}
2681 	}
2682 
2683 	if (params.sack_freq == 1) {
2684 		if (asoc) {
2685 			asoc->param_flags =
2686 				sctp_spp_sackdelay_disable(asoc->param_flags);
2687 		} else {
2688 			sp->param_flags =
2689 				sctp_spp_sackdelay_disable(sp->param_flags);
2690 		}
2691 	} else if (params.sack_freq > 1) {
2692 		if (asoc) {
2693 			asoc->sackfreq = params.sack_freq;
2694 			asoc->param_flags =
2695 				sctp_spp_sackdelay_enable(asoc->param_flags);
2696 		} else {
2697 			sp->sackfreq = params.sack_freq;
2698 			sp->param_flags =
2699 				sctp_spp_sackdelay_enable(sp->param_flags);
2700 		}
2701 	}
2702 
2703 	/* If change is for association, also apply to each transport. */
2704 	if (asoc) {
2705 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2706 				transports) {
2707 			if (params.sack_delay) {
2708 				trans->sackdelay =
2709 					msecs_to_jiffies(params.sack_delay);
2710 				trans->param_flags =
2711 					sctp_spp_sackdelay_enable(trans->param_flags);
2712 			}
2713 			if (params.sack_freq == 1) {
2714 				trans->param_flags =
2715 					sctp_spp_sackdelay_disable(trans->param_flags);
2716 			} else if (params.sack_freq > 1) {
2717 				trans->sackfreq = params.sack_freq;
2718 				trans->param_flags =
2719 					sctp_spp_sackdelay_enable(trans->param_flags);
2720 			}
2721 		}
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2728  *
2729  * Applications can specify protocol parameters for the default association
2730  * initialization.  The option name argument to setsockopt() and getsockopt()
2731  * is SCTP_INITMSG.
2732  *
2733  * Setting initialization parameters is effective only on an unconnected
2734  * socket (for UDP-style sockets only future associations are effected
2735  * by the change).  With TCP-style sockets, this option is inherited by
2736  * sockets derived from a listener socket.
2737  */
sctp_setsockopt_initmsg(struct sock * sk,char __user * optval,unsigned int optlen)2738 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2739 {
2740 	struct sctp_initmsg sinit;
2741 	struct sctp_sock *sp = sctp_sk(sk);
2742 
2743 	if (optlen != sizeof(struct sctp_initmsg))
2744 		return -EINVAL;
2745 	if (copy_from_user(&sinit, optval, optlen))
2746 		return -EFAULT;
2747 
2748 	if (sinit.sinit_num_ostreams)
2749 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2750 	if (sinit.sinit_max_instreams)
2751 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2752 	if (sinit.sinit_max_attempts)
2753 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2754 	if (sinit.sinit_max_init_timeo)
2755 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2756 
2757 	return 0;
2758 }
2759 
2760 /*
2761  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2762  *
2763  *   Applications that wish to use the sendto() system call may wish to
2764  *   specify a default set of parameters that would normally be supplied
2765  *   through the inclusion of ancillary data.  This socket option allows
2766  *   such an application to set the default sctp_sndrcvinfo structure.
2767  *   The application that wishes to use this socket option simply passes
2768  *   in to this call the sctp_sndrcvinfo structure defined in Section
2769  *   5.2.2) The input parameters accepted by this call include
2770  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2771  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2772  *   to this call if the caller is using the UDP model.
2773  */
sctp_setsockopt_default_send_param(struct sock * sk,char __user * optval,unsigned int optlen)2774 static int sctp_setsockopt_default_send_param(struct sock *sk,
2775 					      char __user *optval,
2776 					      unsigned int optlen)
2777 {
2778 	struct sctp_sock *sp = sctp_sk(sk);
2779 	struct sctp_association *asoc;
2780 	struct sctp_sndrcvinfo info;
2781 
2782 	if (optlen != sizeof(info))
2783 		return -EINVAL;
2784 	if (copy_from_user(&info, optval, optlen))
2785 		return -EFAULT;
2786 	if (info.sinfo_flags &
2787 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2788 	      SCTP_ABORT | SCTP_EOF))
2789 		return -EINVAL;
2790 
2791 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2792 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2793 		return -EINVAL;
2794 	if (asoc) {
2795 		asoc->default_stream = info.sinfo_stream;
2796 		asoc->default_flags = info.sinfo_flags;
2797 		asoc->default_ppid = info.sinfo_ppid;
2798 		asoc->default_context = info.sinfo_context;
2799 		asoc->default_timetolive = info.sinfo_timetolive;
2800 	} else {
2801 		sp->default_stream = info.sinfo_stream;
2802 		sp->default_flags = info.sinfo_flags;
2803 		sp->default_ppid = info.sinfo_ppid;
2804 		sp->default_context = info.sinfo_context;
2805 		sp->default_timetolive = info.sinfo_timetolive;
2806 	}
2807 
2808 	return 0;
2809 }
2810 
2811 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2812  * (SCTP_DEFAULT_SNDINFO)
2813  */
sctp_setsockopt_default_sndinfo(struct sock * sk,char __user * optval,unsigned int optlen)2814 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2815 					   char __user *optval,
2816 					   unsigned int optlen)
2817 {
2818 	struct sctp_sock *sp = sctp_sk(sk);
2819 	struct sctp_association *asoc;
2820 	struct sctp_sndinfo info;
2821 
2822 	if (optlen != sizeof(info))
2823 		return -EINVAL;
2824 	if (copy_from_user(&info, optval, optlen))
2825 		return -EFAULT;
2826 	if (info.snd_flags &
2827 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2828 	      SCTP_ABORT | SCTP_EOF))
2829 		return -EINVAL;
2830 
2831 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2832 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2833 		return -EINVAL;
2834 	if (asoc) {
2835 		asoc->default_stream = info.snd_sid;
2836 		asoc->default_flags = info.snd_flags;
2837 		asoc->default_ppid = info.snd_ppid;
2838 		asoc->default_context = info.snd_context;
2839 	} else {
2840 		sp->default_stream = info.snd_sid;
2841 		sp->default_flags = info.snd_flags;
2842 		sp->default_ppid = info.snd_ppid;
2843 		sp->default_context = info.snd_context;
2844 	}
2845 
2846 	return 0;
2847 }
2848 
2849 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2850  *
2851  * Requests that the local SCTP stack use the enclosed peer address as
2852  * the association primary.  The enclosed address must be one of the
2853  * association peer's addresses.
2854  */
sctp_setsockopt_primary_addr(struct sock * sk,char __user * optval,unsigned int optlen)2855 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2856 					unsigned int optlen)
2857 {
2858 	struct sctp_prim prim;
2859 	struct sctp_transport *trans;
2860 
2861 	if (optlen != sizeof(struct sctp_prim))
2862 		return -EINVAL;
2863 
2864 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2865 		return -EFAULT;
2866 
2867 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2868 	if (!trans)
2869 		return -EINVAL;
2870 
2871 	sctp_assoc_set_primary(trans->asoc, trans);
2872 
2873 	return 0;
2874 }
2875 
2876 /*
2877  * 7.1.5 SCTP_NODELAY
2878  *
2879  * Turn on/off any Nagle-like algorithm.  This means that packets are
2880  * generally sent as soon as possible and no unnecessary delays are
2881  * introduced, at the cost of more packets in the network.  Expects an
2882  *  integer boolean flag.
2883  */
sctp_setsockopt_nodelay(struct sock * sk,char __user * optval,unsigned int optlen)2884 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2885 				   unsigned int optlen)
2886 {
2887 	int val;
2888 
2889 	if (optlen < sizeof(int))
2890 		return -EINVAL;
2891 	if (get_user(val, (int __user *)optval))
2892 		return -EFAULT;
2893 
2894 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2895 	return 0;
2896 }
2897 
2898 /*
2899  *
2900  * 7.1.1 SCTP_RTOINFO
2901  *
2902  * The protocol parameters used to initialize and bound retransmission
2903  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2904  * and modify these parameters.
2905  * All parameters are time values, in milliseconds.  A value of 0, when
2906  * modifying the parameters, indicates that the current value should not
2907  * be changed.
2908  *
2909  */
sctp_setsockopt_rtoinfo(struct sock * sk,char __user * optval,unsigned int optlen)2910 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2911 {
2912 	struct sctp_rtoinfo rtoinfo;
2913 	struct sctp_association *asoc;
2914 	unsigned long rto_min, rto_max;
2915 	struct sctp_sock *sp = sctp_sk(sk);
2916 
2917 	if (optlen != sizeof (struct sctp_rtoinfo))
2918 		return -EINVAL;
2919 
2920 	if (copy_from_user(&rtoinfo, optval, optlen))
2921 		return -EFAULT;
2922 
2923 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2924 
2925 	/* Set the values to the specific association */
2926 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2927 		return -EINVAL;
2928 
2929 	rto_max = rtoinfo.srto_max;
2930 	rto_min = rtoinfo.srto_min;
2931 
2932 	if (rto_max)
2933 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2934 	else
2935 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2936 
2937 	if (rto_min)
2938 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2939 	else
2940 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2941 
2942 	if (rto_min > rto_max)
2943 		return -EINVAL;
2944 
2945 	if (asoc) {
2946 		if (rtoinfo.srto_initial != 0)
2947 			asoc->rto_initial =
2948 				msecs_to_jiffies(rtoinfo.srto_initial);
2949 		asoc->rto_max = rto_max;
2950 		asoc->rto_min = rto_min;
2951 	} else {
2952 		/* If there is no association or the association-id = 0
2953 		 * set the values to the endpoint.
2954 		 */
2955 		if (rtoinfo.srto_initial != 0)
2956 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2957 		sp->rtoinfo.srto_max = rto_max;
2958 		sp->rtoinfo.srto_min = rto_min;
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 /*
2965  *
2966  * 7.1.2 SCTP_ASSOCINFO
2967  *
2968  * This option is used to tune the maximum retransmission attempts
2969  * of the association.
2970  * Returns an error if the new association retransmission value is
2971  * greater than the sum of the retransmission value  of the peer.
2972  * See [SCTP] for more information.
2973  *
2974  */
sctp_setsockopt_associnfo(struct sock * sk,char __user * optval,unsigned int optlen)2975 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2976 {
2977 
2978 	struct sctp_assocparams assocparams;
2979 	struct sctp_association *asoc;
2980 
2981 	if (optlen != sizeof(struct sctp_assocparams))
2982 		return -EINVAL;
2983 	if (copy_from_user(&assocparams, optval, optlen))
2984 		return -EFAULT;
2985 
2986 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2987 
2988 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2989 		return -EINVAL;
2990 
2991 	/* Set the values to the specific association */
2992 	if (asoc) {
2993 		if (assocparams.sasoc_asocmaxrxt != 0) {
2994 			__u32 path_sum = 0;
2995 			int   paths = 0;
2996 			struct sctp_transport *peer_addr;
2997 
2998 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2999 					transports) {
3000 				path_sum += peer_addr->pathmaxrxt;
3001 				paths++;
3002 			}
3003 
3004 			/* Only validate asocmaxrxt if we have more than
3005 			 * one path/transport.  We do this because path
3006 			 * retransmissions are only counted when we have more
3007 			 * then one path.
3008 			 */
3009 			if (paths > 1 &&
3010 			    assocparams.sasoc_asocmaxrxt > path_sum)
3011 				return -EINVAL;
3012 
3013 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3014 		}
3015 
3016 		if (assocparams.sasoc_cookie_life != 0)
3017 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3018 	} else {
3019 		/* Set the values to the endpoint */
3020 		struct sctp_sock *sp = sctp_sk(sk);
3021 
3022 		if (assocparams.sasoc_asocmaxrxt != 0)
3023 			sp->assocparams.sasoc_asocmaxrxt =
3024 						assocparams.sasoc_asocmaxrxt;
3025 		if (assocparams.sasoc_cookie_life != 0)
3026 			sp->assocparams.sasoc_cookie_life =
3027 						assocparams.sasoc_cookie_life;
3028 	}
3029 	return 0;
3030 }
3031 
3032 /*
3033  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3034  *
3035  * This socket option is a boolean flag which turns on or off mapped V4
3036  * addresses.  If this option is turned on and the socket is type
3037  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3038  * If this option is turned off, then no mapping will be done of V4
3039  * addresses and a user will receive both PF_INET6 and PF_INET type
3040  * addresses on the socket.
3041  */
sctp_setsockopt_mappedv4(struct sock * sk,char __user * optval,unsigned int optlen)3042 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3043 {
3044 	int val;
3045 	struct sctp_sock *sp = sctp_sk(sk);
3046 
3047 	if (optlen < sizeof(int))
3048 		return -EINVAL;
3049 	if (get_user(val, (int __user *)optval))
3050 		return -EFAULT;
3051 	if (val)
3052 		sp->v4mapped = 1;
3053 	else
3054 		sp->v4mapped = 0;
3055 
3056 	return 0;
3057 }
3058 
3059 /*
3060  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3061  * This option will get or set the maximum size to put in any outgoing
3062  * SCTP DATA chunk.  If a message is larger than this size it will be
3063  * fragmented by SCTP into the specified size.  Note that the underlying
3064  * SCTP implementation may fragment into smaller sized chunks when the
3065  * PMTU of the underlying association is smaller than the value set by
3066  * the user.  The default value for this option is '0' which indicates
3067  * the user is NOT limiting fragmentation and only the PMTU will effect
3068  * SCTP's choice of DATA chunk size.  Note also that values set larger
3069  * than the maximum size of an IP datagram will effectively let SCTP
3070  * control fragmentation (i.e. the same as setting this option to 0).
3071  *
3072  * The following structure is used to access and modify this parameter:
3073  *
3074  * struct sctp_assoc_value {
3075  *   sctp_assoc_t assoc_id;
3076  *   uint32_t assoc_value;
3077  * };
3078  *
3079  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3080  *    For one-to-many style sockets this parameter indicates which
3081  *    association the user is performing an action upon.  Note that if
3082  *    this field's value is zero then the endpoints default value is
3083  *    changed (effecting future associations only).
3084  * assoc_value:  This parameter specifies the maximum size in bytes.
3085  */
sctp_setsockopt_maxseg(struct sock * sk,char __user * optval,unsigned int optlen)3086 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3087 {
3088 	struct sctp_assoc_value params;
3089 	struct sctp_association *asoc;
3090 	struct sctp_sock *sp = sctp_sk(sk);
3091 	int val;
3092 
3093 	if (optlen == sizeof(int)) {
3094 		pr_warn_ratelimited(DEPRECATED
3095 				    "%s (pid %d) "
3096 				    "Use of int in maxseg socket option.\n"
3097 				    "Use struct sctp_assoc_value instead\n",
3098 				    current->comm, task_pid_nr(current));
3099 		if (copy_from_user(&val, optval, optlen))
3100 			return -EFAULT;
3101 		params.assoc_id = 0;
3102 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3103 		if (copy_from_user(&params, optval, optlen))
3104 			return -EFAULT;
3105 		val = params.assoc_value;
3106 	} else
3107 		return -EINVAL;
3108 
3109 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3110 		return -EINVAL;
3111 
3112 	asoc = sctp_id2assoc(sk, params.assoc_id);
3113 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3114 		return -EINVAL;
3115 
3116 	if (asoc) {
3117 		if (val == 0) {
3118 			val = asoc->pathmtu;
3119 			val -= sp->pf->af->net_header_len;
3120 			val -= sizeof(struct sctphdr) +
3121 					sizeof(struct sctp_data_chunk);
3122 		}
3123 		asoc->user_frag = val;
3124 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3125 	} else {
3126 		sp->user_frag = val;
3127 	}
3128 
3129 	return 0;
3130 }
3131 
3132 
3133 /*
3134  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3135  *
3136  *   Requests that the peer mark the enclosed address as the association
3137  *   primary. The enclosed address must be one of the association's
3138  *   locally bound addresses. The following structure is used to make a
3139  *   set primary request:
3140  */
sctp_setsockopt_peer_primary_addr(struct sock * sk,char __user * optval,unsigned int optlen)3141 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3142 					     unsigned int optlen)
3143 {
3144 	struct net *net = sock_net(sk);
3145 	struct sctp_sock	*sp;
3146 	struct sctp_association	*asoc = NULL;
3147 	struct sctp_setpeerprim	prim;
3148 	struct sctp_chunk	*chunk;
3149 	struct sctp_af		*af;
3150 	int 			err;
3151 
3152 	sp = sctp_sk(sk);
3153 
3154 	if (!net->sctp.addip_enable)
3155 		return -EPERM;
3156 
3157 	if (optlen != sizeof(struct sctp_setpeerprim))
3158 		return -EINVAL;
3159 
3160 	if (copy_from_user(&prim, optval, optlen))
3161 		return -EFAULT;
3162 
3163 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3164 	if (!asoc)
3165 		return -EINVAL;
3166 
3167 	if (!asoc->peer.asconf_capable)
3168 		return -EPERM;
3169 
3170 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3171 		return -EPERM;
3172 
3173 	if (!sctp_state(asoc, ESTABLISHED))
3174 		return -ENOTCONN;
3175 
3176 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3177 	if (!af)
3178 		return -EINVAL;
3179 
3180 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3181 		return -EADDRNOTAVAIL;
3182 
3183 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3184 		return -EADDRNOTAVAIL;
3185 
3186 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3187 	chunk = sctp_make_asconf_set_prim(asoc,
3188 					  (union sctp_addr *)&prim.sspp_addr);
3189 	if (!chunk)
3190 		return -ENOMEM;
3191 
3192 	err = sctp_send_asconf(asoc, chunk);
3193 
3194 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3195 
3196 	return err;
3197 }
3198 
sctp_setsockopt_adaptation_layer(struct sock * sk,char __user * optval,unsigned int optlen)3199 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3200 					    unsigned int optlen)
3201 {
3202 	struct sctp_setadaptation adaptation;
3203 
3204 	if (optlen != sizeof(struct sctp_setadaptation))
3205 		return -EINVAL;
3206 	if (copy_from_user(&adaptation, optval, optlen))
3207 		return -EFAULT;
3208 
3209 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3210 
3211 	return 0;
3212 }
3213 
3214 /*
3215  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3216  *
3217  * The context field in the sctp_sndrcvinfo structure is normally only
3218  * used when a failed message is retrieved holding the value that was
3219  * sent down on the actual send call.  This option allows the setting of
3220  * a default context on an association basis that will be received on
3221  * reading messages from the peer.  This is especially helpful in the
3222  * one-2-many model for an application to keep some reference to an
3223  * internal state machine that is processing messages on the
3224  * association.  Note that the setting of this value only effects
3225  * received messages from the peer and does not effect the value that is
3226  * saved with outbound messages.
3227  */
sctp_setsockopt_context(struct sock * sk,char __user * optval,unsigned int optlen)3228 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3229 				   unsigned int optlen)
3230 {
3231 	struct sctp_assoc_value params;
3232 	struct sctp_sock *sp;
3233 	struct sctp_association *asoc;
3234 
3235 	if (optlen != sizeof(struct sctp_assoc_value))
3236 		return -EINVAL;
3237 	if (copy_from_user(&params, optval, optlen))
3238 		return -EFAULT;
3239 
3240 	sp = sctp_sk(sk);
3241 
3242 	if (params.assoc_id != 0) {
3243 		asoc = sctp_id2assoc(sk, params.assoc_id);
3244 		if (!asoc)
3245 			return -EINVAL;
3246 		asoc->default_rcv_context = params.assoc_value;
3247 	} else {
3248 		sp->default_rcv_context = params.assoc_value;
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 /*
3255  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3256  *
3257  * This options will at a minimum specify if the implementation is doing
3258  * fragmented interleave.  Fragmented interleave, for a one to many
3259  * socket, is when subsequent calls to receive a message may return
3260  * parts of messages from different associations.  Some implementations
3261  * may allow you to turn this value on or off.  If so, when turned off,
3262  * no fragment interleave will occur (which will cause a head of line
3263  * blocking amongst multiple associations sharing the same one to many
3264  * socket).  When this option is turned on, then each receive call may
3265  * come from a different association (thus the user must receive data
3266  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3267  * association each receive belongs to.
3268  *
3269  * This option takes a boolean value.  A non-zero value indicates that
3270  * fragmented interleave is on.  A value of zero indicates that
3271  * fragmented interleave is off.
3272  *
3273  * Note that it is important that an implementation that allows this
3274  * option to be turned on, have it off by default.  Otherwise an unaware
3275  * application using the one to many model may become confused and act
3276  * incorrectly.
3277  */
sctp_setsockopt_fragment_interleave(struct sock * sk,char __user * optval,unsigned int optlen)3278 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3279 					       char __user *optval,
3280 					       unsigned int optlen)
3281 {
3282 	int val;
3283 
3284 	if (optlen != sizeof(int))
3285 		return -EINVAL;
3286 	if (get_user(val, (int __user *)optval))
3287 		return -EFAULT;
3288 
3289 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3290 
3291 	return 0;
3292 }
3293 
3294 /*
3295  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3296  *       (SCTP_PARTIAL_DELIVERY_POINT)
3297  *
3298  * This option will set or get the SCTP partial delivery point.  This
3299  * point is the size of a message where the partial delivery API will be
3300  * invoked to help free up rwnd space for the peer.  Setting this to a
3301  * lower value will cause partial deliveries to happen more often.  The
3302  * calls argument is an integer that sets or gets the partial delivery
3303  * point.  Note also that the call will fail if the user attempts to set
3304  * this value larger than the socket receive buffer size.
3305  *
3306  * Note that any single message having a length smaller than or equal to
3307  * the SCTP partial delivery point will be delivered in one single read
3308  * call as long as the user provided buffer is large enough to hold the
3309  * message.
3310  */
sctp_setsockopt_partial_delivery_point(struct sock * sk,char __user * optval,unsigned int optlen)3311 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3312 						  char __user *optval,
3313 						  unsigned int optlen)
3314 {
3315 	u32 val;
3316 
3317 	if (optlen != sizeof(u32))
3318 		return -EINVAL;
3319 	if (get_user(val, (int __user *)optval))
3320 		return -EFAULT;
3321 
3322 	/* Note: We double the receive buffer from what the user sets
3323 	 * it to be, also initial rwnd is based on rcvbuf/2.
3324 	 */
3325 	if (val > (sk->sk_rcvbuf >> 1))
3326 		return -EINVAL;
3327 
3328 	sctp_sk(sk)->pd_point = val;
3329 
3330 	return 0; /* is this the right error code? */
3331 }
3332 
3333 /*
3334  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3335  *
3336  * This option will allow a user to change the maximum burst of packets
3337  * that can be emitted by this association.  Note that the default value
3338  * is 4, and some implementations may restrict this setting so that it
3339  * can only be lowered.
3340  *
3341  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3342  * future associations inheriting the socket value.
3343  */
sctp_setsockopt_maxburst(struct sock * sk,char __user * optval,unsigned int optlen)3344 static int sctp_setsockopt_maxburst(struct sock *sk,
3345 				    char __user *optval,
3346 				    unsigned int optlen)
3347 {
3348 	struct sctp_assoc_value params;
3349 	struct sctp_sock *sp;
3350 	struct sctp_association *asoc;
3351 	int val;
3352 	int assoc_id = 0;
3353 
3354 	if (optlen == sizeof(int)) {
3355 		pr_warn_ratelimited(DEPRECATED
3356 				    "%s (pid %d) "
3357 				    "Use of int in max_burst socket option deprecated.\n"
3358 				    "Use struct sctp_assoc_value instead\n",
3359 				    current->comm, task_pid_nr(current));
3360 		if (copy_from_user(&val, optval, optlen))
3361 			return -EFAULT;
3362 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3363 		if (copy_from_user(&params, optval, optlen))
3364 			return -EFAULT;
3365 		val = params.assoc_value;
3366 		assoc_id = params.assoc_id;
3367 	} else
3368 		return -EINVAL;
3369 
3370 	sp = sctp_sk(sk);
3371 
3372 	if (assoc_id != 0) {
3373 		asoc = sctp_id2assoc(sk, assoc_id);
3374 		if (!asoc)
3375 			return -EINVAL;
3376 		asoc->max_burst = val;
3377 	} else
3378 		sp->max_burst = val;
3379 
3380 	return 0;
3381 }
3382 
3383 /*
3384  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3385  *
3386  * This set option adds a chunk type that the user is requesting to be
3387  * received only in an authenticated way.  Changes to the list of chunks
3388  * will only effect future associations on the socket.
3389  */
sctp_setsockopt_auth_chunk(struct sock * sk,char __user * optval,unsigned int optlen)3390 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3391 				      char __user *optval,
3392 				      unsigned int optlen)
3393 {
3394 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3395 	struct sctp_authchunk val;
3396 
3397 	if (!ep->auth_enable)
3398 		return -EACCES;
3399 
3400 	if (optlen != sizeof(struct sctp_authchunk))
3401 		return -EINVAL;
3402 	if (copy_from_user(&val, optval, optlen))
3403 		return -EFAULT;
3404 
3405 	switch (val.sauth_chunk) {
3406 	case SCTP_CID_INIT:
3407 	case SCTP_CID_INIT_ACK:
3408 	case SCTP_CID_SHUTDOWN_COMPLETE:
3409 	case SCTP_CID_AUTH:
3410 		return -EINVAL;
3411 	}
3412 
3413 	/* add this chunk id to the endpoint */
3414 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3415 }
3416 
3417 /*
3418  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3419  *
3420  * This option gets or sets the list of HMAC algorithms that the local
3421  * endpoint requires the peer to use.
3422  */
sctp_setsockopt_hmac_ident(struct sock * sk,char __user * optval,unsigned int optlen)3423 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3424 				      char __user *optval,
3425 				      unsigned int optlen)
3426 {
3427 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3428 	struct sctp_hmacalgo *hmacs;
3429 	u32 idents;
3430 	int err;
3431 
3432 	if (!ep->auth_enable)
3433 		return -EACCES;
3434 
3435 	if (optlen < sizeof(struct sctp_hmacalgo))
3436 		return -EINVAL;
3437 
3438 	hmacs = memdup_user(optval, optlen);
3439 	if (IS_ERR(hmacs))
3440 		return PTR_ERR(hmacs);
3441 
3442 	idents = hmacs->shmac_num_idents;
3443 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3444 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3445 		err = -EINVAL;
3446 		goto out;
3447 	}
3448 
3449 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3450 out:
3451 	kfree(hmacs);
3452 	return err;
3453 }
3454 
3455 /*
3456  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3457  *
3458  * This option will set a shared secret key which is used to build an
3459  * association shared key.
3460  */
sctp_setsockopt_auth_key(struct sock * sk,char __user * optval,unsigned int optlen)3461 static int sctp_setsockopt_auth_key(struct sock *sk,
3462 				    char __user *optval,
3463 				    unsigned int optlen)
3464 {
3465 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3466 	struct sctp_authkey *authkey;
3467 	struct sctp_association *asoc;
3468 	int ret;
3469 
3470 	if (!ep->auth_enable)
3471 		return -EACCES;
3472 
3473 	if (optlen <= sizeof(struct sctp_authkey))
3474 		return -EINVAL;
3475 
3476 	authkey = memdup_user(optval, optlen);
3477 	if (IS_ERR(authkey))
3478 		return PTR_ERR(authkey);
3479 
3480 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3481 		ret = -EINVAL;
3482 		goto out;
3483 	}
3484 
3485 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3486 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3487 		ret = -EINVAL;
3488 		goto out;
3489 	}
3490 
3491 	ret = sctp_auth_set_key(ep, asoc, authkey);
3492 out:
3493 	kzfree(authkey);
3494 	return ret;
3495 }
3496 
3497 /*
3498  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3499  *
3500  * This option will get or set the active shared key to be used to build
3501  * the association shared key.
3502  */
sctp_setsockopt_active_key(struct sock * sk,char __user * optval,unsigned int optlen)3503 static int sctp_setsockopt_active_key(struct sock *sk,
3504 				      char __user *optval,
3505 				      unsigned int optlen)
3506 {
3507 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3508 	struct sctp_authkeyid val;
3509 	struct sctp_association *asoc;
3510 
3511 	if (!ep->auth_enable)
3512 		return -EACCES;
3513 
3514 	if (optlen != sizeof(struct sctp_authkeyid))
3515 		return -EINVAL;
3516 	if (copy_from_user(&val, optval, optlen))
3517 		return -EFAULT;
3518 
3519 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3520 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3521 		return -EINVAL;
3522 
3523 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3524 }
3525 
3526 /*
3527  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3528  *
3529  * This set option will delete a shared secret key from use.
3530  */
sctp_setsockopt_del_key(struct sock * sk,char __user * optval,unsigned int optlen)3531 static int sctp_setsockopt_del_key(struct sock *sk,
3532 				   char __user *optval,
3533 				   unsigned int optlen)
3534 {
3535 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3536 	struct sctp_authkeyid val;
3537 	struct sctp_association *asoc;
3538 
3539 	if (!ep->auth_enable)
3540 		return -EACCES;
3541 
3542 	if (optlen != sizeof(struct sctp_authkeyid))
3543 		return -EINVAL;
3544 	if (copy_from_user(&val, optval, optlen))
3545 		return -EFAULT;
3546 
3547 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3548 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3549 		return -EINVAL;
3550 
3551 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3552 
3553 }
3554 
3555 /*
3556  * 8.1.23 SCTP_AUTO_ASCONF
3557  *
3558  * This option will enable or disable the use of the automatic generation of
3559  * ASCONF chunks to add and delete addresses to an existing association.  Note
3560  * that this option has two caveats namely: a) it only affects sockets that
3561  * are bound to all addresses available to the SCTP stack, and b) the system
3562  * administrator may have an overriding control that turns the ASCONF feature
3563  * off no matter what setting the socket option may have.
3564  * This option expects an integer boolean flag, where a non-zero value turns on
3565  * the option, and a zero value turns off the option.
3566  * Note. In this implementation, socket operation overrides default parameter
3567  * being set by sysctl as well as FreeBSD implementation
3568  */
sctp_setsockopt_auto_asconf(struct sock * sk,char __user * optval,unsigned int optlen)3569 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3570 					unsigned int optlen)
3571 {
3572 	int val;
3573 	struct sctp_sock *sp = sctp_sk(sk);
3574 
3575 	if (optlen < sizeof(int))
3576 		return -EINVAL;
3577 	if (get_user(val, (int __user *)optval))
3578 		return -EFAULT;
3579 	if (!sctp_is_ep_boundall(sk) && val)
3580 		return -EINVAL;
3581 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3582 		return 0;
3583 
3584 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3585 	if (val == 0 && sp->do_auto_asconf) {
3586 		list_del(&sp->auto_asconf_list);
3587 		sp->do_auto_asconf = 0;
3588 	} else if (val && !sp->do_auto_asconf) {
3589 		list_add_tail(&sp->auto_asconf_list,
3590 		    &sock_net(sk)->sctp.auto_asconf_splist);
3591 		sp->do_auto_asconf = 1;
3592 	}
3593 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3594 	return 0;
3595 }
3596 
3597 /*
3598  * SCTP_PEER_ADDR_THLDS
3599  *
3600  * This option allows us to alter the partially failed threshold for one or all
3601  * transports in an association.  See Section 6.1 of:
3602  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3603  */
sctp_setsockopt_paddr_thresholds(struct sock * sk,char __user * optval,unsigned int optlen)3604 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3605 					    char __user *optval,
3606 					    unsigned int optlen)
3607 {
3608 	struct sctp_paddrthlds val;
3609 	struct sctp_transport *trans;
3610 	struct sctp_association *asoc;
3611 
3612 	if (optlen < sizeof(struct sctp_paddrthlds))
3613 		return -EINVAL;
3614 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3615 			   sizeof(struct sctp_paddrthlds)))
3616 		return -EFAULT;
3617 
3618 
3619 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3620 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3621 		if (!asoc)
3622 			return -ENOENT;
3623 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3624 				    transports) {
3625 			if (val.spt_pathmaxrxt)
3626 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3627 			trans->pf_retrans = val.spt_pathpfthld;
3628 		}
3629 
3630 		if (val.spt_pathmaxrxt)
3631 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3632 		asoc->pf_retrans = val.spt_pathpfthld;
3633 	} else {
3634 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3635 					       val.spt_assoc_id);
3636 		if (!trans)
3637 			return -ENOENT;
3638 
3639 		if (val.spt_pathmaxrxt)
3640 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3641 		trans->pf_retrans = val.spt_pathpfthld;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
sctp_setsockopt_recvrcvinfo(struct sock * sk,char __user * optval,unsigned int optlen)3647 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3648 				       char __user *optval,
3649 				       unsigned int optlen)
3650 {
3651 	int val;
3652 
3653 	if (optlen < sizeof(int))
3654 		return -EINVAL;
3655 	if (get_user(val, (int __user *) optval))
3656 		return -EFAULT;
3657 
3658 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3659 
3660 	return 0;
3661 }
3662 
sctp_setsockopt_recvnxtinfo(struct sock * sk,char __user * optval,unsigned int optlen)3663 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3664 				       char __user *optval,
3665 				       unsigned int optlen)
3666 {
3667 	int val;
3668 
3669 	if (optlen < sizeof(int))
3670 		return -EINVAL;
3671 	if (get_user(val, (int __user *) optval))
3672 		return -EFAULT;
3673 
3674 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3675 
3676 	return 0;
3677 }
3678 
3679 /* API 6.2 setsockopt(), getsockopt()
3680  *
3681  * Applications use setsockopt() and getsockopt() to set or retrieve
3682  * socket options.  Socket options are used to change the default
3683  * behavior of sockets calls.  They are described in Section 7.
3684  *
3685  * The syntax is:
3686  *
3687  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3688  *                    int __user *optlen);
3689  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3690  *                    int optlen);
3691  *
3692  *   sd      - the socket descript.
3693  *   level   - set to IPPROTO_SCTP for all SCTP options.
3694  *   optname - the option name.
3695  *   optval  - the buffer to store the value of the option.
3696  *   optlen  - the size of the buffer.
3697  */
sctp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3698 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3699 			   char __user *optval, unsigned int optlen)
3700 {
3701 	int retval = 0;
3702 
3703 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3704 
3705 	/* I can hardly begin to describe how wrong this is.  This is
3706 	 * so broken as to be worse than useless.  The API draft
3707 	 * REALLY is NOT helpful here...  I am not convinced that the
3708 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3709 	 * are at all well-founded.
3710 	 */
3711 	if (level != SOL_SCTP) {
3712 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3713 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3714 		goto out_nounlock;
3715 	}
3716 
3717 	lock_sock(sk);
3718 
3719 	switch (optname) {
3720 	case SCTP_SOCKOPT_BINDX_ADD:
3721 		/* 'optlen' is the size of the addresses buffer. */
3722 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3723 					       optlen, SCTP_BINDX_ADD_ADDR);
3724 		break;
3725 
3726 	case SCTP_SOCKOPT_BINDX_REM:
3727 		/* 'optlen' is the size of the addresses buffer. */
3728 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3729 					       optlen, SCTP_BINDX_REM_ADDR);
3730 		break;
3731 
3732 	case SCTP_SOCKOPT_CONNECTX_OLD:
3733 		/* 'optlen' is the size of the addresses buffer. */
3734 		retval = sctp_setsockopt_connectx_old(sk,
3735 					    (struct sockaddr __user *)optval,
3736 					    optlen);
3737 		break;
3738 
3739 	case SCTP_SOCKOPT_CONNECTX:
3740 		/* 'optlen' is the size of the addresses buffer. */
3741 		retval = sctp_setsockopt_connectx(sk,
3742 					    (struct sockaddr __user *)optval,
3743 					    optlen);
3744 		break;
3745 
3746 	case SCTP_DISABLE_FRAGMENTS:
3747 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3748 		break;
3749 
3750 	case SCTP_EVENTS:
3751 		retval = sctp_setsockopt_events(sk, optval, optlen);
3752 		break;
3753 
3754 	case SCTP_AUTOCLOSE:
3755 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3756 		break;
3757 
3758 	case SCTP_PEER_ADDR_PARAMS:
3759 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3760 		break;
3761 
3762 	case SCTP_DELAYED_SACK:
3763 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3764 		break;
3765 	case SCTP_PARTIAL_DELIVERY_POINT:
3766 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3767 		break;
3768 
3769 	case SCTP_INITMSG:
3770 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3771 		break;
3772 	case SCTP_DEFAULT_SEND_PARAM:
3773 		retval = sctp_setsockopt_default_send_param(sk, optval,
3774 							    optlen);
3775 		break;
3776 	case SCTP_DEFAULT_SNDINFO:
3777 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3778 		break;
3779 	case SCTP_PRIMARY_ADDR:
3780 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3781 		break;
3782 	case SCTP_SET_PEER_PRIMARY_ADDR:
3783 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3784 		break;
3785 	case SCTP_NODELAY:
3786 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3787 		break;
3788 	case SCTP_RTOINFO:
3789 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3790 		break;
3791 	case SCTP_ASSOCINFO:
3792 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3793 		break;
3794 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3795 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3796 		break;
3797 	case SCTP_MAXSEG:
3798 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3799 		break;
3800 	case SCTP_ADAPTATION_LAYER:
3801 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3802 		break;
3803 	case SCTP_CONTEXT:
3804 		retval = sctp_setsockopt_context(sk, optval, optlen);
3805 		break;
3806 	case SCTP_FRAGMENT_INTERLEAVE:
3807 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3808 		break;
3809 	case SCTP_MAX_BURST:
3810 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3811 		break;
3812 	case SCTP_AUTH_CHUNK:
3813 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3814 		break;
3815 	case SCTP_HMAC_IDENT:
3816 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3817 		break;
3818 	case SCTP_AUTH_KEY:
3819 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3820 		break;
3821 	case SCTP_AUTH_ACTIVE_KEY:
3822 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3823 		break;
3824 	case SCTP_AUTH_DELETE_KEY:
3825 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3826 		break;
3827 	case SCTP_AUTO_ASCONF:
3828 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3829 		break;
3830 	case SCTP_PEER_ADDR_THLDS:
3831 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3832 		break;
3833 	case SCTP_RECVRCVINFO:
3834 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3835 		break;
3836 	case SCTP_RECVNXTINFO:
3837 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3838 		break;
3839 	default:
3840 		retval = -ENOPROTOOPT;
3841 		break;
3842 	}
3843 
3844 	release_sock(sk);
3845 
3846 out_nounlock:
3847 	return retval;
3848 }
3849 
3850 /* API 3.1.6 connect() - UDP Style Syntax
3851  *
3852  * An application may use the connect() call in the UDP model to initiate an
3853  * association without sending data.
3854  *
3855  * The syntax is:
3856  *
3857  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3858  *
3859  * sd: the socket descriptor to have a new association added to.
3860  *
3861  * nam: the address structure (either struct sockaddr_in or struct
3862  *    sockaddr_in6 defined in RFC2553 [7]).
3863  *
3864  * len: the size of the address.
3865  */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len)3866 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3867 			int addr_len)
3868 {
3869 	int err = 0;
3870 	struct sctp_af *af;
3871 
3872 	lock_sock(sk);
3873 
3874 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3875 		 addr, addr_len);
3876 
3877 	/* Validate addr_len before calling common connect/connectx routine. */
3878 	af = sctp_get_af_specific(addr->sa_family);
3879 	if (!af || addr_len < af->sockaddr_len) {
3880 		err = -EINVAL;
3881 	} else {
3882 		/* Pass correct addr len to common routine (so it knows there
3883 		 * is only one address being passed.
3884 		 */
3885 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3886 	}
3887 
3888 	release_sock(sk);
3889 	return err;
3890 }
3891 
3892 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)3893 static int sctp_disconnect(struct sock *sk, int flags)
3894 {
3895 	return -EOPNOTSUPP; /* STUB */
3896 }
3897 
3898 /* 4.1.4 accept() - TCP Style Syntax
3899  *
3900  * Applications use accept() call to remove an established SCTP
3901  * association from the accept queue of the endpoint.  A new socket
3902  * descriptor will be returned from accept() to represent the newly
3903  * formed association.
3904  */
sctp_accept(struct sock * sk,int flags,int * err)3905 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3906 {
3907 	struct sctp_sock *sp;
3908 	struct sctp_endpoint *ep;
3909 	struct sock *newsk = NULL;
3910 	struct sctp_association *asoc;
3911 	long timeo;
3912 	int error = 0;
3913 
3914 	lock_sock(sk);
3915 
3916 	sp = sctp_sk(sk);
3917 	ep = sp->ep;
3918 
3919 	if (!sctp_style(sk, TCP)) {
3920 		error = -EOPNOTSUPP;
3921 		goto out;
3922 	}
3923 
3924 	if (!sctp_sstate(sk, LISTENING)) {
3925 		error = -EINVAL;
3926 		goto out;
3927 	}
3928 
3929 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3930 
3931 	error = sctp_wait_for_accept(sk, timeo);
3932 	if (error)
3933 		goto out;
3934 
3935 	/* We treat the list of associations on the endpoint as the accept
3936 	 * queue and pick the first association on the list.
3937 	 */
3938 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3939 
3940 	newsk = sp->pf->create_accept_sk(sk, asoc);
3941 	if (!newsk) {
3942 		error = -ENOMEM;
3943 		goto out;
3944 	}
3945 
3946 	/* Populate the fields of the newsk from the oldsk and migrate the
3947 	 * asoc to the newsk.
3948 	 */
3949 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3950 
3951 out:
3952 	release_sock(sk);
3953 	*err = error;
3954 	return newsk;
3955 }
3956 
3957 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,unsigned long arg)3958 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3959 {
3960 	int rc = -ENOTCONN;
3961 
3962 	lock_sock(sk);
3963 
3964 	/*
3965 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3966 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3967 	 */
3968 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3969 		goto out;
3970 
3971 	switch (cmd) {
3972 	case SIOCINQ: {
3973 		struct sk_buff *skb;
3974 		unsigned int amount = 0;
3975 
3976 		skb = skb_peek(&sk->sk_receive_queue);
3977 		if (skb != NULL) {
3978 			/*
3979 			 * We will only return the amount of this packet since
3980 			 * that is all that will be read.
3981 			 */
3982 			amount = skb->len;
3983 		}
3984 		rc = put_user(amount, (int __user *)arg);
3985 		break;
3986 	}
3987 	default:
3988 		rc = -ENOIOCTLCMD;
3989 		break;
3990 	}
3991 out:
3992 	release_sock(sk);
3993 	return rc;
3994 }
3995 
3996 /* This is the function which gets called during socket creation to
3997  * initialized the SCTP-specific portion of the sock.
3998  * The sock structure should already be zero-filled memory.
3999  */
sctp_init_sock(struct sock * sk)4000 static int sctp_init_sock(struct sock *sk)
4001 {
4002 	struct net *net = sock_net(sk);
4003 	struct sctp_sock *sp;
4004 
4005 	pr_debug("%s: sk:%p\n", __func__, sk);
4006 
4007 	sp = sctp_sk(sk);
4008 
4009 	/* Initialize the SCTP per socket area.  */
4010 	switch (sk->sk_type) {
4011 	case SOCK_SEQPACKET:
4012 		sp->type = SCTP_SOCKET_UDP;
4013 		break;
4014 	case SOCK_STREAM:
4015 		sp->type = SCTP_SOCKET_TCP;
4016 		break;
4017 	default:
4018 		return -ESOCKTNOSUPPORT;
4019 	}
4020 
4021 	/* Initialize default send parameters. These parameters can be
4022 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4023 	 */
4024 	sp->default_stream = 0;
4025 	sp->default_ppid = 0;
4026 	sp->default_flags = 0;
4027 	sp->default_context = 0;
4028 	sp->default_timetolive = 0;
4029 
4030 	sp->default_rcv_context = 0;
4031 	sp->max_burst = net->sctp.max_burst;
4032 
4033 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4034 
4035 	/* Initialize default setup parameters. These parameters
4036 	 * can be modified with the SCTP_INITMSG socket option or
4037 	 * overridden by the SCTP_INIT CMSG.
4038 	 */
4039 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4040 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4041 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4042 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4043 
4044 	/* Initialize default RTO related parameters.  These parameters can
4045 	 * be modified for with the SCTP_RTOINFO socket option.
4046 	 */
4047 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4048 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4049 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4050 
4051 	/* Initialize default association related parameters. These parameters
4052 	 * can be modified with the SCTP_ASSOCINFO socket option.
4053 	 */
4054 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4055 	sp->assocparams.sasoc_number_peer_destinations = 0;
4056 	sp->assocparams.sasoc_peer_rwnd = 0;
4057 	sp->assocparams.sasoc_local_rwnd = 0;
4058 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4059 
4060 	/* Initialize default event subscriptions. By default, all the
4061 	 * options are off.
4062 	 */
4063 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4064 
4065 	/* Default Peer Address Parameters.  These defaults can
4066 	 * be modified via SCTP_PEER_ADDR_PARAMS
4067 	 */
4068 	sp->hbinterval  = net->sctp.hb_interval;
4069 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4070 	sp->pathmtu     = 0; /* allow default discovery */
4071 	sp->sackdelay   = net->sctp.sack_timeout;
4072 	sp->sackfreq	= 2;
4073 	sp->param_flags = SPP_HB_ENABLE |
4074 			  SPP_PMTUD_ENABLE |
4075 			  SPP_SACKDELAY_ENABLE;
4076 
4077 	/* If enabled no SCTP message fragmentation will be performed.
4078 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4079 	 */
4080 	sp->disable_fragments = 0;
4081 
4082 	/* Enable Nagle algorithm by default.  */
4083 	sp->nodelay           = 0;
4084 
4085 	sp->recvrcvinfo = 0;
4086 	sp->recvnxtinfo = 0;
4087 
4088 	/* Enable by default. */
4089 	sp->v4mapped          = 1;
4090 
4091 	/* Auto-close idle associations after the configured
4092 	 * number of seconds.  A value of 0 disables this
4093 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4094 	 * for UDP-style sockets only.
4095 	 */
4096 	sp->autoclose         = 0;
4097 
4098 	/* User specified fragmentation limit. */
4099 	sp->user_frag         = 0;
4100 
4101 	sp->adaptation_ind = 0;
4102 
4103 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4104 
4105 	/* Control variables for partial data delivery. */
4106 	atomic_set(&sp->pd_mode, 0);
4107 	skb_queue_head_init(&sp->pd_lobby);
4108 	sp->frag_interleave = 0;
4109 
4110 	/* Create a per socket endpoint structure.  Even if we
4111 	 * change the data structure relationships, this may still
4112 	 * be useful for storing pre-connect address information.
4113 	 */
4114 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4115 	if (!sp->ep)
4116 		return -ENOMEM;
4117 
4118 	sp->hmac = NULL;
4119 
4120 	sk->sk_destruct = sctp_destruct_sock;
4121 
4122 	SCTP_DBG_OBJCNT_INC(sock);
4123 
4124 	local_bh_disable();
4125 	percpu_counter_inc(&sctp_sockets_allocated);
4126 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4127 
4128 	/* Nothing can fail after this block, otherwise
4129 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4130 	 */
4131 	if (net->sctp.default_auto_asconf) {
4132 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4133 		list_add_tail(&sp->auto_asconf_list,
4134 		    &net->sctp.auto_asconf_splist);
4135 		sp->do_auto_asconf = 1;
4136 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4137 	} else {
4138 		sp->do_auto_asconf = 0;
4139 	}
4140 
4141 	local_bh_enable();
4142 
4143 	return 0;
4144 }
4145 
4146 /* Cleanup any SCTP per socket resources. Must be called with
4147  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4148  */
sctp_destroy_sock(struct sock * sk)4149 static void sctp_destroy_sock(struct sock *sk)
4150 {
4151 	struct sctp_sock *sp;
4152 
4153 	pr_debug("%s: sk:%p\n", __func__, sk);
4154 
4155 	/* Release our hold on the endpoint. */
4156 	sp = sctp_sk(sk);
4157 	/* This could happen during socket init, thus we bail out
4158 	 * early, since the rest of the below is not setup either.
4159 	 */
4160 	if (sp->ep == NULL)
4161 		return;
4162 
4163 	if (sp->do_auto_asconf) {
4164 		sp->do_auto_asconf = 0;
4165 		list_del(&sp->auto_asconf_list);
4166 	}
4167 	sctp_endpoint_free(sp->ep);
4168 	local_bh_disable();
4169 	percpu_counter_dec(&sctp_sockets_allocated);
4170 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4171 	local_bh_enable();
4172 }
4173 
4174 /* Triggered when there are no references on the socket anymore */
sctp_destruct_sock(struct sock * sk)4175 static void sctp_destruct_sock(struct sock *sk)
4176 {
4177 	struct sctp_sock *sp = sctp_sk(sk);
4178 
4179 	/* Free up the HMAC transform. */
4180 	crypto_free_hash(sp->hmac);
4181 
4182 	inet_sock_destruct(sk);
4183 }
4184 
4185 /* API 4.1.7 shutdown() - TCP Style Syntax
4186  *     int shutdown(int socket, int how);
4187  *
4188  *     sd      - the socket descriptor of the association to be closed.
4189  *     how     - Specifies the type of shutdown.  The  values  are
4190  *               as follows:
4191  *               SHUT_RD
4192  *                     Disables further receive operations. No SCTP
4193  *                     protocol action is taken.
4194  *               SHUT_WR
4195  *                     Disables further send operations, and initiates
4196  *                     the SCTP shutdown sequence.
4197  *               SHUT_RDWR
4198  *                     Disables further send  and  receive  operations
4199  *                     and initiates the SCTP shutdown sequence.
4200  */
sctp_shutdown(struct sock * sk,int how)4201 static void sctp_shutdown(struct sock *sk, int how)
4202 {
4203 	struct net *net = sock_net(sk);
4204 	struct sctp_endpoint *ep;
4205 	struct sctp_association *asoc;
4206 
4207 	if (!sctp_style(sk, TCP))
4208 		return;
4209 
4210 	if (how & SEND_SHUTDOWN) {
4211 		ep = sctp_sk(sk)->ep;
4212 		if (!list_empty(&ep->asocs)) {
4213 			asoc = list_entry(ep->asocs.next,
4214 					  struct sctp_association, asocs);
4215 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4216 		}
4217 	}
4218 }
4219 
4220 /* 7.2.1 Association Status (SCTP_STATUS)
4221 
4222  * Applications can retrieve current status information about an
4223  * association, including association state, peer receiver window size,
4224  * number of unacked data chunks, and number of data chunks pending
4225  * receipt.  This information is read-only.
4226  */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)4227 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4228 				       char __user *optval,
4229 				       int __user *optlen)
4230 {
4231 	struct sctp_status status;
4232 	struct sctp_association *asoc = NULL;
4233 	struct sctp_transport *transport;
4234 	sctp_assoc_t associd;
4235 	int retval = 0;
4236 
4237 	if (len < sizeof(status)) {
4238 		retval = -EINVAL;
4239 		goto out;
4240 	}
4241 
4242 	len = sizeof(status);
4243 	if (copy_from_user(&status, optval, len)) {
4244 		retval = -EFAULT;
4245 		goto out;
4246 	}
4247 
4248 	associd = status.sstat_assoc_id;
4249 	asoc = sctp_id2assoc(sk, associd);
4250 	if (!asoc) {
4251 		retval = -EINVAL;
4252 		goto out;
4253 	}
4254 
4255 	transport = asoc->peer.primary_path;
4256 
4257 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4258 	status.sstat_state = sctp_assoc_to_state(asoc);
4259 	status.sstat_rwnd =  asoc->peer.rwnd;
4260 	status.sstat_unackdata = asoc->unack_data;
4261 
4262 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4263 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4264 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4265 	status.sstat_fragmentation_point = asoc->frag_point;
4266 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4267 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4268 			transport->af_specific->sockaddr_len);
4269 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4270 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4271 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4272 	status.sstat_primary.spinfo_state = transport->state;
4273 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4274 	status.sstat_primary.spinfo_srtt = transport->srtt;
4275 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4276 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4277 
4278 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4279 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4280 
4281 	if (put_user(len, optlen)) {
4282 		retval = -EFAULT;
4283 		goto out;
4284 	}
4285 
4286 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4287 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4288 		 status.sstat_assoc_id);
4289 
4290 	if (copy_to_user(optval, &status, len)) {
4291 		retval = -EFAULT;
4292 		goto out;
4293 	}
4294 
4295 out:
4296 	return retval;
4297 }
4298 
4299 
4300 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4301  *
4302  * Applications can retrieve information about a specific peer address
4303  * of an association, including its reachability state, congestion
4304  * window, and retransmission timer values.  This information is
4305  * read-only.
4306  */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)4307 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4308 					  char __user *optval,
4309 					  int __user *optlen)
4310 {
4311 	struct sctp_paddrinfo pinfo;
4312 	struct sctp_transport *transport;
4313 	int retval = 0;
4314 
4315 	if (len < sizeof(pinfo)) {
4316 		retval = -EINVAL;
4317 		goto out;
4318 	}
4319 
4320 	len = sizeof(pinfo);
4321 	if (copy_from_user(&pinfo, optval, len)) {
4322 		retval = -EFAULT;
4323 		goto out;
4324 	}
4325 
4326 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4327 					   pinfo.spinfo_assoc_id);
4328 	if (!transport)
4329 		return -EINVAL;
4330 
4331 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4332 	pinfo.spinfo_state = transport->state;
4333 	pinfo.spinfo_cwnd = transport->cwnd;
4334 	pinfo.spinfo_srtt = transport->srtt;
4335 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4336 	pinfo.spinfo_mtu = transport->pathmtu;
4337 
4338 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4339 		pinfo.spinfo_state = SCTP_ACTIVE;
4340 
4341 	if (put_user(len, optlen)) {
4342 		retval = -EFAULT;
4343 		goto out;
4344 	}
4345 
4346 	if (copy_to_user(optval, &pinfo, len)) {
4347 		retval = -EFAULT;
4348 		goto out;
4349 	}
4350 
4351 out:
4352 	return retval;
4353 }
4354 
4355 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4356  *
4357  * This option is a on/off flag.  If enabled no SCTP message
4358  * fragmentation will be performed.  Instead if a message being sent
4359  * exceeds the current PMTU size, the message will NOT be sent and
4360  * instead a error will be indicated to the user.
4361  */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)4362 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4363 					char __user *optval, int __user *optlen)
4364 {
4365 	int val;
4366 
4367 	if (len < sizeof(int))
4368 		return -EINVAL;
4369 
4370 	len = sizeof(int);
4371 	val = (sctp_sk(sk)->disable_fragments == 1);
4372 	if (put_user(len, optlen))
4373 		return -EFAULT;
4374 	if (copy_to_user(optval, &val, len))
4375 		return -EFAULT;
4376 	return 0;
4377 }
4378 
4379 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4380  *
4381  * This socket option is used to specify various notifications and
4382  * ancillary data the user wishes to receive.
4383  */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)4384 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4385 				  int __user *optlen)
4386 {
4387 	if (len <= 0)
4388 		return -EINVAL;
4389 	if (len > sizeof(struct sctp_event_subscribe))
4390 		len = sizeof(struct sctp_event_subscribe);
4391 	if (put_user(len, optlen))
4392 		return -EFAULT;
4393 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4394 		return -EFAULT;
4395 	return 0;
4396 }
4397 
4398 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4399  *
4400  * This socket option is applicable to the UDP-style socket only.  When
4401  * set it will cause associations that are idle for more than the
4402  * specified number of seconds to automatically close.  An association
4403  * being idle is defined an association that has NOT sent or received
4404  * user data.  The special value of '0' indicates that no automatic
4405  * close of any associations should be performed.  The option expects an
4406  * integer defining the number of seconds of idle time before an
4407  * association is closed.
4408  */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)4409 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4410 {
4411 	/* Applicable to UDP-style socket only */
4412 	if (sctp_style(sk, TCP))
4413 		return -EOPNOTSUPP;
4414 	if (len < sizeof(int))
4415 		return -EINVAL;
4416 	len = sizeof(int);
4417 	if (put_user(len, optlen))
4418 		return -EFAULT;
4419 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4420 		return -EFAULT;
4421 	return 0;
4422 }
4423 
4424 /* Helper routine to branch off an association to a new socket.  */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)4425 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4426 {
4427 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4428 	struct sctp_sock *sp = sctp_sk(sk);
4429 	struct socket *sock;
4430 	int err = 0;
4431 
4432 	if (!asoc)
4433 		return -EINVAL;
4434 
4435 	/* An association cannot be branched off from an already peeled-off
4436 	 * socket, nor is this supported for tcp style sockets.
4437 	 */
4438 	if (!sctp_style(sk, UDP))
4439 		return -EINVAL;
4440 
4441 	/* Create a new socket.  */
4442 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4443 	if (err < 0)
4444 		return err;
4445 
4446 	sctp_copy_sock(sock->sk, sk, asoc);
4447 
4448 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4449 	 * Set the daddr and initialize id to something more random
4450 	 */
4451 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4452 
4453 	/* Populate the fields of the newsk from the oldsk and migrate the
4454 	 * asoc to the newsk.
4455 	 */
4456 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4457 
4458 	*sockp = sock;
4459 
4460 	return err;
4461 }
4462 EXPORT_SYMBOL(sctp_do_peeloff);
4463 
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)4464 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4465 {
4466 	sctp_peeloff_arg_t peeloff;
4467 	struct socket *newsock;
4468 	struct file *newfile;
4469 	int retval = 0;
4470 
4471 	if (len < sizeof(sctp_peeloff_arg_t))
4472 		return -EINVAL;
4473 	len = sizeof(sctp_peeloff_arg_t);
4474 	if (copy_from_user(&peeloff, optval, len))
4475 		return -EFAULT;
4476 
4477 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4478 	if (retval < 0)
4479 		goto out;
4480 
4481 	/* Map the socket to an unused fd that can be returned to the user.  */
4482 	retval = get_unused_fd_flags(0);
4483 	if (retval < 0) {
4484 		sock_release(newsock);
4485 		goto out;
4486 	}
4487 
4488 	newfile = sock_alloc_file(newsock, 0, NULL);
4489 	if (unlikely(IS_ERR(newfile))) {
4490 		put_unused_fd(retval);
4491 		sock_release(newsock);
4492 		return PTR_ERR(newfile);
4493 	}
4494 
4495 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4496 		 retval);
4497 
4498 	/* Return the fd mapped to the new socket.  */
4499 	if (put_user(len, optlen)) {
4500 		fput(newfile);
4501 		put_unused_fd(retval);
4502 		return -EFAULT;
4503 	}
4504 	peeloff.sd = retval;
4505 	if (copy_to_user(optval, &peeloff, len)) {
4506 		fput(newfile);
4507 		put_unused_fd(retval);
4508 		return -EFAULT;
4509 	}
4510 	fd_install(retval, newfile);
4511 out:
4512 	return retval;
4513 }
4514 
4515 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4516  *
4517  * Applications can enable or disable heartbeats for any peer address of
4518  * an association, modify an address's heartbeat interval, force a
4519  * heartbeat to be sent immediately, and adjust the address's maximum
4520  * number of retransmissions sent before an address is considered
4521  * unreachable.  The following structure is used to access and modify an
4522  * address's parameters:
4523  *
4524  *  struct sctp_paddrparams {
4525  *     sctp_assoc_t            spp_assoc_id;
4526  *     struct sockaddr_storage spp_address;
4527  *     uint32_t                spp_hbinterval;
4528  *     uint16_t                spp_pathmaxrxt;
4529  *     uint32_t                spp_pathmtu;
4530  *     uint32_t                spp_sackdelay;
4531  *     uint32_t                spp_flags;
4532  * };
4533  *
4534  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4535  *                     application, and identifies the association for
4536  *                     this query.
4537  *   spp_address     - This specifies which address is of interest.
4538  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4539  *                     in milliseconds.  If a  value of zero
4540  *                     is present in this field then no changes are to
4541  *                     be made to this parameter.
4542  *   spp_pathmaxrxt  - This contains the maximum number of
4543  *                     retransmissions before this address shall be
4544  *                     considered unreachable. If a  value of zero
4545  *                     is present in this field then no changes are to
4546  *                     be made to this parameter.
4547  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4548  *                     specified here will be the "fixed" path mtu.
4549  *                     Note that if the spp_address field is empty
4550  *                     then all associations on this address will
4551  *                     have this fixed path mtu set upon them.
4552  *
4553  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4554  *                     the number of milliseconds that sacks will be delayed
4555  *                     for. This value will apply to all addresses of an
4556  *                     association if the spp_address field is empty. Note
4557  *                     also, that if delayed sack is enabled and this
4558  *                     value is set to 0, no change is made to the last
4559  *                     recorded delayed sack timer value.
4560  *
4561  *   spp_flags       - These flags are used to control various features
4562  *                     on an association. The flag field may contain
4563  *                     zero or more of the following options.
4564  *
4565  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4566  *                     specified address. Note that if the address
4567  *                     field is empty all addresses for the association
4568  *                     have heartbeats enabled upon them.
4569  *
4570  *                     SPP_HB_DISABLE - Disable heartbeats on the
4571  *                     speicifed address. Note that if the address
4572  *                     field is empty all addresses for the association
4573  *                     will have their heartbeats disabled. Note also
4574  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4575  *                     mutually exclusive, only one of these two should
4576  *                     be specified. Enabling both fields will have
4577  *                     undetermined results.
4578  *
4579  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4580  *                     to be made immediately.
4581  *
4582  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4583  *                     discovery upon the specified address. Note that
4584  *                     if the address feild is empty then all addresses
4585  *                     on the association are effected.
4586  *
4587  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4588  *                     discovery upon the specified address. Note that
4589  *                     if the address feild is empty then all addresses
4590  *                     on the association are effected. Not also that
4591  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4592  *                     exclusive. Enabling both will have undetermined
4593  *                     results.
4594  *
4595  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4596  *                     on delayed sack. The time specified in spp_sackdelay
4597  *                     is used to specify the sack delay for this address. Note
4598  *                     that if spp_address is empty then all addresses will
4599  *                     enable delayed sack and take on the sack delay
4600  *                     value specified in spp_sackdelay.
4601  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4602  *                     off delayed sack. If the spp_address field is blank then
4603  *                     delayed sack is disabled for the entire association. Note
4604  *                     also that this field is mutually exclusive to
4605  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4606  *                     results.
4607  */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)4608 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4609 					    char __user *optval, int __user *optlen)
4610 {
4611 	struct sctp_paddrparams  params;
4612 	struct sctp_transport   *trans = NULL;
4613 	struct sctp_association *asoc = NULL;
4614 	struct sctp_sock        *sp = sctp_sk(sk);
4615 
4616 	if (len < sizeof(struct sctp_paddrparams))
4617 		return -EINVAL;
4618 	len = sizeof(struct sctp_paddrparams);
4619 	if (copy_from_user(&params, optval, len))
4620 		return -EFAULT;
4621 
4622 	/* If an address other than INADDR_ANY is specified, and
4623 	 * no transport is found, then the request is invalid.
4624 	 */
4625 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4626 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4627 					       params.spp_assoc_id);
4628 		if (!trans) {
4629 			pr_debug("%s: failed no transport\n", __func__);
4630 			return -EINVAL;
4631 		}
4632 	}
4633 
4634 	/* Get association, if assoc_id != 0 and the socket is a one
4635 	 * to many style socket, and an association was not found, then
4636 	 * the id was invalid.
4637 	 */
4638 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4639 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4640 		pr_debug("%s: failed no association\n", __func__);
4641 		return -EINVAL;
4642 	}
4643 
4644 	if (trans) {
4645 		/* Fetch transport values. */
4646 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4647 		params.spp_pathmtu    = trans->pathmtu;
4648 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4649 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4650 
4651 		/*draft-11 doesn't say what to return in spp_flags*/
4652 		params.spp_flags      = trans->param_flags;
4653 	} else if (asoc) {
4654 		/* Fetch association values. */
4655 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4656 		params.spp_pathmtu    = asoc->pathmtu;
4657 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4658 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4659 
4660 		/*draft-11 doesn't say what to return in spp_flags*/
4661 		params.spp_flags      = asoc->param_flags;
4662 	} else {
4663 		/* Fetch socket values. */
4664 		params.spp_hbinterval = sp->hbinterval;
4665 		params.spp_pathmtu    = sp->pathmtu;
4666 		params.spp_sackdelay  = sp->sackdelay;
4667 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4668 
4669 		/*draft-11 doesn't say what to return in spp_flags*/
4670 		params.spp_flags      = sp->param_flags;
4671 	}
4672 
4673 	if (copy_to_user(optval, &params, len))
4674 		return -EFAULT;
4675 
4676 	if (put_user(len, optlen))
4677 		return -EFAULT;
4678 
4679 	return 0;
4680 }
4681 
4682 /*
4683  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4684  *
4685  * This option will effect the way delayed acks are performed.  This
4686  * option allows you to get or set the delayed ack time, in
4687  * milliseconds.  It also allows changing the delayed ack frequency.
4688  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4689  * the assoc_id is 0, then this sets or gets the endpoints default
4690  * values.  If the assoc_id field is non-zero, then the set or get
4691  * effects the specified association for the one to many model (the
4692  * assoc_id field is ignored by the one to one model).  Note that if
4693  * sack_delay or sack_freq are 0 when setting this option, then the
4694  * current values will remain unchanged.
4695  *
4696  * struct sctp_sack_info {
4697  *     sctp_assoc_t            sack_assoc_id;
4698  *     uint32_t                sack_delay;
4699  *     uint32_t                sack_freq;
4700  * };
4701  *
4702  * sack_assoc_id -  This parameter, indicates which association the user
4703  *    is performing an action upon.  Note that if this field's value is
4704  *    zero then the endpoints default value is changed (effecting future
4705  *    associations only).
4706  *
4707  * sack_delay -  This parameter contains the number of milliseconds that
4708  *    the user is requesting the delayed ACK timer be set to.  Note that
4709  *    this value is defined in the standard to be between 200 and 500
4710  *    milliseconds.
4711  *
4712  * sack_freq -  This parameter contains the number of packets that must
4713  *    be received before a sack is sent without waiting for the delay
4714  *    timer to expire.  The default value for this is 2, setting this
4715  *    value to 1 will disable the delayed sack algorithm.
4716  */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)4717 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4718 					    char __user *optval,
4719 					    int __user *optlen)
4720 {
4721 	struct sctp_sack_info    params;
4722 	struct sctp_association *asoc = NULL;
4723 	struct sctp_sock        *sp = sctp_sk(sk);
4724 
4725 	if (len >= sizeof(struct sctp_sack_info)) {
4726 		len = sizeof(struct sctp_sack_info);
4727 
4728 		if (copy_from_user(&params, optval, len))
4729 			return -EFAULT;
4730 	} else if (len == sizeof(struct sctp_assoc_value)) {
4731 		pr_warn_ratelimited(DEPRECATED
4732 				    "%s (pid %d) "
4733 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4734 				    "Use struct sctp_sack_info instead\n",
4735 				    current->comm, task_pid_nr(current));
4736 		if (copy_from_user(&params, optval, len))
4737 			return -EFAULT;
4738 	} else
4739 		return -EINVAL;
4740 
4741 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4742 	 * to many style socket, and an association was not found, then
4743 	 * the id was invalid.
4744 	 */
4745 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4746 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4747 		return -EINVAL;
4748 
4749 	if (asoc) {
4750 		/* Fetch association values. */
4751 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4752 			params.sack_delay = jiffies_to_msecs(
4753 				asoc->sackdelay);
4754 			params.sack_freq = asoc->sackfreq;
4755 
4756 		} else {
4757 			params.sack_delay = 0;
4758 			params.sack_freq = 1;
4759 		}
4760 	} else {
4761 		/* Fetch socket values. */
4762 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4763 			params.sack_delay  = sp->sackdelay;
4764 			params.sack_freq = sp->sackfreq;
4765 		} else {
4766 			params.sack_delay  = 0;
4767 			params.sack_freq = 1;
4768 		}
4769 	}
4770 
4771 	if (copy_to_user(optval, &params, len))
4772 		return -EFAULT;
4773 
4774 	if (put_user(len, optlen))
4775 		return -EFAULT;
4776 
4777 	return 0;
4778 }
4779 
4780 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4781  *
4782  * Applications can specify protocol parameters for the default association
4783  * initialization.  The option name argument to setsockopt() and getsockopt()
4784  * is SCTP_INITMSG.
4785  *
4786  * Setting initialization parameters is effective only on an unconnected
4787  * socket (for UDP-style sockets only future associations are effected
4788  * by the change).  With TCP-style sockets, this option is inherited by
4789  * sockets derived from a listener socket.
4790  */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)4791 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4792 {
4793 	if (len < sizeof(struct sctp_initmsg))
4794 		return -EINVAL;
4795 	len = sizeof(struct sctp_initmsg);
4796 	if (put_user(len, optlen))
4797 		return -EFAULT;
4798 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4799 		return -EFAULT;
4800 	return 0;
4801 }
4802 
4803 
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)4804 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4805 				      char __user *optval, int __user *optlen)
4806 {
4807 	struct sctp_association *asoc;
4808 	int cnt = 0;
4809 	struct sctp_getaddrs getaddrs;
4810 	struct sctp_transport *from;
4811 	void __user *to;
4812 	union sctp_addr temp;
4813 	struct sctp_sock *sp = sctp_sk(sk);
4814 	int addrlen;
4815 	size_t space_left;
4816 	int bytes_copied;
4817 
4818 	if (len < sizeof(struct sctp_getaddrs))
4819 		return -EINVAL;
4820 
4821 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4822 		return -EFAULT;
4823 
4824 	/* For UDP-style sockets, id specifies the association to query.  */
4825 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4826 	if (!asoc)
4827 		return -EINVAL;
4828 
4829 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4830 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4831 
4832 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4833 				transports) {
4834 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4835 		addrlen = sctp_get_pf_specific(sk->sk_family)
4836 			      ->addr_to_user(sp, &temp);
4837 		if (space_left < addrlen)
4838 			return -ENOMEM;
4839 		if (copy_to_user(to, &temp, addrlen))
4840 			return -EFAULT;
4841 		to += addrlen;
4842 		cnt++;
4843 		space_left -= addrlen;
4844 	}
4845 
4846 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4847 		return -EFAULT;
4848 	bytes_copied = ((char __user *)to) - optval;
4849 	if (put_user(bytes_copied, optlen))
4850 		return -EFAULT;
4851 
4852 	return 0;
4853 }
4854 
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)4855 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4856 			    size_t space_left, int *bytes_copied)
4857 {
4858 	struct sctp_sockaddr_entry *addr;
4859 	union sctp_addr temp;
4860 	int cnt = 0;
4861 	int addrlen;
4862 	struct net *net = sock_net(sk);
4863 
4864 	rcu_read_lock();
4865 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4866 		if (!addr->valid)
4867 			continue;
4868 
4869 		if ((PF_INET == sk->sk_family) &&
4870 		    (AF_INET6 == addr->a.sa.sa_family))
4871 			continue;
4872 		if ((PF_INET6 == sk->sk_family) &&
4873 		    inet_v6_ipv6only(sk) &&
4874 		    (AF_INET == addr->a.sa.sa_family))
4875 			continue;
4876 		memcpy(&temp, &addr->a, sizeof(temp));
4877 		if (!temp.v4.sin_port)
4878 			temp.v4.sin_port = htons(port);
4879 
4880 		addrlen = sctp_get_pf_specific(sk->sk_family)
4881 			      ->addr_to_user(sctp_sk(sk), &temp);
4882 
4883 		if (space_left < addrlen) {
4884 			cnt =  -ENOMEM;
4885 			break;
4886 		}
4887 		memcpy(to, &temp, addrlen);
4888 
4889 		to += addrlen;
4890 		cnt++;
4891 		space_left -= addrlen;
4892 		*bytes_copied += addrlen;
4893 	}
4894 	rcu_read_unlock();
4895 
4896 	return cnt;
4897 }
4898 
4899 
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)4900 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4901 				       char __user *optval, int __user *optlen)
4902 {
4903 	struct sctp_bind_addr *bp;
4904 	struct sctp_association *asoc;
4905 	int cnt = 0;
4906 	struct sctp_getaddrs getaddrs;
4907 	struct sctp_sockaddr_entry *addr;
4908 	void __user *to;
4909 	union sctp_addr temp;
4910 	struct sctp_sock *sp = sctp_sk(sk);
4911 	int addrlen;
4912 	int err = 0;
4913 	size_t space_left;
4914 	int bytes_copied = 0;
4915 	void *addrs;
4916 	void *buf;
4917 
4918 	if (len < sizeof(struct sctp_getaddrs))
4919 		return -EINVAL;
4920 
4921 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4922 		return -EFAULT;
4923 
4924 	/*
4925 	 *  For UDP-style sockets, id specifies the association to query.
4926 	 *  If the id field is set to the value '0' then the locally bound
4927 	 *  addresses are returned without regard to any particular
4928 	 *  association.
4929 	 */
4930 	if (0 == getaddrs.assoc_id) {
4931 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4932 	} else {
4933 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4934 		if (!asoc)
4935 			return -EINVAL;
4936 		bp = &asoc->base.bind_addr;
4937 	}
4938 
4939 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4940 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4941 
4942 	addrs = kmalloc(space_left, GFP_KERNEL);
4943 	if (!addrs)
4944 		return -ENOMEM;
4945 
4946 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4947 	 * addresses from the global local address list.
4948 	 */
4949 	if (sctp_list_single_entry(&bp->address_list)) {
4950 		addr = list_entry(bp->address_list.next,
4951 				  struct sctp_sockaddr_entry, list);
4952 		if (sctp_is_any(sk, &addr->a)) {
4953 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4954 						space_left, &bytes_copied);
4955 			if (cnt < 0) {
4956 				err = cnt;
4957 				goto out;
4958 			}
4959 			goto copy_getaddrs;
4960 		}
4961 	}
4962 
4963 	buf = addrs;
4964 	/* Protection on the bound address list is not needed since
4965 	 * in the socket option context we hold a socket lock and
4966 	 * thus the bound address list can't change.
4967 	 */
4968 	list_for_each_entry(addr, &bp->address_list, list) {
4969 		memcpy(&temp, &addr->a, sizeof(temp));
4970 		addrlen = sctp_get_pf_specific(sk->sk_family)
4971 			      ->addr_to_user(sp, &temp);
4972 		if (space_left < addrlen) {
4973 			err =  -ENOMEM; /*fixme: right error?*/
4974 			goto out;
4975 		}
4976 		memcpy(buf, &temp, addrlen);
4977 		buf += addrlen;
4978 		bytes_copied += addrlen;
4979 		cnt++;
4980 		space_left -= addrlen;
4981 	}
4982 
4983 copy_getaddrs:
4984 	if (copy_to_user(to, addrs, bytes_copied)) {
4985 		err = -EFAULT;
4986 		goto out;
4987 	}
4988 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4989 		err = -EFAULT;
4990 		goto out;
4991 	}
4992 	if (put_user(bytes_copied, optlen))
4993 		err = -EFAULT;
4994 out:
4995 	kfree(addrs);
4996 	return err;
4997 }
4998 
4999 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5000  *
5001  * Requests that the local SCTP stack use the enclosed peer address as
5002  * the association primary.  The enclosed address must be one of the
5003  * association peer's addresses.
5004  */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)5005 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5006 					char __user *optval, int __user *optlen)
5007 {
5008 	struct sctp_prim prim;
5009 	struct sctp_association *asoc;
5010 	struct sctp_sock *sp = sctp_sk(sk);
5011 
5012 	if (len < sizeof(struct sctp_prim))
5013 		return -EINVAL;
5014 
5015 	len = sizeof(struct sctp_prim);
5016 
5017 	if (copy_from_user(&prim, optval, len))
5018 		return -EFAULT;
5019 
5020 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5021 	if (!asoc)
5022 		return -EINVAL;
5023 
5024 	if (!asoc->peer.primary_path)
5025 		return -ENOTCONN;
5026 
5027 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5028 		asoc->peer.primary_path->af_specific->sockaddr_len);
5029 
5030 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5031 			(union sctp_addr *)&prim.ssp_addr);
5032 
5033 	if (put_user(len, optlen))
5034 		return -EFAULT;
5035 	if (copy_to_user(optval, &prim, len))
5036 		return -EFAULT;
5037 
5038 	return 0;
5039 }
5040 
5041 /*
5042  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5043  *
5044  * Requests that the local endpoint set the specified Adaptation Layer
5045  * Indication parameter for all future INIT and INIT-ACK exchanges.
5046  */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)5047 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5048 				  char __user *optval, int __user *optlen)
5049 {
5050 	struct sctp_setadaptation adaptation;
5051 
5052 	if (len < sizeof(struct sctp_setadaptation))
5053 		return -EINVAL;
5054 
5055 	len = sizeof(struct sctp_setadaptation);
5056 
5057 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5058 
5059 	if (put_user(len, optlen))
5060 		return -EFAULT;
5061 	if (copy_to_user(optval, &adaptation, len))
5062 		return -EFAULT;
5063 
5064 	return 0;
5065 }
5066 
5067 /*
5068  *
5069  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5070  *
5071  *   Applications that wish to use the sendto() system call may wish to
5072  *   specify a default set of parameters that would normally be supplied
5073  *   through the inclusion of ancillary data.  This socket option allows
5074  *   such an application to set the default sctp_sndrcvinfo structure.
5075 
5076 
5077  *   The application that wishes to use this socket option simply passes
5078  *   in to this call the sctp_sndrcvinfo structure defined in Section
5079  *   5.2.2) The input parameters accepted by this call include
5080  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5081  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5082  *   to this call if the caller is using the UDP model.
5083  *
5084  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5085  */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)5086 static int sctp_getsockopt_default_send_param(struct sock *sk,
5087 					int len, char __user *optval,
5088 					int __user *optlen)
5089 {
5090 	struct sctp_sock *sp = sctp_sk(sk);
5091 	struct sctp_association *asoc;
5092 	struct sctp_sndrcvinfo info;
5093 
5094 	if (len < sizeof(info))
5095 		return -EINVAL;
5096 
5097 	len = sizeof(info);
5098 
5099 	if (copy_from_user(&info, optval, len))
5100 		return -EFAULT;
5101 
5102 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5103 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5104 		return -EINVAL;
5105 	if (asoc) {
5106 		info.sinfo_stream = asoc->default_stream;
5107 		info.sinfo_flags = asoc->default_flags;
5108 		info.sinfo_ppid = asoc->default_ppid;
5109 		info.sinfo_context = asoc->default_context;
5110 		info.sinfo_timetolive = asoc->default_timetolive;
5111 	} else {
5112 		info.sinfo_stream = sp->default_stream;
5113 		info.sinfo_flags = sp->default_flags;
5114 		info.sinfo_ppid = sp->default_ppid;
5115 		info.sinfo_context = sp->default_context;
5116 		info.sinfo_timetolive = sp->default_timetolive;
5117 	}
5118 
5119 	if (put_user(len, optlen))
5120 		return -EFAULT;
5121 	if (copy_to_user(optval, &info, len))
5122 		return -EFAULT;
5123 
5124 	return 0;
5125 }
5126 
5127 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5128  * (SCTP_DEFAULT_SNDINFO)
5129  */
sctp_getsockopt_default_sndinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5130 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5131 					   char __user *optval,
5132 					   int __user *optlen)
5133 {
5134 	struct sctp_sock *sp = sctp_sk(sk);
5135 	struct sctp_association *asoc;
5136 	struct sctp_sndinfo info;
5137 
5138 	if (len < sizeof(info))
5139 		return -EINVAL;
5140 
5141 	len = sizeof(info);
5142 
5143 	if (copy_from_user(&info, optval, len))
5144 		return -EFAULT;
5145 
5146 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5147 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5148 		return -EINVAL;
5149 	if (asoc) {
5150 		info.snd_sid = asoc->default_stream;
5151 		info.snd_flags = asoc->default_flags;
5152 		info.snd_ppid = asoc->default_ppid;
5153 		info.snd_context = asoc->default_context;
5154 	} else {
5155 		info.snd_sid = sp->default_stream;
5156 		info.snd_flags = sp->default_flags;
5157 		info.snd_ppid = sp->default_ppid;
5158 		info.snd_context = sp->default_context;
5159 	}
5160 
5161 	if (put_user(len, optlen))
5162 		return -EFAULT;
5163 	if (copy_to_user(optval, &info, len))
5164 		return -EFAULT;
5165 
5166 	return 0;
5167 }
5168 
5169 /*
5170  *
5171  * 7.1.5 SCTP_NODELAY
5172  *
5173  * Turn on/off any Nagle-like algorithm.  This means that packets are
5174  * generally sent as soon as possible and no unnecessary delays are
5175  * introduced, at the cost of more packets in the network.  Expects an
5176  * integer boolean flag.
5177  */
5178 
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)5179 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5180 				   char __user *optval, int __user *optlen)
5181 {
5182 	int val;
5183 
5184 	if (len < sizeof(int))
5185 		return -EINVAL;
5186 
5187 	len = sizeof(int);
5188 	val = (sctp_sk(sk)->nodelay == 1);
5189 	if (put_user(len, optlen))
5190 		return -EFAULT;
5191 	if (copy_to_user(optval, &val, len))
5192 		return -EFAULT;
5193 	return 0;
5194 }
5195 
5196 /*
5197  *
5198  * 7.1.1 SCTP_RTOINFO
5199  *
5200  * The protocol parameters used to initialize and bound retransmission
5201  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5202  * and modify these parameters.
5203  * All parameters are time values, in milliseconds.  A value of 0, when
5204  * modifying the parameters, indicates that the current value should not
5205  * be changed.
5206  *
5207  */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5208 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5209 				char __user *optval,
5210 				int __user *optlen) {
5211 	struct sctp_rtoinfo rtoinfo;
5212 	struct sctp_association *asoc;
5213 
5214 	if (len < sizeof (struct sctp_rtoinfo))
5215 		return -EINVAL;
5216 
5217 	len = sizeof(struct sctp_rtoinfo);
5218 
5219 	if (copy_from_user(&rtoinfo, optval, len))
5220 		return -EFAULT;
5221 
5222 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5223 
5224 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5225 		return -EINVAL;
5226 
5227 	/* Values corresponding to the specific association. */
5228 	if (asoc) {
5229 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5230 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5231 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5232 	} else {
5233 		/* Values corresponding to the endpoint. */
5234 		struct sctp_sock *sp = sctp_sk(sk);
5235 
5236 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5237 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5238 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5239 	}
5240 
5241 	if (put_user(len, optlen))
5242 		return -EFAULT;
5243 
5244 	if (copy_to_user(optval, &rtoinfo, len))
5245 		return -EFAULT;
5246 
5247 	return 0;
5248 }
5249 
5250 /*
5251  *
5252  * 7.1.2 SCTP_ASSOCINFO
5253  *
5254  * This option is used to tune the maximum retransmission attempts
5255  * of the association.
5256  * Returns an error if the new association retransmission value is
5257  * greater than the sum of the retransmission value  of the peer.
5258  * See [SCTP] for more information.
5259  *
5260  */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5261 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5262 				     char __user *optval,
5263 				     int __user *optlen)
5264 {
5265 
5266 	struct sctp_assocparams assocparams;
5267 	struct sctp_association *asoc;
5268 	struct list_head *pos;
5269 	int cnt = 0;
5270 
5271 	if (len < sizeof (struct sctp_assocparams))
5272 		return -EINVAL;
5273 
5274 	len = sizeof(struct sctp_assocparams);
5275 
5276 	if (copy_from_user(&assocparams, optval, len))
5277 		return -EFAULT;
5278 
5279 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5280 
5281 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5282 		return -EINVAL;
5283 
5284 	/* Values correspoinding to the specific association */
5285 	if (asoc) {
5286 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5287 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5288 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5289 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5290 
5291 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5292 			cnt++;
5293 		}
5294 
5295 		assocparams.sasoc_number_peer_destinations = cnt;
5296 	} else {
5297 		/* Values corresponding to the endpoint */
5298 		struct sctp_sock *sp = sctp_sk(sk);
5299 
5300 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5301 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5302 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5303 		assocparams.sasoc_cookie_life =
5304 					sp->assocparams.sasoc_cookie_life;
5305 		assocparams.sasoc_number_peer_destinations =
5306 					sp->assocparams.
5307 					sasoc_number_peer_destinations;
5308 	}
5309 
5310 	if (put_user(len, optlen))
5311 		return -EFAULT;
5312 
5313 	if (copy_to_user(optval, &assocparams, len))
5314 		return -EFAULT;
5315 
5316 	return 0;
5317 }
5318 
5319 /*
5320  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5321  *
5322  * This socket option is a boolean flag which turns on or off mapped V4
5323  * addresses.  If this option is turned on and the socket is type
5324  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5325  * If this option is turned off, then no mapping will be done of V4
5326  * addresses and a user will receive both PF_INET6 and PF_INET type
5327  * addresses on the socket.
5328  */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)5329 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5330 				    char __user *optval, int __user *optlen)
5331 {
5332 	int val;
5333 	struct sctp_sock *sp = sctp_sk(sk);
5334 
5335 	if (len < sizeof(int))
5336 		return -EINVAL;
5337 
5338 	len = sizeof(int);
5339 	val = sp->v4mapped;
5340 	if (put_user(len, optlen))
5341 		return -EFAULT;
5342 	if (copy_to_user(optval, &val, len))
5343 		return -EFAULT;
5344 
5345 	return 0;
5346 }
5347 
5348 /*
5349  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5350  * (chapter and verse is quoted at sctp_setsockopt_context())
5351  */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)5352 static int sctp_getsockopt_context(struct sock *sk, int len,
5353 				   char __user *optval, int __user *optlen)
5354 {
5355 	struct sctp_assoc_value params;
5356 	struct sctp_sock *sp;
5357 	struct sctp_association *asoc;
5358 
5359 	if (len < sizeof(struct sctp_assoc_value))
5360 		return -EINVAL;
5361 
5362 	len = sizeof(struct sctp_assoc_value);
5363 
5364 	if (copy_from_user(&params, optval, len))
5365 		return -EFAULT;
5366 
5367 	sp = sctp_sk(sk);
5368 
5369 	if (params.assoc_id != 0) {
5370 		asoc = sctp_id2assoc(sk, params.assoc_id);
5371 		if (!asoc)
5372 			return -EINVAL;
5373 		params.assoc_value = asoc->default_rcv_context;
5374 	} else {
5375 		params.assoc_value = sp->default_rcv_context;
5376 	}
5377 
5378 	if (put_user(len, optlen))
5379 		return -EFAULT;
5380 	if (copy_to_user(optval, &params, len))
5381 		return -EFAULT;
5382 
5383 	return 0;
5384 }
5385 
5386 /*
5387  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5388  * This option will get or set the maximum size to put in any outgoing
5389  * SCTP DATA chunk.  If a message is larger than this size it will be
5390  * fragmented by SCTP into the specified size.  Note that the underlying
5391  * SCTP implementation may fragment into smaller sized chunks when the
5392  * PMTU of the underlying association is smaller than the value set by
5393  * the user.  The default value for this option is '0' which indicates
5394  * the user is NOT limiting fragmentation and only the PMTU will effect
5395  * SCTP's choice of DATA chunk size.  Note also that values set larger
5396  * than the maximum size of an IP datagram will effectively let SCTP
5397  * control fragmentation (i.e. the same as setting this option to 0).
5398  *
5399  * The following structure is used to access and modify this parameter:
5400  *
5401  * struct sctp_assoc_value {
5402  *   sctp_assoc_t assoc_id;
5403  *   uint32_t assoc_value;
5404  * };
5405  *
5406  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5407  *    For one-to-many style sockets this parameter indicates which
5408  *    association the user is performing an action upon.  Note that if
5409  *    this field's value is zero then the endpoints default value is
5410  *    changed (effecting future associations only).
5411  * assoc_value:  This parameter specifies the maximum size in bytes.
5412  */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)5413 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5414 				  char __user *optval, int __user *optlen)
5415 {
5416 	struct sctp_assoc_value params;
5417 	struct sctp_association *asoc;
5418 
5419 	if (len == sizeof(int)) {
5420 		pr_warn_ratelimited(DEPRECATED
5421 				    "%s (pid %d) "
5422 				    "Use of int in maxseg socket option.\n"
5423 				    "Use struct sctp_assoc_value instead\n",
5424 				    current->comm, task_pid_nr(current));
5425 		params.assoc_id = 0;
5426 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5427 		len = sizeof(struct sctp_assoc_value);
5428 		if (copy_from_user(&params, optval, sizeof(params)))
5429 			return -EFAULT;
5430 	} else
5431 		return -EINVAL;
5432 
5433 	asoc = sctp_id2assoc(sk, params.assoc_id);
5434 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5435 		return -EINVAL;
5436 
5437 	if (asoc)
5438 		params.assoc_value = asoc->frag_point;
5439 	else
5440 		params.assoc_value = sctp_sk(sk)->user_frag;
5441 
5442 	if (put_user(len, optlen))
5443 		return -EFAULT;
5444 	if (len == sizeof(int)) {
5445 		if (copy_to_user(optval, &params.assoc_value, len))
5446 			return -EFAULT;
5447 	} else {
5448 		if (copy_to_user(optval, &params, len))
5449 			return -EFAULT;
5450 	}
5451 
5452 	return 0;
5453 }
5454 
5455 /*
5456  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5457  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5458  */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)5459 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5460 					       char __user *optval, int __user *optlen)
5461 {
5462 	int val;
5463 
5464 	if (len < sizeof(int))
5465 		return -EINVAL;
5466 
5467 	len = sizeof(int);
5468 
5469 	val = sctp_sk(sk)->frag_interleave;
5470 	if (put_user(len, optlen))
5471 		return -EFAULT;
5472 	if (copy_to_user(optval, &val, len))
5473 		return -EFAULT;
5474 
5475 	return 0;
5476 }
5477 
5478 /*
5479  * 7.1.25.  Set or Get the sctp partial delivery point
5480  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5481  */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)5482 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5483 						  char __user *optval,
5484 						  int __user *optlen)
5485 {
5486 	u32 val;
5487 
5488 	if (len < sizeof(u32))
5489 		return -EINVAL;
5490 
5491 	len = sizeof(u32);
5492 
5493 	val = sctp_sk(sk)->pd_point;
5494 	if (put_user(len, optlen))
5495 		return -EFAULT;
5496 	if (copy_to_user(optval, &val, len))
5497 		return -EFAULT;
5498 
5499 	return 0;
5500 }
5501 
5502 /*
5503  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5504  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5505  */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)5506 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5507 				    char __user *optval,
5508 				    int __user *optlen)
5509 {
5510 	struct sctp_assoc_value params;
5511 	struct sctp_sock *sp;
5512 	struct sctp_association *asoc;
5513 
5514 	if (len == sizeof(int)) {
5515 		pr_warn_ratelimited(DEPRECATED
5516 				    "%s (pid %d) "
5517 				    "Use of int in max_burst socket option.\n"
5518 				    "Use struct sctp_assoc_value instead\n",
5519 				    current->comm, task_pid_nr(current));
5520 		params.assoc_id = 0;
5521 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5522 		len = sizeof(struct sctp_assoc_value);
5523 		if (copy_from_user(&params, optval, len))
5524 			return -EFAULT;
5525 	} else
5526 		return -EINVAL;
5527 
5528 	sp = sctp_sk(sk);
5529 
5530 	if (params.assoc_id != 0) {
5531 		asoc = sctp_id2assoc(sk, params.assoc_id);
5532 		if (!asoc)
5533 			return -EINVAL;
5534 		params.assoc_value = asoc->max_burst;
5535 	} else
5536 		params.assoc_value = sp->max_burst;
5537 
5538 	if (len == sizeof(int)) {
5539 		if (copy_to_user(optval, &params.assoc_value, len))
5540 			return -EFAULT;
5541 	} else {
5542 		if (copy_to_user(optval, &params, len))
5543 			return -EFAULT;
5544 	}
5545 
5546 	return 0;
5547 
5548 }
5549 
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)5550 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5551 				    char __user *optval, int __user *optlen)
5552 {
5553 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5554 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5555 	struct sctp_hmac_algo_param *hmacs;
5556 	__u16 data_len = 0;
5557 	u32 num_idents;
5558 	int i;
5559 
5560 	if (!ep->auth_enable)
5561 		return -EACCES;
5562 
5563 	hmacs = ep->auth_hmacs_list;
5564 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5565 
5566 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5567 		return -EINVAL;
5568 
5569 	len = sizeof(struct sctp_hmacalgo) + data_len;
5570 	num_idents = data_len / sizeof(u16);
5571 
5572 	if (put_user(len, optlen))
5573 		return -EFAULT;
5574 	if (put_user(num_idents, &p->shmac_num_idents))
5575 		return -EFAULT;
5576 	for (i = 0; i < num_idents; i++) {
5577 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5578 
5579 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5580 			return -EFAULT;
5581 	}
5582 	return 0;
5583 }
5584 
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)5585 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5586 				    char __user *optval, int __user *optlen)
5587 {
5588 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5589 	struct sctp_authkeyid val;
5590 	struct sctp_association *asoc;
5591 
5592 	if (!ep->auth_enable)
5593 		return -EACCES;
5594 
5595 	if (len < sizeof(struct sctp_authkeyid))
5596 		return -EINVAL;
5597 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5598 		return -EFAULT;
5599 
5600 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5601 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5602 		return -EINVAL;
5603 
5604 	if (asoc)
5605 		val.scact_keynumber = asoc->active_key_id;
5606 	else
5607 		val.scact_keynumber = ep->active_key_id;
5608 
5609 	len = sizeof(struct sctp_authkeyid);
5610 	if (put_user(len, optlen))
5611 		return -EFAULT;
5612 	if (copy_to_user(optval, &val, len))
5613 		return -EFAULT;
5614 
5615 	return 0;
5616 }
5617 
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)5618 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5619 				    char __user *optval, int __user *optlen)
5620 {
5621 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5622 	struct sctp_authchunks __user *p = (void __user *)optval;
5623 	struct sctp_authchunks val;
5624 	struct sctp_association *asoc;
5625 	struct sctp_chunks_param *ch;
5626 	u32    num_chunks = 0;
5627 	char __user *to;
5628 
5629 	if (!ep->auth_enable)
5630 		return -EACCES;
5631 
5632 	if (len < sizeof(struct sctp_authchunks))
5633 		return -EINVAL;
5634 
5635 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5636 		return -EFAULT;
5637 
5638 	to = p->gauth_chunks;
5639 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5640 	if (!asoc)
5641 		return -EINVAL;
5642 
5643 	ch = asoc->peer.peer_chunks;
5644 	if (!ch)
5645 		goto num;
5646 
5647 	/* See if the user provided enough room for all the data */
5648 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5649 	if (len < num_chunks)
5650 		return -EINVAL;
5651 
5652 	if (copy_to_user(to, ch->chunks, num_chunks))
5653 		return -EFAULT;
5654 num:
5655 	len = sizeof(struct sctp_authchunks) + num_chunks;
5656 	if (put_user(len, optlen))
5657 		return -EFAULT;
5658 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5659 		return -EFAULT;
5660 	return 0;
5661 }
5662 
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)5663 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5664 				    char __user *optval, int __user *optlen)
5665 {
5666 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5667 	struct sctp_authchunks __user *p = (void __user *)optval;
5668 	struct sctp_authchunks val;
5669 	struct sctp_association *asoc;
5670 	struct sctp_chunks_param *ch;
5671 	u32    num_chunks = 0;
5672 	char __user *to;
5673 
5674 	if (!ep->auth_enable)
5675 		return -EACCES;
5676 
5677 	if (len < sizeof(struct sctp_authchunks))
5678 		return -EINVAL;
5679 
5680 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5681 		return -EFAULT;
5682 
5683 	to = p->gauth_chunks;
5684 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5685 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5686 		return -EINVAL;
5687 
5688 	if (asoc)
5689 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5690 	else
5691 		ch = ep->auth_chunk_list;
5692 
5693 	if (!ch)
5694 		goto num;
5695 
5696 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5697 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5698 		return -EINVAL;
5699 
5700 	if (copy_to_user(to, ch->chunks, num_chunks))
5701 		return -EFAULT;
5702 num:
5703 	len = sizeof(struct sctp_authchunks) + num_chunks;
5704 	if (put_user(len, optlen))
5705 		return -EFAULT;
5706 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5707 		return -EFAULT;
5708 
5709 	return 0;
5710 }
5711 
5712 /*
5713  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5714  * This option gets the current number of associations that are attached
5715  * to a one-to-many style socket.  The option value is an uint32_t.
5716  */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)5717 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5718 				    char __user *optval, int __user *optlen)
5719 {
5720 	struct sctp_sock *sp = sctp_sk(sk);
5721 	struct sctp_association *asoc;
5722 	u32 val = 0;
5723 
5724 	if (sctp_style(sk, TCP))
5725 		return -EOPNOTSUPP;
5726 
5727 	if (len < sizeof(u32))
5728 		return -EINVAL;
5729 
5730 	len = sizeof(u32);
5731 
5732 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5733 		val++;
5734 	}
5735 
5736 	if (put_user(len, optlen))
5737 		return -EFAULT;
5738 	if (copy_to_user(optval, &val, len))
5739 		return -EFAULT;
5740 
5741 	return 0;
5742 }
5743 
5744 /*
5745  * 8.1.23 SCTP_AUTO_ASCONF
5746  * See the corresponding setsockopt entry as description
5747  */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)5748 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5749 				   char __user *optval, int __user *optlen)
5750 {
5751 	int val = 0;
5752 
5753 	if (len < sizeof(int))
5754 		return -EINVAL;
5755 
5756 	len = sizeof(int);
5757 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5758 		val = 1;
5759 	if (put_user(len, optlen))
5760 		return -EFAULT;
5761 	if (copy_to_user(optval, &val, len))
5762 		return -EFAULT;
5763 	return 0;
5764 }
5765 
5766 /*
5767  * 8.2.6. Get the Current Identifiers of Associations
5768  *        (SCTP_GET_ASSOC_ID_LIST)
5769  *
5770  * This option gets the current list of SCTP association identifiers of
5771  * the SCTP associations handled by a one-to-many style socket.
5772  */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)5773 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5774 				    char __user *optval, int __user *optlen)
5775 {
5776 	struct sctp_sock *sp = sctp_sk(sk);
5777 	struct sctp_association *asoc;
5778 	struct sctp_assoc_ids *ids;
5779 	u32 num = 0;
5780 
5781 	if (sctp_style(sk, TCP))
5782 		return -EOPNOTSUPP;
5783 
5784 	if (len < sizeof(struct sctp_assoc_ids))
5785 		return -EINVAL;
5786 
5787 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5788 		num++;
5789 	}
5790 
5791 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5792 		return -EINVAL;
5793 
5794 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5795 
5796 	ids = kmalloc(len, GFP_KERNEL);
5797 	if (unlikely(!ids))
5798 		return -ENOMEM;
5799 
5800 	ids->gaids_number_of_ids = num;
5801 	num = 0;
5802 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5803 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5804 	}
5805 
5806 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5807 		kfree(ids);
5808 		return -EFAULT;
5809 	}
5810 
5811 	kfree(ids);
5812 	return 0;
5813 }
5814 
5815 /*
5816  * SCTP_PEER_ADDR_THLDS
5817  *
5818  * This option allows us to fetch the partially failed threshold for one or all
5819  * transports in an association.  See Section 6.1 of:
5820  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5821  */
sctp_getsockopt_paddr_thresholds(struct sock * sk,char __user * optval,int len,int __user * optlen)5822 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5823 					    char __user *optval,
5824 					    int len,
5825 					    int __user *optlen)
5826 {
5827 	struct sctp_paddrthlds val;
5828 	struct sctp_transport *trans;
5829 	struct sctp_association *asoc;
5830 
5831 	if (len < sizeof(struct sctp_paddrthlds))
5832 		return -EINVAL;
5833 	len = sizeof(struct sctp_paddrthlds);
5834 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5835 		return -EFAULT;
5836 
5837 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5838 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5839 		if (!asoc)
5840 			return -ENOENT;
5841 
5842 		val.spt_pathpfthld = asoc->pf_retrans;
5843 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5844 	} else {
5845 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5846 					       val.spt_assoc_id);
5847 		if (!trans)
5848 			return -ENOENT;
5849 
5850 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5851 		val.spt_pathpfthld = trans->pf_retrans;
5852 	}
5853 
5854 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5855 		return -EFAULT;
5856 
5857 	return 0;
5858 }
5859 
5860 /*
5861  * SCTP_GET_ASSOC_STATS
5862  *
5863  * This option retrieves local per endpoint statistics. It is modeled
5864  * after OpenSolaris' implementation
5865  */
sctp_getsockopt_assoc_stats(struct sock * sk,int len,char __user * optval,int __user * optlen)5866 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5867 				       char __user *optval,
5868 				       int __user *optlen)
5869 {
5870 	struct sctp_assoc_stats sas;
5871 	struct sctp_association *asoc = NULL;
5872 
5873 	/* User must provide at least the assoc id */
5874 	if (len < sizeof(sctp_assoc_t))
5875 		return -EINVAL;
5876 
5877 	/* Allow the struct to grow and fill in as much as possible */
5878 	len = min_t(size_t, len, sizeof(sas));
5879 
5880 	if (copy_from_user(&sas, optval, len))
5881 		return -EFAULT;
5882 
5883 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5884 	if (!asoc)
5885 		return -EINVAL;
5886 
5887 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5888 	sas.sas_gapcnt = asoc->stats.gapcnt;
5889 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5890 	sas.sas_osacks = asoc->stats.osacks;
5891 	sas.sas_isacks = asoc->stats.isacks;
5892 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5893 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5894 	sas.sas_oodchunks = asoc->stats.oodchunks;
5895 	sas.sas_iodchunks = asoc->stats.iodchunks;
5896 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5897 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5898 	sas.sas_idupchunks = asoc->stats.idupchunks;
5899 	sas.sas_opackets = asoc->stats.opackets;
5900 	sas.sas_ipackets = asoc->stats.ipackets;
5901 
5902 	/* New high max rto observed, will return 0 if not a single
5903 	 * RTO update took place. obs_rto_ipaddr will be bogus
5904 	 * in such a case
5905 	 */
5906 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5907 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5908 		sizeof(struct sockaddr_storage));
5909 
5910 	/* Mark beginning of a new observation period */
5911 	asoc->stats.max_obs_rto = asoc->rto_min;
5912 
5913 	if (put_user(len, optlen))
5914 		return -EFAULT;
5915 
5916 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5917 
5918 	if (copy_to_user(optval, &sas, len))
5919 		return -EFAULT;
5920 
5921 	return 0;
5922 }
5923 
sctp_getsockopt_recvrcvinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5924 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
5925 				       char __user *optval,
5926 				       int __user *optlen)
5927 {
5928 	int val = 0;
5929 
5930 	if (len < sizeof(int))
5931 		return -EINVAL;
5932 
5933 	len = sizeof(int);
5934 	if (sctp_sk(sk)->recvrcvinfo)
5935 		val = 1;
5936 	if (put_user(len, optlen))
5937 		return -EFAULT;
5938 	if (copy_to_user(optval, &val, len))
5939 		return -EFAULT;
5940 
5941 	return 0;
5942 }
5943 
sctp_getsockopt_recvnxtinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5944 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
5945 				       char __user *optval,
5946 				       int __user *optlen)
5947 {
5948 	int val = 0;
5949 
5950 	if (len < sizeof(int))
5951 		return -EINVAL;
5952 
5953 	len = sizeof(int);
5954 	if (sctp_sk(sk)->recvnxtinfo)
5955 		val = 1;
5956 	if (put_user(len, optlen))
5957 		return -EFAULT;
5958 	if (copy_to_user(optval, &val, len))
5959 		return -EFAULT;
5960 
5961 	return 0;
5962 }
5963 
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)5964 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5965 			   char __user *optval, int __user *optlen)
5966 {
5967 	int retval = 0;
5968 	int len;
5969 
5970 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5971 
5972 	/* I can hardly begin to describe how wrong this is.  This is
5973 	 * so broken as to be worse than useless.  The API draft
5974 	 * REALLY is NOT helpful here...  I am not convinced that the
5975 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5976 	 * are at all well-founded.
5977 	 */
5978 	if (level != SOL_SCTP) {
5979 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5980 
5981 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5982 		return retval;
5983 	}
5984 
5985 	if (get_user(len, optlen))
5986 		return -EFAULT;
5987 
5988 	lock_sock(sk);
5989 
5990 	switch (optname) {
5991 	case SCTP_STATUS:
5992 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5993 		break;
5994 	case SCTP_DISABLE_FRAGMENTS:
5995 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5996 							   optlen);
5997 		break;
5998 	case SCTP_EVENTS:
5999 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
6000 		break;
6001 	case SCTP_AUTOCLOSE:
6002 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6003 		break;
6004 	case SCTP_SOCKOPT_PEELOFF:
6005 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6006 		break;
6007 	case SCTP_PEER_ADDR_PARAMS:
6008 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6009 							  optlen);
6010 		break;
6011 	case SCTP_DELAYED_SACK:
6012 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6013 							  optlen);
6014 		break;
6015 	case SCTP_INITMSG:
6016 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6017 		break;
6018 	case SCTP_GET_PEER_ADDRS:
6019 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6020 						    optlen);
6021 		break;
6022 	case SCTP_GET_LOCAL_ADDRS:
6023 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6024 						     optlen);
6025 		break;
6026 	case SCTP_SOCKOPT_CONNECTX3:
6027 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6028 		break;
6029 	case SCTP_DEFAULT_SEND_PARAM:
6030 		retval = sctp_getsockopt_default_send_param(sk, len,
6031 							    optval, optlen);
6032 		break;
6033 	case SCTP_DEFAULT_SNDINFO:
6034 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6035 							 optval, optlen);
6036 		break;
6037 	case SCTP_PRIMARY_ADDR:
6038 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6039 		break;
6040 	case SCTP_NODELAY:
6041 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6042 		break;
6043 	case SCTP_RTOINFO:
6044 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6045 		break;
6046 	case SCTP_ASSOCINFO:
6047 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6048 		break;
6049 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6050 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6051 		break;
6052 	case SCTP_MAXSEG:
6053 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6054 		break;
6055 	case SCTP_GET_PEER_ADDR_INFO:
6056 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6057 							optlen);
6058 		break;
6059 	case SCTP_ADAPTATION_LAYER:
6060 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6061 							optlen);
6062 		break;
6063 	case SCTP_CONTEXT:
6064 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6065 		break;
6066 	case SCTP_FRAGMENT_INTERLEAVE:
6067 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6068 							     optlen);
6069 		break;
6070 	case SCTP_PARTIAL_DELIVERY_POINT:
6071 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6072 								optlen);
6073 		break;
6074 	case SCTP_MAX_BURST:
6075 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6076 		break;
6077 	case SCTP_AUTH_KEY:
6078 	case SCTP_AUTH_CHUNK:
6079 	case SCTP_AUTH_DELETE_KEY:
6080 		retval = -EOPNOTSUPP;
6081 		break;
6082 	case SCTP_HMAC_IDENT:
6083 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6084 		break;
6085 	case SCTP_AUTH_ACTIVE_KEY:
6086 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6087 		break;
6088 	case SCTP_PEER_AUTH_CHUNKS:
6089 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6090 							optlen);
6091 		break;
6092 	case SCTP_LOCAL_AUTH_CHUNKS:
6093 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6094 							optlen);
6095 		break;
6096 	case SCTP_GET_ASSOC_NUMBER:
6097 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6098 		break;
6099 	case SCTP_GET_ASSOC_ID_LIST:
6100 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6101 		break;
6102 	case SCTP_AUTO_ASCONF:
6103 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6104 		break;
6105 	case SCTP_PEER_ADDR_THLDS:
6106 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6107 		break;
6108 	case SCTP_GET_ASSOC_STATS:
6109 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6110 		break;
6111 	case SCTP_RECVRCVINFO:
6112 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6113 		break;
6114 	case SCTP_RECVNXTINFO:
6115 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6116 		break;
6117 	default:
6118 		retval = -ENOPROTOOPT;
6119 		break;
6120 	}
6121 
6122 	release_sock(sk);
6123 	return retval;
6124 }
6125 
sctp_hash(struct sock * sk)6126 static void sctp_hash(struct sock *sk)
6127 {
6128 	/* STUB */
6129 }
6130 
sctp_unhash(struct sock * sk)6131 static void sctp_unhash(struct sock *sk)
6132 {
6133 	/* STUB */
6134 }
6135 
6136 /* Check if port is acceptable.  Possibly find first available port.
6137  *
6138  * The port hash table (contained in the 'global' SCTP protocol storage
6139  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6140  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6141  * list (the list number is the port number hashed out, so as you
6142  * would expect from a hash function, all the ports in a given list have
6143  * such a number that hashes out to the same list number; you were
6144  * expecting that, right?); so each list has a set of ports, with a
6145  * link to the socket (struct sock) that uses it, the port number and
6146  * a fastreuse flag (FIXME: NPI ipg).
6147  */
6148 static struct sctp_bind_bucket *sctp_bucket_create(
6149 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6150 
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)6151 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6152 {
6153 	struct sctp_bind_hashbucket *head; /* hash list */
6154 	struct sctp_bind_bucket *pp;
6155 	unsigned short snum;
6156 	int ret;
6157 
6158 	snum = ntohs(addr->v4.sin_port);
6159 
6160 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6161 
6162 	local_bh_disable();
6163 
6164 	if (snum == 0) {
6165 		/* Search for an available port. */
6166 		int low, high, remaining, index;
6167 		unsigned int rover;
6168 		struct net *net = sock_net(sk);
6169 
6170 		inet_get_local_port_range(net, &low, &high);
6171 		remaining = (high - low) + 1;
6172 		rover = prandom_u32() % remaining + low;
6173 
6174 		do {
6175 			rover++;
6176 			if ((rover < low) || (rover > high))
6177 				rover = low;
6178 			if (inet_is_local_reserved_port(net, rover))
6179 				continue;
6180 			index = sctp_phashfn(sock_net(sk), rover);
6181 			head = &sctp_port_hashtable[index];
6182 			spin_lock(&head->lock);
6183 			sctp_for_each_hentry(pp, &head->chain)
6184 				if ((pp->port == rover) &&
6185 				    net_eq(sock_net(sk), pp->net))
6186 					goto next;
6187 			break;
6188 		next:
6189 			spin_unlock(&head->lock);
6190 		} while (--remaining > 0);
6191 
6192 		/* Exhausted local port range during search? */
6193 		ret = 1;
6194 		if (remaining <= 0)
6195 			goto fail;
6196 
6197 		/* OK, here is the one we will use.  HEAD (the port
6198 		 * hash table list entry) is non-NULL and we hold it's
6199 		 * mutex.
6200 		 */
6201 		snum = rover;
6202 	} else {
6203 		/* We are given an specific port number; we verify
6204 		 * that it is not being used. If it is used, we will
6205 		 * exahust the search in the hash list corresponding
6206 		 * to the port number (snum) - we detect that with the
6207 		 * port iterator, pp being NULL.
6208 		 */
6209 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6210 		spin_lock(&head->lock);
6211 		sctp_for_each_hentry(pp, &head->chain) {
6212 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6213 				goto pp_found;
6214 		}
6215 	}
6216 	pp = NULL;
6217 	goto pp_not_found;
6218 pp_found:
6219 	if (!hlist_empty(&pp->owner)) {
6220 		/* We had a port hash table hit - there is an
6221 		 * available port (pp != NULL) and it is being
6222 		 * used by other socket (pp->owner not empty); that other
6223 		 * socket is going to be sk2.
6224 		 */
6225 		int reuse = sk->sk_reuse;
6226 		struct sock *sk2;
6227 
6228 		pr_debug("%s: found a possible match\n", __func__);
6229 
6230 		if (pp->fastreuse && sk->sk_reuse &&
6231 			sk->sk_state != SCTP_SS_LISTENING)
6232 			goto success;
6233 
6234 		/* Run through the list of sockets bound to the port
6235 		 * (pp->port) [via the pointers bind_next and
6236 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6237 		 * we get the endpoint they describe and run through
6238 		 * the endpoint's list of IP (v4 or v6) addresses,
6239 		 * comparing each of the addresses with the address of
6240 		 * the socket sk. If we find a match, then that means
6241 		 * that this port/socket (sk) combination are already
6242 		 * in an endpoint.
6243 		 */
6244 		sk_for_each_bound(sk2, &pp->owner) {
6245 			struct sctp_endpoint *ep2;
6246 			ep2 = sctp_sk(sk2)->ep;
6247 
6248 			if (sk == sk2 ||
6249 			    (reuse && sk2->sk_reuse &&
6250 			     sk2->sk_state != SCTP_SS_LISTENING))
6251 				continue;
6252 
6253 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6254 						 sctp_sk(sk2), sctp_sk(sk))) {
6255 				ret = (long)sk2;
6256 				goto fail_unlock;
6257 			}
6258 		}
6259 
6260 		pr_debug("%s: found a match\n", __func__);
6261 	}
6262 pp_not_found:
6263 	/* If there was a hash table miss, create a new port.  */
6264 	ret = 1;
6265 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6266 		goto fail_unlock;
6267 
6268 	/* In either case (hit or miss), make sure fastreuse is 1 only
6269 	 * if sk->sk_reuse is too (that is, if the caller requested
6270 	 * SO_REUSEADDR on this socket -sk-).
6271 	 */
6272 	if (hlist_empty(&pp->owner)) {
6273 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6274 			pp->fastreuse = 1;
6275 		else
6276 			pp->fastreuse = 0;
6277 	} else if (pp->fastreuse &&
6278 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6279 		pp->fastreuse = 0;
6280 
6281 	/* We are set, so fill up all the data in the hash table
6282 	 * entry, tie the socket list information with the rest of the
6283 	 * sockets FIXME: Blurry, NPI (ipg).
6284 	 */
6285 success:
6286 	if (!sctp_sk(sk)->bind_hash) {
6287 		inet_sk(sk)->inet_num = snum;
6288 		sk_add_bind_node(sk, &pp->owner);
6289 		sctp_sk(sk)->bind_hash = pp;
6290 	}
6291 	ret = 0;
6292 
6293 fail_unlock:
6294 	spin_unlock(&head->lock);
6295 
6296 fail:
6297 	local_bh_enable();
6298 	return ret;
6299 }
6300 
6301 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6302  * port is requested.
6303  */
sctp_get_port(struct sock * sk,unsigned short snum)6304 static int sctp_get_port(struct sock *sk, unsigned short snum)
6305 {
6306 	union sctp_addr addr;
6307 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6308 
6309 	/* Set up a dummy address struct from the sk. */
6310 	af->from_sk(&addr, sk);
6311 	addr.v4.sin_port = htons(snum);
6312 
6313 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6314 	return !!sctp_get_port_local(sk, &addr);
6315 }
6316 
6317 /*
6318  *  Move a socket to LISTENING state.
6319  */
sctp_listen_start(struct sock * sk,int backlog)6320 static int sctp_listen_start(struct sock *sk, int backlog)
6321 {
6322 	struct sctp_sock *sp = sctp_sk(sk);
6323 	struct sctp_endpoint *ep = sp->ep;
6324 	struct crypto_hash *tfm = NULL;
6325 	char alg[32];
6326 
6327 	/* Allocate HMAC for generating cookie. */
6328 	if (!sp->hmac && sp->sctp_hmac_alg) {
6329 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6330 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6331 		if (IS_ERR(tfm)) {
6332 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6333 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6334 			return -ENOSYS;
6335 		}
6336 		sctp_sk(sk)->hmac = tfm;
6337 	}
6338 
6339 	/*
6340 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6341 	 * call that allows new associations to be accepted, the system
6342 	 * picks an ephemeral port and will choose an address set equivalent
6343 	 * to binding with a wildcard address.
6344 	 *
6345 	 * This is not currently spelled out in the SCTP sockets
6346 	 * extensions draft, but follows the practice as seen in TCP
6347 	 * sockets.
6348 	 *
6349 	 */
6350 	sk->sk_state = SCTP_SS_LISTENING;
6351 	if (!ep->base.bind_addr.port) {
6352 		if (sctp_autobind(sk))
6353 			return -EAGAIN;
6354 	} else {
6355 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6356 			sk->sk_state = SCTP_SS_CLOSED;
6357 			return -EADDRINUSE;
6358 		}
6359 	}
6360 
6361 	sk->sk_max_ack_backlog = backlog;
6362 	sctp_hash_endpoint(ep);
6363 	return 0;
6364 }
6365 
6366 /*
6367  * 4.1.3 / 5.1.3 listen()
6368  *
6369  *   By default, new associations are not accepted for UDP style sockets.
6370  *   An application uses listen() to mark a socket as being able to
6371  *   accept new associations.
6372  *
6373  *   On TCP style sockets, applications use listen() to ready the SCTP
6374  *   endpoint for accepting inbound associations.
6375  *
6376  *   On both types of endpoints a backlog of '0' disables listening.
6377  *
6378  *  Move a socket to LISTENING state.
6379  */
sctp_inet_listen(struct socket * sock,int backlog)6380 int sctp_inet_listen(struct socket *sock, int backlog)
6381 {
6382 	struct sock *sk = sock->sk;
6383 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6384 	int err = -EINVAL;
6385 
6386 	if (unlikely(backlog < 0))
6387 		return err;
6388 
6389 	lock_sock(sk);
6390 
6391 	/* Peeled-off sockets are not allowed to listen().  */
6392 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6393 		goto out;
6394 
6395 	if (sock->state != SS_UNCONNECTED)
6396 		goto out;
6397 
6398 	/* If backlog is zero, disable listening. */
6399 	if (!backlog) {
6400 		if (sctp_sstate(sk, CLOSED))
6401 			goto out;
6402 
6403 		err = 0;
6404 		sctp_unhash_endpoint(ep);
6405 		sk->sk_state = SCTP_SS_CLOSED;
6406 		if (sk->sk_reuse)
6407 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6408 		goto out;
6409 	}
6410 
6411 	/* If we are already listening, just update the backlog */
6412 	if (sctp_sstate(sk, LISTENING))
6413 		sk->sk_max_ack_backlog = backlog;
6414 	else {
6415 		err = sctp_listen_start(sk, backlog);
6416 		if (err)
6417 			goto out;
6418 	}
6419 
6420 	err = 0;
6421 out:
6422 	release_sock(sk);
6423 	return err;
6424 }
6425 
6426 /*
6427  * This function is done by modeling the current datagram_poll() and the
6428  * tcp_poll().  Note that, based on these implementations, we don't
6429  * lock the socket in this function, even though it seems that,
6430  * ideally, locking or some other mechanisms can be used to ensure
6431  * the integrity of the counters (sndbuf and wmem_alloc) used
6432  * in this place.  We assume that we don't need locks either until proven
6433  * otherwise.
6434  *
6435  * Another thing to note is that we include the Async I/O support
6436  * here, again, by modeling the current TCP/UDP code.  We don't have
6437  * a good way to test with it yet.
6438  */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)6439 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6440 {
6441 	struct sock *sk = sock->sk;
6442 	struct sctp_sock *sp = sctp_sk(sk);
6443 	unsigned int mask;
6444 
6445 	poll_wait(file, sk_sleep(sk), wait);
6446 
6447 	/* A TCP-style listening socket becomes readable when the accept queue
6448 	 * is not empty.
6449 	 */
6450 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6451 		return (!list_empty(&sp->ep->asocs)) ?
6452 			(POLLIN | POLLRDNORM) : 0;
6453 
6454 	mask = 0;
6455 
6456 	/* Is there any exceptional events?  */
6457 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6458 		mask |= POLLERR |
6459 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6460 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6461 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6462 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6463 		mask |= POLLHUP;
6464 
6465 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6466 	if (!skb_queue_empty(&sk->sk_receive_queue))
6467 		mask |= POLLIN | POLLRDNORM;
6468 
6469 	/* The association is either gone or not ready.  */
6470 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6471 		return mask;
6472 
6473 	/* Is it writable?  */
6474 	if (sctp_writeable(sk)) {
6475 		mask |= POLLOUT | POLLWRNORM;
6476 	} else {
6477 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6478 		/*
6479 		 * Since the socket is not locked, the buffer
6480 		 * might be made available after the writeable check and
6481 		 * before the bit is set.  This could cause a lost I/O
6482 		 * signal.  tcp_poll() has a race breaker for this race
6483 		 * condition.  Based on their implementation, we put
6484 		 * in the following code to cover it as well.
6485 		 */
6486 		if (sctp_writeable(sk))
6487 			mask |= POLLOUT | POLLWRNORM;
6488 	}
6489 	return mask;
6490 }
6491 
6492 /********************************************************************
6493  * 2nd Level Abstractions
6494  ********************************************************************/
6495 
sctp_bucket_create(struct sctp_bind_hashbucket * head,struct net * net,unsigned short snum)6496 static struct sctp_bind_bucket *sctp_bucket_create(
6497 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6498 {
6499 	struct sctp_bind_bucket *pp;
6500 
6501 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6502 	if (pp) {
6503 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6504 		pp->port = snum;
6505 		pp->fastreuse = 0;
6506 		INIT_HLIST_HEAD(&pp->owner);
6507 		pp->net = net;
6508 		hlist_add_head(&pp->node, &head->chain);
6509 	}
6510 	return pp;
6511 }
6512 
6513 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)6514 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6515 {
6516 	if (pp && hlist_empty(&pp->owner)) {
6517 		__hlist_del(&pp->node);
6518 		kmem_cache_free(sctp_bucket_cachep, pp);
6519 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6520 	}
6521 }
6522 
6523 /* Release this socket's reference to a local port.  */
__sctp_put_port(struct sock * sk)6524 static inline void __sctp_put_port(struct sock *sk)
6525 {
6526 	struct sctp_bind_hashbucket *head =
6527 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6528 						  inet_sk(sk)->inet_num)];
6529 	struct sctp_bind_bucket *pp;
6530 
6531 	spin_lock(&head->lock);
6532 	pp = sctp_sk(sk)->bind_hash;
6533 	__sk_del_bind_node(sk);
6534 	sctp_sk(sk)->bind_hash = NULL;
6535 	inet_sk(sk)->inet_num = 0;
6536 	sctp_bucket_destroy(pp);
6537 	spin_unlock(&head->lock);
6538 }
6539 
sctp_put_port(struct sock * sk)6540 void sctp_put_port(struct sock *sk)
6541 {
6542 	local_bh_disable();
6543 	__sctp_put_port(sk);
6544 	local_bh_enable();
6545 }
6546 
6547 /*
6548  * The system picks an ephemeral port and choose an address set equivalent
6549  * to binding with a wildcard address.
6550  * One of those addresses will be the primary address for the association.
6551  * This automatically enables the multihoming capability of SCTP.
6552  */
sctp_autobind(struct sock * sk)6553 static int sctp_autobind(struct sock *sk)
6554 {
6555 	union sctp_addr autoaddr;
6556 	struct sctp_af *af;
6557 	__be16 port;
6558 
6559 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6560 	af = sctp_sk(sk)->pf->af;
6561 
6562 	port = htons(inet_sk(sk)->inet_num);
6563 	af->inaddr_any(&autoaddr, port);
6564 
6565 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6566 }
6567 
6568 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6569  *
6570  * From RFC 2292
6571  * 4.2 The cmsghdr Structure *
6572  *
6573  * When ancillary data is sent or received, any number of ancillary data
6574  * objects can be specified by the msg_control and msg_controllen members of
6575  * the msghdr structure, because each object is preceded by
6576  * a cmsghdr structure defining the object's length (the cmsg_len member).
6577  * Historically Berkeley-derived implementations have passed only one object
6578  * at a time, but this API allows multiple objects to be
6579  * passed in a single call to sendmsg() or recvmsg(). The following example
6580  * shows two ancillary data objects in a control buffer.
6581  *
6582  *   |<--------------------------- msg_controllen -------------------------->|
6583  *   |                                                                       |
6584  *
6585  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6586  *
6587  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6588  *   |                                   |                                   |
6589  *
6590  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6591  *
6592  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6593  *   |                                |  |                                |  |
6594  *
6595  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6596  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6597  *
6598  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6599  *
6600  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6601  *    ^
6602  *    |
6603  *
6604  * msg_control
6605  * points here
6606  */
sctp_msghdr_parse(const struct msghdr * msg,sctp_cmsgs_t * cmsgs)6607 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6608 {
6609 	struct cmsghdr *cmsg;
6610 	struct msghdr *my_msg = (struct msghdr *)msg;
6611 
6612 	for_each_cmsghdr(cmsg, my_msg) {
6613 		if (!CMSG_OK(my_msg, cmsg))
6614 			return -EINVAL;
6615 
6616 		/* Should we parse this header or ignore?  */
6617 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6618 			continue;
6619 
6620 		/* Strictly check lengths following example in SCM code.  */
6621 		switch (cmsg->cmsg_type) {
6622 		case SCTP_INIT:
6623 			/* SCTP Socket API Extension
6624 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6625 			 *
6626 			 * This cmsghdr structure provides information for
6627 			 * initializing new SCTP associations with sendmsg().
6628 			 * The SCTP_INITMSG socket option uses this same data
6629 			 * structure.  This structure is not used for
6630 			 * recvmsg().
6631 			 *
6632 			 * cmsg_level    cmsg_type      cmsg_data[]
6633 			 * ------------  ------------   ----------------------
6634 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6635 			 */
6636 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6637 				return -EINVAL;
6638 
6639 			cmsgs->init = CMSG_DATA(cmsg);
6640 			break;
6641 
6642 		case SCTP_SNDRCV:
6643 			/* SCTP Socket API Extension
6644 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6645 			 *
6646 			 * This cmsghdr structure specifies SCTP options for
6647 			 * sendmsg() and describes SCTP header information
6648 			 * about a received message through recvmsg().
6649 			 *
6650 			 * cmsg_level    cmsg_type      cmsg_data[]
6651 			 * ------------  ------------   ----------------------
6652 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6653 			 */
6654 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6655 				return -EINVAL;
6656 
6657 			cmsgs->srinfo = CMSG_DATA(cmsg);
6658 
6659 			if (cmsgs->srinfo->sinfo_flags &
6660 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6661 			      SCTP_SACK_IMMEDIATELY |
6662 			      SCTP_ABORT | SCTP_EOF))
6663 				return -EINVAL;
6664 			break;
6665 
6666 		case SCTP_SNDINFO:
6667 			/* SCTP Socket API Extension
6668 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6669 			 *
6670 			 * This cmsghdr structure specifies SCTP options for
6671 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
6672 			 * SCTP_SNDRCV which has been deprecated.
6673 			 *
6674 			 * cmsg_level    cmsg_type      cmsg_data[]
6675 			 * ------------  ------------   ---------------------
6676 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
6677 			 */
6678 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6679 				return -EINVAL;
6680 
6681 			cmsgs->sinfo = CMSG_DATA(cmsg);
6682 
6683 			if (cmsgs->sinfo->snd_flags &
6684 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6685 			      SCTP_SACK_IMMEDIATELY |
6686 			      SCTP_ABORT | SCTP_EOF))
6687 				return -EINVAL;
6688 			break;
6689 		default:
6690 			return -EINVAL;
6691 		}
6692 	}
6693 
6694 	return 0;
6695 }
6696 
6697 /*
6698  * Wait for a packet..
6699  * Note: This function is the same function as in core/datagram.c
6700  * with a few modifications to make lksctp work.
6701  */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)6702 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6703 {
6704 	int error;
6705 	DEFINE_WAIT(wait);
6706 
6707 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6708 
6709 	/* Socket errors? */
6710 	error = sock_error(sk);
6711 	if (error)
6712 		goto out;
6713 
6714 	if (!skb_queue_empty(&sk->sk_receive_queue))
6715 		goto ready;
6716 
6717 	/* Socket shut down?  */
6718 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6719 		goto out;
6720 
6721 	/* Sequenced packets can come disconnected.  If so we report the
6722 	 * problem.
6723 	 */
6724 	error = -ENOTCONN;
6725 
6726 	/* Is there a good reason to think that we may receive some data?  */
6727 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6728 		goto out;
6729 
6730 	/* Handle signals.  */
6731 	if (signal_pending(current))
6732 		goto interrupted;
6733 
6734 	/* Let another process have a go.  Since we are going to sleep
6735 	 * anyway.  Note: This may cause odd behaviors if the message
6736 	 * does not fit in the user's buffer, but this seems to be the
6737 	 * only way to honor MSG_DONTWAIT realistically.
6738 	 */
6739 	release_sock(sk);
6740 	*timeo_p = schedule_timeout(*timeo_p);
6741 	lock_sock(sk);
6742 
6743 ready:
6744 	finish_wait(sk_sleep(sk), &wait);
6745 	return 0;
6746 
6747 interrupted:
6748 	error = sock_intr_errno(*timeo_p);
6749 
6750 out:
6751 	finish_wait(sk_sleep(sk), &wait);
6752 	*err = error;
6753 	return error;
6754 }
6755 
6756 /* Receive a datagram.
6757  * Note: This is pretty much the same routine as in core/datagram.c
6758  * with a few changes to make lksctp work.
6759  */
sctp_skb_recv_datagram(struct sock * sk,int flags,int noblock,int * err)6760 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6761 				       int noblock, int *err)
6762 {
6763 	int error;
6764 	struct sk_buff *skb;
6765 	long timeo;
6766 
6767 	timeo = sock_rcvtimeo(sk, noblock);
6768 
6769 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6770 		 MAX_SCHEDULE_TIMEOUT);
6771 
6772 	do {
6773 		/* Again only user level code calls this function,
6774 		 * so nothing interrupt level
6775 		 * will suddenly eat the receive_queue.
6776 		 *
6777 		 *  Look at current nfs client by the way...
6778 		 *  However, this function was correct in any case. 8)
6779 		 */
6780 		if (flags & MSG_PEEK) {
6781 			spin_lock_bh(&sk->sk_receive_queue.lock);
6782 			skb = skb_peek(&sk->sk_receive_queue);
6783 			if (skb)
6784 				atomic_inc(&skb->users);
6785 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6786 		} else {
6787 			skb = skb_dequeue(&sk->sk_receive_queue);
6788 		}
6789 
6790 		if (skb)
6791 			return skb;
6792 
6793 		/* Caller is allowed not to check sk->sk_err before calling. */
6794 		error = sock_error(sk);
6795 		if (error)
6796 			goto no_packet;
6797 
6798 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6799 			break;
6800 
6801 		if (sk_can_busy_loop(sk) &&
6802 		    sk_busy_loop(sk, noblock))
6803 			continue;
6804 
6805 		/* User doesn't want to wait.  */
6806 		error = -EAGAIN;
6807 		if (!timeo)
6808 			goto no_packet;
6809 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6810 
6811 	return NULL;
6812 
6813 no_packet:
6814 	*err = error;
6815 	return NULL;
6816 }
6817 
6818 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
__sctp_write_space(struct sctp_association * asoc)6819 static void __sctp_write_space(struct sctp_association *asoc)
6820 {
6821 	struct sock *sk = asoc->base.sk;
6822 	struct socket *sock = sk->sk_socket;
6823 
6824 	if ((sctp_wspace(asoc) > 0) && sock) {
6825 		if (waitqueue_active(&asoc->wait))
6826 			wake_up_interruptible(&asoc->wait);
6827 
6828 		if (sctp_writeable(sk)) {
6829 			wait_queue_head_t *wq = sk_sleep(sk);
6830 
6831 			if (wq && waitqueue_active(wq))
6832 				wake_up_interruptible(wq);
6833 
6834 			/* Note that we try to include the Async I/O support
6835 			 * here by modeling from the current TCP/UDP code.
6836 			 * We have not tested with it yet.
6837 			 */
6838 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6839 				sock_wake_async(sock,
6840 						SOCK_WAKE_SPACE, POLL_OUT);
6841 		}
6842 	}
6843 }
6844 
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)6845 static void sctp_wake_up_waiters(struct sock *sk,
6846 				 struct sctp_association *asoc)
6847 {
6848 	struct sctp_association *tmp = asoc;
6849 
6850 	/* We do accounting for the sndbuf space per association,
6851 	 * so we only need to wake our own association.
6852 	 */
6853 	if (asoc->ep->sndbuf_policy)
6854 		return __sctp_write_space(asoc);
6855 
6856 	/* If association goes down and is just flushing its
6857 	 * outq, then just normally notify others.
6858 	 */
6859 	if (asoc->base.dead)
6860 		return sctp_write_space(sk);
6861 
6862 	/* Accounting for the sndbuf space is per socket, so we
6863 	 * need to wake up others, try to be fair and in case of
6864 	 * other associations, let them have a go first instead
6865 	 * of just doing a sctp_write_space() call.
6866 	 *
6867 	 * Note that we reach sctp_wake_up_waiters() only when
6868 	 * associations free up queued chunks, thus we are under
6869 	 * lock and the list of associations on a socket is
6870 	 * guaranteed not to change.
6871 	 */
6872 	for (tmp = list_next_entry(tmp, asocs); 1;
6873 	     tmp = list_next_entry(tmp, asocs)) {
6874 		/* Manually skip the head element. */
6875 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6876 			continue;
6877 		/* Wake up association. */
6878 		__sctp_write_space(tmp);
6879 		/* We've reached the end. */
6880 		if (tmp == asoc)
6881 			break;
6882 	}
6883 }
6884 
6885 /* Do accounting for the sndbuf space.
6886  * Decrement the used sndbuf space of the corresponding association by the
6887  * data size which was just transmitted(freed).
6888  */
sctp_wfree(struct sk_buff * skb)6889 static void sctp_wfree(struct sk_buff *skb)
6890 {
6891 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6892 	struct sctp_association *asoc = chunk->asoc;
6893 	struct sock *sk = asoc->base.sk;
6894 
6895 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6896 				sizeof(struct sk_buff) +
6897 				sizeof(struct sctp_chunk);
6898 
6899 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6900 
6901 	/*
6902 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6903 	 */
6904 	sk->sk_wmem_queued   -= skb->truesize;
6905 	sk_mem_uncharge(sk, skb->truesize);
6906 
6907 	sock_wfree(skb);
6908 	sctp_wake_up_waiters(sk, asoc);
6909 
6910 	sctp_association_put(asoc);
6911 }
6912 
6913 /* Do accounting for the receive space on the socket.
6914  * Accounting for the association is done in ulpevent.c
6915  * We set this as a destructor for the cloned data skbs so that
6916  * accounting is done at the correct time.
6917  */
sctp_sock_rfree(struct sk_buff * skb)6918 void sctp_sock_rfree(struct sk_buff *skb)
6919 {
6920 	struct sock *sk = skb->sk;
6921 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6922 
6923 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6924 
6925 	/*
6926 	 * Mimic the behavior of sock_rfree
6927 	 */
6928 	sk_mem_uncharge(sk, event->rmem_len);
6929 }
6930 
6931 
6932 /* Helper function to wait for space in the sndbuf.  */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)6933 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6934 				size_t msg_len)
6935 {
6936 	struct sock *sk = asoc->base.sk;
6937 	int err = 0;
6938 	long current_timeo = *timeo_p;
6939 	DEFINE_WAIT(wait);
6940 
6941 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6942 		 *timeo_p, msg_len);
6943 
6944 	/* Increment the association's refcnt.  */
6945 	sctp_association_hold(asoc);
6946 
6947 	/* Wait on the association specific sndbuf space. */
6948 	for (;;) {
6949 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6950 					  TASK_INTERRUPTIBLE);
6951 		if (!*timeo_p)
6952 			goto do_nonblock;
6953 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6954 		    asoc->base.dead)
6955 			goto do_error;
6956 		if (signal_pending(current))
6957 			goto do_interrupted;
6958 		if (msg_len <= sctp_wspace(asoc))
6959 			break;
6960 
6961 		/* Let another process have a go.  Since we are going
6962 		 * to sleep anyway.
6963 		 */
6964 		release_sock(sk);
6965 		current_timeo = schedule_timeout(current_timeo);
6966 		BUG_ON(sk != asoc->base.sk);
6967 		lock_sock(sk);
6968 
6969 		*timeo_p = current_timeo;
6970 	}
6971 
6972 out:
6973 	finish_wait(&asoc->wait, &wait);
6974 
6975 	/* Release the association's refcnt.  */
6976 	sctp_association_put(asoc);
6977 
6978 	return err;
6979 
6980 do_error:
6981 	err = -EPIPE;
6982 	goto out;
6983 
6984 do_interrupted:
6985 	err = sock_intr_errno(*timeo_p);
6986 	goto out;
6987 
6988 do_nonblock:
6989 	err = -EAGAIN;
6990 	goto out;
6991 }
6992 
sctp_data_ready(struct sock * sk)6993 void sctp_data_ready(struct sock *sk)
6994 {
6995 	struct socket_wq *wq;
6996 
6997 	rcu_read_lock();
6998 	wq = rcu_dereference(sk->sk_wq);
6999 	if (wq_has_sleeper(wq))
7000 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7001 						POLLRDNORM | POLLRDBAND);
7002 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7003 	rcu_read_unlock();
7004 }
7005 
7006 /* If socket sndbuf has changed, wake up all per association waiters.  */
sctp_write_space(struct sock * sk)7007 void sctp_write_space(struct sock *sk)
7008 {
7009 	struct sctp_association *asoc;
7010 
7011 	/* Wake up the tasks in each wait queue.  */
7012 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7013 		__sctp_write_space(asoc);
7014 	}
7015 }
7016 
7017 /* Is there any sndbuf space available on the socket?
7018  *
7019  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7020  * associations on the same socket.  For a UDP-style socket with
7021  * multiple associations, it is possible for it to be "unwriteable"
7022  * prematurely.  I assume that this is acceptable because
7023  * a premature "unwriteable" is better than an accidental "writeable" which
7024  * would cause an unwanted block under certain circumstances.  For the 1-1
7025  * UDP-style sockets or TCP-style sockets, this code should work.
7026  *  - Daisy
7027  */
sctp_writeable(struct sock * sk)7028 static int sctp_writeable(struct sock *sk)
7029 {
7030 	int amt = 0;
7031 
7032 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7033 	if (amt < 0)
7034 		amt = 0;
7035 	return amt;
7036 }
7037 
7038 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7039  * returns immediately with EINPROGRESS.
7040  */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)7041 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7042 {
7043 	struct sock *sk = asoc->base.sk;
7044 	int err = 0;
7045 	long current_timeo = *timeo_p;
7046 	DEFINE_WAIT(wait);
7047 
7048 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7049 
7050 	/* Increment the association's refcnt.  */
7051 	sctp_association_hold(asoc);
7052 
7053 	for (;;) {
7054 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7055 					  TASK_INTERRUPTIBLE);
7056 		if (!*timeo_p)
7057 			goto do_nonblock;
7058 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7059 			break;
7060 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7061 		    asoc->base.dead)
7062 			goto do_error;
7063 		if (signal_pending(current))
7064 			goto do_interrupted;
7065 
7066 		if (sctp_state(asoc, ESTABLISHED))
7067 			break;
7068 
7069 		/* Let another process have a go.  Since we are going
7070 		 * to sleep anyway.
7071 		 */
7072 		release_sock(sk);
7073 		current_timeo = schedule_timeout(current_timeo);
7074 		lock_sock(sk);
7075 
7076 		*timeo_p = current_timeo;
7077 	}
7078 
7079 out:
7080 	finish_wait(&asoc->wait, &wait);
7081 
7082 	/* Release the association's refcnt.  */
7083 	sctp_association_put(asoc);
7084 
7085 	return err;
7086 
7087 do_error:
7088 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7089 		err = -ETIMEDOUT;
7090 	else
7091 		err = -ECONNREFUSED;
7092 	goto out;
7093 
7094 do_interrupted:
7095 	err = sock_intr_errno(*timeo_p);
7096 	goto out;
7097 
7098 do_nonblock:
7099 	err = -EINPROGRESS;
7100 	goto out;
7101 }
7102 
sctp_wait_for_accept(struct sock * sk,long timeo)7103 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7104 {
7105 	struct sctp_endpoint *ep;
7106 	int err = 0;
7107 	DEFINE_WAIT(wait);
7108 
7109 	ep = sctp_sk(sk)->ep;
7110 
7111 
7112 	for (;;) {
7113 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7114 					  TASK_INTERRUPTIBLE);
7115 
7116 		if (list_empty(&ep->asocs)) {
7117 			release_sock(sk);
7118 			timeo = schedule_timeout(timeo);
7119 			lock_sock(sk);
7120 		}
7121 
7122 		err = -EINVAL;
7123 		if (!sctp_sstate(sk, LISTENING))
7124 			break;
7125 
7126 		err = 0;
7127 		if (!list_empty(&ep->asocs))
7128 			break;
7129 
7130 		err = sock_intr_errno(timeo);
7131 		if (signal_pending(current))
7132 			break;
7133 
7134 		err = -EAGAIN;
7135 		if (!timeo)
7136 			break;
7137 	}
7138 
7139 	finish_wait(sk_sleep(sk), &wait);
7140 
7141 	return err;
7142 }
7143 
sctp_wait_for_close(struct sock * sk,long timeout)7144 static void sctp_wait_for_close(struct sock *sk, long timeout)
7145 {
7146 	DEFINE_WAIT(wait);
7147 
7148 	do {
7149 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7150 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7151 			break;
7152 		release_sock(sk);
7153 		timeout = schedule_timeout(timeout);
7154 		lock_sock(sk);
7155 	} while (!signal_pending(current) && timeout);
7156 
7157 	finish_wait(sk_sleep(sk), &wait);
7158 }
7159 
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)7160 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7161 {
7162 	struct sk_buff *frag;
7163 
7164 	if (!skb->data_len)
7165 		goto done;
7166 
7167 	/* Don't forget the fragments. */
7168 	skb_walk_frags(skb, frag)
7169 		sctp_skb_set_owner_r_frag(frag, sk);
7170 
7171 done:
7172 	sctp_skb_set_owner_r(skb, sk);
7173 }
7174 
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)7175 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7176 		    struct sctp_association *asoc)
7177 {
7178 	struct inet_sock *inet = inet_sk(sk);
7179 	struct inet_sock *newinet;
7180 
7181 	newsk->sk_type = sk->sk_type;
7182 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7183 	newsk->sk_flags = sk->sk_flags;
7184 	newsk->sk_tsflags = sk->sk_tsflags;
7185 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7186 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7187 	newsk->sk_reuse = sk->sk_reuse;
7188 
7189 	newsk->sk_shutdown = sk->sk_shutdown;
7190 	newsk->sk_destruct = sctp_destruct_sock;
7191 	newsk->sk_family = sk->sk_family;
7192 	newsk->sk_protocol = IPPROTO_SCTP;
7193 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7194 	newsk->sk_sndbuf = sk->sk_sndbuf;
7195 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7196 	newsk->sk_lingertime = sk->sk_lingertime;
7197 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7198 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7199 
7200 	newinet = inet_sk(newsk);
7201 
7202 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7203 	 * getsockname() and getpeername()
7204 	 */
7205 	newinet->inet_sport = inet->inet_sport;
7206 	newinet->inet_saddr = inet->inet_saddr;
7207 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7208 	newinet->inet_dport = htons(asoc->peer.port);
7209 	newinet->pmtudisc = inet->pmtudisc;
7210 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7211 
7212 	newinet->uc_ttl = inet->uc_ttl;
7213 	newinet->mc_loop = 1;
7214 	newinet->mc_ttl = 1;
7215 	newinet->mc_index = 0;
7216 	newinet->mc_list = NULL;
7217 
7218 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7219 		net_enable_timestamp();
7220 }
7221 
sctp_copy_descendant(struct sock * sk_to,const struct sock * sk_from)7222 static inline void sctp_copy_descendant(struct sock *sk_to,
7223 					const struct sock *sk_from)
7224 {
7225 	int ancestor_size = sizeof(struct inet_sock) +
7226 			    sizeof(struct sctp_sock) -
7227 			    offsetof(struct sctp_sock, auto_asconf_list);
7228 
7229 	if (sk_from->sk_family == PF_INET6)
7230 		ancestor_size += sizeof(struct ipv6_pinfo);
7231 
7232 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7233 }
7234 
7235 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7236  * and its messages to the newsk.
7237  */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,sctp_socket_type_t type)7238 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7239 			      struct sctp_association *assoc,
7240 			      sctp_socket_type_t type)
7241 {
7242 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7243 	struct sctp_sock *newsp = sctp_sk(newsk);
7244 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7245 	struct sctp_endpoint *newep = newsp->ep;
7246 	struct sk_buff *skb, *tmp;
7247 	struct sctp_ulpevent *event;
7248 	struct sctp_bind_hashbucket *head;
7249 
7250 	/* Migrate socket buffer sizes and all the socket level options to the
7251 	 * new socket.
7252 	 */
7253 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7254 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7255 	/* Brute force copy old sctp opt. */
7256 	sctp_copy_descendant(newsk, oldsk);
7257 
7258 	/* Restore the ep value that was overwritten with the above structure
7259 	 * copy.
7260 	 */
7261 	newsp->ep = newep;
7262 	newsp->hmac = NULL;
7263 
7264 	/* Hook this new socket in to the bind_hash list. */
7265 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7266 						 inet_sk(oldsk)->inet_num)];
7267 	local_bh_disable();
7268 	spin_lock(&head->lock);
7269 	pp = sctp_sk(oldsk)->bind_hash;
7270 	sk_add_bind_node(newsk, &pp->owner);
7271 	sctp_sk(newsk)->bind_hash = pp;
7272 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7273 	spin_unlock(&head->lock);
7274 	local_bh_enable();
7275 
7276 	/* Copy the bind_addr list from the original endpoint to the new
7277 	 * endpoint so that we can handle restarts properly
7278 	 */
7279 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7280 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7281 
7282 	/* Move any messages in the old socket's receive queue that are for the
7283 	 * peeled off association to the new socket's receive queue.
7284 	 */
7285 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7286 		event = sctp_skb2event(skb);
7287 		if (event->asoc == assoc) {
7288 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7289 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7290 			sctp_skb_set_owner_r_frag(skb, newsk);
7291 		}
7292 	}
7293 
7294 	/* Clean up any messages pending delivery due to partial
7295 	 * delivery.   Three cases:
7296 	 * 1) No partial deliver;  no work.
7297 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7298 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7299 	 */
7300 	skb_queue_head_init(&newsp->pd_lobby);
7301 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7302 
7303 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7304 		struct sk_buff_head *queue;
7305 
7306 		/* Decide which queue to move pd_lobby skbs to. */
7307 		if (assoc->ulpq.pd_mode) {
7308 			queue = &newsp->pd_lobby;
7309 		} else
7310 			queue = &newsk->sk_receive_queue;
7311 
7312 		/* Walk through the pd_lobby, looking for skbs that
7313 		 * need moved to the new socket.
7314 		 */
7315 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7316 			event = sctp_skb2event(skb);
7317 			if (event->asoc == assoc) {
7318 				__skb_unlink(skb, &oldsp->pd_lobby);
7319 				__skb_queue_tail(queue, skb);
7320 				sctp_skb_set_owner_r_frag(skb, newsk);
7321 			}
7322 		}
7323 
7324 		/* Clear up any skbs waiting for the partial
7325 		 * delivery to finish.
7326 		 */
7327 		if (assoc->ulpq.pd_mode)
7328 			sctp_clear_pd(oldsk, NULL);
7329 
7330 	}
7331 
7332 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7333 		sctp_skb_set_owner_r_frag(skb, newsk);
7334 
7335 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7336 		sctp_skb_set_owner_r_frag(skb, newsk);
7337 
7338 	/* Set the type of socket to indicate that it is peeled off from the
7339 	 * original UDP-style socket or created with the accept() call on a
7340 	 * TCP-style socket..
7341 	 */
7342 	newsp->type = type;
7343 
7344 	/* Mark the new socket "in-use" by the user so that any packets
7345 	 * that may arrive on the association after we've moved it are
7346 	 * queued to the backlog.  This prevents a potential race between
7347 	 * backlog processing on the old socket and new-packet processing
7348 	 * on the new socket.
7349 	 *
7350 	 * The caller has just allocated newsk so we can guarantee that other
7351 	 * paths won't try to lock it and then oldsk.
7352 	 */
7353 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7354 	sctp_assoc_migrate(assoc, newsk);
7355 
7356 	/* If the association on the newsk is already closed before accept()
7357 	 * is called, set RCV_SHUTDOWN flag.
7358 	 */
7359 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7360 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7361 
7362 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7363 	release_sock(newsk);
7364 }
7365 
7366 
7367 /* This proto struct describes the ULP interface for SCTP.  */
7368 struct proto sctp_prot = {
7369 	.name        =	"SCTP",
7370 	.owner       =	THIS_MODULE,
7371 	.close       =	sctp_close,
7372 	.connect     =	sctp_connect,
7373 	.disconnect  =	sctp_disconnect,
7374 	.accept      =	sctp_accept,
7375 	.ioctl       =	sctp_ioctl,
7376 	.init        =	sctp_init_sock,
7377 	.destroy     =	sctp_destroy_sock,
7378 	.shutdown    =	sctp_shutdown,
7379 	.setsockopt  =	sctp_setsockopt,
7380 	.getsockopt  =	sctp_getsockopt,
7381 	.sendmsg     =	sctp_sendmsg,
7382 	.recvmsg     =	sctp_recvmsg,
7383 	.bind        =	sctp_bind,
7384 	.backlog_rcv =	sctp_backlog_rcv,
7385 	.hash        =	sctp_hash,
7386 	.unhash      =	sctp_unhash,
7387 	.get_port    =	sctp_get_port,
7388 	.obj_size    =  sizeof(struct sctp_sock),
7389 	.sysctl_mem  =  sysctl_sctp_mem,
7390 	.sysctl_rmem =  sysctl_sctp_rmem,
7391 	.sysctl_wmem =  sysctl_sctp_wmem,
7392 	.memory_pressure = &sctp_memory_pressure,
7393 	.enter_memory_pressure = sctp_enter_memory_pressure,
7394 	.memory_allocated = &sctp_memory_allocated,
7395 	.sockets_allocated = &sctp_sockets_allocated,
7396 };
7397 
7398 #if IS_ENABLED(CONFIG_IPV6)
7399 
7400 #include <net/transp_v6.h>
sctp_v6_destroy_sock(struct sock * sk)7401 static void sctp_v6_destroy_sock(struct sock *sk)
7402 {
7403 	sctp_destroy_sock(sk);
7404 	inet6_destroy_sock(sk);
7405 }
7406 
7407 struct proto sctpv6_prot = {
7408 	.name		= "SCTPv6",
7409 	.owner		= THIS_MODULE,
7410 	.close		= sctp_close,
7411 	.connect	= sctp_connect,
7412 	.disconnect	= sctp_disconnect,
7413 	.accept		= sctp_accept,
7414 	.ioctl		= sctp_ioctl,
7415 	.init		= sctp_init_sock,
7416 	.destroy	= sctp_v6_destroy_sock,
7417 	.shutdown	= sctp_shutdown,
7418 	.setsockopt	= sctp_setsockopt,
7419 	.getsockopt	= sctp_getsockopt,
7420 	.sendmsg	= sctp_sendmsg,
7421 	.recvmsg	= sctp_recvmsg,
7422 	.bind		= sctp_bind,
7423 	.backlog_rcv	= sctp_backlog_rcv,
7424 	.hash		= sctp_hash,
7425 	.unhash		= sctp_unhash,
7426 	.get_port	= sctp_get_port,
7427 	.obj_size	= sizeof(struct sctp6_sock),
7428 	.sysctl_mem	= sysctl_sctp_mem,
7429 	.sysctl_rmem	= sysctl_sctp_rmem,
7430 	.sysctl_wmem	= sysctl_sctp_wmem,
7431 	.memory_pressure = &sctp_memory_pressure,
7432 	.enter_memory_pressure = sctp_enter_memory_pressure,
7433 	.memory_allocated = &sctp_memory_allocated,
7434 	.sockets_allocated = &sctp_sockets_allocated,
7435 };
7436 #endif /* IS_ENABLED(CONFIG_IPV6) */
7437