1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>	/* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
ring_buffer_print_entry_header(struct trace_seq * s)33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135 
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146 
147 enum {
148 	RB_BUFFERS_ON_BIT	= 0,
149 	RB_BUFFERS_DISABLED_BIT	= 1,
150 };
151 
152 enum {
153 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
154 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156 
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158 
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF		(1 << 20)
161 
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163 
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
tracing_off_permanent(void)170 void tracing_off_permanent(void)
171 {
172 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174 
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT		4U
177 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
179 
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT	0
182 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT	1
185 # define RB_ARCH_ALIGNMENT		8U
186 #endif
187 
188 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
189 
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192 
193 enum {
194 	RB_LEN_TIME_EXTEND = 8,
195 	RB_LEN_TIME_STAMP = 16,
196 };
197 
198 #define skip_time_extend(event) \
199 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200 
rb_null_event(struct ring_buffer_event * event)201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205 
rb_event_set_padding(struct ring_buffer_event * event)206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208 	/* padding has a NULL time_delta */
209 	event->type_len = RINGBUF_TYPE_PADDING;
210 	event->time_delta = 0;
211 }
212 
213 static unsigned
rb_event_data_length(struct ring_buffer_event * event)214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216 	unsigned length;
217 
218 	if (event->type_len)
219 		length = event->type_len * RB_ALIGNMENT;
220 	else
221 		length = event->array[0];
222 	return length + RB_EVNT_HDR_SIZE;
223 }
224 
225 /*
226  * Return the length of the given event. Will return
227  * the length of the time extend if the event is a
228  * time extend.
229  */
230 static inline unsigned
rb_event_length(struct ring_buffer_event * event)231 rb_event_length(struct ring_buffer_event *event)
232 {
233 	switch (event->type_len) {
234 	case RINGBUF_TYPE_PADDING:
235 		if (rb_null_event(event))
236 			/* undefined */
237 			return -1;
238 		return  event->array[0] + RB_EVNT_HDR_SIZE;
239 
240 	case RINGBUF_TYPE_TIME_EXTEND:
241 		return RB_LEN_TIME_EXTEND;
242 
243 	case RINGBUF_TYPE_TIME_STAMP:
244 		return RB_LEN_TIME_STAMP;
245 
246 	case RINGBUF_TYPE_DATA:
247 		return rb_event_data_length(event);
248 	default:
249 		BUG();
250 	}
251 	/* not hit */
252 	return 0;
253 }
254 
255 /*
256  * Return total length of time extend and data,
257  *   or just the event length for all other events.
258  */
259 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262 	unsigned len = 0;
263 
264 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 		/* time extends include the data event after it */
266 		len = RB_LEN_TIME_EXTEND;
267 		event = skip_time_extend(event);
268 	}
269 	return len + rb_event_length(event);
270 }
271 
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  *
276  * Returns the size of the data load of a data event.
277  * If the event is something other than a data event, it
278  * returns the size of the event itself. With the exception
279  * of a TIME EXTEND, where it still returns the size of the
280  * data load of the data event after it.
281  */
ring_buffer_event_length(struct ring_buffer_event * event)282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284 	unsigned length;
285 
286 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 		event = skip_time_extend(event);
288 
289 	length = rb_event_length(event);
290 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291 		return length;
292 	length -= RB_EVNT_HDR_SIZE;
293 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294                 length -= sizeof(event->array[0]);
295 	return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298 
299 /* inline for ring buffer fast paths */
300 static void *
rb_event_data(struct ring_buffer_event * event)301 rb_event_data(struct ring_buffer_event *event)
302 {
303 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 		event = skip_time_extend(event);
305 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306 	/* If length is in len field, then array[0] has the data */
307 	if (event->type_len)
308 		return (void *)&event->array[0];
309 	/* Otherwise length is in array[0] and array[1] has the data */
310 	return (void *)&event->array[1];
311 }
312 
313 /**
314  * ring_buffer_event_data - return the data of the event
315  * @event: the event to get the data from
316  */
ring_buffer_event_data(struct ring_buffer_event * event)317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319 	return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322 
323 #define for_each_buffer_cpu(buffer, cpu)		\
324 	for_each_cpu(cpu, buffer->cpumask)
325 
326 #define TS_SHIFT	27
327 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST	(~TS_MASK)
329 
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS	(1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED	(1 << 30)
334 
335 struct buffer_data_page {
336 	u64		 time_stamp;	/* page time stamp */
337 	local_t		 commit;	/* write committed index */
338 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
339 };
340 
341 /*
342  * Note, the buffer_page list must be first. The buffer pages
343  * are allocated in cache lines, which means that each buffer
344  * page will be at the beginning of a cache line, and thus
345  * the least significant bits will be zero. We use this to
346  * add flags in the list struct pointers, to make the ring buffer
347  * lockless.
348  */
349 struct buffer_page {
350 	struct list_head list;		/* list of buffer pages */
351 	local_t		 write;		/* index for next write */
352 	unsigned	 read;		/* index for next read */
353 	local_t		 entries;	/* entries on this page */
354 	unsigned long	 real_end;	/* real end of data */
355 	struct buffer_data_page *page;	/* Actual data page */
356 };
357 
358 /*
359  * The buffer page counters, write and entries, must be reset
360  * atomically when crossing page boundaries. To synchronize this
361  * update, two counters are inserted into the number. One is
362  * the actual counter for the write position or count on the page.
363  *
364  * The other is a counter of updaters. Before an update happens
365  * the update partition of the counter is incremented. This will
366  * allow the updater to update the counter atomically.
367  *
368  * The counter is 20 bits, and the state data is 12.
369  */
370 #define RB_WRITE_MASK		0xfffff
371 #define RB_WRITE_INTCNT		(1 << 20)
372 
rb_init_page(struct buffer_data_page * bpage)373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375 	local_set(&bpage->commit, 0);
376 }
377 
378 /**
379  * ring_buffer_page_len - the size of data on the page.
380  * @page: The page to read
381  *
382  * Returns the amount of data on the page, including buffer page header.
383  */
ring_buffer_page_len(void * page)384 size_t ring_buffer_page_len(void *page)
385 {
386 	return local_read(&((struct buffer_data_page *)page)->commit)
387 		+ BUF_PAGE_HDR_SIZE;
388 }
389 
390 /*
391  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392  * this issue out.
393  */
free_buffer_page(struct buffer_page * bpage)394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396 	free_page((unsigned long)bpage->page);
397 	kfree(bpage);
398 }
399 
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
test_time_stamp(u64 delta)403 static inline int test_time_stamp(u64 delta)
404 {
405 	if (delta & TS_DELTA_TEST)
406 		return 1;
407 	return 0;
408 }
409 
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411 
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414 
ring_buffer_print_page_header(struct trace_seq * s)415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417 	struct buffer_data_page field;
418 
419 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
421 			 (unsigned int)sizeof(field.time_stamp),
422 			 (unsigned int)is_signed_type(u64));
423 
424 	trace_seq_printf(s, "\tfield: local_t commit;\t"
425 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
426 			 (unsigned int)offsetof(typeof(field), commit),
427 			 (unsigned int)sizeof(field.commit),
428 			 (unsigned int)is_signed_type(long));
429 
430 	trace_seq_printf(s, "\tfield: int overwrite;\t"
431 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
432 			 (unsigned int)offsetof(typeof(field), commit),
433 			 1,
434 			 (unsigned int)is_signed_type(long));
435 
436 	trace_seq_printf(s, "\tfield: char data;\t"
437 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
438 			 (unsigned int)offsetof(typeof(field), data),
439 			 (unsigned int)BUF_PAGE_SIZE,
440 			 (unsigned int)is_signed_type(char));
441 
442 	return !trace_seq_has_overflowed(s);
443 }
444 
445 struct rb_irq_work {
446 	struct irq_work			work;
447 	wait_queue_head_t		waiters;
448 	wait_queue_head_t		full_waiters;
449 	bool				waiters_pending;
450 	bool				full_waiters_pending;
451 	bool				wakeup_full;
452 };
453 
454 /*
455  * head_page == tail_page && head == tail then buffer is empty.
456  */
457 struct ring_buffer_per_cpu {
458 	int				cpu;
459 	atomic_t			record_disabled;
460 	struct ring_buffer		*buffer;
461 	raw_spinlock_t			reader_lock;	/* serialize readers */
462 	arch_spinlock_t			lock;
463 	struct lock_class_key		lock_key;
464 	unsigned long			nr_pages;
465 	unsigned int			current_context;
466 	struct list_head		*pages;
467 	struct buffer_page		*head_page;	/* read from head */
468 	struct buffer_page		*tail_page;	/* write to tail */
469 	struct buffer_page		*commit_page;	/* committed pages */
470 	struct buffer_page		*reader_page;
471 	unsigned long			lost_events;
472 	unsigned long			last_overrun;
473 	local_t				entries_bytes;
474 	local_t				entries;
475 	local_t				overrun;
476 	local_t				commit_overrun;
477 	local_t				dropped_events;
478 	local_t				committing;
479 	local_t				commits;
480 	unsigned long			read;
481 	unsigned long			read_bytes;
482 	u64				write_stamp;
483 	u64				read_stamp;
484 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
485 	long				nr_pages_to_update;
486 	struct list_head		new_pages; /* new pages to add */
487 	struct work_struct		update_pages_work;
488 	struct completion		update_done;
489 
490 	struct rb_irq_work		irq_work;
491 };
492 
493 struct ring_buffer {
494 	unsigned			flags;
495 	int				cpus;
496 	atomic_t			record_disabled;
497 	atomic_t			resize_disabled;
498 	cpumask_var_t			cpumask;
499 
500 	struct lock_class_key		*reader_lock_key;
501 
502 	struct mutex			mutex;
503 
504 	struct ring_buffer_per_cpu	**buffers;
505 
506 #ifdef CONFIG_HOTPLUG_CPU
507 	struct notifier_block		cpu_notify;
508 #endif
509 	u64				(*clock)(void);
510 
511 	struct rb_irq_work		irq_work;
512 };
513 
514 struct ring_buffer_iter {
515 	struct ring_buffer_per_cpu	*cpu_buffer;
516 	unsigned long			head;
517 	struct buffer_page		*head_page;
518 	struct buffer_page		*cache_reader_page;
519 	unsigned long			cache_read;
520 	u64				read_stamp;
521 };
522 
523 /*
524  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
525  *
526  * Schedules a delayed work to wake up any task that is blocked on the
527  * ring buffer waiters queue.
528  */
rb_wake_up_waiters(struct irq_work * work)529 static void rb_wake_up_waiters(struct irq_work *work)
530 {
531 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
532 
533 	wake_up_all(&rbwork->waiters);
534 	if (rbwork->wakeup_full) {
535 		rbwork->wakeup_full = false;
536 		wake_up_all(&rbwork->full_waiters);
537 	}
538 }
539 
540 /**
541  * ring_buffer_wait - wait for input to the ring buffer
542  * @buffer: buffer to wait on
543  * @cpu: the cpu buffer to wait on
544  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
545  *
546  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
547  * as data is added to any of the @buffer's cpu buffers. Otherwise
548  * it will wait for data to be added to a specific cpu buffer.
549  */
ring_buffer_wait(struct ring_buffer * buffer,int cpu,bool full)550 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
551 {
552 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
553 	DEFINE_WAIT(wait);
554 	struct rb_irq_work *work;
555 	int ret = 0;
556 
557 	/*
558 	 * Depending on what the caller is waiting for, either any
559 	 * data in any cpu buffer, or a specific buffer, put the
560 	 * caller on the appropriate wait queue.
561 	 */
562 	if (cpu == RING_BUFFER_ALL_CPUS) {
563 		work = &buffer->irq_work;
564 		/* Full only makes sense on per cpu reads */
565 		full = false;
566 	} else {
567 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
568 			return -ENODEV;
569 		cpu_buffer = buffer->buffers[cpu];
570 		work = &cpu_buffer->irq_work;
571 	}
572 
573 
574 	while (true) {
575 		if (full)
576 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
577 		else
578 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
579 
580 		/*
581 		 * The events can happen in critical sections where
582 		 * checking a work queue can cause deadlocks.
583 		 * After adding a task to the queue, this flag is set
584 		 * only to notify events to try to wake up the queue
585 		 * using irq_work.
586 		 *
587 		 * We don't clear it even if the buffer is no longer
588 		 * empty. The flag only causes the next event to run
589 		 * irq_work to do the work queue wake up. The worse
590 		 * that can happen if we race with !trace_empty() is that
591 		 * an event will cause an irq_work to try to wake up
592 		 * an empty queue.
593 		 *
594 		 * There's no reason to protect this flag either, as
595 		 * the work queue and irq_work logic will do the necessary
596 		 * synchronization for the wake ups. The only thing
597 		 * that is necessary is that the wake up happens after
598 		 * a task has been queued. It's OK for spurious wake ups.
599 		 */
600 		if (full)
601 			work->full_waiters_pending = true;
602 		else
603 			work->waiters_pending = true;
604 
605 		if (signal_pending(current)) {
606 			ret = -EINTR;
607 			break;
608 		}
609 
610 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
611 			break;
612 
613 		if (cpu != RING_BUFFER_ALL_CPUS &&
614 		    !ring_buffer_empty_cpu(buffer, cpu)) {
615 			unsigned long flags;
616 			bool pagebusy;
617 
618 			if (!full)
619 				break;
620 
621 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
622 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
623 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
624 
625 			if (!pagebusy)
626 				break;
627 		}
628 
629 		schedule();
630 	}
631 
632 	if (full)
633 		finish_wait(&work->full_waiters, &wait);
634 	else
635 		finish_wait(&work->waiters, &wait);
636 
637 	return ret;
638 }
639 
640 /**
641  * ring_buffer_poll_wait - poll on buffer input
642  * @buffer: buffer to wait on
643  * @cpu: the cpu buffer to wait on
644  * @filp: the file descriptor
645  * @poll_table: The poll descriptor
646  *
647  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
648  * as data is added to any of the @buffer's cpu buffers. Otherwise
649  * it will wait for data to be added to a specific cpu buffer.
650  *
651  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
652  * zero otherwise.
653  */
ring_buffer_poll_wait(struct ring_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)654 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
655 			  struct file *filp, poll_table *poll_table)
656 {
657 	struct ring_buffer_per_cpu *cpu_buffer;
658 	struct rb_irq_work *work;
659 
660 	if (cpu == RING_BUFFER_ALL_CPUS)
661 		work = &buffer->irq_work;
662 	else {
663 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
664 			return -EINVAL;
665 
666 		cpu_buffer = buffer->buffers[cpu];
667 		work = &cpu_buffer->irq_work;
668 	}
669 
670 	poll_wait(filp, &work->waiters, poll_table);
671 	work->waiters_pending = true;
672 	/*
673 	 * There's a tight race between setting the waiters_pending and
674 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
675 	 * is set, the next event will wake the task up, but we can get stuck
676 	 * if there's only a single event in.
677 	 *
678 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
679 	 * but adding a memory barrier to all events will cause too much of a
680 	 * performance hit in the fast path.  We only need a memory barrier when
681 	 * the buffer goes from empty to having content.  But as this race is
682 	 * extremely small, and it's not a problem if another event comes in, we
683 	 * will fix it later.
684 	 */
685 	smp_mb();
686 
687 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
688 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
689 		return POLLIN | POLLRDNORM;
690 	return 0;
691 }
692 
693 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
694 #define RB_WARN_ON(b, cond)						\
695 	({								\
696 		int _____ret = unlikely(cond);				\
697 		if (_____ret) {						\
698 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
699 				struct ring_buffer_per_cpu *__b =	\
700 					(void *)b;			\
701 				atomic_inc(&__b->buffer->record_disabled); \
702 			} else						\
703 				atomic_inc(&b->record_disabled);	\
704 			WARN_ON(1);					\
705 		}							\
706 		_____ret;						\
707 	})
708 
709 /* Up this if you want to test the TIME_EXTENTS and normalization */
710 #define DEBUG_SHIFT 0
711 
rb_time_stamp(struct ring_buffer * buffer)712 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
713 {
714 	/* shift to debug/test normalization and TIME_EXTENTS */
715 	return buffer->clock() << DEBUG_SHIFT;
716 }
717 
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)718 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
719 {
720 	u64 time;
721 
722 	preempt_disable_notrace();
723 	time = rb_time_stamp(buffer);
724 	preempt_enable_no_resched_notrace();
725 
726 	return time;
727 }
728 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
729 
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)730 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
731 				      int cpu, u64 *ts)
732 {
733 	/* Just stupid testing the normalize function and deltas */
734 	*ts >>= DEBUG_SHIFT;
735 }
736 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
737 
738 /*
739  * Making the ring buffer lockless makes things tricky.
740  * Although writes only happen on the CPU that they are on,
741  * and they only need to worry about interrupts. Reads can
742  * happen on any CPU.
743  *
744  * The reader page is always off the ring buffer, but when the
745  * reader finishes with a page, it needs to swap its page with
746  * a new one from the buffer. The reader needs to take from
747  * the head (writes go to the tail). But if a writer is in overwrite
748  * mode and wraps, it must push the head page forward.
749  *
750  * Here lies the problem.
751  *
752  * The reader must be careful to replace only the head page, and
753  * not another one. As described at the top of the file in the
754  * ASCII art, the reader sets its old page to point to the next
755  * page after head. It then sets the page after head to point to
756  * the old reader page. But if the writer moves the head page
757  * during this operation, the reader could end up with the tail.
758  *
759  * We use cmpxchg to help prevent this race. We also do something
760  * special with the page before head. We set the LSB to 1.
761  *
762  * When the writer must push the page forward, it will clear the
763  * bit that points to the head page, move the head, and then set
764  * the bit that points to the new head page.
765  *
766  * We also don't want an interrupt coming in and moving the head
767  * page on another writer. Thus we use the second LSB to catch
768  * that too. Thus:
769  *
770  * head->list->prev->next        bit 1          bit 0
771  *                              -------        -------
772  * Normal page                     0              0
773  * Points to head page             0              1
774  * New head page                   1              0
775  *
776  * Note we can not trust the prev pointer of the head page, because:
777  *
778  * +----+       +-----+        +-----+
779  * |    |------>|  T  |---X--->|  N  |
780  * |    |<------|     |        |     |
781  * +----+       +-----+        +-----+
782  *   ^                           ^ |
783  *   |          +-----+          | |
784  *   +----------|  R  |----------+ |
785  *              |     |<-----------+
786  *              +-----+
787  *
788  * Key:  ---X-->  HEAD flag set in pointer
789  *         T      Tail page
790  *         R      Reader page
791  *         N      Next page
792  *
793  * (see __rb_reserve_next() to see where this happens)
794  *
795  *  What the above shows is that the reader just swapped out
796  *  the reader page with a page in the buffer, but before it
797  *  could make the new header point back to the new page added
798  *  it was preempted by a writer. The writer moved forward onto
799  *  the new page added by the reader and is about to move forward
800  *  again.
801  *
802  *  You can see, it is legitimate for the previous pointer of
803  *  the head (or any page) not to point back to itself. But only
804  *  temporarially.
805  */
806 
807 #define RB_PAGE_NORMAL		0UL
808 #define RB_PAGE_HEAD		1UL
809 #define RB_PAGE_UPDATE		2UL
810 
811 
812 #define RB_FLAG_MASK		3UL
813 
814 /* PAGE_MOVED is not part of the mask */
815 #define RB_PAGE_MOVED		4UL
816 
817 /*
818  * rb_list_head - remove any bit
819  */
rb_list_head(struct list_head * list)820 static struct list_head *rb_list_head(struct list_head *list)
821 {
822 	unsigned long val = (unsigned long)list;
823 
824 	return (struct list_head *)(val & ~RB_FLAG_MASK);
825 }
826 
827 /*
828  * rb_is_head_page - test if the given page is the head page
829  *
830  * Because the reader may move the head_page pointer, we can
831  * not trust what the head page is (it may be pointing to
832  * the reader page). But if the next page is a header page,
833  * its flags will be non zero.
834  */
835 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)836 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
837 		struct buffer_page *page, struct list_head *list)
838 {
839 	unsigned long val;
840 
841 	val = (unsigned long)list->next;
842 
843 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
844 		return RB_PAGE_MOVED;
845 
846 	return val & RB_FLAG_MASK;
847 }
848 
849 /*
850  * rb_is_reader_page
851  *
852  * The unique thing about the reader page, is that, if the
853  * writer is ever on it, the previous pointer never points
854  * back to the reader page.
855  */
rb_is_reader_page(struct buffer_page * page)856 static int rb_is_reader_page(struct buffer_page *page)
857 {
858 	struct list_head *list = page->list.prev;
859 
860 	return rb_list_head(list->next) != &page->list;
861 }
862 
863 /*
864  * rb_set_list_to_head - set a list_head to be pointing to head.
865  */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)866 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
867 				struct list_head *list)
868 {
869 	unsigned long *ptr;
870 
871 	ptr = (unsigned long *)&list->next;
872 	*ptr |= RB_PAGE_HEAD;
873 	*ptr &= ~RB_PAGE_UPDATE;
874 }
875 
876 /*
877  * rb_head_page_activate - sets up head page
878  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)879 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
880 {
881 	struct buffer_page *head;
882 
883 	head = cpu_buffer->head_page;
884 	if (!head)
885 		return;
886 
887 	/*
888 	 * Set the previous list pointer to have the HEAD flag.
889 	 */
890 	rb_set_list_to_head(cpu_buffer, head->list.prev);
891 }
892 
rb_list_head_clear(struct list_head * list)893 static void rb_list_head_clear(struct list_head *list)
894 {
895 	unsigned long *ptr = (unsigned long *)&list->next;
896 
897 	*ptr &= ~RB_FLAG_MASK;
898 }
899 
900 /*
901  * rb_head_page_dactivate - clears head page ptr (for free list)
902  */
903 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)904 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
905 {
906 	struct list_head *hd;
907 
908 	/* Go through the whole list and clear any pointers found. */
909 	rb_list_head_clear(cpu_buffer->pages);
910 
911 	list_for_each(hd, cpu_buffer->pages)
912 		rb_list_head_clear(hd);
913 }
914 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)915 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
916 			    struct buffer_page *head,
917 			    struct buffer_page *prev,
918 			    int old_flag, int new_flag)
919 {
920 	struct list_head *list;
921 	unsigned long val = (unsigned long)&head->list;
922 	unsigned long ret;
923 
924 	list = &prev->list;
925 
926 	val &= ~RB_FLAG_MASK;
927 
928 	ret = cmpxchg((unsigned long *)&list->next,
929 		      val | old_flag, val | new_flag);
930 
931 	/* check if the reader took the page */
932 	if ((ret & ~RB_FLAG_MASK) != val)
933 		return RB_PAGE_MOVED;
934 
935 	return ret & RB_FLAG_MASK;
936 }
937 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)938 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
939 				   struct buffer_page *head,
940 				   struct buffer_page *prev,
941 				   int old_flag)
942 {
943 	return rb_head_page_set(cpu_buffer, head, prev,
944 				old_flag, RB_PAGE_UPDATE);
945 }
946 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)947 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
948 				 struct buffer_page *head,
949 				 struct buffer_page *prev,
950 				 int old_flag)
951 {
952 	return rb_head_page_set(cpu_buffer, head, prev,
953 				old_flag, RB_PAGE_HEAD);
954 }
955 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)956 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
957 				   struct buffer_page *head,
958 				   struct buffer_page *prev,
959 				   int old_flag)
960 {
961 	return rb_head_page_set(cpu_buffer, head, prev,
962 				old_flag, RB_PAGE_NORMAL);
963 }
964 
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)965 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
966 			       struct buffer_page **bpage)
967 {
968 	struct list_head *p = rb_list_head((*bpage)->list.next);
969 
970 	*bpage = list_entry(p, struct buffer_page, list);
971 }
972 
973 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)974 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
975 {
976 	struct buffer_page *head;
977 	struct buffer_page *page;
978 	struct list_head *list;
979 	int i;
980 
981 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
982 		return NULL;
983 
984 	/* sanity check */
985 	list = cpu_buffer->pages;
986 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
987 		return NULL;
988 
989 	page = head = cpu_buffer->head_page;
990 	/*
991 	 * It is possible that the writer moves the header behind
992 	 * where we started, and we miss in one loop.
993 	 * A second loop should grab the header, but we'll do
994 	 * three loops just because I'm paranoid.
995 	 */
996 	for (i = 0; i < 3; i++) {
997 		do {
998 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
999 				cpu_buffer->head_page = page;
1000 				return page;
1001 			}
1002 			rb_inc_page(cpu_buffer, &page);
1003 		} while (page != head);
1004 	}
1005 
1006 	RB_WARN_ON(cpu_buffer, 1);
1007 
1008 	return NULL;
1009 }
1010 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1011 static int rb_head_page_replace(struct buffer_page *old,
1012 				struct buffer_page *new)
1013 {
1014 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1015 	unsigned long val;
1016 	unsigned long ret;
1017 
1018 	val = *ptr & ~RB_FLAG_MASK;
1019 	val |= RB_PAGE_HEAD;
1020 
1021 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1022 
1023 	return ret == val;
1024 }
1025 
1026 /*
1027  * rb_tail_page_update - move the tail page forward
1028  *
1029  * Returns 1 if moved tail page, 0 if someone else did.
1030  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1031 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1032 			       struct buffer_page *tail_page,
1033 			       struct buffer_page *next_page)
1034 {
1035 	struct buffer_page *old_tail;
1036 	unsigned long old_entries;
1037 	unsigned long old_write;
1038 	int ret = 0;
1039 
1040 	/*
1041 	 * The tail page now needs to be moved forward.
1042 	 *
1043 	 * We need to reset the tail page, but without messing
1044 	 * with possible erasing of data brought in by interrupts
1045 	 * that have moved the tail page and are currently on it.
1046 	 *
1047 	 * We add a counter to the write field to denote this.
1048 	 */
1049 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1050 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1051 
1052 	/*
1053 	 * Just make sure we have seen our old_write and synchronize
1054 	 * with any interrupts that come in.
1055 	 */
1056 	barrier();
1057 
1058 	/*
1059 	 * If the tail page is still the same as what we think
1060 	 * it is, then it is up to us to update the tail
1061 	 * pointer.
1062 	 */
1063 	if (tail_page == cpu_buffer->tail_page) {
1064 		/* Zero the write counter */
1065 		unsigned long val = old_write & ~RB_WRITE_MASK;
1066 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1067 
1068 		/*
1069 		 * This will only succeed if an interrupt did
1070 		 * not come in and change it. In which case, we
1071 		 * do not want to modify it.
1072 		 *
1073 		 * We add (void) to let the compiler know that we do not care
1074 		 * about the return value of these functions. We use the
1075 		 * cmpxchg to only update if an interrupt did not already
1076 		 * do it for us. If the cmpxchg fails, we don't care.
1077 		 */
1078 		(void)local_cmpxchg(&next_page->write, old_write, val);
1079 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1080 
1081 		/*
1082 		 * No need to worry about races with clearing out the commit.
1083 		 * it only can increment when a commit takes place. But that
1084 		 * only happens in the outer most nested commit.
1085 		 */
1086 		local_set(&next_page->page->commit, 0);
1087 
1088 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1089 				   tail_page, next_page);
1090 
1091 		if (old_tail == tail_page)
1092 			ret = 1;
1093 	}
1094 
1095 	return ret;
1096 }
1097 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099 			  struct buffer_page *bpage)
1100 {
1101 	unsigned long val = (unsigned long)bpage;
1102 
1103 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104 		return 1;
1105 
1106 	return 0;
1107 }
1108 
1109 /**
1110  * rb_check_list - make sure a pointer to a list has the last bits zero
1111  */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113 			 struct list_head *list)
1114 {
1115 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116 		return 1;
1117 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118 		return 1;
1119 	return 0;
1120 }
1121 
1122 /**
1123  * rb_check_pages - integrity check of buffer pages
1124  * @cpu_buffer: CPU buffer with pages to test
1125  *
1126  * As a safety measure we check to make sure the data pages have not
1127  * been corrupted.
1128  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131 	struct list_head *head = cpu_buffer->pages;
1132 	struct buffer_page *bpage, *tmp;
1133 
1134 	/* Reset the head page if it exists */
1135 	if (cpu_buffer->head_page)
1136 		rb_set_head_page(cpu_buffer);
1137 
1138 	rb_head_page_deactivate(cpu_buffer);
1139 
1140 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141 		return -1;
1142 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143 		return -1;
1144 
1145 	if (rb_check_list(cpu_buffer, head))
1146 		return -1;
1147 
1148 	list_for_each_entry_safe(bpage, tmp, head, list) {
1149 		if (RB_WARN_ON(cpu_buffer,
1150 			       bpage->list.next->prev != &bpage->list))
1151 			return -1;
1152 		if (RB_WARN_ON(cpu_buffer,
1153 			       bpage->list.prev->next != &bpage->list))
1154 			return -1;
1155 		if (rb_check_list(cpu_buffer, &bpage->list))
1156 			return -1;
1157 	}
1158 
1159 	rb_head_page_activate(cpu_buffer);
1160 
1161 	return 0;
1162 }
1163 
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1164 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1165 {
1166 	struct buffer_page *bpage, *tmp;
1167 	long i;
1168 
1169 	for (i = 0; i < nr_pages; i++) {
1170 		struct page *page;
1171 		/*
1172 		 * __GFP_NORETRY flag makes sure that the allocation fails
1173 		 * gracefully without invoking oom-killer and the system is
1174 		 * not destabilized.
1175 		 */
1176 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1177 				    GFP_KERNEL | __GFP_NORETRY,
1178 				    cpu_to_node(cpu));
1179 		if (!bpage)
1180 			goto free_pages;
1181 
1182 		list_add(&bpage->list, pages);
1183 
1184 		page = alloc_pages_node(cpu_to_node(cpu),
1185 					GFP_KERNEL | __GFP_NORETRY, 0);
1186 		if (!page)
1187 			goto free_pages;
1188 		bpage->page = page_address(page);
1189 		rb_init_page(bpage->page);
1190 	}
1191 
1192 	return 0;
1193 
1194 free_pages:
1195 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1196 		list_del_init(&bpage->list);
1197 		free_buffer_page(bpage);
1198 	}
1199 
1200 	return -ENOMEM;
1201 }
1202 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1203 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1204 			     unsigned long nr_pages)
1205 {
1206 	LIST_HEAD(pages);
1207 
1208 	WARN_ON(!nr_pages);
1209 
1210 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1211 		return -ENOMEM;
1212 
1213 	/*
1214 	 * The ring buffer page list is a circular list that does not
1215 	 * start and end with a list head. All page list items point to
1216 	 * other pages.
1217 	 */
1218 	cpu_buffer->pages = pages.next;
1219 	list_del(&pages);
1220 
1221 	cpu_buffer->nr_pages = nr_pages;
1222 
1223 	rb_check_pages(cpu_buffer);
1224 
1225 	return 0;
1226 }
1227 
1228 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,long nr_pages,int cpu)1229 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1230 {
1231 	struct ring_buffer_per_cpu *cpu_buffer;
1232 	struct buffer_page *bpage;
1233 	struct page *page;
1234 	int ret;
1235 
1236 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1237 				  GFP_KERNEL, cpu_to_node(cpu));
1238 	if (!cpu_buffer)
1239 		return NULL;
1240 
1241 	cpu_buffer->cpu = cpu;
1242 	cpu_buffer->buffer = buffer;
1243 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1244 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1245 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1246 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1247 	init_completion(&cpu_buffer->update_done);
1248 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1249 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1250 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1251 
1252 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1253 			    GFP_KERNEL, cpu_to_node(cpu));
1254 	if (!bpage)
1255 		goto fail_free_buffer;
1256 
1257 	rb_check_bpage(cpu_buffer, bpage);
1258 
1259 	cpu_buffer->reader_page = bpage;
1260 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1261 	if (!page)
1262 		goto fail_free_reader;
1263 	bpage->page = page_address(page);
1264 	rb_init_page(bpage->page);
1265 
1266 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1267 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1268 
1269 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1270 	if (ret < 0)
1271 		goto fail_free_reader;
1272 
1273 	cpu_buffer->head_page
1274 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1275 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1276 
1277 	rb_head_page_activate(cpu_buffer);
1278 
1279 	return cpu_buffer;
1280 
1281  fail_free_reader:
1282 	free_buffer_page(cpu_buffer->reader_page);
1283 
1284  fail_free_buffer:
1285 	kfree(cpu_buffer);
1286 	return NULL;
1287 }
1288 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1289 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1290 {
1291 	struct list_head *head = cpu_buffer->pages;
1292 	struct buffer_page *bpage, *tmp;
1293 
1294 	free_buffer_page(cpu_buffer->reader_page);
1295 
1296 	rb_head_page_deactivate(cpu_buffer);
1297 
1298 	if (head) {
1299 		list_for_each_entry_safe(bpage, tmp, head, list) {
1300 			list_del_init(&bpage->list);
1301 			free_buffer_page(bpage);
1302 		}
1303 		bpage = list_entry(head, struct buffer_page, list);
1304 		free_buffer_page(bpage);
1305 	}
1306 
1307 	kfree(cpu_buffer);
1308 }
1309 
1310 #ifdef CONFIG_HOTPLUG_CPU
1311 static int rb_cpu_notify(struct notifier_block *self,
1312 			 unsigned long action, void *hcpu);
1313 #endif
1314 
1315 /**
1316  * __ring_buffer_alloc - allocate a new ring_buffer
1317  * @size: the size in bytes per cpu that is needed.
1318  * @flags: attributes to set for the ring buffer.
1319  *
1320  * Currently the only flag that is available is the RB_FL_OVERWRITE
1321  * flag. This flag means that the buffer will overwrite old data
1322  * when the buffer wraps. If this flag is not set, the buffer will
1323  * drop data when the tail hits the head.
1324  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1325 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1326 					struct lock_class_key *key)
1327 {
1328 	struct ring_buffer *buffer;
1329 	long nr_pages;
1330 	int bsize;
1331 	int cpu;
1332 
1333 	/* keep it in its own cache line */
1334 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1335 			 GFP_KERNEL);
1336 	if (!buffer)
1337 		return NULL;
1338 
1339 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1340 		goto fail_free_buffer;
1341 
1342 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1343 	buffer->flags = flags;
1344 	buffer->clock = trace_clock_local;
1345 	buffer->reader_lock_key = key;
1346 
1347 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1348 	init_waitqueue_head(&buffer->irq_work.waiters);
1349 
1350 	/* need at least two pages */
1351 	if (nr_pages < 2)
1352 		nr_pages = 2;
1353 
1354 	/*
1355 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1356 	 * in early initcall, it will not be notified of secondary cpus.
1357 	 * In that off case, we need to allocate for all possible cpus.
1358 	 */
1359 #ifdef CONFIG_HOTPLUG_CPU
1360 	cpu_notifier_register_begin();
1361 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1362 #else
1363 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1364 #endif
1365 	buffer->cpus = nr_cpu_ids;
1366 
1367 	bsize = sizeof(void *) * nr_cpu_ids;
1368 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1369 				  GFP_KERNEL);
1370 	if (!buffer->buffers)
1371 		goto fail_free_cpumask;
1372 
1373 	for_each_buffer_cpu(buffer, cpu) {
1374 		buffer->buffers[cpu] =
1375 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1376 		if (!buffer->buffers[cpu])
1377 			goto fail_free_buffers;
1378 	}
1379 
1380 #ifdef CONFIG_HOTPLUG_CPU
1381 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1382 	buffer->cpu_notify.priority = 0;
1383 	__register_cpu_notifier(&buffer->cpu_notify);
1384 	cpu_notifier_register_done();
1385 #endif
1386 
1387 	mutex_init(&buffer->mutex);
1388 
1389 	return buffer;
1390 
1391  fail_free_buffers:
1392 	for_each_buffer_cpu(buffer, cpu) {
1393 		if (buffer->buffers[cpu])
1394 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1395 	}
1396 	kfree(buffer->buffers);
1397 
1398  fail_free_cpumask:
1399 	free_cpumask_var(buffer->cpumask);
1400 #ifdef CONFIG_HOTPLUG_CPU
1401 	cpu_notifier_register_done();
1402 #endif
1403 
1404  fail_free_buffer:
1405 	kfree(buffer);
1406 	return NULL;
1407 }
1408 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1409 
1410 /**
1411  * ring_buffer_free - free a ring buffer.
1412  * @buffer: the buffer to free.
1413  */
1414 void
ring_buffer_free(struct ring_buffer * buffer)1415 ring_buffer_free(struct ring_buffer *buffer)
1416 {
1417 	int cpu;
1418 
1419 #ifdef CONFIG_HOTPLUG_CPU
1420 	cpu_notifier_register_begin();
1421 	__unregister_cpu_notifier(&buffer->cpu_notify);
1422 #endif
1423 
1424 	for_each_buffer_cpu(buffer, cpu)
1425 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1426 
1427 #ifdef CONFIG_HOTPLUG_CPU
1428 	cpu_notifier_register_done();
1429 #endif
1430 
1431 	kfree(buffer->buffers);
1432 	free_cpumask_var(buffer->cpumask);
1433 
1434 	kfree(buffer);
1435 }
1436 EXPORT_SYMBOL_GPL(ring_buffer_free);
1437 
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1438 void ring_buffer_set_clock(struct ring_buffer *buffer,
1439 			   u64 (*clock)(void))
1440 {
1441 	buffer->clock = clock;
1442 }
1443 
1444 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1445 
rb_page_entries(struct buffer_page * bpage)1446 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1447 {
1448 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1449 }
1450 
rb_page_write(struct buffer_page * bpage)1451 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1452 {
1453 	return local_read(&bpage->write) & RB_WRITE_MASK;
1454 }
1455 
1456 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1457 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1458 {
1459 	struct list_head *tail_page, *to_remove, *next_page;
1460 	struct buffer_page *to_remove_page, *tmp_iter_page;
1461 	struct buffer_page *last_page, *first_page;
1462 	unsigned long nr_removed;
1463 	unsigned long head_bit;
1464 	int page_entries;
1465 
1466 	head_bit = 0;
1467 
1468 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1469 	atomic_inc(&cpu_buffer->record_disabled);
1470 	/*
1471 	 * We don't race with the readers since we have acquired the reader
1472 	 * lock. We also don't race with writers after disabling recording.
1473 	 * This makes it easy to figure out the first and the last page to be
1474 	 * removed from the list. We unlink all the pages in between including
1475 	 * the first and last pages. This is done in a busy loop so that we
1476 	 * lose the least number of traces.
1477 	 * The pages are freed after we restart recording and unlock readers.
1478 	 */
1479 	tail_page = &cpu_buffer->tail_page->list;
1480 
1481 	/*
1482 	 * tail page might be on reader page, we remove the next page
1483 	 * from the ring buffer
1484 	 */
1485 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1486 		tail_page = rb_list_head(tail_page->next);
1487 	to_remove = tail_page;
1488 
1489 	/* start of pages to remove */
1490 	first_page = list_entry(rb_list_head(to_remove->next),
1491 				struct buffer_page, list);
1492 
1493 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1494 		to_remove = rb_list_head(to_remove)->next;
1495 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1496 	}
1497 
1498 	next_page = rb_list_head(to_remove)->next;
1499 
1500 	/*
1501 	 * Now we remove all pages between tail_page and next_page.
1502 	 * Make sure that we have head_bit value preserved for the
1503 	 * next page
1504 	 */
1505 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1506 						head_bit);
1507 	next_page = rb_list_head(next_page);
1508 	next_page->prev = tail_page;
1509 
1510 	/* make sure pages points to a valid page in the ring buffer */
1511 	cpu_buffer->pages = next_page;
1512 
1513 	/* update head page */
1514 	if (head_bit)
1515 		cpu_buffer->head_page = list_entry(next_page,
1516 						struct buffer_page, list);
1517 
1518 	/*
1519 	 * change read pointer to make sure any read iterators reset
1520 	 * themselves
1521 	 */
1522 	cpu_buffer->read = 0;
1523 
1524 	/* pages are removed, resume tracing and then free the pages */
1525 	atomic_dec(&cpu_buffer->record_disabled);
1526 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1527 
1528 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1529 
1530 	/* last buffer page to remove */
1531 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1532 				list);
1533 	tmp_iter_page = first_page;
1534 
1535 	do {
1536 		to_remove_page = tmp_iter_page;
1537 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1538 
1539 		/* update the counters */
1540 		page_entries = rb_page_entries(to_remove_page);
1541 		if (page_entries) {
1542 			/*
1543 			 * If something was added to this page, it was full
1544 			 * since it is not the tail page. So we deduct the
1545 			 * bytes consumed in ring buffer from here.
1546 			 * Increment overrun to account for the lost events.
1547 			 */
1548 			local_add(page_entries, &cpu_buffer->overrun);
1549 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1550 		}
1551 
1552 		/*
1553 		 * We have already removed references to this list item, just
1554 		 * free up the buffer_page and its page
1555 		 */
1556 		free_buffer_page(to_remove_page);
1557 		nr_removed--;
1558 
1559 	} while (to_remove_page != last_page);
1560 
1561 	RB_WARN_ON(cpu_buffer, nr_removed);
1562 
1563 	return nr_removed == 0;
1564 }
1565 
1566 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1567 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1568 {
1569 	struct list_head *pages = &cpu_buffer->new_pages;
1570 	int retries, success;
1571 
1572 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1573 	/*
1574 	 * We are holding the reader lock, so the reader page won't be swapped
1575 	 * in the ring buffer. Now we are racing with the writer trying to
1576 	 * move head page and the tail page.
1577 	 * We are going to adapt the reader page update process where:
1578 	 * 1. We first splice the start and end of list of new pages between
1579 	 *    the head page and its previous page.
1580 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1581 	 *    start of new pages list.
1582 	 * 3. Finally, we update the head->prev to the end of new list.
1583 	 *
1584 	 * We will try this process 10 times, to make sure that we don't keep
1585 	 * spinning.
1586 	 */
1587 	retries = 10;
1588 	success = 0;
1589 	while (retries--) {
1590 		struct list_head *head_page, *prev_page, *r;
1591 		struct list_head *last_page, *first_page;
1592 		struct list_head *head_page_with_bit;
1593 
1594 		head_page = &rb_set_head_page(cpu_buffer)->list;
1595 		if (!head_page)
1596 			break;
1597 		prev_page = head_page->prev;
1598 
1599 		first_page = pages->next;
1600 		last_page  = pages->prev;
1601 
1602 		head_page_with_bit = (struct list_head *)
1603 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1604 
1605 		last_page->next = head_page_with_bit;
1606 		first_page->prev = prev_page;
1607 
1608 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1609 
1610 		if (r == head_page_with_bit) {
1611 			/*
1612 			 * yay, we replaced the page pointer to our new list,
1613 			 * now, we just have to update to head page's prev
1614 			 * pointer to point to end of list
1615 			 */
1616 			head_page->prev = last_page;
1617 			success = 1;
1618 			break;
1619 		}
1620 	}
1621 
1622 	if (success)
1623 		INIT_LIST_HEAD(pages);
1624 	/*
1625 	 * If we weren't successful in adding in new pages, warn and stop
1626 	 * tracing
1627 	 */
1628 	RB_WARN_ON(cpu_buffer, !success);
1629 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1630 
1631 	/* free pages if they weren't inserted */
1632 	if (!success) {
1633 		struct buffer_page *bpage, *tmp;
1634 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1635 					 list) {
1636 			list_del_init(&bpage->list);
1637 			free_buffer_page(bpage);
1638 		}
1639 	}
1640 	return success;
1641 }
1642 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1643 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1644 {
1645 	int success;
1646 
1647 	if (cpu_buffer->nr_pages_to_update > 0)
1648 		success = rb_insert_pages(cpu_buffer);
1649 	else
1650 		success = rb_remove_pages(cpu_buffer,
1651 					-cpu_buffer->nr_pages_to_update);
1652 
1653 	if (success)
1654 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1655 }
1656 
update_pages_handler(struct work_struct * work)1657 static void update_pages_handler(struct work_struct *work)
1658 {
1659 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1660 			struct ring_buffer_per_cpu, update_pages_work);
1661 	rb_update_pages(cpu_buffer);
1662 	complete(&cpu_buffer->update_done);
1663 }
1664 
1665 /**
1666  * ring_buffer_resize - resize the ring buffer
1667  * @buffer: the buffer to resize.
1668  * @size: the new size.
1669  * @cpu_id: the cpu buffer to resize
1670  *
1671  * Minimum size is 2 * BUF_PAGE_SIZE.
1672  *
1673  * Returns 0 on success and < 0 on failure.
1674  */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size,int cpu_id)1675 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1676 			int cpu_id)
1677 {
1678 	struct ring_buffer_per_cpu *cpu_buffer;
1679 	unsigned long nr_pages;
1680 	int cpu, err = 0;
1681 
1682 	/*
1683 	 * Always succeed at resizing a non-existent buffer:
1684 	 */
1685 	if (!buffer)
1686 		return size;
1687 
1688 	/* Make sure the requested buffer exists */
1689 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1690 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1691 		return size;
1692 
1693 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1694 
1695 	/* we need a minimum of two pages */
1696 	if (nr_pages < 2)
1697 		nr_pages = 2;
1698 
1699 	size = nr_pages * BUF_PAGE_SIZE;
1700 
1701 	/*
1702 	 * Don't succeed if resizing is disabled, as a reader might be
1703 	 * manipulating the ring buffer and is expecting a sane state while
1704 	 * this is true.
1705 	 */
1706 	if (atomic_read(&buffer->resize_disabled))
1707 		return -EBUSY;
1708 
1709 	/* prevent another thread from changing buffer sizes */
1710 	mutex_lock(&buffer->mutex);
1711 
1712 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1713 		/* calculate the pages to update */
1714 		for_each_buffer_cpu(buffer, cpu) {
1715 			cpu_buffer = buffer->buffers[cpu];
1716 
1717 			cpu_buffer->nr_pages_to_update = nr_pages -
1718 							cpu_buffer->nr_pages;
1719 			/*
1720 			 * nothing more to do for removing pages or no update
1721 			 */
1722 			if (cpu_buffer->nr_pages_to_update <= 0)
1723 				continue;
1724 			/*
1725 			 * to add pages, make sure all new pages can be
1726 			 * allocated without receiving ENOMEM
1727 			 */
1728 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1729 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1730 						&cpu_buffer->new_pages, cpu)) {
1731 				/* not enough memory for new pages */
1732 				err = -ENOMEM;
1733 				goto out_err;
1734 			}
1735 		}
1736 
1737 		get_online_cpus();
1738 		/*
1739 		 * Fire off all the required work handlers
1740 		 * We can't schedule on offline CPUs, but it's not necessary
1741 		 * since we can change their buffer sizes without any race.
1742 		 */
1743 		for_each_buffer_cpu(buffer, cpu) {
1744 			cpu_buffer = buffer->buffers[cpu];
1745 			if (!cpu_buffer->nr_pages_to_update)
1746 				continue;
1747 
1748 			/* Can't run something on an offline CPU. */
1749 			if (!cpu_online(cpu)) {
1750 				rb_update_pages(cpu_buffer);
1751 				cpu_buffer->nr_pages_to_update = 0;
1752 			} else {
1753 				schedule_work_on(cpu,
1754 						&cpu_buffer->update_pages_work);
1755 			}
1756 		}
1757 
1758 		/* wait for all the updates to complete */
1759 		for_each_buffer_cpu(buffer, cpu) {
1760 			cpu_buffer = buffer->buffers[cpu];
1761 			if (!cpu_buffer->nr_pages_to_update)
1762 				continue;
1763 
1764 			if (cpu_online(cpu))
1765 				wait_for_completion(&cpu_buffer->update_done);
1766 			cpu_buffer->nr_pages_to_update = 0;
1767 		}
1768 
1769 		put_online_cpus();
1770 	} else {
1771 		/* Make sure this CPU has been intitialized */
1772 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1773 			goto out;
1774 
1775 		cpu_buffer = buffer->buffers[cpu_id];
1776 
1777 		if (nr_pages == cpu_buffer->nr_pages)
1778 			goto out;
1779 
1780 		cpu_buffer->nr_pages_to_update = nr_pages -
1781 						cpu_buffer->nr_pages;
1782 
1783 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1784 		if (cpu_buffer->nr_pages_to_update > 0 &&
1785 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1786 					    &cpu_buffer->new_pages, cpu_id)) {
1787 			err = -ENOMEM;
1788 			goto out_err;
1789 		}
1790 
1791 		get_online_cpus();
1792 
1793 		/* Can't run something on an offline CPU. */
1794 		if (!cpu_online(cpu_id))
1795 			rb_update_pages(cpu_buffer);
1796 		else {
1797 			schedule_work_on(cpu_id,
1798 					 &cpu_buffer->update_pages_work);
1799 			wait_for_completion(&cpu_buffer->update_done);
1800 		}
1801 
1802 		cpu_buffer->nr_pages_to_update = 0;
1803 		put_online_cpus();
1804 	}
1805 
1806  out:
1807 	/*
1808 	 * The ring buffer resize can happen with the ring buffer
1809 	 * enabled, so that the update disturbs the tracing as little
1810 	 * as possible. But if the buffer is disabled, we do not need
1811 	 * to worry about that, and we can take the time to verify
1812 	 * that the buffer is not corrupt.
1813 	 */
1814 	if (atomic_read(&buffer->record_disabled)) {
1815 		atomic_inc(&buffer->record_disabled);
1816 		/*
1817 		 * Even though the buffer was disabled, we must make sure
1818 		 * that it is truly disabled before calling rb_check_pages.
1819 		 * There could have been a race between checking
1820 		 * record_disable and incrementing it.
1821 		 */
1822 		synchronize_sched();
1823 		for_each_buffer_cpu(buffer, cpu) {
1824 			cpu_buffer = buffer->buffers[cpu];
1825 			rb_check_pages(cpu_buffer);
1826 		}
1827 		atomic_dec(&buffer->record_disabled);
1828 	}
1829 
1830 	mutex_unlock(&buffer->mutex);
1831 	return size;
1832 
1833  out_err:
1834 	for_each_buffer_cpu(buffer, cpu) {
1835 		struct buffer_page *bpage, *tmp;
1836 
1837 		cpu_buffer = buffer->buffers[cpu];
1838 		cpu_buffer->nr_pages_to_update = 0;
1839 
1840 		if (list_empty(&cpu_buffer->new_pages))
1841 			continue;
1842 
1843 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1844 					list) {
1845 			list_del_init(&bpage->list);
1846 			free_buffer_page(bpage);
1847 		}
1848 	}
1849 	mutex_unlock(&buffer->mutex);
1850 	return err;
1851 }
1852 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1853 
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1854 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1855 {
1856 	mutex_lock(&buffer->mutex);
1857 	if (val)
1858 		buffer->flags |= RB_FL_OVERWRITE;
1859 	else
1860 		buffer->flags &= ~RB_FL_OVERWRITE;
1861 	mutex_unlock(&buffer->mutex);
1862 }
1863 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1864 
1865 static inline void *
__rb_data_page_index(struct buffer_data_page * bpage,unsigned index)1866 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1867 {
1868 	return bpage->data + index;
1869 }
1870 
__rb_page_index(struct buffer_page * bpage,unsigned index)1871 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1872 {
1873 	return bpage->page->data + index;
1874 }
1875 
1876 static inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1877 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879 	return __rb_page_index(cpu_buffer->reader_page,
1880 			       cpu_buffer->reader_page->read);
1881 }
1882 
1883 static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1884 rb_iter_head_event(struct ring_buffer_iter *iter)
1885 {
1886 	return __rb_page_index(iter->head_page, iter->head);
1887 }
1888 
rb_page_commit(struct buffer_page * bpage)1889 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1890 {
1891 	return local_read(&bpage->page->commit);
1892 }
1893 
1894 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1895 static inline unsigned rb_page_size(struct buffer_page *bpage)
1896 {
1897 	return rb_page_commit(bpage);
1898 }
1899 
1900 static inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1901 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1902 {
1903 	return rb_page_commit(cpu_buffer->commit_page);
1904 }
1905 
1906 static inline unsigned
rb_event_index(struct ring_buffer_event * event)1907 rb_event_index(struct ring_buffer_event *event)
1908 {
1909 	unsigned long addr = (unsigned long)event;
1910 
1911 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1912 }
1913 
1914 static inline int
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)1915 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1916 		   struct ring_buffer_event *event)
1917 {
1918 	unsigned long addr = (unsigned long)event;
1919 	unsigned long index;
1920 
1921 	index = rb_event_index(event);
1922 	addr &= PAGE_MASK;
1923 
1924 	return cpu_buffer->commit_page->page == (void *)addr &&
1925 		rb_commit_index(cpu_buffer) == index;
1926 }
1927 
1928 static void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)1929 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1930 {
1931 	unsigned long max_count;
1932 
1933 	/*
1934 	 * We only race with interrupts and NMIs on this CPU.
1935 	 * If we own the commit event, then we can commit
1936 	 * all others that interrupted us, since the interruptions
1937 	 * are in stack format (they finish before they come
1938 	 * back to us). This allows us to do a simple loop to
1939 	 * assign the commit to the tail.
1940 	 */
1941  again:
1942 	max_count = cpu_buffer->nr_pages * 100;
1943 
1944 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1945 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1946 			return;
1947 		if (RB_WARN_ON(cpu_buffer,
1948 			       rb_is_reader_page(cpu_buffer->tail_page)))
1949 			return;
1950 		local_set(&cpu_buffer->commit_page->page->commit,
1951 			  rb_page_write(cpu_buffer->commit_page));
1952 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1953 		cpu_buffer->write_stamp =
1954 			cpu_buffer->commit_page->page->time_stamp;
1955 		/* add barrier to keep gcc from optimizing too much */
1956 		barrier();
1957 	}
1958 	while (rb_commit_index(cpu_buffer) !=
1959 	       rb_page_write(cpu_buffer->commit_page)) {
1960 
1961 		local_set(&cpu_buffer->commit_page->page->commit,
1962 			  rb_page_write(cpu_buffer->commit_page));
1963 		RB_WARN_ON(cpu_buffer,
1964 			   local_read(&cpu_buffer->commit_page->page->commit) &
1965 			   ~RB_WRITE_MASK);
1966 		barrier();
1967 	}
1968 
1969 	/* again, keep gcc from optimizing */
1970 	barrier();
1971 
1972 	/*
1973 	 * If an interrupt came in just after the first while loop
1974 	 * and pushed the tail page forward, we will be left with
1975 	 * a dangling commit that will never go forward.
1976 	 */
1977 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1978 		goto again;
1979 }
1980 
rb_reset_reader_page(struct ring_buffer_per_cpu * cpu_buffer)1981 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1982 {
1983 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1984 	cpu_buffer->reader_page->read = 0;
1985 }
1986 
rb_inc_iter(struct ring_buffer_iter * iter)1987 static void rb_inc_iter(struct ring_buffer_iter *iter)
1988 {
1989 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1990 
1991 	/*
1992 	 * The iterator could be on the reader page (it starts there).
1993 	 * But the head could have moved, since the reader was
1994 	 * found. Check for this case and assign the iterator
1995 	 * to the head page instead of next.
1996 	 */
1997 	if (iter->head_page == cpu_buffer->reader_page)
1998 		iter->head_page = rb_set_head_page(cpu_buffer);
1999 	else
2000 		rb_inc_page(cpu_buffer, &iter->head_page);
2001 
2002 	iter->read_stamp = iter->head_page->page->time_stamp;
2003 	iter->head = 0;
2004 }
2005 
2006 /* Slow path, do not inline */
2007 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta)2008 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2009 {
2010 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2011 
2012 	/* Not the first event on the page? */
2013 	if (rb_event_index(event)) {
2014 		event->time_delta = delta & TS_MASK;
2015 		event->array[0] = delta >> TS_SHIFT;
2016 	} else {
2017 		/* nope, just zero it */
2018 		event->time_delta = 0;
2019 		event->array[0] = 0;
2020 	}
2021 
2022 	return skip_time_extend(event);
2023 }
2024 
2025 /**
2026  * rb_update_event - update event type and data
2027  * @event: the event to update
2028  * @type: the type of event
2029  * @length: the size of the event field in the ring buffer
2030  *
2031  * Update the type and data fields of the event. The length
2032  * is the actual size that is written to the ring buffer,
2033  * and with this, we can determine what to place into the
2034  * data field.
2035  */
2036 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,unsigned length,int add_timestamp,u64 delta)2037 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2038 		struct ring_buffer_event *event, unsigned length,
2039 		int add_timestamp, u64 delta)
2040 {
2041 	/* Only a commit updates the timestamp */
2042 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2043 		delta = 0;
2044 
2045 	/*
2046 	 * If we need to add a timestamp, then we
2047 	 * add it to the start of the resevered space.
2048 	 */
2049 	if (unlikely(add_timestamp)) {
2050 		event = rb_add_time_stamp(event, delta);
2051 		length -= RB_LEN_TIME_EXTEND;
2052 		delta = 0;
2053 	}
2054 
2055 	event->time_delta = delta;
2056 	length -= RB_EVNT_HDR_SIZE;
2057 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2058 		event->type_len = 0;
2059 		event->array[0] = length;
2060 	} else
2061 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2062 }
2063 
2064 /*
2065  * rb_handle_head_page - writer hit the head page
2066  *
2067  * Returns: +1 to retry page
2068  *           0 to continue
2069  *          -1 on error
2070  */
2071 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2072 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2073 		    struct buffer_page *tail_page,
2074 		    struct buffer_page *next_page)
2075 {
2076 	struct buffer_page *new_head;
2077 	int entries;
2078 	int type;
2079 	int ret;
2080 
2081 	entries = rb_page_entries(next_page);
2082 
2083 	/*
2084 	 * The hard part is here. We need to move the head
2085 	 * forward, and protect against both readers on
2086 	 * other CPUs and writers coming in via interrupts.
2087 	 */
2088 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2089 				       RB_PAGE_HEAD);
2090 
2091 	/*
2092 	 * type can be one of four:
2093 	 *  NORMAL - an interrupt already moved it for us
2094 	 *  HEAD   - we are the first to get here.
2095 	 *  UPDATE - we are the interrupt interrupting
2096 	 *           a current move.
2097 	 *  MOVED  - a reader on another CPU moved the next
2098 	 *           pointer to its reader page. Give up
2099 	 *           and try again.
2100 	 */
2101 
2102 	switch (type) {
2103 	case RB_PAGE_HEAD:
2104 		/*
2105 		 * We changed the head to UPDATE, thus
2106 		 * it is our responsibility to update
2107 		 * the counters.
2108 		 */
2109 		local_add(entries, &cpu_buffer->overrun);
2110 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2111 
2112 		/*
2113 		 * The entries will be zeroed out when we move the
2114 		 * tail page.
2115 		 */
2116 
2117 		/* still more to do */
2118 		break;
2119 
2120 	case RB_PAGE_UPDATE:
2121 		/*
2122 		 * This is an interrupt that interrupt the
2123 		 * previous update. Still more to do.
2124 		 */
2125 		break;
2126 	case RB_PAGE_NORMAL:
2127 		/*
2128 		 * An interrupt came in before the update
2129 		 * and processed this for us.
2130 		 * Nothing left to do.
2131 		 */
2132 		return 1;
2133 	case RB_PAGE_MOVED:
2134 		/*
2135 		 * The reader is on another CPU and just did
2136 		 * a swap with our next_page.
2137 		 * Try again.
2138 		 */
2139 		return 1;
2140 	default:
2141 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2142 		return -1;
2143 	}
2144 
2145 	/*
2146 	 * Now that we are here, the old head pointer is
2147 	 * set to UPDATE. This will keep the reader from
2148 	 * swapping the head page with the reader page.
2149 	 * The reader (on another CPU) will spin till
2150 	 * we are finished.
2151 	 *
2152 	 * We just need to protect against interrupts
2153 	 * doing the job. We will set the next pointer
2154 	 * to HEAD. After that, we set the old pointer
2155 	 * to NORMAL, but only if it was HEAD before.
2156 	 * otherwise we are an interrupt, and only
2157 	 * want the outer most commit to reset it.
2158 	 */
2159 	new_head = next_page;
2160 	rb_inc_page(cpu_buffer, &new_head);
2161 
2162 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2163 				    RB_PAGE_NORMAL);
2164 
2165 	/*
2166 	 * Valid returns are:
2167 	 *  HEAD   - an interrupt came in and already set it.
2168 	 *  NORMAL - One of two things:
2169 	 *            1) We really set it.
2170 	 *            2) A bunch of interrupts came in and moved
2171 	 *               the page forward again.
2172 	 */
2173 	switch (ret) {
2174 	case RB_PAGE_HEAD:
2175 	case RB_PAGE_NORMAL:
2176 		/* OK */
2177 		break;
2178 	default:
2179 		RB_WARN_ON(cpu_buffer, 1);
2180 		return -1;
2181 	}
2182 
2183 	/*
2184 	 * It is possible that an interrupt came in,
2185 	 * set the head up, then more interrupts came in
2186 	 * and moved it again. When we get back here,
2187 	 * the page would have been set to NORMAL but we
2188 	 * just set it back to HEAD.
2189 	 *
2190 	 * How do you detect this? Well, if that happened
2191 	 * the tail page would have moved.
2192 	 */
2193 	if (ret == RB_PAGE_NORMAL) {
2194 		/*
2195 		 * If the tail had moved passed next, then we need
2196 		 * to reset the pointer.
2197 		 */
2198 		if (cpu_buffer->tail_page != tail_page &&
2199 		    cpu_buffer->tail_page != next_page)
2200 			rb_head_page_set_normal(cpu_buffer, new_head,
2201 						next_page,
2202 						RB_PAGE_HEAD);
2203 	}
2204 
2205 	/*
2206 	 * If this was the outer most commit (the one that
2207 	 * changed the original pointer from HEAD to UPDATE),
2208 	 * then it is up to us to reset it to NORMAL.
2209 	 */
2210 	if (type == RB_PAGE_HEAD) {
2211 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2212 					      tail_page,
2213 					      RB_PAGE_UPDATE);
2214 		if (RB_WARN_ON(cpu_buffer,
2215 			       ret != RB_PAGE_UPDATE))
2216 			return -1;
2217 	}
2218 
2219 	return 0;
2220 }
2221 
rb_calculate_event_length(unsigned length)2222 static unsigned rb_calculate_event_length(unsigned length)
2223 {
2224 	struct ring_buffer_event event; /* Used only for sizeof array */
2225 
2226 	/* zero length can cause confusions */
2227 	if (!length)
2228 		length = 1;
2229 
2230 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2231 		length += sizeof(event.array[0]);
2232 
2233 	length += RB_EVNT_HDR_SIZE;
2234 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2235 
2236 	return length;
2237 }
2238 
2239 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,unsigned long tail,unsigned long length)2240 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2241 	      struct buffer_page *tail_page,
2242 	      unsigned long tail, unsigned long length)
2243 {
2244 	struct ring_buffer_event *event;
2245 
2246 	/*
2247 	 * Only the event that crossed the page boundary
2248 	 * must fill the old tail_page with padding.
2249 	 */
2250 	if (tail >= BUF_PAGE_SIZE) {
2251 		/*
2252 		 * If the page was filled, then we still need
2253 		 * to update the real_end. Reset it to zero
2254 		 * and the reader will ignore it.
2255 		 */
2256 		if (tail == BUF_PAGE_SIZE)
2257 			tail_page->real_end = 0;
2258 
2259 		local_sub(length, &tail_page->write);
2260 		return;
2261 	}
2262 
2263 	event = __rb_page_index(tail_page, tail);
2264 	kmemcheck_annotate_bitfield(event, bitfield);
2265 
2266 	/* account for padding bytes */
2267 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2268 
2269 	/*
2270 	 * Save the original length to the meta data.
2271 	 * This will be used by the reader to add lost event
2272 	 * counter.
2273 	 */
2274 	tail_page->real_end = tail;
2275 
2276 	/*
2277 	 * If this event is bigger than the minimum size, then
2278 	 * we need to be careful that we don't subtract the
2279 	 * write counter enough to allow another writer to slip
2280 	 * in on this page.
2281 	 * We put in a discarded commit instead, to make sure
2282 	 * that this space is not used again.
2283 	 *
2284 	 * If we are less than the minimum size, we don't need to
2285 	 * worry about it.
2286 	 */
2287 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2288 		/* No room for any events */
2289 
2290 		/* Mark the rest of the page with padding */
2291 		rb_event_set_padding(event);
2292 
2293 		/* Set the write back to the previous setting */
2294 		local_sub(length, &tail_page->write);
2295 		return;
2296 	}
2297 
2298 	/* Put in a discarded event */
2299 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2300 	event->type_len = RINGBUF_TYPE_PADDING;
2301 	/* time delta must be non zero */
2302 	event->time_delta = 1;
2303 
2304 	/* Set write to end of buffer */
2305 	length = (tail + length) - BUF_PAGE_SIZE;
2306 	local_sub(length, &tail_page->write);
2307 }
2308 
2309 /*
2310  * This is the slow path, force gcc not to inline it.
2311  */
2312 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,unsigned long tail,struct buffer_page * tail_page,u64 ts)2313 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2314 	     unsigned long length, unsigned long tail,
2315 	     struct buffer_page *tail_page, u64 ts)
2316 {
2317 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2318 	struct ring_buffer *buffer = cpu_buffer->buffer;
2319 	struct buffer_page *next_page;
2320 	int ret;
2321 
2322 	next_page = tail_page;
2323 
2324 	rb_inc_page(cpu_buffer, &next_page);
2325 
2326 	/*
2327 	 * If for some reason, we had an interrupt storm that made
2328 	 * it all the way around the buffer, bail, and warn
2329 	 * about it.
2330 	 */
2331 	if (unlikely(next_page == commit_page)) {
2332 		local_inc(&cpu_buffer->commit_overrun);
2333 		goto out_reset;
2334 	}
2335 
2336 	/*
2337 	 * This is where the fun begins!
2338 	 *
2339 	 * We are fighting against races between a reader that
2340 	 * could be on another CPU trying to swap its reader
2341 	 * page with the buffer head.
2342 	 *
2343 	 * We are also fighting against interrupts coming in and
2344 	 * moving the head or tail on us as well.
2345 	 *
2346 	 * If the next page is the head page then we have filled
2347 	 * the buffer, unless the commit page is still on the
2348 	 * reader page.
2349 	 */
2350 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2351 
2352 		/*
2353 		 * If the commit is not on the reader page, then
2354 		 * move the header page.
2355 		 */
2356 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2357 			/*
2358 			 * If we are not in overwrite mode,
2359 			 * this is easy, just stop here.
2360 			 */
2361 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2362 				local_inc(&cpu_buffer->dropped_events);
2363 				goto out_reset;
2364 			}
2365 
2366 			ret = rb_handle_head_page(cpu_buffer,
2367 						  tail_page,
2368 						  next_page);
2369 			if (ret < 0)
2370 				goto out_reset;
2371 			if (ret)
2372 				goto out_again;
2373 		} else {
2374 			/*
2375 			 * We need to be careful here too. The
2376 			 * commit page could still be on the reader
2377 			 * page. We could have a small buffer, and
2378 			 * have filled up the buffer with events
2379 			 * from interrupts and such, and wrapped.
2380 			 *
2381 			 * Note, if the tail page is also the on the
2382 			 * reader_page, we let it move out.
2383 			 */
2384 			if (unlikely((cpu_buffer->commit_page !=
2385 				      cpu_buffer->tail_page) &&
2386 				     (cpu_buffer->commit_page ==
2387 				      cpu_buffer->reader_page))) {
2388 				local_inc(&cpu_buffer->commit_overrun);
2389 				goto out_reset;
2390 			}
2391 		}
2392 	}
2393 
2394 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2395 	if (ret) {
2396 		/*
2397 		 * Nested commits always have zero deltas, so
2398 		 * just reread the time stamp
2399 		 */
2400 		ts = rb_time_stamp(buffer);
2401 		next_page->page->time_stamp = ts;
2402 	}
2403 
2404  out_again:
2405 
2406 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2407 
2408 	/* fail and let the caller try again */
2409 	return ERR_PTR(-EAGAIN);
2410 
2411  out_reset:
2412 	/* reset write */
2413 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2414 
2415 	return NULL;
2416 }
2417 
2418 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,u64 ts,u64 delta,int add_timestamp)2419 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2420 		  unsigned long length, u64 ts,
2421 		  u64 delta, int add_timestamp)
2422 {
2423 	struct buffer_page *tail_page;
2424 	struct ring_buffer_event *event;
2425 	unsigned long tail, write;
2426 
2427 	/*
2428 	 * If the time delta since the last event is too big to
2429 	 * hold in the time field of the event, then we append a
2430 	 * TIME EXTEND event ahead of the data event.
2431 	 */
2432 	if (unlikely(add_timestamp))
2433 		length += RB_LEN_TIME_EXTEND;
2434 
2435 	tail_page = cpu_buffer->tail_page;
2436 	write = local_add_return(length, &tail_page->write);
2437 
2438 	/* set write to only the index of the write */
2439 	write &= RB_WRITE_MASK;
2440 	tail = write - length;
2441 
2442 	/*
2443 	 * If this is the first commit on the page, then it has the same
2444 	 * timestamp as the page itself.
2445 	 */
2446 	if (!tail)
2447 		delta = 0;
2448 
2449 	/* See if we shot pass the end of this buffer page */
2450 	if (unlikely(write > BUF_PAGE_SIZE))
2451 		return rb_move_tail(cpu_buffer, length, tail,
2452 				    tail_page, ts);
2453 
2454 	/* We reserved something on the buffer */
2455 
2456 	event = __rb_page_index(tail_page, tail);
2457 	kmemcheck_annotate_bitfield(event, bitfield);
2458 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2459 
2460 	local_inc(&tail_page->entries);
2461 
2462 	/*
2463 	 * If this is the first commit on the page, then update
2464 	 * its timestamp.
2465 	 */
2466 	if (!tail)
2467 		tail_page->page->time_stamp = ts;
2468 
2469 	/* account for these added bytes */
2470 	local_add(length, &cpu_buffer->entries_bytes);
2471 
2472 	return event;
2473 }
2474 
2475 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2476 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2477 		  struct ring_buffer_event *event)
2478 {
2479 	unsigned long new_index, old_index;
2480 	struct buffer_page *bpage;
2481 	unsigned long index;
2482 	unsigned long addr;
2483 
2484 	new_index = rb_event_index(event);
2485 	old_index = new_index + rb_event_ts_length(event);
2486 	addr = (unsigned long)event;
2487 	addr &= PAGE_MASK;
2488 
2489 	bpage = cpu_buffer->tail_page;
2490 
2491 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2492 		unsigned long write_mask =
2493 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2494 		unsigned long event_length = rb_event_length(event);
2495 		/*
2496 		 * This is on the tail page. It is possible that
2497 		 * a write could come in and move the tail page
2498 		 * and write to the next page. That is fine
2499 		 * because we just shorten what is on this page.
2500 		 */
2501 		old_index += write_mask;
2502 		new_index += write_mask;
2503 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2504 		if (index == old_index) {
2505 			/* update counters */
2506 			local_sub(event_length, &cpu_buffer->entries_bytes);
2507 			return 1;
2508 		}
2509 	}
2510 
2511 	/* could not discard */
2512 	return 0;
2513 }
2514 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2515 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2516 {
2517 	local_inc(&cpu_buffer->committing);
2518 	local_inc(&cpu_buffer->commits);
2519 }
2520 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2521 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2522 {
2523 	unsigned long commits;
2524 
2525 	if (RB_WARN_ON(cpu_buffer,
2526 		       !local_read(&cpu_buffer->committing)))
2527 		return;
2528 
2529  again:
2530 	commits = local_read(&cpu_buffer->commits);
2531 	/* synchronize with interrupts */
2532 	barrier();
2533 	if (local_read(&cpu_buffer->committing) == 1)
2534 		rb_set_commit_to_write(cpu_buffer);
2535 
2536 	local_dec(&cpu_buffer->committing);
2537 
2538 	/* synchronize with interrupts */
2539 	barrier();
2540 
2541 	/*
2542 	 * Need to account for interrupts coming in between the
2543 	 * updating of the commit page and the clearing of the
2544 	 * committing counter.
2545 	 */
2546 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2547 	    !local_read(&cpu_buffer->committing)) {
2548 		local_inc(&cpu_buffer->committing);
2549 		goto again;
2550 	}
2551 }
2552 
2553 static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2554 rb_reserve_next_event(struct ring_buffer *buffer,
2555 		      struct ring_buffer_per_cpu *cpu_buffer,
2556 		      unsigned long length)
2557 {
2558 	struct ring_buffer_event *event;
2559 	u64 ts, delta;
2560 	int nr_loops = 0;
2561 	int add_timestamp;
2562 	u64 diff;
2563 
2564 	rb_start_commit(cpu_buffer);
2565 
2566 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2567 	/*
2568 	 * Due to the ability to swap a cpu buffer from a buffer
2569 	 * it is possible it was swapped before we committed.
2570 	 * (committing stops a swap). We check for it here and
2571 	 * if it happened, we have to fail the write.
2572 	 */
2573 	barrier();
2574 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2575 		local_dec(&cpu_buffer->committing);
2576 		local_dec(&cpu_buffer->commits);
2577 		return NULL;
2578 	}
2579 #endif
2580 
2581 	length = rb_calculate_event_length(length);
2582  again:
2583 	add_timestamp = 0;
2584 	delta = 0;
2585 
2586 	/*
2587 	 * We allow for interrupts to reenter here and do a trace.
2588 	 * If one does, it will cause this original code to loop
2589 	 * back here. Even with heavy interrupts happening, this
2590 	 * should only happen a few times in a row. If this happens
2591 	 * 1000 times in a row, there must be either an interrupt
2592 	 * storm or we have something buggy.
2593 	 * Bail!
2594 	 */
2595 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2596 		goto out_fail;
2597 
2598 	ts = rb_time_stamp(cpu_buffer->buffer);
2599 	diff = ts - cpu_buffer->write_stamp;
2600 
2601 	/* make sure this diff is calculated here */
2602 	barrier();
2603 
2604 	/* Did the write stamp get updated already? */
2605 	if (likely(ts >= cpu_buffer->write_stamp)) {
2606 		delta = diff;
2607 		if (unlikely(test_time_stamp(delta))) {
2608 			int local_clock_stable = 1;
2609 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2610 			local_clock_stable = sched_clock_stable();
2611 #endif
2612 			WARN_ONCE(delta > (1ULL << 59),
2613 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2614 				  (unsigned long long)delta,
2615 				  (unsigned long long)ts,
2616 				  (unsigned long long)cpu_buffer->write_stamp,
2617 				  local_clock_stable ? "" :
2618 				  "If you just came from a suspend/resume,\n"
2619 				  "please switch to the trace global clock:\n"
2620 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2621 			add_timestamp = 1;
2622 		}
2623 	}
2624 
2625 	event = __rb_reserve_next(cpu_buffer, length, ts,
2626 				  delta, add_timestamp);
2627 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2628 		goto again;
2629 
2630 	if (!event)
2631 		goto out_fail;
2632 
2633 	return event;
2634 
2635  out_fail:
2636 	rb_end_commit(cpu_buffer);
2637 	return NULL;
2638 }
2639 
2640 #ifdef CONFIG_TRACING
2641 
2642 /*
2643  * The lock and unlock are done within a preempt disable section.
2644  * The current_context per_cpu variable can only be modified
2645  * by the current task between lock and unlock. But it can
2646  * be modified more than once via an interrupt. To pass this
2647  * information from the lock to the unlock without having to
2648  * access the 'in_interrupt()' functions again (which do show
2649  * a bit of overhead in something as critical as function tracing,
2650  * we use a bitmask trick.
2651  *
2652  *  bit 0 =  NMI context
2653  *  bit 1 =  IRQ context
2654  *  bit 2 =  SoftIRQ context
2655  *  bit 3 =  normal context.
2656  *
2657  * This works because this is the order of contexts that can
2658  * preempt other contexts. A SoftIRQ never preempts an IRQ
2659  * context.
2660  *
2661  * When the context is determined, the corresponding bit is
2662  * checked and set (if it was set, then a recursion of that context
2663  * happened).
2664  *
2665  * On unlock, we need to clear this bit. To do so, just subtract
2666  * 1 from the current_context and AND it to itself.
2667  *
2668  * (binary)
2669  *  101 - 1 = 100
2670  *  101 & 100 = 100 (clearing bit zero)
2671  *
2672  *  1010 - 1 = 1001
2673  *  1010 & 1001 = 1000 (clearing bit 1)
2674  *
2675  * The least significant bit can be cleared this way, and it
2676  * just so happens that it is the same bit corresponding to
2677  * the current context.
2678  */
2679 
2680 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)2681 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2682 {
2683 	unsigned int val = cpu_buffer->current_context;
2684 	int bit;
2685 
2686 	if (in_interrupt()) {
2687 		if (in_nmi())
2688 			bit = 0;
2689 		else if (in_irq())
2690 			bit = 1;
2691 		else
2692 			bit = 2;
2693 	} else
2694 		bit = 3;
2695 
2696 	if (unlikely(val & (1 << bit)))
2697 		return 1;
2698 
2699 	val |= (1 << bit);
2700 	cpu_buffer->current_context = val;
2701 
2702 	return 0;
2703 }
2704 
2705 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)2706 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2707 {
2708 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2709 }
2710 
2711 #else
2712 
2713 #define trace_recursive_lock(cpu_buffer)	(0)
2714 #define trace_recursive_unlock(cpu_buffer)	do { } while (0)
2715 
2716 #endif
2717 
2718 /**
2719  * ring_buffer_lock_reserve - reserve a part of the buffer
2720  * @buffer: the ring buffer to reserve from
2721  * @length: the length of the data to reserve (excluding event header)
2722  *
2723  * Returns a reseverd event on the ring buffer to copy directly to.
2724  * The user of this interface will need to get the body to write into
2725  * and can use the ring_buffer_event_data() interface.
2726  *
2727  * The length is the length of the data needed, not the event length
2728  * which also includes the event header.
2729  *
2730  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2731  * If NULL is returned, then nothing has been allocated or locked.
2732  */
2733 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2734 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2735 {
2736 	struct ring_buffer_per_cpu *cpu_buffer;
2737 	struct ring_buffer_event *event;
2738 	int cpu;
2739 
2740 	if (ring_buffer_flags != RB_BUFFERS_ON)
2741 		return NULL;
2742 
2743 	/* If we are tracing schedule, we don't want to recurse */
2744 	preempt_disable_notrace();
2745 
2746 	if (unlikely(atomic_read(&buffer->record_disabled)))
2747 		goto out;
2748 
2749 	cpu = raw_smp_processor_id();
2750 
2751 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2752 		goto out;
2753 
2754 	cpu_buffer = buffer->buffers[cpu];
2755 
2756 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2757 		goto out;
2758 
2759 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2760 		goto out;
2761 
2762 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2763 		goto out;
2764 
2765 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2766 	if (!event)
2767 		goto out_unlock;
2768 
2769 	return event;
2770 
2771  out_unlock:
2772 	trace_recursive_unlock(cpu_buffer);
2773  out:
2774 	preempt_enable_notrace();
2775 	return NULL;
2776 }
2777 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2778 
2779 static void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2780 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2781 		      struct ring_buffer_event *event)
2782 {
2783 	u64 delta;
2784 
2785 	/*
2786 	 * The event first in the commit queue updates the
2787 	 * time stamp.
2788 	 */
2789 	if (rb_event_is_commit(cpu_buffer, event)) {
2790 		/*
2791 		 * A commit event that is first on a page
2792 		 * updates the write timestamp with the page stamp
2793 		 */
2794 		if (!rb_event_index(event))
2795 			cpu_buffer->write_stamp =
2796 				cpu_buffer->commit_page->page->time_stamp;
2797 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2798 			delta = event->array[0];
2799 			delta <<= TS_SHIFT;
2800 			delta += event->time_delta;
2801 			cpu_buffer->write_stamp += delta;
2802 		} else
2803 			cpu_buffer->write_stamp += event->time_delta;
2804 	}
2805 }
2806 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2807 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2808 		      struct ring_buffer_event *event)
2809 {
2810 	local_inc(&cpu_buffer->entries);
2811 	rb_update_write_stamp(cpu_buffer, event);
2812 	rb_end_commit(cpu_buffer);
2813 }
2814 
2815 static __always_inline void
rb_wakeups(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2816 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2817 {
2818 	bool pagebusy;
2819 
2820 	if (buffer->irq_work.waiters_pending) {
2821 		buffer->irq_work.waiters_pending = false;
2822 		/* irq_work_queue() supplies it's own memory barriers */
2823 		irq_work_queue(&buffer->irq_work.work);
2824 	}
2825 
2826 	if (cpu_buffer->irq_work.waiters_pending) {
2827 		cpu_buffer->irq_work.waiters_pending = false;
2828 		/* irq_work_queue() supplies it's own memory barriers */
2829 		irq_work_queue(&cpu_buffer->irq_work.work);
2830 	}
2831 
2832 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2833 
2834 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2835 		cpu_buffer->irq_work.wakeup_full = true;
2836 		cpu_buffer->irq_work.full_waiters_pending = false;
2837 		/* irq_work_queue() supplies it's own memory barriers */
2838 		irq_work_queue(&cpu_buffer->irq_work.work);
2839 	}
2840 }
2841 
2842 /**
2843  * ring_buffer_unlock_commit - commit a reserved
2844  * @buffer: The buffer to commit to
2845  * @event: The event pointer to commit.
2846  *
2847  * This commits the data to the ring buffer, and releases any locks held.
2848  *
2849  * Must be paired with ring_buffer_lock_reserve.
2850  */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2851 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2852 			      struct ring_buffer_event *event)
2853 {
2854 	struct ring_buffer_per_cpu *cpu_buffer;
2855 	int cpu = raw_smp_processor_id();
2856 
2857 	cpu_buffer = buffer->buffers[cpu];
2858 
2859 	rb_commit(cpu_buffer, event);
2860 
2861 	rb_wakeups(buffer, cpu_buffer);
2862 
2863 	trace_recursive_unlock(cpu_buffer);
2864 
2865 	preempt_enable_notrace();
2866 
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2870 
rb_event_discard(struct ring_buffer_event * event)2871 static inline void rb_event_discard(struct ring_buffer_event *event)
2872 {
2873 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2874 		event = skip_time_extend(event);
2875 
2876 	/* array[0] holds the actual length for the discarded event */
2877 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2878 	event->type_len = RINGBUF_TYPE_PADDING;
2879 	/* time delta must be non zero */
2880 	if (!event->time_delta)
2881 		event->time_delta = 1;
2882 }
2883 
2884 /*
2885  * Decrement the entries to the page that an event is on.
2886  * The event does not even need to exist, only the pointer
2887  * to the page it is on. This may only be called before the commit
2888  * takes place.
2889  */
2890 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2891 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2892 		   struct ring_buffer_event *event)
2893 {
2894 	unsigned long addr = (unsigned long)event;
2895 	struct buffer_page *bpage = cpu_buffer->commit_page;
2896 	struct buffer_page *start;
2897 
2898 	addr &= PAGE_MASK;
2899 
2900 	/* Do the likely case first */
2901 	if (likely(bpage->page == (void *)addr)) {
2902 		local_dec(&bpage->entries);
2903 		return;
2904 	}
2905 
2906 	/*
2907 	 * Because the commit page may be on the reader page we
2908 	 * start with the next page and check the end loop there.
2909 	 */
2910 	rb_inc_page(cpu_buffer, &bpage);
2911 	start = bpage;
2912 	do {
2913 		if (bpage->page == (void *)addr) {
2914 			local_dec(&bpage->entries);
2915 			return;
2916 		}
2917 		rb_inc_page(cpu_buffer, &bpage);
2918 	} while (bpage != start);
2919 
2920 	/* commit not part of this buffer?? */
2921 	RB_WARN_ON(cpu_buffer, 1);
2922 }
2923 
2924 /**
2925  * ring_buffer_commit_discard - discard an event that has not been committed
2926  * @buffer: the ring buffer
2927  * @event: non committed event to discard
2928  *
2929  * Sometimes an event that is in the ring buffer needs to be ignored.
2930  * This function lets the user discard an event in the ring buffer
2931  * and then that event will not be read later.
2932  *
2933  * This function only works if it is called before the the item has been
2934  * committed. It will try to free the event from the ring buffer
2935  * if another event has not been added behind it.
2936  *
2937  * If another event has been added behind it, it will set the event
2938  * up as discarded, and perform the commit.
2939  *
2940  * If this function is called, do not call ring_buffer_unlock_commit on
2941  * the event.
2942  */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2943 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2944 				struct ring_buffer_event *event)
2945 {
2946 	struct ring_buffer_per_cpu *cpu_buffer;
2947 	int cpu;
2948 
2949 	/* The event is discarded regardless */
2950 	rb_event_discard(event);
2951 
2952 	cpu = smp_processor_id();
2953 	cpu_buffer = buffer->buffers[cpu];
2954 
2955 	/*
2956 	 * This must only be called if the event has not been
2957 	 * committed yet. Thus we can assume that preemption
2958 	 * is still disabled.
2959 	 */
2960 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2961 
2962 	rb_decrement_entry(cpu_buffer, event);
2963 	if (rb_try_to_discard(cpu_buffer, event))
2964 		goto out;
2965 
2966 	/*
2967 	 * The commit is still visible by the reader, so we
2968 	 * must still update the timestamp.
2969 	 */
2970 	rb_update_write_stamp(cpu_buffer, event);
2971  out:
2972 	rb_end_commit(cpu_buffer);
2973 
2974 	trace_recursive_unlock(cpu_buffer);
2975 
2976 	preempt_enable_notrace();
2977 
2978 }
2979 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2980 
2981 /**
2982  * ring_buffer_write - write data to the buffer without reserving
2983  * @buffer: The ring buffer to write to.
2984  * @length: The length of the data being written (excluding the event header)
2985  * @data: The data to write to the buffer.
2986  *
2987  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2988  * one function. If you already have the data to write to the buffer, it
2989  * may be easier to simply call this function.
2990  *
2991  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2992  * and not the length of the event which would hold the header.
2993  */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)2994 int ring_buffer_write(struct ring_buffer *buffer,
2995 		      unsigned long length,
2996 		      void *data)
2997 {
2998 	struct ring_buffer_per_cpu *cpu_buffer;
2999 	struct ring_buffer_event *event;
3000 	void *body;
3001 	int ret = -EBUSY;
3002 	int cpu;
3003 
3004 	if (ring_buffer_flags != RB_BUFFERS_ON)
3005 		return -EBUSY;
3006 
3007 	preempt_disable_notrace();
3008 
3009 	if (atomic_read(&buffer->record_disabled))
3010 		goto out;
3011 
3012 	cpu = raw_smp_processor_id();
3013 
3014 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3015 		goto out;
3016 
3017 	cpu_buffer = buffer->buffers[cpu];
3018 
3019 	if (atomic_read(&cpu_buffer->record_disabled))
3020 		goto out;
3021 
3022 	if (length > BUF_MAX_DATA_SIZE)
3023 		goto out;
3024 
3025 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3026 	if (!event)
3027 		goto out;
3028 
3029 	body = rb_event_data(event);
3030 
3031 	memcpy(body, data, length);
3032 
3033 	rb_commit(cpu_buffer, event);
3034 
3035 	rb_wakeups(buffer, cpu_buffer);
3036 
3037 	ret = 0;
3038  out:
3039 	preempt_enable_notrace();
3040 
3041 	return ret;
3042 }
3043 EXPORT_SYMBOL_GPL(ring_buffer_write);
3044 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3045 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3046 {
3047 	struct buffer_page *reader = cpu_buffer->reader_page;
3048 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3049 	struct buffer_page *commit = cpu_buffer->commit_page;
3050 
3051 	/* In case of error, head will be NULL */
3052 	if (unlikely(!head))
3053 		return 1;
3054 
3055 	return reader->read == rb_page_commit(reader) &&
3056 		(commit == reader ||
3057 		 (commit == head &&
3058 		  head->read == rb_page_commit(commit)));
3059 }
3060 
3061 /**
3062  * ring_buffer_record_disable - stop all writes into the buffer
3063  * @buffer: The ring buffer to stop writes to.
3064  *
3065  * This prevents all writes to the buffer. Any attempt to write
3066  * to the buffer after this will fail and return NULL.
3067  *
3068  * The caller should call synchronize_sched() after this.
3069  */
ring_buffer_record_disable(struct ring_buffer * buffer)3070 void ring_buffer_record_disable(struct ring_buffer *buffer)
3071 {
3072 	atomic_inc(&buffer->record_disabled);
3073 }
3074 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3075 
3076 /**
3077  * ring_buffer_record_enable - enable writes to the buffer
3078  * @buffer: The ring buffer to enable writes
3079  *
3080  * Note, multiple disables will need the same number of enables
3081  * to truly enable the writing (much like preempt_disable).
3082  */
ring_buffer_record_enable(struct ring_buffer * buffer)3083 void ring_buffer_record_enable(struct ring_buffer *buffer)
3084 {
3085 	atomic_dec(&buffer->record_disabled);
3086 }
3087 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3088 
3089 /**
3090  * ring_buffer_record_off - stop all writes into the buffer
3091  * @buffer: The ring buffer to stop writes to.
3092  *
3093  * This prevents all writes to the buffer. Any attempt to write
3094  * to the buffer after this will fail and return NULL.
3095  *
3096  * This is different than ring_buffer_record_disable() as
3097  * it works like an on/off switch, where as the disable() version
3098  * must be paired with a enable().
3099  */
ring_buffer_record_off(struct ring_buffer * buffer)3100 void ring_buffer_record_off(struct ring_buffer *buffer)
3101 {
3102 	unsigned int rd;
3103 	unsigned int new_rd;
3104 
3105 	do {
3106 		rd = atomic_read(&buffer->record_disabled);
3107 		new_rd = rd | RB_BUFFER_OFF;
3108 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3109 }
3110 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3111 
3112 /**
3113  * ring_buffer_record_on - restart writes into the buffer
3114  * @buffer: The ring buffer to start writes to.
3115  *
3116  * This enables all writes to the buffer that was disabled by
3117  * ring_buffer_record_off().
3118  *
3119  * This is different than ring_buffer_record_enable() as
3120  * it works like an on/off switch, where as the enable() version
3121  * must be paired with a disable().
3122  */
ring_buffer_record_on(struct ring_buffer * buffer)3123 void ring_buffer_record_on(struct ring_buffer *buffer)
3124 {
3125 	unsigned int rd;
3126 	unsigned int new_rd;
3127 
3128 	do {
3129 		rd = atomic_read(&buffer->record_disabled);
3130 		new_rd = rd & ~RB_BUFFER_OFF;
3131 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3132 }
3133 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3134 
3135 /**
3136  * ring_buffer_record_is_on - return true if the ring buffer can write
3137  * @buffer: The ring buffer to see if write is enabled
3138  *
3139  * Returns true if the ring buffer is in a state that it accepts writes.
3140  */
ring_buffer_record_is_on(struct ring_buffer * buffer)3141 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3142 {
3143 	return !atomic_read(&buffer->record_disabled);
3144 }
3145 
3146 /**
3147  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3148  * @buffer: The ring buffer to stop writes to.
3149  * @cpu: The CPU buffer to stop
3150  *
3151  * This prevents all writes to the buffer. Any attempt to write
3152  * to the buffer after this will fail and return NULL.
3153  *
3154  * The caller should call synchronize_sched() after this.
3155  */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)3156 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3157 {
3158 	struct ring_buffer_per_cpu *cpu_buffer;
3159 
3160 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3161 		return;
3162 
3163 	cpu_buffer = buffer->buffers[cpu];
3164 	atomic_inc(&cpu_buffer->record_disabled);
3165 }
3166 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3167 
3168 /**
3169  * ring_buffer_record_enable_cpu - enable writes to the buffer
3170  * @buffer: The ring buffer to enable writes
3171  * @cpu: The CPU to enable.
3172  *
3173  * Note, multiple disables will need the same number of enables
3174  * to truly enable the writing (much like preempt_disable).
3175  */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)3176 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3177 {
3178 	struct ring_buffer_per_cpu *cpu_buffer;
3179 
3180 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3181 		return;
3182 
3183 	cpu_buffer = buffer->buffers[cpu];
3184 	atomic_dec(&cpu_buffer->record_disabled);
3185 }
3186 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3187 
3188 /*
3189  * The total entries in the ring buffer is the running counter
3190  * of entries entered into the ring buffer, minus the sum of
3191  * the entries read from the ring buffer and the number of
3192  * entries that were overwritten.
3193  */
3194 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3195 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3196 {
3197 	return local_read(&cpu_buffer->entries) -
3198 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3199 }
3200 
3201 /**
3202  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3203  * @buffer: The ring buffer
3204  * @cpu: The per CPU buffer to read from.
3205  */
ring_buffer_oldest_event_ts(struct ring_buffer * buffer,int cpu)3206 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3207 {
3208 	unsigned long flags;
3209 	struct ring_buffer_per_cpu *cpu_buffer;
3210 	struct buffer_page *bpage;
3211 	u64 ret = 0;
3212 
3213 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3214 		return 0;
3215 
3216 	cpu_buffer = buffer->buffers[cpu];
3217 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3218 	/*
3219 	 * if the tail is on reader_page, oldest time stamp is on the reader
3220 	 * page
3221 	 */
3222 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3223 		bpage = cpu_buffer->reader_page;
3224 	else
3225 		bpage = rb_set_head_page(cpu_buffer);
3226 	if (bpage)
3227 		ret = bpage->page->time_stamp;
3228 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3229 
3230 	return ret;
3231 }
3232 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3233 
3234 /**
3235  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3236  * @buffer: The ring buffer
3237  * @cpu: The per CPU buffer to read from.
3238  */
ring_buffer_bytes_cpu(struct ring_buffer * buffer,int cpu)3239 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3240 {
3241 	struct ring_buffer_per_cpu *cpu_buffer;
3242 	unsigned long ret;
3243 
3244 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3245 		return 0;
3246 
3247 	cpu_buffer = buffer->buffers[cpu];
3248 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3249 
3250 	return ret;
3251 }
3252 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3253 
3254 /**
3255  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3256  * @buffer: The ring buffer
3257  * @cpu: The per CPU buffer to get the entries from.
3258  */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)3259 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3260 {
3261 	struct ring_buffer_per_cpu *cpu_buffer;
3262 
3263 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264 		return 0;
3265 
3266 	cpu_buffer = buffer->buffers[cpu];
3267 
3268 	return rb_num_of_entries(cpu_buffer);
3269 }
3270 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3271 
3272 /**
3273  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3274  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3275  * @buffer: The ring buffer
3276  * @cpu: The per CPU buffer to get the number of overruns from
3277  */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)3278 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3279 {
3280 	struct ring_buffer_per_cpu *cpu_buffer;
3281 	unsigned long ret;
3282 
3283 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3284 		return 0;
3285 
3286 	cpu_buffer = buffer->buffers[cpu];
3287 	ret = local_read(&cpu_buffer->overrun);
3288 
3289 	return ret;
3290 }
3291 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3292 
3293 /**
3294  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3295  * commits failing due to the buffer wrapping around while there are uncommitted
3296  * events, such as during an interrupt storm.
3297  * @buffer: The ring buffer
3298  * @cpu: The per CPU buffer to get the number of overruns from
3299  */
3300 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)3301 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3302 {
3303 	struct ring_buffer_per_cpu *cpu_buffer;
3304 	unsigned long ret;
3305 
3306 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307 		return 0;
3308 
3309 	cpu_buffer = buffer->buffers[cpu];
3310 	ret = local_read(&cpu_buffer->commit_overrun);
3311 
3312 	return ret;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3315 
3316 /**
3317  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3318  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3319  * @buffer: The ring buffer
3320  * @cpu: The per CPU buffer to get the number of overruns from
3321  */
3322 unsigned long
ring_buffer_dropped_events_cpu(struct ring_buffer * buffer,int cpu)3323 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3324 {
3325 	struct ring_buffer_per_cpu *cpu_buffer;
3326 	unsigned long ret;
3327 
3328 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3329 		return 0;
3330 
3331 	cpu_buffer = buffer->buffers[cpu];
3332 	ret = local_read(&cpu_buffer->dropped_events);
3333 
3334 	return ret;
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3337 
3338 /**
3339  * ring_buffer_read_events_cpu - get the number of events successfully read
3340  * @buffer: The ring buffer
3341  * @cpu: The per CPU buffer to get the number of events read
3342  */
3343 unsigned long
ring_buffer_read_events_cpu(struct ring_buffer * buffer,int cpu)3344 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3345 {
3346 	struct ring_buffer_per_cpu *cpu_buffer;
3347 
3348 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3349 		return 0;
3350 
3351 	cpu_buffer = buffer->buffers[cpu];
3352 	return cpu_buffer->read;
3353 }
3354 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3355 
3356 /**
3357  * ring_buffer_entries - get the number of entries in a buffer
3358  * @buffer: The ring buffer
3359  *
3360  * Returns the total number of entries in the ring buffer
3361  * (all CPU entries)
3362  */
ring_buffer_entries(struct ring_buffer * buffer)3363 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3364 {
3365 	struct ring_buffer_per_cpu *cpu_buffer;
3366 	unsigned long entries = 0;
3367 	int cpu;
3368 
3369 	/* if you care about this being correct, lock the buffer */
3370 	for_each_buffer_cpu(buffer, cpu) {
3371 		cpu_buffer = buffer->buffers[cpu];
3372 		entries += rb_num_of_entries(cpu_buffer);
3373 	}
3374 
3375 	return entries;
3376 }
3377 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3378 
3379 /**
3380  * ring_buffer_overruns - get the number of overruns in buffer
3381  * @buffer: The ring buffer
3382  *
3383  * Returns the total number of overruns in the ring buffer
3384  * (all CPU entries)
3385  */
ring_buffer_overruns(struct ring_buffer * buffer)3386 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3387 {
3388 	struct ring_buffer_per_cpu *cpu_buffer;
3389 	unsigned long overruns = 0;
3390 	int cpu;
3391 
3392 	/* if you care about this being correct, lock the buffer */
3393 	for_each_buffer_cpu(buffer, cpu) {
3394 		cpu_buffer = buffer->buffers[cpu];
3395 		overruns += local_read(&cpu_buffer->overrun);
3396 	}
3397 
3398 	return overruns;
3399 }
3400 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3401 
rb_iter_reset(struct ring_buffer_iter * iter)3402 static void rb_iter_reset(struct ring_buffer_iter *iter)
3403 {
3404 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3405 
3406 	/* Iterator usage is expected to have record disabled */
3407 	iter->head_page = cpu_buffer->reader_page;
3408 	iter->head = cpu_buffer->reader_page->read;
3409 
3410 	iter->cache_reader_page = iter->head_page;
3411 	iter->cache_read = cpu_buffer->read;
3412 
3413 	if (iter->head)
3414 		iter->read_stamp = cpu_buffer->read_stamp;
3415 	else
3416 		iter->read_stamp = iter->head_page->page->time_stamp;
3417 }
3418 
3419 /**
3420  * ring_buffer_iter_reset - reset an iterator
3421  * @iter: The iterator to reset
3422  *
3423  * Resets the iterator, so that it will start from the beginning
3424  * again.
3425  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)3426 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3427 {
3428 	struct ring_buffer_per_cpu *cpu_buffer;
3429 	unsigned long flags;
3430 
3431 	if (!iter)
3432 		return;
3433 
3434 	cpu_buffer = iter->cpu_buffer;
3435 
3436 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3437 	rb_iter_reset(iter);
3438 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3439 }
3440 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3441 
3442 /**
3443  * ring_buffer_iter_empty - check if an iterator has no more to read
3444  * @iter: The iterator to check
3445  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)3446 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3447 {
3448 	struct ring_buffer_per_cpu *cpu_buffer;
3449 
3450 	cpu_buffer = iter->cpu_buffer;
3451 
3452 	return iter->head_page == cpu_buffer->commit_page &&
3453 		iter->head == rb_commit_index(cpu_buffer);
3454 }
3455 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3456 
3457 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3458 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3459 		     struct ring_buffer_event *event)
3460 {
3461 	u64 delta;
3462 
3463 	switch (event->type_len) {
3464 	case RINGBUF_TYPE_PADDING:
3465 		return;
3466 
3467 	case RINGBUF_TYPE_TIME_EXTEND:
3468 		delta = event->array[0];
3469 		delta <<= TS_SHIFT;
3470 		delta += event->time_delta;
3471 		cpu_buffer->read_stamp += delta;
3472 		return;
3473 
3474 	case RINGBUF_TYPE_TIME_STAMP:
3475 		/* FIXME: not implemented */
3476 		return;
3477 
3478 	case RINGBUF_TYPE_DATA:
3479 		cpu_buffer->read_stamp += event->time_delta;
3480 		return;
3481 
3482 	default:
3483 		BUG();
3484 	}
3485 	return;
3486 }
3487 
3488 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)3489 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3490 			  struct ring_buffer_event *event)
3491 {
3492 	u64 delta;
3493 
3494 	switch (event->type_len) {
3495 	case RINGBUF_TYPE_PADDING:
3496 		return;
3497 
3498 	case RINGBUF_TYPE_TIME_EXTEND:
3499 		delta = event->array[0];
3500 		delta <<= TS_SHIFT;
3501 		delta += event->time_delta;
3502 		iter->read_stamp += delta;
3503 		return;
3504 
3505 	case RINGBUF_TYPE_TIME_STAMP:
3506 		/* FIXME: not implemented */
3507 		return;
3508 
3509 	case RINGBUF_TYPE_DATA:
3510 		iter->read_stamp += event->time_delta;
3511 		return;
3512 
3513 	default:
3514 		BUG();
3515 	}
3516 	return;
3517 }
3518 
3519 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)3520 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3521 {
3522 	struct buffer_page *reader = NULL;
3523 	unsigned long overwrite;
3524 	unsigned long flags;
3525 	int nr_loops = 0;
3526 	int ret;
3527 
3528 	local_irq_save(flags);
3529 	arch_spin_lock(&cpu_buffer->lock);
3530 
3531  again:
3532 	/*
3533 	 * This should normally only loop twice. But because the
3534 	 * start of the reader inserts an empty page, it causes
3535 	 * a case where we will loop three times. There should be no
3536 	 * reason to loop four times (that I know of).
3537 	 */
3538 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3539 		reader = NULL;
3540 		goto out;
3541 	}
3542 
3543 	reader = cpu_buffer->reader_page;
3544 
3545 	/* If there's more to read, return this page */
3546 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3547 		goto out;
3548 
3549 	/* Never should we have an index greater than the size */
3550 	if (RB_WARN_ON(cpu_buffer,
3551 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3552 		goto out;
3553 
3554 	/* check if we caught up to the tail */
3555 	reader = NULL;
3556 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3557 		goto out;
3558 
3559 	/* Don't bother swapping if the ring buffer is empty */
3560 	if (rb_num_of_entries(cpu_buffer) == 0)
3561 		goto out;
3562 
3563 	/*
3564 	 * Reset the reader page to size zero.
3565 	 */
3566 	local_set(&cpu_buffer->reader_page->write, 0);
3567 	local_set(&cpu_buffer->reader_page->entries, 0);
3568 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3569 	cpu_buffer->reader_page->real_end = 0;
3570 
3571  spin:
3572 	/*
3573 	 * Splice the empty reader page into the list around the head.
3574 	 */
3575 	reader = rb_set_head_page(cpu_buffer);
3576 	if (!reader)
3577 		goto out;
3578 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3579 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3580 
3581 	/*
3582 	 * cpu_buffer->pages just needs to point to the buffer, it
3583 	 *  has no specific buffer page to point to. Lets move it out
3584 	 *  of our way so we don't accidentally swap it.
3585 	 */
3586 	cpu_buffer->pages = reader->list.prev;
3587 
3588 	/* The reader page will be pointing to the new head */
3589 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3590 
3591 	/*
3592 	 * We want to make sure we read the overruns after we set up our
3593 	 * pointers to the next object. The writer side does a
3594 	 * cmpxchg to cross pages which acts as the mb on the writer
3595 	 * side. Note, the reader will constantly fail the swap
3596 	 * while the writer is updating the pointers, so this
3597 	 * guarantees that the overwrite recorded here is the one we
3598 	 * want to compare with the last_overrun.
3599 	 */
3600 	smp_mb();
3601 	overwrite = local_read(&(cpu_buffer->overrun));
3602 
3603 	/*
3604 	 * Here's the tricky part.
3605 	 *
3606 	 * We need to move the pointer past the header page.
3607 	 * But we can only do that if a writer is not currently
3608 	 * moving it. The page before the header page has the
3609 	 * flag bit '1' set if it is pointing to the page we want.
3610 	 * but if the writer is in the process of moving it
3611 	 * than it will be '2' or already moved '0'.
3612 	 */
3613 
3614 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3615 
3616 	/*
3617 	 * If we did not convert it, then we must try again.
3618 	 */
3619 	if (!ret)
3620 		goto spin;
3621 
3622 	/*
3623 	 * Yeah! We succeeded in replacing the page.
3624 	 *
3625 	 * Now make the new head point back to the reader page.
3626 	 */
3627 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3628 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3629 
3630 	/* Finally update the reader page to the new head */
3631 	cpu_buffer->reader_page = reader;
3632 	rb_reset_reader_page(cpu_buffer);
3633 
3634 	if (overwrite != cpu_buffer->last_overrun) {
3635 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3636 		cpu_buffer->last_overrun = overwrite;
3637 	}
3638 
3639 	goto again;
3640 
3641  out:
3642 	arch_spin_unlock(&cpu_buffer->lock);
3643 	local_irq_restore(flags);
3644 
3645 	return reader;
3646 }
3647 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)3648 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3649 {
3650 	struct ring_buffer_event *event;
3651 	struct buffer_page *reader;
3652 	unsigned length;
3653 
3654 	reader = rb_get_reader_page(cpu_buffer);
3655 
3656 	/* This function should not be called when buffer is empty */
3657 	if (RB_WARN_ON(cpu_buffer, !reader))
3658 		return;
3659 
3660 	event = rb_reader_event(cpu_buffer);
3661 
3662 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3663 		cpu_buffer->read++;
3664 
3665 	rb_update_read_stamp(cpu_buffer, event);
3666 
3667 	length = rb_event_length(event);
3668 	cpu_buffer->reader_page->read += length;
3669 }
3670 
rb_advance_iter(struct ring_buffer_iter * iter)3671 static void rb_advance_iter(struct ring_buffer_iter *iter)
3672 {
3673 	struct ring_buffer_per_cpu *cpu_buffer;
3674 	struct ring_buffer_event *event;
3675 	unsigned length;
3676 
3677 	cpu_buffer = iter->cpu_buffer;
3678 
3679 	/*
3680 	 * Check if we are at the end of the buffer.
3681 	 */
3682 	if (iter->head >= rb_page_size(iter->head_page)) {
3683 		/* discarded commits can make the page empty */
3684 		if (iter->head_page == cpu_buffer->commit_page)
3685 			return;
3686 		rb_inc_iter(iter);
3687 		return;
3688 	}
3689 
3690 	event = rb_iter_head_event(iter);
3691 
3692 	length = rb_event_length(event);
3693 
3694 	/*
3695 	 * This should not be called to advance the header if we are
3696 	 * at the tail of the buffer.
3697 	 */
3698 	if (RB_WARN_ON(cpu_buffer,
3699 		       (iter->head_page == cpu_buffer->commit_page) &&
3700 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3701 		return;
3702 
3703 	rb_update_iter_read_stamp(iter, event);
3704 
3705 	iter->head += length;
3706 
3707 	/* check for end of page padding */
3708 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3709 	    (iter->head_page != cpu_buffer->commit_page))
3710 		rb_inc_iter(iter);
3711 }
3712 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3713 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3714 {
3715 	return cpu_buffer->lost_events;
3716 }
3717 
3718 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3719 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3720 	       unsigned long *lost_events)
3721 {
3722 	struct ring_buffer_event *event;
3723 	struct buffer_page *reader;
3724 	int nr_loops = 0;
3725 
3726  again:
3727 	/*
3728 	 * We repeat when a time extend is encountered.
3729 	 * Since the time extend is always attached to a data event,
3730 	 * we should never loop more than once.
3731 	 * (We never hit the following condition more than twice).
3732 	 */
3733 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3734 		return NULL;
3735 
3736 	reader = rb_get_reader_page(cpu_buffer);
3737 	if (!reader)
3738 		return NULL;
3739 
3740 	event = rb_reader_event(cpu_buffer);
3741 
3742 	switch (event->type_len) {
3743 	case RINGBUF_TYPE_PADDING:
3744 		if (rb_null_event(event))
3745 			RB_WARN_ON(cpu_buffer, 1);
3746 		/*
3747 		 * Because the writer could be discarding every
3748 		 * event it creates (which would probably be bad)
3749 		 * if we were to go back to "again" then we may never
3750 		 * catch up, and will trigger the warn on, or lock
3751 		 * the box. Return the padding, and we will release
3752 		 * the current locks, and try again.
3753 		 */
3754 		return event;
3755 
3756 	case RINGBUF_TYPE_TIME_EXTEND:
3757 		/* Internal data, OK to advance */
3758 		rb_advance_reader(cpu_buffer);
3759 		goto again;
3760 
3761 	case RINGBUF_TYPE_TIME_STAMP:
3762 		/* FIXME: not implemented */
3763 		rb_advance_reader(cpu_buffer);
3764 		goto again;
3765 
3766 	case RINGBUF_TYPE_DATA:
3767 		if (ts) {
3768 			*ts = cpu_buffer->read_stamp + event->time_delta;
3769 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3770 							 cpu_buffer->cpu, ts);
3771 		}
3772 		if (lost_events)
3773 			*lost_events = rb_lost_events(cpu_buffer);
3774 		return event;
3775 
3776 	default:
3777 		BUG();
3778 	}
3779 
3780 	return NULL;
3781 }
3782 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3783 
3784 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3785 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3786 {
3787 	struct ring_buffer *buffer;
3788 	struct ring_buffer_per_cpu *cpu_buffer;
3789 	struct ring_buffer_event *event;
3790 	int nr_loops = 0;
3791 
3792 	cpu_buffer = iter->cpu_buffer;
3793 	buffer = cpu_buffer->buffer;
3794 
3795 	/*
3796 	 * Check if someone performed a consuming read to
3797 	 * the buffer. A consuming read invalidates the iterator
3798 	 * and we need to reset the iterator in this case.
3799 	 */
3800 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3801 		     iter->cache_reader_page != cpu_buffer->reader_page))
3802 		rb_iter_reset(iter);
3803 
3804  again:
3805 	if (ring_buffer_iter_empty(iter))
3806 		return NULL;
3807 
3808 	/*
3809 	 * We repeat when a time extend is encountered or we hit
3810 	 * the end of the page. Since the time extend is always attached
3811 	 * to a data event, we should never loop more than three times.
3812 	 * Once for going to next page, once on time extend, and
3813 	 * finally once to get the event.
3814 	 * (We never hit the following condition more than thrice).
3815 	 */
3816 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3817 		return NULL;
3818 
3819 	if (rb_per_cpu_empty(cpu_buffer))
3820 		return NULL;
3821 
3822 	if (iter->head >= rb_page_size(iter->head_page)) {
3823 		rb_inc_iter(iter);
3824 		goto again;
3825 	}
3826 
3827 	event = rb_iter_head_event(iter);
3828 
3829 	switch (event->type_len) {
3830 	case RINGBUF_TYPE_PADDING:
3831 		if (rb_null_event(event)) {
3832 			rb_inc_iter(iter);
3833 			goto again;
3834 		}
3835 		rb_advance_iter(iter);
3836 		return event;
3837 
3838 	case RINGBUF_TYPE_TIME_EXTEND:
3839 		/* Internal data, OK to advance */
3840 		rb_advance_iter(iter);
3841 		goto again;
3842 
3843 	case RINGBUF_TYPE_TIME_STAMP:
3844 		/* FIXME: not implemented */
3845 		rb_advance_iter(iter);
3846 		goto again;
3847 
3848 	case RINGBUF_TYPE_DATA:
3849 		if (ts) {
3850 			*ts = iter->read_stamp + event->time_delta;
3851 			ring_buffer_normalize_time_stamp(buffer,
3852 							 cpu_buffer->cpu, ts);
3853 		}
3854 		return event;
3855 
3856 	default:
3857 		BUG();
3858 	}
3859 
3860 	return NULL;
3861 }
3862 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3863 
rb_ok_to_lock(void)3864 static inline int rb_ok_to_lock(void)
3865 {
3866 	/*
3867 	 * If an NMI die dumps out the content of the ring buffer
3868 	 * do not grab locks. We also permanently disable the ring
3869 	 * buffer too. A one time deal is all you get from reading
3870 	 * the ring buffer from an NMI.
3871 	 */
3872 	if (likely(!in_nmi()))
3873 		return 1;
3874 
3875 	tracing_off_permanent();
3876 	return 0;
3877 }
3878 
3879 /**
3880  * ring_buffer_peek - peek at the next event to be read
3881  * @buffer: The ring buffer to read
3882  * @cpu: The cpu to peak at
3883  * @ts: The timestamp counter of this event.
3884  * @lost_events: a variable to store if events were lost (may be NULL)
3885  *
3886  * This will return the event that will be read next, but does
3887  * not consume the data.
3888  */
3889 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3890 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3891 		 unsigned long *lost_events)
3892 {
3893 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3894 	struct ring_buffer_event *event;
3895 	unsigned long flags;
3896 	int dolock;
3897 
3898 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3899 		return NULL;
3900 
3901 	dolock = rb_ok_to_lock();
3902  again:
3903 	local_irq_save(flags);
3904 	if (dolock)
3905 		raw_spin_lock(&cpu_buffer->reader_lock);
3906 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3907 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3908 		rb_advance_reader(cpu_buffer);
3909 	if (dolock)
3910 		raw_spin_unlock(&cpu_buffer->reader_lock);
3911 	local_irq_restore(flags);
3912 
3913 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3914 		goto again;
3915 
3916 	return event;
3917 }
3918 
3919 /**
3920  * ring_buffer_iter_peek - peek at the next event to be read
3921  * @iter: The ring buffer iterator
3922  * @ts: The timestamp counter of this event.
3923  *
3924  * This will return the event that will be read next, but does
3925  * not increment the iterator.
3926  */
3927 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3928 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3929 {
3930 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3931 	struct ring_buffer_event *event;
3932 	unsigned long flags;
3933 
3934  again:
3935 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3936 	event = rb_iter_peek(iter, ts);
3937 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3938 
3939 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3940 		goto again;
3941 
3942 	return event;
3943 }
3944 
3945 /**
3946  * ring_buffer_consume - return an event and consume it
3947  * @buffer: The ring buffer to get the next event from
3948  * @cpu: the cpu to read the buffer from
3949  * @ts: a variable to store the timestamp (may be NULL)
3950  * @lost_events: a variable to store if events were lost (may be NULL)
3951  *
3952  * Returns the next event in the ring buffer, and that event is consumed.
3953  * Meaning, that sequential reads will keep returning a different event,
3954  * and eventually empty the ring buffer if the producer is slower.
3955  */
3956 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3957 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3958 		    unsigned long *lost_events)
3959 {
3960 	struct ring_buffer_per_cpu *cpu_buffer;
3961 	struct ring_buffer_event *event = NULL;
3962 	unsigned long flags;
3963 	int dolock;
3964 
3965 	dolock = rb_ok_to_lock();
3966 
3967  again:
3968 	/* might be called in atomic */
3969 	preempt_disable();
3970 
3971 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3972 		goto out;
3973 
3974 	cpu_buffer = buffer->buffers[cpu];
3975 	local_irq_save(flags);
3976 	if (dolock)
3977 		raw_spin_lock(&cpu_buffer->reader_lock);
3978 
3979 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3980 	if (event) {
3981 		cpu_buffer->lost_events = 0;
3982 		rb_advance_reader(cpu_buffer);
3983 	}
3984 
3985 	if (dolock)
3986 		raw_spin_unlock(&cpu_buffer->reader_lock);
3987 	local_irq_restore(flags);
3988 
3989  out:
3990 	preempt_enable();
3991 
3992 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3993 		goto again;
3994 
3995 	return event;
3996 }
3997 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3998 
3999 /**
4000  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4001  * @buffer: The ring buffer to read from
4002  * @cpu: The cpu buffer to iterate over
4003  *
4004  * This performs the initial preparations necessary to iterate
4005  * through the buffer.  Memory is allocated, buffer recording
4006  * is disabled, and the iterator pointer is returned to the caller.
4007  *
4008  * Disabling buffer recordng prevents the reading from being
4009  * corrupted. This is not a consuming read, so a producer is not
4010  * expected.
4011  *
4012  * After a sequence of ring_buffer_read_prepare calls, the user is
4013  * expected to make at least one call to ring_buffer_read_prepare_sync.
4014  * Afterwards, ring_buffer_read_start is invoked to get things going
4015  * for real.
4016  *
4017  * This overall must be paired with ring_buffer_read_finish.
4018  */
4019 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu)4020 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4021 {
4022 	struct ring_buffer_per_cpu *cpu_buffer;
4023 	struct ring_buffer_iter *iter;
4024 
4025 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4026 		return NULL;
4027 
4028 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4029 	if (!iter)
4030 		return NULL;
4031 
4032 	cpu_buffer = buffer->buffers[cpu];
4033 
4034 	iter->cpu_buffer = cpu_buffer;
4035 
4036 	atomic_inc(&buffer->resize_disabled);
4037 	atomic_inc(&cpu_buffer->record_disabled);
4038 
4039 	return iter;
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4042 
4043 /**
4044  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4045  *
4046  * All previously invoked ring_buffer_read_prepare calls to prepare
4047  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4048  * calls on those iterators are allowed.
4049  */
4050 void
ring_buffer_read_prepare_sync(void)4051 ring_buffer_read_prepare_sync(void)
4052 {
4053 	synchronize_sched();
4054 }
4055 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4056 
4057 /**
4058  * ring_buffer_read_start - start a non consuming read of the buffer
4059  * @iter: The iterator returned by ring_buffer_read_prepare
4060  *
4061  * This finalizes the startup of an iteration through the buffer.
4062  * The iterator comes from a call to ring_buffer_read_prepare and
4063  * an intervening ring_buffer_read_prepare_sync must have been
4064  * performed.
4065  *
4066  * Must be paired with ring_buffer_read_finish.
4067  */
4068 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4069 ring_buffer_read_start(struct ring_buffer_iter *iter)
4070 {
4071 	struct ring_buffer_per_cpu *cpu_buffer;
4072 	unsigned long flags;
4073 
4074 	if (!iter)
4075 		return;
4076 
4077 	cpu_buffer = iter->cpu_buffer;
4078 
4079 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4080 	arch_spin_lock(&cpu_buffer->lock);
4081 	rb_iter_reset(iter);
4082 	arch_spin_unlock(&cpu_buffer->lock);
4083 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4084 }
4085 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4086 
4087 /**
4088  * ring_buffer_read_finish - finish reading the iterator of the buffer
4089  * @iter: The iterator retrieved by ring_buffer_start
4090  *
4091  * This re-enables the recording to the buffer, and frees the
4092  * iterator.
4093  */
4094 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4095 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4096 {
4097 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4098 	unsigned long flags;
4099 
4100 	/*
4101 	 * Ring buffer is disabled from recording, here's a good place
4102 	 * to check the integrity of the ring buffer.
4103 	 * Must prevent readers from trying to read, as the check
4104 	 * clears the HEAD page and readers require it.
4105 	 */
4106 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4107 	rb_check_pages(cpu_buffer);
4108 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4109 
4110 	atomic_dec(&cpu_buffer->record_disabled);
4111 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4112 	kfree(iter);
4113 }
4114 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4115 
4116 /**
4117  * ring_buffer_read - read the next item in the ring buffer by the iterator
4118  * @iter: The ring buffer iterator
4119  * @ts: The time stamp of the event read.
4120  *
4121  * This reads the next event in the ring buffer and increments the iterator.
4122  */
4123 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)4124 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4125 {
4126 	struct ring_buffer_event *event;
4127 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4128 	unsigned long flags;
4129 
4130 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4131  again:
4132 	event = rb_iter_peek(iter, ts);
4133 	if (!event)
4134 		goto out;
4135 
4136 	if (event->type_len == RINGBUF_TYPE_PADDING)
4137 		goto again;
4138 
4139 	rb_advance_iter(iter);
4140  out:
4141 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4142 
4143 	return event;
4144 }
4145 EXPORT_SYMBOL_GPL(ring_buffer_read);
4146 
4147 /**
4148  * ring_buffer_size - return the size of the ring buffer (in bytes)
4149  * @buffer: The ring buffer.
4150  */
ring_buffer_size(struct ring_buffer * buffer,int cpu)4151 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4152 {
4153 	/*
4154 	 * Earlier, this method returned
4155 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4156 	 * Since the nr_pages field is now removed, we have converted this to
4157 	 * return the per cpu buffer value.
4158 	 */
4159 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4160 		return 0;
4161 
4162 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4163 }
4164 EXPORT_SYMBOL_GPL(ring_buffer_size);
4165 
4166 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4167 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4168 {
4169 	rb_head_page_deactivate(cpu_buffer);
4170 
4171 	cpu_buffer->head_page
4172 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4173 	local_set(&cpu_buffer->head_page->write, 0);
4174 	local_set(&cpu_buffer->head_page->entries, 0);
4175 	local_set(&cpu_buffer->head_page->page->commit, 0);
4176 
4177 	cpu_buffer->head_page->read = 0;
4178 
4179 	cpu_buffer->tail_page = cpu_buffer->head_page;
4180 	cpu_buffer->commit_page = cpu_buffer->head_page;
4181 
4182 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4183 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4184 	local_set(&cpu_buffer->reader_page->write, 0);
4185 	local_set(&cpu_buffer->reader_page->entries, 0);
4186 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4187 	cpu_buffer->reader_page->read = 0;
4188 
4189 	local_set(&cpu_buffer->entries_bytes, 0);
4190 	local_set(&cpu_buffer->overrun, 0);
4191 	local_set(&cpu_buffer->commit_overrun, 0);
4192 	local_set(&cpu_buffer->dropped_events, 0);
4193 	local_set(&cpu_buffer->entries, 0);
4194 	local_set(&cpu_buffer->committing, 0);
4195 	local_set(&cpu_buffer->commits, 0);
4196 	cpu_buffer->read = 0;
4197 	cpu_buffer->read_bytes = 0;
4198 
4199 	cpu_buffer->write_stamp = 0;
4200 	cpu_buffer->read_stamp = 0;
4201 
4202 	cpu_buffer->lost_events = 0;
4203 	cpu_buffer->last_overrun = 0;
4204 
4205 	rb_head_page_activate(cpu_buffer);
4206 }
4207 
4208 /**
4209  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4210  * @buffer: The ring buffer to reset a per cpu buffer of
4211  * @cpu: The CPU buffer to be reset
4212  */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)4213 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4214 {
4215 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4216 	unsigned long flags;
4217 
4218 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4219 		return;
4220 
4221 	atomic_inc(&buffer->resize_disabled);
4222 	atomic_inc(&cpu_buffer->record_disabled);
4223 
4224 	/* Make sure all commits have finished */
4225 	synchronize_sched();
4226 
4227 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4228 
4229 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4230 		goto out;
4231 
4232 	arch_spin_lock(&cpu_buffer->lock);
4233 
4234 	rb_reset_cpu(cpu_buffer);
4235 
4236 	arch_spin_unlock(&cpu_buffer->lock);
4237 
4238  out:
4239 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4240 
4241 	atomic_dec(&cpu_buffer->record_disabled);
4242 	atomic_dec(&buffer->resize_disabled);
4243 }
4244 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4245 
4246 /**
4247  * ring_buffer_reset - reset a ring buffer
4248  * @buffer: The ring buffer to reset all cpu buffers
4249  */
ring_buffer_reset(struct ring_buffer * buffer)4250 void ring_buffer_reset(struct ring_buffer *buffer)
4251 {
4252 	int cpu;
4253 
4254 	for_each_buffer_cpu(buffer, cpu)
4255 		ring_buffer_reset_cpu(buffer, cpu);
4256 }
4257 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4258 
4259 /**
4260  * rind_buffer_empty - is the ring buffer empty?
4261  * @buffer: The ring buffer to test
4262  */
ring_buffer_empty(struct ring_buffer * buffer)4263 int ring_buffer_empty(struct ring_buffer *buffer)
4264 {
4265 	struct ring_buffer_per_cpu *cpu_buffer;
4266 	unsigned long flags;
4267 	int dolock;
4268 	int cpu;
4269 	int ret;
4270 
4271 	dolock = rb_ok_to_lock();
4272 
4273 	/* yes this is racy, but if you don't like the race, lock the buffer */
4274 	for_each_buffer_cpu(buffer, cpu) {
4275 		cpu_buffer = buffer->buffers[cpu];
4276 		local_irq_save(flags);
4277 		if (dolock)
4278 			raw_spin_lock(&cpu_buffer->reader_lock);
4279 		ret = rb_per_cpu_empty(cpu_buffer);
4280 		if (dolock)
4281 			raw_spin_unlock(&cpu_buffer->reader_lock);
4282 		local_irq_restore(flags);
4283 
4284 		if (!ret)
4285 			return 0;
4286 	}
4287 
4288 	return 1;
4289 }
4290 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4291 
4292 /**
4293  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4294  * @buffer: The ring buffer
4295  * @cpu: The CPU buffer to test
4296  */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)4297 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4298 {
4299 	struct ring_buffer_per_cpu *cpu_buffer;
4300 	unsigned long flags;
4301 	int dolock;
4302 	int ret;
4303 
4304 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4305 		return 1;
4306 
4307 	dolock = rb_ok_to_lock();
4308 
4309 	cpu_buffer = buffer->buffers[cpu];
4310 	local_irq_save(flags);
4311 	if (dolock)
4312 		raw_spin_lock(&cpu_buffer->reader_lock);
4313 	ret = rb_per_cpu_empty(cpu_buffer);
4314 	if (dolock)
4315 		raw_spin_unlock(&cpu_buffer->reader_lock);
4316 	local_irq_restore(flags);
4317 
4318 	return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4321 
4322 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4323 /**
4324  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325  * @buffer_a: One buffer to swap with
4326  * @buffer_b: The other buffer to swap with
4327  *
4328  * This function is useful for tracers that want to take a "snapshot"
4329  * of a CPU buffer and has another back up buffer lying around.
4330  * it is expected that the tracer handles the cpu buffer not being
4331  * used at the moment.
4332  */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)4333 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4334 			 struct ring_buffer *buffer_b, int cpu)
4335 {
4336 	struct ring_buffer_per_cpu *cpu_buffer_a;
4337 	struct ring_buffer_per_cpu *cpu_buffer_b;
4338 	int ret = -EINVAL;
4339 
4340 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4341 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4342 		goto out;
4343 
4344 	cpu_buffer_a = buffer_a->buffers[cpu];
4345 	cpu_buffer_b = buffer_b->buffers[cpu];
4346 
4347 	/* At least make sure the two buffers are somewhat the same */
4348 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4349 		goto out;
4350 
4351 	ret = -EAGAIN;
4352 
4353 	if (ring_buffer_flags != RB_BUFFERS_ON)
4354 		goto out;
4355 
4356 	if (atomic_read(&buffer_a->record_disabled))
4357 		goto out;
4358 
4359 	if (atomic_read(&buffer_b->record_disabled))
4360 		goto out;
4361 
4362 	if (atomic_read(&cpu_buffer_a->record_disabled))
4363 		goto out;
4364 
4365 	if (atomic_read(&cpu_buffer_b->record_disabled))
4366 		goto out;
4367 
4368 	/*
4369 	 * We can't do a synchronize_sched here because this
4370 	 * function can be called in atomic context.
4371 	 * Normally this will be called from the same CPU as cpu.
4372 	 * If not it's up to the caller to protect this.
4373 	 */
4374 	atomic_inc(&cpu_buffer_a->record_disabled);
4375 	atomic_inc(&cpu_buffer_b->record_disabled);
4376 
4377 	ret = -EBUSY;
4378 	if (local_read(&cpu_buffer_a->committing))
4379 		goto out_dec;
4380 	if (local_read(&cpu_buffer_b->committing))
4381 		goto out_dec;
4382 
4383 	buffer_a->buffers[cpu] = cpu_buffer_b;
4384 	buffer_b->buffers[cpu] = cpu_buffer_a;
4385 
4386 	cpu_buffer_b->buffer = buffer_a;
4387 	cpu_buffer_a->buffer = buffer_b;
4388 
4389 	ret = 0;
4390 
4391 out_dec:
4392 	atomic_dec(&cpu_buffer_a->record_disabled);
4393 	atomic_dec(&cpu_buffer_b->record_disabled);
4394 out:
4395 	return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4398 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4399 
4400 /**
4401  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4402  * @buffer: the buffer to allocate for.
4403  * @cpu: the cpu buffer to allocate.
4404  *
4405  * This function is used in conjunction with ring_buffer_read_page.
4406  * When reading a full page from the ring buffer, these functions
4407  * can be used to speed up the process. The calling function should
4408  * allocate a few pages first with this function. Then when it
4409  * needs to get pages from the ring buffer, it passes the result
4410  * of this function into ring_buffer_read_page, which will swap
4411  * the page that was allocated, with the read page of the buffer.
4412  *
4413  * Returns:
4414  *  The page allocated, or NULL on error.
4415  */
ring_buffer_alloc_read_page(struct ring_buffer * buffer,int cpu)4416 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4417 {
4418 	struct buffer_data_page *bpage;
4419 	struct page *page;
4420 
4421 	page = alloc_pages_node(cpu_to_node(cpu),
4422 				GFP_KERNEL | __GFP_NORETRY, 0);
4423 	if (!page)
4424 		return NULL;
4425 
4426 	bpage = page_address(page);
4427 
4428 	rb_init_page(bpage);
4429 
4430 	return bpage;
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4433 
4434 /**
4435  * ring_buffer_free_read_page - free an allocated read page
4436  * @buffer: the buffer the page was allocate for
4437  * @data: the page to free
4438  *
4439  * Free a page allocated from ring_buffer_alloc_read_page.
4440  */
ring_buffer_free_read_page(struct ring_buffer * buffer,void * data)4441 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4442 {
4443 	free_page((unsigned long)data);
4444 }
4445 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4446 
4447 /**
4448  * ring_buffer_read_page - extract a page from the ring buffer
4449  * @buffer: buffer to extract from
4450  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4451  * @len: amount to extract
4452  * @cpu: the cpu of the buffer to extract
4453  * @full: should the extraction only happen when the page is full.
4454  *
4455  * This function will pull out a page from the ring buffer and consume it.
4456  * @data_page must be the address of the variable that was returned
4457  * from ring_buffer_alloc_read_page. This is because the page might be used
4458  * to swap with a page in the ring buffer.
4459  *
4460  * for example:
4461  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4462  *	if (!rpage)
4463  *		return error;
4464  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4465  *	if (ret >= 0)
4466  *		process_page(rpage, ret);
4467  *
4468  * When @full is set, the function will not return true unless
4469  * the writer is off the reader page.
4470  *
4471  * Note: it is up to the calling functions to handle sleeps and wakeups.
4472  *  The ring buffer can be used anywhere in the kernel and can not
4473  *  blindly call wake_up. The layer that uses the ring buffer must be
4474  *  responsible for that.
4475  *
4476  * Returns:
4477  *  >=0 if data has been transferred, returns the offset of consumed data.
4478  *  <0 if no data has been transferred.
4479  */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)4480 int ring_buffer_read_page(struct ring_buffer *buffer,
4481 			  void **data_page, size_t len, int cpu, int full)
4482 {
4483 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4484 	struct ring_buffer_event *event;
4485 	struct buffer_data_page *bpage;
4486 	struct buffer_page *reader;
4487 	unsigned long missed_events;
4488 	unsigned long flags;
4489 	unsigned int commit;
4490 	unsigned int read;
4491 	u64 save_timestamp;
4492 	int ret = -1;
4493 
4494 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4495 		goto out;
4496 
4497 	/*
4498 	 * If len is not big enough to hold the page header, then
4499 	 * we can not copy anything.
4500 	 */
4501 	if (len <= BUF_PAGE_HDR_SIZE)
4502 		goto out;
4503 
4504 	len -= BUF_PAGE_HDR_SIZE;
4505 
4506 	if (!data_page)
4507 		goto out;
4508 
4509 	bpage = *data_page;
4510 	if (!bpage)
4511 		goto out;
4512 
4513 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4514 
4515 	reader = rb_get_reader_page(cpu_buffer);
4516 	if (!reader)
4517 		goto out_unlock;
4518 
4519 	event = rb_reader_event(cpu_buffer);
4520 
4521 	read = reader->read;
4522 	commit = rb_page_commit(reader);
4523 
4524 	/* Check if any events were dropped */
4525 	missed_events = cpu_buffer->lost_events;
4526 
4527 	/*
4528 	 * If this page has been partially read or
4529 	 * if len is not big enough to read the rest of the page or
4530 	 * a writer is still on the page, then
4531 	 * we must copy the data from the page to the buffer.
4532 	 * Otherwise, we can simply swap the page with the one passed in.
4533 	 */
4534 	if (read || (len < (commit - read)) ||
4535 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4536 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4537 		unsigned int rpos = read;
4538 		unsigned int pos = 0;
4539 		unsigned int size;
4540 
4541 		if (full)
4542 			goto out_unlock;
4543 
4544 		if (len > (commit - read))
4545 			len = (commit - read);
4546 
4547 		/* Always keep the time extend and data together */
4548 		size = rb_event_ts_length(event);
4549 
4550 		if (len < size)
4551 			goto out_unlock;
4552 
4553 		/* save the current timestamp, since the user will need it */
4554 		save_timestamp = cpu_buffer->read_stamp;
4555 
4556 		/* Need to copy one event at a time */
4557 		do {
4558 			/* We need the size of one event, because
4559 			 * rb_advance_reader only advances by one event,
4560 			 * whereas rb_event_ts_length may include the size of
4561 			 * one or two events.
4562 			 * We have already ensured there's enough space if this
4563 			 * is a time extend. */
4564 			size = rb_event_length(event);
4565 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4566 
4567 			len -= size;
4568 
4569 			rb_advance_reader(cpu_buffer);
4570 			rpos = reader->read;
4571 			pos += size;
4572 
4573 			if (rpos >= commit)
4574 				break;
4575 
4576 			event = rb_reader_event(cpu_buffer);
4577 			/* Always keep the time extend and data together */
4578 			size = rb_event_ts_length(event);
4579 		} while (len >= size);
4580 
4581 		/* update bpage */
4582 		local_set(&bpage->commit, pos);
4583 		bpage->time_stamp = save_timestamp;
4584 
4585 		/* we copied everything to the beginning */
4586 		read = 0;
4587 	} else {
4588 		/* update the entry counter */
4589 		cpu_buffer->read += rb_page_entries(reader);
4590 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4591 
4592 		/* swap the pages */
4593 		rb_init_page(bpage);
4594 		bpage = reader->page;
4595 		reader->page = *data_page;
4596 		local_set(&reader->write, 0);
4597 		local_set(&reader->entries, 0);
4598 		reader->read = 0;
4599 		*data_page = bpage;
4600 
4601 		/*
4602 		 * Use the real_end for the data size,
4603 		 * This gives us a chance to store the lost events
4604 		 * on the page.
4605 		 */
4606 		if (reader->real_end)
4607 			local_set(&bpage->commit, reader->real_end);
4608 	}
4609 	ret = read;
4610 
4611 	cpu_buffer->lost_events = 0;
4612 
4613 	commit = local_read(&bpage->commit);
4614 	/*
4615 	 * Set a flag in the commit field if we lost events
4616 	 */
4617 	if (missed_events) {
4618 		/* If there is room at the end of the page to save the
4619 		 * missed events, then record it there.
4620 		 */
4621 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4622 			memcpy(&bpage->data[commit], &missed_events,
4623 			       sizeof(missed_events));
4624 			local_add(RB_MISSED_STORED, &bpage->commit);
4625 			commit += sizeof(missed_events);
4626 		}
4627 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4628 	}
4629 
4630 	/*
4631 	 * This page may be off to user land. Zero it out here.
4632 	 */
4633 	if (commit < BUF_PAGE_SIZE)
4634 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4635 
4636  out_unlock:
4637 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4638 
4639  out:
4640 	return ret;
4641 }
4642 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4643 
4644 #ifdef CONFIG_HOTPLUG_CPU
rb_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)4645 static int rb_cpu_notify(struct notifier_block *self,
4646 			 unsigned long action, void *hcpu)
4647 {
4648 	struct ring_buffer *buffer =
4649 		container_of(self, struct ring_buffer, cpu_notify);
4650 	long cpu = (long)hcpu;
4651 	long nr_pages_same;
4652 	int cpu_i;
4653 	unsigned long nr_pages;
4654 
4655 	switch (action) {
4656 	case CPU_UP_PREPARE:
4657 	case CPU_UP_PREPARE_FROZEN:
4658 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4659 			return NOTIFY_OK;
4660 
4661 		nr_pages = 0;
4662 		nr_pages_same = 1;
4663 		/* check if all cpu sizes are same */
4664 		for_each_buffer_cpu(buffer, cpu_i) {
4665 			/* fill in the size from first enabled cpu */
4666 			if (nr_pages == 0)
4667 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4668 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4669 				nr_pages_same = 0;
4670 				break;
4671 			}
4672 		}
4673 		/* allocate minimum pages, user can later expand it */
4674 		if (!nr_pages_same)
4675 			nr_pages = 2;
4676 		buffer->buffers[cpu] =
4677 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4678 		if (!buffer->buffers[cpu]) {
4679 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4680 			     cpu);
4681 			return NOTIFY_OK;
4682 		}
4683 		smp_wmb();
4684 		cpumask_set_cpu(cpu, buffer->cpumask);
4685 		break;
4686 	case CPU_DOWN_PREPARE:
4687 	case CPU_DOWN_PREPARE_FROZEN:
4688 		/*
4689 		 * Do nothing.
4690 		 *  If we were to free the buffer, then the user would
4691 		 *  lose any trace that was in the buffer.
4692 		 */
4693 		break;
4694 	default:
4695 		break;
4696 	}
4697 	return NOTIFY_OK;
4698 }
4699 #endif
4700 
4701 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4702 /*
4703  * This is a basic integrity check of the ring buffer.
4704  * Late in the boot cycle this test will run when configured in.
4705  * It will kick off a thread per CPU that will go into a loop
4706  * writing to the per cpu ring buffer various sizes of data.
4707  * Some of the data will be large items, some small.
4708  *
4709  * Another thread is created that goes into a spin, sending out
4710  * IPIs to the other CPUs to also write into the ring buffer.
4711  * this is to test the nesting ability of the buffer.
4712  *
4713  * Basic stats are recorded and reported. If something in the
4714  * ring buffer should happen that's not expected, a big warning
4715  * is displayed and all ring buffers are disabled.
4716  */
4717 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4718 
4719 struct rb_test_data {
4720 	struct ring_buffer	*buffer;
4721 	unsigned long		events;
4722 	unsigned long		bytes_written;
4723 	unsigned long		bytes_alloc;
4724 	unsigned long		bytes_dropped;
4725 	unsigned long		events_nested;
4726 	unsigned long		bytes_written_nested;
4727 	unsigned long		bytes_alloc_nested;
4728 	unsigned long		bytes_dropped_nested;
4729 	int			min_size_nested;
4730 	int			max_size_nested;
4731 	int			max_size;
4732 	int			min_size;
4733 	int			cpu;
4734 	int			cnt;
4735 };
4736 
4737 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4738 
4739 /* 1 meg per cpu */
4740 #define RB_TEST_BUFFER_SIZE	1048576
4741 
4742 static char rb_string[] __initdata =
4743 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4744 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4745 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4746 
4747 static bool rb_test_started __initdata;
4748 
4749 struct rb_item {
4750 	int size;
4751 	char str[];
4752 };
4753 
rb_write_something(struct rb_test_data * data,bool nested)4754 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4755 {
4756 	struct ring_buffer_event *event;
4757 	struct rb_item *item;
4758 	bool started;
4759 	int event_len;
4760 	int size;
4761 	int len;
4762 	int cnt;
4763 
4764 	/* Have nested writes different that what is written */
4765 	cnt = data->cnt + (nested ? 27 : 0);
4766 
4767 	/* Multiply cnt by ~e, to make some unique increment */
4768 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4769 
4770 	len = size + sizeof(struct rb_item);
4771 
4772 	started = rb_test_started;
4773 	/* read rb_test_started before checking buffer enabled */
4774 	smp_rmb();
4775 
4776 	event = ring_buffer_lock_reserve(data->buffer, len);
4777 	if (!event) {
4778 		/* Ignore dropped events before test starts. */
4779 		if (started) {
4780 			if (nested)
4781 				data->bytes_dropped += len;
4782 			else
4783 				data->bytes_dropped_nested += len;
4784 		}
4785 		return len;
4786 	}
4787 
4788 	event_len = ring_buffer_event_length(event);
4789 
4790 	if (RB_WARN_ON(data->buffer, event_len < len))
4791 		goto out;
4792 
4793 	item = ring_buffer_event_data(event);
4794 	item->size = size;
4795 	memcpy(item->str, rb_string, size);
4796 
4797 	if (nested) {
4798 		data->bytes_alloc_nested += event_len;
4799 		data->bytes_written_nested += len;
4800 		data->events_nested++;
4801 		if (!data->min_size_nested || len < data->min_size_nested)
4802 			data->min_size_nested = len;
4803 		if (len > data->max_size_nested)
4804 			data->max_size_nested = len;
4805 	} else {
4806 		data->bytes_alloc += event_len;
4807 		data->bytes_written += len;
4808 		data->events++;
4809 		if (!data->min_size || len < data->min_size)
4810 			data->max_size = len;
4811 		if (len > data->max_size)
4812 			data->max_size = len;
4813 	}
4814 
4815  out:
4816 	ring_buffer_unlock_commit(data->buffer, event);
4817 
4818 	return 0;
4819 }
4820 
rb_test(void * arg)4821 static __init int rb_test(void *arg)
4822 {
4823 	struct rb_test_data *data = arg;
4824 
4825 	while (!kthread_should_stop()) {
4826 		rb_write_something(data, false);
4827 		data->cnt++;
4828 
4829 		set_current_state(TASK_INTERRUPTIBLE);
4830 		/* Now sleep between a min of 100-300us and a max of 1ms */
4831 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4832 	}
4833 
4834 	return 0;
4835 }
4836 
rb_ipi(void * ignore)4837 static __init void rb_ipi(void *ignore)
4838 {
4839 	struct rb_test_data *data;
4840 	int cpu = smp_processor_id();
4841 
4842 	data = &rb_data[cpu];
4843 	rb_write_something(data, true);
4844 }
4845 
rb_hammer_test(void * arg)4846 static __init int rb_hammer_test(void *arg)
4847 {
4848 	while (!kthread_should_stop()) {
4849 
4850 		/* Send an IPI to all cpus to write data! */
4851 		smp_call_function(rb_ipi, NULL, 1);
4852 		/* No sleep, but for non preempt, let others run */
4853 		schedule();
4854 	}
4855 
4856 	return 0;
4857 }
4858 
test_ringbuffer(void)4859 static __init int test_ringbuffer(void)
4860 {
4861 	struct task_struct *rb_hammer;
4862 	struct ring_buffer *buffer;
4863 	int cpu;
4864 	int ret = 0;
4865 
4866 	pr_info("Running ring buffer tests...\n");
4867 
4868 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4869 	if (WARN_ON(!buffer))
4870 		return 0;
4871 
4872 	/* Disable buffer so that threads can't write to it yet */
4873 	ring_buffer_record_off(buffer);
4874 
4875 	for_each_online_cpu(cpu) {
4876 		rb_data[cpu].buffer = buffer;
4877 		rb_data[cpu].cpu = cpu;
4878 		rb_data[cpu].cnt = cpu;
4879 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4880 						 "rbtester/%d", cpu);
4881 		if (WARN_ON(!rb_threads[cpu])) {
4882 			pr_cont("FAILED\n");
4883 			ret = -1;
4884 			goto out_free;
4885 		}
4886 
4887 		kthread_bind(rb_threads[cpu], cpu);
4888  		wake_up_process(rb_threads[cpu]);
4889 	}
4890 
4891 	/* Now create the rb hammer! */
4892 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4893 	if (WARN_ON(!rb_hammer)) {
4894 		pr_cont("FAILED\n");
4895 		ret = -1;
4896 		goto out_free;
4897 	}
4898 
4899 	ring_buffer_record_on(buffer);
4900 	/*
4901 	 * Show buffer is enabled before setting rb_test_started.
4902 	 * Yes there's a small race window where events could be
4903 	 * dropped and the thread wont catch it. But when a ring
4904 	 * buffer gets enabled, there will always be some kind of
4905 	 * delay before other CPUs see it. Thus, we don't care about
4906 	 * those dropped events. We care about events dropped after
4907 	 * the threads see that the buffer is active.
4908 	 */
4909 	smp_wmb();
4910 	rb_test_started = true;
4911 
4912 	set_current_state(TASK_INTERRUPTIBLE);
4913 	/* Just run for 10 seconds */;
4914 	schedule_timeout(10 * HZ);
4915 
4916 	kthread_stop(rb_hammer);
4917 
4918  out_free:
4919 	for_each_online_cpu(cpu) {
4920 		if (!rb_threads[cpu])
4921 			break;
4922 		kthread_stop(rb_threads[cpu]);
4923 	}
4924 	if (ret) {
4925 		ring_buffer_free(buffer);
4926 		return ret;
4927 	}
4928 
4929 	/* Report! */
4930 	pr_info("finished\n");
4931 	for_each_online_cpu(cpu) {
4932 		struct ring_buffer_event *event;
4933 		struct rb_test_data *data = &rb_data[cpu];
4934 		struct rb_item *item;
4935 		unsigned long total_events;
4936 		unsigned long total_dropped;
4937 		unsigned long total_written;
4938 		unsigned long total_alloc;
4939 		unsigned long total_read = 0;
4940 		unsigned long total_size = 0;
4941 		unsigned long total_len = 0;
4942 		unsigned long total_lost = 0;
4943 		unsigned long lost;
4944 		int big_event_size;
4945 		int small_event_size;
4946 
4947 		ret = -1;
4948 
4949 		total_events = data->events + data->events_nested;
4950 		total_written = data->bytes_written + data->bytes_written_nested;
4951 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4952 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4953 
4954 		big_event_size = data->max_size + data->max_size_nested;
4955 		small_event_size = data->min_size + data->min_size_nested;
4956 
4957 		pr_info("CPU %d:\n", cpu);
4958 		pr_info("              events:    %ld\n", total_events);
4959 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4960 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4961 		pr_info("       written bytes:    %ld\n", total_written);
4962 		pr_info("       biggest event:    %d\n", big_event_size);
4963 		pr_info("      smallest event:    %d\n", small_event_size);
4964 
4965 		if (RB_WARN_ON(buffer, total_dropped))
4966 			break;
4967 
4968 		ret = 0;
4969 
4970 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4971 			total_lost += lost;
4972 			item = ring_buffer_event_data(event);
4973 			total_len += ring_buffer_event_length(event);
4974 			total_size += item->size + sizeof(struct rb_item);
4975 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4976 				pr_info("FAILED!\n");
4977 				pr_info("buffer had: %.*s\n", item->size, item->str);
4978 				pr_info("expected:   %.*s\n", item->size, rb_string);
4979 				RB_WARN_ON(buffer, 1);
4980 				ret = -1;
4981 				break;
4982 			}
4983 			total_read++;
4984 		}
4985 		if (ret)
4986 			break;
4987 
4988 		ret = -1;
4989 
4990 		pr_info("         read events:   %ld\n", total_read);
4991 		pr_info("         lost events:   %ld\n", total_lost);
4992 		pr_info("        total events:   %ld\n", total_lost + total_read);
4993 		pr_info("  recorded len bytes:   %ld\n", total_len);
4994 		pr_info(" recorded size bytes:   %ld\n", total_size);
4995 		if (total_lost)
4996 			pr_info(" With dropped events, record len and size may not match\n"
4997 				" alloced and written from above\n");
4998 		if (!total_lost) {
4999 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5000 				       total_size != total_written))
5001 				break;
5002 		}
5003 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5004 			break;
5005 
5006 		ret = 0;
5007 	}
5008 	if (!ret)
5009 		pr_info("Ring buffer PASSED!\n");
5010 
5011 	ring_buffer_free(buffer);
5012 	return 0;
5013 }
5014 
5015 late_initcall(test_ringbuffer);
5016 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5017