1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)115 static void build_data_key(struct dm_thin_device *td,
116 			   dm_block_t b, struct dm_cell_key *key)
117 {
118 	key->virtual = 0;
119 	key->dev = dm_thin_dev_id(td);
120 	key->block_begin = b;
121 	key->block_end = b + 1ULL;
122 }
123 
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)124 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
125 			      struct dm_cell_key *key)
126 {
127 	key->virtual = 1;
128 	key->dev = dm_thin_dev_id(td);
129 	key->block_begin = b;
130 	key->block_end = b + 1ULL;
131 }
132 
133 /*----------------------------------------------------------------*/
134 
135 #define THROTTLE_THRESHOLD (1 * HZ)
136 
137 struct throttle {
138 	struct rw_semaphore lock;
139 	unsigned long threshold;
140 	bool throttle_applied;
141 };
142 
throttle_init(struct throttle * t)143 static void throttle_init(struct throttle *t)
144 {
145 	init_rwsem(&t->lock);
146 	t->throttle_applied = false;
147 }
148 
throttle_work_start(struct throttle * t)149 static void throttle_work_start(struct throttle *t)
150 {
151 	t->threshold = jiffies + THROTTLE_THRESHOLD;
152 }
153 
throttle_work_update(struct throttle * t)154 static void throttle_work_update(struct throttle *t)
155 {
156 	if (!t->throttle_applied && jiffies > t->threshold) {
157 		down_write(&t->lock);
158 		t->throttle_applied = true;
159 	}
160 }
161 
throttle_work_complete(struct throttle * t)162 static void throttle_work_complete(struct throttle *t)
163 {
164 	if (t->throttle_applied) {
165 		t->throttle_applied = false;
166 		up_write(&t->lock);
167 	}
168 }
169 
throttle_lock(struct throttle * t)170 static void throttle_lock(struct throttle *t)
171 {
172 	down_read(&t->lock);
173 }
174 
throttle_unlock(struct throttle * t)175 static void throttle_unlock(struct throttle *t)
176 {
177 	up_read(&t->lock);
178 }
179 
180 /*----------------------------------------------------------------*/
181 
182 /*
183  * A pool device ties together a metadata device and a data device.  It
184  * also provides the interface for creating and destroying internal
185  * devices.
186  */
187 struct dm_thin_new_mapping;
188 
189 /*
190  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
191  */
192 enum pool_mode {
193 	PM_WRITE,		/* metadata may be changed */
194 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
195 	PM_READ_ONLY,		/* metadata may not be changed */
196 	PM_FAIL,		/* all I/O fails */
197 };
198 
199 struct pool_features {
200 	enum pool_mode mode;
201 
202 	bool zero_new_blocks:1;
203 	bool discard_enabled:1;
204 	bool discard_passdown:1;
205 	bool error_if_no_space:1;
206 };
207 
208 struct thin_c;
209 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
210 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
211 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
212 
213 #define CELL_SORT_ARRAY_SIZE 8192
214 
215 struct pool {
216 	struct list_head list;
217 	struct dm_target *ti;	/* Only set if a pool target is bound */
218 
219 	struct mapped_device *pool_md;
220 	struct block_device *md_dev;
221 	struct dm_pool_metadata *pmd;
222 
223 	dm_block_t low_water_blocks;
224 	uint32_t sectors_per_block;
225 	int sectors_per_block_shift;
226 
227 	struct pool_features pf;
228 	bool low_water_triggered:1;	/* A dm event has been sent */
229 	bool suspended:1;
230 
231 	struct dm_bio_prison *prison;
232 	struct dm_kcopyd_client *copier;
233 
234 	struct workqueue_struct *wq;
235 	struct throttle throttle;
236 	struct work_struct worker;
237 	struct delayed_work waker;
238 	struct delayed_work no_space_timeout;
239 
240 	unsigned long last_commit_jiffies;
241 	unsigned ref_count;
242 
243 	spinlock_t lock;
244 	struct bio_list deferred_flush_bios;
245 	struct list_head prepared_mappings;
246 	struct list_head prepared_discards;
247 	struct list_head active_thins;
248 
249 	struct dm_deferred_set *shared_read_ds;
250 	struct dm_deferred_set *all_io_ds;
251 
252 	struct dm_thin_new_mapping *next_mapping;
253 	mempool_t *mapping_pool;
254 
255 	process_bio_fn process_bio;
256 	process_bio_fn process_discard;
257 
258 	process_cell_fn process_cell;
259 	process_cell_fn process_discard_cell;
260 
261 	process_mapping_fn process_prepared_mapping;
262 	process_mapping_fn process_prepared_discard;
263 
264 	struct dm_bio_prison_cell **cell_sort_array;
265 };
266 
267 static enum pool_mode get_pool_mode(struct pool *pool);
268 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
269 
270 /*
271  * Target context for a pool.
272  */
273 struct pool_c {
274 	struct dm_target *ti;
275 	struct pool *pool;
276 	struct dm_dev *data_dev;
277 	struct dm_dev *metadata_dev;
278 	struct dm_target_callbacks callbacks;
279 
280 	dm_block_t low_water_blocks;
281 	struct pool_features requested_pf; /* Features requested during table load */
282 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
283 };
284 
285 /*
286  * Target context for a thin.
287  */
288 struct thin_c {
289 	struct list_head list;
290 	struct dm_dev *pool_dev;
291 	struct dm_dev *origin_dev;
292 	sector_t origin_size;
293 	dm_thin_id dev_id;
294 
295 	struct pool *pool;
296 	struct dm_thin_device *td;
297 	struct mapped_device *thin_md;
298 
299 	bool requeue_mode:1;
300 	spinlock_t lock;
301 	struct list_head deferred_cells;
302 	struct bio_list deferred_bio_list;
303 	struct bio_list retry_on_resume_list;
304 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
305 
306 	/*
307 	 * Ensures the thin is not destroyed until the worker has finished
308 	 * iterating the active_thins list.
309 	 */
310 	atomic_t refcount;
311 	struct completion can_destroy;
312 };
313 
314 /*----------------------------------------------------------------*/
315 
316 /*
317  * wake_worker() is used when new work is queued and when pool_resume is
318  * ready to continue deferred IO processing.
319  */
wake_worker(struct pool * pool)320 static void wake_worker(struct pool *pool)
321 {
322 	queue_work(pool->wq, &pool->worker);
323 }
324 
325 /*----------------------------------------------------------------*/
326 
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)327 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
328 		      struct dm_bio_prison_cell **cell_result)
329 {
330 	int r;
331 	struct dm_bio_prison_cell *cell_prealloc;
332 
333 	/*
334 	 * Allocate a cell from the prison's mempool.
335 	 * This might block but it can't fail.
336 	 */
337 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
338 
339 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
340 	if (r)
341 		/*
342 		 * We reused an old cell; we can get rid of
343 		 * the new one.
344 		 */
345 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
346 
347 	return r;
348 }
349 
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)350 static void cell_release(struct pool *pool,
351 			 struct dm_bio_prison_cell *cell,
352 			 struct bio_list *bios)
353 {
354 	dm_cell_release(pool->prison, cell, bios);
355 	dm_bio_prison_free_cell(pool->prison, cell);
356 }
357 
cell_visit_release(struct pool * pool,void (* fn)(void *,struct dm_bio_prison_cell *),void * context,struct dm_bio_prison_cell * cell)358 static void cell_visit_release(struct pool *pool,
359 			       void (*fn)(void *, struct dm_bio_prison_cell *),
360 			       void *context,
361 			       struct dm_bio_prison_cell *cell)
362 {
363 	dm_cell_visit_release(pool->prison, fn, context, cell);
364 	dm_bio_prison_free_cell(pool->prison, cell);
365 }
366 
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)367 static void cell_release_no_holder(struct pool *pool,
368 				   struct dm_bio_prison_cell *cell,
369 				   struct bio_list *bios)
370 {
371 	dm_cell_release_no_holder(pool->prison, cell, bios);
372 	dm_bio_prison_free_cell(pool->prison, cell);
373 }
374 
cell_error_with_code(struct pool * pool,struct dm_bio_prison_cell * cell,int error_code)375 static void cell_error_with_code(struct pool *pool,
376 				 struct dm_bio_prison_cell *cell, int error_code)
377 {
378 	dm_cell_error(pool->prison, cell, error_code);
379 	dm_bio_prison_free_cell(pool->prison, cell);
380 }
381 
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)382 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
383 {
384 	cell_error_with_code(pool, cell, -EIO);
385 }
386 
cell_success(struct pool * pool,struct dm_bio_prison_cell * cell)387 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
388 {
389 	cell_error_with_code(pool, cell, 0);
390 }
391 
cell_requeue(struct pool * pool,struct dm_bio_prison_cell * cell)392 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
393 {
394 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
395 }
396 
397 /*----------------------------------------------------------------*/
398 
399 /*
400  * A global list of pools that uses a struct mapped_device as a key.
401  */
402 static struct dm_thin_pool_table {
403 	struct mutex mutex;
404 	struct list_head pools;
405 } dm_thin_pool_table;
406 
pool_table_init(void)407 static void pool_table_init(void)
408 {
409 	mutex_init(&dm_thin_pool_table.mutex);
410 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
411 }
412 
__pool_table_insert(struct pool * pool)413 static void __pool_table_insert(struct pool *pool)
414 {
415 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
416 	list_add(&pool->list, &dm_thin_pool_table.pools);
417 }
418 
__pool_table_remove(struct pool * pool)419 static void __pool_table_remove(struct pool *pool)
420 {
421 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
422 	list_del(&pool->list);
423 }
424 
__pool_table_lookup(struct mapped_device * md)425 static struct pool *__pool_table_lookup(struct mapped_device *md)
426 {
427 	struct pool *pool = NULL, *tmp;
428 
429 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
430 
431 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
432 		if (tmp->pool_md == md) {
433 			pool = tmp;
434 			break;
435 		}
436 	}
437 
438 	return pool;
439 }
440 
__pool_table_lookup_metadata_dev(struct block_device * md_dev)441 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
442 {
443 	struct pool *pool = NULL, *tmp;
444 
445 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
446 
447 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
448 		if (tmp->md_dev == md_dev) {
449 			pool = tmp;
450 			break;
451 		}
452 	}
453 
454 	return pool;
455 }
456 
457 /*----------------------------------------------------------------*/
458 
459 struct dm_thin_endio_hook {
460 	struct thin_c *tc;
461 	struct dm_deferred_entry *shared_read_entry;
462 	struct dm_deferred_entry *all_io_entry;
463 	struct dm_thin_new_mapping *overwrite_mapping;
464 	struct rb_node rb_node;
465 };
466 
__merge_bio_list(struct bio_list * bios,struct bio_list * master)467 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
468 {
469 	bio_list_merge(bios, master);
470 	bio_list_init(master);
471 }
472 
error_bio_list(struct bio_list * bios,int error)473 static void error_bio_list(struct bio_list *bios, int error)
474 {
475 	struct bio *bio;
476 
477 	while ((bio = bio_list_pop(bios)))
478 		bio_endio(bio, error);
479 }
480 
error_thin_bio_list(struct thin_c * tc,struct bio_list * master,int error)481 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
482 {
483 	struct bio_list bios;
484 	unsigned long flags;
485 
486 	bio_list_init(&bios);
487 
488 	spin_lock_irqsave(&tc->lock, flags);
489 	__merge_bio_list(&bios, master);
490 	spin_unlock_irqrestore(&tc->lock, flags);
491 
492 	error_bio_list(&bios, error);
493 }
494 
requeue_deferred_cells(struct thin_c * tc)495 static void requeue_deferred_cells(struct thin_c *tc)
496 {
497 	struct pool *pool = tc->pool;
498 	unsigned long flags;
499 	struct list_head cells;
500 	struct dm_bio_prison_cell *cell, *tmp;
501 
502 	INIT_LIST_HEAD(&cells);
503 
504 	spin_lock_irqsave(&tc->lock, flags);
505 	list_splice_init(&tc->deferred_cells, &cells);
506 	spin_unlock_irqrestore(&tc->lock, flags);
507 
508 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
509 		cell_requeue(pool, cell);
510 }
511 
requeue_io(struct thin_c * tc)512 static void requeue_io(struct thin_c *tc)
513 {
514 	struct bio_list bios;
515 	unsigned long flags;
516 
517 	bio_list_init(&bios);
518 
519 	spin_lock_irqsave(&tc->lock, flags);
520 	__merge_bio_list(&bios, &tc->deferred_bio_list);
521 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
522 	spin_unlock_irqrestore(&tc->lock, flags);
523 
524 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
525 	requeue_deferred_cells(tc);
526 }
527 
error_retry_list(struct pool * pool)528 static void error_retry_list(struct pool *pool)
529 {
530 	struct thin_c *tc;
531 
532 	rcu_read_lock();
533 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
534 		error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
535 	rcu_read_unlock();
536 }
537 
538 /*
539  * This section of code contains the logic for processing a thin device's IO.
540  * Much of the code depends on pool object resources (lists, workqueues, etc)
541  * but most is exclusively called from the thin target rather than the thin-pool
542  * target.
543  */
544 
block_size_is_power_of_two(struct pool * pool)545 static bool block_size_is_power_of_two(struct pool *pool)
546 {
547 	return pool->sectors_per_block_shift >= 0;
548 }
549 
get_bio_block(struct thin_c * tc,struct bio * bio)550 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
551 {
552 	struct pool *pool = tc->pool;
553 	sector_t block_nr = bio->bi_iter.bi_sector;
554 
555 	if (block_size_is_power_of_two(pool))
556 		block_nr >>= pool->sectors_per_block_shift;
557 	else
558 		(void) sector_div(block_nr, pool->sectors_per_block);
559 
560 	return block_nr;
561 }
562 
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)563 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
564 {
565 	struct pool *pool = tc->pool;
566 	sector_t bi_sector = bio->bi_iter.bi_sector;
567 
568 	bio->bi_bdev = tc->pool_dev->bdev;
569 	if (block_size_is_power_of_two(pool))
570 		bio->bi_iter.bi_sector =
571 			(block << pool->sectors_per_block_shift) |
572 			(bi_sector & (pool->sectors_per_block - 1));
573 	else
574 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
575 				 sector_div(bi_sector, pool->sectors_per_block);
576 }
577 
remap_to_origin(struct thin_c * tc,struct bio * bio)578 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
579 {
580 	bio->bi_bdev = tc->origin_dev->bdev;
581 }
582 
bio_triggers_commit(struct thin_c * tc,struct bio * bio)583 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
584 {
585 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
586 		dm_thin_changed_this_transaction(tc->td);
587 }
588 
inc_all_io_entry(struct pool * pool,struct bio * bio)589 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
590 {
591 	struct dm_thin_endio_hook *h;
592 
593 	if (bio->bi_rw & REQ_DISCARD)
594 		return;
595 
596 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
597 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
598 }
599 
issue(struct thin_c * tc,struct bio * bio)600 static void issue(struct thin_c *tc, struct bio *bio)
601 {
602 	struct pool *pool = tc->pool;
603 	unsigned long flags;
604 
605 	if (!bio_triggers_commit(tc, bio)) {
606 		generic_make_request(bio);
607 		return;
608 	}
609 
610 	/*
611 	 * Complete bio with an error if earlier I/O caused changes to
612 	 * the metadata that can't be committed e.g, due to I/O errors
613 	 * on the metadata device.
614 	 */
615 	if (dm_thin_aborted_changes(tc->td)) {
616 		bio_io_error(bio);
617 		return;
618 	}
619 
620 	/*
621 	 * Batch together any bios that trigger commits and then issue a
622 	 * single commit for them in process_deferred_bios().
623 	 */
624 	spin_lock_irqsave(&pool->lock, flags);
625 	bio_list_add(&pool->deferred_flush_bios, bio);
626 	spin_unlock_irqrestore(&pool->lock, flags);
627 }
628 
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)629 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
630 {
631 	remap_to_origin(tc, bio);
632 	issue(tc, bio);
633 }
634 
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)635 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
636 			    dm_block_t block)
637 {
638 	remap(tc, bio, block);
639 	issue(tc, bio);
640 }
641 
642 /*----------------------------------------------------------------*/
643 
644 /*
645  * Bio endio functions.
646  */
647 struct dm_thin_new_mapping {
648 	struct list_head list;
649 
650 	bool pass_discard:1;
651 	bool definitely_not_shared:1;
652 
653 	/*
654 	 * Track quiescing, copying and zeroing preparation actions.  When this
655 	 * counter hits zero the block is prepared and can be inserted into the
656 	 * btree.
657 	 */
658 	atomic_t prepare_actions;
659 
660 	int err;
661 	struct thin_c *tc;
662 	dm_block_t virt_block;
663 	dm_block_t data_block;
664 	struct dm_bio_prison_cell *cell, *cell2;
665 
666 	/*
667 	 * If the bio covers the whole area of a block then we can avoid
668 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
669 	 * still be in the cell, so care has to be taken to avoid issuing
670 	 * the bio twice.
671 	 */
672 	struct bio *bio;
673 	bio_end_io_t *saved_bi_end_io;
674 };
675 
__complete_mapping_preparation(struct dm_thin_new_mapping * m)676 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
677 {
678 	struct pool *pool = m->tc->pool;
679 
680 	if (atomic_dec_and_test(&m->prepare_actions)) {
681 		list_add_tail(&m->list, &pool->prepared_mappings);
682 		wake_worker(pool);
683 	}
684 }
685 
complete_mapping_preparation(struct dm_thin_new_mapping * m)686 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
687 {
688 	unsigned long flags;
689 	struct pool *pool = m->tc->pool;
690 
691 	spin_lock_irqsave(&pool->lock, flags);
692 	__complete_mapping_preparation(m);
693 	spin_unlock_irqrestore(&pool->lock, flags);
694 }
695 
copy_complete(int read_err,unsigned long write_err,void * context)696 static void copy_complete(int read_err, unsigned long write_err, void *context)
697 {
698 	struct dm_thin_new_mapping *m = context;
699 
700 	m->err = read_err || write_err ? -EIO : 0;
701 	complete_mapping_preparation(m);
702 }
703 
overwrite_endio(struct bio * bio,int err)704 static void overwrite_endio(struct bio *bio, int err)
705 {
706 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
707 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
708 
709 	m->err = err;
710 	complete_mapping_preparation(m);
711 }
712 
713 /*----------------------------------------------------------------*/
714 
715 /*
716  * Workqueue.
717  */
718 
719 /*
720  * Prepared mapping jobs.
721  */
722 
723 /*
724  * This sends the bios in the cell, except the original holder, back
725  * to the deferred_bios list.
726  */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)727 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
728 {
729 	struct pool *pool = tc->pool;
730 	unsigned long flags;
731 
732 	spin_lock_irqsave(&tc->lock, flags);
733 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
734 	spin_unlock_irqrestore(&tc->lock, flags);
735 
736 	wake_worker(pool);
737 }
738 
739 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
740 
741 struct remap_info {
742 	struct thin_c *tc;
743 	struct bio_list defer_bios;
744 	struct bio_list issue_bios;
745 };
746 
__inc_remap_and_issue_cell(void * context,struct dm_bio_prison_cell * cell)747 static void __inc_remap_and_issue_cell(void *context,
748 				       struct dm_bio_prison_cell *cell)
749 {
750 	struct remap_info *info = context;
751 	struct bio *bio;
752 
753 	while ((bio = bio_list_pop(&cell->bios))) {
754 		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
755 			bio_list_add(&info->defer_bios, bio);
756 		else {
757 			inc_all_io_entry(info->tc->pool, bio);
758 
759 			/*
760 			 * We can't issue the bios with the bio prison lock
761 			 * held, so we add them to a list to issue on
762 			 * return from this function.
763 			 */
764 			bio_list_add(&info->issue_bios, bio);
765 		}
766 	}
767 }
768 
inc_remap_and_issue_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)769 static void inc_remap_and_issue_cell(struct thin_c *tc,
770 				     struct dm_bio_prison_cell *cell,
771 				     dm_block_t block)
772 {
773 	struct bio *bio;
774 	struct remap_info info;
775 
776 	info.tc = tc;
777 	bio_list_init(&info.defer_bios);
778 	bio_list_init(&info.issue_bios);
779 
780 	/*
781 	 * We have to be careful to inc any bios we're about to issue
782 	 * before the cell is released, and avoid a race with new bios
783 	 * being added to the cell.
784 	 */
785 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
786 			   &info, cell);
787 
788 	while ((bio = bio_list_pop(&info.defer_bios)))
789 		thin_defer_bio(tc, bio);
790 
791 	while ((bio = bio_list_pop(&info.issue_bios)))
792 		remap_and_issue(info.tc, bio, block);
793 }
794 
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)795 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
796 {
797 	if (m->bio) {
798 		m->bio->bi_end_io = m->saved_bi_end_io;
799 		atomic_inc(&m->bio->bi_remaining);
800 	}
801 	cell_error(m->tc->pool, m->cell);
802 	list_del(&m->list);
803 	mempool_free(m, m->tc->pool->mapping_pool);
804 }
805 
process_prepared_mapping(struct dm_thin_new_mapping * m)806 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
807 {
808 	struct thin_c *tc = m->tc;
809 	struct pool *pool = tc->pool;
810 	struct bio *bio;
811 	int r;
812 
813 	bio = m->bio;
814 	if (bio) {
815 		bio->bi_end_io = m->saved_bi_end_io;
816 		atomic_inc(&bio->bi_remaining);
817 	}
818 
819 	if (m->err) {
820 		cell_error(pool, m->cell);
821 		goto out;
822 	}
823 
824 	/*
825 	 * Commit the prepared block into the mapping btree.
826 	 * Any I/O for this block arriving after this point will get
827 	 * remapped to it directly.
828 	 */
829 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
830 	if (r) {
831 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
832 		cell_error(pool, m->cell);
833 		goto out;
834 	}
835 
836 	/*
837 	 * Release any bios held while the block was being provisioned.
838 	 * If we are processing a write bio that completely covers the block,
839 	 * we already processed it so can ignore it now when processing
840 	 * the bios in the cell.
841 	 */
842 	if (bio) {
843 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
844 		bio_endio(bio, 0);
845 	} else {
846 		inc_all_io_entry(tc->pool, m->cell->holder);
847 		remap_and_issue(tc, m->cell->holder, m->data_block);
848 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
849 	}
850 
851 out:
852 	list_del(&m->list);
853 	mempool_free(m, pool->mapping_pool);
854 }
855 
process_prepared_discard_fail(struct dm_thin_new_mapping * m)856 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
857 {
858 	struct thin_c *tc = m->tc;
859 
860 	bio_io_error(m->bio);
861 	cell_defer_no_holder(tc, m->cell);
862 	cell_defer_no_holder(tc, m->cell2);
863 	mempool_free(m, tc->pool->mapping_pool);
864 }
865 
process_prepared_discard_passdown(struct dm_thin_new_mapping * m)866 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
867 {
868 	struct thin_c *tc = m->tc;
869 
870 	inc_all_io_entry(tc->pool, m->bio);
871 	cell_defer_no_holder(tc, m->cell);
872 	cell_defer_no_holder(tc, m->cell2);
873 
874 	if (m->pass_discard)
875 		if (m->definitely_not_shared)
876 			remap_and_issue(tc, m->bio, m->data_block);
877 		else {
878 			bool used = false;
879 			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
880 				bio_endio(m->bio, 0);
881 			else
882 				remap_and_issue(tc, m->bio, m->data_block);
883 		}
884 	else
885 		bio_endio(m->bio, 0);
886 
887 	mempool_free(m, tc->pool->mapping_pool);
888 }
889 
process_prepared_discard(struct dm_thin_new_mapping * m)890 static void process_prepared_discard(struct dm_thin_new_mapping *m)
891 {
892 	int r;
893 	struct thin_c *tc = m->tc;
894 
895 	r = dm_thin_remove_block(tc->td, m->virt_block);
896 	if (r)
897 		DMERR_LIMIT("dm_thin_remove_block() failed");
898 
899 	process_prepared_discard_passdown(m);
900 }
901 
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)902 static void process_prepared(struct pool *pool, struct list_head *head,
903 			     process_mapping_fn *fn)
904 {
905 	unsigned long flags;
906 	struct list_head maps;
907 	struct dm_thin_new_mapping *m, *tmp;
908 
909 	INIT_LIST_HEAD(&maps);
910 	spin_lock_irqsave(&pool->lock, flags);
911 	list_splice_init(head, &maps);
912 	spin_unlock_irqrestore(&pool->lock, flags);
913 
914 	list_for_each_entry_safe(m, tmp, &maps, list)
915 		(*fn)(m);
916 }
917 
918 /*
919  * Deferred bio jobs.
920  */
io_overlaps_block(struct pool * pool,struct bio * bio)921 static int io_overlaps_block(struct pool *pool, struct bio *bio)
922 {
923 	return bio->bi_iter.bi_size ==
924 		(pool->sectors_per_block << SECTOR_SHIFT);
925 }
926 
io_overwrites_block(struct pool * pool,struct bio * bio)927 static int io_overwrites_block(struct pool *pool, struct bio *bio)
928 {
929 	return (bio_data_dir(bio) == WRITE) &&
930 		io_overlaps_block(pool, bio);
931 }
932 
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)933 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
934 			       bio_end_io_t *fn)
935 {
936 	*save = bio->bi_end_io;
937 	bio->bi_end_io = fn;
938 }
939 
ensure_next_mapping(struct pool * pool)940 static int ensure_next_mapping(struct pool *pool)
941 {
942 	if (pool->next_mapping)
943 		return 0;
944 
945 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
946 
947 	return pool->next_mapping ? 0 : -ENOMEM;
948 }
949 
get_next_mapping(struct pool * pool)950 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
951 {
952 	struct dm_thin_new_mapping *m = pool->next_mapping;
953 
954 	BUG_ON(!pool->next_mapping);
955 
956 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
957 	INIT_LIST_HEAD(&m->list);
958 	m->bio = NULL;
959 
960 	pool->next_mapping = NULL;
961 
962 	return m;
963 }
964 
ll_zero(struct thin_c * tc,struct dm_thin_new_mapping * m,sector_t begin,sector_t end)965 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
966 		    sector_t begin, sector_t end)
967 {
968 	int r;
969 	struct dm_io_region to;
970 
971 	to.bdev = tc->pool_dev->bdev;
972 	to.sector = begin;
973 	to.count = end - begin;
974 
975 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
976 	if (r < 0) {
977 		DMERR_LIMIT("dm_kcopyd_zero() failed");
978 		copy_complete(1, 1, m);
979 	}
980 }
981 
remap_and_issue_overwrite(struct thin_c * tc,struct bio * bio,dm_block_t data_block,struct dm_thin_new_mapping * m)982 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
983 				      dm_block_t data_block,
984 				      struct dm_thin_new_mapping *m)
985 {
986 	struct pool *pool = tc->pool;
987 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
988 
989 	h->overwrite_mapping = m;
990 	m->bio = bio;
991 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
992 	inc_all_io_entry(pool, bio);
993 	remap_and_issue(tc, bio, data_block);
994 }
995 
996 /*
997  * A partial copy also needs to zero the uncopied region.
998  */
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio,sector_t len)999 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1000 			  struct dm_dev *origin, dm_block_t data_origin,
1001 			  dm_block_t data_dest,
1002 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1003 			  sector_t len)
1004 {
1005 	int r;
1006 	struct pool *pool = tc->pool;
1007 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1008 
1009 	m->tc = tc;
1010 	m->virt_block = virt_block;
1011 	m->data_block = data_dest;
1012 	m->cell = cell;
1013 
1014 	/*
1015 	 * quiesce action + copy action + an extra reference held for the
1016 	 * duration of this function (we may need to inc later for a
1017 	 * partial zero).
1018 	 */
1019 	atomic_set(&m->prepare_actions, 3);
1020 
1021 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1022 		complete_mapping_preparation(m); /* already quiesced */
1023 
1024 	/*
1025 	 * IO to pool_dev remaps to the pool target's data_dev.
1026 	 *
1027 	 * If the whole block of data is being overwritten, we can issue the
1028 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1029 	 */
1030 	if (io_overwrites_block(pool, bio))
1031 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1032 	else {
1033 		struct dm_io_region from, to;
1034 
1035 		from.bdev = origin->bdev;
1036 		from.sector = data_origin * pool->sectors_per_block;
1037 		from.count = len;
1038 
1039 		to.bdev = tc->pool_dev->bdev;
1040 		to.sector = data_dest * pool->sectors_per_block;
1041 		to.count = len;
1042 
1043 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1044 				   0, copy_complete, m);
1045 		if (r < 0) {
1046 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1047 			copy_complete(1, 1, m);
1048 
1049 			/*
1050 			 * We allow the zero to be issued, to simplify the
1051 			 * error path.  Otherwise we'd need to start
1052 			 * worrying about decrementing the prepare_actions
1053 			 * counter.
1054 			 */
1055 		}
1056 
1057 		/*
1058 		 * Do we need to zero a tail region?
1059 		 */
1060 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1061 			atomic_inc(&m->prepare_actions);
1062 			ll_zero(tc, m,
1063 				data_dest * pool->sectors_per_block + len,
1064 				(data_dest + 1) * pool->sectors_per_block);
1065 		}
1066 	}
1067 
1068 	complete_mapping_preparation(m); /* drop our ref */
1069 }
1070 
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1071 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1072 				   dm_block_t data_origin, dm_block_t data_dest,
1073 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1074 {
1075 	schedule_copy(tc, virt_block, tc->pool_dev,
1076 		      data_origin, data_dest, cell, bio,
1077 		      tc->pool->sectors_per_block);
1078 }
1079 
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)1080 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1081 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1082 			  struct bio *bio)
1083 {
1084 	struct pool *pool = tc->pool;
1085 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1086 
1087 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1088 	m->tc = tc;
1089 	m->virt_block = virt_block;
1090 	m->data_block = data_block;
1091 	m->cell = cell;
1092 
1093 	/*
1094 	 * If the whole block of data is being overwritten or we are not
1095 	 * zeroing pre-existing data, we can issue the bio immediately.
1096 	 * Otherwise we use kcopyd to zero the data first.
1097 	 */
1098 	if (!pool->pf.zero_new_blocks)
1099 		process_prepared_mapping(m);
1100 
1101 	else if (io_overwrites_block(pool, bio))
1102 		remap_and_issue_overwrite(tc, bio, data_block, m);
1103 
1104 	else
1105 		ll_zero(tc, m,
1106 			data_block * pool->sectors_per_block,
1107 			(data_block + 1) * pool->sectors_per_block);
1108 }
1109 
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1110 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1111 				   dm_block_t data_dest,
1112 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1113 {
1114 	struct pool *pool = tc->pool;
1115 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1116 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1117 
1118 	if (virt_block_end <= tc->origin_size)
1119 		schedule_copy(tc, virt_block, tc->origin_dev,
1120 			      virt_block, data_dest, cell, bio,
1121 			      pool->sectors_per_block);
1122 
1123 	else if (virt_block_begin < tc->origin_size)
1124 		schedule_copy(tc, virt_block, tc->origin_dev,
1125 			      virt_block, data_dest, cell, bio,
1126 			      tc->origin_size - virt_block_begin);
1127 
1128 	else
1129 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1130 }
1131 
1132 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1133 
check_for_space(struct pool * pool)1134 static void check_for_space(struct pool *pool)
1135 {
1136 	int r;
1137 	dm_block_t nr_free;
1138 
1139 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1140 		return;
1141 
1142 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1143 	if (r)
1144 		return;
1145 
1146 	if (nr_free)
1147 		set_pool_mode(pool, PM_WRITE);
1148 }
1149 
1150 /*
1151  * A non-zero return indicates read_only or fail_io mode.
1152  * Many callers don't care about the return value.
1153  */
commit(struct pool * pool)1154 static int commit(struct pool *pool)
1155 {
1156 	int r;
1157 
1158 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1159 		return -EINVAL;
1160 
1161 	r = dm_pool_commit_metadata(pool->pmd);
1162 	if (r)
1163 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1164 	else
1165 		check_for_space(pool);
1166 
1167 	return r;
1168 }
1169 
check_low_water_mark(struct pool * pool,dm_block_t free_blocks)1170 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1171 {
1172 	unsigned long flags;
1173 
1174 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1175 		DMWARN("%s: reached low water mark for data device: sending event.",
1176 		       dm_device_name(pool->pool_md));
1177 		spin_lock_irqsave(&pool->lock, flags);
1178 		pool->low_water_triggered = true;
1179 		spin_unlock_irqrestore(&pool->lock, flags);
1180 		dm_table_event(pool->ti->table);
1181 	}
1182 }
1183 
alloc_data_block(struct thin_c * tc,dm_block_t * result)1184 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1185 {
1186 	int r;
1187 	dm_block_t free_blocks;
1188 	struct pool *pool = tc->pool;
1189 
1190 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1191 		return -EINVAL;
1192 
1193 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1194 	if (r) {
1195 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1196 		return r;
1197 	}
1198 
1199 	check_low_water_mark(pool, free_blocks);
1200 
1201 	if (!free_blocks) {
1202 		/*
1203 		 * Try to commit to see if that will free up some
1204 		 * more space.
1205 		 */
1206 		r = commit(pool);
1207 		if (r)
1208 			return r;
1209 
1210 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1211 		if (r) {
1212 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1213 			return r;
1214 		}
1215 
1216 		if (!free_blocks) {
1217 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1218 			return -ENOSPC;
1219 		}
1220 	}
1221 
1222 	r = dm_pool_alloc_data_block(pool->pmd, result);
1223 	if (r) {
1224 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1225 		return r;
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /*
1232  * If we have run out of space, queue bios until the device is
1233  * resumed, presumably after having been reloaded with more space.
1234  */
retry_on_resume(struct bio * bio)1235 static void retry_on_resume(struct bio *bio)
1236 {
1237 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1238 	struct thin_c *tc = h->tc;
1239 	unsigned long flags;
1240 
1241 	spin_lock_irqsave(&tc->lock, flags);
1242 	bio_list_add(&tc->retry_on_resume_list, bio);
1243 	spin_unlock_irqrestore(&tc->lock, flags);
1244 }
1245 
should_error_unserviceable_bio(struct pool * pool)1246 static int should_error_unserviceable_bio(struct pool *pool)
1247 {
1248 	enum pool_mode m = get_pool_mode(pool);
1249 
1250 	switch (m) {
1251 	case PM_WRITE:
1252 		/* Shouldn't get here */
1253 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1254 		return -EIO;
1255 
1256 	case PM_OUT_OF_DATA_SPACE:
1257 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1258 
1259 	case PM_READ_ONLY:
1260 	case PM_FAIL:
1261 		return -EIO;
1262 	default:
1263 		/* Shouldn't get here */
1264 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1265 		return -EIO;
1266 	}
1267 }
1268 
handle_unserviceable_bio(struct pool * pool,struct bio * bio)1269 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1270 {
1271 	int error = should_error_unserviceable_bio(pool);
1272 
1273 	if (error)
1274 		bio_endio(bio, error);
1275 	else
1276 		retry_on_resume(bio);
1277 }
1278 
retry_bios_on_resume(struct pool * pool,struct dm_bio_prison_cell * cell)1279 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1280 {
1281 	struct bio *bio;
1282 	struct bio_list bios;
1283 	int error;
1284 
1285 	error = should_error_unserviceable_bio(pool);
1286 	if (error) {
1287 		cell_error_with_code(pool, cell, error);
1288 		return;
1289 	}
1290 
1291 	bio_list_init(&bios);
1292 	cell_release(pool, cell, &bios);
1293 
1294 	while ((bio = bio_list_pop(&bios)))
1295 		retry_on_resume(bio);
1296 }
1297 
process_discard_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)1298 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1299 {
1300 	int r;
1301 	struct bio *bio = cell->holder;
1302 	struct pool *pool = tc->pool;
1303 	struct dm_bio_prison_cell *cell2;
1304 	struct dm_cell_key key2;
1305 	dm_block_t block = get_bio_block(tc, bio);
1306 	struct dm_thin_lookup_result lookup_result;
1307 	struct dm_thin_new_mapping *m;
1308 
1309 	if (tc->requeue_mode) {
1310 		cell_requeue(pool, cell);
1311 		return;
1312 	}
1313 
1314 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1315 	switch (r) {
1316 	case 0:
1317 		/*
1318 		 * Check nobody is fiddling with this pool block.  This can
1319 		 * happen if someone's in the process of breaking sharing
1320 		 * on this block.
1321 		 */
1322 		build_data_key(tc->td, lookup_result.block, &key2);
1323 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1324 			cell_defer_no_holder(tc, cell);
1325 			break;
1326 		}
1327 
1328 		if (io_overlaps_block(pool, bio)) {
1329 			/*
1330 			 * IO may still be going to the destination block.  We must
1331 			 * quiesce before we can do the removal.
1332 			 */
1333 			m = get_next_mapping(pool);
1334 			m->tc = tc;
1335 			m->pass_discard = pool->pf.discard_passdown;
1336 			m->definitely_not_shared = !lookup_result.shared;
1337 			m->virt_block = block;
1338 			m->data_block = lookup_result.block;
1339 			m->cell = cell;
1340 			m->cell2 = cell2;
1341 			m->bio = bio;
1342 
1343 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1344 				pool->process_prepared_discard(m);
1345 
1346 		} else {
1347 			inc_all_io_entry(pool, bio);
1348 			cell_defer_no_holder(tc, cell);
1349 			cell_defer_no_holder(tc, cell2);
1350 
1351 			/*
1352 			 * The DM core makes sure that the discard doesn't span
1353 			 * a block boundary.  So we submit the discard of a
1354 			 * partial block appropriately.
1355 			 */
1356 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1357 				remap_and_issue(tc, bio, lookup_result.block);
1358 			else
1359 				bio_endio(bio, 0);
1360 		}
1361 		break;
1362 
1363 	case -ENODATA:
1364 		/*
1365 		 * It isn't provisioned, just forget it.
1366 		 */
1367 		cell_defer_no_holder(tc, cell);
1368 		bio_endio(bio, 0);
1369 		break;
1370 
1371 	default:
1372 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1373 			    __func__, r);
1374 		cell_defer_no_holder(tc, cell);
1375 		bio_io_error(bio);
1376 		break;
1377 	}
1378 }
1379 
process_discard_bio(struct thin_c * tc,struct bio * bio)1380 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1381 {
1382 	struct dm_bio_prison_cell *cell;
1383 	struct dm_cell_key key;
1384 	dm_block_t block = get_bio_block(tc, bio);
1385 
1386 	build_virtual_key(tc->td, block, &key);
1387 	if (bio_detain(tc->pool, &key, bio, &cell))
1388 		return;
1389 
1390 	process_discard_cell(tc, cell);
1391 }
1392 
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1393 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1394 			  struct dm_cell_key *key,
1395 			  struct dm_thin_lookup_result *lookup_result,
1396 			  struct dm_bio_prison_cell *cell)
1397 {
1398 	int r;
1399 	dm_block_t data_block;
1400 	struct pool *pool = tc->pool;
1401 
1402 	r = alloc_data_block(tc, &data_block);
1403 	switch (r) {
1404 	case 0:
1405 		schedule_internal_copy(tc, block, lookup_result->block,
1406 				       data_block, cell, bio);
1407 		break;
1408 
1409 	case -ENOSPC:
1410 		retry_bios_on_resume(pool, cell);
1411 		break;
1412 
1413 	default:
1414 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1415 			    __func__, r);
1416 		cell_error(pool, cell);
1417 		break;
1418 	}
1419 }
1420 
__remap_and_issue_shared_cell(void * context,struct dm_bio_prison_cell * cell)1421 static void __remap_and_issue_shared_cell(void *context,
1422 					  struct dm_bio_prison_cell *cell)
1423 {
1424 	struct remap_info *info = context;
1425 	struct bio *bio;
1426 
1427 	while ((bio = bio_list_pop(&cell->bios))) {
1428 		if ((bio_data_dir(bio) == WRITE) ||
1429 		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1430 			bio_list_add(&info->defer_bios, bio);
1431 		else {
1432 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1433 
1434 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1435 			inc_all_io_entry(info->tc->pool, bio);
1436 			bio_list_add(&info->issue_bios, bio);
1437 		}
1438 	}
1439 }
1440 
remap_and_issue_shared_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)1441 static void remap_and_issue_shared_cell(struct thin_c *tc,
1442 					struct dm_bio_prison_cell *cell,
1443 					dm_block_t block)
1444 {
1445 	struct bio *bio;
1446 	struct remap_info info;
1447 
1448 	info.tc = tc;
1449 	bio_list_init(&info.defer_bios);
1450 	bio_list_init(&info.issue_bios);
1451 
1452 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1453 			   &info, cell);
1454 
1455 	while ((bio = bio_list_pop(&info.defer_bios)))
1456 		thin_defer_bio(tc, bio);
1457 
1458 	while ((bio = bio_list_pop(&info.issue_bios)))
1459 		remap_and_issue(tc, bio, block);
1460 }
1461 
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * virt_cell)1462 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1463 			       dm_block_t block,
1464 			       struct dm_thin_lookup_result *lookup_result,
1465 			       struct dm_bio_prison_cell *virt_cell)
1466 {
1467 	struct dm_bio_prison_cell *data_cell;
1468 	struct pool *pool = tc->pool;
1469 	struct dm_cell_key key;
1470 
1471 	/*
1472 	 * If cell is already occupied, then sharing is already in the process
1473 	 * of being broken so we have nothing further to do here.
1474 	 */
1475 	build_data_key(tc->td, lookup_result->block, &key);
1476 	if (bio_detain(pool, &key, bio, &data_cell)) {
1477 		cell_defer_no_holder(tc, virt_cell);
1478 		return;
1479 	}
1480 
1481 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1482 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1483 		cell_defer_no_holder(tc, virt_cell);
1484 	} else {
1485 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1486 
1487 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1488 		inc_all_io_entry(pool, bio);
1489 		remap_and_issue(tc, bio, lookup_result->block);
1490 
1491 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1492 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1493 	}
1494 }
1495 
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1496 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1497 			    struct dm_bio_prison_cell *cell)
1498 {
1499 	int r;
1500 	dm_block_t data_block;
1501 	struct pool *pool = tc->pool;
1502 
1503 	/*
1504 	 * Remap empty bios (flushes) immediately, without provisioning.
1505 	 */
1506 	if (!bio->bi_iter.bi_size) {
1507 		inc_all_io_entry(pool, bio);
1508 		cell_defer_no_holder(tc, cell);
1509 
1510 		remap_and_issue(tc, bio, 0);
1511 		return;
1512 	}
1513 
1514 	/*
1515 	 * Fill read bios with zeroes and complete them immediately.
1516 	 */
1517 	if (bio_data_dir(bio) == READ) {
1518 		zero_fill_bio(bio);
1519 		cell_defer_no_holder(tc, cell);
1520 		bio_endio(bio, 0);
1521 		return;
1522 	}
1523 
1524 	r = alloc_data_block(tc, &data_block);
1525 	switch (r) {
1526 	case 0:
1527 		if (tc->origin_dev)
1528 			schedule_external_copy(tc, block, data_block, cell, bio);
1529 		else
1530 			schedule_zero(tc, block, data_block, cell, bio);
1531 		break;
1532 
1533 	case -ENOSPC:
1534 		retry_bios_on_resume(pool, cell);
1535 		break;
1536 
1537 	default:
1538 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1539 			    __func__, r);
1540 		cell_error(pool, cell);
1541 		break;
1542 	}
1543 }
1544 
process_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)1545 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1546 {
1547 	int r;
1548 	struct pool *pool = tc->pool;
1549 	struct bio *bio = cell->holder;
1550 	dm_block_t block = get_bio_block(tc, bio);
1551 	struct dm_thin_lookup_result lookup_result;
1552 
1553 	if (tc->requeue_mode) {
1554 		cell_requeue(pool, cell);
1555 		return;
1556 	}
1557 
1558 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1559 	switch (r) {
1560 	case 0:
1561 		if (lookup_result.shared)
1562 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1563 		else {
1564 			inc_all_io_entry(pool, bio);
1565 			remap_and_issue(tc, bio, lookup_result.block);
1566 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1567 		}
1568 		break;
1569 
1570 	case -ENODATA:
1571 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1572 			inc_all_io_entry(pool, bio);
1573 			cell_defer_no_holder(tc, cell);
1574 
1575 			if (bio_end_sector(bio) <= tc->origin_size)
1576 				remap_to_origin_and_issue(tc, bio);
1577 
1578 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1579 				zero_fill_bio(bio);
1580 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1581 				remap_to_origin_and_issue(tc, bio);
1582 
1583 			} else {
1584 				zero_fill_bio(bio);
1585 				bio_endio(bio, 0);
1586 			}
1587 		} else
1588 			provision_block(tc, bio, block, cell);
1589 		break;
1590 
1591 	default:
1592 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1593 			    __func__, r);
1594 		cell_defer_no_holder(tc, cell);
1595 		bio_io_error(bio);
1596 		break;
1597 	}
1598 }
1599 
process_bio(struct thin_c * tc,struct bio * bio)1600 static void process_bio(struct thin_c *tc, struct bio *bio)
1601 {
1602 	struct pool *pool = tc->pool;
1603 	dm_block_t block = get_bio_block(tc, bio);
1604 	struct dm_bio_prison_cell *cell;
1605 	struct dm_cell_key key;
1606 
1607 	/*
1608 	 * If cell is already occupied, then the block is already
1609 	 * being provisioned so we have nothing further to do here.
1610 	 */
1611 	build_virtual_key(tc->td, block, &key);
1612 	if (bio_detain(pool, &key, bio, &cell))
1613 		return;
1614 
1615 	process_cell(tc, cell);
1616 }
1617 
__process_bio_read_only(struct thin_c * tc,struct bio * bio,struct dm_bio_prison_cell * cell)1618 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1619 				    struct dm_bio_prison_cell *cell)
1620 {
1621 	int r;
1622 	int rw = bio_data_dir(bio);
1623 	dm_block_t block = get_bio_block(tc, bio);
1624 	struct dm_thin_lookup_result lookup_result;
1625 
1626 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1627 	switch (r) {
1628 	case 0:
1629 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1630 			handle_unserviceable_bio(tc->pool, bio);
1631 			if (cell)
1632 				cell_defer_no_holder(tc, cell);
1633 		} else {
1634 			inc_all_io_entry(tc->pool, bio);
1635 			remap_and_issue(tc, bio, lookup_result.block);
1636 			if (cell)
1637 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1638 		}
1639 		break;
1640 
1641 	case -ENODATA:
1642 		if (cell)
1643 			cell_defer_no_holder(tc, cell);
1644 		if (rw != READ) {
1645 			handle_unserviceable_bio(tc->pool, bio);
1646 			break;
1647 		}
1648 
1649 		if (tc->origin_dev) {
1650 			inc_all_io_entry(tc->pool, bio);
1651 			remap_to_origin_and_issue(tc, bio);
1652 			break;
1653 		}
1654 
1655 		zero_fill_bio(bio);
1656 		bio_endio(bio, 0);
1657 		break;
1658 
1659 	default:
1660 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1661 			    __func__, r);
1662 		if (cell)
1663 			cell_defer_no_holder(tc, cell);
1664 		bio_io_error(bio);
1665 		break;
1666 	}
1667 }
1668 
process_bio_read_only(struct thin_c * tc,struct bio * bio)1669 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1670 {
1671 	__process_bio_read_only(tc, bio, NULL);
1672 }
1673 
process_cell_read_only(struct thin_c * tc,struct dm_bio_prison_cell * cell)1674 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1675 {
1676 	__process_bio_read_only(tc, cell->holder, cell);
1677 }
1678 
process_bio_success(struct thin_c * tc,struct bio * bio)1679 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1680 {
1681 	bio_endio(bio, 0);
1682 }
1683 
process_bio_fail(struct thin_c * tc,struct bio * bio)1684 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1685 {
1686 	bio_io_error(bio);
1687 }
1688 
process_cell_success(struct thin_c * tc,struct dm_bio_prison_cell * cell)1689 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1690 {
1691 	cell_success(tc->pool, cell);
1692 }
1693 
process_cell_fail(struct thin_c * tc,struct dm_bio_prison_cell * cell)1694 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1695 {
1696 	cell_error(tc->pool, cell);
1697 }
1698 
1699 /*
1700  * FIXME: should we also commit due to size of transaction, measured in
1701  * metadata blocks?
1702  */
need_commit_due_to_time(struct pool * pool)1703 static int need_commit_due_to_time(struct pool *pool)
1704 {
1705 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1706 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1707 }
1708 
1709 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1710 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1711 
__thin_bio_rb_add(struct thin_c * tc,struct bio * bio)1712 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1713 {
1714 	struct rb_node **rbp, *parent;
1715 	struct dm_thin_endio_hook *pbd;
1716 	sector_t bi_sector = bio->bi_iter.bi_sector;
1717 
1718 	rbp = &tc->sort_bio_list.rb_node;
1719 	parent = NULL;
1720 	while (*rbp) {
1721 		parent = *rbp;
1722 		pbd = thin_pbd(parent);
1723 
1724 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1725 			rbp = &(*rbp)->rb_left;
1726 		else
1727 			rbp = &(*rbp)->rb_right;
1728 	}
1729 
1730 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1731 	rb_link_node(&pbd->rb_node, parent, rbp);
1732 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1733 }
1734 
__extract_sorted_bios(struct thin_c * tc)1735 static void __extract_sorted_bios(struct thin_c *tc)
1736 {
1737 	struct rb_node *node;
1738 	struct dm_thin_endio_hook *pbd;
1739 	struct bio *bio;
1740 
1741 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1742 		pbd = thin_pbd(node);
1743 		bio = thin_bio(pbd);
1744 
1745 		bio_list_add(&tc->deferred_bio_list, bio);
1746 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1747 	}
1748 
1749 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1750 }
1751 
__sort_thin_deferred_bios(struct thin_c * tc)1752 static void __sort_thin_deferred_bios(struct thin_c *tc)
1753 {
1754 	struct bio *bio;
1755 	struct bio_list bios;
1756 
1757 	bio_list_init(&bios);
1758 	bio_list_merge(&bios, &tc->deferred_bio_list);
1759 	bio_list_init(&tc->deferred_bio_list);
1760 
1761 	/* Sort deferred_bio_list using rb-tree */
1762 	while ((bio = bio_list_pop(&bios)))
1763 		__thin_bio_rb_add(tc, bio);
1764 
1765 	/*
1766 	 * Transfer the sorted bios in sort_bio_list back to
1767 	 * deferred_bio_list to allow lockless submission of
1768 	 * all bios.
1769 	 */
1770 	__extract_sorted_bios(tc);
1771 }
1772 
process_thin_deferred_bios(struct thin_c * tc)1773 static void process_thin_deferred_bios(struct thin_c *tc)
1774 {
1775 	struct pool *pool = tc->pool;
1776 	unsigned long flags;
1777 	struct bio *bio;
1778 	struct bio_list bios;
1779 	struct blk_plug plug;
1780 	unsigned count = 0;
1781 
1782 	if (tc->requeue_mode) {
1783 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1784 		return;
1785 	}
1786 
1787 	bio_list_init(&bios);
1788 
1789 	spin_lock_irqsave(&tc->lock, flags);
1790 
1791 	if (bio_list_empty(&tc->deferred_bio_list)) {
1792 		spin_unlock_irqrestore(&tc->lock, flags);
1793 		return;
1794 	}
1795 
1796 	__sort_thin_deferred_bios(tc);
1797 
1798 	bio_list_merge(&bios, &tc->deferred_bio_list);
1799 	bio_list_init(&tc->deferred_bio_list);
1800 
1801 	spin_unlock_irqrestore(&tc->lock, flags);
1802 
1803 	blk_start_plug(&plug);
1804 	while ((bio = bio_list_pop(&bios))) {
1805 		/*
1806 		 * If we've got no free new_mapping structs, and processing
1807 		 * this bio might require one, we pause until there are some
1808 		 * prepared mappings to process.
1809 		 */
1810 		if (ensure_next_mapping(pool)) {
1811 			spin_lock_irqsave(&tc->lock, flags);
1812 			bio_list_add(&tc->deferred_bio_list, bio);
1813 			bio_list_merge(&tc->deferred_bio_list, &bios);
1814 			spin_unlock_irqrestore(&tc->lock, flags);
1815 			break;
1816 		}
1817 
1818 		if (bio->bi_rw & REQ_DISCARD)
1819 			pool->process_discard(tc, bio);
1820 		else
1821 			pool->process_bio(tc, bio);
1822 
1823 		if ((count++ & 127) == 0) {
1824 			throttle_work_update(&pool->throttle);
1825 			dm_pool_issue_prefetches(pool->pmd);
1826 		}
1827 	}
1828 	blk_finish_plug(&plug);
1829 }
1830 
cmp_cells(const void * lhs,const void * rhs)1831 static int cmp_cells(const void *lhs, const void *rhs)
1832 {
1833 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1834 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1835 
1836 	BUG_ON(!lhs_cell->holder);
1837 	BUG_ON(!rhs_cell->holder);
1838 
1839 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1840 		return -1;
1841 
1842 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1843 		return 1;
1844 
1845 	return 0;
1846 }
1847 
sort_cells(struct pool * pool,struct list_head * cells)1848 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1849 {
1850 	unsigned count = 0;
1851 	struct dm_bio_prison_cell *cell, *tmp;
1852 
1853 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
1854 		if (count >= CELL_SORT_ARRAY_SIZE)
1855 			break;
1856 
1857 		pool->cell_sort_array[count++] = cell;
1858 		list_del(&cell->user_list);
1859 	}
1860 
1861 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1862 
1863 	return count;
1864 }
1865 
process_thin_deferred_cells(struct thin_c * tc)1866 static void process_thin_deferred_cells(struct thin_c *tc)
1867 {
1868 	struct pool *pool = tc->pool;
1869 	unsigned long flags;
1870 	struct list_head cells;
1871 	struct dm_bio_prison_cell *cell;
1872 	unsigned i, j, count;
1873 
1874 	INIT_LIST_HEAD(&cells);
1875 
1876 	spin_lock_irqsave(&tc->lock, flags);
1877 	list_splice_init(&tc->deferred_cells, &cells);
1878 	spin_unlock_irqrestore(&tc->lock, flags);
1879 
1880 	if (list_empty(&cells))
1881 		return;
1882 
1883 	do {
1884 		count = sort_cells(tc->pool, &cells);
1885 
1886 		for (i = 0; i < count; i++) {
1887 			cell = pool->cell_sort_array[i];
1888 			BUG_ON(!cell->holder);
1889 
1890 			/*
1891 			 * If we've got no free new_mapping structs, and processing
1892 			 * this bio might require one, we pause until there are some
1893 			 * prepared mappings to process.
1894 			 */
1895 			if (ensure_next_mapping(pool)) {
1896 				for (j = i; j < count; j++)
1897 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
1898 
1899 				spin_lock_irqsave(&tc->lock, flags);
1900 				list_splice(&cells, &tc->deferred_cells);
1901 				spin_unlock_irqrestore(&tc->lock, flags);
1902 				return;
1903 			}
1904 
1905 			if (cell->holder->bi_rw & REQ_DISCARD)
1906 				pool->process_discard_cell(tc, cell);
1907 			else
1908 				pool->process_cell(tc, cell);
1909 		}
1910 	} while (!list_empty(&cells));
1911 }
1912 
1913 static void thin_get(struct thin_c *tc);
1914 static void thin_put(struct thin_c *tc);
1915 
1916 /*
1917  * We can't hold rcu_read_lock() around code that can block.  So we
1918  * find a thin with the rcu lock held; bump a refcount; then drop
1919  * the lock.
1920  */
get_first_thin(struct pool * pool)1921 static struct thin_c *get_first_thin(struct pool *pool)
1922 {
1923 	struct thin_c *tc = NULL;
1924 
1925 	rcu_read_lock();
1926 	if (!list_empty(&pool->active_thins)) {
1927 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1928 		thin_get(tc);
1929 	}
1930 	rcu_read_unlock();
1931 
1932 	return tc;
1933 }
1934 
get_next_thin(struct pool * pool,struct thin_c * tc)1935 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1936 {
1937 	struct thin_c *old_tc = tc;
1938 
1939 	rcu_read_lock();
1940 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1941 		thin_get(tc);
1942 		thin_put(old_tc);
1943 		rcu_read_unlock();
1944 		return tc;
1945 	}
1946 	thin_put(old_tc);
1947 	rcu_read_unlock();
1948 
1949 	return NULL;
1950 }
1951 
process_deferred_bios(struct pool * pool)1952 static void process_deferred_bios(struct pool *pool)
1953 {
1954 	unsigned long flags;
1955 	struct bio *bio;
1956 	struct bio_list bios;
1957 	struct thin_c *tc;
1958 
1959 	tc = get_first_thin(pool);
1960 	while (tc) {
1961 		process_thin_deferred_cells(tc);
1962 		process_thin_deferred_bios(tc);
1963 		tc = get_next_thin(pool, tc);
1964 	}
1965 
1966 	/*
1967 	 * If there are any deferred flush bios, we must commit
1968 	 * the metadata before issuing them.
1969 	 */
1970 	bio_list_init(&bios);
1971 	spin_lock_irqsave(&pool->lock, flags);
1972 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1973 	bio_list_init(&pool->deferred_flush_bios);
1974 	spin_unlock_irqrestore(&pool->lock, flags);
1975 
1976 	if (bio_list_empty(&bios) &&
1977 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1978 		return;
1979 
1980 	if (commit(pool)) {
1981 		while ((bio = bio_list_pop(&bios)))
1982 			bio_io_error(bio);
1983 		return;
1984 	}
1985 	pool->last_commit_jiffies = jiffies;
1986 
1987 	while ((bio = bio_list_pop(&bios)))
1988 		generic_make_request(bio);
1989 }
1990 
do_worker(struct work_struct * ws)1991 static void do_worker(struct work_struct *ws)
1992 {
1993 	struct pool *pool = container_of(ws, struct pool, worker);
1994 
1995 	throttle_work_start(&pool->throttle);
1996 	dm_pool_issue_prefetches(pool->pmd);
1997 	throttle_work_update(&pool->throttle);
1998 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1999 	throttle_work_update(&pool->throttle);
2000 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2001 	throttle_work_update(&pool->throttle);
2002 	process_deferred_bios(pool);
2003 	throttle_work_complete(&pool->throttle);
2004 }
2005 
2006 /*
2007  * We want to commit periodically so that not too much
2008  * unwritten data builds up.
2009  */
do_waker(struct work_struct * ws)2010 static void do_waker(struct work_struct *ws)
2011 {
2012 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2013 	wake_worker(pool);
2014 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2015 }
2016 
2017 /*
2018  * We're holding onto IO to allow userland time to react.  After the
2019  * timeout either the pool will have been resized (and thus back in
2020  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2021  */
do_no_space_timeout(struct work_struct * ws)2022 static void do_no_space_timeout(struct work_struct *ws)
2023 {
2024 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2025 					 no_space_timeout);
2026 
2027 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2028 		set_pool_mode(pool, PM_READ_ONLY);
2029 }
2030 
2031 /*----------------------------------------------------------------*/
2032 
2033 struct pool_work {
2034 	struct work_struct worker;
2035 	struct completion complete;
2036 };
2037 
to_pool_work(struct work_struct * ws)2038 static struct pool_work *to_pool_work(struct work_struct *ws)
2039 {
2040 	return container_of(ws, struct pool_work, worker);
2041 }
2042 
pool_work_complete(struct pool_work * pw)2043 static void pool_work_complete(struct pool_work *pw)
2044 {
2045 	complete(&pw->complete);
2046 }
2047 
pool_work_wait(struct pool_work * pw,struct pool * pool,void (* fn)(struct work_struct *))2048 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2049 			   void (*fn)(struct work_struct *))
2050 {
2051 	INIT_WORK_ONSTACK(&pw->worker, fn);
2052 	init_completion(&pw->complete);
2053 	queue_work(pool->wq, &pw->worker);
2054 	wait_for_completion(&pw->complete);
2055 }
2056 
2057 /*----------------------------------------------------------------*/
2058 
2059 struct noflush_work {
2060 	struct pool_work pw;
2061 	struct thin_c *tc;
2062 };
2063 
to_noflush(struct work_struct * ws)2064 static struct noflush_work *to_noflush(struct work_struct *ws)
2065 {
2066 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2067 }
2068 
do_noflush_start(struct work_struct * ws)2069 static void do_noflush_start(struct work_struct *ws)
2070 {
2071 	struct noflush_work *w = to_noflush(ws);
2072 	w->tc->requeue_mode = true;
2073 	requeue_io(w->tc);
2074 	pool_work_complete(&w->pw);
2075 }
2076 
do_noflush_stop(struct work_struct * ws)2077 static void do_noflush_stop(struct work_struct *ws)
2078 {
2079 	struct noflush_work *w = to_noflush(ws);
2080 	w->tc->requeue_mode = false;
2081 	pool_work_complete(&w->pw);
2082 }
2083 
noflush_work(struct thin_c * tc,void (* fn)(struct work_struct *))2084 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2085 {
2086 	struct noflush_work w;
2087 
2088 	w.tc = tc;
2089 	pool_work_wait(&w.pw, tc->pool, fn);
2090 }
2091 
2092 /*----------------------------------------------------------------*/
2093 
get_pool_mode(struct pool * pool)2094 static enum pool_mode get_pool_mode(struct pool *pool)
2095 {
2096 	return pool->pf.mode;
2097 }
2098 
notify_of_pool_mode_change(struct pool * pool,const char * new_mode)2099 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2100 {
2101 	dm_table_event(pool->ti->table);
2102 	DMINFO("%s: switching pool to %s mode",
2103 	       dm_device_name(pool->pool_md), new_mode);
2104 }
2105 
set_pool_mode(struct pool * pool,enum pool_mode new_mode)2106 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2107 {
2108 	struct pool_c *pt = pool->ti->private;
2109 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2110 	enum pool_mode old_mode = get_pool_mode(pool);
2111 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2112 
2113 	/*
2114 	 * Never allow the pool to transition to PM_WRITE mode if user
2115 	 * intervention is required to verify metadata and data consistency.
2116 	 */
2117 	if (new_mode == PM_WRITE && needs_check) {
2118 		DMERR("%s: unable to switch pool to write mode until repaired.",
2119 		      dm_device_name(pool->pool_md));
2120 		if (old_mode != new_mode)
2121 			new_mode = old_mode;
2122 		else
2123 			new_mode = PM_READ_ONLY;
2124 	}
2125 	/*
2126 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2127 	 * not going to recover without a thin_repair.	So we never let the
2128 	 * pool move out of the old mode.
2129 	 */
2130 	if (old_mode == PM_FAIL)
2131 		new_mode = old_mode;
2132 
2133 	switch (new_mode) {
2134 	case PM_FAIL:
2135 		if (old_mode != new_mode)
2136 			notify_of_pool_mode_change(pool, "failure");
2137 		dm_pool_metadata_read_only(pool->pmd);
2138 		pool->process_bio = process_bio_fail;
2139 		pool->process_discard = process_bio_fail;
2140 		pool->process_cell = process_cell_fail;
2141 		pool->process_discard_cell = process_cell_fail;
2142 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2143 		pool->process_prepared_discard = process_prepared_discard_fail;
2144 
2145 		error_retry_list(pool);
2146 		break;
2147 
2148 	case PM_READ_ONLY:
2149 		if (old_mode != new_mode)
2150 			notify_of_pool_mode_change(pool, "read-only");
2151 		dm_pool_metadata_read_only(pool->pmd);
2152 		pool->process_bio = process_bio_read_only;
2153 		pool->process_discard = process_bio_success;
2154 		pool->process_cell = process_cell_read_only;
2155 		pool->process_discard_cell = process_cell_success;
2156 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2157 		pool->process_prepared_discard = process_prepared_discard_passdown;
2158 
2159 		error_retry_list(pool);
2160 		break;
2161 
2162 	case PM_OUT_OF_DATA_SPACE:
2163 		/*
2164 		 * Ideally we'd never hit this state; the low water mark
2165 		 * would trigger userland to extend the pool before we
2166 		 * completely run out of data space.  However, many small
2167 		 * IOs to unprovisioned space can consume data space at an
2168 		 * alarming rate.  Adjust your low water mark if you're
2169 		 * frequently seeing this mode.
2170 		 */
2171 		if (old_mode != new_mode)
2172 			notify_of_pool_mode_change(pool, "out-of-data-space");
2173 		pool->process_bio = process_bio_read_only;
2174 		pool->process_discard = process_discard_bio;
2175 		pool->process_cell = process_cell_read_only;
2176 		pool->process_discard_cell = process_discard_cell;
2177 		pool->process_prepared_mapping = process_prepared_mapping;
2178 		pool->process_prepared_discard = process_prepared_discard;
2179 
2180 		if (!pool->pf.error_if_no_space && no_space_timeout)
2181 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2182 		break;
2183 
2184 	case PM_WRITE:
2185 		if (old_mode != new_mode)
2186 			notify_of_pool_mode_change(pool, "write");
2187 		dm_pool_metadata_read_write(pool->pmd);
2188 		pool->process_bio = process_bio;
2189 		pool->process_discard = process_discard_bio;
2190 		pool->process_cell = process_cell;
2191 		pool->process_discard_cell = process_discard_cell;
2192 		pool->process_prepared_mapping = process_prepared_mapping;
2193 		pool->process_prepared_discard = process_prepared_discard;
2194 		break;
2195 	}
2196 
2197 	pool->pf.mode = new_mode;
2198 	/*
2199 	 * The pool mode may have changed, sync it so bind_control_target()
2200 	 * doesn't cause an unexpected mode transition on resume.
2201 	 */
2202 	pt->adjusted_pf.mode = new_mode;
2203 }
2204 
abort_transaction(struct pool * pool)2205 static void abort_transaction(struct pool *pool)
2206 {
2207 	const char *dev_name = dm_device_name(pool->pool_md);
2208 
2209 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2210 	if (dm_pool_abort_metadata(pool->pmd)) {
2211 		DMERR("%s: failed to abort metadata transaction", dev_name);
2212 		set_pool_mode(pool, PM_FAIL);
2213 	}
2214 
2215 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2216 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2217 		set_pool_mode(pool, PM_FAIL);
2218 	}
2219 }
2220 
metadata_operation_failed(struct pool * pool,const char * op,int r)2221 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2222 {
2223 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2224 		    dm_device_name(pool->pool_md), op, r);
2225 
2226 	abort_transaction(pool);
2227 	set_pool_mode(pool, PM_READ_ONLY);
2228 }
2229 
2230 /*----------------------------------------------------------------*/
2231 
2232 /*
2233  * Mapping functions.
2234  */
2235 
2236 /*
2237  * Called only while mapping a thin bio to hand it over to the workqueue.
2238  */
thin_defer_bio(struct thin_c * tc,struct bio * bio)2239 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2240 {
2241 	unsigned long flags;
2242 	struct pool *pool = tc->pool;
2243 
2244 	spin_lock_irqsave(&tc->lock, flags);
2245 	bio_list_add(&tc->deferred_bio_list, bio);
2246 	spin_unlock_irqrestore(&tc->lock, flags);
2247 
2248 	wake_worker(pool);
2249 }
2250 
thin_defer_bio_with_throttle(struct thin_c * tc,struct bio * bio)2251 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2252 {
2253 	struct pool *pool = tc->pool;
2254 
2255 	throttle_lock(&pool->throttle);
2256 	thin_defer_bio(tc, bio);
2257 	throttle_unlock(&pool->throttle);
2258 }
2259 
thin_defer_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)2260 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2261 {
2262 	unsigned long flags;
2263 	struct pool *pool = tc->pool;
2264 
2265 	throttle_lock(&pool->throttle);
2266 	spin_lock_irqsave(&tc->lock, flags);
2267 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2268 	spin_unlock_irqrestore(&tc->lock, flags);
2269 	throttle_unlock(&pool->throttle);
2270 
2271 	wake_worker(pool);
2272 }
2273 
thin_hook_bio(struct thin_c * tc,struct bio * bio)2274 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2275 {
2276 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2277 
2278 	h->tc = tc;
2279 	h->shared_read_entry = NULL;
2280 	h->all_io_entry = NULL;
2281 	h->overwrite_mapping = NULL;
2282 }
2283 
2284 /*
2285  * Non-blocking function called from the thin target's map function.
2286  */
thin_bio_map(struct dm_target * ti,struct bio * bio)2287 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2288 {
2289 	int r;
2290 	struct thin_c *tc = ti->private;
2291 	dm_block_t block = get_bio_block(tc, bio);
2292 	struct dm_thin_device *td = tc->td;
2293 	struct dm_thin_lookup_result result;
2294 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2295 	struct dm_cell_key key;
2296 
2297 	thin_hook_bio(tc, bio);
2298 
2299 	if (tc->requeue_mode) {
2300 		bio_endio(bio, DM_ENDIO_REQUEUE);
2301 		return DM_MAPIO_SUBMITTED;
2302 	}
2303 
2304 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2305 		bio_io_error(bio);
2306 		return DM_MAPIO_SUBMITTED;
2307 	}
2308 
2309 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2310 		thin_defer_bio_with_throttle(tc, bio);
2311 		return DM_MAPIO_SUBMITTED;
2312 	}
2313 
2314 	/*
2315 	 * We must hold the virtual cell before doing the lookup, otherwise
2316 	 * there's a race with discard.
2317 	 */
2318 	build_virtual_key(tc->td, block, &key);
2319 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2320 		return DM_MAPIO_SUBMITTED;
2321 
2322 	r = dm_thin_find_block(td, block, 0, &result);
2323 
2324 	/*
2325 	 * Note that we defer readahead too.
2326 	 */
2327 	switch (r) {
2328 	case 0:
2329 		if (unlikely(result.shared)) {
2330 			/*
2331 			 * We have a race condition here between the
2332 			 * result.shared value returned by the lookup and
2333 			 * snapshot creation, which may cause new
2334 			 * sharing.
2335 			 *
2336 			 * To avoid this always quiesce the origin before
2337 			 * taking the snap.  You want to do this anyway to
2338 			 * ensure a consistent application view
2339 			 * (i.e. lockfs).
2340 			 *
2341 			 * More distant ancestors are irrelevant. The
2342 			 * shared flag will be set in their case.
2343 			 */
2344 			thin_defer_cell(tc, virt_cell);
2345 			return DM_MAPIO_SUBMITTED;
2346 		}
2347 
2348 		build_data_key(tc->td, result.block, &key);
2349 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2350 			cell_defer_no_holder(tc, virt_cell);
2351 			return DM_MAPIO_SUBMITTED;
2352 		}
2353 
2354 		inc_all_io_entry(tc->pool, bio);
2355 		cell_defer_no_holder(tc, data_cell);
2356 		cell_defer_no_holder(tc, virt_cell);
2357 
2358 		remap(tc, bio, result.block);
2359 		return DM_MAPIO_REMAPPED;
2360 
2361 	case -ENODATA:
2362 	case -EWOULDBLOCK:
2363 		thin_defer_cell(tc, virt_cell);
2364 		return DM_MAPIO_SUBMITTED;
2365 
2366 	default:
2367 		/*
2368 		 * Must always call bio_io_error on failure.
2369 		 * dm_thin_find_block can fail with -EINVAL if the
2370 		 * pool is switched to fail-io mode.
2371 		 */
2372 		bio_io_error(bio);
2373 		cell_defer_no_holder(tc, virt_cell);
2374 		return DM_MAPIO_SUBMITTED;
2375 	}
2376 }
2377 
pool_is_congested(struct dm_target_callbacks * cb,int bdi_bits)2378 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2379 {
2380 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2381 	struct request_queue *q;
2382 
2383 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2384 		return 1;
2385 
2386 	q = bdev_get_queue(pt->data_dev->bdev);
2387 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2388 }
2389 
requeue_bios(struct pool * pool)2390 static void requeue_bios(struct pool *pool)
2391 {
2392 	unsigned long flags;
2393 	struct thin_c *tc;
2394 
2395 	rcu_read_lock();
2396 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2397 		spin_lock_irqsave(&tc->lock, flags);
2398 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2399 		bio_list_init(&tc->retry_on_resume_list);
2400 		spin_unlock_irqrestore(&tc->lock, flags);
2401 	}
2402 	rcu_read_unlock();
2403 }
2404 
2405 /*----------------------------------------------------------------
2406  * Binding of control targets to a pool object
2407  *--------------------------------------------------------------*/
data_dev_supports_discard(struct pool_c * pt)2408 static bool data_dev_supports_discard(struct pool_c *pt)
2409 {
2410 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2411 
2412 	return q && blk_queue_discard(q);
2413 }
2414 
is_factor(sector_t block_size,uint32_t n)2415 static bool is_factor(sector_t block_size, uint32_t n)
2416 {
2417 	return !sector_div(block_size, n);
2418 }
2419 
2420 /*
2421  * If discard_passdown was enabled verify that the data device
2422  * supports discards.  Disable discard_passdown if not.
2423  */
disable_passdown_if_not_supported(struct pool_c * pt)2424 static void disable_passdown_if_not_supported(struct pool_c *pt)
2425 {
2426 	struct pool *pool = pt->pool;
2427 	struct block_device *data_bdev = pt->data_dev->bdev;
2428 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2429 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2430 	const char *reason = NULL;
2431 	char buf[BDEVNAME_SIZE];
2432 
2433 	if (!pt->adjusted_pf.discard_passdown)
2434 		return;
2435 
2436 	if (!data_dev_supports_discard(pt))
2437 		reason = "discard unsupported";
2438 
2439 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2440 		reason = "max discard sectors smaller than a block";
2441 
2442 	else if (data_limits->discard_granularity > block_size)
2443 		reason = "discard granularity larger than a block";
2444 
2445 	else if (!is_factor(block_size, data_limits->discard_granularity))
2446 		reason = "discard granularity not a factor of block size";
2447 
2448 	if (reason) {
2449 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2450 		pt->adjusted_pf.discard_passdown = false;
2451 	}
2452 }
2453 
bind_control_target(struct pool * pool,struct dm_target * ti)2454 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2455 {
2456 	struct pool_c *pt = ti->private;
2457 
2458 	/*
2459 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2460 	 */
2461 	enum pool_mode old_mode = get_pool_mode(pool);
2462 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2463 
2464 	/*
2465 	 * Don't change the pool's mode until set_pool_mode() below.
2466 	 * Otherwise the pool's process_* function pointers may
2467 	 * not match the desired pool mode.
2468 	 */
2469 	pt->adjusted_pf.mode = old_mode;
2470 
2471 	pool->ti = ti;
2472 	pool->pf = pt->adjusted_pf;
2473 	pool->low_water_blocks = pt->low_water_blocks;
2474 
2475 	set_pool_mode(pool, new_mode);
2476 
2477 	return 0;
2478 }
2479 
unbind_control_target(struct pool * pool,struct dm_target * ti)2480 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2481 {
2482 	if (pool->ti == ti)
2483 		pool->ti = NULL;
2484 }
2485 
2486 /*----------------------------------------------------------------
2487  * Pool creation
2488  *--------------------------------------------------------------*/
2489 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)2490 static void pool_features_init(struct pool_features *pf)
2491 {
2492 	pf->mode = PM_WRITE;
2493 	pf->zero_new_blocks = true;
2494 	pf->discard_enabled = true;
2495 	pf->discard_passdown = true;
2496 	pf->error_if_no_space = false;
2497 }
2498 
__pool_destroy(struct pool * pool)2499 static void __pool_destroy(struct pool *pool)
2500 {
2501 	__pool_table_remove(pool);
2502 
2503 	vfree(pool->cell_sort_array);
2504 	if (dm_pool_metadata_close(pool->pmd) < 0)
2505 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2506 
2507 	dm_bio_prison_destroy(pool->prison);
2508 	dm_kcopyd_client_destroy(pool->copier);
2509 
2510 	if (pool->wq)
2511 		destroy_workqueue(pool->wq);
2512 
2513 	if (pool->next_mapping)
2514 		mempool_free(pool->next_mapping, pool->mapping_pool);
2515 	mempool_destroy(pool->mapping_pool);
2516 	dm_deferred_set_destroy(pool->shared_read_ds);
2517 	dm_deferred_set_destroy(pool->all_io_ds);
2518 	kfree(pool);
2519 }
2520 
2521 static struct kmem_cache *_new_mapping_cache;
2522 
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,int read_only,char ** error)2523 static struct pool *pool_create(struct mapped_device *pool_md,
2524 				struct block_device *metadata_dev,
2525 				unsigned long block_size,
2526 				int read_only, char **error)
2527 {
2528 	int r;
2529 	void *err_p;
2530 	struct pool *pool;
2531 	struct dm_pool_metadata *pmd;
2532 	bool format_device = read_only ? false : true;
2533 
2534 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2535 	if (IS_ERR(pmd)) {
2536 		*error = "Error creating metadata object";
2537 		return (struct pool *)pmd;
2538 	}
2539 
2540 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2541 	if (!pool) {
2542 		*error = "Error allocating memory for pool";
2543 		err_p = ERR_PTR(-ENOMEM);
2544 		goto bad_pool;
2545 	}
2546 
2547 	pool->pmd = pmd;
2548 	pool->sectors_per_block = block_size;
2549 	if (block_size & (block_size - 1))
2550 		pool->sectors_per_block_shift = -1;
2551 	else
2552 		pool->sectors_per_block_shift = __ffs(block_size);
2553 	pool->low_water_blocks = 0;
2554 	pool_features_init(&pool->pf);
2555 	pool->prison = dm_bio_prison_create();
2556 	if (!pool->prison) {
2557 		*error = "Error creating pool's bio prison";
2558 		err_p = ERR_PTR(-ENOMEM);
2559 		goto bad_prison;
2560 	}
2561 
2562 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2563 	if (IS_ERR(pool->copier)) {
2564 		r = PTR_ERR(pool->copier);
2565 		*error = "Error creating pool's kcopyd client";
2566 		err_p = ERR_PTR(r);
2567 		goto bad_kcopyd_client;
2568 	}
2569 
2570 	/*
2571 	 * Create singlethreaded workqueue that will service all devices
2572 	 * that use this metadata.
2573 	 */
2574 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2575 	if (!pool->wq) {
2576 		*error = "Error creating pool's workqueue";
2577 		err_p = ERR_PTR(-ENOMEM);
2578 		goto bad_wq;
2579 	}
2580 
2581 	throttle_init(&pool->throttle);
2582 	INIT_WORK(&pool->worker, do_worker);
2583 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2584 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2585 	spin_lock_init(&pool->lock);
2586 	bio_list_init(&pool->deferred_flush_bios);
2587 	INIT_LIST_HEAD(&pool->prepared_mappings);
2588 	INIT_LIST_HEAD(&pool->prepared_discards);
2589 	INIT_LIST_HEAD(&pool->active_thins);
2590 	pool->low_water_triggered = false;
2591 	pool->suspended = true;
2592 
2593 	pool->shared_read_ds = dm_deferred_set_create();
2594 	if (!pool->shared_read_ds) {
2595 		*error = "Error creating pool's shared read deferred set";
2596 		err_p = ERR_PTR(-ENOMEM);
2597 		goto bad_shared_read_ds;
2598 	}
2599 
2600 	pool->all_io_ds = dm_deferred_set_create();
2601 	if (!pool->all_io_ds) {
2602 		*error = "Error creating pool's all io deferred set";
2603 		err_p = ERR_PTR(-ENOMEM);
2604 		goto bad_all_io_ds;
2605 	}
2606 
2607 	pool->next_mapping = NULL;
2608 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2609 						      _new_mapping_cache);
2610 	if (!pool->mapping_pool) {
2611 		*error = "Error creating pool's mapping mempool";
2612 		err_p = ERR_PTR(-ENOMEM);
2613 		goto bad_mapping_pool;
2614 	}
2615 
2616 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2617 	if (!pool->cell_sort_array) {
2618 		*error = "Error allocating cell sort array";
2619 		err_p = ERR_PTR(-ENOMEM);
2620 		goto bad_sort_array;
2621 	}
2622 
2623 	pool->ref_count = 1;
2624 	pool->last_commit_jiffies = jiffies;
2625 	pool->pool_md = pool_md;
2626 	pool->md_dev = metadata_dev;
2627 	__pool_table_insert(pool);
2628 
2629 	return pool;
2630 
2631 bad_sort_array:
2632 	mempool_destroy(pool->mapping_pool);
2633 bad_mapping_pool:
2634 	dm_deferred_set_destroy(pool->all_io_ds);
2635 bad_all_io_ds:
2636 	dm_deferred_set_destroy(pool->shared_read_ds);
2637 bad_shared_read_ds:
2638 	destroy_workqueue(pool->wq);
2639 bad_wq:
2640 	dm_kcopyd_client_destroy(pool->copier);
2641 bad_kcopyd_client:
2642 	dm_bio_prison_destroy(pool->prison);
2643 bad_prison:
2644 	kfree(pool);
2645 bad_pool:
2646 	if (dm_pool_metadata_close(pmd))
2647 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2648 
2649 	return err_p;
2650 }
2651 
__pool_inc(struct pool * pool)2652 static void __pool_inc(struct pool *pool)
2653 {
2654 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2655 	pool->ref_count++;
2656 }
2657 
__pool_dec(struct pool * pool)2658 static void __pool_dec(struct pool *pool)
2659 {
2660 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2661 	BUG_ON(!pool->ref_count);
2662 	if (!--pool->ref_count)
2663 		__pool_destroy(pool);
2664 }
2665 
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,int read_only,char ** error,int * created)2666 static struct pool *__pool_find(struct mapped_device *pool_md,
2667 				struct block_device *metadata_dev,
2668 				unsigned long block_size, int read_only,
2669 				char **error, int *created)
2670 {
2671 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2672 
2673 	if (pool) {
2674 		if (pool->pool_md != pool_md) {
2675 			*error = "metadata device already in use by a pool";
2676 			return ERR_PTR(-EBUSY);
2677 		}
2678 		__pool_inc(pool);
2679 
2680 	} else {
2681 		pool = __pool_table_lookup(pool_md);
2682 		if (pool) {
2683 			if (pool->md_dev != metadata_dev) {
2684 				*error = "different pool cannot replace a pool";
2685 				return ERR_PTR(-EINVAL);
2686 			}
2687 			__pool_inc(pool);
2688 
2689 		} else {
2690 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2691 			*created = 1;
2692 		}
2693 	}
2694 
2695 	return pool;
2696 }
2697 
2698 /*----------------------------------------------------------------
2699  * Pool target methods
2700  *--------------------------------------------------------------*/
pool_dtr(struct dm_target * ti)2701 static void pool_dtr(struct dm_target *ti)
2702 {
2703 	struct pool_c *pt = ti->private;
2704 
2705 	mutex_lock(&dm_thin_pool_table.mutex);
2706 
2707 	unbind_control_target(pt->pool, ti);
2708 	__pool_dec(pt->pool);
2709 	dm_put_device(ti, pt->metadata_dev);
2710 	dm_put_device(ti, pt->data_dev);
2711 	kfree(pt);
2712 
2713 	mutex_unlock(&dm_thin_pool_table.mutex);
2714 }
2715 
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)2716 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2717 			       struct dm_target *ti)
2718 {
2719 	int r;
2720 	unsigned argc;
2721 	const char *arg_name;
2722 
2723 	static struct dm_arg _args[] = {
2724 		{0, 4, "Invalid number of pool feature arguments"},
2725 	};
2726 
2727 	/*
2728 	 * No feature arguments supplied.
2729 	 */
2730 	if (!as->argc)
2731 		return 0;
2732 
2733 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2734 	if (r)
2735 		return -EINVAL;
2736 
2737 	while (argc && !r) {
2738 		arg_name = dm_shift_arg(as);
2739 		argc--;
2740 
2741 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2742 			pf->zero_new_blocks = false;
2743 
2744 		else if (!strcasecmp(arg_name, "ignore_discard"))
2745 			pf->discard_enabled = false;
2746 
2747 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2748 			pf->discard_passdown = false;
2749 
2750 		else if (!strcasecmp(arg_name, "read_only"))
2751 			pf->mode = PM_READ_ONLY;
2752 
2753 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2754 			pf->error_if_no_space = true;
2755 
2756 		else {
2757 			ti->error = "Unrecognised pool feature requested";
2758 			r = -EINVAL;
2759 			break;
2760 		}
2761 	}
2762 
2763 	return r;
2764 }
2765 
metadata_low_callback(void * context)2766 static void metadata_low_callback(void *context)
2767 {
2768 	struct pool *pool = context;
2769 
2770 	DMWARN("%s: reached low water mark for metadata device: sending event.",
2771 	       dm_device_name(pool->pool_md));
2772 
2773 	dm_table_event(pool->ti->table);
2774 }
2775 
get_dev_size(struct block_device * bdev)2776 static sector_t get_dev_size(struct block_device *bdev)
2777 {
2778 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2779 }
2780 
warn_if_metadata_device_too_big(struct block_device * bdev)2781 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2782 {
2783 	sector_t metadata_dev_size = get_dev_size(bdev);
2784 	char buffer[BDEVNAME_SIZE];
2785 
2786 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2787 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2788 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2789 }
2790 
get_metadata_dev_size(struct block_device * bdev)2791 static sector_t get_metadata_dev_size(struct block_device *bdev)
2792 {
2793 	sector_t metadata_dev_size = get_dev_size(bdev);
2794 
2795 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2796 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2797 
2798 	return metadata_dev_size;
2799 }
2800 
get_metadata_dev_size_in_blocks(struct block_device * bdev)2801 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2802 {
2803 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2804 
2805 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2806 
2807 	return metadata_dev_size;
2808 }
2809 
2810 /*
2811  * When a metadata threshold is crossed a dm event is triggered, and
2812  * userland should respond by growing the metadata device.  We could let
2813  * userland set the threshold, like we do with the data threshold, but I'm
2814  * not sure they know enough to do this well.
2815  */
calc_metadata_threshold(struct pool_c * pt)2816 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2817 {
2818 	/*
2819 	 * 4M is ample for all ops with the possible exception of thin
2820 	 * device deletion which is harmless if it fails (just retry the
2821 	 * delete after you've grown the device).
2822 	 */
2823 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2824 	return min((dm_block_t)1024ULL /* 4M */, quarter);
2825 }
2826 
2827 /*
2828  * thin-pool <metadata dev> <data dev>
2829  *	     <data block size (sectors)>
2830  *	     <low water mark (blocks)>
2831  *	     [<#feature args> [<arg>]*]
2832  *
2833  * Optional feature arguments are:
2834  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2835  *	     ignore_discard: disable discard
2836  *	     no_discard_passdown: don't pass discards down to the data device
2837  *	     read_only: Don't allow any changes to be made to the pool metadata.
2838  *	     error_if_no_space: error IOs, instead of queueing, if no space.
2839  */
pool_ctr(struct dm_target * ti,unsigned argc,char ** argv)2840 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2841 {
2842 	int r, pool_created = 0;
2843 	struct pool_c *pt;
2844 	struct pool *pool;
2845 	struct pool_features pf;
2846 	struct dm_arg_set as;
2847 	struct dm_dev *data_dev;
2848 	unsigned long block_size;
2849 	dm_block_t low_water_blocks;
2850 	struct dm_dev *metadata_dev;
2851 	fmode_t metadata_mode;
2852 
2853 	/*
2854 	 * FIXME Remove validation from scope of lock.
2855 	 */
2856 	mutex_lock(&dm_thin_pool_table.mutex);
2857 
2858 	if (argc < 4) {
2859 		ti->error = "Invalid argument count";
2860 		r = -EINVAL;
2861 		goto out_unlock;
2862 	}
2863 
2864 	as.argc = argc;
2865 	as.argv = argv;
2866 
2867 	/*
2868 	 * Set default pool features.
2869 	 */
2870 	pool_features_init(&pf);
2871 
2872 	dm_consume_args(&as, 4);
2873 	r = parse_pool_features(&as, &pf, ti);
2874 	if (r)
2875 		goto out_unlock;
2876 
2877 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2878 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2879 	if (r) {
2880 		ti->error = "Error opening metadata block device";
2881 		goto out_unlock;
2882 	}
2883 	warn_if_metadata_device_too_big(metadata_dev->bdev);
2884 
2885 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2886 	if (r) {
2887 		ti->error = "Error getting data device";
2888 		goto out_metadata;
2889 	}
2890 
2891 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2892 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2893 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2894 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2895 		ti->error = "Invalid block size";
2896 		r = -EINVAL;
2897 		goto out;
2898 	}
2899 
2900 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2901 		ti->error = "Invalid low water mark";
2902 		r = -EINVAL;
2903 		goto out;
2904 	}
2905 
2906 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2907 	if (!pt) {
2908 		r = -ENOMEM;
2909 		goto out;
2910 	}
2911 
2912 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2913 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2914 	if (IS_ERR(pool)) {
2915 		r = PTR_ERR(pool);
2916 		goto out_free_pt;
2917 	}
2918 
2919 	/*
2920 	 * 'pool_created' reflects whether this is the first table load.
2921 	 * Top level discard support is not allowed to be changed after
2922 	 * initial load.  This would require a pool reload to trigger thin
2923 	 * device changes.
2924 	 */
2925 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2926 		ti->error = "Discard support cannot be disabled once enabled";
2927 		r = -EINVAL;
2928 		goto out_flags_changed;
2929 	}
2930 
2931 	pt->pool = pool;
2932 	pt->ti = ti;
2933 	pt->metadata_dev = metadata_dev;
2934 	pt->data_dev = data_dev;
2935 	pt->low_water_blocks = low_water_blocks;
2936 	pt->adjusted_pf = pt->requested_pf = pf;
2937 	ti->num_flush_bios = 1;
2938 
2939 	/*
2940 	 * Only need to enable discards if the pool should pass
2941 	 * them down to the data device.  The thin device's discard
2942 	 * processing will cause mappings to be removed from the btree.
2943 	 */
2944 	ti->discard_zeroes_data_unsupported = true;
2945 	if (pf.discard_enabled && pf.discard_passdown) {
2946 		ti->num_discard_bios = 1;
2947 
2948 		/*
2949 		 * Setting 'discards_supported' circumvents the normal
2950 		 * stacking of discard limits (this keeps the pool and
2951 		 * thin devices' discard limits consistent).
2952 		 */
2953 		ti->discards_supported = true;
2954 	}
2955 	ti->private = pt;
2956 
2957 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2958 						calc_metadata_threshold(pt),
2959 						metadata_low_callback,
2960 						pool);
2961 	if (r)
2962 		goto out_flags_changed;
2963 
2964 	pt->callbacks.congested_fn = pool_is_congested;
2965 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2966 
2967 	mutex_unlock(&dm_thin_pool_table.mutex);
2968 
2969 	return 0;
2970 
2971 out_flags_changed:
2972 	__pool_dec(pool);
2973 out_free_pt:
2974 	kfree(pt);
2975 out:
2976 	dm_put_device(ti, data_dev);
2977 out_metadata:
2978 	dm_put_device(ti, metadata_dev);
2979 out_unlock:
2980 	mutex_unlock(&dm_thin_pool_table.mutex);
2981 
2982 	return r;
2983 }
2984 
pool_map(struct dm_target * ti,struct bio * bio)2985 static int pool_map(struct dm_target *ti, struct bio *bio)
2986 {
2987 	int r;
2988 	struct pool_c *pt = ti->private;
2989 	struct pool *pool = pt->pool;
2990 	unsigned long flags;
2991 
2992 	/*
2993 	 * As this is a singleton target, ti->begin is always zero.
2994 	 */
2995 	spin_lock_irqsave(&pool->lock, flags);
2996 	bio->bi_bdev = pt->data_dev->bdev;
2997 	r = DM_MAPIO_REMAPPED;
2998 	spin_unlock_irqrestore(&pool->lock, flags);
2999 
3000 	return r;
3001 }
3002 
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)3003 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3004 {
3005 	int r;
3006 	struct pool_c *pt = ti->private;
3007 	struct pool *pool = pt->pool;
3008 	sector_t data_size = ti->len;
3009 	dm_block_t sb_data_size;
3010 
3011 	*need_commit = false;
3012 
3013 	(void) sector_div(data_size, pool->sectors_per_block);
3014 
3015 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3016 	if (r) {
3017 		DMERR("%s: failed to retrieve data device size",
3018 		      dm_device_name(pool->pool_md));
3019 		return r;
3020 	}
3021 
3022 	if (data_size < sb_data_size) {
3023 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3024 		      dm_device_name(pool->pool_md),
3025 		      (unsigned long long)data_size, sb_data_size);
3026 		return -EINVAL;
3027 
3028 	} else if (data_size > sb_data_size) {
3029 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3030 			DMERR("%s: unable to grow the data device until repaired.",
3031 			      dm_device_name(pool->pool_md));
3032 			return 0;
3033 		}
3034 
3035 		if (sb_data_size)
3036 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3037 			       dm_device_name(pool->pool_md),
3038 			       sb_data_size, (unsigned long long)data_size);
3039 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3040 		if (r) {
3041 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3042 			return r;
3043 		}
3044 
3045 		*need_commit = true;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)3051 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3052 {
3053 	int r;
3054 	struct pool_c *pt = ti->private;
3055 	struct pool *pool = pt->pool;
3056 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3057 
3058 	*need_commit = false;
3059 
3060 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3061 
3062 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3063 	if (r) {
3064 		DMERR("%s: failed to retrieve metadata device size",
3065 		      dm_device_name(pool->pool_md));
3066 		return r;
3067 	}
3068 
3069 	if (metadata_dev_size < sb_metadata_dev_size) {
3070 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3071 		      dm_device_name(pool->pool_md),
3072 		      metadata_dev_size, sb_metadata_dev_size);
3073 		return -EINVAL;
3074 
3075 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3076 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3077 			DMERR("%s: unable to grow the metadata device until repaired.",
3078 			      dm_device_name(pool->pool_md));
3079 			return 0;
3080 		}
3081 
3082 		warn_if_metadata_device_too_big(pool->md_dev);
3083 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3084 		       dm_device_name(pool->pool_md),
3085 		       sb_metadata_dev_size, metadata_dev_size);
3086 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3087 		if (r) {
3088 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3089 			return r;
3090 		}
3091 
3092 		*need_commit = true;
3093 	}
3094 
3095 	return 0;
3096 }
3097 
3098 /*
3099  * Retrieves the number of blocks of the data device from
3100  * the superblock and compares it to the actual device size,
3101  * thus resizing the data device in case it has grown.
3102  *
3103  * This both copes with opening preallocated data devices in the ctr
3104  * being followed by a resume
3105  * -and-
3106  * calling the resume method individually after userspace has
3107  * grown the data device in reaction to a table event.
3108  */
pool_preresume(struct dm_target * ti)3109 static int pool_preresume(struct dm_target *ti)
3110 {
3111 	int r;
3112 	bool need_commit1, need_commit2;
3113 	struct pool_c *pt = ti->private;
3114 	struct pool *pool = pt->pool;
3115 
3116 	/*
3117 	 * Take control of the pool object.
3118 	 */
3119 	r = bind_control_target(pool, ti);
3120 	if (r)
3121 		return r;
3122 
3123 	r = maybe_resize_data_dev(ti, &need_commit1);
3124 	if (r)
3125 		return r;
3126 
3127 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3128 	if (r)
3129 		return r;
3130 
3131 	if (need_commit1 || need_commit2)
3132 		(void) commit(pool);
3133 
3134 	return 0;
3135 }
3136 
pool_suspend_active_thins(struct pool * pool)3137 static void pool_suspend_active_thins(struct pool *pool)
3138 {
3139 	struct thin_c *tc;
3140 
3141 	/* Suspend all active thin devices */
3142 	tc = get_first_thin(pool);
3143 	while (tc) {
3144 		dm_internal_suspend_noflush(tc->thin_md);
3145 		tc = get_next_thin(pool, tc);
3146 	}
3147 }
3148 
pool_resume_active_thins(struct pool * pool)3149 static void pool_resume_active_thins(struct pool *pool)
3150 {
3151 	struct thin_c *tc;
3152 
3153 	/* Resume all active thin devices */
3154 	tc = get_first_thin(pool);
3155 	while (tc) {
3156 		dm_internal_resume(tc->thin_md);
3157 		tc = get_next_thin(pool, tc);
3158 	}
3159 }
3160 
pool_resume(struct dm_target * ti)3161 static void pool_resume(struct dm_target *ti)
3162 {
3163 	struct pool_c *pt = ti->private;
3164 	struct pool *pool = pt->pool;
3165 	unsigned long flags;
3166 
3167 	/*
3168 	 * Must requeue active_thins' bios and then resume
3169 	 * active_thins _before_ clearing 'suspend' flag.
3170 	 */
3171 	requeue_bios(pool);
3172 	pool_resume_active_thins(pool);
3173 
3174 	spin_lock_irqsave(&pool->lock, flags);
3175 	pool->low_water_triggered = false;
3176 	pool->suspended = false;
3177 	spin_unlock_irqrestore(&pool->lock, flags);
3178 
3179 	do_waker(&pool->waker.work);
3180 }
3181 
pool_presuspend(struct dm_target * ti)3182 static void pool_presuspend(struct dm_target *ti)
3183 {
3184 	struct pool_c *pt = ti->private;
3185 	struct pool *pool = pt->pool;
3186 	unsigned long flags;
3187 
3188 	spin_lock_irqsave(&pool->lock, flags);
3189 	pool->suspended = true;
3190 	spin_unlock_irqrestore(&pool->lock, flags);
3191 
3192 	pool_suspend_active_thins(pool);
3193 }
3194 
pool_presuspend_undo(struct dm_target * ti)3195 static void pool_presuspend_undo(struct dm_target *ti)
3196 {
3197 	struct pool_c *pt = ti->private;
3198 	struct pool *pool = pt->pool;
3199 	unsigned long flags;
3200 
3201 	pool_resume_active_thins(pool);
3202 
3203 	spin_lock_irqsave(&pool->lock, flags);
3204 	pool->suspended = false;
3205 	spin_unlock_irqrestore(&pool->lock, flags);
3206 }
3207 
pool_postsuspend(struct dm_target * ti)3208 static void pool_postsuspend(struct dm_target *ti)
3209 {
3210 	struct pool_c *pt = ti->private;
3211 	struct pool *pool = pt->pool;
3212 
3213 	cancel_delayed_work_sync(&pool->waker);
3214 	cancel_delayed_work_sync(&pool->no_space_timeout);
3215 	flush_workqueue(pool->wq);
3216 	(void) commit(pool);
3217 }
3218 
check_arg_count(unsigned argc,unsigned args_required)3219 static int check_arg_count(unsigned argc, unsigned args_required)
3220 {
3221 	if (argc != args_required) {
3222 		DMWARN("Message received with %u arguments instead of %u.",
3223 		       argc, args_required);
3224 		return -EINVAL;
3225 	}
3226 
3227 	return 0;
3228 }
3229 
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)3230 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3231 {
3232 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3233 	    *dev_id <= MAX_DEV_ID)
3234 		return 0;
3235 
3236 	if (warning)
3237 		DMWARN("Message received with invalid device id: %s", arg);
3238 
3239 	return -EINVAL;
3240 }
3241 
process_create_thin_mesg(unsigned argc,char ** argv,struct pool * pool)3242 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3243 {
3244 	dm_thin_id dev_id;
3245 	int r;
3246 
3247 	r = check_arg_count(argc, 2);
3248 	if (r)
3249 		return r;
3250 
3251 	r = read_dev_id(argv[1], &dev_id, 1);
3252 	if (r)
3253 		return r;
3254 
3255 	r = dm_pool_create_thin(pool->pmd, dev_id);
3256 	if (r) {
3257 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3258 		       argv[1]);
3259 		return r;
3260 	}
3261 
3262 	return 0;
3263 }
3264 
process_create_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3265 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3266 {
3267 	dm_thin_id dev_id;
3268 	dm_thin_id origin_dev_id;
3269 	int r;
3270 
3271 	r = check_arg_count(argc, 3);
3272 	if (r)
3273 		return r;
3274 
3275 	r = read_dev_id(argv[1], &dev_id, 1);
3276 	if (r)
3277 		return r;
3278 
3279 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3280 	if (r)
3281 		return r;
3282 
3283 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3284 	if (r) {
3285 		DMWARN("Creation of new snapshot %s of device %s failed.",
3286 		       argv[1], argv[2]);
3287 		return r;
3288 	}
3289 
3290 	return 0;
3291 }
3292 
process_delete_mesg(unsigned argc,char ** argv,struct pool * pool)3293 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3294 {
3295 	dm_thin_id dev_id;
3296 	int r;
3297 
3298 	r = check_arg_count(argc, 2);
3299 	if (r)
3300 		return r;
3301 
3302 	r = read_dev_id(argv[1], &dev_id, 1);
3303 	if (r)
3304 		return r;
3305 
3306 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3307 	if (r)
3308 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3309 
3310 	return r;
3311 }
3312 
process_set_transaction_id_mesg(unsigned argc,char ** argv,struct pool * pool)3313 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3314 {
3315 	dm_thin_id old_id, new_id;
3316 	int r;
3317 
3318 	r = check_arg_count(argc, 3);
3319 	if (r)
3320 		return r;
3321 
3322 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3323 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3324 		return -EINVAL;
3325 	}
3326 
3327 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3328 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3329 		return -EINVAL;
3330 	}
3331 
3332 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3333 	if (r) {
3334 		DMWARN("Failed to change transaction id from %s to %s.",
3335 		       argv[1], argv[2]);
3336 		return r;
3337 	}
3338 
3339 	return 0;
3340 }
3341 
process_reserve_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3342 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3343 {
3344 	int r;
3345 
3346 	r = check_arg_count(argc, 1);
3347 	if (r)
3348 		return r;
3349 
3350 	(void) commit(pool);
3351 
3352 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3353 	if (r)
3354 		DMWARN("reserve_metadata_snap message failed.");
3355 
3356 	return r;
3357 }
3358 
process_release_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3359 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3360 {
3361 	int r;
3362 
3363 	r = check_arg_count(argc, 1);
3364 	if (r)
3365 		return r;
3366 
3367 	r = dm_pool_release_metadata_snap(pool->pmd);
3368 	if (r)
3369 		DMWARN("release_metadata_snap message failed.");
3370 
3371 	return r;
3372 }
3373 
3374 /*
3375  * Messages supported:
3376  *   create_thin	<dev_id>
3377  *   create_snap	<dev_id> <origin_id>
3378  *   delete		<dev_id>
3379  *   set_transaction_id <current_trans_id> <new_trans_id>
3380  *   reserve_metadata_snap
3381  *   release_metadata_snap
3382  */
pool_message(struct dm_target * ti,unsigned argc,char ** argv)3383 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3384 {
3385 	int r = -EINVAL;
3386 	struct pool_c *pt = ti->private;
3387 	struct pool *pool = pt->pool;
3388 
3389 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3390 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3391 		      dm_device_name(pool->pool_md));
3392 		return -EINVAL;
3393 	}
3394 
3395 	if (!strcasecmp(argv[0], "create_thin"))
3396 		r = process_create_thin_mesg(argc, argv, pool);
3397 
3398 	else if (!strcasecmp(argv[0], "create_snap"))
3399 		r = process_create_snap_mesg(argc, argv, pool);
3400 
3401 	else if (!strcasecmp(argv[0], "delete"))
3402 		r = process_delete_mesg(argc, argv, pool);
3403 
3404 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3405 		r = process_set_transaction_id_mesg(argc, argv, pool);
3406 
3407 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3408 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3409 
3410 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3411 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3412 
3413 	else
3414 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3415 
3416 	if (!r)
3417 		(void) commit(pool);
3418 
3419 	return r;
3420 }
3421 
emit_flags(struct pool_features * pf,char * result,unsigned sz,unsigned maxlen)3422 static void emit_flags(struct pool_features *pf, char *result,
3423 		       unsigned sz, unsigned maxlen)
3424 {
3425 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3426 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3427 		pf->error_if_no_space;
3428 	DMEMIT("%u ", count);
3429 
3430 	if (!pf->zero_new_blocks)
3431 		DMEMIT("skip_block_zeroing ");
3432 
3433 	if (!pf->discard_enabled)
3434 		DMEMIT("ignore_discard ");
3435 
3436 	if (!pf->discard_passdown)
3437 		DMEMIT("no_discard_passdown ");
3438 
3439 	if (pf->mode == PM_READ_ONLY)
3440 		DMEMIT("read_only ");
3441 
3442 	if (pf->error_if_no_space)
3443 		DMEMIT("error_if_no_space ");
3444 }
3445 
3446 /*
3447  * Status line is:
3448  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3449  *    <used data sectors>/<total data sectors> <held metadata root>
3450  */
pool_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3451 static void pool_status(struct dm_target *ti, status_type_t type,
3452 			unsigned status_flags, char *result, unsigned maxlen)
3453 {
3454 	int r;
3455 	unsigned sz = 0;
3456 	uint64_t transaction_id;
3457 	dm_block_t nr_free_blocks_data;
3458 	dm_block_t nr_free_blocks_metadata;
3459 	dm_block_t nr_blocks_data;
3460 	dm_block_t nr_blocks_metadata;
3461 	dm_block_t held_root;
3462 	char buf[BDEVNAME_SIZE];
3463 	char buf2[BDEVNAME_SIZE];
3464 	struct pool_c *pt = ti->private;
3465 	struct pool *pool = pt->pool;
3466 
3467 	switch (type) {
3468 	case STATUSTYPE_INFO:
3469 		if (get_pool_mode(pool) == PM_FAIL) {
3470 			DMEMIT("Fail");
3471 			break;
3472 		}
3473 
3474 		/* Commit to ensure statistics aren't out-of-date */
3475 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3476 			(void) commit(pool);
3477 
3478 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3479 		if (r) {
3480 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3481 			      dm_device_name(pool->pool_md), r);
3482 			goto err;
3483 		}
3484 
3485 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3486 		if (r) {
3487 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3488 			      dm_device_name(pool->pool_md), r);
3489 			goto err;
3490 		}
3491 
3492 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3493 		if (r) {
3494 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3495 			      dm_device_name(pool->pool_md), r);
3496 			goto err;
3497 		}
3498 
3499 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3500 		if (r) {
3501 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3502 			      dm_device_name(pool->pool_md), r);
3503 			goto err;
3504 		}
3505 
3506 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3507 		if (r) {
3508 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3509 			      dm_device_name(pool->pool_md), r);
3510 			goto err;
3511 		}
3512 
3513 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3514 		if (r) {
3515 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3516 			      dm_device_name(pool->pool_md), r);
3517 			goto err;
3518 		}
3519 
3520 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3521 		       (unsigned long long)transaction_id,
3522 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3523 		       (unsigned long long)nr_blocks_metadata,
3524 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3525 		       (unsigned long long)nr_blocks_data);
3526 
3527 		if (held_root)
3528 			DMEMIT("%llu ", held_root);
3529 		else
3530 			DMEMIT("- ");
3531 
3532 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3533 			DMEMIT("out_of_data_space ");
3534 		else if (pool->pf.mode == PM_READ_ONLY)
3535 			DMEMIT("ro ");
3536 		else
3537 			DMEMIT("rw ");
3538 
3539 		if (!pool->pf.discard_enabled)
3540 			DMEMIT("ignore_discard ");
3541 		else if (pool->pf.discard_passdown)
3542 			DMEMIT("discard_passdown ");
3543 		else
3544 			DMEMIT("no_discard_passdown ");
3545 
3546 		if (pool->pf.error_if_no_space)
3547 			DMEMIT("error_if_no_space ");
3548 		else
3549 			DMEMIT("queue_if_no_space ");
3550 
3551 		break;
3552 
3553 	case STATUSTYPE_TABLE:
3554 		DMEMIT("%s %s %lu %llu ",
3555 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3556 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3557 		       (unsigned long)pool->sectors_per_block,
3558 		       (unsigned long long)pt->low_water_blocks);
3559 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3560 		break;
3561 	}
3562 	return;
3563 
3564 err:
3565 	DMEMIT("Error");
3566 }
3567 
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3568 static int pool_iterate_devices(struct dm_target *ti,
3569 				iterate_devices_callout_fn fn, void *data)
3570 {
3571 	struct pool_c *pt = ti->private;
3572 
3573 	return fn(ti, pt->data_dev, 0, ti->len, data);
3574 }
3575 
pool_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)3576 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3577 		      struct bio_vec *biovec, int max_size)
3578 {
3579 	struct pool_c *pt = ti->private;
3580 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3581 
3582 	if (!q->merge_bvec_fn)
3583 		return max_size;
3584 
3585 	bvm->bi_bdev = pt->data_dev->bdev;
3586 
3587 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3588 }
3589 
set_discard_limits(struct pool_c * pt,struct queue_limits * limits)3590 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3591 {
3592 	struct pool *pool = pt->pool;
3593 	struct queue_limits *data_limits;
3594 
3595 	limits->max_discard_sectors = pool->sectors_per_block;
3596 
3597 	/*
3598 	 * discard_granularity is just a hint, and not enforced.
3599 	 */
3600 	if (pt->adjusted_pf.discard_passdown) {
3601 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3602 		limits->discard_granularity = max(data_limits->discard_granularity,
3603 						  pool->sectors_per_block << SECTOR_SHIFT);
3604 	} else
3605 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3606 }
3607 
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)3608 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3609 {
3610 	struct pool_c *pt = ti->private;
3611 	struct pool *pool = pt->pool;
3612 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3613 
3614 	/*
3615 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3616 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3617 	 * This is especially beneficial when the pool's data device is a RAID
3618 	 * device that has a full stripe width that matches pool->sectors_per_block
3619 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3620 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3621 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3622 	 */
3623 	if (limits->max_sectors < pool->sectors_per_block) {
3624 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3625 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3626 				limits->max_sectors--;
3627 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3628 		}
3629 	}
3630 
3631 	/*
3632 	 * If the system-determined stacked limits are compatible with the
3633 	 * pool's blocksize (io_opt is a factor) do not override them.
3634 	 */
3635 	if (io_opt_sectors < pool->sectors_per_block ||
3636 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3637 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3638 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3639 		else
3640 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3641 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3642 	}
3643 
3644 	/*
3645 	 * pt->adjusted_pf is a staging area for the actual features to use.
3646 	 * They get transferred to the live pool in bind_control_target()
3647 	 * called from pool_preresume().
3648 	 */
3649 	if (!pt->adjusted_pf.discard_enabled) {
3650 		/*
3651 		 * Must explicitly disallow stacking discard limits otherwise the
3652 		 * block layer will stack them if pool's data device has support.
3653 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3654 		 * user to see that, so make sure to set all discard limits to 0.
3655 		 */
3656 		limits->discard_granularity = 0;
3657 		return;
3658 	}
3659 
3660 	disable_passdown_if_not_supported(pt);
3661 
3662 	set_discard_limits(pt, limits);
3663 }
3664 
3665 static struct target_type pool_target = {
3666 	.name = "thin-pool",
3667 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3668 		    DM_TARGET_IMMUTABLE,
3669 	.version = {1, 14, 0},
3670 	.module = THIS_MODULE,
3671 	.ctr = pool_ctr,
3672 	.dtr = pool_dtr,
3673 	.map = pool_map,
3674 	.presuspend = pool_presuspend,
3675 	.presuspend_undo = pool_presuspend_undo,
3676 	.postsuspend = pool_postsuspend,
3677 	.preresume = pool_preresume,
3678 	.resume = pool_resume,
3679 	.message = pool_message,
3680 	.status = pool_status,
3681 	.merge = pool_merge,
3682 	.iterate_devices = pool_iterate_devices,
3683 	.io_hints = pool_io_hints,
3684 };
3685 
3686 /*----------------------------------------------------------------
3687  * Thin target methods
3688  *--------------------------------------------------------------*/
thin_get(struct thin_c * tc)3689 static void thin_get(struct thin_c *tc)
3690 {
3691 	atomic_inc(&tc->refcount);
3692 }
3693 
thin_put(struct thin_c * tc)3694 static void thin_put(struct thin_c *tc)
3695 {
3696 	if (atomic_dec_and_test(&tc->refcount))
3697 		complete(&tc->can_destroy);
3698 }
3699 
thin_dtr(struct dm_target * ti)3700 static void thin_dtr(struct dm_target *ti)
3701 {
3702 	struct thin_c *tc = ti->private;
3703 	unsigned long flags;
3704 
3705 	spin_lock_irqsave(&tc->pool->lock, flags);
3706 	list_del_rcu(&tc->list);
3707 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3708 	synchronize_rcu();
3709 
3710 	thin_put(tc);
3711 	wait_for_completion(&tc->can_destroy);
3712 
3713 	mutex_lock(&dm_thin_pool_table.mutex);
3714 
3715 	__pool_dec(tc->pool);
3716 	dm_pool_close_thin_device(tc->td);
3717 	dm_put_device(ti, tc->pool_dev);
3718 	if (tc->origin_dev)
3719 		dm_put_device(ti, tc->origin_dev);
3720 	kfree(tc);
3721 
3722 	mutex_unlock(&dm_thin_pool_table.mutex);
3723 }
3724 
3725 /*
3726  * Thin target parameters:
3727  *
3728  * <pool_dev> <dev_id> [origin_dev]
3729  *
3730  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3731  * dev_id: the internal device identifier
3732  * origin_dev: a device external to the pool that should act as the origin
3733  *
3734  * If the pool device has discards disabled, they get disabled for the thin
3735  * device as well.
3736  */
thin_ctr(struct dm_target * ti,unsigned argc,char ** argv)3737 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3738 {
3739 	int r;
3740 	struct thin_c *tc;
3741 	struct dm_dev *pool_dev, *origin_dev;
3742 	struct mapped_device *pool_md;
3743 	unsigned long flags;
3744 
3745 	mutex_lock(&dm_thin_pool_table.mutex);
3746 
3747 	if (argc != 2 && argc != 3) {
3748 		ti->error = "Invalid argument count";
3749 		r = -EINVAL;
3750 		goto out_unlock;
3751 	}
3752 
3753 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3754 	if (!tc) {
3755 		ti->error = "Out of memory";
3756 		r = -ENOMEM;
3757 		goto out_unlock;
3758 	}
3759 	tc->thin_md = dm_table_get_md(ti->table);
3760 	spin_lock_init(&tc->lock);
3761 	INIT_LIST_HEAD(&tc->deferred_cells);
3762 	bio_list_init(&tc->deferred_bio_list);
3763 	bio_list_init(&tc->retry_on_resume_list);
3764 	tc->sort_bio_list = RB_ROOT;
3765 
3766 	if (argc == 3) {
3767 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3768 		if (r) {
3769 			ti->error = "Error opening origin device";
3770 			goto bad_origin_dev;
3771 		}
3772 		tc->origin_dev = origin_dev;
3773 	}
3774 
3775 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3776 	if (r) {
3777 		ti->error = "Error opening pool device";
3778 		goto bad_pool_dev;
3779 	}
3780 	tc->pool_dev = pool_dev;
3781 
3782 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3783 		ti->error = "Invalid device id";
3784 		r = -EINVAL;
3785 		goto bad_common;
3786 	}
3787 
3788 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3789 	if (!pool_md) {
3790 		ti->error = "Couldn't get pool mapped device";
3791 		r = -EINVAL;
3792 		goto bad_common;
3793 	}
3794 
3795 	tc->pool = __pool_table_lookup(pool_md);
3796 	if (!tc->pool) {
3797 		ti->error = "Couldn't find pool object";
3798 		r = -EINVAL;
3799 		goto bad_pool_lookup;
3800 	}
3801 	__pool_inc(tc->pool);
3802 
3803 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3804 		ti->error = "Couldn't open thin device, Pool is in fail mode";
3805 		r = -EINVAL;
3806 		goto bad_pool;
3807 	}
3808 
3809 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3810 	if (r) {
3811 		ti->error = "Couldn't open thin internal device";
3812 		goto bad_pool;
3813 	}
3814 
3815 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3816 	if (r)
3817 		goto bad;
3818 
3819 	ti->num_flush_bios = 1;
3820 	ti->flush_supported = true;
3821 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3822 
3823 	/* In case the pool supports discards, pass them on. */
3824 	ti->discard_zeroes_data_unsupported = true;
3825 	if (tc->pool->pf.discard_enabled) {
3826 		ti->discards_supported = true;
3827 		ti->num_discard_bios = 1;
3828 		/* Discard bios must be split on a block boundary */
3829 		ti->split_discard_bios = true;
3830 	}
3831 
3832 	mutex_unlock(&dm_thin_pool_table.mutex);
3833 
3834 	spin_lock_irqsave(&tc->pool->lock, flags);
3835 	if (tc->pool->suspended) {
3836 		spin_unlock_irqrestore(&tc->pool->lock, flags);
3837 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3838 		ti->error = "Unable to activate thin device while pool is suspended";
3839 		r = -EINVAL;
3840 		goto bad;
3841 	}
3842 	atomic_set(&tc->refcount, 1);
3843 	init_completion(&tc->can_destroy);
3844 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3845 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3846 	/*
3847 	 * This synchronize_rcu() call is needed here otherwise we risk a
3848 	 * wake_worker() call finding no bios to process (because the newly
3849 	 * added tc isn't yet visible).  So this reduces latency since we
3850 	 * aren't then dependent on the periodic commit to wake_worker().
3851 	 */
3852 	synchronize_rcu();
3853 
3854 	dm_put(pool_md);
3855 
3856 	return 0;
3857 
3858 bad:
3859 	dm_pool_close_thin_device(tc->td);
3860 bad_pool:
3861 	__pool_dec(tc->pool);
3862 bad_pool_lookup:
3863 	dm_put(pool_md);
3864 bad_common:
3865 	dm_put_device(ti, tc->pool_dev);
3866 bad_pool_dev:
3867 	if (tc->origin_dev)
3868 		dm_put_device(ti, tc->origin_dev);
3869 bad_origin_dev:
3870 	kfree(tc);
3871 out_unlock:
3872 	mutex_unlock(&dm_thin_pool_table.mutex);
3873 
3874 	return r;
3875 }
3876 
thin_map(struct dm_target * ti,struct bio * bio)3877 static int thin_map(struct dm_target *ti, struct bio *bio)
3878 {
3879 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3880 
3881 	return thin_bio_map(ti, bio);
3882 }
3883 
thin_endio(struct dm_target * ti,struct bio * bio,int err)3884 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3885 {
3886 	unsigned long flags;
3887 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3888 	struct list_head work;
3889 	struct dm_thin_new_mapping *m, *tmp;
3890 	struct pool *pool = h->tc->pool;
3891 
3892 	if (h->shared_read_entry) {
3893 		INIT_LIST_HEAD(&work);
3894 		dm_deferred_entry_dec(h->shared_read_entry, &work);
3895 
3896 		spin_lock_irqsave(&pool->lock, flags);
3897 		list_for_each_entry_safe(m, tmp, &work, list) {
3898 			list_del(&m->list);
3899 			__complete_mapping_preparation(m);
3900 		}
3901 		spin_unlock_irqrestore(&pool->lock, flags);
3902 	}
3903 
3904 	if (h->all_io_entry) {
3905 		INIT_LIST_HEAD(&work);
3906 		dm_deferred_entry_dec(h->all_io_entry, &work);
3907 		if (!list_empty(&work)) {
3908 			spin_lock_irqsave(&pool->lock, flags);
3909 			list_for_each_entry_safe(m, tmp, &work, list)
3910 				list_add_tail(&m->list, &pool->prepared_discards);
3911 			spin_unlock_irqrestore(&pool->lock, flags);
3912 			wake_worker(pool);
3913 		}
3914 	}
3915 
3916 	return 0;
3917 }
3918 
thin_presuspend(struct dm_target * ti)3919 static void thin_presuspend(struct dm_target *ti)
3920 {
3921 	struct thin_c *tc = ti->private;
3922 
3923 	if (dm_noflush_suspending(ti))
3924 		noflush_work(tc, do_noflush_start);
3925 }
3926 
thin_postsuspend(struct dm_target * ti)3927 static void thin_postsuspend(struct dm_target *ti)
3928 {
3929 	struct thin_c *tc = ti->private;
3930 
3931 	/*
3932 	 * The dm_noflush_suspending flag has been cleared by now, so
3933 	 * unfortunately we must always run this.
3934 	 */
3935 	noflush_work(tc, do_noflush_stop);
3936 }
3937 
thin_preresume(struct dm_target * ti)3938 static int thin_preresume(struct dm_target *ti)
3939 {
3940 	struct thin_c *tc = ti->private;
3941 
3942 	if (tc->origin_dev)
3943 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3944 
3945 	return 0;
3946 }
3947 
3948 /*
3949  * <nr mapped sectors> <highest mapped sector>
3950  */
thin_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3951 static void thin_status(struct dm_target *ti, status_type_t type,
3952 			unsigned status_flags, char *result, unsigned maxlen)
3953 {
3954 	int r;
3955 	ssize_t sz = 0;
3956 	dm_block_t mapped, highest;
3957 	char buf[BDEVNAME_SIZE];
3958 	struct thin_c *tc = ti->private;
3959 
3960 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3961 		DMEMIT("Fail");
3962 		return;
3963 	}
3964 
3965 	if (!tc->td)
3966 		DMEMIT("-");
3967 	else {
3968 		switch (type) {
3969 		case STATUSTYPE_INFO:
3970 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3971 			if (r) {
3972 				DMERR("dm_thin_get_mapped_count returned %d", r);
3973 				goto err;
3974 			}
3975 
3976 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3977 			if (r < 0) {
3978 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3979 				goto err;
3980 			}
3981 
3982 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3983 			if (r)
3984 				DMEMIT("%llu", ((highest + 1) *
3985 						tc->pool->sectors_per_block) - 1);
3986 			else
3987 				DMEMIT("-");
3988 			break;
3989 
3990 		case STATUSTYPE_TABLE:
3991 			DMEMIT("%s %lu",
3992 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3993 			       (unsigned long) tc->dev_id);
3994 			if (tc->origin_dev)
3995 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3996 			break;
3997 		}
3998 	}
3999 
4000 	return;
4001 
4002 err:
4003 	DMEMIT("Error");
4004 }
4005 
thin_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)4006 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4007 		      struct bio_vec *biovec, int max_size)
4008 {
4009 	struct thin_c *tc = ti->private;
4010 	struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4011 
4012 	if (!q->merge_bvec_fn)
4013 		return max_size;
4014 
4015 	bvm->bi_bdev = tc->pool_dev->bdev;
4016 	bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4017 
4018 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4019 }
4020 
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4021 static int thin_iterate_devices(struct dm_target *ti,
4022 				iterate_devices_callout_fn fn, void *data)
4023 {
4024 	sector_t blocks;
4025 	struct thin_c *tc = ti->private;
4026 	struct pool *pool = tc->pool;
4027 
4028 	/*
4029 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4030 	 * we follow a more convoluted path through to the pool's target.
4031 	 */
4032 	if (!pool->ti)
4033 		return 0;	/* nothing is bound */
4034 
4035 	blocks = pool->ti->len;
4036 	(void) sector_div(blocks, pool->sectors_per_block);
4037 	if (blocks)
4038 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4039 
4040 	return 0;
4041 }
4042 
4043 static struct target_type thin_target = {
4044 	.name = "thin",
4045 	.version = {1, 14, 0},
4046 	.module	= THIS_MODULE,
4047 	.ctr = thin_ctr,
4048 	.dtr = thin_dtr,
4049 	.map = thin_map,
4050 	.end_io = thin_endio,
4051 	.preresume = thin_preresume,
4052 	.presuspend = thin_presuspend,
4053 	.postsuspend = thin_postsuspend,
4054 	.status = thin_status,
4055 	.merge = thin_merge,
4056 	.iterate_devices = thin_iterate_devices,
4057 };
4058 
4059 /*----------------------------------------------------------------*/
4060 
dm_thin_init(void)4061 static int __init dm_thin_init(void)
4062 {
4063 	int r;
4064 
4065 	pool_table_init();
4066 
4067 	r = dm_register_target(&thin_target);
4068 	if (r)
4069 		return r;
4070 
4071 	r = dm_register_target(&pool_target);
4072 	if (r)
4073 		goto bad_pool_target;
4074 
4075 	r = -ENOMEM;
4076 
4077 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4078 	if (!_new_mapping_cache)
4079 		goto bad_new_mapping_cache;
4080 
4081 	return 0;
4082 
4083 bad_new_mapping_cache:
4084 	dm_unregister_target(&pool_target);
4085 bad_pool_target:
4086 	dm_unregister_target(&thin_target);
4087 
4088 	return r;
4089 }
4090 
dm_thin_exit(void)4091 static void dm_thin_exit(void)
4092 {
4093 	dm_unregister_target(&thin_target);
4094 	dm_unregister_target(&pool_target);
4095 
4096 	kmem_cache_destroy(_new_mapping_cache);
4097 }
4098 
4099 module_init(dm_thin_init);
4100 module_exit(dm_thin_exit);
4101 
4102 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4103 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4104 
4105 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4106 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4107 MODULE_LICENSE("GPL");
4108