1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
start_bandwidth_timer(struct hrtimer * period_timer,ktime_t period)93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
update_rq_clock(struct rq * rq)118 void update_rq_clock(struct rq *rq)
119 {
120 s64 delta;
121
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 return;
126
127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 if (delta < 0)
129 return;
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
132 }
133
134 /*
135 * Debugging: various feature bits
136 */
137
138 #define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 0;
144
145 #undef SCHED_FEAT
146
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled) \
149 #name ,
150
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154
155 #undef SCHED_FEAT
156
sched_feat_show(struct seq_file * m,void * v)157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 int i;
160
161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
165 }
166 seq_puts(m, "\n");
167
168 return 0;
169 }
170
171 #ifdef HAVE_JUMP_LABEL
172
173 #define jump_label_key__true STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175
176 #define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182
183 #undef SCHED_FEAT
184
sched_feat_disable(int i)185 static void sched_feat_disable(int i)
186 {
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
189 }
190
sched_feat_enable(int i)191 static void sched_feat_enable(int i)
192 {
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
sched_feat_disable(int i)197 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200
sched_feat_set(char * cmp)201 static int sched_feat_set(char *cmp)
202 {
203 int i;
204 int neg = 0;
205
206 if (strncmp(cmp, "NO_", 3) == 0) {
207 neg = 1;
208 cmp += 3;
209 }
210
211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 if (neg) {
214 sysctl_sched_features &= ~(1UL << i);
215 sched_feat_disable(i);
216 } else {
217 sysctl_sched_features |= (1UL << i);
218 sched_feat_enable(i);
219 }
220 break;
221 }
222 }
223
224 return i;
225 }
226
227 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230 {
231 char buf[64];
232 char *cmp;
233 int i;
234 struct inode *inode;
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
248 i = sched_feat_set(cmp);
249 mutex_unlock(&inode->i_mutex);
250 if (i == __SCHED_FEAT_NR)
251 return -EINVAL;
252
253 *ppos += cnt;
254
255 return cnt;
256 }
257
sched_feat_open(struct inode * inode,struct file * filp)258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 return single_open(filp, sched_feat_show, NULL);
261 }
262
263 static const struct file_operations sched_feat_fops = {
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
269 };
270
sched_init_debug(void)271 static __init int sched_init_debug(void)
272 {
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280
281 /*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
287 /*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
295 /*
296 * period over which we measure -rt task cpu usage in us.
297 * default: 1s
298 */
299 unsigned int sysctl_sched_rt_period = 1000000;
300
301 __read_mostly int scheduler_running;
302
303 /*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307 int sysctl_sched_rt_runtime = 950000;
308
309 /* cpus with isolated domains */
310 cpumask_var_t cpu_isolated_map;
311
312 /*
313 * this_rq_lock - lock this runqueue and disable interrupts.
314 */
this_rq_lock(void)315 static struct rq *this_rq_lock(void)
316 __acquires(rq->lock)
317 {
318 struct rq *rq;
319
320 local_irq_disable();
321 rq = this_rq();
322 raw_spin_lock(&rq->lock);
323
324 return rq;
325 }
326
327 #ifdef CONFIG_SCHED_HRTICK
328 /*
329 * Use HR-timers to deliver accurate preemption points.
330 */
331
hrtick_clear(struct rq * rq)332 static void hrtick_clear(struct rq *rq)
333 {
334 if (hrtimer_active(&rq->hrtick_timer))
335 hrtimer_cancel(&rq->hrtick_timer);
336 }
337
338 /*
339 * High-resolution timer tick.
340 * Runs from hardirq context with interrupts disabled.
341 */
hrtick(struct hrtimer * timer)342 static enum hrtimer_restart hrtick(struct hrtimer *timer)
343 {
344 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345
346 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347
348 raw_spin_lock(&rq->lock);
349 update_rq_clock(rq);
350 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
351 raw_spin_unlock(&rq->lock);
352
353 return HRTIMER_NORESTART;
354 }
355
356 #ifdef CONFIG_SMP
357
__hrtick_restart(struct rq * rq)358 static int __hrtick_restart(struct rq *rq)
359 {
360 struct hrtimer *timer = &rq->hrtick_timer;
361 ktime_t time = hrtimer_get_softexpires(timer);
362
363 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364 }
365
366 /*
367 * called from hardirq (IPI) context
368 */
__hrtick_start(void * arg)369 static void __hrtick_start(void *arg)
370 {
371 struct rq *rq = arg;
372
373 raw_spin_lock(&rq->lock);
374 __hrtick_restart(rq);
375 rq->hrtick_csd_pending = 0;
376 raw_spin_unlock(&rq->lock);
377 }
378
379 /*
380 * Called to set the hrtick timer state.
381 *
382 * called with rq->lock held and irqs disabled
383 */
hrtick_start(struct rq * rq,u64 delay)384 void hrtick_start(struct rq *rq, u64 delay)
385 {
386 struct hrtimer *timer = &rq->hrtick_timer;
387 ktime_t time;
388 s64 delta;
389
390 /*
391 * Don't schedule slices shorter than 10000ns, that just
392 * doesn't make sense and can cause timer DoS.
393 */
394 delta = max_t(s64, delay, 10000LL);
395 time = ktime_add_ns(timer->base->get_time(), delta);
396
397 hrtimer_set_expires(timer, time);
398
399 if (rq == this_rq()) {
400 __hrtick_restart(rq);
401 } else if (!rq->hrtick_csd_pending) {
402 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
403 rq->hrtick_csd_pending = 1;
404 }
405 }
406
407 static int
hotplug_hrtick(struct notifier_block * nfb,unsigned long action,void * hcpu)408 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409 {
410 int cpu = (int)(long)hcpu;
411
412 switch (action) {
413 case CPU_UP_CANCELED:
414 case CPU_UP_CANCELED_FROZEN:
415 case CPU_DOWN_PREPARE:
416 case CPU_DOWN_PREPARE_FROZEN:
417 case CPU_DEAD:
418 case CPU_DEAD_FROZEN:
419 hrtick_clear(cpu_rq(cpu));
420 return NOTIFY_OK;
421 }
422
423 return NOTIFY_DONE;
424 }
425
init_hrtick(void)426 static __init void init_hrtick(void)
427 {
428 hotcpu_notifier(hotplug_hrtick, 0);
429 }
430 #else
431 /*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
hrtick_start(struct rq * rq,u64 delay)436 void hrtick_start(struct rq *rq, u64 delay)
437 {
438 /*
439 * Don't schedule slices shorter than 10000ns, that just
440 * doesn't make sense. Rely on vruntime for fairness.
441 */
442 delay = max_t(u64, delay, 10000LL);
443 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
444 HRTIMER_MODE_REL_PINNED, 0);
445 }
446
init_hrtick(void)447 static inline void init_hrtick(void)
448 {
449 }
450 #endif /* CONFIG_SMP */
451
init_rq_hrtick(struct rq * rq)452 static void init_rq_hrtick(struct rq *rq)
453 {
454 #ifdef CONFIG_SMP
455 rq->hrtick_csd_pending = 0;
456
457 rq->hrtick_csd.flags = 0;
458 rq->hrtick_csd.func = __hrtick_start;
459 rq->hrtick_csd.info = rq;
460 #endif
461
462 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463 rq->hrtick_timer.function = hrtick;
464 }
465 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)466 static inline void hrtick_clear(struct rq *rq)
467 {
468 }
469
init_rq_hrtick(struct rq * rq)470 static inline void init_rq_hrtick(struct rq *rq)
471 {
472 }
473
init_hrtick(void)474 static inline void init_hrtick(void)
475 {
476 }
477 #endif /* CONFIG_SCHED_HRTICK */
478
479 /*
480 * cmpxchg based fetch_or, macro so it works for different integer types
481 */
482 #define fetch_or(ptr, val) \
483 ({ typeof(*(ptr)) __old, __val = *(ptr); \
484 for (;;) { \
485 __old = cmpxchg((ptr), __val, __val | (val)); \
486 if (__old == __val) \
487 break; \
488 __val = __old; \
489 } \
490 __old; \
491 })
492
493 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
494 /*
495 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496 * this avoids any races wrt polling state changes and thereby avoids
497 * spurious IPIs.
498 */
set_nr_and_not_polling(struct task_struct * p)499 static bool set_nr_and_not_polling(struct task_struct *p)
500 {
501 struct thread_info *ti = task_thread_info(p);
502 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503 }
504
505 /*
506 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507 *
508 * If this returns true, then the idle task promises to call
509 * sched_ttwu_pending() and reschedule soon.
510 */
set_nr_if_polling(struct task_struct * p)511 static bool set_nr_if_polling(struct task_struct *p)
512 {
513 struct thread_info *ti = task_thread_info(p);
514 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
515
516 for (;;) {
517 if (!(val & _TIF_POLLING_NRFLAG))
518 return false;
519 if (val & _TIF_NEED_RESCHED)
520 return true;
521 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522 if (old == val)
523 break;
524 val = old;
525 }
526 return true;
527 }
528
529 #else
set_nr_and_not_polling(struct task_struct * p)530 static bool set_nr_and_not_polling(struct task_struct *p)
531 {
532 set_tsk_need_resched(p);
533 return true;
534 }
535
536 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)537 static bool set_nr_if_polling(struct task_struct *p)
538 {
539 return false;
540 }
541 #endif
542 #endif
543
544 /*
545 * resched_curr - mark rq's current task 'to be rescheduled now'.
546 *
547 * On UP this means the setting of the need_resched flag, on SMP it
548 * might also involve a cross-CPU call to trigger the scheduler on
549 * the target CPU.
550 */
resched_curr(struct rq * rq)551 void resched_curr(struct rq *rq)
552 {
553 struct task_struct *curr = rq->curr;
554 int cpu;
555
556 lockdep_assert_held(&rq->lock);
557
558 if (test_tsk_need_resched(curr))
559 return;
560
561 cpu = cpu_of(rq);
562
563 if (cpu == smp_processor_id()) {
564 set_tsk_need_resched(curr);
565 set_preempt_need_resched();
566 return;
567 }
568
569 if (set_nr_and_not_polling(curr))
570 smp_send_reschedule(cpu);
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
resched_cpu(int cpu)575 void resched_cpu(int cpu)
576 {
577 struct rq *rq = cpu_rq(cpu);
578 unsigned long flags;
579
580 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
581 return;
582 resched_curr(rq);
583 raw_spin_unlock_irqrestore(&rq->lock, flags);
584 }
585
586 #ifdef CONFIG_SMP
587 #ifdef CONFIG_NO_HZ_COMMON
588 /*
589 * In the semi idle case, use the nearest busy cpu for migrating timers
590 * from an idle cpu. This is good for power-savings.
591 *
592 * We don't do similar optimization for completely idle system, as
593 * selecting an idle cpu will add more delays to the timers than intended
594 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595 */
get_nohz_timer_target(int pinned)596 int get_nohz_timer_target(int pinned)
597 {
598 int cpu = smp_processor_id();
599 int i;
600 struct sched_domain *sd;
601
602 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603 return cpu;
604
605 rcu_read_lock();
606 for_each_domain(cpu, sd) {
607 for_each_cpu(i, sched_domain_span(sd)) {
608 if (!idle_cpu(i)) {
609 cpu = i;
610 goto unlock;
611 }
612 }
613 }
614 unlock:
615 rcu_read_unlock();
616 return cpu;
617 }
618 /*
619 * When add_timer_on() enqueues a timer into the timer wheel of an
620 * idle CPU then this timer might expire before the next timer event
621 * which is scheduled to wake up that CPU. In case of a completely
622 * idle system the next event might even be infinite time into the
623 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624 * leaves the inner idle loop so the newly added timer is taken into
625 * account when the CPU goes back to idle and evaluates the timer
626 * wheel for the next timer event.
627 */
wake_up_idle_cpu(int cpu)628 static void wake_up_idle_cpu(int cpu)
629 {
630 struct rq *rq = cpu_rq(cpu);
631
632 if (cpu == smp_processor_id())
633 return;
634
635 if (set_nr_and_not_polling(rq->idle))
636 smp_send_reschedule(cpu);
637 else
638 trace_sched_wake_idle_without_ipi(cpu);
639 }
640
wake_up_full_nohz_cpu(int cpu)641 static bool wake_up_full_nohz_cpu(int cpu)
642 {
643 /*
644 * We just need the target to call irq_exit() and re-evaluate
645 * the next tick. The nohz full kick at least implies that.
646 * If needed we can still optimize that later with an
647 * empty IRQ.
648 */
649 if (tick_nohz_full_cpu(cpu)) {
650 if (cpu != smp_processor_id() ||
651 tick_nohz_tick_stopped())
652 tick_nohz_full_kick_cpu(cpu);
653 return true;
654 }
655
656 return false;
657 }
658
wake_up_nohz_cpu(int cpu)659 void wake_up_nohz_cpu(int cpu)
660 {
661 if (!wake_up_full_nohz_cpu(cpu))
662 wake_up_idle_cpu(cpu);
663 }
664
got_nohz_idle_kick(void)665 static inline bool got_nohz_idle_kick(void)
666 {
667 int cpu = smp_processor_id();
668
669 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670 return false;
671
672 if (idle_cpu(cpu) && !need_resched())
673 return true;
674
675 /*
676 * We can't run Idle Load Balance on this CPU for this time so we
677 * cancel it and clear NOHZ_BALANCE_KICK
678 */
679 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680 return false;
681 }
682
683 #else /* CONFIG_NO_HZ_COMMON */
684
got_nohz_idle_kick(void)685 static inline bool got_nohz_idle_kick(void)
686 {
687 return false;
688 }
689
690 #endif /* CONFIG_NO_HZ_COMMON */
691
692 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(void)693 bool sched_can_stop_tick(void)
694 {
695 /*
696 * FIFO realtime policy runs the highest priority task. Other runnable
697 * tasks are of a lower priority. The scheduler tick does nothing.
698 */
699 if (current->policy == SCHED_FIFO)
700 return true;
701
702 /*
703 * Round-robin realtime tasks time slice with other tasks at the same
704 * realtime priority. Is this task the only one at this priority?
705 */
706 if (current->policy == SCHED_RR) {
707 struct sched_rt_entity *rt_se = ¤t->rt;
708
709 return rt_se->run_list.prev == rt_se->run_list.next;
710 }
711
712 /*
713 * More than one running task need preemption.
714 * nr_running update is assumed to be visible
715 * after IPI is sent from wakers.
716 */
717 if (this_rq()->nr_running > 1)
718 return false;
719
720 return true;
721 }
722 #endif /* CONFIG_NO_HZ_FULL */
723
sched_avg_update(struct rq * rq)724 void sched_avg_update(struct rq *rq)
725 {
726 s64 period = sched_avg_period();
727
728 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
729 /*
730 * Inline assembly required to prevent the compiler
731 * optimising this loop into a divmod call.
732 * See __iter_div_u64_rem() for another example of this.
733 */
734 asm("" : "+rm" (rq->age_stamp));
735 rq->age_stamp += period;
736 rq->rt_avg /= 2;
737 }
738 }
739
740 #endif /* CONFIG_SMP */
741
742 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
744 /*
745 * Iterate task_group tree rooted at *from, calling @down when first entering a
746 * node and @up when leaving it for the final time.
747 *
748 * Caller must hold rcu_lock or sufficient equivalent.
749 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)750 int walk_tg_tree_from(struct task_group *from,
751 tg_visitor down, tg_visitor up, void *data)
752 {
753 struct task_group *parent, *child;
754 int ret;
755
756 parent = from;
757
758 down:
759 ret = (*down)(parent, data);
760 if (ret)
761 goto out;
762 list_for_each_entry_rcu(child, &parent->children, siblings) {
763 parent = child;
764 goto down;
765
766 up:
767 continue;
768 }
769 ret = (*up)(parent, data);
770 if (ret || parent == from)
771 goto out;
772
773 child = parent;
774 parent = parent->parent;
775 if (parent)
776 goto up;
777 out:
778 return ret;
779 }
780
tg_nop(struct task_group * tg,void * data)781 int tg_nop(struct task_group *tg, void *data)
782 {
783 return 0;
784 }
785 #endif
786
set_load_weight(struct task_struct * p)787 static void set_load_weight(struct task_struct *p)
788 {
789 int prio = p->static_prio - MAX_RT_PRIO;
790 struct load_weight *load = &p->se.load;
791
792 /*
793 * SCHED_IDLE tasks get minimal weight:
794 */
795 if (p->policy == SCHED_IDLE) {
796 load->weight = scale_load(WEIGHT_IDLEPRIO);
797 load->inv_weight = WMULT_IDLEPRIO;
798 return;
799 }
800
801 load->weight = scale_load(prio_to_weight[prio]);
802 load->inv_weight = prio_to_wmult[prio];
803 }
804
enqueue_task(struct rq * rq,struct task_struct * p,int flags)805 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
806 {
807 update_rq_clock(rq);
808 sched_info_queued(rq, p);
809 p->sched_class->enqueue_task(rq, p, flags);
810 }
811
dequeue_task(struct rq * rq,struct task_struct * p,int flags)812 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
813 {
814 update_rq_clock(rq);
815 sched_info_dequeued(rq, p);
816 p->sched_class->dequeue_task(rq, p, flags);
817 }
818
activate_task(struct rq * rq,struct task_struct * p,int flags)819 void activate_task(struct rq *rq, struct task_struct *p, int flags)
820 {
821 if (task_contributes_to_load(p))
822 rq->nr_uninterruptible--;
823
824 enqueue_task(rq, p, flags);
825 }
826
deactivate_task(struct rq * rq,struct task_struct * p,int flags)827 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
828 {
829 if (task_contributes_to_load(p))
830 rq->nr_uninterruptible++;
831
832 dequeue_task(rq, p, flags);
833 }
834
update_rq_clock_task(struct rq * rq,s64 delta)835 static void update_rq_clock_task(struct rq *rq, s64 delta)
836 {
837 /*
838 * In theory, the compile should just see 0 here, and optimize out the call
839 * to sched_rt_avg_update. But I don't trust it...
840 */
841 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842 s64 steal = 0, irq_delta = 0;
843 #endif
844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
845 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
846
847 /*
848 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849 * this case when a previous update_rq_clock() happened inside a
850 * {soft,}irq region.
851 *
852 * When this happens, we stop ->clock_task and only update the
853 * prev_irq_time stamp to account for the part that fit, so that a next
854 * update will consume the rest. This ensures ->clock_task is
855 * monotonic.
856 *
857 * It does however cause some slight miss-attribution of {soft,}irq
858 * time, a more accurate solution would be to update the irq_time using
859 * the current rq->clock timestamp, except that would require using
860 * atomic ops.
861 */
862 if (irq_delta > delta)
863 irq_delta = delta;
864
865 rq->prev_irq_time += irq_delta;
866 delta -= irq_delta;
867 #endif
868 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869 if (static_key_false((¶virt_steal_rq_enabled))) {
870 steal = paravirt_steal_clock(cpu_of(rq));
871 steal -= rq->prev_steal_time_rq;
872
873 if (unlikely(steal > delta))
874 steal = delta;
875
876 rq->prev_steal_time_rq += steal;
877 delta -= steal;
878 }
879 #endif
880
881 rq->clock_task += delta;
882
883 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
885 sched_rt_avg_update(rq, irq_delta + steal);
886 #endif
887 }
888
sched_set_stop_task(int cpu,struct task_struct * stop)889 void sched_set_stop_task(int cpu, struct task_struct *stop)
890 {
891 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892 struct task_struct *old_stop = cpu_rq(cpu)->stop;
893
894 if (stop) {
895 /*
896 * Make it appear like a SCHED_FIFO task, its something
897 * userspace knows about and won't get confused about.
898 *
899 * Also, it will make PI more or less work without too
900 * much confusion -- but then, stop work should not
901 * rely on PI working anyway.
902 */
903 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
904
905 stop->sched_class = &stop_sched_class;
906 }
907
908 cpu_rq(cpu)->stop = stop;
909
910 if (old_stop) {
911 /*
912 * Reset it back to a normal scheduling class so that
913 * it can die in pieces.
914 */
915 old_stop->sched_class = &rt_sched_class;
916 }
917 }
918
919 /*
920 * __normal_prio - return the priority that is based on the static prio
921 */
__normal_prio(struct task_struct * p)922 static inline int __normal_prio(struct task_struct *p)
923 {
924 return p->static_prio;
925 }
926
927 /*
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
933 */
normal_prio(struct task_struct * p)934 static inline int normal_prio(struct task_struct *p)
935 {
936 int prio;
937
938 if (task_has_dl_policy(p))
939 prio = MAX_DL_PRIO-1;
940 else if (task_has_rt_policy(p))
941 prio = MAX_RT_PRIO-1 - p->rt_priority;
942 else
943 prio = __normal_prio(p);
944 return prio;
945 }
946
947 /*
948 * Calculate the current priority, i.e. the priority
949 * taken into account by the scheduler. This value might
950 * be boosted by RT tasks, or might be boosted by
951 * interactivity modifiers. Will be RT if the task got
952 * RT-boosted. If not then it returns p->normal_prio.
953 */
effective_prio(struct task_struct * p)954 static int effective_prio(struct task_struct *p)
955 {
956 p->normal_prio = normal_prio(p);
957 /*
958 * If we are RT tasks or we were boosted to RT priority,
959 * keep the priority unchanged. Otherwise, update priority
960 * to the normal priority:
961 */
962 if (!rt_prio(p->prio))
963 return p->normal_prio;
964 return p->prio;
965 }
966
967 /**
968 * task_curr - is this task currently executing on a CPU?
969 * @p: the task in question.
970 *
971 * Return: 1 if the task is currently executing. 0 otherwise.
972 */
task_curr(const struct task_struct * p)973 inline int task_curr(const struct task_struct *p)
974 {
975 return cpu_curr(task_cpu(p)) == p;
976 }
977
978 /*
979 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)981 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982 const struct sched_class *prev_class,
983 int oldprio)
984 {
985 if (prev_class != p->sched_class) {
986 if (prev_class->switched_from)
987 prev_class->switched_from(rq, p);
988 /* Possble rq->lock 'hole'. */
989 p->sched_class->switched_to(rq, p);
990 } else if (oldprio != p->prio || dl_task(p))
991 p->sched_class->prio_changed(rq, p, oldprio);
992 }
993
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)994 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
995 {
996 const struct sched_class *class;
997
998 if (p->sched_class == rq->curr->sched_class) {
999 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000 } else {
1001 for_each_class(class) {
1002 if (class == rq->curr->sched_class)
1003 break;
1004 if (class == p->sched_class) {
1005 resched_curr(rq);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /*
1012 * A queue event has occurred, and we're going to schedule. In
1013 * this case, we can save a useless back to back clock update.
1014 */
1015 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1016 rq_clock_skip_update(rq, true);
1017 }
1018
1019 #ifdef CONFIG_SMP
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1020 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1021 {
1022 #ifdef CONFIG_SCHED_DEBUG
1023 /*
1024 * We should never call set_task_cpu() on a blocked task,
1025 * ttwu() will sort out the placement.
1026 */
1027 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1028 !p->on_rq);
1029
1030 #ifdef CONFIG_LOCKDEP
1031 /*
1032 * The caller should hold either p->pi_lock or rq->lock, when changing
1033 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1034 *
1035 * sched_move_task() holds both and thus holding either pins the cgroup,
1036 * see task_group().
1037 *
1038 * Furthermore, all task_rq users should acquire both locks, see
1039 * task_rq_lock().
1040 */
1041 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1042 lockdep_is_held(&task_rq(p)->lock)));
1043 #endif
1044 #endif
1045
1046 trace_sched_migrate_task(p, new_cpu);
1047
1048 if (task_cpu(p) != new_cpu) {
1049 if (p->sched_class->migrate_task_rq)
1050 p->sched_class->migrate_task_rq(p, new_cpu);
1051 p->se.nr_migrations++;
1052 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1053 }
1054
1055 __set_task_cpu(p, new_cpu);
1056 }
1057
__migrate_swap_task(struct task_struct * p,int cpu)1058 static void __migrate_swap_task(struct task_struct *p, int cpu)
1059 {
1060 if (task_on_rq_queued(p)) {
1061 struct rq *src_rq, *dst_rq;
1062
1063 src_rq = task_rq(p);
1064 dst_rq = cpu_rq(cpu);
1065
1066 deactivate_task(src_rq, p, 0);
1067 set_task_cpu(p, cpu);
1068 activate_task(dst_rq, p, 0);
1069 check_preempt_curr(dst_rq, p, 0);
1070 } else {
1071 /*
1072 * Task isn't running anymore; make it appear like we migrated
1073 * it before it went to sleep. This means on wakeup we make the
1074 * previous cpu our targer instead of where it really is.
1075 */
1076 p->wake_cpu = cpu;
1077 }
1078 }
1079
1080 struct migration_swap_arg {
1081 struct task_struct *src_task, *dst_task;
1082 int src_cpu, dst_cpu;
1083 };
1084
migrate_swap_stop(void * data)1085 static int migrate_swap_stop(void *data)
1086 {
1087 struct migration_swap_arg *arg = data;
1088 struct rq *src_rq, *dst_rq;
1089 int ret = -EAGAIN;
1090
1091 src_rq = cpu_rq(arg->src_cpu);
1092 dst_rq = cpu_rq(arg->dst_cpu);
1093
1094 double_raw_lock(&arg->src_task->pi_lock,
1095 &arg->dst_task->pi_lock);
1096 double_rq_lock(src_rq, dst_rq);
1097 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1098 goto unlock;
1099
1100 if (task_cpu(arg->src_task) != arg->src_cpu)
1101 goto unlock;
1102
1103 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1104 goto unlock;
1105
1106 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1107 goto unlock;
1108
1109 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1110 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1111
1112 ret = 0;
1113
1114 unlock:
1115 double_rq_unlock(src_rq, dst_rq);
1116 raw_spin_unlock(&arg->dst_task->pi_lock);
1117 raw_spin_unlock(&arg->src_task->pi_lock);
1118
1119 return ret;
1120 }
1121
1122 /*
1123 * Cross migrate two tasks
1124 */
migrate_swap(struct task_struct * cur,struct task_struct * p)1125 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1126 {
1127 struct migration_swap_arg arg;
1128 int ret = -EINVAL;
1129
1130 arg = (struct migration_swap_arg){
1131 .src_task = cur,
1132 .src_cpu = task_cpu(cur),
1133 .dst_task = p,
1134 .dst_cpu = task_cpu(p),
1135 };
1136
1137 if (arg.src_cpu == arg.dst_cpu)
1138 goto out;
1139
1140 /*
1141 * These three tests are all lockless; this is OK since all of them
1142 * will be re-checked with proper locks held further down the line.
1143 */
1144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1145 goto out;
1146
1147 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1148 goto out;
1149
1150 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1151 goto out;
1152
1153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1155
1156 out:
1157 return ret;
1158 }
1159
1160 struct migration_arg {
1161 struct task_struct *task;
1162 int dest_cpu;
1163 };
1164
1165 static int migration_cpu_stop(void *data);
1166
1167 /*
1168 * wait_task_inactive - wait for a thread to unschedule.
1169 *
1170 * If @match_state is nonzero, it's the @p->state value just checked and
1171 * not expected to change. If it changes, i.e. @p might have woken up,
1172 * then return zero. When we succeed in waiting for @p to be off its CPU,
1173 * we return a positive number (its total switch count). If a second call
1174 * a short while later returns the same number, the caller can be sure that
1175 * @p has remained unscheduled the whole time.
1176 *
1177 * The caller must ensure that the task *will* unschedule sometime soon,
1178 * else this function might spin for a *long* time. This function can't
1179 * be called with interrupts off, or it may introduce deadlock with
1180 * smp_call_function() if an IPI is sent by the same process we are
1181 * waiting to become inactive.
1182 */
wait_task_inactive(struct task_struct * p,long match_state)1183 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1184 {
1185 unsigned long flags;
1186 int running, queued;
1187 unsigned long ncsw;
1188 struct rq *rq;
1189
1190 for (;;) {
1191 /*
1192 * We do the initial early heuristics without holding
1193 * any task-queue locks at all. We'll only try to get
1194 * the runqueue lock when things look like they will
1195 * work out!
1196 */
1197 rq = task_rq(p);
1198
1199 /*
1200 * If the task is actively running on another CPU
1201 * still, just relax and busy-wait without holding
1202 * any locks.
1203 *
1204 * NOTE! Since we don't hold any locks, it's not
1205 * even sure that "rq" stays as the right runqueue!
1206 * But we don't care, since "task_running()" will
1207 * return false if the runqueue has changed and p
1208 * is actually now running somewhere else!
1209 */
1210 while (task_running(rq, p)) {
1211 if (match_state && unlikely(p->state != match_state))
1212 return 0;
1213 cpu_relax();
1214 }
1215
1216 /*
1217 * Ok, time to look more closely! We need the rq
1218 * lock now, to be *sure*. If we're wrong, we'll
1219 * just go back and repeat.
1220 */
1221 rq = task_rq_lock(p, &flags);
1222 trace_sched_wait_task(p);
1223 running = task_running(rq, p);
1224 queued = task_on_rq_queued(p);
1225 ncsw = 0;
1226 if (!match_state || p->state == match_state)
1227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1228 task_rq_unlock(rq, p, &flags);
1229
1230 /*
1231 * If it changed from the expected state, bail out now.
1232 */
1233 if (unlikely(!ncsw))
1234 break;
1235
1236 /*
1237 * Was it really running after all now that we
1238 * checked with the proper locks actually held?
1239 *
1240 * Oops. Go back and try again..
1241 */
1242 if (unlikely(running)) {
1243 cpu_relax();
1244 continue;
1245 }
1246
1247 /*
1248 * It's not enough that it's not actively running,
1249 * it must be off the runqueue _entirely_, and not
1250 * preempted!
1251 *
1252 * So if it was still runnable (but just not actively
1253 * running right now), it's preempted, and we should
1254 * yield - it could be a while.
1255 */
1256 if (unlikely(queued)) {
1257 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1258
1259 set_current_state(TASK_UNINTERRUPTIBLE);
1260 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1261 continue;
1262 }
1263
1264 /*
1265 * Ahh, all good. It wasn't running, and it wasn't
1266 * runnable, which means that it will never become
1267 * running in the future either. We're all done!
1268 */
1269 break;
1270 }
1271
1272 return ncsw;
1273 }
1274
1275 /***
1276 * kick_process - kick a running thread to enter/exit the kernel
1277 * @p: the to-be-kicked thread
1278 *
1279 * Cause a process which is running on another CPU to enter
1280 * kernel-mode, without any delay. (to get signals handled.)
1281 *
1282 * NOTE: this function doesn't have to take the runqueue lock,
1283 * because all it wants to ensure is that the remote task enters
1284 * the kernel. If the IPI races and the task has been migrated
1285 * to another CPU then no harm is done and the purpose has been
1286 * achieved as well.
1287 */
kick_process(struct task_struct * p)1288 void kick_process(struct task_struct *p)
1289 {
1290 int cpu;
1291
1292 preempt_disable();
1293 cpu = task_cpu(p);
1294 if ((cpu != smp_processor_id()) && task_curr(p))
1295 smp_send_reschedule(cpu);
1296 preempt_enable();
1297 }
1298 EXPORT_SYMBOL_GPL(kick_process);
1299 #endif /* CONFIG_SMP */
1300
1301 #ifdef CONFIG_SMP
1302 /*
1303 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1304 */
select_fallback_rq(int cpu,struct task_struct * p)1305 static int select_fallback_rq(int cpu, struct task_struct *p)
1306 {
1307 int nid = cpu_to_node(cpu);
1308 const struct cpumask *nodemask = NULL;
1309 enum { cpuset, possible, fail } state = cpuset;
1310 int dest_cpu;
1311
1312 /*
1313 * If the node that the cpu is on has been offlined, cpu_to_node()
1314 * will return -1. There is no cpu on the node, and we should
1315 * select the cpu on the other node.
1316 */
1317 if (nid != -1) {
1318 nodemask = cpumask_of_node(nid);
1319
1320 /* Look for allowed, online CPU in same node. */
1321 for_each_cpu(dest_cpu, nodemask) {
1322 if (!cpu_online(dest_cpu))
1323 continue;
1324 if (!cpu_active(dest_cpu))
1325 continue;
1326 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1327 return dest_cpu;
1328 }
1329 }
1330
1331 for (;;) {
1332 /* Any allowed, online CPU? */
1333 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1334 if (!cpu_online(dest_cpu))
1335 continue;
1336 if (!cpu_active(dest_cpu))
1337 continue;
1338 goto out;
1339 }
1340
1341 switch (state) {
1342 case cpuset:
1343 /* No more Mr. Nice Guy. */
1344 cpuset_cpus_allowed_fallback(p);
1345 state = possible;
1346 break;
1347
1348 case possible:
1349 do_set_cpus_allowed(p, cpu_possible_mask);
1350 state = fail;
1351 break;
1352
1353 case fail:
1354 BUG();
1355 break;
1356 }
1357 }
1358
1359 out:
1360 if (state != cpuset) {
1361 /*
1362 * Don't tell them about moving exiting tasks or
1363 * kernel threads (both mm NULL), since they never
1364 * leave kernel.
1365 */
1366 if (p->mm && printk_ratelimit()) {
1367 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1368 task_pid_nr(p), p->comm, cpu);
1369 }
1370 }
1371
1372 return dest_cpu;
1373 }
1374
1375 /*
1376 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1377 */
1378 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)1379 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1380 {
1381 if (p->nr_cpus_allowed > 1)
1382 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1383
1384 /*
1385 * In order not to call set_task_cpu() on a blocking task we need
1386 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1387 * cpu.
1388 *
1389 * Since this is common to all placement strategies, this lives here.
1390 *
1391 * [ this allows ->select_task() to simply return task_cpu(p) and
1392 * not worry about this generic constraint ]
1393 */
1394 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1395 !cpu_online(cpu)))
1396 cpu = select_fallback_rq(task_cpu(p), p);
1397
1398 return cpu;
1399 }
1400
update_avg(u64 * avg,u64 sample)1401 static void update_avg(u64 *avg, u64 sample)
1402 {
1403 s64 diff = sample - *avg;
1404 *avg += diff >> 3;
1405 }
1406 #endif
1407
1408 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)1409 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1410 {
1411 #ifdef CONFIG_SCHEDSTATS
1412 struct rq *rq = this_rq();
1413
1414 #ifdef CONFIG_SMP
1415 int this_cpu = smp_processor_id();
1416
1417 if (cpu == this_cpu) {
1418 schedstat_inc(rq, ttwu_local);
1419 schedstat_inc(p, se.statistics.nr_wakeups_local);
1420 } else {
1421 struct sched_domain *sd;
1422
1423 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1424 rcu_read_lock();
1425 for_each_domain(this_cpu, sd) {
1426 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1427 schedstat_inc(sd, ttwu_wake_remote);
1428 break;
1429 }
1430 }
1431 rcu_read_unlock();
1432 }
1433
1434 if (wake_flags & WF_MIGRATED)
1435 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1436
1437 #endif /* CONFIG_SMP */
1438
1439 schedstat_inc(rq, ttwu_count);
1440 schedstat_inc(p, se.statistics.nr_wakeups);
1441
1442 if (wake_flags & WF_SYNC)
1443 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1444
1445 #endif /* CONFIG_SCHEDSTATS */
1446 }
1447
ttwu_activate(struct rq * rq,struct task_struct * p,int en_flags)1448 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1449 {
1450 activate_task(rq, p, en_flags);
1451 p->on_rq = TASK_ON_RQ_QUEUED;
1452
1453 /* if a worker is waking up, notify workqueue */
1454 if (p->flags & PF_WQ_WORKER)
1455 wq_worker_waking_up(p, cpu_of(rq));
1456 }
1457
1458 /*
1459 * Mark the task runnable and perform wakeup-preemption.
1460 */
1461 static void
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)1462 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1463 {
1464 check_preempt_curr(rq, p, wake_flags);
1465 trace_sched_wakeup(p, true);
1466
1467 p->state = TASK_RUNNING;
1468 #ifdef CONFIG_SMP
1469 if (p->sched_class->task_woken)
1470 p->sched_class->task_woken(rq, p);
1471
1472 if (rq->idle_stamp) {
1473 u64 delta = rq_clock(rq) - rq->idle_stamp;
1474 u64 max = 2*rq->max_idle_balance_cost;
1475
1476 update_avg(&rq->avg_idle, delta);
1477
1478 if (rq->avg_idle > max)
1479 rq->avg_idle = max;
1480
1481 rq->idle_stamp = 0;
1482 }
1483 #endif
1484 }
1485
1486 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags)1487 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1488 {
1489 #ifdef CONFIG_SMP
1490 if (p->sched_contributes_to_load)
1491 rq->nr_uninterruptible--;
1492 #endif
1493
1494 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1495 ttwu_do_wakeup(rq, p, wake_flags);
1496 }
1497
1498 /*
1499 * Called in case the task @p isn't fully descheduled from its runqueue,
1500 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501 * since all we need to do is flip p->state to TASK_RUNNING, since
1502 * the task is still ->on_rq.
1503 */
ttwu_remote(struct task_struct * p,int wake_flags)1504 static int ttwu_remote(struct task_struct *p, int wake_flags)
1505 {
1506 struct rq *rq;
1507 int ret = 0;
1508
1509 rq = __task_rq_lock(p);
1510 if (task_on_rq_queued(p)) {
1511 /* check_preempt_curr() may use rq clock */
1512 update_rq_clock(rq);
1513 ttwu_do_wakeup(rq, p, wake_flags);
1514 ret = 1;
1515 }
1516 __task_rq_unlock(rq);
1517
1518 return ret;
1519 }
1520
1521 #ifdef CONFIG_SMP
sched_ttwu_pending(void)1522 void sched_ttwu_pending(void)
1523 {
1524 struct rq *rq = this_rq();
1525 struct llist_node *llist = llist_del_all(&rq->wake_list);
1526 struct task_struct *p;
1527 unsigned long flags;
1528
1529 if (!llist)
1530 return;
1531
1532 raw_spin_lock_irqsave(&rq->lock, flags);
1533
1534 while (llist) {
1535 p = llist_entry(llist, struct task_struct, wake_entry);
1536 llist = llist_next(llist);
1537 ttwu_do_activate(rq, p, 0);
1538 }
1539
1540 raw_spin_unlock_irqrestore(&rq->lock, flags);
1541 }
1542
scheduler_ipi(void)1543 void scheduler_ipi(void)
1544 {
1545 /*
1546 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547 * TIF_NEED_RESCHED remotely (for the first time) will also send
1548 * this IPI.
1549 */
1550 preempt_fold_need_resched();
1551
1552 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1553 return;
1554
1555 /*
1556 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557 * traditionally all their work was done from the interrupt return
1558 * path. Now that we actually do some work, we need to make sure
1559 * we do call them.
1560 *
1561 * Some archs already do call them, luckily irq_enter/exit nest
1562 * properly.
1563 *
1564 * Arguably we should visit all archs and update all handlers,
1565 * however a fair share of IPIs are still resched only so this would
1566 * somewhat pessimize the simple resched case.
1567 */
1568 irq_enter();
1569 sched_ttwu_pending();
1570
1571 /*
1572 * Check if someone kicked us for doing the nohz idle load balance.
1573 */
1574 if (unlikely(got_nohz_idle_kick())) {
1575 this_rq()->idle_balance = 1;
1576 raise_softirq_irqoff(SCHED_SOFTIRQ);
1577 }
1578 irq_exit();
1579 }
1580
ttwu_queue_remote(struct task_struct * p,int cpu)1581 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1582 {
1583 struct rq *rq = cpu_rq(cpu);
1584
1585 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1586 if (!set_nr_if_polling(rq->idle))
1587 smp_send_reschedule(cpu);
1588 else
1589 trace_sched_wake_idle_without_ipi(cpu);
1590 }
1591 }
1592
wake_up_if_idle(int cpu)1593 void wake_up_if_idle(int cpu)
1594 {
1595 struct rq *rq = cpu_rq(cpu);
1596 unsigned long flags;
1597
1598 rcu_read_lock();
1599
1600 if (!is_idle_task(rcu_dereference(rq->curr)))
1601 goto out;
1602
1603 if (set_nr_if_polling(rq->idle)) {
1604 trace_sched_wake_idle_without_ipi(cpu);
1605 } else {
1606 raw_spin_lock_irqsave(&rq->lock, flags);
1607 if (is_idle_task(rq->curr))
1608 smp_send_reschedule(cpu);
1609 /* Else cpu is not in idle, do nothing here */
1610 raw_spin_unlock_irqrestore(&rq->lock, flags);
1611 }
1612
1613 out:
1614 rcu_read_unlock();
1615 }
1616
cpus_share_cache(int this_cpu,int that_cpu)1617 bool cpus_share_cache(int this_cpu, int that_cpu)
1618 {
1619 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1620 }
1621 #endif /* CONFIG_SMP */
1622
ttwu_queue(struct task_struct * p,int cpu)1623 static void ttwu_queue(struct task_struct *p, int cpu)
1624 {
1625 struct rq *rq = cpu_rq(cpu);
1626
1627 #if defined(CONFIG_SMP)
1628 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1629 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1630 ttwu_queue_remote(p, cpu);
1631 return;
1632 }
1633 #endif
1634
1635 raw_spin_lock(&rq->lock);
1636 ttwu_do_activate(rq, p, 0);
1637 raw_spin_unlock(&rq->lock);
1638 }
1639
1640 /**
1641 * try_to_wake_up - wake up a thread
1642 * @p: the thread to be awakened
1643 * @state: the mask of task states that can be woken
1644 * @wake_flags: wake modifier flags (WF_*)
1645 *
1646 * Put it on the run-queue if it's not already there. The "current"
1647 * thread is always on the run-queue (except when the actual
1648 * re-schedule is in progress), and as such you're allowed to do
1649 * the simpler "current->state = TASK_RUNNING" to mark yourself
1650 * runnable without the overhead of this.
1651 *
1652 * Return: %true if @p was woken up, %false if it was already running.
1653 * or @state didn't match @p's state.
1654 */
1655 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)1656 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1657 {
1658 unsigned long flags;
1659 int cpu, success = 0;
1660
1661 /*
1662 * If we are going to wake up a thread waiting for CONDITION we
1663 * need to ensure that CONDITION=1 done by the caller can not be
1664 * reordered with p->state check below. This pairs with mb() in
1665 * set_current_state() the waiting thread does.
1666 */
1667 smp_mb__before_spinlock();
1668 raw_spin_lock_irqsave(&p->pi_lock, flags);
1669 if (!(p->state & state))
1670 goto out;
1671
1672 success = 1; /* we're going to change ->state */
1673 cpu = task_cpu(p);
1674
1675 if (p->on_rq && ttwu_remote(p, wake_flags))
1676 goto stat;
1677
1678 #ifdef CONFIG_SMP
1679 /*
1680 * If the owning (remote) cpu is still in the middle of schedule() with
1681 * this task as prev, wait until its done referencing the task.
1682 */
1683 while (p->on_cpu)
1684 cpu_relax();
1685 /*
1686 * Pairs with the smp_wmb() in finish_lock_switch().
1687 */
1688 smp_rmb();
1689
1690 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1691 p->state = TASK_WAKING;
1692
1693 if (p->sched_class->task_waking)
1694 p->sched_class->task_waking(p);
1695
1696 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1697 if (task_cpu(p) != cpu) {
1698 wake_flags |= WF_MIGRATED;
1699 set_task_cpu(p, cpu);
1700 }
1701 #endif /* CONFIG_SMP */
1702
1703 ttwu_queue(p, cpu);
1704 stat:
1705 ttwu_stat(p, cpu, wake_flags);
1706 out:
1707 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1708
1709 return success;
1710 }
1711
1712 /**
1713 * try_to_wake_up_local - try to wake up a local task with rq lock held
1714 * @p: the thread to be awakened
1715 *
1716 * Put @p on the run-queue if it's not already there. The caller must
1717 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1718 * the current task.
1719 */
try_to_wake_up_local(struct task_struct * p)1720 static void try_to_wake_up_local(struct task_struct *p)
1721 {
1722 struct rq *rq = task_rq(p);
1723
1724 if (WARN_ON_ONCE(rq != this_rq()) ||
1725 WARN_ON_ONCE(p == current))
1726 return;
1727
1728 lockdep_assert_held(&rq->lock);
1729
1730 if (!raw_spin_trylock(&p->pi_lock)) {
1731 raw_spin_unlock(&rq->lock);
1732 raw_spin_lock(&p->pi_lock);
1733 raw_spin_lock(&rq->lock);
1734 }
1735
1736 if (!(p->state & TASK_NORMAL))
1737 goto out;
1738
1739 if (!task_on_rq_queued(p))
1740 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1741
1742 ttwu_do_wakeup(rq, p, 0);
1743 ttwu_stat(p, smp_processor_id(), 0);
1744 out:
1745 raw_spin_unlock(&p->pi_lock);
1746 }
1747
1748 /**
1749 * wake_up_process - Wake up a specific process
1750 * @p: The process to be woken up.
1751 *
1752 * Attempt to wake up the nominated process and move it to the set of runnable
1753 * processes.
1754 *
1755 * Return: 1 if the process was woken up, 0 if it was already running.
1756 *
1757 * It may be assumed that this function implies a write memory barrier before
1758 * changing the task state if and only if any tasks are woken up.
1759 */
wake_up_process(struct task_struct * p)1760 int wake_up_process(struct task_struct *p)
1761 {
1762 WARN_ON(task_is_stopped_or_traced(p));
1763 return try_to_wake_up(p, TASK_NORMAL, 0);
1764 }
1765 EXPORT_SYMBOL(wake_up_process);
1766
wake_up_state(struct task_struct * p,unsigned int state)1767 int wake_up_state(struct task_struct *p, unsigned int state)
1768 {
1769 return try_to_wake_up(p, state, 0);
1770 }
1771
1772 /*
1773 * This function clears the sched_dl_entity static params.
1774 */
__dl_clear_params(struct task_struct * p)1775 void __dl_clear_params(struct task_struct *p)
1776 {
1777 struct sched_dl_entity *dl_se = &p->dl;
1778
1779 dl_se->dl_runtime = 0;
1780 dl_se->dl_deadline = 0;
1781 dl_se->dl_period = 0;
1782 dl_se->flags = 0;
1783 dl_se->dl_bw = 0;
1784
1785 dl_se->dl_throttled = 0;
1786 dl_se->dl_new = 1;
1787 dl_se->dl_yielded = 0;
1788 }
1789
1790 /*
1791 * Perform scheduler related setup for a newly forked process p.
1792 * p is forked by current.
1793 *
1794 * __sched_fork() is basic setup used by init_idle() too:
1795 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)1796 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1797 {
1798 p->on_rq = 0;
1799
1800 p->se.on_rq = 0;
1801 p->se.exec_start = 0;
1802 p->se.sum_exec_runtime = 0;
1803 p->se.prev_sum_exec_runtime = 0;
1804 p->se.nr_migrations = 0;
1805 p->se.vruntime = 0;
1806 #ifdef CONFIG_SMP
1807 p->se.avg.decay_count = 0;
1808 #endif
1809 INIT_LIST_HEAD(&p->se.group_node);
1810
1811 #ifdef CONFIG_SCHEDSTATS
1812 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1813 #endif
1814
1815 RB_CLEAR_NODE(&p->dl.rb_node);
1816 init_dl_task_timer(&p->dl);
1817 __dl_clear_params(p);
1818
1819 INIT_LIST_HEAD(&p->rt.run_list);
1820
1821 #ifdef CONFIG_PREEMPT_NOTIFIERS
1822 INIT_HLIST_HEAD(&p->preempt_notifiers);
1823 #endif
1824
1825 #ifdef CONFIG_NUMA_BALANCING
1826 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1827 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1828 p->mm->numa_scan_seq = 0;
1829 }
1830
1831 if (clone_flags & CLONE_VM)
1832 p->numa_preferred_nid = current->numa_preferred_nid;
1833 else
1834 p->numa_preferred_nid = -1;
1835
1836 p->node_stamp = 0ULL;
1837 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1838 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1839 p->numa_work.next = &p->numa_work;
1840 p->numa_faults = NULL;
1841 p->last_task_numa_placement = 0;
1842 p->last_sum_exec_runtime = 0;
1843
1844 p->numa_group = NULL;
1845 #endif /* CONFIG_NUMA_BALANCING */
1846 }
1847
1848 #ifdef CONFIG_NUMA_BALANCING
1849 #ifdef CONFIG_SCHED_DEBUG
set_numabalancing_state(bool enabled)1850 void set_numabalancing_state(bool enabled)
1851 {
1852 if (enabled)
1853 sched_feat_set("NUMA");
1854 else
1855 sched_feat_set("NO_NUMA");
1856 }
1857 #else
1858 __read_mostly bool numabalancing_enabled;
1859
set_numabalancing_state(bool enabled)1860 void set_numabalancing_state(bool enabled)
1861 {
1862 numabalancing_enabled = enabled;
1863 }
1864 #endif /* CONFIG_SCHED_DEBUG */
1865
1866 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1867 int sysctl_numa_balancing(struct ctl_table *table, int write,
1868 void __user *buffer, size_t *lenp, loff_t *ppos)
1869 {
1870 struct ctl_table t;
1871 int err;
1872 int state = numabalancing_enabled;
1873
1874 if (write && !capable(CAP_SYS_ADMIN))
1875 return -EPERM;
1876
1877 t = *table;
1878 t.data = &state;
1879 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1880 if (err < 0)
1881 return err;
1882 if (write)
1883 set_numabalancing_state(state);
1884 return err;
1885 }
1886 #endif
1887 #endif
1888
1889 /*
1890 * fork()/clone()-time setup:
1891 */
sched_fork(unsigned long clone_flags,struct task_struct * p)1892 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1893 {
1894 unsigned long flags;
1895 int cpu = get_cpu();
1896
1897 __sched_fork(clone_flags, p);
1898 /*
1899 * We mark the process as running here. This guarantees that
1900 * nobody will actually run it, and a signal or other external
1901 * event cannot wake it up and insert it on the runqueue either.
1902 */
1903 p->state = TASK_RUNNING;
1904
1905 /*
1906 * Make sure we do not leak PI boosting priority to the child.
1907 */
1908 p->prio = current->normal_prio;
1909
1910 /*
1911 * Revert to default priority/policy on fork if requested.
1912 */
1913 if (unlikely(p->sched_reset_on_fork)) {
1914 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1915 p->policy = SCHED_NORMAL;
1916 p->static_prio = NICE_TO_PRIO(0);
1917 p->rt_priority = 0;
1918 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1919 p->static_prio = NICE_TO_PRIO(0);
1920
1921 p->prio = p->normal_prio = __normal_prio(p);
1922 set_load_weight(p);
1923
1924 /*
1925 * We don't need the reset flag anymore after the fork. It has
1926 * fulfilled its duty:
1927 */
1928 p->sched_reset_on_fork = 0;
1929 }
1930
1931 if (dl_prio(p->prio)) {
1932 put_cpu();
1933 return -EAGAIN;
1934 } else if (rt_prio(p->prio)) {
1935 p->sched_class = &rt_sched_class;
1936 } else {
1937 p->sched_class = &fair_sched_class;
1938 }
1939
1940 if (p->sched_class->task_fork)
1941 p->sched_class->task_fork(p);
1942
1943 /*
1944 * The child is not yet in the pid-hash so no cgroup attach races,
1945 * and the cgroup is pinned to this child due to cgroup_fork()
1946 * is ran before sched_fork().
1947 *
1948 * Silence PROVE_RCU.
1949 */
1950 raw_spin_lock_irqsave(&p->pi_lock, flags);
1951 set_task_cpu(p, cpu);
1952 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1953
1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1955 if (likely(sched_info_on()))
1956 memset(&p->sched_info, 0, sizeof(p->sched_info));
1957 #endif
1958 #if defined(CONFIG_SMP)
1959 p->on_cpu = 0;
1960 #endif
1961 init_task_preempt_count(p);
1962 #ifdef CONFIG_SMP
1963 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1964 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1965 #endif
1966
1967 put_cpu();
1968 return 0;
1969 }
1970
to_ratio(u64 period,u64 runtime)1971 unsigned long to_ratio(u64 period, u64 runtime)
1972 {
1973 if (runtime == RUNTIME_INF)
1974 return 1ULL << 20;
1975
1976 /*
1977 * Doing this here saves a lot of checks in all
1978 * the calling paths, and returning zero seems
1979 * safe for them anyway.
1980 */
1981 if (period == 0)
1982 return 0;
1983
1984 return div64_u64(runtime << 20, period);
1985 }
1986
1987 #ifdef CONFIG_SMP
dl_bw_of(int i)1988 inline struct dl_bw *dl_bw_of(int i)
1989 {
1990 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991 "sched RCU must be held");
1992 return &cpu_rq(i)->rd->dl_bw;
1993 }
1994
dl_bw_cpus(int i)1995 static inline int dl_bw_cpus(int i)
1996 {
1997 struct root_domain *rd = cpu_rq(i)->rd;
1998 int cpus = 0;
1999
2000 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001 "sched RCU must be held");
2002 for_each_cpu_and(i, rd->span, cpu_active_mask)
2003 cpus++;
2004
2005 return cpus;
2006 }
2007 #else
dl_bw_of(int i)2008 inline struct dl_bw *dl_bw_of(int i)
2009 {
2010 return &cpu_rq(i)->dl.dl_bw;
2011 }
2012
dl_bw_cpus(int i)2013 static inline int dl_bw_cpus(int i)
2014 {
2015 return 1;
2016 }
2017 #endif
2018
2019 /*
2020 * We must be sure that accepting a new task (or allowing changing the
2021 * parameters of an existing one) is consistent with the bandwidth
2022 * constraints. If yes, this function also accordingly updates the currently
2023 * allocated bandwidth to reflect the new situation.
2024 *
2025 * This function is called while holding p's rq->lock.
2026 *
2027 * XXX we should delay bw change until the task's 0-lag point, see
2028 * __setparam_dl().
2029 */
dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2030 static int dl_overflow(struct task_struct *p, int policy,
2031 const struct sched_attr *attr)
2032 {
2033
2034 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2035 u64 period = attr->sched_period ?: attr->sched_deadline;
2036 u64 runtime = attr->sched_runtime;
2037 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2038 int cpus, err = -1;
2039
2040 if (new_bw == p->dl.dl_bw)
2041 return 0;
2042
2043 /*
2044 * Either if a task, enters, leave, or stays -deadline but changes
2045 * its parameters, we may need to update accordingly the total
2046 * allocated bandwidth of the container.
2047 */
2048 raw_spin_lock(&dl_b->lock);
2049 cpus = dl_bw_cpus(task_cpu(p));
2050 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2051 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2052 __dl_add(dl_b, new_bw);
2053 err = 0;
2054 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2055 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2056 __dl_clear(dl_b, p->dl.dl_bw);
2057 __dl_add(dl_b, new_bw);
2058 err = 0;
2059 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2060 __dl_clear(dl_b, p->dl.dl_bw);
2061 err = 0;
2062 }
2063 raw_spin_unlock(&dl_b->lock);
2064
2065 return err;
2066 }
2067
2068 extern void init_dl_bw(struct dl_bw *dl_b);
2069
2070 /*
2071 * wake_up_new_task - wake up a newly created task for the first time.
2072 *
2073 * This function will do some initial scheduler statistics housekeeping
2074 * that must be done for every newly created context, then puts the task
2075 * on the runqueue and wakes it.
2076 */
wake_up_new_task(struct task_struct * p)2077 void wake_up_new_task(struct task_struct *p)
2078 {
2079 unsigned long flags;
2080 struct rq *rq;
2081
2082 raw_spin_lock_irqsave(&p->pi_lock, flags);
2083 #ifdef CONFIG_SMP
2084 /*
2085 * Fork balancing, do it here and not earlier because:
2086 * - cpus_allowed can change in the fork path
2087 * - any previously selected cpu might disappear through hotplug
2088 */
2089 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2090 #endif
2091
2092 /* Initialize new task's runnable average */
2093 init_task_runnable_average(p);
2094 rq = __task_rq_lock(p);
2095 activate_task(rq, p, 0);
2096 p->on_rq = TASK_ON_RQ_QUEUED;
2097 trace_sched_wakeup_new(p, true);
2098 check_preempt_curr(rq, p, WF_FORK);
2099 #ifdef CONFIG_SMP
2100 if (p->sched_class->task_woken)
2101 p->sched_class->task_woken(rq, p);
2102 #endif
2103 task_rq_unlock(rq, p, &flags);
2104 }
2105
2106 #ifdef CONFIG_PREEMPT_NOTIFIERS
2107
2108 /**
2109 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2110 * @notifier: notifier struct to register
2111 */
preempt_notifier_register(struct preempt_notifier * notifier)2112 void preempt_notifier_register(struct preempt_notifier *notifier)
2113 {
2114 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2115 }
2116 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2117
2118 /**
2119 * preempt_notifier_unregister - no longer interested in preemption notifications
2120 * @notifier: notifier struct to unregister
2121 *
2122 * This is safe to call from within a preemption notifier.
2123 */
preempt_notifier_unregister(struct preempt_notifier * notifier)2124 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2125 {
2126 hlist_del(¬ifier->link);
2127 }
2128 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2129
fire_sched_in_preempt_notifiers(struct task_struct * curr)2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131 {
2132 struct preempt_notifier *notifier;
2133
2134 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2135 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2136 }
2137
2138 static void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2139 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2140 struct task_struct *next)
2141 {
2142 struct preempt_notifier *notifier;
2143
2144 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2145 notifier->ops->sched_out(notifier, next);
2146 }
2147
2148 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2149
fire_sched_in_preempt_notifiers(struct task_struct * curr)2150 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2151 {
2152 }
2153
2154 static void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2155 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156 struct task_struct *next)
2157 {
2158 }
2159
2160 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2161
2162 /**
2163 * prepare_task_switch - prepare to switch tasks
2164 * @rq: the runqueue preparing to switch
2165 * @prev: the current task that is being switched out
2166 * @next: the task we are going to switch to.
2167 *
2168 * This is called with the rq lock held and interrupts off. It must
2169 * be paired with a subsequent finish_task_switch after the context
2170 * switch.
2171 *
2172 * prepare_task_switch sets up locking and calls architecture specific
2173 * hooks.
2174 */
2175 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2176 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2177 struct task_struct *next)
2178 {
2179 trace_sched_switch(prev, next);
2180 sched_info_switch(rq, prev, next);
2181 perf_event_task_sched_out(prev, next);
2182 fire_sched_out_preempt_notifiers(prev, next);
2183 prepare_lock_switch(rq, next);
2184 prepare_arch_switch(next);
2185 }
2186
2187 /**
2188 * finish_task_switch - clean up after a task-switch
2189 * @prev: the thread we just switched away from.
2190 *
2191 * finish_task_switch must be called after the context switch, paired
2192 * with a prepare_task_switch call before the context switch.
2193 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194 * and do any other architecture-specific cleanup actions.
2195 *
2196 * Note that we may have delayed dropping an mm in context_switch(). If
2197 * so, we finish that here outside of the runqueue lock. (Doing it
2198 * with the lock held can cause deadlocks; see schedule() for
2199 * details.)
2200 *
2201 * The context switch have flipped the stack from under us and restored the
2202 * local variables which were saved when this task called schedule() in the
2203 * past. prev == current is still correct but we need to recalculate this_rq
2204 * because prev may have moved to another CPU.
2205 */
finish_task_switch(struct task_struct * prev)2206 static struct rq *finish_task_switch(struct task_struct *prev)
2207 __releases(rq->lock)
2208 {
2209 struct rq *rq = this_rq();
2210 struct mm_struct *mm = rq->prev_mm;
2211 long prev_state;
2212
2213 rq->prev_mm = NULL;
2214
2215 /*
2216 * A task struct has one reference for the use as "current".
2217 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2218 * schedule one last time. The schedule call will never return, and
2219 * the scheduled task must drop that reference.
2220 *
2221 * We must observe prev->state before clearing prev->on_cpu (in
2222 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2223 * running on another CPU and we could rave with its RUNNING -> DEAD
2224 * transition, resulting in a double drop.
2225 */
2226 prev_state = prev->state;
2227 vtime_task_switch(prev);
2228 finish_arch_switch(prev);
2229 perf_event_task_sched_in(prev, current);
2230 finish_lock_switch(rq, prev);
2231 finish_arch_post_lock_switch();
2232
2233 fire_sched_in_preempt_notifiers(current);
2234 if (mm)
2235 mmdrop(mm);
2236 if (unlikely(prev_state == TASK_DEAD)) {
2237 if (prev->sched_class->task_dead)
2238 prev->sched_class->task_dead(prev);
2239
2240 /*
2241 * Remove function-return probe instances associated with this
2242 * task and put them back on the free list.
2243 */
2244 kprobe_flush_task(prev);
2245 put_task_struct(prev);
2246 }
2247
2248 tick_nohz_task_switch(current);
2249 return rq;
2250 }
2251
2252 #ifdef CONFIG_SMP
2253
2254 /* rq->lock is NOT held, but preemption is disabled */
post_schedule(struct rq * rq)2255 static inline void post_schedule(struct rq *rq)
2256 {
2257 if (rq->post_schedule) {
2258 unsigned long flags;
2259
2260 raw_spin_lock_irqsave(&rq->lock, flags);
2261 if (rq->curr->sched_class->post_schedule)
2262 rq->curr->sched_class->post_schedule(rq);
2263 raw_spin_unlock_irqrestore(&rq->lock, flags);
2264
2265 rq->post_schedule = 0;
2266 }
2267 }
2268
2269 #else
2270
post_schedule(struct rq * rq)2271 static inline void post_schedule(struct rq *rq)
2272 {
2273 }
2274
2275 #endif
2276
2277 /**
2278 * schedule_tail - first thing a freshly forked thread must call.
2279 * @prev: the thread we just switched away from.
2280 */
schedule_tail(struct task_struct * prev)2281 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2282 __releases(rq->lock)
2283 {
2284 struct rq *rq;
2285
2286 /* finish_task_switch() drops rq->lock and enables preemtion */
2287 preempt_disable();
2288 rq = finish_task_switch(prev);
2289 post_schedule(rq);
2290 preempt_enable();
2291
2292 if (current->set_child_tid)
2293 put_user(task_pid_vnr(current), current->set_child_tid);
2294 }
2295
2296 /*
2297 * context_switch - switch to the new MM and the new thread's register state.
2298 */
2299 static inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2300 context_switch(struct rq *rq, struct task_struct *prev,
2301 struct task_struct *next)
2302 {
2303 struct mm_struct *mm, *oldmm;
2304
2305 prepare_task_switch(rq, prev, next);
2306
2307 mm = next->mm;
2308 oldmm = prev->active_mm;
2309 /*
2310 * For paravirt, this is coupled with an exit in switch_to to
2311 * combine the page table reload and the switch backend into
2312 * one hypercall.
2313 */
2314 arch_start_context_switch(prev);
2315
2316 if (!mm) {
2317 next->active_mm = oldmm;
2318 atomic_inc(&oldmm->mm_count);
2319 enter_lazy_tlb(oldmm, next);
2320 } else
2321 switch_mm(oldmm, mm, next);
2322
2323 if (!prev->mm) {
2324 prev->active_mm = NULL;
2325 rq->prev_mm = oldmm;
2326 }
2327 /*
2328 * Since the runqueue lock will be released by the next
2329 * task (which is an invalid locking op but in the case
2330 * of the scheduler it's an obvious special-case), so we
2331 * do an early lockdep release here:
2332 */
2333 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2334
2335 context_tracking_task_switch(prev, next);
2336 /* Here we just switch the register state and the stack. */
2337 switch_to(prev, next, prev);
2338 barrier();
2339
2340 return finish_task_switch(prev);
2341 }
2342
2343 /*
2344 * nr_running and nr_context_switches:
2345 *
2346 * externally visible scheduler statistics: current number of runnable
2347 * threads, total number of context switches performed since bootup.
2348 */
nr_running(void)2349 unsigned long nr_running(void)
2350 {
2351 unsigned long i, sum = 0;
2352
2353 for_each_online_cpu(i)
2354 sum += cpu_rq(i)->nr_running;
2355
2356 return sum;
2357 }
2358
2359 /*
2360 * Check if only the current task is running on the cpu.
2361 *
2362 * Caution: this function does not check that the caller has disabled
2363 * preemption, thus the result might have a time-of-check-to-time-of-use
2364 * race. The caller is responsible to use it correctly, for example:
2365 *
2366 * - from a non-preemptable section (of course)
2367 *
2368 * - from a thread that is bound to a single CPU
2369 *
2370 * - in a loop with very short iterations (e.g. a polling loop)
2371 */
single_task_running(void)2372 bool single_task_running(void)
2373 {
2374 return raw_rq()->nr_running == 1;
2375 }
2376 EXPORT_SYMBOL(single_task_running);
2377
nr_context_switches(void)2378 unsigned long long nr_context_switches(void)
2379 {
2380 int i;
2381 unsigned long long sum = 0;
2382
2383 for_each_possible_cpu(i)
2384 sum += cpu_rq(i)->nr_switches;
2385
2386 return sum;
2387 }
2388
nr_iowait(void)2389 unsigned long nr_iowait(void)
2390 {
2391 unsigned long i, sum = 0;
2392
2393 for_each_possible_cpu(i)
2394 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2395
2396 return sum;
2397 }
2398
nr_iowait_cpu(int cpu)2399 unsigned long nr_iowait_cpu(int cpu)
2400 {
2401 struct rq *this = cpu_rq(cpu);
2402 return atomic_read(&this->nr_iowait);
2403 }
2404
get_iowait_load(unsigned long * nr_waiters,unsigned long * load)2405 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2406 {
2407 struct rq *this = this_rq();
2408 *nr_waiters = atomic_read(&this->nr_iowait);
2409 *load = this->cpu_load[0];
2410 }
2411
2412 #ifdef CONFIG_SMP
2413
2414 /*
2415 * sched_exec - execve() is a valuable balancing opportunity, because at
2416 * this point the task has the smallest effective memory and cache footprint.
2417 */
sched_exec(void)2418 void sched_exec(void)
2419 {
2420 struct task_struct *p = current;
2421 unsigned long flags;
2422 int dest_cpu;
2423
2424 raw_spin_lock_irqsave(&p->pi_lock, flags);
2425 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2426 if (dest_cpu == smp_processor_id())
2427 goto unlock;
2428
2429 if (likely(cpu_active(dest_cpu))) {
2430 struct migration_arg arg = { p, dest_cpu };
2431
2432 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2433 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2434 return;
2435 }
2436 unlock:
2437 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2438 }
2439
2440 #endif
2441
2442 DEFINE_PER_CPU(struct kernel_stat, kstat);
2443 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2444
2445 EXPORT_PER_CPU_SYMBOL(kstat);
2446 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2447
2448 /*
2449 * Return accounted runtime for the task.
2450 * In case the task is currently running, return the runtime plus current's
2451 * pending runtime that have not been accounted yet.
2452 */
task_sched_runtime(struct task_struct * p)2453 unsigned long long task_sched_runtime(struct task_struct *p)
2454 {
2455 unsigned long flags;
2456 struct rq *rq;
2457 u64 ns;
2458
2459 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2460 /*
2461 * 64-bit doesn't need locks to atomically read a 64bit value.
2462 * So we have a optimization chance when the task's delta_exec is 0.
2463 * Reading ->on_cpu is racy, but this is ok.
2464 *
2465 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2466 * If we race with it entering cpu, unaccounted time is 0. This is
2467 * indistinguishable from the read occurring a few cycles earlier.
2468 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2469 * been accounted, so we're correct here as well.
2470 */
2471 if (!p->on_cpu || !task_on_rq_queued(p))
2472 return p->se.sum_exec_runtime;
2473 #endif
2474
2475 rq = task_rq_lock(p, &flags);
2476 /*
2477 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2478 * project cycles that may never be accounted to this
2479 * thread, breaking clock_gettime().
2480 */
2481 if (task_current(rq, p) && task_on_rq_queued(p)) {
2482 update_rq_clock(rq);
2483 p->sched_class->update_curr(rq);
2484 }
2485 ns = p->se.sum_exec_runtime;
2486 task_rq_unlock(rq, p, &flags);
2487
2488 return ns;
2489 }
2490
2491 /*
2492 * This function gets called by the timer code, with HZ frequency.
2493 * We call it with interrupts disabled.
2494 */
scheduler_tick(void)2495 void scheduler_tick(void)
2496 {
2497 int cpu = smp_processor_id();
2498 struct rq *rq = cpu_rq(cpu);
2499 struct task_struct *curr = rq->curr;
2500
2501 sched_clock_tick();
2502
2503 raw_spin_lock(&rq->lock);
2504 update_rq_clock(rq);
2505 curr->sched_class->task_tick(rq, curr, 0);
2506 update_cpu_load_active(rq);
2507 raw_spin_unlock(&rq->lock);
2508
2509 perf_event_task_tick();
2510
2511 #ifdef CONFIG_SMP
2512 rq->idle_balance = idle_cpu(cpu);
2513 trigger_load_balance(rq);
2514 #endif
2515 rq_last_tick_reset(rq);
2516 }
2517
2518 #ifdef CONFIG_NO_HZ_FULL
2519 /**
2520 * scheduler_tick_max_deferment
2521 *
2522 * Keep at least one tick per second when a single
2523 * active task is running because the scheduler doesn't
2524 * yet completely support full dynticks environment.
2525 *
2526 * This makes sure that uptime, CFS vruntime, load
2527 * balancing, etc... continue to move forward, even
2528 * with a very low granularity.
2529 *
2530 * Return: Maximum deferment in nanoseconds.
2531 */
scheduler_tick_max_deferment(void)2532 u64 scheduler_tick_max_deferment(void)
2533 {
2534 struct rq *rq = this_rq();
2535 unsigned long next, now = ACCESS_ONCE(jiffies);
2536
2537 next = rq->last_sched_tick + HZ;
2538
2539 if (time_before_eq(next, now))
2540 return 0;
2541
2542 return jiffies_to_nsecs(next - now);
2543 }
2544 #endif
2545
get_parent_ip(unsigned long addr)2546 notrace unsigned long get_parent_ip(unsigned long addr)
2547 {
2548 if (in_lock_functions(addr)) {
2549 addr = CALLER_ADDR2;
2550 if (in_lock_functions(addr))
2551 addr = CALLER_ADDR3;
2552 }
2553 return addr;
2554 }
2555
2556 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2557 defined(CONFIG_PREEMPT_TRACER))
2558
preempt_count_add(int val)2559 void preempt_count_add(int val)
2560 {
2561 #ifdef CONFIG_DEBUG_PREEMPT
2562 /*
2563 * Underflow?
2564 */
2565 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2566 return;
2567 #endif
2568 __preempt_count_add(val);
2569 #ifdef CONFIG_DEBUG_PREEMPT
2570 /*
2571 * Spinlock count overflowing soon?
2572 */
2573 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2574 PREEMPT_MASK - 10);
2575 #endif
2576 if (preempt_count() == val) {
2577 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2578 #ifdef CONFIG_DEBUG_PREEMPT
2579 current->preempt_disable_ip = ip;
2580 #endif
2581 trace_preempt_off(CALLER_ADDR0, ip);
2582 }
2583 }
2584 EXPORT_SYMBOL(preempt_count_add);
2585 NOKPROBE_SYMBOL(preempt_count_add);
2586
preempt_count_sub(int val)2587 void preempt_count_sub(int val)
2588 {
2589 #ifdef CONFIG_DEBUG_PREEMPT
2590 /*
2591 * Underflow?
2592 */
2593 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2594 return;
2595 /*
2596 * Is the spinlock portion underflowing?
2597 */
2598 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2599 !(preempt_count() & PREEMPT_MASK)))
2600 return;
2601 #endif
2602
2603 if (preempt_count() == val)
2604 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2605 __preempt_count_sub(val);
2606 }
2607 EXPORT_SYMBOL(preempt_count_sub);
2608 NOKPROBE_SYMBOL(preempt_count_sub);
2609
2610 #endif
2611
2612 /*
2613 * Print scheduling while atomic bug:
2614 */
__schedule_bug(struct task_struct * prev)2615 static noinline void __schedule_bug(struct task_struct *prev)
2616 {
2617 if (oops_in_progress)
2618 return;
2619
2620 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2621 prev->comm, prev->pid, preempt_count());
2622
2623 debug_show_held_locks(prev);
2624 print_modules();
2625 if (irqs_disabled())
2626 print_irqtrace_events(prev);
2627 #ifdef CONFIG_DEBUG_PREEMPT
2628 if (in_atomic_preempt_off()) {
2629 pr_err("Preemption disabled at:");
2630 print_ip_sym(current->preempt_disable_ip);
2631 pr_cont("\n");
2632 }
2633 #endif
2634 dump_stack();
2635 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2636 }
2637
2638 /*
2639 * Various schedule()-time debugging checks and statistics:
2640 */
schedule_debug(struct task_struct * prev)2641 static inline void schedule_debug(struct task_struct *prev)
2642 {
2643 #ifdef CONFIG_SCHED_STACK_END_CHECK
2644 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2645 #endif
2646 /*
2647 * Test if we are atomic. Since do_exit() needs to call into
2648 * schedule() atomically, we ignore that path. Otherwise whine
2649 * if we are scheduling when we should not.
2650 */
2651 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2652 __schedule_bug(prev);
2653 rcu_sleep_check();
2654
2655 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2656
2657 schedstat_inc(this_rq(), sched_count);
2658 }
2659
2660 /*
2661 * Pick up the highest-prio task:
2662 */
2663 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev)2664 pick_next_task(struct rq *rq, struct task_struct *prev)
2665 {
2666 const struct sched_class *class = &fair_sched_class;
2667 struct task_struct *p;
2668
2669 /*
2670 * Optimization: we know that if all tasks are in
2671 * the fair class we can call that function directly:
2672 */
2673 if (likely(prev->sched_class == class &&
2674 rq->nr_running == rq->cfs.h_nr_running)) {
2675 p = fair_sched_class.pick_next_task(rq, prev);
2676 if (unlikely(p == RETRY_TASK))
2677 goto again;
2678
2679 /* assumes fair_sched_class->next == idle_sched_class */
2680 if (unlikely(!p))
2681 p = idle_sched_class.pick_next_task(rq, prev);
2682
2683 return p;
2684 }
2685
2686 again:
2687 for_each_class(class) {
2688 p = class->pick_next_task(rq, prev);
2689 if (p) {
2690 if (unlikely(p == RETRY_TASK))
2691 goto again;
2692 return p;
2693 }
2694 }
2695
2696 BUG(); /* the idle class will always have a runnable task */
2697 }
2698
2699 /*
2700 * __schedule() is the main scheduler function.
2701 *
2702 * The main means of driving the scheduler and thus entering this function are:
2703 *
2704 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2705 *
2706 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2707 * paths. For example, see arch/x86/entry_64.S.
2708 *
2709 * To drive preemption between tasks, the scheduler sets the flag in timer
2710 * interrupt handler scheduler_tick().
2711 *
2712 * 3. Wakeups don't really cause entry into schedule(). They add a
2713 * task to the run-queue and that's it.
2714 *
2715 * Now, if the new task added to the run-queue preempts the current
2716 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2717 * called on the nearest possible occasion:
2718 *
2719 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2720 *
2721 * - in syscall or exception context, at the next outmost
2722 * preempt_enable(). (this might be as soon as the wake_up()'s
2723 * spin_unlock()!)
2724 *
2725 * - in IRQ context, return from interrupt-handler to
2726 * preemptible context
2727 *
2728 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2729 * then at the next:
2730 *
2731 * - cond_resched() call
2732 * - explicit schedule() call
2733 * - return from syscall or exception to user-space
2734 * - return from interrupt-handler to user-space
2735 *
2736 * WARNING: all callers must re-check need_resched() afterward and reschedule
2737 * accordingly in case an event triggered the need for rescheduling (such as
2738 * an interrupt waking up a task) while preemption was disabled in __schedule().
2739 */
__schedule(void)2740 static void __sched __schedule(void)
2741 {
2742 struct task_struct *prev, *next;
2743 unsigned long *switch_count;
2744 struct rq *rq;
2745 int cpu;
2746
2747 preempt_disable();
2748 cpu = smp_processor_id();
2749 rq = cpu_rq(cpu);
2750 rcu_note_context_switch();
2751 prev = rq->curr;
2752
2753 schedule_debug(prev);
2754
2755 if (sched_feat(HRTICK))
2756 hrtick_clear(rq);
2757
2758 /*
2759 * Make sure that signal_pending_state()->signal_pending() below
2760 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2761 * done by the caller to avoid the race with signal_wake_up().
2762 */
2763 smp_mb__before_spinlock();
2764 raw_spin_lock_irq(&rq->lock);
2765
2766 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2767
2768 switch_count = &prev->nivcsw;
2769 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2770 if (unlikely(signal_pending_state(prev->state, prev))) {
2771 prev->state = TASK_RUNNING;
2772 } else {
2773 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2774 prev->on_rq = 0;
2775
2776 /*
2777 * If a worker went to sleep, notify and ask workqueue
2778 * whether it wants to wake up a task to maintain
2779 * concurrency.
2780 */
2781 if (prev->flags & PF_WQ_WORKER) {
2782 struct task_struct *to_wakeup;
2783
2784 to_wakeup = wq_worker_sleeping(prev, cpu);
2785 if (to_wakeup)
2786 try_to_wake_up_local(to_wakeup);
2787 }
2788 }
2789 switch_count = &prev->nvcsw;
2790 }
2791
2792 if (task_on_rq_queued(prev))
2793 update_rq_clock(rq);
2794
2795 next = pick_next_task(rq, prev);
2796 clear_tsk_need_resched(prev);
2797 clear_preempt_need_resched();
2798 rq->clock_skip_update = 0;
2799
2800 if (likely(prev != next)) {
2801 rq->nr_switches++;
2802 rq->curr = next;
2803 ++*switch_count;
2804
2805 rq = context_switch(rq, prev, next); /* unlocks the rq */
2806 cpu = cpu_of(rq);
2807 } else
2808 raw_spin_unlock_irq(&rq->lock);
2809
2810 post_schedule(rq);
2811
2812 sched_preempt_enable_no_resched();
2813 }
2814
sched_submit_work(struct task_struct * tsk)2815 static inline void sched_submit_work(struct task_struct *tsk)
2816 {
2817 if (!tsk->state || tsk_is_pi_blocked(tsk))
2818 return;
2819 /*
2820 * If we are going to sleep and we have plugged IO queued,
2821 * make sure to submit it to avoid deadlocks.
2822 */
2823 if (blk_needs_flush_plug(tsk))
2824 blk_schedule_flush_plug(tsk);
2825 }
2826
schedule(void)2827 asmlinkage __visible void __sched schedule(void)
2828 {
2829 struct task_struct *tsk = current;
2830
2831 sched_submit_work(tsk);
2832 do {
2833 __schedule();
2834 } while (need_resched());
2835 }
2836 EXPORT_SYMBOL(schedule);
2837
2838 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)2839 asmlinkage __visible void __sched schedule_user(void)
2840 {
2841 /*
2842 * If we come here after a random call to set_need_resched(),
2843 * or we have been woken up remotely but the IPI has not yet arrived,
2844 * we haven't yet exited the RCU idle mode. Do it here manually until
2845 * we find a better solution.
2846 *
2847 * NB: There are buggy callers of this function. Ideally we
2848 * should warn if prev_state != CONTEXT_USER, but that will trigger
2849 * too frequently to make sense yet.
2850 */
2851 enum ctx_state prev_state = exception_enter();
2852 schedule();
2853 exception_exit(prev_state);
2854 }
2855 #endif
2856
2857 /**
2858 * schedule_preempt_disabled - called with preemption disabled
2859 *
2860 * Returns with preemption disabled. Note: preempt_count must be 1
2861 */
schedule_preempt_disabled(void)2862 void __sched schedule_preempt_disabled(void)
2863 {
2864 sched_preempt_enable_no_resched();
2865 schedule();
2866 preempt_disable();
2867 }
2868
preempt_schedule_common(void)2869 static void __sched notrace preempt_schedule_common(void)
2870 {
2871 do {
2872 __preempt_count_add(PREEMPT_ACTIVE);
2873 __schedule();
2874 __preempt_count_sub(PREEMPT_ACTIVE);
2875
2876 /*
2877 * Check again in case we missed a preemption opportunity
2878 * between schedule and now.
2879 */
2880 barrier();
2881 } while (need_resched());
2882 }
2883
2884 #ifdef CONFIG_PREEMPT
2885 /*
2886 * this is the entry point to schedule() from in-kernel preemption
2887 * off of preempt_enable. Kernel preemptions off return from interrupt
2888 * occur there and call schedule directly.
2889 */
preempt_schedule(void)2890 asmlinkage __visible void __sched notrace preempt_schedule(void)
2891 {
2892 /*
2893 * If there is a non-zero preempt_count or interrupts are disabled,
2894 * we do not want to preempt the current task. Just return..
2895 */
2896 if (likely(!preemptible()))
2897 return;
2898
2899 preempt_schedule_common();
2900 }
2901 NOKPROBE_SYMBOL(preempt_schedule);
2902 EXPORT_SYMBOL(preempt_schedule);
2903
2904 #ifdef CONFIG_CONTEXT_TRACKING
2905 /**
2906 * preempt_schedule_context - preempt_schedule called by tracing
2907 *
2908 * The tracing infrastructure uses preempt_enable_notrace to prevent
2909 * recursion and tracing preempt enabling caused by the tracing
2910 * infrastructure itself. But as tracing can happen in areas coming
2911 * from userspace or just about to enter userspace, a preempt enable
2912 * can occur before user_exit() is called. This will cause the scheduler
2913 * to be called when the system is still in usermode.
2914 *
2915 * To prevent this, the preempt_enable_notrace will use this function
2916 * instead of preempt_schedule() to exit user context if needed before
2917 * calling the scheduler.
2918 */
preempt_schedule_context(void)2919 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2920 {
2921 enum ctx_state prev_ctx;
2922
2923 if (likely(!preemptible()))
2924 return;
2925
2926 do {
2927 __preempt_count_add(PREEMPT_ACTIVE);
2928 /*
2929 * Needs preempt disabled in case user_exit() is traced
2930 * and the tracer calls preempt_enable_notrace() causing
2931 * an infinite recursion.
2932 */
2933 prev_ctx = exception_enter();
2934 __schedule();
2935 exception_exit(prev_ctx);
2936
2937 __preempt_count_sub(PREEMPT_ACTIVE);
2938 barrier();
2939 } while (need_resched());
2940 }
2941 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2942 #endif /* CONFIG_CONTEXT_TRACKING */
2943
2944 #endif /* CONFIG_PREEMPT */
2945
2946 /*
2947 * this is the entry point to schedule() from kernel preemption
2948 * off of irq context.
2949 * Note, that this is called and return with irqs disabled. This will
2950 * protect us against recursive calling from irq.
2951 */
preempt_schedule_irq(void)2952 asmlinkage __visible void __sched preempt_schedule_irq(void)
2953 {
2954 enum ctx_state prev_state;
2955
2956 /* Catch callers which need to be fixed */
2957 BUG_ON(preempt_count() || !irqs_disabled());
2958
2959 prev_state = exception_enter();
2960
2961 do {
2962 __preempt_count_add(PREEMPT_ACTIVE);
2963 local_irq_enable();
2964 __schedule();
2965 local_irq_disable();
2966 __preempt_count_sub(PREEMPT_ACTIVE);
2967
2968 /*
2969 * Check again in case we missed a preemption opportunity
2970 * between schedule and now.
2971 */
2972 barrier();
2973 } while (need_resched());
2974
2975 exception_exit(prev_state);
2976 }
2977
default_wake_function(wait_queue_t * curr,unsigned mode,int wake_flags,void * key)2978 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2979 void *key)
2980 {
2981 return try_to_wake_up(curr->private, mode, wake_flags);
2982 }
2983 EXPORT_SYMBOL(default_wake_function);
2984
2985 #ifdef CONFIG_RT_MUTEXES
2986
2987 /*
2988 * rt_mutex_setprio - set the current priority of a task
2989 * @p: task
2990 * @prio: prio value (kernel-internal form)
2991 *
2992 * This function changes the 'effective' priority of a task. It does
2993 * not touch ->normal_prio like __setscheduler().
2994 *
2995 * Used by the rt_mutex code to implement priority inheritance
2996 * logic. Call site only calls if the priority of the task changed.
2997 */
rt_mutex_setprio(struct task_struct * p,int prio)2998 void rt_mutex_setprio(struct task_struct *p, int prio)
2999 {
3000 int oldprio, queued, running, enqueue_flag = 0;
3001 struct rq *rq;
3002 const struct sched_class *prev_class;
3003
3004 BUG_ON(prio > MAX_PRIO);
3005
3006 rq = __task_rq_lock(p);
3007
3008 /*
3009 * Idle task boosting is a nono in general. There is one
3010 * exception, when PREEMPT_RT and NOHZ is active:
3011 *
3012 * The idle task calls get_next_timer_interrupt() and holds
3013 * the timer wheel base->lock on the CPU and another CPU wants
3014 * to access the timer (probably to cancel it). We can safely
3015 * ignore the boosting request, as the idle CPU runs this code
3016 * with interrupts disabled and will complete the lock
3017 * protected section without being interrupted. So there is no
3018 * real need to boost.
3019 */
3020 if (unlikely(p == rq->idle)) {
3021 WARN_ON(p != rq->curr);
3022 WARN_ON(p->pi_blocked_on);
3023 goto out_unlock;
3024 }
3025
3026 trace_sched_pi_setprio(p, prio);
3027 oldprio = p->prio;
3028 prev_class = p->sched_class;
3029 queued = task_on_rq_queued(p);
3030 running = task_current(rq, p);
3031 if (queued)
3032 dequeue_task(rq, p, 0);
3033 if (running)
3034 put_prev_task(rq, p);
3035
3036 /*
3037 * Boosting condition are:
3038 * 1. -rt task is running and holds mutex A
3039 * --> -dl task blocks on mutex A
3040 *
3041 * 2. -dl task is running and holds mutex A
3042 * --> -dl task blocks on mutex A and could preempt the
3043 * running task
3044 */
3045 if (dl_prio(prio)) {
3046 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3047 if (!dl_prio(p->normal_prio) ||
3048 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3049 p->dl.dl_boosted = 1;
3050 p->dl.dl_throttled = 0;
3051 enqueue_flag = ENQUEUE_REPLENISH;
3052 } else
3053 p->dl.dl_boosted = 0;
3054 p->sched_class = &dl_sched_class;
3055 } else if (rt_prio(prio)) {
3056 if (dl_prio(oldprio))
3057 p->dl.dl_boosted = 0;
3058 if (oldprio < prio)
3059 enqueue_flag = ENQUEUE_HEAD;
3060 p->sched_class = &rt_sched_class;
3061 } else {
3062 if (dl_prio(oldprio))
3063 p->dl.dl_boosted = 0;
3064 if (rt_prio(oldprio))
3065 p->rt.timeout = 0;
3066 p->sched_class = &fair_sched_class;
3067 }
3068
3069 p->prio = prio;
3070
3071 if (running)
3072 p->sched_class->set_curr_task(rq);
3073 if (queued)
3074 enqueue_task(rq, p, enqueue_flag);
3075
3076 check_class_changed(rq, p, prev_class, oldprio);
3077 out_unlock:
3078 __task_rq_unlock(rq);
3079 }
3080 #endif
3081
set_user_nice(struct task_struct * p,long nice)3082 void set_user_nice(struct task_struct *p, long nice)
3083 {
3084 int old_prio, delta, queued;
3085 unsigned long flags;
3086 struct rq *rq;
3087
3088 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3089 return;
3090 /*
3091 * We have to be careful, if called from sys_setpriority(),
3092 * the task might be in the middle of scheduling on another CPU.
3093 */
3094 rq = task_rq_lock(p, &flags);
3095 /*
3096 * The RT priorities are set via sched_setscheduler(), but we still
3097 * allow the 'normal' nice value to be set - but as expected
3098 * it wont have any effect on scheduling until the task is
3099 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3100 */
3101 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3102 p->static_prio = NICE_TO_PRIO(nice);
3103 goto out_unlock;
3104 }
3105 queued = task_on_rq_queued(p);
3106 if (queued)
3107 dequeue_task(rq, p, 0);
3108
3109 p->static_prio = NICE_TO_PRIO(nice);
3110 set_load_weight(p);
3111 old_prio = p->prio;
3112 p->prio = effective_prio(p);
3113 delta = p->prio - old_prio;
3114
3115 if (queued) {
3116 enqueue_task(rq, p, 0);
3117 /*
3118 * If the task increased its priority or is running and
3119 * lowered its priority, then reschedule its CPU:
3120 */
3121 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3122 resched_curr(rq);
3123 }
3124 out_unlock:
3125 task_rq_unlock(rq, p, &flags);
3126 }
3127 EXPORT_SYMBOL(set_user_nice);
3128
3129 /*
3130 * can_nice - check if a task can reduce its nice value
3131 * @p: task
3132 * @nice: nice value
3133 */
can_nice(const struct task_struct * p,const int nice)3134 int can_nice(const struct task_struct *p, const int nice)
3135 {
3136 /* convert nice value [19,-20] to rlimit style value [1,40] */
3137 int nice_rlim = nice_to_rlimit(nice);
3138
3139 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3140 capable(CAP_SYS_NICE));
3141 }
3142
3143 #ifdef __ARCH_WANT_SYS_NICE
3144
3145 /*
3146 * sys_nice - change the priority of the current process.
3147 * @increment: priority increment
3148 *
3149 * sys_setpriority is a more generic, but much slower function that
3150 * does similar things.
3151 */
SYSCALL_DEFINE1(nice,int,increment)3152 SYSCALL_DEFINE1(nice, int, increment)
3153 {
3154 long nice, retval;
3155
3156 /*
3157 * Setpriority might change our priority at the same moment.
3158 * We don't have to worry. Conceptually one call occurs first
3159 * and we have a single winner.
3160 */
3161 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3162 nice = task_nice(current) + increment;
3163
3164 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3165 if (increment < 0 && !can_nice(current, nice))
3166 return -EPERM;
3167
3168 retval = security_task_setnice(current, nice);
3169 if (retval)
3170 return retval;
3171
3172 set_user_nice(current, nice);
3173 return 0;
3174 }
3175
3176 #endif
3177
3178 /**
3179 * task_prio - return the priority value of a given task.
3180 * @p: the task in question.
3181 *
3182 * Return: The priority value as seen by users in /proc.
3183 * RT tasks are offset by -200. Normal tasks are centered
3184 * around 0, value goes from -16 to +15.
3185 */
task_prio(const struct task_struct * p)3186 int task_prio(const struct task_struct *p)
3187 {
3188 return p->prio - MAX_RT_PRIO;
3189 }
3190
3191 /**
3192 * idle_cpu - is a given cpu idle currently?
3193 * @cpu: the processor in question.
3194 *
3195 * Return: 1 if the CPU is currently idle. 0 otherwise.
3196 */
idle_cpu(int cpu)3197 int idle_cpu(int cpu)
3198 {
3199 struct rq *rq = cpu_rq(cpu);
3200
3201 if (rq->curr != rq->idle)
3202 return 0;
3203
3204 if (rq->nr_running)
3205 return 0;
3206
3207 #ifdef CONFIG_SMP
3208 if (!llist_empty(&rq->wake_list))
3209 return 0;
3210 #endif
3211
3212 return 1;
3213 }
3214
3215 /**
3216 * idle_task - return the idle task for a given cpu.
3217 * @cpu: the processor in question.
3218 *
3219 * Return: The idle task for the cpu @cpu.
3220 */
idle_task(int cpu)3221 struct task_struct *idle_task(int cpu)
3222 {
3223 return cpu_rq(cpu)->idle;
3224 }
3225
3226 /**
3227 * find_process_by_pid - find a process with a matching PID value.
3228 * @pid: the pid in question.
3229 *
3230 * The task of @pid, if found. %NULL otherwise.
3231 */
find_process_by_pid(pid_t pid)3232 static struct task_struct *find_process_by_pid(pid_t pid)
3233 {
3234 return pid ? find_task_by_vpid(pid) : current;
3235 }
3236
3237 /*
3238 * This function initializes the sched_dl_entity of a newly becoming
3239 * SCHED_DEADLINE task.
3240 *
3241 * Only the static values are considered here, the actual runtime and the
3242 * absolute deadline will be properly calculated when the task is enqueued
3243 * for the first time with its new policy.
3244 */
3245 static void
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3246 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3247 {
3248 struct sched_dl_entity *dl_se = &p->dl;
3249
3250 dl_se->dl_runtime = attr->sched_runtime;
3251 dl_se->dl_deadline = attr->sched_deadline;
3252 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3253 dl_se->flags = attr->sched_flags;
3254 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3255
3256 /*
3257 * Changing the parameters of a task is 'tricky' and we're not doing
3258 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3259 *
3260 * What we SHOULD do is delay the bandwidth release until the 0-lag
3261 * point. This would include retaining the task_struct until that time
3262 * and change dl_overflow() to not immediately decrement the current
3263 * amount.
3264 *
3265 * Instead we retain the current runtime/deadline and let the new
3266 * parameters take effect after the current reservation period lapses.
3267 * This is safe (albeit pessimistic) because the 0-lag point is always
3268 * before the current scheduling deadline.
3269 *
3270 * We can still have temporary overloads because we do not delay the
3271 * change in bandwidth until that time; so admission control is
3272 * not on the safe side. It does however guarantee tasks will never
3273 * consume more than promised.
3274 */
3275 }
3276
3277 /*
3278 * sched_setparam() passes in -1 for its policy, to let the functions
3279 * it calls know not to change it.
3280 */
3281 #define SETPARAM_POLICY -1
3282
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)3283 static void __setscheduler_params(struct task_struct *p,
3284 const struct sched_attr *attr)
3285 {
3286 int policy = attr->sched_policy;
3287
3288 if (policy == SETPARAM_POLICY)
3289 policy = p->policy;
3290
3291 p->policy = policy;
3292
3293 if (dl_policy(policy))
3294 __setparam_dl(p, attr);
3295 else if (fair_policy(policy))
3296 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3297
3298 /*
3299 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3300 * !rt_policy. Always setting this ensures that things like
3301 * getparam()/getattr() don't report silly values for !rt tasks.
3302 */
3303 p->rt_priority = attr->sched_priority;
3304 p->normal_prio = normal_prio(p);
3305 set_load_weight(p);
3306 }
3307
3308 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)3309 static void __setscheduler(struct rq *rq, struct task_struct *p,
3310 const struct sched_attr *attr, bool keep_boost)
3311 {
3312 __setscheduler_params(p, attr);
3313
3314 /*
3315 * Keep a potential priority boosting if called from
3316 * sched_setscheduler().
3317 */
3318 if (keep_boost)
3319 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3320 else
3321 p->prio = normal_prio(p);
3322
3323 if (dl_prio(p->prio))
3324 p->sched_class = &dl_sched_class;
3325 else if (rt_prio(p->prio))
3326 p->sched_class = &rt_sched_class;
3327 else
3328 p->sched_class = &fair_sched_class;
3329 }
3330
3331 static void
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3332 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3333 {
3334 struct sched_dl_entity *dl_se = &p->dl;
3335
3336 attr->sched_priority = p->rt_priority;
3337 attr->sched_runtime = dl_se->dl_runtime;
3338 attr->sched_deadline = dl_se->dl_deadline;
3339 attr->sched_period = dl_se->dl_period;
3340 attr->sched_flags = dl_se->flags;
3341 }
3342
3343 /*
3344 * This function validates the new parameters of a -deadline task.
3345 * We ask for the deadline not being zero, and greater or equal
3346 * than the runtime, as well as the period of being zero or
3347 * greater than deadline. Furthermore, we have to be sure that
3348 * user parameters are above the internal resolution of 1us (we
3349 * check sched_runtime only since it is always the smaller one) and
3350 * below 2^63 ns (we have to check both sched_deadline and
3351 * sched_period, as the latter can be zero).
3352 */
3353 static bool
__checkparam_dl(const struct sched_attr * attr)3354 __checkparam_dl(const struct sched_attr *attr)
3355 {
3356 /* deadline != 0 */
3357 if (attr->sched_deadline == 0)
3358 return false;
3359
3360 /*
3361 * Since we truncate DL_SCALE bits, make sure we're at least
3362 * that big.
3363 */
3364 if (attr->sched_runtime < (1ULL << DL_SCALE))
3365 return false;
3366
3367 /*
3368 * Since we use the MSB for wrap-around and sign issues, make
3369 * sure it's not set (mind that period can be equal to zero).
3370 */
3371 if (attr->sched_deadline & (1ULL << 63) ||
3372 attr->sched_period & (1ULL << 63))
3373 return false;
3374
3375 /* runtime <= deadline <= period (if period != 0) */
3376 if ((attr->sched_period != 0 &&
3377 attr->sched_period < attr->sched_deadline) ||
3378 attr->sched_deadline < attr->sched_runtime)
3379 return false;
3380
3381 return true;
3382 }
3383
3384 /*
3385 * check the target process has a UID that matches the current process's
3386 */
check_same_owner(struct task_struct * p)3387 static bool check_same_owner(struct task_struct *p)
3388 {
3389 const struct cred *cred = current_cred(), *pcred;
3390 bool match;
3391
3392 rcu_read_lock();
3393 pcred = __task_cred(p);
3394 match = (uid_eq(cred->euid, pcred->euid) ||
3395 uid_eq(cred->euid, pcred->uid));
3396 rcu_read_unlock();
3397 return match;
3398 }
3399
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3400 static bool dl_param_changed(struct task_struct *p,
3401 const struct sched_attr *attr)
3402 {
3403 struct sched_dl_entity *dl_se = &p->dl;
3404
3405 if (dl_se->dl_runtime != attr->sched_runtime ||
3406 dl_se->dl_deadline != attr->sched_deadline ||
3407 dl_se->dl_period != attr->sched_period ||
3408 dl_se->flags != attr->sched_flags)
3409 return true;
3410
3411 return false;
3412 }
3413
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user)3414 static int __sched_setscheduler(struct task_struct *p,
3415 const struct sched_attr *attr,
3416 bool user)
3417 {
3418 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3419 MAX_RT_PRIO - 1 - attr->sched_priority;
3420 int retval, oldprio, oldpolicy = -1, queued, running;
3421 int new_effective_prio, policy = attr->sched_policy;
3422 unsigned long flags;
3423 const struct sched_class *prev_class;
3424 struct rq *rq;
3425 int reset_on_fork;
3426
3427 /* may grab non-irq protected spin_locks */
3428 BUG_ON(in_interrupt());
3429 recheck:
3430 /* double check policy once rq lock held */
3431 if (policy < 0) {
3432 reset_on_fork = p->sched_reset_on_fork;
3433 policy = oldpolicy = p->policy;
3434 } else {
3435 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3436
3437 if (policy != SCHED_DEADLINE &&
3438 policy != SCHED_FIFO && policy != SCHED_RR &&
3439 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3440 policy != SCHED_IDLE)
3441 return -EINVAL;
3442 }
3443
3444 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3445 return -EINVAL;
3446
3447 /*
3448 * Valid priorities for SCHED_FIFO and SCHED_RR are
3449 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3450 * SCHED_BATCH and SCHED_IDLE is 0.
3451 */
3452 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3453 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3454 return -EINVAL;
3455 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3456 (rt_policy(policy) != (attr->sched_priority != 0)))
3457 return -EINVAL;
3458
3459 /*
3460 * Allow unprivileged RT tasks to decrease priority:
3461 */
3462 if (user && !capable(CAP_SYS_NICE)) {
3463 if (fair_policy(policy)) {
3464 if (attr->sched_nice < task_nice(p) &&
3465 !can_nice(p, attr->sched_nice))
3466 return -EPERM;
3467 }
3468
3469 if (rt_policy(policy)) {
3470 unsigned long rlim_rtprio =
3471 task_rlimit(p, RLIMIT_RTPRIO);
3472
3473 /* can't set/change the rt policy */
3474 if (policy != p->policy && !rlim_rtprio)
3475 return -EPERM;
3476
3477 /* can't increase priority */
3478 if (attr->sched_priority > p->rt_priority &&
3479 attr->sched_priority > rlim_rtprio)
3480 return -EPERM;
3481 }
3482
3483 /*
3484 * Can't set/change SCHED_DEADLINE policy at all for now
3485 * (safest behavior); in the future we would like to allow
3486 * unprivileged DL tasks to increase their relative deadline
3487 * or reduce their runtime (both ways reducing utilization)
3488 */
3489 if (dl_policy(policy))
3490 return -EPERM;
3491
3492 /*
3493 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3494 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3495 */
3496 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3497 if (!can_nice(p, task_nice(p)))
3498 return -EPERM;
3499 }
3500
3501 /* can't change other user's priorities */
3502 if (!check_same_owner(p))
3503 return -EPERM;
3504
3505 /* Normal users shall not reset the sched_reset_on_fork flag */
3506 if (p->sched_reset_on_fork && !reset_on_fork)
3507 return -EPERM;
3508 }
3509
3510 if (user) {
3511 retval = security_task_setscheduler(p);
3512 if (retval)
3513 return retval;
3514 }
3515
3516 /*
3517 * make sure no PI-waiters arrive (or leave) while we are
3518 * changing the priority of the task:
3519 *
3520 * To be able to change p->policy safely, the appropriate
3521 * runqueue lock must be held.
3522 */
3523 rq = task_rq_lock(p, &flags);
3524
3525 /*
3526 * Changing the policy of the stop threads its a very bad idea
3527 */
3528 if (p == rq->stop) {
3529 task_rq_unlock(rq, p, &flags);
3530 return -EINVAL;
3531 }
3532
3533 /*
3534 * If not changing anything there's no need to proceed further,
3535 * but store a possible modification of reset_on_fork.
3536 */
3537 if (unlikely(policy == p->policy)) {
3538 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3539 goto change;
3540 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3541 goto change;
3542 if (dl_policy(policy) && dl_param_changed(p, attr))
3543 goto change;
3544
3545 p->sched_reset_on_fork = reset_on_fork;
3546 task_rq_unlock(rq, p, &flags);
3547 return 0;
3548 }
3549 change:
3550
3551 if (user) {
3552 #ifdef CONFIG_RT_GROUP_SCHED
3553 /*
3554 * Do not allow realtime tasks into groups that have no runtime
3555 * assigned.
3556 */
3557 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3558 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3559 !task_group_is_autogroup(task_group(p))) {
3560 task_rq_unlock(rq, p, &flags);
3561 return -EPERM;
3562 }
3563 #endif
3564 #ifdef CONFIG_SMP
3565 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3566 cpumask_t *span = rq->rd->span;
3567
3568 /*
3569 * Don't allow tasks with an affinity mask smaller than
3570 * the entire root_domain to become SCHED_DEADLINE. We
3571 * will also fail if there's no bandwidth available.
3572 */
3573 if (!cpumask_subset(span, &p->cpus_allowed) ||
3574 rq->rd->dl_bw.bw == 0) {
3575 task_rq_unlock(rq, p, &flags);
3576 return -EPERM;
3577 }
3578 }
3579 #endif
3580 }
3581
3582 /* recheck policy now with rq lock held */
3583 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3584 policy = oldpolicy = -1;
3585 task_rq_unlock(rq, p, &flags);
3586 goto recheck;
3587 }
3588
3589 /*
3590 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3591 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3592 * is available.
3593 */
3594 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3595 task_rq_unlock(rq, p, &flags);
3596 return -EBUSY;
3597 }
3598
3599 p->sched_reset_on_fork = reset_on_fork;
3600 oldprio = p->prio;
3601
3602 /*
3603 * Take priority boosted tasks into account. If the new
3604 * effective priority is unchanged, we just store the new
3605 * normal parameters and do not touch the scheduler class and
3606 * the runqueue. This will be done when the task deboost
3607 * itself.
3608 */
3609 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3610 if (new_effective_prio == oldprio) {
3611 __setscheduler_params(p, attr);
3612 task_rq_unlock(rq, p, &flags);
3613 return 0;
3614 }
3615
3616 queued = task_on_rq_queued(p);
3617 running = task_current(rq, p);
3618 if (queued)
3619 dequeue_task(rq, p, 0);
3620 if (running)
3621 put_prev_task(rq, p);
3622
3623 prev_class = p->sched_class;
3624 __setscheduler(rq, p, attr, true);
3625
3626 if (running)
3627 p->sched_class->set_curr_task(rq);
3628 if (queued) {
3629 /*
3630 * We enqueue to tail when the priority of a task is
3631 * increased (user space view).
3632 */
3633 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3634 }
3635
3636 check_class_changed(rq, p, prev_class, oldprio);
3637 task_rq_unlock(rq, p, &flags);
3638
3639 rt_mutex_adjust_pi(p);
3640
3641 return 0;
3642 }
3643
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)3644 static int _sched_setscheduler(struct task_struct *p, int policy,
3645 const struct sched_param *param, bool check)
3646 {
3647 struct sched_attr attr = {
3648 .sched_policy = policy,
3649 .sched_priority = param->sched_priority,
3650 .sched_nice = PRIO_TO_NICE(p->static_prio),
3651 };
3652
3653 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3654 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3655 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3656 policy &= ~SCHED_RESET_ON_FORK;
3657 attr.sched_policy = policy;
3658 }
3659
3660 return __sched_setscheduler(p, &attr, check);
3661 }
3662 /**
3663 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3664 * @p: the task in question.
3665 * @policy: new policy.
3666 * @param: structure containing the new RT priority.
3667 *
3668 * Return: 0 on success. An error code otherwise.
3669 *
3670 * NOTE that the task may be already dead.
3671 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)3672 int sched_setscheduler(struct task_struct *p, int policy,
3673 const struct sched_param *param)
3674 {
3675 return _sched_setscheduler(p, policy, param, true);
3676 }
3677 EXPORT_SYMBOL_GPL(sched_setscheduler);
3678
sched_setattr(struct task_struct * p,const struct sched_attr * attr)3679 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3680 {
3681 return __sched_setscheduler(p, attr, true);
3682 }
3683 EXPORT_SYMBOL_GPL(sched_setattr);
3684
3685 /**
3686 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3687 * @p: the task in question.
3688 * @policy: new policy.
3689 * @param: structure containing the new RT priority.
3690 *
3691 * Just like sched_setscheduler, only don't bother checking if the
3692 * current context has permission. For example, this is needed in
3693 * stop_machine(): we create temporary high priority worker threads,
3694 * but our caller might not have that capability.
3695 *
3696 * Return: 0 on success. An error code otherwise.
3697 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)3698 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3699 const struct sched_param *param)
3700 {
3701 return _sched_setscheduler(p, policy, param, false);
3702 }
3703
3704 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)3705 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3706 {
3707 struct sched_param lparam;
3708 struct task_struct *p;
3709 int retval;
3710
3711 if (!param || pid < 0)
3712 return -EINVAL;
3713 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3714 return -EFAULT;
3715
3716 rcu_read_lock();
3717 retval = -ESRCH;
3718 p = find_process_by_pid(pid);
3719 if (p != NULL)
3720 retval = sched_setscheduler(p, policy, &lparam);
3721 rcu_read_unlock();
3722
3723 return retval;
3724 }
3725
3726 /*
3727 * Mimics kernel/events/core.c perf_copy_attr().
3728 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)3729 static int sched_copy_attr(struct sched_attr __user *uattr,
3730 struct sched_attr *attr)
3731 {
3732 u32 size;
3733 int ret;
3734
3735 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3736 return -EFAULT;
3737
3738 /*
3739 * zero the full structure, so that a short copy will be nice.
3740 */
3741 memset(attr, 0, sizeof(*attr));
3742
3743 ret = get_user(size, &uattr->size);
3744 if (ret)
3745 return ret;
3746
3747 if (size > PAGE_SIZE) /* silly large */
3748 goto err_size;
3749
3750 if (!size) /* abi compat */
3751 size = SCHED_ATTR_SIZE_VER0;
3752
3753 if (size < SCHED_ATTR_SIZE_VER0)
3754 goto err_size;
3755
3756 /*
3757 * If we're handed a bigger struct than we know of,
3758 * ensure all the unknown bits are 0 - i.e. new
3759 * user-space does not rely on any kernel feature
3760 * extensions we dont know about yet.
3761 */
3762 if (size > sizeof(*attr)) {
3763 unsigned char __user *addr;
3764 unsigned char __user *end;
3765 unsigned char val;
3766
3767 addr = (void __user *)uattr + sizeof(*attr);
3768 end = (void __user *)uattr + size;
3769
3770 for (; addr < end; addr++) {
3771 ret = get_user(val, addr);
3772 if (ret)
3773 return ret;
3774 if (val)
3775 goto err_size;
3776 }
3777 size = sizeof(*attr);
3778 }
3779
3780 ret = copy_from_user(attr, uattr, size);
3781 if (ret)
3782 return -EFAULT;
3783
3784 /*
3785 * XXX: do we want to be lenient like existing syscalls; or do we want
3786 * to be strict and return an error on out-of-bounds values?
3787 */
3788 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3789
3790 return 0;
3791
3792 err_size:
3793 put_user(sizeof(*attr), &uattr->size);
3794 return -E2BIG;
3795 }
3796
3797 /**
3798 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3799 * @pid: the pid in question.
3800 * @policy: new policy.
3801 * @param: structure containing the new RT priority.
3802 *
3803 * Return: 0 on success. An error code otherwise.
3804 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)3805 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3806 struct sched_param __user *, param)
3807 {
3808 /* negative values for policy are not valid */
3809 if (policy < 0)
3810 return -EINVAL;
3811
3812 return do_sched_setscheduler(pid, policy, param);
3813 }
3814
3815 /**
3816 * sys_sched_setparam - set/change the RT priority of a thread
3817 * @pid: the pid in question.
3818 * @param: structure containing the new RT priority.
3819 *
3820 * Return: 0 on success. An error code otherwise.
3821 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)3822 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3823 {
3824 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3825 }
3826
3827 /**
3828 * sys_sched_setattr - same as above, but with extended sched_attr
3829 * @pid: the pid in question.
3830 * @uattr: structure containing the extended parameters.
3831 * @flags: for future extension.
3832 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)3833 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3834 unsigned int, flags)
3835 {
3836 struct sched_attr attr;
3837 struct task_struct *p;
3838 int retval;
3839
3840 if (!uattr || pid < 0 || flags)
3841 return -EINVAL;
3842
3843 retval = sched_copy_attr(uattr, &attr);
3844 if (retval)
3845 return retval;
3846
3847 if ((int)attr.sched_policy < 0)
3848 return -EINVAL;
3849
3850 rcu_read_lock();
3851 retval = -ESRCH;
3852 p = find_process_by_pid(pid);
3853 if (p != NULL)
3854 retval = sched_setattr(p, &attr);
3855 rcu_read_unlock();
3856
3857 return retval;
3858 }
3859
3860 /**
3861 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3862 * @pid: the pid in question.
3863 *
3864 * Return: On success, the policy of the thread. Otherwise, a negative error
3865 * code.
3866 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)3867 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3868 {
3869 struct task_struct *p;
3870 int retval;
3871
3872 if (pid < 0)
3873 return -EINVAL;
3874
3875 retval = -ESRCH;
3876 rcu_read_lock();
3877 p = find_process_by_pid(pid);
3878 if (p) {
3879 retval = security_task_getscheduler(p);
3880 if (!retval)
3881 retval = p->policy
3882 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3883 }
3884 rcu_read_unlock();
3885 return retval;
3886 }
3887
3888 /**
3889 * sys_sched_getparam - get the RT priority of a thread
3890 * @pid: the pid in question.
3891 * @param: structure containing the RT priority.
3892 *
3893 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3894 * code.
3895 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)3896 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3897 {
3898 struct sched_param lp = { .sched_priority = 0 };
3899 struct task_struct *p;
3900 int retval;
3901
3902 if (!param || pid < 0)
3903 return -EINVAL;
3904
3905 rcu_read_lock();
3906 p = find_process_by_pid(pid);
3907 retval = -ESRCH;
3908 if (!p)
3909 goto out_unlock;
3910
3911 retval = security_task_getscheduler(p);
3912 if (retval)
3913 goto out_unlock;
3914
3915 if (task_has_rt_policy(p))
3916 lp.sched_priority = p->rt_priority;
3917 rcu_read_unlock();
3918
3919 /*
3920 * This one might sleep, we cannot do it with a spinlock held ...
3921 */
3922 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3923
3924 return retval;
3925
3926 out_unlock:
3927 rcu_read_unlock();
3928 return retval;
3929 }
3930
sched_read_attr(struct sched_attr __user * uattr,struct sched_attr * attr,unsigned int usize)3931 static int sched_read_attr(struct sched_attr __user *uattr,
3932 struct sched_attr *attr,
3933 unsigned int usize)
3934 {
3935 int ret;
3936
3937 if (!access_ok(VERIFY_WRITE, uattr, usize))
3938 return -EFAULT;
3939
3940 /*
3941 * If we're handed a smaller struct than we know of,
3942 * ensure all the unknown bits are 0 - i.e. old
3943 * user-space does not get uncomplete information.
3944 */
3945 if (usize < sizeof(*attr)) {
3946 unsigned char *addr;
3947 unsigned char *end;
3948
3949 addr = (void *)attr + usize;
3950 end = (void *)attr + sizeof(*attr);
3951
3952 for (; addr < end; addr++) {
3953 if (*addr)
3954 return -EFBIG;
3955 }
3956
3957 attr->size = usize;
3958 }
3959
3960 ret = copy_to_user(uattr, attr, attr->size);
3961 if (ret)
3962 return -EFAULT;
3963
3964 return 0;
3965 }
3966
3967 /**
3968 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3969 * @pid: the pid in question.
3970 * @uattr: structure containing the extended parameters.
3971 * @size: sizeof(attr) for fwd/bwd comp.
3972 * @flags: for future extension.
3973 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,size,unsigned int,flags)3974 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3975 unsigned int, size, unsigned int, flags)
3976 {
3977 struct sched_attr attr = {
3978 .size = sizeof(struct sched_attr),
3979 };
3980 struct task_struct *p;
3981 int retval;
3982
3983 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3984 size < SCHED_ATTR_SIZE_VER0 || flags)
3985 return -EINVAL;
3986
3987 rcu_read_lock();
3988 p = find_process_by_pid(pid);
3989 retval = -ESRCH;
3990 if (!p)
3991 goto out_unlock;
3992
3993 retval = security_task_getscheduler(p);
3994 if (retval)
3995 goto out_unlock;
3996
3997 attr.sched_policy = p->policy;
3998 if (p->sched_reset_on_fork)
3999 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4000 if (task_has_dl_policy(p))
4001 __getparam_dl(p, &attr);
4002 else if (task_has_rt_policy(p))
4003 attr.sched_priority = p->rt_priority;
4004 else
4005 attr.sched_nice = task_nice(p);
4006
4007 rcu_read_unlock();
4008
4009 retval = sched_read_attr(uattr, &attr, size);
4010 return retval;
4011
4012 out_unlock:
4013 rcu_read_unlock();
4014 return retval;
4015 }
4016
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)4017 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4018 {
4019 cpumask_var_t cpus_allowed, new_mask;
4020 struct task_struct *p;
4021 int retval;
4022
4023 rcu_read_lock();
4024
4025 p = find_process_by_pid(pid);
4026 if (!p) {
4027 rcu_read_unlock();
4028 return -ESRCH;
4029 }
4030
4031 /* Prevent p going away */
4032 get_task_struct(p);
4033 rcu_read_unlock();
4034
4035 if (p->flags & PF_NO_SETAFFINITY) {
4036 retval = -EINVAL;
4037 goto out_put_task;
4038 }
4039 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4040 retval = -ENOMEM;
4041 goto out_put_task;
4042 }
4043 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4044 retval = -ENOMEM;
4045 goto out_free_cpus_allowed;
4046 }
4047 retval = -EPERM;
4048 if (!check_same_owner(p)) {
4049 rcu_read_lock();
4050 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4051 rcu_read_unlock();
4052 goto out_free_new_mask;
4053 }
4054 rcu_read_unlock();
4055 }
4056
4057 retval = security_task_setscheduler(p);
4058 if (retval)
4059 goto out_free_new_mask;
4060
4061
4062 cpuset_cpus_allowed(p, cpus_allowed);
4063 cpumask_and(new_mask, in_mask, cpus_allowed);
4064
4065 /*
4066 * Since bandwidth control happens on root_domain basis,
4067 * if admission test is enabled, we only admit -deadline
4068 * tasks allowed to run on all the CPUs in the task's
4069 * root_domain.
4070 */
4071 #ifdef CONFIG_SMP
4072 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4073 rcu_read_lock();
4074 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4075 retval = -EBUSY;
4076 rcu_read_unlock();
4077 goto out_free_new_mask;
4078 }
4079 rcu_read_unlock();
4080 }
4081 #endif
4082 again:
4083 retval = set_cpus_allowed_ptr(p, new_mask);
4084
4085 if (!retval) {
4086 cpuset_cpus_allowed(p, cpus_allowed);
4087 if (!cpumask_subset(new_mask, cpus_allowed)) {
4088 /*
4089 * We must have raced with a concurrent cpuset
4090 * update. Just reset the cpus_allowed to the
4091 * cpuset's cpus_allowed
4092 */
4093 cpumask_copy(new_mask, cpus_allowed);
4094 goto again;
4095 }
4096 }
4097 out_free_new_mask:
4098 free_cpumask_var(new_mask);
4099 out_free_cpus_allowed:
4100 free_cpumask_var(cpus_allowed);
4101 out_put_task:
4102 put_task_struct(p);
4103 return retval;
4104 }
4105
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)4106 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4107 struct cpumask *new_mask)
4108 {
4109 if (len < cpumask_size())
4110 cpumask_clear(new_mask);
4111 else if (len > cpumask_size())
4112 len = cpumask_size();
4113
4114 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4115 }
4116
4117 /**
4118 * sys_sched_setaffinity - set the cpu affinity of a process
4119 * @pid: pid of the process
4120 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4121 * @user_mask_ptr: user-space pointer to the new cpu mask
4122 *
4123 * Return: 0 on success. An error code otherwise.
4124 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4125 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4126 unsigned long __user *, user_mask_ptr)
4127 {
4128 cpumask_var_t new_mask;
4129 int retval;
4130
4131 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4132 return -ENOMEM;
4133
4134 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4135 if (retval == 0)
4136 retval = sched_setaffinity(pid, new_mask);
4137 free_cpumask_var(new_mask);
4138 return retval;
4139 }
4140
sched_getaffinity(pid_t pid,struct cpumask * mask)4141 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4142 {
4143 struct task_struct *p;
4144 unsigned long flags;
4145 int retval;
4146
4147 rcu_read_lock();
4148
4149 retval = -ESRCH;
4150 p = find_process_by_pid(pid);
4151 if (!p)
4152 goto out_unlock;
4153
4154 retval = security_task_getscheduler(p);
4155 if (retval)
4156 goto out_unlock;
4157
4158 raw_spin_lock_irqsave(&p->pi_lock, flags);
4159 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4160 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4161
4162 out_unlock:
4163 rcu_read_unlock();
4164
4165 return retval;
4166 }
4167
4168 /**
4169 * sys_sched_getaffinity - get the cpu affinity of a process
4170 * @pid: pid of the process
4171 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4172 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4173 *
4174 * Return: 0 on success. An error code otherwise.
4175 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4176 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4177 unsigned long __user *, user_mask_ptr)
4178 {
4179 int ret;
4180 cpumask_var_t mask;
4181
4182 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4183 return -EINVAL;
4184 if (len & (sizeof(unsigned long)-1))
4185 return -EINVAL;
4186
4187 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4188 return -ENOMEM;
4189
4190 ret = sched_getaffinity(pid, mask);
4191 if (ret == 0) {
4192 size_t retlen = min_t(size_t, len, cpumask_size());
4193
4194 if (copy_to_user(user_mask_ptr, mask, retlen))
4195 ret = -EFAULT;
4196 else
4197 ret = retlen;
4198 }
4199 free_cpumask_var(mask);
4200
4201 return ret;
4202 }
4203
4204 /**
4205 * sys_sched_yield - yield the current processor to other threads.
4206 *
4207 * This function yields the current CPU to other tasks. If there are no
4208 * other threads running on this CPU then this function will return.
4209 *
4210 * Return: 0.
4211 */
SYSCALL_DEFINE0(sched_yield)4212 SYSCALL_DEFINE0(sched_yield)
4213 {
4214 struct rq *rq = this_rq_lock();
4215
4216 schedstat_inc(rq, yld_count);
4217 current->sched_class->yield_task(rq);
4218
4219 /*
4220 * Since we are going to call schedule() anyway, there's
4221 * no need to preempt or enable interrupts:
4222 */
4223 __release(rq->lock);
4224 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4225 do_raw_spin_unlock(&rq->lock);
4226 sched_preempt_enable_no_resched();
4227
4228 schedule();
4229
4230 return 0;
4231 }
4232
_cond_resched(void)4233 int __sched _cond_resched(void)
4234 {
4235 if (should_resched(0)) {
4236 preempt_schedule_common();
4237 return 1;
4238 }
4239 return 0;
4240 }
4241 EXPORT_SYMBOL(_cond_resched);
4242
4243 /*
4244 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4245 * call schedule, and on return reacquire the lock.
4246 *
4247 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4248 * operations here to prevent schedule() from being called twice (once via
4249 * spin_unlock(), once by hand).
4250 */
__cond_resched_lock(spinlock_t * lock)4251 int __cond_resched_lock(spinlock_t *lock)
4252 {
4253 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4254 int ret = 0;
4255
4256 lockdep_assert_held(lock);
4257
4258 if (spin_needbreak(lock) || resched) {
4259 spin_unlock(lock);
4260 if (resched)
4261 preempt_schedule_common();
4262 else
4263 cpu_relax();
4264 ret = 1;
4265 spin_lock(lock);
4266 }
4267 return ret;
4268 }
4269 EXPORT_SYMBOL(__cond_resched_lock);
4270
__cond_resched_softirq(void)4271 int __sched __cond_resched_softirq(void)
4272 {
4273 BUG_ON(!in_softirq());
4274
4275 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4276 local_bh_enable();
4277 preempt_schedule_common();
4278 local_bh_disable();
4279 return 1;
4280 }
4281 return 0;
4282 }
4283 EXPORT_SYMBOL(__cond_resched_softirq);
4284
4285 /**
4286 * yield - yield the current processor to other threads.
4287 *
4288 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4289 *
4290 * The scheduler is at all times free to pick the calling task as the most
4291 * eligible task to run, if removing the yield() call from your code breaks
4292 * it, its already broken.
4293 *
4294 * Typical broken usage is:
4295 *
4296 * while (!event)
4297 * yield();
4298 *
4299 * where one assumes that yield() will let 'the other' process run that will
4300 * make event true. If the current task is a SCHED_FIFO task that will never
4301 * happen. Never use yield() as a progress guarantee!!
4302 *
4303 * If you want to use yield() to wait for something, use wait_event().
4304 * If you want to use yield() to be 'nice' for others, use cond_resched().
4305 * If you still want to use yield(), do not!
4306 */
yield(void)4307 void __sched yield(void)
4308 {
4309 set_current_state(TASK_RUNNING);
4310 sys_sched_yield();
4311 }
4312 EXPORT_SYMBOL(yield);
4313
4314 /**
4315 * yield_to - yield the current processor to another thread in
4316 * your thread group, or accelerate that thread toward the
4317 * processor it's on.
4318 * @p: target task
4319 * @preempt: whether task preemption is allowed or not
4320 *
4321 * It's the caller's job to ensure that the target task struct
4322 * can't go away on us before we can do any checks.
4323 *
4324 * Return:
4325 * true (>0) if we indeed boosted the target task.
4326 * false (0) if we failed to boost the target.
4327 * -ESRCH if there's no task to yield to.
4328 */
yield_to(struct task_struct * p,bool preempt)4329 int __sched yield_to(struct task_struct *p, bool preempt)
4330 {
4331 struct task_struct *curr = current;
4332 struct rq *rq, *p_rq;
4333 unsigned long flags;
4334 int yielded = 0;
4335
4336 local_irq_save(flags);
4337 rq = this_rq();
4338
4339 again:
4340 p_rq = task_rq(p);
4341 /*
4342 * If we're the only runnable task on the rq and target rq also
4343 * has only one task, there's absolutely no point in yielding.
4344 */
4345 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4346 yielded = -ESRCH;
4347 goto out_irq;
4348 }
4349
4350 double_rq_lock(rq, p_rq);
4351 if (task_rq(p) != p_rq) {
4352 double_rq_unlock(rq, p_rq);
4353 goto again;
4354 }
4355
4356 if (!curr->sched_class->yield_to_task)
4357 goto out_unlock;
4358
4359 if (curr->sched_class != p->sched_class)
4360 goto out_unlock;
4361
4362 if (task_running(p_rq, p) || p->state)
4363 goto out_unlock;
4364
4365 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4366 if (yielded) {
4367 schedstat_inc(rq, yld_count);
4368 /*
4369 * Make p's CPU reschedule; pick_next_entity takes care of
4370 * fairness.
4371 */
4372 if (preempt && rq != p_rq)
4373 resched_curr(p_rq);
4374 }
4375
4376 out_unlock:
4377 double_rq_unlock(rq, p_rq);
4378 out_irq:
4379 local_irq_restore(flags);
4380
4381 if (yielded > 0)
4382 schedule();
4383
4384 return yielded;
4385 }
4386 EXPORT_SYMBOL_GPL(yield_to);
4387
4388 /*
4389 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4390 * that process accounting knows that this is a task in IO wait state.
4391 */
io_schedule_timeout(long timeout)4392 long __sched io_schedule_timeout(long timeout)
4393 {
4394 int old_iowait = current->in_iowait;
4395 struct rq *rq;
4396 long ret;
4397
4398 current->in_iowait = 1;
4399 blk_schedule_flush_plug(current);
4400
4401 delayacct_blkio_start();
4402 rq = raw_rq();
4403 atomic_inc(&rq->nr_iowait);
4404 ret = schedule_timeout(timeout);
4405 current->in_iowait = old_iowait;
4406 atomic_dec(&rq->nr_iowait);
4407 delayacct_blkio_end();
4408
4409 return ret;
4410 }
4411 EXPORT_SYMBOL(io_schedule_timeout);
4412
4413 /**
4414 * sys_sched_get_priority_max - return maximum RT priority.
4415 * @policy: scheduling class.
4416 *
4417 * Return: On success, this syscall returns the maximum
4418 * rt_priority that can be used by a given scheduling class.
4419 * On failure, a negative error code is returned.
4420 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)4421 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4422 {
4423 int ret = -EINVAL;
4424
4425 switch (policy) {
4426 case SCHED_FIFO:
4427 case SCHED_RR:
4428 ret = MAX_USER_RT_PRIO-1;
4429 break;
4430 case SCHED_DEADLINE:
4431 case SCHED_NORMAL:
4432 case SCHED_BATCH:
4433 case SCHED_IDLE:
4434 ret = 0;
4435 break;
4436 }
4437 return ret;
4438 }
4439
4440 /**
4441 * sys_sched_get_priority_min - return minimum RT priority.
4442 * @policy: scheduling class.
4443 *
4444 * Return: On success, this syscall returns the minimum
4445 * rt_priority that can be used by a given scheduling class.
4446 * On failure, a negative error code is returned.
4447 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)4448 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4449 {
4450 int ret = -EINVAL;
4451
4452 switch (policy) {
4453 case SCHED_FIFO:
4454 case SCHED_RR:
4455 ret = 1;
4456 break;
4457 case SCHED_DEADLINE:
4458 case SCHED_NORMAL:
4459 case SCHED_BATCH:
4460 case SCHED_IDLE:
4461 ret = 0;
4462 }
4463 return ret;
4464 }
4465
4466 /**
4467 * sys_sched_rr_get_interval - return the default timeslice of a process.
4468 * @pid: pid of the process.
4469 * @interval: userspace pointer to the timeslice value.
4470 *
4471 * this syscall writes the default timeslice value of a given process
4472 * into the user-space timespec buffer. A value of '0' means infinity.
4473 *
4474 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4475 * an error code.
4476 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)4477 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4478 struct timespec __user *, interval)
4479 {
4480 struct task_struct *p;
4481 unsigned int time_slice;
4482 unsigned long flags;
4483 struct rq *rq;
4484 int retval;
4485 struct timespec t;
4486
4487 if (pid < 0)
4488 return -EINVAL;
4489
4490 retval = -ESRCH;
4491 rcu_read_lock();
4492 p = find_process_by_pid(pid);
4493 if (!p)
4494 goto out_unlock;
4495
4496 retval = security_task_getscheduler(p);
4497 if (retval)
4498 goto out_unlock;
4499
4500 rq = task_rq_lock(p, &flags);
4501 time_slice = 0;
4502 if (p->sched_class->get_rr_interval)
4503 time_slice = p->sched_class->get_rr_interval(rq, p);
4504 task_rq_unlock(rq, p, &flags);
4505
4506 rcu_read_unlock();
4507 jiffies_to_timespec(time_slice, &t);
4508 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4509 return retval;
4510
4511 out_unlock:
4512 rcu_read_unlock();
4513 return retval;
4514 }
4515
4516 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4517
sched_show_task(struct task_struct * p)4518 void sched_show_task(struct task_struct *p)
4519 {
4520 unsigned long free = 0;
4521 int ppid;
4522 unsigned long state = p->state;
4523
4524 if (state)
4525 state = __ffs(state) + 1;
4526 printk(KERN_INFO "%-15.15s %c", p->comm,
4527 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4528 #if BITS_PER_LONG == 32
4529 if (state == TASK_RUNNING)
4530 printk(KERN_CONT " running ");
4531 else
4532 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4533 #else
4534 if (state == TASK_RUNNING)
4535 printk(KERN_CONT " running task ");
4536 else
4537 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4538 #endif
4539 #ifdef CONFIG_DEBUG_STACK_USAGE
4540 free = stack_not_used(p);
4541 #endif
4542 ppid = 0;
4543 rcu_read_lock();
4544 if (pid_alive(p))
4545 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4546 rcu_read_unlock();
4547 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4548 task_pid_nr(p), ppid,
4549 (unsigned long)task_thread_info(p)->flags);
4550
4551 print_worker_info(KERN_INFO, p);
4552 show_stack(p, NULL);
4553 }
4554
show_state_filter(unsigned long state_filter)4555 void show_state_filter(unsigned long state_filter)
4556 {
4557 struct task_struct *g, *p;
4558
4559 #if BITS_PER_LONG == 32
4560 printk(KERN_INFO
4561 " task PC stack pid father\n");
4562 #else
4563 printk(KERN_INFO
4564 " task PC stack pid father\n");
4565 #endif
4566 rcu_read_lock();
4567 for_each_process_thread(g, p) {
4568 /*
4569 * reset the NMI-timeout, listing all files on a slow
4570 * console might take a lot of time:
4571 */
4572 touch_nmi_watchdog();
4573 if (!state_filter || (p->state & state_filter))
4574 sched_show_task(p);
4575 }
4576
4577 touch_all_softlockup_watchdogs();
4578
4579 #ifdef CONFIG_SCHED_DEBUG
4580 sysrq_sched_debug_show();
4581 #endif
4582 rcu_read_unlock();
4583 /*
4584 * Only show locks if all tasks are dumped:
4585 */
4586 if (!state_filter)
4587 debug_show_all_locks();
4588 }
4589
init_idle_bootup_task(struct task_struct * idle)4590 void init_idle_bootup_task(struct task_struct *idle)
4591 {
4592 idle->sched_class = &idle_sched_class;
4593 }
4594
4595 /**
4596 * init_idle - set up an idle thread for a given CPU
4597 * @idle: task in question
4598 * @cpu: cpu the idle task belongs to
4599 *
4600 * NOTE: this function does not set the idle thread's NEED_RESCHED
4601 * flag, to make booting more robust.
4602 */
init_idle(struct task_struct * idle,int cpu)4603 void init_idle(struct task_struct *idle, int cpu)
4604 {
4605 struct rq *rq = cpu_rq(cpu);
4606 unsigned long flags;
4607
4608 raw_spin_lock_irqsave(&rq->lock, flags);
4609
4610 __sched_fork(0, idle);
4611 idle->state = TASK_RUNNING;
4612 idle->se.exec_start = sched_clock();
4613
4614 do_set_cpus_allowed(idle, cpumask_of(cpu));
4615 /*
4616 * We're having a chicken and egg problem, even though we are
4617 * holding rq->lock, the cpu isn't yet set to this cpu so the
4618 * lockdep check in task_group() will fail.
4619 *
4620 * Similar case to sched_fork(). / Alternatively we could
4621 * use task_rq_lock() here and obtain the other rq->lock.
4622 *
4623 * Silence PROVE_RCU
4624 */
4625 rcu_read_lock();
4626 __set_task_cpu(idle, cpu);
4627 rcu_read_unlock();
4628
4629 rq->curr = rq->idle = idle;
4630 idle->on_rq = TASK_ON_RQ_QUEUED;
4631 #if defined(CONFIG_SMP)
4632 idle->on_cpu = 1;
4633 #endif
4634 raw_spin_unlock_irqrestore(&rq->lock, flags);
4635
4636 /* Set the preempt count _outside_ the spinlocks! */
4637 init_idle_preempt_count(idle, cpu);
4638
4639 /*
4640 * The idle tasks have their own, simple scheduling class:
4641 */
4642 idle->sched_class = &idle_sched_class;
4643 ftrace_graph_init_idle_task(idle, cpu);
4644 vtime_init_idle(idle, cpu);
4645 #if defined(CONFIG_SMP)
4646 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4647 #endif
4648 }
4649
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)4650 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4651 const struct cpumask *trial)
4652 {
4653 int ret = 1, trial_cpus;
4654 struct dl_bw *cur_dl_b;
4655 unsigned long flags;
4656
4657 if (!cpumask_weight(cur))
4658 return ret;
4659
4660 rcu_read_lock_sched();
4661 cur_dl_b = dl_bw_of(cpumask_any(cur));
4662 trial_cpus = cpumask_weight(trial);
4663
4664 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4665 if (cur_dl_b->bw != -1 &&
4666 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4667 ret = 0;
4668 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4669 rcu_read_unlock_sched();
4670
4671 return ret;
4672 }
4673
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)4674 int task_can_attach(struct task_struct *p,
4675 const struct cpumask *cs_cpus_allowed)
4676 {
4677 int ret = 0;
4678
4679 /*
4680 * Kthreads which disallow setaffinity shouldn't be moved
4681 * to a new cpuset; we don't want to change their cpu
4682 * affinity and isolating such threads by their set of
4683 * allowed nodes is unnecessary. Thus, cpusets are not
4684 * applicable for such threads. This prevents checking for
4685 * success of set_cpus_allowed_ptr() on all attached tasks
4686 * before cpus_allowed may be changed.
4687 */
4688 if (p->flags & PF_NO_SETAFFINITY) {
4689 ret = -EINVAL;
4690 goto out;
4691 }
4692
4693 #ifdef CONFIG_SMP
4694 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4695 cs_cpus_allowed)) {
4696 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4697 cs_cpus_allowed);
4698 struct dl_bw *dl_b;
4699 bool overflow;
4700 int cpus;
4701 unsigned long flags;
4702
4703 rcu_read_lock_sched();
4704 dl_b = dl_bw_of(dest_cpu);
4705 raw_spin_lock_irqsave(&dl_b->lock, flags);
4706 cpus = dl_bw_cpus(dest_cpu);
4707 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4708 if (overflow)
4709 ret = -EBUSY;
4710 else {
4711 /*
4712 * We reserve space for this task in the destination
4713 * root_domain, as we can't fail after this point.
4714 * We will free resources in the source root_domain
4715 * later on (see set_cpus_allowed_dl()).
4716 */
4717 __dl_add(dl_b, p->dl.dl_bw);
4718 }
4719 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4720 rcu_read_unlock_sched();
4721
4722 }
4723 #endif
4724 out:
4725 return ret;
4726 }
4727
4728 #ifdef CONFIG_SMP
4729 /*
4730 * move_queued_task - move a queued task to new rq.
4731 *
4732 * Returns (locked) new rq. Old rq's lock is released.
4733 */
move_queued_task(struct task_struct * p,int new_cpu)4734 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4735 {
4736 struct rq *rq = task_rq(p);
4737
4738 lockdep_assert_held(&rq->lock);
4739
4740 dequeue_task(rq, p, 0);
4741 p->on_rq = TASK_ON_RQ_MIGRATING;
4742 set_task_cpu(p, new_cpu);
4743 raw_spin_unlock(&rq->lock);
4744
4745 rq = cpu_rq(new_cpu);
4746
4747 raw_spin_lock(&rq->lock);
4748 BUG_ON(task_cpu(p) != new_cpu);
4749 p->on_rq = TASK_ON_RQ_QUEUED;
4750 enqueue_task(rq, p, 0);
4751 check_preempt_curr(rq, p, 0);
4752
4753 return rq;
4754 }
4755
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)4756 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4757 {
4758 if (p->sched_class->set_cpus_allowed)
4759 p->sched_class->set_cpus_allowed(p, new_mask);
4760
4761 cpumask_copy(&p->cpus_allowed, new_mask);
4762 p->nr_cpus_allowed = cpumask_weight(new_mask);
4763 }
4764
4765 /*
4766 * This is how migration works:
4767 *
4768 * 1) we invoke migration_cpu_stop() on the target CPU using
4769 * stop_one_cpu().
4770 * 2) stopper starts to run (implicitly forcing the migrated thread
4771 * off the CPU)
4772 * 3) it checks whether the migrated task is still in the wrong runqueue.
4773 * 4) if it's in the wrong runqueue then the migration thread removes
4774 * it and puts it into the right queue.
4775 * 5) stopper completes and stop_one_cpu() returns and the migration
4776 * is done.
4777 */
4778
4779 /*
4780 * Change a given task's CPU affinity. Migrate the thread to a
4781 * proper CPU and schedule it away if the CPU it's executing on
4782 * is removed from the allowed bitmask.
4783 *
4784 * NOTE: the caller must have a valid reference to the task, the
4785 * task must not exit() & deallocate itself prematurely. The
4786 * call is not atomic; no spinlocks may be held.
4787 */
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)4788 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4789 {
4790 unsigned long flags;
4791 struct rq *rq;
4792 unsigned int dest_cpu;
4793 int ret = 0;
4794
4795 rq = task_rq_lock(p, &flags);
4796
4797 if (cpumask_equal(&p->cpus_allowed, new_mask))
4798 goto out;
4799
4800 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4801 ret = -EINVAL;
4802 goto out;
4803 }
4804
4805 do_set_cpus_allowed(p, new_mask);
4806
4807 /* Can the task run on the task's current CPU? If so, we're done */
4808 if (cpumask_test_cpu(task_cpu(p), new_mask))
4809 goto out;
4810
4811 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4812 if (task_running(rq, p) || p->state == TASK_WAKING) {
4813 struct migration_arg arg = { p, dest_cpu };
4814 /* Need help from migration thread: drop lock and wait. */
4815 task_rq_unlock(rq, p, &flags);
4816 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4817 tlb_migrate_finish(p->mm);
4818 return 0;
4819 } else if (task_on_rq_queued(p))
4820 rq = move_queued_task(p, dest_cpu);
4821 out:
4822 task_rq_unlock(rq, p, &flags);
4823
4824 return ret;
4825 }
4826 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4827
4828 /*
4829 * Move (not current) task off this cpu, onto dest cpu. We're doing
4830 * this because either it can't run here any more (set_cpus_allowed()
4831 * away from this CPU, or CPU going down), or because we're
4832 * attempting to rebalance this task on exec (sched_exec).
4833 *
4834 * So we race with normal scheduler movements, but that's OK, as long
4835 * as the task is no longer on this CPU.
4836 *
4837 * Returns non-zero if task was successfully migrated.
4838 */
__migrate_task(struct task_struct * p,int src_cpu,int dest_cpu)4839 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4840 {
4841 struct rq *rq;
4842 int ret = 0;
4843
4844 if (unlikely(!cpu_active(dest_cpu)))
4845 return ret;
4846
4847 rq = cpu_rq(src_cpu);
4848
4849 raw_spin_lock(&p->pi_lock);
4850 raw_spin_lock(&rq->lock);
4851 /* Already moved. */
4852 if (task_cpu(p) != src_cpu)
4853 goto done;
4854
4855 /* Affinity changed (again). */
4856 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4857 goto fail;
4858
4859 /*
4860 * If we're not on a rq, the next wake-up will ensure we're
4861 * placed properly.
4862 */
4863 if (task_on_rq_queued(p))
4864 rq = move_queued_task(p, dest_cpu);
4865 done:
4866 ret = 1;
4867 fail:
4868 raw_spin_unlock(&rq->lock);
4869 raw_spin_unlock(&p->pi_lock);
4870 return ret;
4871 }
4872
4873 #ifdef CONFIG_NUMA_BALANCING
4874 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)4875 int migrate_task_to(struct task_struct *p, int target_cpu)
4876 {
4877 struct migration_arg arg = { p, target_cpu };
4878 int curr_cpu = task_cpu(p);
4879
4880 if (curr_cpu == target_cpu)
4881 return 0;
4882
4883 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4884 return -EINVAL;
4885
4886 /* TODO: This is not properly updating schedstats */
4887
4888 trace_sched_move_numa(p, curr_cpu, target_cpu);
4889 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4890 }
4891
4892 /*
4893 * Requeue a task on a given node and accurately track the number of NUMA
4894 * tasks on the runqueues
4895 */
sched_setnuma(struct task_struct * p,int nid)4896 void sched_setnuma(struct task_struct *p, int nid)
4897 {
4898 struct rq *rq;
4899 unsigned long flags;
4900 bool queued, running;
4901
4902 rq = task_rq_lock(p, &flags);
4903 queued = task_on_rq_queued(p);
4904 running = task_current(rq, p);
4905
4906 if (queued)
4907 dequeue_task(rq, p, 0);
4908 if (running)
4909 put_prev_task(rq, p);
4910
4911 p->numa_preferred_nid = nid;
4912
4913 if (running)
4914 p->sched_class->set_curr_task(rq);
4915 if (queued)
4916 enqueue_task(rq, p, 0);
4917 task_rq_unlock(rq, p, &flags);
4918 }
4919 #endif
4920
4921 /*
4922 * migration_cpu_stop - this will be executed by a highprio stopper thread
4923 * and performs thread migration by bumping thread off CPU then
4924 * 'pushing' onto another runqueue.
4925 */
migration_cpu_stop(void * data)4926 static int migration_cpu_stop(void *data)
4927 {
4928 struct migration_arg *arg = data;
4929
4930 /*
4931 * The original target cpu might have gone down and we might
4932 * be on another cpu but it doesn't matter.
4933 */
4934 local_irq_disable();
4935 /*
4936 * We need to explicitly wake pending tasks before running
4937 * __migrate_task() such that we will not miss enforcing cpus_allowed
4938 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4939 */
4940 sched_ttwu_pending();
4941 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4942 local_irq_enable();
4943 return 0;
4944 }
4945
4946 #ifdef CONFIG_HOTPLUG_CPU
4947
4948 /*
4949 * Ensures that the idle task is using init_mm right before its cpu goes
4950 * offline.
4951 */
idle_task_exit(void)4952 void idle_task_exit(void)
4953 {
4954 struct mm_struct *mm = current->active_mm;
4955
4956 BUG_ON(cpu_online(smp_processor_id()));
4957
4958 if (mm != &init_mm) {
4959 switch_mm(mm, &init_mm, current);
4960 finish_arch_post_lock_switch();
4961 }
4962 mmdrop(mm);
4963 }
4964
4965 /*
4966 * Since this CPU is going 'away' for a while, fold any nr_active delta
4967 * we might have. Assumes we're called after migrate_tasks() so that the
4968 * nr_active count is stable.
4969 *
4970 * Also see the comment "Global load-average calculations".
4971 */
calc_load_migrate(struct rq * rq)4972 static void calc_load_migrate(struct rq *rq)
4973 {
4974 long delta = calc_load_fold_active(rq);
4975 if (delta)
4976 atomic_long_add(delta, &calc_load_tasks);
4977 }
4978
put_prev_task_fake(struct rq * rq,struct task_struct * prev)4979 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4980 {
4981 }
4982
4983 static const struct sched_class fake_sched_class = {
4984 .put_prev_task = put_prev_task_fake,
4985 };
4986
4987 static struct task_struct fake_task = {
4988 /*
4989 * Avoid pull_{rt,dl}_task()
4990 */
4991 .prio = MAX_PRIO + 1,
4992 .sched_class = &fake_sched_class,
4993 };
4994
4995 /*
4996 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4997 * try_to_wake_up()->select_task_rq().
4998 *
4999 * Called with rq->lock held even though we'er in stop_machine() and
5000 * there's no concurrency possible, we hold the required locks anyway
5001 * because of lock validation efforts.
5002 */
migrate_tasks(unsigned int dead_cpu)5003 static void migrate_tasks(unsigned int dead_cpu)
5004 {
5005 struct rq *rq = cpu_rq(dead_cpu);
5006 struct task_struct *next, *stop = rq->stop;
5007 int dest_cpu;
5008
5009 /*
5010 * Fudge the rq selection such that the below task selection loop
5011 * doesn't get stuck on the currently eligible stop task.
5012 *
5013 * We're currently inside stop_machine() and the rq is either stuck
5014 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5015 * either way we should never end up calling schedule() until we're
5016 * done here.
5017 */
5018 rq->stop = NULL;
5019
5020 /*
5021 * put_prev_task() and pick_next_task() sched
5022 * class method both need to have an up-to-date
5023 * value of rq->clock[_task]
5024 */
5025 update_rq_clock(rq);
5026
5027 for ( ; ; ) {
5028 /*
5029 * There's this thread running, bail when that's the only
5030 * remaining thread.
5031 */
5032 if (rq->nr_running == 1)
5033 break;
5034
5035 next = pick_next_task(rq, &fake_task);
5036 BUG_ON(!next);
5037 next->sched_class->put_prev_task(rq, next);
5038
5039 /* Find suitable destination for @next, with force if needed. */
5040 dest_cpu = select_fallback_rq(dead_cpu, next);
5041 raw_spin_unlock(&rq->lock);
5042
5043 __migrate_task(next, dead_cpu, dest_cpu);
5044
5045 raw_spin_lock(&rq->lock);
5046 }
5047
5048 rq->stop = stop;
5049 }
5050
5051 #endif /* CONFIG_HOTPLUG_CPU */
5052
5053 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5054
5055 static struct ctl_table sd_ctl_dir[] = {
5056 {
5057 .procname = "sched_domain",
5058 .mode = 0555,
5059 },
5060 {}
5061 };
5062
5063 static struct ctl_table sd_ctl_root[] = {
5064 {
5065 .procname = "kernel",
5066 .mode = 0555,
5067 .child = sd_ctl_dir,
5068 },
5069 {}
5070 };
5071
sd_alloc_ctl_entry(int n)5072 static struct ctl_table *sd_alloc_ctl_entry(int n)
5073 {
5074 struct ctl_table *entry =
5075 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5076
5077 return entry;
5078 }
5079
sd_free_ctl_entry(struct ctl_table ** tablep)5080 static void sd_free_ctl_entry(struct ctl_table **tablep)
5081 {
5082 struct ctl_table *entry;
5083
5084 /*
5085 * In the intermediate directories, both the child directory and
5086 * procname are dynamically allocated and could fail but the mode
5087 * will always be set. In the lowest directory the names are
5088 * static strings and all have proc handlers.
5089 */
5090 for (entry = *tablep; entry->mode; entry++) {
5091 if (entry->child)
5092 sd_free_ctl_entry(&entry->child);
5093 if (entry->proc_handler == NULL)
5094 kfree(entry->procname);
5095 }
5096
5097 kfree(*tablep);
5098 *tablep = NULL;
5099 }
5100
5101 static int min_load_idx = 0;
5102 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5103
5104 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,umode_t mode,proc_handler * proc_handler,bool load_idx)5105 set_table_entry(struct ctl_table *entry,
5106 const char *procname, void *data, int maxlen,
5107 umode_t mode, proc_handler *proc_handler,
5108 bool load_idx)
5109 {
5110 entry->procname = procname;
5111 entry->data = data;
5112 entry->maxlen = maxlen;
5113 entry->mode = mode;
5114 entry->proc_handler = proc_handler;
5115
5116 if (load_idx) {
5117 entry->extra1 = &min_load_idx;
5118 entry->extra2 = &max_load_idx;
5119 }
5120 }
5121
5122 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)5123 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5124 {
5125 struct ctl_table *table = sd_alloc_ctl_entry(14);
5126
5127 if (table == NULL)
5128 return NULL;
5129
5130 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5131 sizeof(long), 0644, proc_doulongvec_minmax, false);
5132 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5133 sizeof(long), 0644, proc_doulongvec_minmax, false);
5134 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5135 sizeof(int), 0644, proc_dointvec_minmax, true);
5136 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5137 sizeof(int), 0644, proc_dointvec_minmax, true);
5138 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5139 sizeof(int), 0644, proc_dointvec_minmax, true);
5140 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5141 sizeof(int), 0644, proc_dointvec_minmax, true);
5142 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5143 sizeof(int), 0644, proc_dointvec_minmax, true);
5144 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5145 sizeof(int), 0644, proc_dointvec_minmax, false);
5146 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5147 sizeof(int), 0644, proc_dointvec_minmax, false);
5148 set_table_entry(&table[9], "cache_nice_tries",
5149 &sd->cache_nice_tries,
5150 sizeof(int), 0644, proc_dointvec_minmax, false);
5151 set_table_entry(&table[10], "flags", &sd->flags,
5152 sizeof(int), 0644, proc_dointvec_minmax, false);
5153 set_table_entry(&table[11], "max_newidle_lb_cost",
5154 &sd->max_newidle_lb_cost,
5155 sizeof(long), 0644, proc_doulongvec_minmax, false);
5156 set_table_entry(&table[12], "name", sd->name,
5157 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5158 /* &table[13] is terminator */
5159
5160 return table;
5161 }
5162
sd_alloc_ctl_cpu_table(int cpu)5163 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5164 {
5165 struct ctl_table *entry, *table;
5166 struct sched_domain *sd;
5167 int domain_num = 0, i;
5168 char buf[32];
5169
5170 for_each_domain(cpu, sd)
5171 domain_num++;
5172 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5173 if (table == NULL)
5174 return NULL;
5175
5176 i = 0;
5177 for_each_domain(cpu, sd) {
5178 snprintf(buf, 32, "domain%d", i);
5179 entry->procname = kstrdup(buf, GFP_KERNEL);
5180 entry->mode = 0555;
5181 entry->child = sd_alloc_ctl_domain_table(sd);
5182 entry++;
5183 i++;
5184 }
5185 return table;
5186 }
5187
5188 static struct ctl_table_header *sd_sysctl_header;
register_sched_domain_sysctl(void)5189 static void register_sched_domain_sysctl(void)
5190 {
5191 int i, cpu_num = num_possible_cpus();
5192 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5193 char buf[32];
5194
5195 WARN_ON(sd_ctl_dir[0].child);
5196 sd_ctl_dir[0].child = entry;
5197
5198 if (entry == NULL)
5199 return;
5200
5201 for_each_possible_cpu(i) {
5202 snprintf(buf, 32, "cpu%d", i);
5203 entry->procname = kstrdup(buf, GFP_KERNEL);
5204 entry->mode = 0555;
5205 entry->child = sd_alloc_ctl_cpu_table(i);
5206 entry++;
5207 }
5208
5209 WARN_ON(sd_sysctl_header);
5210 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5211 }
5212
5213 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)5214 static void unregister_sched_domain_sysctl(void)
5215 {
5216 if (sd_sysctl_header)
5217 unregister_sysctl_table(sd_sysctl_header);
5218 sd_sysctl_header = NULL;
5219 if (sd_ctl_dir[0].child)
5220 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5221 }
5222 #else
register_sched_domain_sysctl(void)5223 static void register_sched_domain_sysctl(void)
5224 {
5225 }
unregister_sched_domain_sysctl(void)5226 static void unregister_sched_domain_sysctl(void)
5227 {
5228 }
5229 #endif
5230
set_rq_online(struct rq * rq)5231 static void set_rq_online(struct rq *rq)
5232 {
5233 if (!rq->online) {
5234 const struct sched_class *class;
5235
5236 cpumask_set_cpu(rq->cpu, rq->rd->online);
5237 rq->online = 1;
5238
5239 for_each_class(class) {
5240 if (class->rq_online)
5241 class->rq_online(rq);
5242 }
5243 }
5244 }
5245
set_rq_offline(struct rq * rq)5246 static void set_rq_offline(struct rq *rq)
5247 {
5248 if (rq->online) {
5249 const struct sched_class *class;
5250
5251 for_each_class(class) {
5252 if (class->rq_offline)
5253 class->rq_offline(rq);
5254 }
5255
5256 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5257 rq->online = 0;
5258 }
5259 }
5260
5261 /*
5262 * migration_call - callback that gets triggered when a CPU is added.
5263 * Here we can start up the necessary migration thread for the new CPU.
5264 */
5265 static int
migration_call(struct notifier_block * nfb,unsigned long action,void * hcpu)5266 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5267 {
5268 int cpu = (long)hcpu;
5269 unsigned long flags;
5270 struct rq *rq = cpu_rq(cpu);
5271
5272 switch (action & ~CPU_TASKS_FROZEN) {
5273
5274 case CPU_UP_PREPARE:
5275 rq->calc_load_update = calc_load_update;
5276 break;
5277
5278 case CPU_ONLINE:
5279 /* Update our root-domain */
5280 raw_spin_lock_irqsave(&rq->lock, flags);
5281 if (rq->rd) {
5282 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5283
5284 set_rq_online(rq);
5285 }
5286 raw_spin_unlock_irqrestore(&rq->lock, flags);
5287 break;
5288
5289 #ifdef CONFIG_HOTPLUG_CPU
5290 case CPU_DYING:
5291 sched_ttwu_pending();
5292 /* Update our root-domain */
5293 raw_spin_lock_irqsave(&rq->lock, flags);
5294 if (rq->rd) {
5295 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5296 set_rq_offline(rq);
5297 }
5298 migrate_tasks(cpu);
5299 BUG_ON(rq->nr_running != 1); /* the migration thread */
5300 raw_spin_unlock_irqrestore(&rq->lock, flags);
5301 break;
5302
5303 case CPU_DEAD:
5304 calc_load_migrate(rq);
5305 break;
5306 #endif
5307 }
5308
5309 update_max_interval();
5310
5311 return NOTIFY_OK;
5312 }
5313
5314 /*
5315 * Register at high priority so that task migration (migrate_all_tasks)
5316 * happens before everything else. This has to be lower priority than
5317 * the notifier in the perf_event subsystem, though.
5318 */
5319 static struct notifier_block migration_notifier = {
5320 .notifier_call = migration_call,
5321 .priority = CPU_PRI_MIGRATION,
5322 };
5323
set_cpu_rq_start_time(void)5324 static void __cpuinit set_cpu_rq_start_time(void)
5325 {
5326 int cpu = smp_processor_id();
5327 struct rq *rq = cpu_rq(cpu);
5328 rq->age_stamp = sched_clock_cpu(cpu);
5329 }
5330
sched_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)5331 static int sched_cpu_active(struct notifier_block *nfb,
5332 unsigned long action, void *hcpu)
5333 {
5334 switch (action & ~CPU_TASKS_FROZEN) {
5335 case CPU_STARTING:
5336 set_cpu_rq_start_time();
5337 return NOTIFY_OK;
5338 case CPU_ONLINE:
5339 /*
5340 * At this point a starting CPU has marked itself as online via
5341 * set_cpu_online(). But it might not yet have marked itself
5342 * as active, which is essential from here on.
5343 *
5344 * Thus, fall-through and help the starting CPU along.
5345 */
5346 case CPU_DOWN_FAILED:
5347 set_cpu_active((long)hcpu, true);
5348 return NOTIFY_OK;
5349 default:
5350 return NOTIFY_DONE;
5351 }
5352 }
5353
sched_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)5354 static int sched_cpu_inactive(struct notifier_block *nfb,
5355 unsigned long action, void *hcpu)
5356 {
5357 switch (action & ~CPU_TASKS_FROZEN) {
5358 case CPU_DOWN_PREPARE:
5359 set_cpu_active((long)hcpu, false);
5360 return NOTIFY_OK;
5361 default:
5362 return NOTIFY_DONE;
5363 }
5364 }
5365
migration_init(void)5366 static int __init migration_init(void)
5367 {
5368 void *cpu = (void *)(long)smp_processor_id();
5369 int err;
5370
5371 /* Initialize migration for the boot CPU */
5372 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5373 BUG_ON(err == NOTIFY_BAD);
5374 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5375 register_cpu_notifier(&migration_notifier);
5376
5377 /* Register cpu active notifiers */
5378 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5379 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5380
5381 return 0;
5382 }
5383 early_initcall(migration_init);
5384 #endif
5385
5386 #ifdef CONFIG_SMP
5387
5388 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5389
5390 #ifdef CONFIG_SCHED_DEBUG
5391
5392 static __read_mostly int sched_debug_enabled;
5393
sched_debug_setup(char * str)5394 static int __init sched_debug_setup(char *str)
5395 {
5396 sched_debug_enabled = 1;
5397
5398 return 0;
5399 }
5400 early_param("sched_debug", sched_debug_setup);
5401
sched_debug(void)5402 static inline bool sched_debug(void)
5403 {
5404 return sched_debug_enabled;
5405 }
5406
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)5407 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5408 struct cpumask *groupmask)
5409 {
5410 struct sched_group *group = sd->groups;
5411
5412 cpumask_clear(groupmask);
5413
5414 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5415
5416 if (!(sd->flags & SD_LOAD_BALANCE)) {
5417 printk("does not load-balance\n");
5418 if (sd->parent)
5419 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5420 " has parent");
5421 return -1;
5422 }
5423
5424 printk(KERN_CONT "span %*pbl level %s\n",
5425 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5426
5427 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5428 printk(KERN_ERR "ERROR: domain->span does not contain "
5429 "CPU%d\n", cpu);
5430 }
5431 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5432 printk(KERN_ERR "ERROR: domain->groups does not contain"
5433 " CPU%d\n", cpu);
5434 }
5435
5436 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5437 do {
5438 if (!group) {
5439 printk("\n");
5440 printk(KERN_ERR "ERROR: group is NULL\n");
5441 break;
5442 }
5443
5444 if (!cpumask_weight(sched_group_cpus(group))) {
5445 printk(KERN_CONT "\n");
5446 printk(KERN_ERR "ERROR: empty group\n");
5447 break;
5448 }
5449
5450 if (!(sd->flags & SD_OVERLAP) &&
5451 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5452 printk(KERN_CONT "\n");
5453 printk(KERN_ERR "ERROR: repeated CPUs\n");
5454 break;
5455 }
5456
5457 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5458
5459 printk(KERN_CONT " %*pbl",
5460 cpumask_pr_args(sched_group_cpus(group)));
5461 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5462 printk(KERN_CONT " (cpu_capacity = %d)",
5463 group->sgc->capacity);
5464 }
5465
5466 group = group->next;
5467 } while (group != sd->groups);
5468 printk(KERN_CONT "\n");
5469
5470 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5471 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5472
5473 if (sd->parent &&
5474 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5475 printk(KERN_ERR "ERROR: parent span is not a superset "
5476 "of domain->span\n");
5477 return 0;
5478 }
5479
sched_domain_debug(struct sched_domain * sd,int cpu)5480 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5481 {
5482 int level = 0;
5483
5484 if (!sched_debug_enabled)
5485 return;
5486
5487 if (!sd) {
5488 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5489 return;
5490 }
5491
5492 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5493
5494 for (;;) {
5495 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5496 break;
5497 level++;
5498 sd = sd->parent;
5499 if (!sd)
5500 break;
5501 }
5502 }
5503 #else /* !CONFIG_SCHED_DEBUG */
5504 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)5505 static inline bool sched_debug(void)
5506 {
5507 return false;
5508 }
5509 #endif /* CONFIG_SCHED_DEBUG */
5510
sd_degenerate(struct sched_domain * sd)5511 static int sd_degenerate(struct sched_domain *sd)
5512 {
5513 if (cpumask_weight(sched_domain_span(sd)) == 1)
5514 return 1;
5515
5516 /* Following flags need at least 2 groups */
5517 if (sd->flags & (SD_LOAD_BALANCE |
5518 SD_BALANCE_NEWIDLE |
5519 SD_BALANCE_FORK |
5520 SD_BALANCE_EXEC |
5521 SD_SHARE_CPUCAPACITY |
5522 SD_SHARE_PKG_RESOURCES |
5523 SD_SHARE_POWERDOMAIN)) {
5524 if (sd->groups != sd->groups->next)
5525 return 0;
5526 }
5527
5528 /* Following flags don't use groups */
5529 if (sd->flags & (SD_WAKE_AFFINE))
5530 return 0;
5531
5532 return 1;
5533 }
5534
5535 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)5536 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5537 {
5538 unsigned long cflags = sd->flags, pflags = parent->flags;
5539
5540 if (sd_degenerate(parent))
5541 return 1;
5542
5543 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5544 return 0;
5545
5546 /* Flags needing groups don't count if only 1 group in parent */
5547 if (parent->groups == parent->groups->next) {
5548 pflags &= ~(SD_LOAD_BALANCE |
5549 SD_BALANCE_NEWIDLE |
5550 SD_BALANCE_FORK |
5551 SD_BALANCE_EXEC |
5552 SD_SHARE_CPUCAPACITY |
5553 SD_SHARE_PKG_RESOURCES |
5554 SD_PREFER_SIBLING |
5555 SD_SHARE_POWERDOMAIN);
5556 if (nr_node_ids == 1)
5557 pflags &= ~SD_SERIALIZE;
5558 }
5559 if (~cflags & pflags)
5560 return 0;
5561
5562 return 1;
5563 }
5564
free_rootdomain(struct rcu_head * rcu)5565 static void free_rootdomain(struct rcu_head *rcu)
5566 {
5567 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5568
5569 cpupri_cleanup(&rd->cpupri);
5570 cpudl_cleanup(&rd->cpudl);
5571 free_cpumask_var(rd->dlo_mask);
5572 free_cpumask_var(rd->rto_mask);
5573 free_cpumask_var(rd->online);
5574 free_cpumask_var(rd->span);
5575 kfree(rd);
5576 }
5577
rq_attach_root(struct rq * rq,struct root_domain * rd)5578 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5579 {
5580 struct root_domain *old_rd = NULL;
5581 unsigned long flags;
5582
5583 raw_spin_lock_irqsave(&rq->lock, flags);
5584
5585 if (rq->rd) {
5586 old_rd = rq->rd;
5587
5588 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5589 set_rq_offline(rq);
5590
5591 cpumask_clear_cpu(rq->cpu, old_rd->span);
5592
5593 /*
5594 * If we dont want to free the old_rd yet then
5595 * set old_rd to NULL to skip the freeing later
5596 * in this function:
5597 */
5598 if (!atomic_dec_and_test(&old_rd->refcount))
5599 old_rd = NULL;
5600 }
5601
5602 atomic_inc(&rd->refcount);
5603 rq->rd = rd;
5604
5605 cpumask_set_cpu(rq->cpu, rd->span);
5606 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5607 set_rq_online(rq);
5608
5609 raw_spin_unlock_irqrestore(&rq->lock, flags);
5610
5611 if (old_rd)
5612 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5613 }
5614
init_rootdomain(struct root_domain * rd)5615 static int init_rootdomain(struct root_domain *rd)
5616 {
5617 memset(rd, 0, sizeof(*rd));
5618
5619 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5620 goto out;
5621 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5622 goto free_span;
5623 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5624 goto free_online;
5625 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5626 goto free_dlo_mask;
5627
5628 init_dl_bw(&rd->dl_bw);
5629 if (cpudl_init(&rd->cpudl) != 0)
5630 goto free_dlo_mask;
5631
5632 if (cpupri_init(&rd->cpupri) != 0)
5633 goto free_rto_mask;
5634 return 0;
5635
5636 free_rto_mask:
5637 free_cpumask_var(rd->rto_mask);
5638 free_dlo_mask:
5639 free_cpumask_var(rd->dlo_mask);
5640 free_online:
5641 free_cpumask_var(rd->online);
5642 free_span:
5643 free_cpumask_var(rd->span);
5644 out:
5645 return -ENOMEM;
5646 }
5647
5648 /*
5649 * By default the system creates a single root-domain with all cpus as
5650 * members (mimicking the global state we have today).
5651 */
5652 struct root_domain def_root_domain;
5653
init_defrootdomain(void)5654 static void init_defrootdomain(void)
5655 {
5656 init_rootdomain(&def_root_domain);
5657
5658 atomic_set(&def_root_domain.refcount, 1);
5659 }
5660
alloc_rootdomain(void)5661 static struct root_domain *alloc_rootdomain(void)
5662 {
5663 struct root_domain *rd;
5664
5665 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5666 if (!rd)
5667 return NULL;
5668
5669 if (init_rootdomain(rd) != 0) {
5670 kfree(rd);
5671 return NULL;
5672 }
5673
5674 return rd;
5675 }
5676
free_sched_groups(struct sched_group * sg,int free_sgc)5677 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5678 {
5679 struct sched_group *tmp, *first;
5680
5681 if (!sg)
5682 return;
5683
5684 first = sg;
5685 do {
5686 tmp = sg->next;
5687
5688 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5689 kfree(sg->sgc);
5690
5691 kfree(sg);
5692 sg = tmp;
5693 } while (sg != first);
5694 }
5695
free_sched_domain(struct rcu_head * rcu)5696 static void free_sched_domain(struct rcu_head *rcu)
5697 {
5698 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5699
5700 /*
5701 * If its an overlapping domain it has private groups, iterate and
5702 * nuke them all.
5703 */
5704 if (sd->flags & SD_OVERLAP) {
5705 free_sched_groups(sd->groups, 1);
5706 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5707 kfree(sd->groups->sgc);
5708 kfree(sd->groups);
5709 }
5710 kfree(sd);
5711 }
5712
destroy_sched_domain(struct sched_domain * sd,int cpu)5713 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5714 {
5715 call_rcu(&sd->rcu, free_sched_domain);
5716 }
5717
destroy_sched_domains(struct sched_domain * sd,int cpu)5718 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5719 {
5720 for (; sd; sd = sd->parent)
5721 destroy_sched_domain(sd, cpu);
5722 }
5723
5724 /*
5725 * Keep a special pointer to the highest sched_domain that has
5726 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5727 * allows us to avoid some pointer chasing select_idle_sibling().
5728 *
5729 * Also keep a unique ID per domain (we use the first cpu number in
5730 * the cpumask of the domain), this allows us to quickly tell if
5731 * two cpus are in the same cache domain, see cpus_share_cache().
5732 */
5733 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5734 DEFINE_PER_CPU(int, sd_llc_size);
5735 DEFINE_PER_CPU(int, sd_llc_id);
5736 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5737 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5738 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5739
update_top_cache_domain(int cpu)5740 static void update_top_cache_domain(int cpu)
5741 {
5742 struct sched_domain *sd;
5743 struct sched_domain *busy_sd = NULL;
5744 int id = cpu;
5745 int size = 1;
5746
5747 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5748 if (sd) {
5749 id = cpumask_first(sched_domain_span(sd));
5750 size = cpumask_weight(sched_domain_span(sd));
5751 busy_sd = sd->parent; /* sd_busy */
5752 }
5753 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5754
5755 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5756 per_cpu(sd_llc_size, cpu) = size;
5757 per_cpu(sd_llc_id, cpu) = id;
5758
5759 sd = lowest_flag_domain(cpu, SD_NUMA);
5760 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5761
5762 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5763 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5764 }
5765
5766 /*
5767 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5768 * hold the hotplug lock.
5769 */
5770 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)5771 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5772 {
5773 struct rq *rq = cpu_rq(cpu);
5774 struct sched_domain *tmp;
5775
5776 /* Remove the sched domains which do not contribute to scheduling. */
5777 for (tmp = sd; tmp; ) {
5778 struct sched_domain *parent = tmp->parent;
5779 if (!parent)
5780 break;
5781
5782 if (sd_parent_degenerate(tmp, parent)) {
5783 tmp->parent = parent->parent;
5784 if (parent->parent)
5785 parent->parent->child = tmp;
5786 /*
5787 * Transfer SD_PREFER_SIBLING down in case of a
5788 * degenerate parent; the spans match for this
5789 * so the property transfers.
5790 */
5791 if (parent->flags & SD_PREFER_SIBLING)
5792 tmp->flags |= SD_PREFER_SIBLING;
5793 destroy_sched_domain(parent, cpu);
5794 } else
5795 tmp = tmp->parent;
5796 }
5797
5798 if (sd && sd_degenerate(sd)) {
5799 tmp = sd;
5800 sd = sd->parent;
5801 destroy_sched_domain(tmp, cpu);
5802 if (sd)
5803 sd->child = NULL;
5804 }
5805
5806 sched_domain_debug(sd, cpu);
5807
5808 rq_attach_root(rq, rd);
5809 tmp = rq->sd;
5810 rcu_assign_pointer(rq->sd, sd);
5811 destroy_sched_domains(tmp, cpu);
5812
5813 update_top_cache_domain(cpu);
5814 }
5815
5816 /* Setup the mask of cpus configured for isolated domains */
isolated_cpu_setup(char * str)5817 static int __init isolated_cpu_setup(char *str)
5818 {
5819 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5820 cpulist_parse(str, cpu_isolated_map);
5821 return 1;
5822 }
5823
5824 __setup("isolcpus=", isolated_cpu_setup);
5825
5826 struct s_data {
5827 struct sched_domain ** __percpu sd;
5828 struct root_domain *rd;
5829 };
5830
5831 enum s_alloc {
5832 sa_rootdomain,
5833 sa_sd,
5834 sa_sd_storage,
5835 sa_none,
5836 };
5837
5838 /*
5839 * Build an iteration mask that can exclude certain CPUs from the upwards
5840 * domain traversal.
5841 *
5842 * Asymmetric node setups can result in situations where the domain tree is of
5843 * unequal depth, make sure to skip domains that already cover the entire
5844 * range.
5845 *
5846 * In that case build_sched_domains() will have terminated the iteration early
5847 * and our sibling sd spans will be empty. Domains should always include the
5848 * cpu they're built on, so check that.
5849 *
5850 */
build_group_mask(struct sched_domain * sd,struct sched_group * sg)5851 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5852 {
5853 const struct cpumask *span = sched_domain_span(sd);
5854 struct sd_data *sdd = sd->private;
5855 struct sched_domain *sibling;
5856 int i;
5857
5858 for_each_cpu(i, span) {
5859 sibling = *per_cpu_ptr(sdd->sd, i);
5860 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5861 continue;
5862
5863 cpumask_set_cpu(i, sched_group_mask(sg));
5864 }
5865 }
5866
5867 /*
5868 * Return the canonical balance cpu for this group, this is the first cpu
5869 * of this group that's also in the iteration mask.
5870 */
group_balance_cpu(struct sched_group * sg)5871 int group_balance_cpu(struct sched_group *sg)
5872 {
5873 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5874 }
5875
5876 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)5877 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5878 {
5879 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5880 const struct cpumask *span = sched_domain_span(sd);
5881 struct cpumask *covered = sched_domains_tmpmask;
5882 struct sd_data *sdd = sd->private;
5883 struct sched_domain *sibling;
5884 int i;
5885
5886 cpumask_clear(covered);
5887
5888 for_each_cpu(i, span) {
5889 struct cpumask *sg_span;
5890
5891 if (cpumask_test_cpu(i, covered))
5892 continue;
5893
5894 sibling = *per_cpu_ptr(sdd->sd, i);
5895
5896 /* See the comment near build_group_mask(). */
5897 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5898 continue;
5899
5900 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5901 GFP_KERNEL, cpu_to_node(cpu));
5902
5903 if (!sg)
5904 goto fail;
5905
5906 sg_span = sched_group_cpus(sg);
5907 if (sibling->child)
5908 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5909 else
5910 cpumask_set_cpu(i, sg_span);
5911
5912 cpumask_or(covered, covered, sg_span);
5913
5914 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5915 if (atomic_inc_return(&sg->sgc->ref) == 1)
5916 build_group_mask(sd, sg);
5917
5918 /*
5919 * Initialize sgc->capacity such that even if we mess up the
5920 * domains and no possible iteration will get us here, we won't
5921 * die on a /0 trap.
5922 */
5923 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5924
5925 /*
5926 * Make sure the first group of this domain contains the
5927 * canonical balance cpu. Otherwise the sched_domain iteration
5928 * breaks. See update_sg_lb_stats().
5929 */
5930 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5931 group_balance_cpu(sg) == cpu)
5932 groups = sg;
5933
5934 if (!first)
5935 first = sg;
5936 if (last)
5937 last->next = sg;
5938 last = sg;
5939 last->next = first;
5940 }
5941 sd->groups = groups;
5942
5943 return 0;
5944
5945 fail:
5946 free_sched_groups(first, 0);
5947
5948 return -ENOMEM;
5949 }
5950
get_group(int cpu,struct sd_data * sdd,struct sched_group ** sg)5951 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5952 {
5953 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5954 struct sched_domain *child = sd->child;
5955
5956 if (child)
5957 cpu = cpumask_first(sched_domain_span(child));
5958
5959 if (sg) {
5960 *sg = *per_cpu_ptr(sdd->sg, cpu);
5961 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5962 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5963 }
5964
5965 return cpu;
5966 }
5967
5968 /*
5969 * build_sched_groups will build a circular linked list of the groups
5970 * covered by the given span, and will set each group's ->cpumask correctly,
5971 * and ->cpu_capacity to 0.
5972 *
5973 * Assumes the sched_domain tree is fully constructed
5974 */
5975 static int
build_sched_groups(struct sched_domain * sd,int cpu)5976 build_sched_groups(struct sched_domain *sd, int cpu)
5977 {
5978 struct sched_group *first = NULL, *last = NULL;
5979 struct sd_data *sdd = sd->private;
5980 const struct cpumask *span = sched_domain_span(sd);
5981 struct cpumask *covered;
5982 int i;
5983
5984 get_group(cpu, sdd, &sd->groups);
5985 atomic_inc(&sd->groups->ref);
5986
5987 if (cpu != cpumask_first(span))
5988 return 0;
5989
5990 lockdep_assert_held(&sched_domains_mutex);
5991 covered = sched_domains_tmpmask;
5992
5993 cpumask_clear(covered);
5994
5995 for_each_cpu(i, span) {
5996 struct sched_group *sg;
5997 int group, j;
5998
5999 if (cpumask_test_cpu(i, covered))
6000 continue;
6001
6002 group = get_group(i, sdd, &sg);
6003 cpumask_setall(sched_group_mask(sg));
6004
6005 for_each_cpu(j, span) {
6006 if (get_group(j, sdd, NULL) != group)
6007 continue;
6008
6009 cpumask_set_cpu(j, covered);
6010 cpumask_set_cpu(j, sched_group_cpus(sg));
6011 }
6012
6013 if (!first)
6014 first = sg;
6015 if (last)
6016 last->next = sg;
6017 last = sg;
6018 }
6019 last->next = first;
6020
6021 return 0;
6022 }
6023
6024 /*
6025 * Initialize sched groups cpu_capacity.
6026 *
6027 * cpu_capacity indicates the capacity of sched group, which is used while
6028 * distributing the load between different sched groups in a sched domain.
6029 * Typically cpu_capacity for all the groups in a sched domain will be same
6030 * unless there are asymmetries in the topology. If there are asymmetries,
6031 * group having more cpu_capacity will pickup more load compared to the
6032 * group having less cpu_capacity.
6033 */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)6034 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6035 {
6036 struct sched_group *sg = sd->groups;
6037
6038 WARN_ON(!sg);
6039
6040 do {
6041 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6042 sg = sg->next;
6043 } while (sg != sd->groups);
6044
6045 if (cpu != group_balance_cpu(sg))
6046 return;
6047
6048 update_group_capacity(sd, cpu);
6049 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6050 }
6051
6052 /*
6053 * Initializers for schedule domains
6054 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6055 */
6056
6057 static int default_relax_domain_level = -1;
6058 int sched_domain_level_max;
6059
setup_relax_domain_level(char * str)6060 static int __init setup_relax_domain_level(char *str)
6061 {
6062 if (kstrtoint(str, 0, &default_relax_domain_level))
6063 pr_warn("Unable to set relax_domain_level\n");
6064
6065 return 1;
6066 }
6067 __setup("relax_domain_level=", setup_relax_domain_level);
6068
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)6069 static void set_domain_attribute(struct sched_domain *sd,
6070 struct sched_domain_attr *attr)
6071 {
6072 int request;
6073
6074 if (!attr || attr->relax_domain_level < 0) {
6075 if (default_relax_domain_level < 0)
6076 return;
6077 else
6078 request = default_relax_domain_level;
6079 } else
6080 request = attr->relax_domain_level;
6081 if (request < sd->level) {
6082 /* turn off idle balance on this domain */
6083 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6084 } else {
6085 /* turn on idle balance on this domain */
6086 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6087 }
6088 }
6089
6090 static void __sdt_free(const struct cpumask *cpu_map);
6091 static int __sdt_alloc(const struct cpumask *cpu_map);
6092
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)6093 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6094 const struct cpumask *cpu_map)
6095 {
6096 switch (what) {
6097 case sa_rootdomain:
6098 if (!atomic_read(&d->rd->refcount))
6099 free_rootdomain(&d->rd->rcu); /* fall through */
6100 case sa_sd:
6101 free_percpu(d->sd); /* fall through */
6102 case sa_sd_storage:
6103 __sdt_free(cpu_map); /* fall through */
6104 case sa_none:
6105 break;
6106 }
6107 }
6108
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)6109 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6110 const struct cpumask *cpu_map)
6111 {
6112 memset(d, 0, sizeof(*d));
6113
6114 if (__sdt_alloc(cpu_map))
6115 return sa_sd_storage;
6116 d->sd = alloc_percpu(struct sched_domain *);
6117 if (!d->sd)
6118 return sa_sd_storage;
6119 d->rd = alloc_rootdomain();
6120 if (!d->rd)
6121 return sa_sd;
6122 return sa_rootdomain;
6123 }
6124
6125 /*
6126 * NULL the sd_data elements we've used to build the sched_domain and
6127 * sched_group structure so that the subsequent __free_domain_allocs()
6128 * will not free the data we're using.
6129 */
claim_allocations(int cpu,struct sched_domain * sd)6130 static void claim_allocations(int cpu, struct sched_domain *sd)
6131 {
6132 struct sd_data *sdd = sd->private;
6133
6134 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6135 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6136
6137 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6138 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6139
6140 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6141 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6142 }
6143
6144 #ifdef CONFIG_NUMA
6145 static int sched_domains_numa_levels;
6146 enum numa_topology_type sched_numa_topology_type;
6147 static int *sched_domains_numa_distance;
6148 int sched_max_numa_distance;
6149 static struct cpumask ***sched_domains_numa_masks;
6150 static int sched_domains_curr_level;
6151 #endif
6152
6153 /*
6154 * SD_flags allowed in topology descriptions.
6155 *
6156 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6157 * SD_SHARE_PKG_RESOURCES - describes shared caches
6158 * SD_NUMA - describes NUMA topologies
6159 * SD_SHARE_POWERDOMAIN - describes shared power domain
6160 *
6161 * Odd one out:
6162 * SD_ASYM_PACKING - describes SMT quirks
6163 */
6164 #define TOPOLOGY_SD_FLAGS \
6165 (SD_SHARE_CPUCAPACITY | \
6166 SD_SHARE_PKG_RESOURCES | \
6167 SD_NUMA | \
6168 SD_ASYM_PACKING | \
6169 SD_SHARE_POWERDOMAIN)
6170
6171 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,int cpu)6172 sd_init(struct sched_domain_topology_level *tl, int cpu)
6173 {
6174 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6175 int sd_weight, sd_flags = 0;
6176
6177 #ifdef CONFIG_NUMA
6178 /*
6179 * Ugly hack to pass state to sd_numa_mask()...
6180 */
6181 sched_domains_curr_level = tl->numa_level;
6182 #endif
6183
6184 sd_weight = cpumask_weight(tl->mask(cpu));
6185
6186 if (tl->sd_flags)
6187 sd_flags = (*tl->sd_flags)();
6188 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6189 "wrong sd_flags in topology description\n"))
6190 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6191
6192 *sd = (struct sched_domain){
6193 .min_interval = sd_weight,
6194 .max_interval = 2*sd_weight,
6195 .busy_factor = 32,
6196 .imbalance_pct = 125,
6197
6198 .cache_nice_tries = 0,
6199 .busy_idx = 0,
6200 .idle_idx = 0,
6201 .newidle_idx = 0,
6202 .wake_idx = 0,
6203 .forkexec_idx = 0,
6204
6205 .flags = 1*SD_LOAD_BALANCE
6206 | 1*SD_BALANCE_NEWIDLE
6207 | 1*SD_BALANCE_EXEC
6208 | 1*SD_BALANCE_FORK
6209 | 0*SD_BALANCE_WAKE
6210 | 1*SD_WAKE_AFFINE
6211 | 0*SD_SHARE_CPUCAPACITY
6212 | 0*SD_SHARE_PKG_RESOURCES
6213 | 0*SD_SERIALIZE
6214 | 0*SD_PREFER_SIBLING
6215 | 0*SD_NUMA
6216 | sd_flags
6217 ,
6218
6219 .last_balance = jiffies,
6220 .balance_interval = sd_weight,
6221 .smt_gain = 0,
6222 .max_newidle_lb_cost = 0,
6223 .next_decay_max_lb_cost = jiffies,
6224 #ifdef CONFIG_SCHED_DEBUG
6225 .name = tl->name,
6226 #endif
6227 };
6228
6229 /*
6230 * Convert topological properties into behaviour.
6231 */
6232
6233 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6234 sd->flags |= SD_PREFER_SIBLING;
6235 sd->imbalance_pct = 110;
6236 sd->smt_gain = 1178; /* ~15% */
6237
6238 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6239 sd->imbalance_pct = 117;
6240 sd->cache_nice_tries = 1;
6241 sd->busy_idx = 2;
6242
6243 #ifdef CONFIG_NUMA
6244 } else if (sd->flags & SD_NUMA) {
6245 sd->cache_nice_tries = 2;
6246 sd->busy_idx = 3;
6247 sd->idle_idx = 2;
6248
6249 sd->flags |= SD_SERIALIZE;
6250 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6251 sd->flags &= ~(SD_BALANCE_EXEC |
6252 SD_BALANCE_FORK |
6253 SD_WAKE_AFFINE);
6254 }
6255
6256 #endif
6257 } else {
6258 sd->flags |= SD_PREFER_SIBLING;
6259 sd->cache_nice_tries = 1;
6260 sd->busy_idx = 2;
6261 sd->idle_idx = 1;
6262 }
6263
6264 sd->private = &tl->data;
6265
6266 return sd;
6267 }
6268
6269 /*
6270 * Topology list, bottom-up.
6271 */
6272 static struct sched_domain_topology_level default_topology[] = {
6273 #ifdef CONFIG_SCHED_SMT
6274 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6275 #endif
6276 #ifdef CONFIG_SCHED_MC
6277 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6278 #endif
6279 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6280 { NULL, },
6281 };
6282
6283 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6284
6285 #define for_each_sd_topology(tl) \
6286 for (tl = sched_domain_topology; tl->mask; tl++)
6287
set_sched_topology(struct sched_domain_topology_level * tl)6288 void set_sched_topology(struct sched_domain_topology_level *tl)
6289 {
6290 sched_domain_topology = tl;
6291 }
6292
6293 #ifdef CONFIG_NUMA
6294
sd_numa_mask(int cpu)6295 static const struct cpumask *sd_numa_mask(int cpu)
6296 {
6297 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6298 }
6299
sched_numa_warn(const char * str)6300 static void sched_numa_warn(const char *str)
6301 {
6302 static int done = false;
6303 int i,j;
6304
6305 if (done)
6306 return;
6307
6308 done = true;
6309
6310 printk(KERN_WARNING "ERROR: %s\n\n", str);
6311
6312 for (i = 0; i < nr_node_ids; i++) {
6313 printk(KERN_WARNING " ");
6314 for (j = 0; j < nr_node_ids; j++)
6315 printk(KERN_CONT "%02d ", node_distance(i,j));
6316 printk(KERN_CONT "\n");
6317 }
6318 printk(KERN_WARNING "\n");
6319 }
6320
find_numa_distance(int distance)6321 bool find_numa_distance(int distance)
6322 {
6323 int i;
6324
6325 if (distance == node_distance(0, 0))
6326 return true;
6327
6328 for (i = 0; i < sched_domains_numa_levels; i++) {
6329 if (sched_domains_numa_distance[i] == distance)
6330 return true;
6331 }
6332
6333 return false;
6334 }
6335
6336 /*
6337 * A system can have three types of NUMA topology:
6338 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6339 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6340 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6341 *
6342 * The difference between a glueless mesh topology and a backplane
6343 * topology lies in whether communication between not directly
6344 * connected nodes goes through intermediary nodes (where programs
6345 * could run), or through backplane controllers. This affects
6346 * placement of programs.
6347 *
6348 * The type of topology can be discerned with the following tests:
6349 * - If the maximum distance between any nodes is 1 hop, the system
6350 * is directly connected.
6351 * - If for two nodes A and B, located N > 1 hops away from each other,
6352 * there is an intermediary node C, which is < N hops away from both
6353 * nodes A and B, the system is a glueless mesh.
6354 */
init_numa_topology_type(void)6355 static void init_numa_topology_type(void)
6356 {
6357 int a, b, c, n;
6358
6359 n = sched_max_numa_distance;
6360
6361 if (n <= 1)
6362 sched_numa_topology_type = NUMA_DIRECT;
6363
6364 for_each_online_node(a) {
6365 for_each_online_node(b) {
6366 /* Find two nodes furthest removed from each other. */
6367 if (node_distance(a, b) < n)
6368 continue;
6369
6370 /* Is there an intermediary node between a and b? */
6371 for_each_online_node(c) {
6372 if (node_distance(a, c) < n &&
6373 node_distance(b, c) < n) {
6374 sched_numa_topology_type =
6375 NUMA_GLUELESS_MESH;
6376 return;
6377 }
6378 }
6379
6380 sched_numa_topology_type = NUMA_BACKPLANE;
6381 return;
6382 }
6383 }
6384 }
6385
sched_init_numa(void)6386 static void sched_init_numa(void)
6387 {
6388 int next_distance, curr_distance = node_distance(0, 0);
6389 struct sched_domain_topology_level *tl;
6390 int level = 0;
6391 int i, j, k;
6392
6393 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6394 if (!sched_domains_numa_distance)
6395 return;
6396
6397 /*
6398 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6399 * unique distances in the node_distance() table.
6400 *
6401 * Assumes node_distance(0,j) includes all distances in
6402 * node_distance(i,j) in order to avoid cubic time.
6403 */
6404 next_distance = curr_distance;
6405 for (i = 0; i < nr_node_ids; i++) {
6406 for (j = 0; j < nr_node_ids; j++) {
6407 for (k = 0; k < nr_node_ids; k++) {
6408 int distance = node_distance(i, k);
6409
6410 if (distance > curr_distance &&
6411 (distance < next_distance ||
6412 next_distance == curr_distance))
6413 next_distance = distance;
6414
6415 /*
6416 * While not a strong assumption it would be nice to know
6417 * about cases where if node A is connected to B, B is not
6418 * equally connected to A.
6419 */
6420 if (sched_debug() && node_distance(k, i) != distance)
6421 sched_numa_warn("Node-distance not symmetric");
6422
6423 if (sched_debug() && i && !find_numa_distance(distance))
6424 sched_numa_warn("Node-0 not representative");
6425 }
6426 if (next_distance != curr_distance) {
6427 sched_domains_numa_distance[level++] = next_distance;
6428 sched_domains_numa_levels = level;
6429 curr_distance = next_distance;
6430 } else break;
6431 }
6432
6433 /*
6434 * In case of sched_debug() we verify the above assumption.
6435 */
6436 if (!sched_debug())
6437 break;
6438 }
6439
6440 if (!level)
6441 return;
6442
6443 /*
6444 * 'level' contains the number of unique distances, excluding the
6445 * identity distance node_distance(i,i).
6446 *
6447 * The sched_domains_numa_distance[] array includes the actual distance
6448 * numbers.
6449 */
6450
6451 /*
6452 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6453 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6454 * the array will contain less then 'level' members. This could be
6455 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6456 * in other functions.
6457 *
6458 * We reset it to 'level' at the end of this function.
6459 */
6460 sched_domains_numa_levels = 0;
6461
6462 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6463 if (!sched_domains_numa_masks)
6464 return;
6465
6466 /*
6467 * Now for each level, construct a mask per node which contains all
6468 * cpus of nodes that are that many hops away from us.
6469 */
6470 for (i = 0; i < level; i++) {
6471 sched_domains_numa_masks[i] =
6472 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6473 if (!sched_domains_numa_masks[i])
6474 return;
6475
6476 for (j = 0; j < nr_node_ids; j++) {
6477 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6478 if (!mask)
6479 return;
6480
6481 sched_domains_numa_masks[i][j] = mask;
6482
6483 for_each_node(k) {
6484 if (node_distance(j, k) > sched_domains_numa_distance[i])
6485 continue;
6486
6487 cpumask_or(mask, mask, cpumask_of_node(k));
6488 }
6489 }
6490 }
6491
6492 /* Compute default topology size */
6493 for (i = 0; sched_domain_topology[i].mask; i++);
6494
6495 tl = kzalloc((i + level + 1) *
6496 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6497 if (!tl)
6498 return;
6499
6500 /*
6501 * Copy the default topology bits..
6502 */
6503 for (i = 0; sched_domain_topology[i].mask; i++)
6504 tl[i] = sched_domain_topology[i];
6505
6506 /*
6507 * .. and append 'j' levels of NUMA goodness.
6508 */
6509 for (j = 0; j < level; i++, j++) {
6510 tl[i] = (struct sched_domain_topology_level){
6511 .mask = sd_numa_mask,
6512 .sd_flags = cpu_numa_flags,
6513 .flags = SDTL_OVERLAP,
6514 .numa_level = j,
6515 SD_INIT_NAME(NUMA)
6516 };
6517 }
6518
6519 sched_domain_topology = tl;
6520
6521 sched_domains_numa_levels = level;
6522 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6523
6524 init_numa_topology_type();
6525 }
6526
sched_domains_numa_masks_set(int cpu)6527 static void sched_domains_numa_masks_set(int cpu)
6528 {
6529 int i, j;
6530 int node = cpu_to_node(cpu);
6531
6532 for (i = 0; i < sched_domains_numa_levels; i++) {
6533 for (j = 0; j < nr_node_ids; j++) {
6534 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6535 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6536 }
6537 }
6538 }
6539
sched_domains_numa_masks_clear(int cpu)6540 static void sched_domains_numa_masks_clear(int cpu)
6541 {
6542 int i, j;
6543 for (i = 0; i < sched_domains_numa_levels; i++) {
6544 for (j = 0; j < nr_node_ids; j++)
6545 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6546 }
6547 }
6548
6549 /*
6550 * Update sched_domains_numa_masks[level][node] array when new cpus
6551 * are onlined.
6552 */
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)6553 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6554 unsigned long action,
6555 void *hcpu)
6556 {
6557 int cpu = (long)hcpu;
6558
6559 switch (action & ~CPU_TASKS_FROZEN) {
6560 case CPU_ONLINE:
6561 sched_domains_numa_masks_set(cpu);
6562 break;
6563
6564 case CPU_DEAD:
6565 sched_domains_numa_masks_clear(cpu);
6566 break;
6567
6568 default:
6569 return NOTIFY_DONE;
6570 }
6571
6572 return NOTIFY_OK;
6573 }
6574 #else
sched_init_numa(void)6575 static inline void sched_init_numa(void)
6576 {
6577 }
6578
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)6579 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6580 unsigned long action,
6581 void *hcpu)
6582 {
6583 return 0;
6584 }
6585 #endif /* CONFIG_NUMA */
6586
__sdt_alloc(const struct cpumask * cpu_map)6587 static int __sdt_alloc(const struct cpumask *cpu_map)
6588 {
6589 struct sched_domain_topology_level *tl;
6590 int j;
6591
6592 for_each_sd_topology(tl) {
6593 struct sd_data *sdd = &tl->data;
6594
6595 sdd->sd = alloc_percpu(struct sched_domain *);
6596 if (!sdd->sd)
6597 return -ENOMEM;
6598
6599 sdd->sg = alloc_percpu(struct sched_group *);
6600 if (!sdd->sg)
6601 return -ENOMEM;
6602
6603 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6604 if (!sdd->sgc)
6605 return -ENOMEM;
6606
6607 for_each_cpu(j, cpu_map) {
6608 struct sched_domain *sd;
6609 struct sched_group *sg;
6610 struct sched_group_capacity *sgc;
6611
6612 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6613 GFP_KERNEL, cpu_to_node(j));
6614 if (!sd)
6615 return -ENOMEM;
6616
6617 *per_cpu_ptr(sdd->sd, j) = sd;
6618
6619 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6620 GFP_KERNEL, cpu_to_node(j));
6621 if (!sg)
6622 return -ENOMEM;
6623
6624 sg->next = sg;
6625
6626 *per_cpu_ptr(sdd->sg, j) = sg;
6627
6628 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6629 GFP_KERNEL, cpu_to_node(j));
6630 if (!sgc)
6631 return -ENOMEM;
6632
6633 *per_cpu_ptr(sdd->sgc, j) = sgc;
6634 }
6635 }
6636
6637 return 0;
6638 }
6639
__sdt_free(const struct cpumask * cpu_map)6640 static void __sdt_free(const struct cpumask *cpu_map)
6641 {
6642 struct sched_domain_topology_level *tl;
6643 int j;
6644
6645 for_each_sd_topology(tl) {
6646 struct sd_data *sdd = &tl->data;
6647
6648 for_each_cpu(j, cpu_map) {
6649 struct sched_domain *sd;
6650
6651 if (sdd->sd) {
6652 sd = *per_cpu_ptr(sdd->sd, j);
6653 if (sd && (sd->flags & SD_OVERLAP))
6654 free_sched_groups(sd->groups, 0);
6655 kfree(*per_cpu_ptr(sdd->sd, j));
6656 }
6657
6658 if (sdd->sg)
6659 kfree(*per_cpu_ptr(sdd->sg, j));
6660 if (sdd->sgc)
6661 kfree(*per_cpu_ptr(sdd->sgc, j));
6662 }
6663 free_percpu(sdd->sd);
6664 sdd->sd = NULL;
6665 free_percpu(sdd->sg);
6666 sdd->sg = NULL;
6667 free_percpu(sdd->sgc);
6668 sdd->sgc = NULL;
6669 }
6670 }
6671
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)6672 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6673 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6674 struct sched_domain *child, int cpu)
6675 {
6676 struct sched_domain *sd = sd_init(tl, cpu);
6677 if (!sd)
6678 return child;
6679
6680 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6681 if (child) {
6682 sd->level = child->level + 1;
6683 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6684 child->parent = sd;
6685 sd->child = child;
6686
6687 if (!cpumask_subset(sched_domain_span(child),
6688 sched_domain_span(sd))) {
6689 pr_err("BUG: arch topology borken\n");
6690 #ifdef CONFIG_SCHED_DEBUG
6691 pr_err(" the %s domain not a subset of the %s domain\n",
6692 child->name, sd->name);
6693 #endif
6694 /* Fixup, ensure @sd has at least @child cpus. */
6695 cpumask_or(sched_domain_span(sd),
6696 sched_domain_span(sd),
6697 sched_domain_span(child));
6698 }
6699
6700 }
6701 set_domain_attribute(sd, attr);
6702
6703 return sd;
6704 }
6705
6706 /*
6707 * Build sched domains for a given set of cpus and attach the sched domains
6708 * to the individual cpus
6709 */
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)6710 static int build_sched_domains(const struct cpumask *cpu_map,
6711 struct sched_domain_attr *attr)
6712 {
6713 enum s_alloc alloc_state;
6714 struct sched_domain *sd;
6715 struct s_data d;
6716 int i, ret = -ENOMEM;
6717
6718 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6719 if (alloc_state != sa_rootdomain)
6720 goto error;
6721
6722 /* Set up domains for cpus specified by the cpu_map. */
6723 for_each_cpu(i, cpu_map) {
6724 struct sched_domain_topology_level *tl;
6725
6726 sd = NULL;
6727 for_each_sd_topology(tl) {
6728 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6729 if (tl == sched_domain_topology)
6730 *per_cpu_ptr(d.sd, i) = sd;
6731 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6732 sd->flags |= SD_OVERLAP;
6733 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6734 break;
6735 }
6736 }
6737
6738 /* Build the groups for the domains */
6739 for_each_cpu(i, cpu_map) {
6740 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6741 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6742 if (sd->flags & SD_OVERLAP) {
6743 if (build_overlap_sched_groups(sd, i))
6744 goto error;
6745 } else {
6746 if (build_sched_groups(sd, i))
6747 goto error;
6748 }
6749 }
6750 }
6751
6752 /* Calculate CPU capacity for physical packages and nodes */
6753 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6754 if (!cpumask_test_cpu(i, cpu_map))
6755 continue;
6756
6757 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6758 claim_allocations(i, sd);
6759 init_sched_groups_capacity(i, sd);
6760 }
6761 }
6762
6763 /* Attach the domains */
6764 rcu_read_lock();
6765 for_each_cpu(i, cpu_map) {
6766 sd = *per_cpu_ptr(d.sd, i);
6767 cpu_attach_domain(sd, d.rd, i);
6768 }
6769 rcu_read_unlock();
6770
6771 ret = 0;
6772 error:
6773 __free_domain_allocs(&d, alloc_state, cpu_map);
6774 return ret;
6775 }
6776
6777 static cpumask_var_t *doms_cur; /* current sched domains */
6778 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6779 static struct sched_domain_attr *dattr_cur;
6780 /* attribues of custom domains in 'doms_cur' */
6781
6782 /*
6783 * Special case: If a kmalloc of a doms_cur partition (array of
6784 * cpumask) fails, then fallback to a single sched domain,
6785 * as determined by the single cpumask fallback_doms.
6786 */
6787 static cpumask_var_t fallback_doms;
6788
6789 /*
6790 * arch_update_cpu_topology lets virtualized architectures update the
6791 * cpu core maps. It is supposed to return 1 if the topology changed
6792 * or 0 if it stayed the same.
6793 */
arch_update_cpu_topology(void)6794 int __weak arch_update_cpu_topology(void)
6795 {
6796 return 0;
6797 }
6798
alloc_sched_domains(unsigned int ndoms)6799 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6800 {
6801 int i;
6802 cpumask_var_t *doms;
6803
6804 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6805 if (!doms)
6806 return NULL;
6807 for (i = 0; i < ndoms; i++) {
6808 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6809 free_sched_domains(doms, i);
6810 return NULL;
6811 }
6812 }
6813 return doms;
6814 }
6815
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)6816 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6817 {
6818 unsigned int i;
6819 for (i = 0; i < ndoms; i++)
6820 free_cpumask_var(doms[i]);
6821 kfree(doms);
6822 }
6823
6824 /*
6825 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6826 * For now this just excludes isolated cpus, but could be used to
6827 * exclude other special cases in the future.
6828 */
init_sched_domains(const struct cpumask * cpu_map)6829 static int init_sched_domains(const struct cpumask *cpu_map)
6830 {
6831 int err;
6832
6833 arch_update_cpu_topology();
6834 ndoms_cur = 1;
6835 doms_cur = alloc_sched_domains(ndoms_cur);
6836 if (!doms_cur)
6837 doms_cur = &fallback_doms;
6838 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6839 err = build_sched_domains(doms_cur[0], NULL);
6840 register_sched_domain_sysctl();
6841
6842 return err;
6843 }
6844
6845 /*
6846 * Detach sched domains from a group of cpus specified in cpu_map
6847 * These cpus will now be attached to the NULL domain
6848 */
detach_destroy_domains(const struct cpumask * cpu_map)6849 static void detach_destroy_domains(const struct cpumask *cpu_map)
6850 {
6851 int i;
6852
6853 rcu_read_lock();
6854 for_each_cpu(i, cpu_map)
6855 cpu_attach_domain(NULL, &def_root_domain, i);
6856 rcu_read_unlock();
6857 }
6858
6859 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)6860 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6861 struct sched_domain_attr *new, int idx_new)
6862 {
6863 struct sched_domain_attr tmp;
6864
6865 /* fast path */
6866 if (!new && !cur)
6867 return 1;
6868
6869 tmp = SD_ATTR_INIT;
6870 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6871 new ? (new + idx_new) : &tmp,
6872 sizeof(struct sched_domain_attr));
6873 }
6874
6875 /*
6876 * Partition sched domains as specified by the 'ndoms_new'
6877 * cpumasks in the array doms_new[] of cpumasks. This compares
6878 * doms_new[] to the current sched domain partitioning, doms_cur[].
6879 * It destroys each deleted domain and builds each new domain.
6880 *
6881 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6882 * The masks don't intersect (don't overlap.) We should setup one
6883 * sched domain for each mask. CPUs not in any of the cpumasks will
6884 * not be load balanced. If the same cpumask appears both in the
6885 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6886 * it as it is.
6887 *
6888 * The passed in 'doms_new' should be allocated using
6889 * alloc_sched_domains. This routine takes ownership of it and will
6890 * free_sched_domains it when done with it. If the caller failed the
6891 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6892 * and partition_sched_domains() will fallback to the single partition
6893 * 'fallback_doms', it also forces the domains to be rebuilt.
6894 *
6895 * If doms_new == NULL it will be replaced with cpu_online_mask.
6896 * ndoms_new == 0 is a special case for destroying existing domains,
6897 * and it will not create the default domain.
6898 *
6899 * Call with hotplug lock held
6900 */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)6901 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6902 struct sched_domain_attr *dattr_new)
6903 {
6904 int i, j, n;
6905 int new_topology;
6906
6907 mutex_lock(&sched_domains_mutex);
6908
6909 /* always unregister in case we don't destroy any domains */
6910 unregister_sched_domain_sysctl();
6911
6912 /* Let architecture update cpu core mappings. */
6913 new_topology = arch_update_cpu_topology();
6914
6915 n = doms_new ? ndoms_new : 0;
6916
6917 /* Destroy deleted domains */
6918 for (i = 0; i < ndoms_cur; i++) {
6919 for (j = 0; j < n && !new_topology; j++) {
6920 if (cpumask_equal(doms_cur[i], doms_new[j])
6921 && dattrs_equal(dattr_cur, i, dattr_new, j))
6922 goto match1;
6923 }
6924 /* no match - a current sched domain not in new doms_new[] */
6925 detach_destroy_domains(doms_cur[i]);
6926 match1:
6927 ;
6928 }
6929
6930 n = ndoms_cur;
6931 if (doms_new == NULL) {
6932 n = 0;
6933 doms_new = &fallback_doms;
6934 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6935 WARN_ON_ONCE(dattr_new);
6936 }
6937
6938 /* Build new domains */
6939 for (i = 0; i < ndoms_new; i++) {
6940 for (j = 0; j < n && !new_topology; j++) {
6941 if (cpumask_equal(doms_new[i], doms_cur[j])
6942 && dattrs_equal(dattr_new, i, dattr_cur, j))
6943 goto match2;
6944 }
6945 /* no match - add a new doms_new */
6946 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6947 match2:
6948 ;
6949 }
6950
6951 /* Remember the new sched domains */
6952 if (doms_cur != &fallback_doms)
6953 free_sched_domains(doms_cur, ndoms_cur);
6954 kfree(dattr_cur); /* kfree(NULL) is safe */
6955 doms_cur = doms_new;
6956 dattr_cur = dattr_new;
6957 ndoms_cur = ndoms_new;
6958
6959 register_sched_domain_sysctl();
6960
6961 mutex_unlock(&sched_domains_mutex);
6962 }
6963
6964 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6965
6966 /*
6967 * Update cpusets according to cpu_active mask. If cpusets are
6968 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6969 * around partition_sched_domains().
6970 *
6971 * If we come here as part of a suspend/resume, don't touch cpusets because we
6972 * want to restore it back to its original state upon resume anyway.
6973 */
cpuset_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)6974 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6975 void *hcpu)
6976 {
6977 switch (action) {
6978 case CPU_ONLINE_FROZEN:
6979 case CPU_DOWN_FAILED_FROZEN:
6980
6981 /*
6982 * num_cpus_frozen tracks how many CPUs are involved in suspend
6983 * resume sequence. As long as this is not the last online
6984 * operation in the resume sequence, just build a single sched
6985 * domain, ignoring cpusets.
6986 */
6987 num_cpus_frozen--;
6988 if (likely(num_cpus_frozen)) {
6989 partition_sched_domains(1, NULL, NULL);
6990 break;
6991 }
6992
6993 /*
6994 * This is the last CPU online operation. So fall through and
6995 * restore the original sched domains by considering the
6996 * cpuset configurations.
6997 */
6998
6999 case CPU_ONLINE:
7000 cpuset_update_active_cpus(true);
7001 break;
7002 default:
7003 return NOTIFY_DONE;
7004 }
7005 return NOTIFY_OK;
7006 }
7007
cpuset_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)7008 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7009 void *hcpu)
7010 {
7011 unsigned long flags;
7012 long cpu = (long)hcpu;
7013 struct dl_bw *dl_b;
7014 bool overflow;
7015 int cpus;
7016
7017 switch (action) {
7018 case CPU_DOWN_PREPARE:
7019 rcu_read_lock_sched();
7020 dl_b = dl_bw_of(cpu);
7021
7022 raw_spin_lock_irqsave(&dl_b->lock, flags);
7023 cpus = dl_bw_cpus(cpu);
7024 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7025 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7026
7027 rcu_read_unlock_sched();
7028
7029 if (overflow)
7030 return notifier_from_errno(-EBUSY);
7031 cpuset_update_active_cpus(false);
7032 break;
7033 case CPU_DOWN_PREPARE_FROZEN:
7034 num_cpus_frozen++;
7035 partition_sched_domains(1, NULL, NULL);
7036 break;
7037 default:
7038 return NOTIFY_DONE;
7039 }
7040 return NOTIFY_OK;
7041 }
7042
sched_init_smp(void)7043 void __init sched_init_smp(void)
7044 {
7045 cpumask_var_t non_isolated_cpus;
7046
7047 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7048 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7049
7050 sched_init_numa();
7051
7052 /*
7053 * There's no userspace yet to cause hotplug operations; hence all the
7054 * cpu masks are stable and all blatant races in the below code cannot
7055 * happen.
7056 */
7057 mutex_lock(&sched_domains_mutex);
7058 init_sched_domains(cpu_active_mask);
7059 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7060 if (cpumask_empty(non_isolated_cpus))
7061 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7062 mutex_unlock(&sched_domains_mutex);
7063
7064 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7065 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7066 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7067
7068 init_hrtick();
7069
7070 /* Move init over to a non-isolated CPU */
7071 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7072 BUG();
7073 sched_init_granularity();
7074 free_cpumask_var(non_isolated_cpus);
7075
7076 init_sched_rt_class();
7077 init_sched_dl_class();
7078 }
7079 #else
sched_init_smp(void)7080 void __init sched_init_smp(void)
7081 {
7082 sched_init_granularity();
7083 }
7084 #endif /* CONFIG_SMP */
7085
7086 const_debug unsigned int sysctl_timer_migration = 1;
7087
in_sched_functions(unsigned long addr)7088 int in_sched_functions(unsigned long addr)
7089 {
7090 return in_lock_functions(addr) ||
7091 (addr >= (unsigned long)__sched_text_start
7092 && addr < (unsigned long)__sched_text_end);
7093 }
7094
7095 #ifdef CONFIG_CGROUP_SCHED
7096 /*
7097 * Default task group.
7098 * Every task in system belongs to this group at bootup.
7099 */
7100 struct task_group root_task_group;
7101 LIST_HEAD(task_groups);
7102 #endif
7103
7104 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7105
sched_init(void)7106 void __init sched_init(void)
7107 {
7108 int i, j;
7109 unsigned long alloc_size = 0, ptr;
7110
7111 #ifdef CONFIG_FAIR_GROUP_SCHED
7112 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7113 #endif
7114 #ifdef CONFIG_RT_GROUP_SCHED
7115 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7116 #endif
7117 if (alloc_size) {
7118 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7119
7120 #ifdef CONFIG_FAIR_GROUP_SCHED
7121 root_task_group.se = (struct sched_entity **)ptr;
7122 ptr += nr_cpu_ids * sizeof(void **);
7123
7124 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7125 ptr += nr_cpu_ids * sizeof(void **);
7126
7127 #endif /* CONFIG_FAIR_GROUP_SCHED */
7128 #ifdef CONFIG_RT_GROUP_SCHED
7129 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7130 ptr += nr_cpu_ids * sizeof(void **);
7131
7132 root_task_group.rt_rq = (struct rt_rq **)ptr;
7133 ptr += nr_cpu_ids * sizeof(void **);
7134
7135 #endif /* CONFIG_RT_GROUP_SCHED */
7136 }
7137 #ifdef CONFIG_CPUMASK_OFFSTACK
7138 for_each_possible_cpu(i) {
7139 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7140 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7141 }
7142 #endif /* CONFIG_CPUMASK_OFFSTACK */
7143
7144 init_rt_bandwidth(&def_rt_bandwidth,
7145 global_rt_period(), global_rt_runtime());
7146 init_dl_bandwidth(&def_dl_bandwidth,
7147 global_rt_period(), global_rt_runtime());
7148
7149 #ifdef CONFIG_SMP
7150 init_defrootdomain();
7151 #endif
7152
7153 #ifdef CONFIG_RT_GROUP_SCHED
7154 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7155 global_rt_period(), global_rt_runtime());
7156 #endif /* CONFIG_RT_GROUP_SCHED */
7157
7158 #ifdef CONFIG_CGROUP_SCHED
7159 list_add(&root_task_group.list, &task_groups);
7160 INIT_LIST_HEAD(&root_task_group.children);
7161 INIT_LIST_HEAD(&root_task_group.siblings);
7162 autogroup_init(&init_task);
7163
7164 #endif /* CONFIG_CGROUP_SCHED */
7165
7166 for_each_possible_cpu(i) {
7167 struct rq *rq;
7168
7169 rq = cpu_rq(i);
7170 raw_spin_lock_init(&rq->lock);
7171 rq->nr_running = 0;
7172 rq->calc_load_active = 0;
7173 rq->calc_load_update = jiffies + LOAD_FREQ;
7174 init_cfs_rq(&rq->cfs);
7175 init_rt_rq(&rq->rt);
7176 init_dl_rq(&rq->dl);
7177 #ifdef CONFIG_FAIR_GROUP_SCHED
7178 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7179 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7180 /*
7181 * How much cpu bandwidth does root_task_group get?
7182 *
7183 * In case of task-groups formed thr' the cgroup filesystem, it
7184 * gets 100% of the cpu resources in the system. This overall
7185 * system cpu resource is divided among the tasks of
7186 * root_task_group and its child task-groups in a fair manner,
7187 * based on each entity's (task or task-group's) weight
7188 * (se->load.weight).
7189 *
7190 * In other words, if root_task_group has 10 tasks of weight
7191 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7192 * then A0's share of the cpu resource is:
7193 *
7194 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7195 *
7196 * We achieve this by letting root_task_group's tasks sit
7197 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7198 */
7199 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7200 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7201 #endif /* CONFIG_FAIR_GROUP_SCHED */
7202
7203 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7204 #ifdef CONFIG_RT_GROUP_SCHED
7205 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7206 #endif
7207
7208 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7209 rq->cpu_load[j] = 0;
7210
7211 rq->last_load_update_tick = jiffies;
7212
7213 #ifdef CONFIG_SMP
7214 rq->sd = NULL;
7215 rq->rd = NULL;
7216 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7217 rq->post_schedule = 0;
7218 rq->active_balance = 0;
7219 rq->next_balance = jiffies;
7220 rq->push_cpu = 0;
7221 rq->cpu = i;
7222 rq->online = 0;
7223 rq->idle_stamp = 0;
7224 rq->avg_idle = 2*sysctl_sched_migration_cost;
7225 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7226
7227 INIT_LIST_HEAD(&rq->cfs_tasks);
7228
7229 rq_attach_root(rq, &def_root_domain);
7230 #ifdef CONFIG_NO_HZ_COMMON
7231 rq->nohz_flags = 0;
7232 #endif
7233 #ifdef CONFIG_NO_HZ_FULL
7234 rq->last_sched_tick = 0;
7235 #endif
7236 #endif
7237 init_rq_hrtick(rq);
7238 atomic_set(&rq->nr_iowait, 0);
7239 }
7240
7241 set_load_weight(&init_task);
7242
7243 #ifdef CONFIG_PREEMPT_NOTIFIERS
7244 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7245 #endif
7246
7247 /*
7248 * The boot idle thread does lazy MMU switching as well:
7249 */
7250 atomic_inc(&init_mm.mm_count);
7251 enter_lazy_tlb(&init_mm, current);
7252
7253 /*
7254 * During early bootup we pretend to be a normal task:
7255 */
7256 current->sched_class = &fair_sched_class;
7257
7258 /*
7259 * Make us the idle thread. Technically, schedule() should not be
7260 * called from this thread, however somewhere below it might be,
7261 * but because we are the idle thread, we just pick up running again
7262 * when this runqueue becomes "idle".
7263 */
7264 init_idle(current, smp_processor_id());
7265
7266 calc_load_update = jiffies + LOAD_FREQ;
7267
7268 #ifdef CONFIG_SMP
7269 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7270 /* May be allocated at isolcpus cmdline parse time */
7271 if (cpu_isolated_map == NULL)
7272 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7273 idle_thread_set_boot_cpu();
7274 set_cpu_rq_start_time();
7275 #endif
7276 init_sched_fair_class();
7277
7278 scheduler_running = 1;
7279 }
7280
7281 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7282 static inline int preempt_count_equals(int preempt_offset)
7283 {
7284 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7285
7286 return (nested == preempt_offset);
7287 }
7288
__might_sleep(const char * file,int line,int preempt_offset)7289 void __might_sleep(const char *file, int line, int preempt_offset)
7290 {
7291 /*
7292 * Blocking primitives will set (and therefore destroy) current->state,
7293 * since we will exit with TASK_RUNNING make sure we enter with it,
7294 * otherwise we will destroy state.
7295 */
7296 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7297 "do not call blocking ops when !TASK_RUNNING; "
7298 "state=%lx set at [<%p>] %pS\n",
7299 current->state,
7300 (void *)current->task_state_change,
7301 (void *)current->task_state_change);
7302
7303 ___might_sleep(file, line, preempt_offset);
7304 }
7305 EXPORT_SYMBOL(__might_sleep);
7306
___might_sleep(const char * file,int line,int preempt_offset)7307 void ___might_sleep(const char *file, int line, int preempt_offset)
7308 {
7309 static unsigned long prev_jiffy; /* ratelimiting */
7310
7311 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7312 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7313 !is_idle_task(current)) ||
7314 system_state != SYSTEM_RUNNING || oops_in_progress)
7315 return;
7316 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7317 return;
7318 prev_jiffy = jiffies;
7319
7320 printk(KERN_ERR
7321 "BUG: sleeping function called from invalid context at %s:%d\n",
7322 file, line);
7323 printk(KERN_ERR
7324 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7325 in_atomic(), irqs_disabled(),
7326 current->pid, current->comm);
7327
7328 if (task_stack_end_corrupted(current))
7329 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7330
7331 debug_show_held_locks(current);
7332 if (irqs_disabled())
7333 print_irqtrace_events(current);
7334 #ifdef CONFIG_DEBUG_PREEMPT
7335 if (!preempt_count_equals(preempt_offset)) {
7336 pr_err("Preemption disabled at:");
7337 print_ip_sym(current->preempt_disable_ip);
7338 pr_cont("\n");
7339 }
7340 #endif
7341 dump_stack();
7342 }
7343 EXPORT_SYMBOL(___might_sleep);
7344 #endif
7345
7346 #ifdef CONFIG_MAGIC_SYSRQ
normalize_task(struct rq * rq,struct task_struct * p)7347 static void normalize_task(struct rq *rq, struct task_struct *p)
7348 {
7349 const struct sched_class *prev_class = p->sched_class;
7350 struct sched_attr attr = {
7351 .sched_policy = SCHED_NORMAL,
7352 };
7353 int old_prio = p->prio;
7354 int queued;
7355
7356 queued = task_on_rq_queued(p);
7357 if (queued)
7358 dequeue_task(rq, p, 0);
7359 __setscheduler(rq, p, &attr, false);
7360 if (queued) {
7361 enqueue_task(rq, p, 0);
7362 resched_curr(rq);
7363 }
7364
7365 check_class_changed(rq, p, prev_class, old_prio);
7366 }
7367
normalize_rt_tasks(void)7368 void normalize_rt_tasks(void)
7369 {
7370 struct task_struct *g, *p;
7371 unsigned long flags;
7372 struct rq *rq;
7373
7374 read_lock(&tasklist_lock);
7375 for_each_process_thread(g, p) {
7376 /*
7377 * Only normalize user tasks:
7378 */
7379 if (p->flags & PF_KTHREAD)
7380 continue;
7381
7382 p->se.exec_start = 0;
7383 #ifdef CONFIG_SCHEDSTATS
7384 p->se.statistics.wait_start = 0;
7385 p->se.statistics.sleep_start = 0;
7386 p->se.statistics.block_start = 0;
7387 #endif
7388
7389 if (!dl_task(p) && !rt_task(p)) {
7390 /*
7391 * Renice negative nice level userspace
7392 * tasks back to 0:
7393 */
7394 if (task_nice(p) < 0)
7395 set_user_nice(p, 0);
7396 continue;
7397 }
7398
7399 rq = task_rq_lock(p, &flags);
7400 normalize_task(rq, p);
7401 task_rq_unlock(rq, p, &flags);
7402 }
7403 read_unlock(&tasklist_lock);
7404 }
7405
7406 #endif /* CONFIG_MAGIC_SYSRQ */
7407
7408 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7409 /*
7410 * These functions are only useful for the IA64 MCA handling, or kdb.
7411 *
7412 * They can only be called when the whole system has been
7413 * stopped - every CPU needs to be quiescent, and no scheduling
7414 * activity can take place. Using them for anything else would
7415 * be a serious bug, and as a result, they aren't even visible
7416 * under any other configuration.
7417 */
7418
7419 /**
7420 * curr_task - return the current task for a given cpu.
7421 * @cpu: the processor in question.
7422 *
7423 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7424 *
7425 * Return: The current task for @cpu.
7426 */
curr_task(int cpu)7427 struct task_struct *curr_task(int cpu)
7428 {
7429 return cpu_curr(cpu);
7430 }
7431
7432 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7433
7434 #ifdef CONFIG_IA64
7435 /**
7436 * set_curr_task - set the current task for a given cpu.
7437 * @cpu: the processor in question.
7438 * @p: the task pointer to set.
7439 *
7440 * Description: This function must only be used when non-maskable interrupts
7441 * are serviced on a separate stack. It allows the architecture to switch the
7442 * notion of the current task on a cpu in a non-blocking manner. This function
7443 * must be called with all CPU's synchronized, and interrupts disabled, the
7444 * and caller must save the original value of the current task (see
7445 * curr_task() above) and restore that value before reenabling interrupts and
7446 * re-starting the system.
7447 *
7448 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7449 */
set_curr_task(int cpu,struct task_struct * p)7450 void set_curr_task(int cpu, struct task_struct *p)
7451 {
7452 cpu_curr(cpu) = p;
7453 }
7454
7455 #endif
7456
7457 #ifdef CONFIG_CGROUP_SCHED
7458 /* task_group_lock serializes the addition/removal of task groups */
7459 static DEFINE_SPINLOCK(task_group_lock);
7460
free_sched_group(struct task_group * tg)7461 static void free_sched_group(struct task_group *tg)
7462 {
7463 free_fair_sched_group(tg);
7464 free_rt_sched_group(tg);
7465 autogroup_free(tg);
7466 kfree(tg);
7467 }
7468
7469 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)7470 struct task_group *sched_create_group(struct task_group *parent)
7471 {
7472 struct task_group *tg;
7473
7474 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7475 if (!tg)
7476 return ERR_PTR(-ENOMEM);
7477
7478 if (!alloc_fair_sched_group(tg, parent))
7479 goto err;
7480
7481 if (!alloc_rt_sched_group(tg, parent))
7482 goto err;
7483
7484 return tg;
7485
7486 err:
7487 free_sched_group(tg);
7488 return ERR_PTR(-ENOMEM);
7489 }
7490
sched_online_group(struct task_group * tg,struct task_group * parent)7491 void sched_online_group(struct task_group *tg, struct task_group *parent)
7492 {
7493 unsigned long flags;
7494
7495 spin_lock_irqsave(&task_group_lock, flags);
7496 list_add_rcu(&tg->list, &task_groups);
7497
7498 WARN_ON(!parent); /* root should already exist */
7499
7500 tg->parent = parent;
7501 INIT_LIST_HEAD(&tg->children);
7502 list_add_rcu(&tg->siblings, &parent->children);
7503 spin_unlock_irqrestore(&task_group_lock, flags);
7504 }
7505
7506 /* rcu callback to free various structures associated with a task group */
free_sched_group_rcu(struct rcu_head * rhp)7507 static void free_sched_group_rcu(struct rcu_head *rhp)
7508 {
7509 /* now it should be safe to free those cfs_rqs */
7510 free_sched_group(container_of(rhp, struct task_group, rcu));
7511 }
7512
7513 /* Destroy runqueue etc associated with a task group */
sched_destroy_group(struct task_group * tg)7514 void sched_destroy_group(struct task_group *tg)
7515 {
7516 /* wait for possible concurrent references to cfs_rqs complete */
7517 call_rcu(&tg->rcu, free_sched_group_rcu);
7518 }
7519
sched_offline_group(struct task_group * tg)7520 void sched_offline_group(struct task_group *tg)
7521 {
7522 unsigned long flags;
7523 int i;
7524
7525 /* end participation in shares distribution */
7526 for_each_possible_cpu(i)
7527 unregister_fair_sched_group(tg, i);
7528
7529 spin_lock_irqsave(&task_group_lock, flags);
7530 list_del_rcu(&tg->list);
7531 list_del_rcu(&tg->siblings);
7532 spin_unlock_irqrestore(&task_group_lock, flags);
7533 }
7534
7535 /* change task's runqueue when it moves between groups.
7536 * The caller of this function should have put the task in its new group
7537 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7538 * reflect its new group.
7539 */
sched_move_task(struct task_struct * tsk)7540 void sched_move_task(struct task_struct *tsk)
7541 {
7542 struct task_group *tg;
7543 int queued, running;
7544 unsigned long flags;
7545 struct rq *rq;
7546
7547 rq = task_rq_lock(tsk, &flags);
7548
7549 running = task_current(rq, tsk);
7550 queued = task_on_rq_queued(tsk);
7551
7552 if (queued)
7553 dequeue_task(rq, tsk, 0);
7554 if (unlikely(running))
7555 put_prev_task(rq, tsk);
7556
7557 /*
7558 * All callers are synchronized by task_rq_lock(); we do not use RCU
7559 * which is pointless here. Thus, we pass "true" to task_css_check()
7560 * to prevent lockdep warnings.
7561 */
7562 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7563 struct task_group, css);
7564 tg = autogroup_task_group(tsk, tg);
7565 tsk->sched_task_group = tg;
7566
7567 #ifdef CONFIG_FAIR_GROUP_SCHED
7568 if (tsk->sched_class->task_move_group)
7569 tsk->sched_class->task_move_group(tsk, queued);
7570 else
7571 #endif
7572 set_task_rq(tsk, task_cpu(tsk));
7573
7574 if (unlikely(running))
7575 tsk->sched_class->set_curr_task(rq);
7576 if (queued)
7577 enqueue_task(rq, tsk, 0);
7578
7579 task_rq_unlock(rq, tsk, &flags);
7580 }
7581 #endif /* CONFIG_CGROUP_SCHED */
7582
7583 #ifdef CONFIG_RT_GROUP_SCHED
7584 /*
7585 * Ensure that the real time constraints are schedulable.
7586 */
7587 static DEFINE_MUTEX(rt_constraints_mutex);
7588
7589 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)7590 static inline int tg_has_rt_tasks(struct task_group *tg)
7591 {
7592 struct task_struct *g, *p;
7593
7594 /*
7595 * Autogroups do not have RT tasks; see autogroup_create().
7596 */
7597 if (task_group_is_autogroup(tg))
7598 return 0;
7599
7600 for_each_process_thread(g, p) {
7601 if (rt_task(p) && task_group(p) == tg)
7602 return 1;
7603 }
7604
7605 return 0;
7606 }
7607
7608 struct rt_schedulable_data {
7609 struct task_group *tg;
7610 u64 rt_period;
7611 u64 rt_runtime;
7612 };
7613
tg_rt_schedulable(struct task_group * tg,void * data)7614 static int tg_rt_schedulable(struct task_group *tg, void *data)
7615 {
7616 struct rt_schedulable_data *d = data;
7617 struct task_group *child;
7618 unsigned long total, sum = 0;
7619 u64 period, runtime;
7620
7621 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7622 runtime = tg->rt_bandwidth.rt_runtime;
7623
7624 if (tg == d->tg) {
7625 period = d->rt_period;
7626 runtime = d->rt_runtime;
7627 }
7628
7629 /*
7630 * Cannot have more runtime than the period.
7631 */
7632 if (runtime > period && runtime != RUNTIME_INF)
7633 return -EINVAL;
7634
7635 /*
7636 * Ensure we don't starve existing RT tasks.
7637 */
7638 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7639 return -EBUSY;
7640
7641 total = to_ratio(period, runtime);
7642
7643 /*
7644 * Nobody can have more than the global setting allows.
7645 */
7646 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7647 return -EINVAL;
7648
7649 /*
7650 * The sum of our children's runtime should not exceed our own.
7651 */
7652 list_for_each_entry_rcu(child, &tg->children, siblings) {
7653 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7654 runtime = child->rt_bandwidth.rt_runtime;
7655
7656 if (child == d->tg) {
7657 period = d->rt_period;
7658 runtime = d->rt_runtime;
7659 }
7660
7661 sum += to_ratio(period, runtime);
7662 }
7663
7664 if (sum > total)
7665 return -EINVAL;
7666
7667 return 0;
7668 }
7669
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)7670 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7671 {
7672 int ret;
7673
7674 struct rt_schedulable_data data = {
7675 .tg = tg,
7676 .rt_period = period,
7677 .rt_runtime = runtime,
7678 };
7679
7680 rcu_read_lock();
7681 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7682 rcu_read_unlock();
7683
7684 return ret;
7685 }
7686
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)7687 static int tg_set_rt_bandwidth(struct task_group *tg,
7688 u64 rt_period, u64 rt_runtime)
7689 {
7690 int i, err = 0;
7691
7692 /*
7693 * Disallowing the root group RT runtime is BAD, it would disallow the
7694 * kernel creating (and or operating) RT threads.
7695 */
7696 if (tg == &root_task_group && rt_runtime == 0)
7697 return -EINVAL;
7698
7699 /* No period doesn't make any sense. */
7700 if (rt_period == 0)
7701 return -EINVAL;
7702
7703 mutex_lock(&rt_constraints_mutex);
7704 read_lock(&tasklist_lock);
7705 err = __rt_schedulable(tg, rt_period, rt_runtime);
7706 if (err)
7707 goto unlock;
7708
7709 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7710 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7711 tg->rt_bandwidth.rt_runtime = rt_runtime;
7712
7713 for_each_possible_cpu(i) {
7714 struct rt_rq *rt_rq = tg->rt_rq[i];
7715
7716 raw_spin_lock(&rt_rq->rt_runtime_lock);
7717 rt_rq->rt_runtime = rt_runtime;
7718 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7719 }
7720 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7721 unlock:
7722 read_unlock(&tasklist_lock);
7723 mutex_unlock(&rt_constraints_mutex);
7724
7725 return err;
7726 }
7727
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)7728 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7729 {
7730 u64 rt_runtime, rt_period;
7731
7732 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7733 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7734 if (rt_runtime_us < 0)
7735 rt_runtime = RUNTIME_INF;
7736
7737 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7738 }
7739
sched_group_rt_runtime(struct task_group * tg)7740 static long sched_group_rt_runtime(struct task_group *tg)
7741 {
7742 u64 rt_runtime_us;
7743
7744 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7745 return -1;
7746
7747 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7748 do_div(rt_runtime_us, NSEC_PER_USEC);
7749 return rt_runtime_us;
7750 }
7751
sched_group_set_rt_period(struct task_group * tg,long rt_period_us)7752 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7753 {
7754 u64 rt_runtime, rt_period;
7755
7756 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7757 rt_runtime = tg->rt_bandwidth.rt_runtime;
7758
7759 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7760 }
7761
sched_group_rt_period(struct task_group * tg)7762 static long sched_group_rt_period(struct task_group *tg)
7763 {
7764 u64 rt_period_us;
7765
7766 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7767 do_div(rt_period_us, NSEC_PER_USEC);
7768 return rt_period_us;
7769 }
7770 #endif /* CONFIG_RT_GROUP_SCHED */
7771
7772 #ifdef CONFIG_RT_GROUP_SCHED
sched_rt_global_constraints(void)7773 static int sched_rt_global_constraints(void)
7774 {
7775 int ret = 0;
7776
7777 mutex_lock(&rt_constraints_mutex);
7778 read_lock(&tasklist_lock);
7779 ret = __rt_schedulable(NULL, 0, 0);
7780 read_unlock(&tasklist_lock);
7781 mutex_unlock(&rt_constraints_mutex);
7782
7783 return ret;
7784 }
7785
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)7786 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7787 {
7788 /* Don't accept realtime tasks when there is no way for them to run */
7789 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7790 return 0;
7791
7792 return 1;
7793 }
7794
7795 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)7796 static int sched_rt_global_constraints(void)
7797 {
7798 unsigned long flags;
7799 int i, ret = 0;
7800
7801 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7802 for_each_possible_cpu(i) {
7803 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7804
7805 raw_spin_lock(&rt_rq->rt_runtime_lock);
7806 rt_rq->rt_runtime = global_rt_runtime();
7807 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7808 }
7809 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7810
7811 return ret;
7812 }
7813 #endif /* CONFIG_RT_GROUP_SCHED */
7814
sched_dl_global_validate(void)7815 static int sched_dl_global_validate(void)
7816 {
7817 u64 runtime = global_rt_runtime();
7818 u64 period = global_rt_period();
7819 u64 new_bw = to_ratio(period, runtime);
7820 struct dl_bw *dl_b;
7821 int cpu, ret = 0;
7822 unsigned long flags;
7823
7824 /*
7825 * Here we want to check the bandwidth not being set to some
7826 * value smaller than the currently allocated bandwidth in
7827 * any of the root_domains.
7828 *
7829 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7830 * cycling on root_domains... Discussion on different/better
7831 * solutions is welcome!
7832 */
7833 for_each_possible_cpu(cpu) {
7834 rcu_read_lock_sched();
7835 dl_b = dl_bw_of(cpu);
7836
7837 raw_spin_lock_irqsave(&dl_b->lock, flags);
7838 if (new_bw < dl_b->total_bw)
7839 ret = -EBUSY;
7840 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7841
7842 rcu_read_unlock_sched();
7843
7844 if (ret)
7845 break;
7846 }
7847
7848 return ret;
7849 }
7850
sched_dl_do_global(void)7851 static void sched_dl_do_global(void)
7852 {
7853 u64 new_bw = -1;
7854 struct dl_bw *dl_b;
7855 int cpu;
7856 unsigned long flags;
7857
7858 def_dl_bandwidth.dl_period = global_rt_period();
7859 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7860
7861 if (global_rt_runtime() != RUNTIME_INF)
7862 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7863
7864 /*
7865 * FIXME: As above...
7866 */
7867 for_each_possible_cpu(cpu) {
7868 rcu_read_lock_sched();
7869 dl_b = dl_bw_of(cpu);
7870
7871 raw_spin_lock_irqsave(&dl_b->lock, flags);
7872 dl_b->bw = new_bw;
7873 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7874
7875 rcu_read_unlock_sched();
7876 }
7877 }
7878
sched_rt_global_validate(void)7879 static int sched_rt_global_validate(void)
7880 {
7881 if (sysctl_sched_rt_period <= 0)
7882 return -EINVAL;
7883
7884 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7885 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7886 return -EINVAL;
7887
7888 return 0;
7889 }
7890
sched_rt_do_global(void)7891 static void sched_rt_do_global(void)
7892 {
7893 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7894 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7895 }
7896
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)7897 int sched_rt_handler(struct ctl_table *table, int write,
7898 void __user *buffer, size_t *lenp,
7899 loff_t *ppos)
7900 {
7901 int old_period, old_runtime;
7902 static DEFINE_MUTEX(mutex);
7903 int ret;
7904
7905 mutex_lock(&mutex);
7906 old_period = sysctl_sched_rt_period;
7907 old_runtime = sysctl_sched_rt_runtime;
7908
7909 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7910
7911 if (!ret && write) {
7912 ret = sched_rt_global_validate();
7913 if (ret)
7914 goto undo;
7915
7916 ret = sched_dl_global_validate();
7917 if (ret)
7918 goto undo;
7919
7920 ret = sched_rt_global_constraints();
7921 if (ret)
7922 goto undo;
7923
7924 sched_rt_do_global();
7925 sched_dl_do_global();
7926 }
7927 if (0) {
7928 undo:
7929 sysctl_sched_rt_period = old_period;
7930 sysctl_sched_rt_runtime = old_runtime;
7931 }
7932 mutex_unlock(&mutex);
7933
7934 return ret;
7935 }
7936
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)7937 int sched_rr_handler(struct ctl_table *table, int write,
7938 void __user *buffer, size_t *lenp,
7939 loff_t *ppos)
7940 {
7941 int ret;
7942 static DEFINE_MUTEX(mutex);
7943
7944 mutex_lock(&mutex);
7945 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7946 /* make sure that internally we keep jiffies */
7947 /* also, writing zero resets timeslice to default */
7948 if (!ret && write) {
7949 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7950 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7951 }
7952 mutex_unlock(&mutex);
7953 return ret;
7954 }
7955
7956 #ifdef CONFIG_CGROUP_SCHED
7957
css_tg(struct cgroup_subsys_state * css)7958 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7959 {
7960 return css ? container_of(css, struct task_group, css) : NULL;
7961 }
7962
7963 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)7964 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7965 {
7966 struct task_group *parent = css_tg(parent_css);
7967 struct task_group *tg;
7968
7969 if (!parent) {
7970 /* This is early initialization for the top cgroup */
7971 return &root_task_group.css;
7972 }
7973
7974 tg = sched_create_group(parent);
7975 if (IS_ERR(tg))
7976 return ERR_PTR(-ENOMEM);
7977
7978 return &tg->css;
7979 }
7980
cpu_cgroup_css_online(struct cgroup_subsys_state * css)7981 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7982 {
7983 struct task_group *tg = css_tg(css);
7984 struct task_group *parent = css_tg(css->parent);
7985
7986 if (parent)
7987 sched_online_group(tg, parent);
7988 return 0;
7989 }
7990
cpu_cgroup_css_free(struct cgroup_subsys_state * css)7991 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7992 {
7993 struct task_group *tg = css_tg(css);
7994
7995 sched_destroy_group(tg);
7996 }
7997
cpu_cgroup_css_offline(struct cgroup_subsys_state * css)7998 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7999 {
8000 struct task_group *tg = css_tg(css);
8001
8002 sched_offline_group(tg);
8003 }
8004
cpu_cgroup_fork(struct task_struct * task)8005 static void cpu_cgroup_fork(struct task_struct *task)
8006 {
8007 sched_move_task(task);
8008 }
8009
cpu_cgroup_can_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)8010 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8011 struct cgroup_taskset *tset)
8012 {
8013 struct task_struct *task;
8014
8015 cgroup_taskset_for_each(task, tset) {
8016 #ifdef CONFIG_RT_GROUP_SCHED
8017 if (!sched_rt_can_attach(css_tg(css), task))
8018 return -EINVAL;
8019 #else
8020 /* We don't support RT-tasks being in separate groups */
8021 if (task->sched_class != &fair_sched_class)
8022 return -EINVAL;
8023 #endif
8024 }
8025 return 0;
8026 }
8027
cpu_cgroup_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)8028 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8029 struct cgroup_taskset *tset)
8030 {
8031 struct task_struct *task;
8032
8033 cgroup_taskset_for_each(task, tset)
8034 sched_move_task(task);
8035 }
8036
cpu_cgroup_exit(struct cgroup_subsys_state * css,struct cgroup_subsys_state * old_css,struct task_struct * task)8037 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8038 struct cgroup_subsys_state *old_css,
8039 struct task_struct *task)
8040 {
8041 /*
8042 * cgroup_exit() is called in the copy_process() failure path.
8043 * Ignore this case since the task hasn't ran yet, this avoids
8044 * trying to poke a half freed task state from generic code.
8045 */
8046 if (!(task->flags & PF_EXITING))
8047 return;
8048
8049 sched_move_task(task);
8050 }
8051
8052 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8053 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8054 struct cftype *cftype, u64 shareval)
8055 {
8056 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8057 }
8058
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8059 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8060 struct cftype *cft)
8061 {
8062 struct task_group *tg = css_tg(css);
8063
8064 return (u64) scale_load_down(tg->shares);
8065 }
8066
8067 #ifdef CONFIG_CFS_BANDWIDTH
8068 static DEFINE_MUTEX(cfs_constraints_mutex);
8069
8070 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8071 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8072
8073 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8074
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8075 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8076 {
8077 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8078 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8079
8080 if (tg == &root_task_group)
8081 return -EINVAL;
8082
8083 /*
8084 * Ensure we have at some amount of bandwidth every period. This is
8085 * to prevent reaching a state of large arrears when throttled via
8086 * entity_tick() resulting in prolonged exit starvation.
8087 */
8088 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8089 return -EINVAL;
8090
8091 /*
8092 * Likewise, bound things on the otherside by preventing insane quota
8093 * periods. This also allows us to normalize in computing quota
8094 * feasibility.
8095 */
8096 if (period > max_cfs_quota_period)
8097 return -EINVAL;
8098
8099 /*
8100 * Prevent race between setting of cfs_rq->runtime_enabled and
8101 * unthrottle_offline_cfs_rqs().
8102 */
8103 get_online_cpus();
8104 mutex_lock(&cfs_constraints_mutex);
8105 ret = __cfs_schedulable(tg, period, quota);
8106 if (ret)
8107 goto out_unlock;
8108
8109 runtime_enabled = quota != RUNTIME_INF;
8110 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8111 /*
8112 * If we need to toggle cfs_bandwidth_used, off->on must occur
8113 * before making related changes, and on->off must occur afterwards
8114 */
8115 if (runtime_enabled && !runtime_was_enabled)
8116 cfs_bandwidth_usage_inc();
8117 raw_spin_lock_irq(&cfs_b->lock);
8118 cfs_b->period = ns_to_ktime(period);
8119 cfs_b->quota = quota;
8120
8121 __refill_cfs_bandwidth_runtime(cfs_b);
8122 /* restart the period timer (if active) to handle new period expiry */
8123 if (runtime_enabled && cfs_b->timer_active) {
8124 /* force a reprogram */
8125 __start_cfs_bandwidth(cfs_b, true);
8126 }
8127 raw_spin_unlock_irq(&cfs_b->lock);
8128
8129 for_each_online_cpu(i) {
8130 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8131 struct rq *rq = cfs_rq->rq;
8132
8133 raw_spin_lock_irq(&rq->lock);
8134 cfs_rq->runtime_enabled = runtime_enabled;
8135 cfs_rq->runtime_remaining = 0;
8136
8137 if (cfs_rq->throttled)
8138 unthrottle_cfs_rq(cfs_rq);
8139 raw_spin_unlock_irq(&rq->lock);
8140 }
8141 if (runtime_was_enabled && !runtime_enabled)
8142 cfs_bandwidth_usage_dec();
8143 out_unlock:
8144 mutex_unlock(&cfs_constraints_mutex);
8145 put_online_cpus();
8146
8147 return ret;
8148 }
8149
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8150 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8151 {
8152 u64 quota, period;
8153
8154 period = ktime_to_ns(tg->cfs_bandwidth.period);
8155 if (cfs_quota_us < 0)
8156 quota = RUNTIME_INF;
8157 else
8158 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8159
8160 return tg_set_cfs_bandwidth(tg, period, quota);
8161 }
8162
tg_get_cfs_quota(struct task_group * tg)8163 long tg_get_cfs_quota(struct task_group *tg)
8164 {
8165 u64 quota_us;
8166
8167 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8168 return -1;
8169
8170 quota_us = tg->cfs_bandwidth.quota;
8171 do_div(quota_us, NSEC_PER_USEC);
8172
8173 return quota_us;
8174 }
8175
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8176 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8177 {
8178 u64 quota, period;
8179
8180 period = (u64)cfs_period_us * NSEC_PER_USEC;
8181 quota = tg->cfs_bandwidth.quota;
8182
8183 return tg_set_cfs_bandwidth(tg, period, quota);
8184 }
8185
tg_get_cfs_period(struct task_group * tg)8186 long tg_get_cfs_period(struct task_group *tg)
8187 {
8188 u64 cfs_period_us;
8189
8190 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8191 do_div(cfs_period_us, NSEC_PER_USEC);
8192
8193 return cfs_period_us;
8194 }
8195
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8196 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8197 struct cftype *cft)
8198 {
8199 return tg_get_cfs_quota(css_tg(css));
8200 }
8201
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8202 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8203 struct cftype *cftype, s64 cfs_quota_us)
8204 {
8205 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8206 }
8207
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8208 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8209 struct cftype *cft)
8210 {
8211 return tg_get_cfs_period(css_tg(css));
8212 }
8213
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8214 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8215 struct cftype *cftype, u64 cfs_period_us)
8216 {
8217 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8218 }
8219
8220 struct cfs_schedulable_data {
8221 struct task_group *tg;
8222 u64 period, quota;
8223 };
8224
8225 /*
8226 * normalize group quota/period to be quota/max_period
8227 * note: units are usecs
8228 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8229 static u64 normalize_cfs_quota(struct task_group *tg,
8230 struct cfs_schedulable_data *d)
8231 {
8232 u64 quota, period;
8233
8234 if (tg == d->tg) {
8235 period = d->period;
8236 quota = d->quota;
8237 } else {
8238 period = tg_get_cfs_period(tg);
8239 quota = tg_get_cfs_quota(tg);
8240 }
8241
8242 /* note: these should typically be equivalent */
8243 if (quota == RUNTIME_INF || quota == -1)
8244 return RUNTIME_INF;
8245
8246 return to_ratio(period, quota);
8247 }
8248
tg_cfs_schedulable_down(struct task_group * tg,void * data)8249 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8250 {
8251 struct cfs_schedulable_data *d = data;
8252 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8253 s64 quota = 0, parent_quota = -1;
8254
8255 if (!tg->parent) {
8256 quota = RUNTIME_INF;
8257 } else {
8258 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8259
8260 quota = normalize_cfs_quota(tg, d);
8261 parent_quota = parent_b->hierarchical_quota;
8262
8263 /*
8264 * ensure max(child_quota) <= parent_quota, inherit when no
8265 * limit is set
8266 */
8267 if (quota == RUNTIME_INF)
8268 quota = parent_quota;
8269 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8270 return -EINVAL;
8271 }
8272 cfs_b->hierarchical_quota = quota;
8273
8274 return 0;
8275 }
8276
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8277 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8278 {
8279 int ret;
8280 struct cfs_schedulable_data data = {
8281 .tg = tg,
8282 .period = period,
8283 .quota = quota,
8284 };
8285
8286 if (quota != RUNTIME_INF) {
8287 do_div(data.period, NSEC_PER_USEC);
8288 do_div(data.quota, NSEC_PER_USEC);
8289 }
8290
8291 rcu_read_lock();
8292 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8293 rcu_read_unlock();
8294
8295 return ret;
8296 }
8297
cpu_stats_show(struct seq_file * sf,void * v)8298 static int cpu_stats_show(struct seq_file *sf, void *v)
8299 {
8300 struct task_group *tg = css_tg(seq_css(sf));
8301 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8302
8303 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8304 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8305 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8306
8307 return 0;
8308 }
8309 #endif /* CONFIG_CFS_BANDWIDTH */
8310 #endif /* CONFIG_FAIR_GROUP_SCHED */
8311
8312 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8313 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8314 struct cftype *cft, s64 val)
8315 {
8316 return sched_group_set_rt_runtime(css_tg(css), val);
8317 }
8318
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8319 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8320 struct cftype *cft)
8321 {
8322 return sched_group_rt_runtime(css_tg(css));
8323 }
8324
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8325 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8326 struct cftype *cftype, u64 rt_period_us)
8327 {
8328 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8329 }
8330
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8331 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8332 struct cftype *cft)
8333 {
8334 return sched_group_rt_period(css_tg(css));
8335 }
8336 #endif /* CONFIG_RT_GROUP_SCHED */
8337
8338 static struct cftype cpu_files[] = {
8339 #ifdef CONFIG_FAIR_GROUP_SCHED
8340 {
8341 .name = "shares",
8342 .read_u64 = cpu_shares_read_u64,
8343 .write_u64 = cpu_shares_write_u64,
8344 },
8345 #endif
8346 #ifdef CONFIG_CFS_BANDWIDTH
8347 {
8348 .name = "cfs_quota_us",
8349 .read_s64 = cpu_cfs_quota_read_s64,
8350 .write_s64 = cpu_cfs_quota_write_s64,
8351 },
8352 {
8353 .name = "cfs_period_us",
8354 .read_u64 = cpu_cfs_period_read_u64,
8355 .write_u64 = cpu_cfs_period_write_u64,
8356 },
8357 {
8358 .name = "stat",
8359 .seq_show = cpu_stats_show,
8360 },
8361 #endif
8362 #ifdef CONFIG_RT_GROUP_SCHED
8363 {
8364 .name = "rt_runtime_us",
8365 .read_s64 = cpu_rt_runtime_read,
8366 .write_s64 = cpu_rt_runtime_write,
8367 },
8368 {
8369 .name = "rt_period_us",
8370 .read_u64 = cpu_rt_period_read_uint,
8371 .write_u64 = cpu_rt_period_write_uint,
8372 },
8373 #endif
8374 { } /* terminate */
8375 };
8376
8377 struct cgroup_subsys cpu_cgrp_subsys = {
8378 .css_alloc = cpu_cgroup_css_alloc,
8379 .css_free = cpu_cgroup_css_free,
8380 .css_online = cpu_cgroup_css_online,
8381 .css_offline = cpu_cgroup_css_offline,
8382 .fork = cpu_cgroup_fork,
8383 .can_attach = cpu_cgroup_can_attach,
8384 .attach = cpu_cgroup_attach,
8385 .exit = cpu_cgroup_exit,
8386 .legacy_cftypes = cpu_files,
8387 .early_init = 1,
8388 };
8389
8390 #endif /* CONFIG_CGROUP_SCHED */
8391
dump_cpu_task(int cpu)8392 void dump_cpu_task(int cpu)
8393 {
8394 pr_info("Task dump for CPU %d:\n", cpu);
8395 sched_show_task(cpu_curr(cpu));
8396 }
8397