1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49 
50 #include <asm/uaccess.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 
58 int console_printk[4] = {
59 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
60 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
61 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
63 };
64 
65 /*
66  * Low level drivers may need that to know if they can schedule in
67  * their unblank() callback or not. So let's export it.
68  */
69 int oops_in_progress;
70 EXPORT_SYMBOL(oops_in_progress);
71 
72 /*
73  * console_sem protects the console_drivers list, and also
74  * provides serialisation for access to the entire console
75  * driver system.
76  */
77 static DEFINE_SEMAPHORE(console_sem);
78 struct console *console_drivers;
79 EXPORT_SYMBOL_GPL(console_drivers);
80 
81 #ifdef CONFIG_LOCKDEP
82 static struct lockdep_map console_lock_dep_map = {
83 	.name = "console_lock"
84 };
85 #endif
86 
87 /*
88  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
89  * macros instead of functions so that _RET_IP_ contains useful information.
90  */
91 #define down_console_sem() do { \
92 	down(&console_sem);\
93 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
94 } while (0)
95 
__down_trylock_console_sem(unsigned long ip)96 static int __down_trylock_console_sem(unsigned long ip)
97 {
98 	if (down_trylock(&console_sem))
99 		return 1;
100 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
101 	return 0;
102 }
103 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
104 
105 #define up_console_sem() do { \
106 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
107 	up(&console_sem);\
108 } while (0)
109 
110 /*
111  * This is used for debugging the mess that is the VT code by
112  * keeping track if we have the console semaphore held. It's
113  * definitely not the perfect debug tool (we don't know if _WE_
114  * hold it and are racing, but it helps tracking those weird code
115  * paths in the console code where we end up in places I want
116  * locked without the console sempahore held).
117  */
118 static int console_locked, console_suspended;
119 
120 /*
121  * If exclusive_console is non-NULL then only this console is to be printed to.
122  */
123 static struct console *exclusive_console;
124 
125 /*
126  *	Array of consoles built from command line options (console=)
127  */
128 
129 #define MAX_CMDLINECONSOLES 8
130 
131 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
132 
133 static int selected_console = -1;
134 static int preferred_console = -1;
135 int console_set_on_cmdline;
136 EXPORT_SYMBOL(console_set_on_cmdline);
137 
138 /* Flag: console code may call schedule() */
139 static int console_may_schedule;
140 
141 /*
142  * The printk log buffer consists of a chain of concatenated variable
143  * length records. Every record starts with a record header, containing
144  * the overall length of the record.
145  *
146  * The heads to the first and last entry in the buffer, as well as the
147  * sequence numbers of these entries are maintained when messages are
148  * stored.
149  *
150  * If the heads indicate available messages, the length in the header
151  * tells the start next message. A length == 0 for the next message
152  * indicates a wrap-around to the beginning of the buffer.
153  *
154  * Every record carries the monotonic timestamp in microseconds, as well as
155  * the standard userspace syslog level and syslog facility. The usual
156  * kernel messages use LOG_KERN; userspace-injected messages always carry
157  * a matching syslog facility, by default LOG_USER. The origin of every
158  * message can be reliably determined that way.
159  *
160  * The human readable log message directly follows the message header. The
161  * length of the message text is stored in the header, the stored message
162  * is not terminated.
163  *
164  * Optionally, a message can carry a dictionary of properties (key/value pairs),
165  * to provide userspace with a machine-readable message context.
166  *
167  * Examples for well-defined, commonly used property names are:
168  *   DEVICE=b12:8               device identifier
169  *                                b12:8         block dev_t
170  *                                c127:3        char dev_t
171  *                                n8            netdev ifindex
172  *                                +sound:card0  subsystem:devname
173  *   SUBSYSTEM=pci              driver-core subsystem name
174  *
175  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
176  * follows directly after a '=' character. Every property is terminated by
177  * a '\0' character. The last property is not terminated.
178  *
179  * Example of a message structure:
180  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
181  *   0008  34 00                        record is 52 bytes long
182  *   000a        0b 00                  text is 11 bytes long
183  *   000c              1f 00            dictionary is 23 bytes long
184  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
185  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
186  *         69 6e 65                     "ine"
187  *   001b           44 45 56 49 43      "DEVIC"
188  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
189  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
190  *         67                           "g"
191  *   0032     00 00 00                  padding to next message header
192  *
193  * The 'struct printk_log' buffer header must never be directly exported to
194  * userspace, it is a kernel-private implementation detail that might
195  * need to be changed in the future, when the requirements change.
196  *
197  * /dev/kmsg exports the structured data in the following line format:
198  *   "level,sequnum,timestamp;<message text>\n"
199  *
200  * The optional key/value pairs are attached as continuation lines starting
201  * with a space character and terminated by a newline. All possible
202  * non-prinatable characters are escaped in the "\xff" notation.
203  *
204  * Users of the export format should ignore possible additional values
205  * separated by ',', and find the message after the ';' character.
206  */
207 
208 enum log_flags {
209 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
210 	LOG_NEWLINE	= 2,	/* text ended with a newline */
211 	LOG_PREFIX	= 4,	/* text started with a prefix */
212 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
213 };
214 
215 struct printk_log {
216 	u64 ts_nsec;		/* timestamp in nanoseconds */
217 	u16 len;		/* length of entire record */
218 	u16 text_len;		/* length of text buffer */
219 	u16 dict_len;		/* length of dictionary buffer */
220 	u8 facility;		/* syslog facility */
221 	u8 flags:5;		/* internal record flags */
222 	u8 level:3;		/* syslog level */
223 };
224 
225 /*
226  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
227  * within the scheduler's rq lock. It must be released before calling
228  * console_unlock() or anything else that might wake up a process.
229  */
230 static DEFINE_RAW_SPINLOCK(logbuf_lock);
231 
232 #ifdef CONFIG_PRINTK
233 DECLARE_WAIT_QUEUE_HEAD(log_wait);
234 /* the next printk record to read by syslog(READ) or /proc/kmsg */
235 static u64 syslog_seq;
236 static u32 syslog_idx;
237 static enum log_flags syslog_prev;
238 static size_t syslog_partial;
239 
240 /* index and sequence number of the first record stored in the buffer */
241 static u64 log_first_seq;
242 static u32 log_first_idx;
243 
244 /* index and sequence number of the next record to store in the buffer */
245 static u64 log_next_seq;
246 static u32 log_next_idx;
247 
248 /* the next printk record to write to the console */
249 static u64 console_seq;
250 static u32 console_idx;
251 static enum log_flags console_prev;
252 
253 /* the next printk record to read after the last 'clear' command */
254 static u64 clear_seq;
255 static u32 clear_idx;
256 
257 #define PREFIX_MAX		32
258 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
259 
260 /* record buffer */
261 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
262 #define LOG_ALIGN 4
263 #else
264 #define LOG_ALIGN __alignof__(struct printk_log)
265 #endif
266 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
267 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
268 static char *log_buf = __log_buf;
269 static u32 log_buf_len = __LOG_BUF_LEN;
270 
271 /* Return log buffer address */
log_buf_addr_get(void)272 char *log_buf_addr_get(void)
273 {
274 	return log_buf;
275 }
276 
277 /* Return log buffer size */
log_buf_len_get(void)278 u32 log_buf_len_get(void)
279 {
280 	return log_buf_len;
281 }
282 
283 /* human readable text of the record */
log_text(const struct printk_log * msg)284 static char *log_text(const struct printk_log *msg)
285 {
286 	return (char *)msg + sizeof(struct printk_log);
287 }
288 
289 /* optional key/value pair dictionary attached to the record */
log_dict(const struct printk_log * msg)290 static char *log_dict(const struct printk_log *msg)
291 {
292 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
293 }
294 
295 /* get record by index; idx must point to valid msg */
log_from_idx(u32 idx)296 static struct printk_log *log_from_idx(u32 idx)
297 {
298 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
299 
300 	/*
301 	 * A length == 0 record is the end of buffer marker. Wrap around and
302 	 * read the message at the start of the buffer.
303 	 */
304 	if (!msg->len)
305 		return (struct printk_log *)log_buf;
306 	return msg;
307 }
308 
309 /* get next record; idx must point to valid msg */
log_next(u32 idx)310 static u32 log_next(u32 idx)
311 {
312 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
313 
314 	/* length == 0 indicates the end of the buffer; wrap */
315 	/*
316 	 * A length == 0 record is the end of buffer marker. Wrap around and
317 	 * read the message at the start of the buffer as *this* one, and
318 	 * return the one after that.
319 	 */
320 	if (!msg->len) {
321 		msg = (struct printk_log *)log_buf;
322 		return msg->len;
323 	}
324 	return idx + msg->len;
325 }
326 
327 /*
328  * Check whether there is enough free space for the given message.
329  *
330  * The same values of first_idx and next_idx mean that the buffer
331  * is either empty or full.
332  *
333  * If the buffer is empty, we must respect the position of the indexes.
334  * They cannot be reset to the beginning of the buffer.
335  */
logbuf_has_space(u32 msg_size,bool empty)336 static int logbuf_has_space(u32 msg_size, bool empty)
337 {
338 	u32 free;
339 
340 	if (log_next_idx > log_first_idx || empty)
341 		free = max(log_buf_len - log_next_idx, log_first_idx);
342 	else
343 		free = log_first_idx - log_next_idx;
344 
345 	/*
346 	 * We need space also for an empty header that signalizes wrapping
347 	 * of the buffer.
348 	 */
349 	return free >= msg_size + sizeof(struct printk_log);
350 }
351 
log_make_free_space(u32 msg_size)352 static int log_make_free_space(u32 msg_size)
353 {
354 	while (log_first_seq < log_next_seq) {
355 		if (logbuf_has_space(msg_size, false))
356 			return 0;
357 		/* drop old messages until we have enough contiguous space */
358 		log_first_idx = log_next(log_first_idx);
359 		log_first_seq++;
360 	}
361 
362 	/* sequence numbers are equal, so the log buffer is empty */
363 	if (logbuf_has_space(msg_size, true))
364 		return 0;
365 
366 	return -ENOMEM;
367 }
368 
369 /* compute the message size including the padding bytes */
msg_used_size(u16 text_len,u16 dict_len,u32 * pad_len)370 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
371 {
372 	u32 size;
373 
374 	size = sizeof(struct printk_log) + text_len + dict_len;
375 	*pad_len = (-size) & (LOG_ALIGN - 1);
376 	size += *pad_len;
377 
378 	return size;
379 }
380 
381 /*
382  * Define how much of the log buffer we could take at maximum. The value
383  * must be greater than two. Note that only half of the buffer is available
384  * when the index points to the middle.
385  */
386 #define MAX_LOG_TAKE_PART 4
387 static const char trunc_msg[] = "<truncated>";
388 
truncate_msg(u16 * text_len,u16 * trunc_msg_len,u16 * dict_len,u32 * pad_len)389 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
390 			u16 *dict_len, u32 *pad_len)
391 {
392 	/*
393 	 * The message should not take the whole buffer. Otherwise, it might
394 	 * get removed too soon.
395 	 */
396 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
397 	if (*text_len > max_text_len)
398 		*text_len = max_text_len;
399 	/* enable the warning message */
400 	*trunc_msg_len = strlen(trunc_msg);
401 	/* disable the "dict" completely */
402 	*dict_len = 0;
403 	/* compute the size again, count also the warning message */
404 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
405 }
406 
407 /* insert record into the buffer, discard old ones, update heads */
log_store(int facility,int level,enum log_flags flags,u64 ts_nsec,const char * dict,u16 dict_len,const char * text,u16 text_len)408 static int log_store(int facility, int level,
409 		     enum log_flags flags, u64 ts_nsec,
410 		     const char *dict, u16 dict_len,
411 		     const char *text, u16 text_len)
412 {
413 	struct printk_log *msg;
414 	u32 size, pad_len;
415 	u16 trunc_msg_len = 0;
416 
417 	/* number of '\0' padding bytes to next message */
418 	size = msg_used_size(text_len, dict_len, &pad_len);
419 
420 	if (log_make_free_space(size)) {
421 		/* truncate the message if it is too long for empty buffer */
422 		size = truncate_msg(&text_len, &trunc_msg_len,
423 				    &dict_len, &pad_len);
424 		/* survive when the log buffer is too small for trunc_msg */
425 		if (log_make_free_space(size))
426 			return 0;
427 	}
428 
429 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
430 		/*
431 		 * This message + an additional empty header does not fit
432 		 * at the end of the buffer. Add an empty header with len == 0
433 		 * to signify a wrap around.
434 		 */
435 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
436 		log_next_idx = 0;
437 	}
438 
439 	/* fill message */
440 	msg = (struct printk_log *)(log_buf + log_next_idx);
441 	memcpy(log_text(msg), text, text_len);
442 	msg->text_len = text_len;
443 	if (trunc_msg_len) {
444 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
445 		msg->text_len += trunc_msg_len;
446 	}
447 	memcpy(log_dict(msg), dict, dict_len);
448 	msg->dict_len = dict_len;
449 	msg->facility = facility;
450 	msg->level = level & 7;
451 	msg->flags = flags & 0x1f;
452 	if (ts_nsec > 0)
453 		msg->ts_nsec = ts_nsec;
454 	else
455 		msg->ts_nsec = local_clock();
456 	memset(log_dict(msg) + dict_len, 0, pad_len);
457 	msg->len = size;
458 
459 	/* insert message */
460 	log_next_idx += msg->len;
461 	log_next_seq++;
462 
463 	return msg->text_len;
464 }
465 
466 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
467 
syslog_action_restricted(int type)468 static int syslog_action_restricted(int type)
469 {
470 	if (dmesg_restrict)
471 		return 1;
472 	/*
473 	 * Unless restricted, we allow "read all" and "get buffer size"
474 	 * for everybody.
475 	 */
476 	return type != SYSLOG_ACTION_READ_ALL &&
477 	       type != SYSLOG_ACTION_SIZE_BUFFER;
478 }
479 
check_syslog_permissions(int type,bool from_file)480 int check_syslog_permissions(int type, bool from_file)
481 {
482 	/*
483 	 * If this is from /proc/kmsg and we've already opened it, then we've
484 	 * already done the capabilities checks at open time.
485 	 */
486 	if (from_file && type != SYSLOG_ACTION_OPEN)
487 		goto ok;
488 
489 	if (syslog_action_restricted(type)) {
490 		if (capable(CAP_SYSLOG))
491 			goto ok;
492 		/*
493 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
494 		 * a warning.
495 		 */
496 		if (capable(CAP_SYS_ADMIN)) {
497 			pr_warn_once("%s (%d): Attempt to access syslog with "
498 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
499 				     "(deprecated).\n",
500 				 current->comm, task_pid_nr(current));
501 			goto ok;
502 		}
503 		return -EPERM;
504 	}
505 ok:
506 	return security_syslog(type);
507 }
508 
509 
510 /* /dev/kmsg - userspace message inject/listen interface */
511 struct devkmsg_user {
512 	u64 seq;
513 	u32 idx;
514 	enum log_flags prev;
515 	struct mutex lock;
516 	char buf[8192];
517 };
518 
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)519 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
520 {
521 	char *buf, *line;
522 	int i;
523 	int level = default_message_loglevel;
524 	int facility = 1;	/* LOG_USER */
525 	size_t len = iov_iter_count(from);
526 	ssize_t ret = len;
527 
528 	if (len > LOG_LINE_MAX)
529 		return -EINVAL;
530 	buf = kmalloc(len+1, GFP_KERNEL);
531 	if (buf == NULL)
532 		return -ENOMEM;
533 
534 	buf[len] = '\0';
535 	if (copy_from_iter(buf, len, from) != len) {
536 		kfree(buf);
537 		return -EFAULT;
538 	}
539 
540 	/*
541 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
542 	 * the decimal value represents 32bit, the lower 3 bit are the log
543 	 * level, the rest are the log facility.
544 	 *
545 	 * If no prefix or no userspace facility is specified, we
546 	 * enforce LOG_USER, to be able to reliably distinguish
547 	 * kernel-generated messages from userspace-injected ones.
548 	 */
549 	line = buf;
550 	if (line[0] == '<') {
551 		char *endp = NULL;
552 
553 		i = simple_strtoul(line+1, &endp, 10);
554 		if (endp && endp[0] == '>') {
555 			level = i & 7;
556 			if (i >> 3)
557 				facility = i >> 3;
558 			endp++;
559 			len -= endp - line;
560 			line = endp;
561 		}
562 	}
563 
564 	printk_emit(facility, level, NULL, 0, "%s", line);
565 	kfree(buf);
566 	return ret;
567 }
568 
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)569 static ssize_t devkmsg_read(struct file *file, char __user *buf,
570 			    size_t count, loff_t *ppos)
571 {
572 	struct devkmsg_user *user = file->private_data;
573 	struct printk_log *msg;
574 	u64 ts_usec;
575 	size_t i;
576 	char cont = '-';
577 	size_t len;
578 	ssize_t ret;
579 
580 	if (!user)
581 		return -EBADF;
582 
583 	ret = mutex_lock_interruptible(&user->lock);
584 	if (ret)
585 		return ret;
586 	raw_spin_lock_irq(&logbuf_lock);
587 	while (user->seq == log_next_seq) {
588 		if (file->f_flags & O_NONBLOCK) {
589 			ret = -EAGAIN;
590 			raw_spin_unlock_irq(&logbuf_lock);
591 			goto out;
592 		}
593 
594 		raw_spin_unlock_irq(&logbuf_lock);
595 		ret = wait_event_interruptible(log_wait,
596 					       user->seq != log_next_seq);
597 		if (ret)
598 			goto out;
599 		raw_spin_lock_irq(&logbuf_lock);
600 	}
601 
602 	if (user->seq < log_first_seq) {
603 		/* our last seen message is gone, return error and reset */
604 		user->idx = log_first_idx;
605 		user->seq = log_first_seq;
606 		ret = -EPIPE;
607 		raw_spin_unlock_irq(&logbuf_lock);
608 		goto out;
609 	}
610 
611 	msg = log_from_idx(user->idx);
612 	ts_usec = msg->ts_nsec;
613 	do_div(ts_usec, 1000);
614 
615 	/*
616 	 * If we couldn't merge continuation line fragments during the print,
617 	 * export the stored flags to allow an optional external merge of the
618 	 * records. Merging the records isn't always neccessarily correct, like
619 	 * when we hit a race during printing. In most cases though, it produces
620 	 * better readable output. 'c' in the record flags mark the first
621 	 * fragment of a line, '+' the following.
622 	 */
623 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
624 		cont = 'c';
625 	else if ((msg->flags & LOG_CONT) ||
626 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
627 		cont = '+';
628 
629 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
630 		      (msg->facility << 3) | msg->level,
631 		      user->seq, ts_usec, cont);
632 	user->prev = msg->flags;
633 
634 	/* escape non-printable characters */
635 	for (i = 0; i < msg->text_len; i++) {
636 		unsigned char c = log_text(msg)[i];
637 
638 		if (c < ' ' || c >= 127 || c == '\\')
639 			len += sprintf(user->buf + len, "\\x%02x", c);
640 		else
641 			user->buf[len++] = c;
642 	}
643 	user->buf[len++] = '\n';
644 
645 	if (msg->dict_len) {
646 		bool line = true;
647 
648 		for (i = 0; i < msg->dict_len; i++) {
649 			unsigned char c = log_dict(msg)[i];
650 
651 			if (line) {
652 				user->buf[len++] = ' ';
653 				line = false;
654 			}
655 
656 			if (c == '\0') {
657 				user->buf[len++] = '\n';
658 				line = true;
659 				continue;
660 			}
661 
662 			if (c < ' ' || c >= 127 || c == '\\') {
663 				len += sprintf(user->buf + len, "\\x%02x", c);
664 				continue;
665 			}
666 
667 			user->buf[len++] = c;
668 		}
669 		user->buf[len++] = '\n';
670 	}
671 
672 	user->idx = log_next(user->idx);
673 	user->seq++;
674 	raw_spin_unlock_irq(&logbuf_lock);
675 
676 	if (len > count) {
677 		ret = -EINVAL;
678 		goto out;
679 	}
680 
681 	if (copy_to_user(buf, user->buf, len)) {
682 		ret = -EFAULT;
683 		goto out;
684 	}
685 	ret = len;
686 out:
687 	mutex_unlock(&user->lock);
688 	return ret;
689 }
690 
devkmsg_llseek(struct file * file,loff_t offset,int whence)691 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
692 {
693 	struct devkmsg_user *user = file->private_data;
694 	loff_t ret = 0;
695 
696 	if (!user)
697 		return -EBADF;
698 	if (offset)
699 		return -ESPIPE;
700 
701 	raw_spin_lock_irq(&logbuf_lock);
702 	switch (whence) {
703 	case SEEK_SET:
704 		/* the first record */
705 		user->idx = log_first_idx;
706 		user->seq = log_first_seq;
707 		break;
708 	case SEEK_DATA:
709 		/*
710 		 * The first record after the last SYSLOG_ACTION_CLEAR,
711 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
712 		 * changes no global state, and does not clear anything.
713 		 */
714 		user->idx = clear_idx;
715 		user->seq = clear_seq;
716 		break;
717 	case SEEK_END:
718 		/* after the last record */
719 		user->idx = log_next_idx;
720 		user->seq = log_next_seq;
721 		break;
722 	default:
723 		ret = -EINVAL;
724 	}
725 	raw_spin_unlock_irq(&logbuf_lock);
726 	return ret;
727 }
728 
devkmsg_poll(struct file * file,poll_table * wait)729 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
730 {
731 	struct devkmsg_user *user = file->private_data;
732 	int ret = 0;
733 
734 	if (!user)
735 		return POLLERR|POLLNVAL;
736 
737 	poll_wait(file, &log_wait, wait);
738 
739 	raw_spin_lock_irq(&logbuf_lock);
740 	if (user->seq < log_next_seq) {
741 		/* return error when data has vanished underneath us */
742 		if (user->seq < log_first_seq)
743 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
744 		else
745 			ret = POLLIN|POLLRDNORM;
746 	}
747 	raw_spin_unlock_irq(&logbuf_lock);
748 
749 	return ret;
750 }
751 
devkmsg_open(struct inode * inode,struct file * file)752 static int devkmsg_open(struct inode *inode, struct file *file)
753 {
754 	struct devkmsg_user *user;
755 	int err;
756 
757 	/* write-only does not need any file context */
758 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
759 		return 0;
760 
761 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
762 				       SYSLOG_FROM_READER);
763 	if (err)
764 		return err;
765 
766 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
767 	if (!user)
768 		return -ENOMEM;
769 
770 	mutex_init(&user->lock);
771 
772 	raw_spin_lock_irq(&logbuf_lock);
773 	user->idx = log_first_idx;
774 	user->seq = log_first_seq;
775 	raw_spin_unlock_irq(&logbuf_lock);
776 
777 	file->private_data = user;
778 	return 0;
779 }
780 
devkmsg_release(struct inode * inode,struct file * file)781 static int devkmsg_release(struct inode *inode, struct file *file)
782 {
783 	struct devkmsg_user *user = file->private_data;
784 
785 	if (!user)
786 		return 0;
787 
788 	mutex_destroy(&user->lock);
789 	kfree(user);
790 	return 0;
791 }
792 
793 const struct file_operations kmsg_fops = {
794 	.open = devkmsg_open,
795 	.read = devkmsg_read,
796 	.write_iter = devkmsg_write,
797 	.llseek = devkmsg_llseek,
798 	.poll = devkmsg_poll,
799 	.release = devkmsg_release,
800 };
801 
802 #ifdef CONFIG_KEXEC
803 /*
804  * This appends the listed symbols to /proc/vmcore
805  *
806  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
807  * obtain access to symbols that are otherwise very difficult to locate.  These
808  * symbols are specifically used so that utilities can access and extract the
809  * dmesg log from a vmcore file after a crash.
810  */
log_buf_kexec_setup(void)811 void log_buf_kexec_setup(void)
812 {
813 	VMCOREINFO_SYMBOL(log_buf);
814 	VMCOREINFO_SYMBOL(log_buf_len);
815 	VMCOREINFO_SYMBOL(log_first_idx);
816 	VMCOREINFO_SYMBOL(log_next_idx);
817 	/*
818 	 * Export struct printk_log size and field offsets. User space tools can
819 	 * parse it and detect any changes to structure down the line.
820 	 */
821 	VMCOREINFO_STRUCT_SIZE(printk_log);
822 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
823 	VMCOREINFO_OFFSET(printk_log, len);
824 	VMCOREINFO_OFFSET(printk_log, text_len);
825 	VMCOREINFO_OFFSET(printk_log, dict_len);
826 }
827 #endif
828 
829 /* requested log_buf_len from kernel cmdline */
830 static unsigned long __initdata new_log_buf_len;
831 
832 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(unsigned size)833 static void __init log_buf_len_update(unsigned size)
834 {
835 	if (size)
836 		size = roundup_pow_of_two(size);
837 	if (size > log_buf_len)
838 		new_log_buf_len = size;
839 }
840 
841 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)842 static int __init log_buf_len_setup(char *str)
843 {
844 	unsigned size = memparse(str, &str);
845 
846 	log_buf_len_update(size);
847 
848 	return 0;
849 }
850 early_param("log_buf_len", log_buf_len_setup);
851 
852 #ifdef CONFIG_SMP
853 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
854 
log_buf_add_cpu(void)855 static void __init log_buf_add_cpu(void)
856 {
857 	unsigned int cpu_extra;
858 
859 	/*
860 	 * archs should set up cpu_possible_bits properly with
861 	 * set_cpu_possible() after setup_arch() but just in
862 	 * case lets ensure this is valid.
863 	 */
864 	if (num_possible_cpus() == 1)
865 		return;
866 
867 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
868 
869 	/* by default this will only continue through for large > 64 CPUs */
870 	if (cpu_extra <= __LOG_BUF_LEN / 2)
871 		return;
872 
873 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
874 		__LOG_CPU_MAX_BUF_LEN);
875 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
876 		cpu_extra);
877 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
878 
879 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
880 }
881 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)882 static inline void log_buf_add_cpu(void) {}
883 #endif /* CONFIG_SMP */
884 
setup_log_buf(int early)885 void __init setup_log_buf(int early)
886 {
887 	unsigned long flags;
888 	char *new_log_buf;
889 	int free;
890 
891 	if (log_buf != __log_buf)
892 		return;
893 
894 	if (!early && !new_log_buf_len)
895 		log_buf_add_cpu();
896 
897 	if (!new_log_buf_len)
898 		return;
899 
900 	if (early) {
901 		new_log_buf =
902 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
903 	} else {
904 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
905 							  LOG_ALIGN);
906 	}
907 
908 	if (unlikely(!new_log_buf)) {
909 		pr_err("log_buf_len: %ld bytes not available\n",
910 			new_log_buf_len);
911 		return;
912 	}
913 
914 	raw_spin_lock_irqsave(&logbuf_lock, flags);
915 	log_buf_len = new_log_buf_len;
916 	log_buf = new_log_buf;
917 	new_log_buf_len = 0;
918 	free = __LOG_BUF_LEN - log_next_idx;
919 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
920 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
921 
922 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
923 	pr_info("early log buf free: %d(%d%%)\n",
924 		free, (free * 100) / __LOG_BUF_LEN);
925 }
926 
927 static bool __read_mostly ignore_loglevel;
928 
ignore_loglevel_setup(char * str)929 static int __init ignore_loglevel_setup(char *str)
930 {
931 	ignore_loglevel = true;
932 	pr_info("debug: ignoring loglevel setting.\n");
933 
934 	return 0;
935 }
936 
937 early_param("ignore_loglevel", ignore_loglevel_setup);
938 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
939 MODULE_PARM_DESC(ignore_loglevel,
940 		 "ignore loglevel setting (prints all kernel messages to the console)");
941 
942 #ifdef CONFIG_BOOT_PRINTK_DELAY
943 
944 static int boot_delay; /* msecs delay after each printk during bootup */
945 static unsigned long long loops_per_msec;	/* based on boot_delay */
946 
boot_delay_setup(char * str)947 static int __init boot_delay_setup(char *str)
948 {
949 	unsigned long lpj;
950 
951 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
952 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
953 
954 	get_option(&str, &boot_delay);
955 	if (boot_delay > 10 * 1000)
956 		boot_delay = 0;
957 
958 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
959 		"HZ: %d, loops_per_msec: %llu\n",
960 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
961 	return 0;
962 }
963 early_param("boot_delay", boot_delay_setup);
964 
boot_delay_msec(int level)965 static void boot_delay_msec(int level)
966 {
967 	unsigned long long k;
968 	unsigned long timeout;
969 
970 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
971 		|| (level >= console_loglevel && !ignore_loglevel)) {
972 		return;
973 	}
974 
975 	k = (unsigned long long)loops_per_msec * boot_delay;
976 
977 	timeout = jiffies + msecs_to_jiffies(boot_delay);
978 	while (k) {
979 		k--;
980 		cpu_relax();
981 		/*
982 		 * use (volatile) jiffies to prevent
983 		 * compiler reduction; loop termination via jiffies
984 		 * is secondary and may or may not happen.
985 		 */
986 		if (time_after(jiffies, timeout))
987 			break;
988 		touch_nmi_watchdog();
989 	}
990 }
991 #else
boot_delay_msec(int level)992 static inline void boot_delay_msec(int level)
993 {
994 }
995 #endif
996 
997 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
998 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
999 
print_time(u64 ts,char * buf)1000 static size_t print_time(u64 ts, char *buf)
1001 {
1002 	unsigned long rem_nsec;
1003 
1004 	if (!printk_time)
1005 		return 0;
1006 
1007 	rem_nsec = do_div(ts, 1000000000);
1008 
1009 	if (!buf)
1010 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1011 
1012 	return sprintf(buf, "[%5lu.%06lu] ",
1013 		       (unsigned long)ts, rem_nsec / 1000);
1014 }
1015 
print_prefix(const struct printk_log * msg,bool syslog,char * buf)1016 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1017 {
1018 	size_t len = 0;
1019 	unsigned int prefix = (msg->facility << 3) | msg->level;
1020 
1021 	if (syslog) {
1022 		if (buf) {
1023 			len += sprintf(buf, "<%u>", prefix);
1024 		} else {
1025 			len += 3;
1026 			if (prefix > 999)
1027 				len += 3;
1028 			else if (prefix > 99)
1029 				len += 2;
1030 			else if (prefix > 9)
1031 				len++;
1032 		}
1033 	}
1034 
1035 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1036 	return len;
1037 }
1038 
msg_print_text(const struct printk_log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)1039 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1040 			     bool syslog, char *buf, size_t size)
1041 {
1042 	const char *text = log_text(msg);
1043 	size_t text_size = msg->text_len;
1044 	bool prefix = true;
1045 	bool newline = true;
1046 	size_t len = 0;
1047 
1048 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1049 		prefix = false;
1050 
1051 	if (msg->flags & LOG_CONT) {
1052 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1053 			prefix = false;
1054 
1055 		if (!(msg->flags & LOG_NEWLINE))
1056 			newline = false;
1057 	}
1058 
1059 	do {
1060 		const char *next = memchr(text, '\n', text_size);
1061 		size_t text_len;
1062 
1063 		if (next) {
1064 			text_len = next - text;
1065 			next++;
1066 			text_size -= next - text;
1067 		} else {
1068 			text_len = text_size;
1069 		}
1070 
1071 		if (buf) {
1072 			if (print_prefix(msg, syslog, NULL) +
1073 			    text_len + 1 >= size - len)
1074 				break;
1075 
1076 			if (prefix)
1077 				len += print_prefix(msg, syslog, buf + len);
1078 			memcpy(buf + len, text, text_len);
1079 			len += text_len;
1080 			if (next || newline)
1081 				buf[len++] = '\n';
1082 		} else {
1083 			/* SYSLOG_ACTION_* buffer size only calculation */
1084 			if (prefix)
1085 				len += print_prefix(msg, syslog, NULL);
1086 			len += text_len;
1087 			if (next || newline)
1088 				len++;
1089 		}
1090 
1091 		prefix = true;
1092 		text = next;
1093 	} while (text);
1094 
1095 	return len;
1096 }
1097 
syslog_print(char __user * buf,int size)1098 static int syslog_print(char __user *buf, int size)
1099 {
1100 	char *text;
1101 	struct printk_log *msg;
1102 	int len = 0;
1103 
1104 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1105 	if (!text)
1106 		return -ENOMEM;
1107 
1108 	while (size > 0) {
1109 		size_t n;
1110 		size_t skip;
1111 
1112 		raw_spin_lock_irq(&logbuf_lock);
1113 		if (syslog_seq < log_first_seq) {
1114 			/* messages are gone, move to first one */
1115 			syslog_seq = log_first_seq;
1116 			syslog_idx = log_first_idx;
1117 			syslog_prev = 0;
1118 			syslog_partial = 0;
1119 		}
1120 		if (syslog_seq == log_next_seq) {
1121 			raw_spin_unlock_irq(&logbuf_lock);
1122 			break;
1123 		}
1124 
1125 		skip = syslog_partial;
1126 		msg = log_from_idx(syslog_idx);
1127 		n = msg_print_text(msg, syslog_prev, true, text,
1128 				   LOG_LINE_MAX + PREFIX_MAX);
1129 		if (n - syslog_partial <= size) {
1130 			/* message fits into buffer, move forward */
1131 			syslog_idx = log_next(syslog_idx);
1132 			syslog_seq++;
1133 			syslog_prev = msg->flags;
1134 			n -= syslog_partial;
1135 			syslog_partial = 0;
1136 		} else if (!len){
1137 			/* partial read(), remember position */
1138 			n = size;
1139 			syslog_partial += n;
1140 		} else
1141 			n = 0;
1142 		raw_spin_unlock_irq(&logbuf_lock);
1143 
1144 		if (!n)
1145 			break;
1146 
1147 		if (copy_to_user(buf, text + skip, n)) {
1148 			if (!len)
1149 				len = -EFAULT;
1150 			break;
1151 		}
1152 
1153 		len += n;
1154 		size -= n;
1155 		buf += n;
1156 	}
1157 
1158 	kfree(text);
1159 	return len;
1160 }
1161 
syslog_print_all(char __user * buf,int size,bool clear)1162 static int syslog_print_all(char __user *buf, int size, bool clear)
1163 {
1164 	char *text;
1165 	int len = 0;
1166 
1167 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1168 	if (!text)
1169 		return -ENOMEM;
1170 
1171 	raw_spin_lock_irq(&logbuf_lock);
1172 	if (buf) {
1173 		u64 next_seq;
1174 		u64 seq;
1175 		u32 idx;
1176 		enum log_flags prev;
1177 
1178 		if (clear_seq < log_first_seq) {
1179 			/* messages are gone, move to first available one */
1180 			clear_seq = log_first_seq;
1181 			clear_idx = log_first_idx;
1182 		}
1183 
1184 		/*
1185 		 * Find first record that fits, including all following records,
1186 		 * into the user-provided buffer for this dump.
1187 		 */
1188 		seq = clear_seq;
1189 		idx = clear_idx;
1190 		prev = 0;
1191 		while (seq < log_next_seq) {
1192 			struct printk_log *msg = log_from_idx(idx);
1193 
1194 			len += msg_print_text(msg, prev, true, NULL, 0);
1195 			prev = msg->flags;
1196 			idx = log_next(idx);
1197 			seq++;
1198 		}
1199 
1200 		/* move first record forward until length fits into the buffer */
1201 		seq = clear_seq;
1202 		idx = clear_idx;
1203 		prev = 0;
1204 		while (len > size && seq < log_next_seq) {
1205 			struct printk_log *msg = log_from_idx(idx);
1206 
1207 			len -= msg_print_text(msg, prev, true, NULL, 0);
1208 			prev = msg->flags;
1209 			idx = log_next(idx);
1210 			seq++;
1211 		}
1212 
1213 		/* last message fitting into this dump */
1214 		next_seq = log_next_seq;
1215 
1216 		len = 0;
1217 		while (len >= 0 && seq < next_seq) {
1218 			struct printk_log *msg = log_from_idx(idx);
1219 			int textlen;
1220 
1221 			textlen = msg_print_text(msg, prev, true, text,
1222 						 LOG_LINE_MAX + PREFIX_MAX);
1223 			if (textlen < 0) {
1224 				len = textlen;
1225 				break;
1226 			}
1227 			idx = log_next(idx);
1228 			seq++;
1229 			prev = msg->flags;
1230 
1231 			raw_spin_unlock_irq(&logbuf_lock);
1232 			if (copy_to_user(buf + len, text, textlen))
1233 				len = -EFAULT;
1234 			else
1235 				len += textlen;
1236 			raw_spin_lock_irq(&logbuf_lock);
1237 
1238 			if (seq < log_first_seq) {
1239 				/* messages are gone, move to next one */
1240 				seq = log_first_seq;
1241 				idx = log_first_idx;
1242 				prev = 0;
1243 			}
1244 		}
1245 	}
1246 
1247 	if (clear) {
1248 		clear_seq = log_next_seq;
1249 		clear_idx = log_next_idx;
1250 	}
1251 	raw_spin_unlock_irq(&logbuf_lock);
1252 
1253 	kfree(text);
1254 	return len;
1255 }
1256 
do_syslog(int type,char __user * buf,int len,bool from_file)1257 int do_syslog(int type, char __user *buf, int len, bool from_file)
1258 {
1259 	bool clear = false;
1260 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1261 	int error;
1262 
1263 	error = check_syslog_permissions(type, from_file);
1264 	if (error)
1265 		goto out;
1266 
1267 	switch (type) {
1268 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1269 		break;
1270 	case SYSLOG_ACTION_OPEN:	/* Open log */
1271 		break;
1272 	case SYSLOG_ACTION_READ:	/* Read from log */
1273 		error = -EINVAL;
1274 		if (!buf || len < 0)
1275 			goto out;
1276 		error = 0;
1277 		if (!len)
1278 			goto out;
1279 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1280 			error = -EFAULT;
1281 			goto out;
1282 		}
1283 		error = wait_event_interruptible(log_wait,
1284 						 syslog_seq != log_next_seq);
1285 		if (error)
1286 			goto out;
1287 		error = syslog_print(buf, len);
1288 		break;
1289 	/* Read/clear last kernel messages */
1290 	case SYSLOG_ACTION_READ_CLEAR:
1291 		clear = true;
1292 		/* FALL THRU */
1293 	/* Read last kernel messages */
1294 	case SYSLOG_ACTION_READ_ALL:
1295 		error = -EINVAL;
1296 		if (!buf || len < 0)
1297 			goto out;
1298 		error = 0;
1299 		if (!len)
1300 			goto out;
1301 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1302 			error = -EFAULT;
1303 			goto out;
1304 		}
1305 		error = syslog_print_all(buf, len, clear);
1306 		break;
1307 	/* Clear ring buffer */
1308 	case SYSLOG_ACTION_CLEAR:
1309 		syslog_print_all(NULL, 0, true);
1310 		break;
1311 	/* Disable logging to console */
1312 	case SYSLOG_ACTION_CONSOLE_OFF:
1313 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1314 			saved_console_loglevel = console_loglevel;
1315 		console_loglevel = minimum_console_loglevel;
1316 		break;
1317 	/* Enable logging to console */
1318 	case SYSLOG_ACTION_CONSOLE_ON:
1319 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1320 			console_loglevel = saved_console_loglevel;
1321 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1322 		}
1323 		break;
1324 	/* Set level of messages printed to console */
1325 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1326 		error = -EINVAL;
1327 		if (len < 1 || len > 8)
1328 			goto out;
1329 		if (len < minimum_console_loglevel)
1330 			len = minimum_console_loglevel;
1331 		console_loglevel = len;
1332 		/* Implicitly re-enable logging to console */
1333 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1334 		error = 0;
1335 		break;
1336 	/* Number of chars in the log buffer */
1337 	case SYSLOG_ACTION_SIZE_UNREAD:
1338 		raw_spin_lock_irq(&logbuf_lock);
1339 		if (syslog_seq < log_first_seq) {
1340 			/* messages are gone, move to first one */
1341 			syslog_seq = log_first_seq;
1342 			syslog_idx = log_first_idx;
1343 			syslog_prev = 0;
1344 			syslog_partial = 0;
1345 		}
1346 		if (from_file) {
1347 			/*
1348 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1349 			 * for pending data, not the size; return the count of
1350 			 * records, not the length.
1351 			 */
1352 			error = log_next_seq - syslog_seq;
1353 		} else {
1354 			u64 seq = syslog_seq;
1355 			u32 idx = syslog_idx;
1356 			enum log_flags prev = syslog_prev;
1357 
1358 			error = 0;
1359 			while (seq < log_next_seq) {
1360 				struct printk_log *msg = log_from_idx(idx);
1361 
1362 				error += msg_print_text(msg, prev, true, NULL, 0);
1363 				idx = log_next(idx);
1364 				seq++;
1365 				prev = msg->flags;
1366 			}
1367 			error -= syslog_partial;
1368 		}
1369 		raw_spin_unlock_irq(&logbuf_lock);
1370 		break;
1371 	/* Size of the log buffer */
1372 	case SYSLOG_ACTION_SIZE_BUFFER:
1373 		error = log_buf_len;
1374 		break;
1375 	default:
1376 		error = -EINVAL;
1377 		break;
1378 	}
1379 out:
1380 	return error;
1381 }
1382 
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1383 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1384 {
1385 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1386 }
1387 
1388 /*
1389  * Call the console drivers, asking them to write out
1390  * log_buf[start] to log_buf[end - 1].
1391  * The console_lock must be held.
1392  */
call_console_drivers(int level,const char * text,size_t len)1393 static void call_console_drivers(int level, const char *text, size_t len)
1394 {
1395 	struct console *con;
1396 
1397 	trace_console(text, len);
1398 
1399 	if (level >= console_loglevel && !ignore_loglevel)
1400 		return;
1401 	if (!console_drivers)
1402 		return;
1403 
1404 	for_each_console(con) {
1405 		if (exclusive_console && con != exclusive_console)
1406 			continue;
1407 		if (!(con->flags & CON_ENABLED))
1408 			continue;
1409 		if (!con->write)
1410 			continue;
1411 		if (!cpu_online(smp_processor_id()) &&
1412 		    !(con->flags & CON_ANYTIME))
1413 			continue;
1414 		con->write(con, text, len);
1415 	}
1416 }
1417 
1418 /*
1419  * Zap console related locks when oopsing.
1420  * To leave time for slow consoles to print a full oops,
1421  * only zap at most once every 30 seconds.
1422  */
zap_locks(void)1423 static void zap_locks(void)
1424 {
1425 	static unsigned long oops_timestamp;
1426 
1427 	if (time_after_eq(jiffies, oops_timestamp) &&
1428 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1429 		return;
1430 
1431 	oops_timestamp = jiffies;
1432 
1433 	debug_locks_off();
1434 	/* If a crash is occurring, make sure we can't deadlock */
1435 	raw_spin_lock_init(&logbuf_lock);
1436 	/* And make sure that we print immediately */
1437 	sema_init(&console_sem, 1);
1438 }
1439 
1440 /*
1441  * Check if we have any console that is capable of printing while cpu is
1442  * booting or shutting down. Requires console_sem.
1443  */
have_callable_console(void)1444 static int have_callable_console(void)
1445 {
1446 	struct console *con;
1447 
1448 	for_each_console(con)
1449 		if (con->flags & CON_ANYTIME)
1450 			return 1;
1451 
1452 	return 0;
1453 }
1454 
1455 /*
1456  * Can we actually use the console at this time on this cpu?
1457  *
1458  * Console drivers may assume that per-cpu resources have been allocated. So
1459  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1460  * call them until this CPU is officially up.
1461  */
can_use_console(unsigned int cpu)1462 static inline int can_use_console(unsigned int cpu)
1463 {
1464 	return cpu_online(cpu) || have_callable_console();
1465 }
1466 
1467 /*
1468  * Try to get console ownership to actually show the kernel
1469  * messages from a 'printk'. Return true (and with the
1470  * console_lock held, and 'console_locked' set) if it
1471  * is successful, false otherwise.
1472  */
console_trylock_for_printk(void)1473 static int console_trylock_for_printk(void)
1474 {
1475 	unsigned int cpu = smp_processor_id();
1476 
1477 	if (!console_trylock())
1478 		return 0;
1479 	/*
1480 	 * If we can't use the console, we need to release the console
1481 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1482 	 * console semaphore in order to do this test safely.
1483 	 */
1484 	if (!can_use_console(cpu)) {
1485 		console_locked = 0;
1486 		up_console_sem();
1487 		return 0;
1488 	}
1489 	return 1;
1490 }
1491 
1492 int printk_delay_msec __read_mostly;
1493 
printk_delay(void)1494 static inline void printk_delay(void)
1495 {
1496 	if (unlikely(printk_delay_msec)) {
1497 		int m = printk_delay_msec;
1498 
1499 		while (m--) {
1500 			mdelay(1);
1501 			touch_nmi_watchdog();
1502 		}
1503 	}
1504 }
1505 
1506 /*
1507  * Continuation lines are buffered, and not committed to the record buffer
1508  * until the line is complete, or a race forces it. The line fragments
1509  * though, are printed immediately to the consoles to ensure everything has
1510  * reached the console in case of a kernel crash.
1511  */
1512 static struct cont {
1513 	char buf[LOG_LINE_MAX];
1514 	size_t len;			/* length == 0 means unused buffer */
1515 	size_t cons;			/* bytes written to console */
1516 	struct task_struct *owner;	/* task of first print*/
1517 	u64 ts_nsec;			/* time of first print */
1518 	u8 level;			/* log level of first message */
1519 	u8 facility;			/* log facility of first message */
1520 	enum log_flags flags;		/* prefix, newline flags */
1521 	bool flushed:1;			/* buffer sealed and committed */
1522 } cont;
1523 
cont_flush(enum log_flags flags)1524 static void cont_flush(enum log_flags flags)
1525 {
1526 	if (cont.flushed)
1527 		return;
1528 	if (cont.len == 0)
1529 		return;
1530 
1531 	if (cont.cons) {
1532 		/*
1533 		 * If a fragment of this line was directly flushed to the
1534 		 * console; wait for the console to pick up the rest of the
1535 		 * line. LOG_NOCONS suppresses a duplicated output.
1536 		 */
1537 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1538 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1539 		cont.flags = flags;
1540 		cont.flushed = true;
1541 	} else {
1542 		/*
1543 		 * If no fragment of this line ever reached the console,
1544 		 * just submit it to the store and free the buffer.
1545 		 */
1546 		log_store(cont.facility, cont.level, flags, 0,
1547 			  NULL, 0, cont.buf, cont.len);
1548 		cont.len = 0;
1549 	}
1550 }
1551 
cont_add(int facility,int level,const char * text,size_t len)1552 static bool cont_add(int facility, int level, const char *text, size_t len)
1553 {
1554 	if (cont.len && cont.flushed)
1555 		return false;
1556 
1557 	if (cont.len + len > sizeof(cont.buf)) {
1558 		/* the line gets too long, split it up in separate records */
1559 		cont_flush(LOG_CONT);
1560 		return false;
1561 	}
1562 
1563 	if (!cont.len) {
1564 		cont.facility = facility;
1565 		cont.level = level;
1566 		cont.owner = current;
1567 		cont.ts_nsec = local_clock();
1568 		cont.flags = 0;
1569 		cont.cons = 0;
1570 		cont.flushed = false;
1571 	}
1572 
1573 	memcpy(cont.buf + cont.len, text, len);
1574 	cont.len += len;
1575 
1576 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1577 		cont_flush(LOG_CONT);
1578 
1579 	return true;
1580 }
1581 
cont_print_text(char * text,size_t size)1582 static size_t cont_print_text(char *text, size_t size)
1583 {
1584 	size_t textlen = 0;
1585 	size_t len;
1586 
1587 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1588 		textlen += print_time(cont.ts_nsec, text);
1589 		size -= textlen;
1590 	}
1591 
1592 	len = cont.len - cont.cons;
1593 	if (len > 0) {
1594 		if (len+1 > size)
1595 			len = size-1;
1596 		memcpy(text + textlen, cont.buf + cont.cons, len);
1597 		textlen += len;
1598 		cont.cons = cont.len;
1599 	}
1600 
1601 	if (cont.flushed) {
1602 		if (cont.flags & LOG_NEWLINE)
1603 			text[textlen++] = '\n';
1604 		/* got everything, release buffer */
1605 		cont.len = 0;
1606 	}
1607 	return textlen;
1608 }
1609 
vprintk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1610 asmlinkage int vprintk_emit(int facility, int level,
1611 			    const char *dict, size_t dictlen,
1612 			    const char *fmt, va_list args)
1613 {
1614 	static int recursion_bug;
1615 	static char textbuf[LOG_LINE_MAX];
1616 	char *text = textbuf;
1617 	size_t text_len = 0;
1618 	enum log_flags lflags = 0;
1619 	unsigned long flags;
1620 	int this_cpu;
1621 	int printed_len = 0;
1622 	bool in_sched = false;
1623 	/* cpu currently holding logbuf_lock in this function */
1624 	static unsigned int logbuf_cpu = UINT_MAX;
1625 
1626 	if (level == LOGLEVEL_SCHED) {
1627 		level = LOGLEVEL_DEFAULT;
1628 		in_sched = true;
1629 	}
1630 
1631 	boot_delay_msec(level);
1632 	printk_delay();
1633 
1634 	/* This stops the holder of console_sem just where we want him */
1635 	local_irq_save(flags);
1636 	this_cpu = smp_processor_id();
1637 
1638 	/*
1639 	 * Ouch, printk recursed into itself!
1640 	 */
1641 	if (unlikely(logbuf_cpu == this_cpu)) {
1642 		/*
1643 		 * If a crash is occurring during printk() on this CPU,
1644 		 * then try to get the crash message out but make sure
1645 		 * we can't deadlock. Otherwise just return to avoid the
1646 		 * recursion and return - but flag the recursion so that
1647 		 * it can be printed at the next appropriate moment:
1648 		 */
1649 		if (!oops_in_progress && !lockdep_recursing(current)) {
1650 			recursion_bug = 1;
1651 			local_irq_restore(flags);
1652 			return 0;
1653 		}
1654 		zap_locks();
1655 	}
1656 
1657 	lockdep_off();
1658 	raw_spin_lock(&logbuf_lock);
1659 	logbuf_cpu = this_cpu;
1660 
1661 	if (unlikely(recursion_bug)) {
1662 		static const char recursion_msg[] =
1663 			"BUG: recent printk recursion!";
1664 
1665 		recursion_bug = 0;
1666 		/* emit KERN_CRIT message */
1667 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1668 					 NULL, 0, recursion_msg,
1669 					 strlen(recursion_msg));
1670 	}
1671 
1672 	/*
1673 	 * The printf needs to come first; we need the syslog
1674 	 * prefix which might be passed-in as a parameter.
1675 	 */
1676 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1677 
1678 	/* mark and strip a trailing newline */
1679 	if (text_len && text[text_len-1] == '\n') {
1680 		text_len--;
1681 		lflags |= LOG_NEWLINE;
1682 	}
1683 
1684 	/* strip kernel syslog prefix and extract log level or control flags */
1685 	if (facility == 0) {
1686 		int kern_level = printk_get_level(text);
1687 
1688 		if (kern_level) {
1689 			const char *end_of_header = printk_skip_level(text);
1690 			switch (kern_level) {
1691 			case '0' ... '7':
1692 				if (level == LOGLEVEL_DEFAULT)
1693 					level = kern_level - '0';
1694 				/* fallthrough */
1695 			case 'd':	/* KERN_DEFAULT */
1696 				lflags |= LOG_PREFIX;
1697 			}
1698 			/*
1699 			 * No need to check length here because vscnprintf
1700 			 * put '\0' at the end of the string. Only valid and
1701 			 * newly printed level is detected.
1702 			 */
1703 			text_len -= end_of_header - text;
1704 			text = (char *)end_of_header;
1705 		}
1706 	}
1707 
1708 	if (level == LOGLEVEL_DEFAULT)
1709 		level = default_message_loglevel;
1710 
1711 	if (dict)
1712 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1713 
1714 	if (!(lflags & LOG_NEWLINE)) {
1715 		/*
1716 		 * Flush the conflicting buffer. An earlier newline was missing,
1717 		 * or another task also prints continuation lines.
1718 		 */
1719 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1720 			cont_flush(LOG_NEWLINE);
1721 
1722 		/* buffer line if possible, otherwise store it right away */
1723 		if (cont_add(facility, level, text, text_len))
1724 			printed_len += text_len;
1725 		else
1726 			printed_len += log_store(facility, level,
1727 						 lflags | LOG_CONT, 0,
1728 						 dict, dictlen, text, text_len);
1729 	} else {
1730 		bool stored = false;
1731 
1732 		/*
1733 		 * If an earlier newline was missing and it was the same task,
1734 		 * either merge it with the current buffer and flush, or if
1735 		 * there was a race with interrupts (prefix == true) then just
1736 		 * flush it out and store this line separately.
1737 		 * If the preceding printk was from a different task and missed
1738 		 * a newline, flush and append the newline.
1739 		 */
1740 		if (cont.len) {
1741 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1742 				stored = cont_add(facility, level, text,
1743 						  text_len);
1744 			cont_flush(LOG_NEWLINE);
1745 		}
1746 
1747 		if (stored)
1748 			printed_len += text_len;
1749 		else
1750 			printed_len += log_store(facility, level, lflags, 0,
1751 						 dict, dictlen, text, text_len);
1752 	}
1753 
1754 	logbuf_cpu = UINT_MAX;
1755 	raw_spin_unlock(&logbuf_lock);
1756 	lockdep_on();
1757 	local_irq_restore(flags);
1758 
1759 	/* If called from the scheduler, we can not call up(). */
1760 	if (!in_sched) {
1761 		lockdep_off();
1762 		/*
1763 		 * Disable preemption to avoid being preempted while holding
1764 		 * console_sem which would prevent anyone from printing to
1765 		 * console
1766 		 */
1767 		preempt_disable();
1768 
1769 		/*
1770 		 * Try to acquire and then immediately release the console
1771 		 * semaphore.  The release will print out buffers and wake up
1772 		 * /dev/kmsg and syslog() users.
1773 		 */
1774 		if (console_trylock_for_printk())
1775 			console_unlock();
1776 		preempt_enable();
1777 		lockdep_on();
1778 	}
1779 
1780 	return printed_len;
1781 }
1782 EXPORT_SYMBOL(vprintk_emit);
1783 
vprintk(const char * fmt,va_list args)1784 asmlinkage int vprintk(const char *fmt, va_list args)
1785 {
1786 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1787 }
1788 EXPORT_SYMBOL(vprintk);
1789 
printk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,...)1790 asmlinkage int printk_emit(int facility, int level,
1791 			   const char *dict, size_t dictlen,
1792 			   const char *fmt, ...)
1793 {
1794 	va_list args;
1795 	int r;
1796 
1797 	va_start(args, fmt);
1798 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1799 	va_end(args);
1800 
1801 	return r;
1802 }
1803 EXPORT_SYMBOL(printk_emit);
1804 
vprintk_default(const char * fmt,va_list args)1805 int vprintk_default(const char *fmt, va_list args)
1806 {
1807 	int r;
1808 
1809 #ifdef CONFIG_KGDB_KDB
1810 	if (unlikely(kdb_trap_printk)) {
1811 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1812 		return r;
1813 	}
1814 #endif
1815 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1816 
1817 	return r;
1818 }
1819 EXPORT_SYMBOL_GPL(vprintk_default);
1820 
1821 /*
1822  * This allows printk to be diverted to another function per cpu.
1823  * This is useful for calling printk functions from within NMI
1824  * without worrying about race conditions that can lock up the
1825  * box.
1826  */
1827 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1828 
1829 /**
1830  * printk - print a kernel message
1831  * @fmt: format string
1832  *
1833  * This is printk(). It can be called from any context. We want it to work.
1834  *
1835  * We try to grab the console_lock. If we succeed, it's easy - we log the
1836  * output and call the console drivers.  If we fail to get the semaphore, we
1837  * place the output into the log buffer and return. The current holder of
1838  * the console_sem will notice the new output in console_unlock(); and will
1839  * send it to the consoles before releasing the lock.
1840  *
1841  * One effect of this deferred printing is that code which calls printk() and
1842  * then changes console_loglevel may break. This is because console_loglevel
1843  * is inspected when the actual printing occurs.
1844  *
1845  * See also:
1846  * printf(3)
1847  *
1848  * See the vsnprintf() documentation for format string extensions over C99.
1849  */
printk(const char * fmt,...)1850 asmlinkage __visible int printk(const char *fmt, ...)
1851 {
1852 	printk_func_t vprintk_func;
1853 	va_list args;
1854 	int r;
1855 
1856 	va_start(args, fmt);
1857 
1858 	/*
1859 	 * If a caller overrides the per_cpu printk_func, then it needs
1860 	 * to disable preemption when calling printk(). Otherwise
1861 	 * the printk_func should be set to the default. No need to
1862 	 * disable preemption here.
1863 	 */
1864 	vprintk_func = this_cpu_read(printk_func);
1865 	r = vprintk_func(fmt, args);
1866 
1867 	va_end(args);
1868 
1869 	return r;
1870 }
1871 EXPORT_SYMBOL(printk);
1872 
1873 #else /* CONFIG_PRINTK */
1874 
1875 #define LOG_LINE_MAX		0
1876 #define PREFIX_MAX		0
1877 
1878 static u64 syslog_seq;
1879 static u32 syslog_idx;
1880 static u64 console_seq;
1881 static u32 console_idx;
1882 static enum log_flags syslog_prev;
1883 static u64 log_first_seq;
1884 static u32 log_first_idx;
1885 static u64 log_next_seq;
1886 static enum log_flags console_prev;
1887 static struct cont {
1888 	size_t len;
1889 	size_t cons;
1890 	u8 level;
1891 	bool flushed:1;
1892 } cont;
log_from_idx(u32 idx)1893 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
log_next(u32 idx)1894 static u32 log_next(u32 idx) { return 0; }
call_console_drivers(int level,const char * text,size_t len)1895 static void call_console_drivers(int level, const char *text, size_t len) {}
msg_print_text(const struct printk_log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)1896 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1897 			     bool syslog, char *buf, size_t size) { return 0; }
cont_print_text(char * text,size_t size)1898 static size_t cont_print_text(char *text, size_t size) { return 0; }
1899 
1900 /* Still needs to be defined for users */
1901 DEFINE_PER_CPU(printk_func_t, printk_func);
1902 
1903 #endif /* CONFIG_PRINTK */
1904 
1905 #ifdef CONFIG_EARLY_PRINTK
1906 struct console *early_console;
1907 
early_printk(const char * fmt,...)1908 asmlinkage __visible void early_printk(const char *fmt, ...)
1909 {
1910 	va_list ap;
1911 	char buf[512];
1912 	int n;
1913 
1914 	if (!early_console)
1915 		return;
1916 
1917 	va_start(ap, fmt);
1918 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1919 	va_end(ap);
1920 
1921 	early_console->write(early_console, buf, n);
1922 }
1923 #endif
1924 
__add_preferred_console(char * name,int idx,char * options,char * brl_options)1925 static int __add_preferred_console(char *name, int idx, char *options,
1926 				   char *brl_options)
1927 {
1928 	struct console_cmdline *c;
1929 	int i;
1930 
1931 	/*
1932 	 *	See if this tty is not yet registered, and
1933 	 *	if we have a slot free.
1934 	 */
1935 	for (i = 0, c = console_cmdline;
1936 	     i < MAX_CMDLINECONSOLES && c->name[0];
1937 	     i++, c++) {
1938 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1939 			if (!brl_options)
1940 				selected_console = i;
1941 			return 0;
1942 		}
1943 	}
1944 	if (i == MAX_CMDLINECONSOLES)
1945 		return -E2BIG;
1946 	if (!brl_options)
1947 		selected_console = i;
1948 	strlcpy(c->name, name, sizeof(c->name));
1949 	c->options = options;
1950 	braille_set_options(c, brl_options);
1951 
1952 	c->index = idx;
1953 	return 0;
1954 }
1955 /*
1956  * Set up a console.  Called via do_early_param() in init/main.c
1957  * for each "console=" parameter in the boot command line.
1958  */
console_setup(char * str)1959 static int __init console_setup(char *str)
1960 {
1961 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1962 	char *s, *options, *brl_options = NULL;
1963 	int idx;
1964 
1965 	if (_braille_console_setup(&str, &brl_options))
1966 		return 1;
1967 
1968 	/*
1969 	 * Decode str into name, index, options.
1970 	 */
1971 	if (str[0] >= '0' && str[0] <= '9') {
1972 		strcpy(buf, "ttyS");
1973 		strncpy(buf + 4, str, sizeof(buf) - 5);
1974 	} else {
1975 		strncpy(buf, str, sizeof(buf) - 1);
1976 	}
1977 	buf[sizeof(buf) - 1] = 0;
1978 	options = strchr(str, ',');
1979 	if (options)
1980 		*(options++) = 0;
1981 #ifdef __sparc__
1982 	if (!strcmp(str, "ttya"))
1983 		strcpy(buf, "ttyS0");
1984 	if (!strcmp(str, "ttyb"))
1985 		strcpy(buf, "ttyS1");
1986 #endif
1987 	for (s = buf; *s; s++)
1988 		if (isdigit(*s) || *s == ',')
1989 			break;
1990 	idx = simple_strtoul(s, NULL, 10);
1991 	*s = 0;
1992 
1993 	__add_preferred_console(buf, idx, options, brl_options);
1994 	console_set_on_cmdline = 1;
1995 	return 1;
1996 }
1997 __setup("console=", console_setup);
1998 
1999 /**
2000  * add_preferred_console - add a device to the list of preferred consoles.
2001  * @name: device name
2002  * @idx: device index
2003  * @options: options for this console
2004  *
2005  * The last preferred console added will be used for kernel messages
2006  * and stdin/out/err for init.  Normally this is used by console_setup
2007  * above to handle user-supplied console arguments; however it can also
2008  * be used by arch-specific code either to override the user or more
2009  * commonly to provide a default console (ie from PROM variables) when
2010  * the user has not supplied one.
2011  */
add_preferred_console(char * name,int idx,char * options)2012 int add_preferred_console(char *name, int idx, char *options)
2013 {
2014 	return __add_preferred_console(name, idx, options, NULL);
2015 }
2016 
2017 bool console_suspend_enabled = true;
2018 EXPORT_SYMBOL(console_suspend_enabled);
2019 
console_suspend_disable(char * str)2020 static int __init console_suspend_disable(char *str)
2021 {
2022 	console_suspend_enabled = false;
2023 	return 1;
2024 }
2025 __setup("no_console_suspend", console_suspend_disable);
2026 module_param_named(console_suspend, console_suspend_enabled,
2027 		bool, S_IRUGO | S_IWUSR);
2028 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2029 	" and hibernate operations");
2030 
2031 /**
2032  * suspend_console - suspend the console subsystem
2033  *
2034  * This disables printk() while we go into suspend states
2035  */
suspend_console(void)2036 void suspend_console(void)
2037 {
2038 	if (!console_suspend_enabled)
2039 		return;
2040 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2041 	console_lock();
2042 	console_suspended = 1;
2043 	up_console_sem();
2044 }
2045 
resume_console(void)2046 void resume_console(void)
2047 {
2048 	if (!console_suspend_enabled)
2049 		return;
2050 	down_console_sem();
2051 	console_suspended = 0;
2052 	console_unlock();
2053 }
2054 
2055 /**
2056  * console_cpu_notify - print deferred console messages after CPU hotplug
2057  * @self: notifier struct
2058  * @action: CPU hotplug event
2059  * @hcpu: unused
2060  *
2061  * If printk() is called from a CPU that is not online yet, the messages
2062  * will be spooled but will not show up on the console.  This function is
2063  * called when a new CPU comes online (or fails to come up), and ensures
2064  * that any such output gets printed.
2065  */
console_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)2066 static int console_cpu_notify(struct notifier_block *self,
2067 	unsigned long action, void *hcpu)
2068 {
2069 	switch (action) {
2070 	case CPU_ONLINE:
2071 	case CPU_DEAD:
2072 	case CPU_DOWN_FAILED:
2073 	case CPU_UP_CANCELED:
2074 		console_lock();
2075 		console_unlock();
2076 	}
2077 	return NOTIFY_OK;
2078 }
2079 
2080 /**
2081  * console_lock - lock the console system for exclusive use.
2082  *
2083  * Acquires a lock which guarantees that the caller has
2084  * exclusive access to the console system and the console_drivers list.
2085  *
2086  * Can sleep, returns nothing.
2087  */
console_lock(void)2088 void console_lock(void)
2089 {
2090 	might_sleep();
2091 
2092 	down_console_sem();
2093 	if (console_suspended)
2094 		return;
2095 	console_locked = 1;
2096 	console_may_schedule = 1;
2097 }
2098 EXPORT_SYMBOL(console_lock);
2099 
2100 /**
2101  * console_trylock - try to lock the console system for exclusive use.
2102  *
2103  * Try to acquire a lock which guarantees that the caller has exclusive
2104  * access to the console system and the console_drivers list.
2105  *
2106  * returns 1 on success, and 0 on failure to acquire the lock.
2107  */
console_trylock(void)2108 int console_trylock(void)
2109 {
2110 	if (down_trylock_console_sem())
2111 		return 0;
2112 	if (console_suspended) {
2113 		up_console_sem();
2114 		return 0;
2115 	}
2116 	console_locked = 1;
2117 	console_may_schedule = 0;
2118 	return 1;
2119 }
2120 EXPORT_SYMBOL(console_trylock);
2121 
is_console_locked(void)2122 int is_console_locked(void)
2123 {
2124 	return console_locked;
2125 }
2126 
console_cont_flush(char * text,size_t size)2127 static void console_cont_flush(char *text, size_t size)
2128 {
2129 	unsigned long flags;
2130 	size_t len;
2131 
2132 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2133 
2134 	if (!cont.len)
2135 		goto out;
2136 
2137 	/*
2138 	 * We still queue earlier records, likely because the console was
2139 	 * busy. The earlier ones need to be printed before this one, we
2140 	 * did not flush any fragment so far, so just let it queue up.
2141 	 */
2142 	if (console_seq < log_next_seq && !cont.cons)
2143 		goto out;
2144 
2145 	len = cont_print_text(text, size);
2146 	raw_spin_unlock(&logbuf_lock);
2147 	stop_critical_timings();
2148 	call_console_drivers(cont.level, text, len);
2149 	start_critical_timings();
2150 	local_irq_restore(flags);
2151 	return;
2152 out:
2153 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2154 }
2155 
2156 /**
2157  * console_unlock - unlock the console system
2158  *
2159  * Releases the console_lock which the caller holds on the console system
2160  * and the console driver list.
2161  *
2162  * While the console_lock was held, console output may have been buffered
2163  * by printk().  If this is the case, console_unlock(); emits
2164  * the output prior to releasing the lock.
2165  *
2166  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2167  *
2168  * console_unlock(); may be called from any context.
2169  */
console_unlock(void)2170 void console_unlock(void)
2171 {
2172 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2173 	static u64 seen_seq;
2174 	unsigned long flags;
2175 	bool wake_klogd = false;
2176 	bool do_cond_resched, retry;
2177 
2178 	if (console_suspended) {
2179 		up_console_sem();
2180 		return;
2181 	}
2182 
2183 	/*
2184 	 * Console drivers are called under logbuf_lock, so
2185 	 * @console_may_schedule should be cleared before; however, we may
2186 	 * end up dumping a lot of lines, for example, if called from
2187 	 * console registration path, and should invoke cond_resched()
2188 	 * between lines if allowable.  Not doing so can cause a very long
2189 	 * scheduling stall on a slow console leading to RCU stall and
2190 	 * softlockup warnings which exacerbate the issue with more
2191 	 * messages practically incapacitating the system.
2192 	 */
2193 	do_cond_resched = console_may_schedule;
2194 	console_may_schedule = 0;
2195 
2196 	/* flush buffered message fragment immediately to console */
2197 	console_cont_flush(text, sizeof(text));
2198 again:
2199 	for (;;) {
2200 		struct printk_log *msg;
2201 		size_t len;
2202 		int level;
2203 
2204 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2205 		if (seen_seq != log_next_seq) {
2206 			wake_klogd = true;
2207 			seen_seq = log_next_seq;
2208 		}
2209 
2210 		if (console_seq < log_first_seq) {
2211 			len = sprintf(text, "** %u printk messages dropped ** ",
2212 				      (unsigned)(log_first_seq - console_seq));
2213 
2214 			/* messages are gone, move to first one */
2215 			console_seq = log_first_seq;
2216 			console_idx = log_first_idx;
2217 			console_prev = 0;
2218 		} else {
2219 			len = 0;
2220 		}
2221 skip:
2222 		if (console_seq == log_next_seq)
2223 			break;
2224 
2225 		msg = log_from_idx(console_idx);
2226 		if (msg->flags & LOG_NOCONS) {
2227 			/*
2228 			 * Skip record we have buffered and already printed
2229 			 * directly to the console when we received it.
2230 			 */
2231 			console_idx = log_next(console_idx);
2232 			console_seq++;
2233 			/*
2234 			 * We will get here again when we register a new
2235 			 * CON_PRINTBUFFER console. Clear the flag so we
2236 			 * will properly dump everything later.
2237 			 */
2238 			msg->flags &= ~LOG_NOCONS;
2239 			console_prev = msg->flags;
2240 			goto skip;
2241 		}
2242 
2243 		level = msg->level;
2244 		len += msg_print_text(msg, console_prev, false,
2245 				      text + len, sizeof(text) - len);
2246 		console_idx = log_next(console_idx);
2247 		console_seq++;
2248 		console_prev = msg->flags;
2249 		raw_spin_unlock(&logbuf_lock);
2250 
2251 		stop_critical_timings();	/* don't trace print latency */
2252 		call_console_drivers(level, text, len);
2253 		start_critical_timings();
2254 		local_irq_restore(flags);
2255 
2256 		if (do_cond_resched)
2257 			cond_resched();
2258 	}
2259 	console_locked = 0;
2260 
2261 	/* Release the exclusive_console once it is used */
2262 	if (unlikely(exclusive_console))
2263 		exclusive_console = NULL;
2264 
2265 	raw_spin_unlock(&logbuf_lock);
2266 
2267 	up_console_sem();
2268 
2269 	/*
2270 	 * Someone could have filled up the buffer again, so re-check if there's
2271 	 * something to flush. In case we cannot trylock the console_sem again,
2272 	 * there's a new owner and the console_unlock() from them will do the
2273 	 * flush, no worries.
2274 	 */
2275 	raw_spin_lock(&logbuf_lock);
2276 	retry = console_seq != log_next_seq;
2277 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2278 
2279 	if (retry && console_trylock())
2280 		goto again;
2281 
2282 	if (wake_klogd)
2283 		wake_up_klogd();
2284 }
2285 EXPORT_SYMBOL(console_unlock);
2286 
2287 /**
2288  * console_conditional_schedule - yield the CPU if required
2289  *
2290  * If the console code is currently allowed to sleep, and
2291  * if this CPU should yield the CPU to another task, do
2292  * so here.
2293  *
2294  * Must be called within console_lock();.
2295  */
console_conditional_schedule(void)2296 void __sched console_conditional_schedule(void)
2297 {
2298 	if (console_may_schedule)
2299 		cond_resched();
2300 }
2301 EXPORT_SYMBOL(console_conditional_schedule);
2302 
console_unblank(void)2303 void console_unblank(void)
2304 {
2305 	struct console *c;
2306 
2307 	/*
2308 	 * console_unblank can no longer be called in interrupt context unless
2309 	 * oops_in_progress is set to 1..
2310 	 */
2311 	if (oops_in_progress) {
2312 		if (down_trylock_console_sem() != 0)
2313 			return;
2314 	} else
2315 		console_lock();
2316 
2317 	console_locked = 1;
2318 	console_may_schedule = 0;
2319 	for_each_console(c)
2320 		if ((c->flags & CON_ENABLED) && c->unblank)
2321 			c->unblank();
2322 	console_unlock();
2323 }
2324 
2325 /**
2326  * console_flush_on_panic - flush console content on panic
2327  *
2328  * Immediately output all pending messages no matter what.
2329  */
console_flush_on_panic(void)2330 void console_flush_on_panic(void)
2331 {
2332 	/*
2333 	 * If someone else is holding the console lock, trylock will fail
2334 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2335 	 * that messages are flushed out.  As this can be called from any
2336 	 * context and we don't want to get preempted while flushing,
2337 	 * ensure may_schedule is cleared.
2338 	 */
2339 	console_trylock();
2340 	console_may_schedule = 0;
2341 	console_unlock();
2342 }
2343 
2344 /*
2345  * Return the console tty driver structure and its associated index
2346  */
console_device(int * index)2347 struct tty_driver *console_device(int *index)
2348 {
2349 	struct console *c;
2350 	struct tty_driver *driver = NULL;
2351 
2352 	console_lock();
2353 	for_each_console(c) {
2354 		if (!c->device)
2355 			continue;
2356 		driver = c->device(c, index);
2357 		if (driver)
2358 			break;
2359 	}
2360 	console_unlock();
2361 	return driver;
2362 }
2363 
2364 /*
2365  * Prevent further output on the passed console device so that (for example)
2366  * serial drivers can disable console output before suspending a port, and can
2367  * re-enable output afterwards.
2368  */
console_stop(struct console * console)2369 void console_stop(struct console *console)
2370 {
2371 	console_lock();
2372 	console->flags &= ~CON_ENABLED;
2373 	console_unlock();
2374 }
2375 EXPORT_SYMBOL(console_stop);
2376 
console_start(struct console * console)2377 void console_start(struct console *console)
2378 {
2379 	console_lock();
2380 	console->flags |= CON_ENABLED;
2381 	console_unlock();
2382 }
2383 EXPORT_SYMBOL(console_start);
2384 
2385 static int __read_mostly keep_bootcon;
2386 
keep_bootcon_setup(char * str)2387 static int __init keep_bootcon_setup(char *str)
2388 {
2389 	keep_bootcon = 1;
2390 	pr_info("debug: skip boot console de-registration.\n");
2391 
2392 	return 0;
2393 }
2394 
2395 early_param("keep_bootcon", keep_bootcon_setup);
2396 
2397 /*
2398  * The console driver calls this routine during kernel initialization
2399  * to register the console printing procedure with printk() and to
2400  * print any messages that were printed by the kernel before the
2401  * console driver was initialized.
2402  *
2403  * This can happen pretty early during the boot process (because of
2404  * early_printk) - sometimes before setup_arch() completes - be careful
2405  * of what kernel features are used - they may not be initialised yet.
2406  *
2407  * There are two types of consoles - bootconsoles (early_printk) and
2408  * "real" consoles (everything which is not a bootconsole) which are
2409  * handled differently.
2410  *  - Any number of bootconsoles can be registered at any time.
2411  *  - As soon as a "real" console is registered, all bootconsoles
2412  *    will be unregistered automatically.
2413  *  - Once a "real" console is registered, any attempt to register a
2414  *    bootconsoles will be rejected
2415  */
register_console(struct console * newcon)2416 void register_console(struct console *newcon)
2417 {
2418 	int i;
2419 	unsigned long flags;
2420 	struct console *bcon = NULL;
2421 	struct console_cmdline *c;
2422 
2423 	if (console_drivers)
2424 		for_each_console(bcon)
2425 			if (WARN(bcon == newcon,
2426 					"console '%s%d' already registered\n",
2427 					bcon->name, bcon->index))
2428 				return;
2429 
2430 	/*
2431 	 * before we register a new CON_BOOT console, make sure we don't
2432 	 * already have a valid console
2433 	 */
2434 	if (console_drivers && newcon->flags & CON_BOOT) {
2435 		/* find the last or real console */
2436 		for_each_console(bcon) {
2437 			if (!(bcon->flags & CON_BOOT)) {
2438 				pr_info("Too late to register bootconsole %s%d\n",
2439 					newcon->name, newcon->index);
2440 				return;
2441 			}
2442 		}
2443 	}
2444 
2445 	if (console_drivers && console_drivers->flags & CON_BOOT)
2446 		bcon = console_drivers;
2447 
2448 	if (preferred_console < 0 || bcon || !console_drivers)
2449 		preferred_console = selected_console;
2450 
2451 	/*
2452 	 *	See if we want to use this console driver. If we
2453 	 *	didn't select a console we take the first one
2454 	 *	that registers here.
2455 	 */
2456 	if (preferred_console < 0) {
2457 		if (newcon->index < 0)
2458 			newcon->index = 0;
2459 		if (newcon->setup == NULL ||
2460 		    newcon->setup(newcon, NULL) == 0) {
2461 			newcon->flags |= CON_ENABLED;
2462 			if (newcon->device) {
2463 				newcon->flags |= CON_CONSDEV;
2464 				preferred_console = 0;
2465 			}
2466 		}
2467 	}
2468 
2469 	/*
2470 	 *	See if this console matches one we selected on
2471 	 *	the command line.
2472 	 */
2473 	for (i = 0, c = console_cmdline;
2474 	     i < MAX_CMDLINECONSOLES && c->name[0];
2475 	     i++, c++) {
2476 		if (!newcon->match ||
2477 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2478 			/* default matching */
2479 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2480 			if (strcmp(c->name, newcon->name) != 0)
2481 				continue;
2482 			if (newcon->index >= 0 &&
2483 			    newcon->index != c->index)
2484 				continue;
2485 			if (newcon->index < 0)
2486 				newcon->index = c->index;
2487 
2488 			if (_braille_register_console(newcon, c))
2489 				return;
2490 
2491 			if (newcon->setup &&
2492 			    newcon->setup(newcon, c->options) != 0)
2493 				break;
2494 		}
2495 
2496 		newcon->flags |= CON_ENABLED;
2497 		if (i == selected_console) {
2498 			newcon->flags |= CON_CONSDEV;
2499 			preferred_console = selected_console;
2500 		}
2501 		break;
2502 	}
2503 
2504 	if (!(newcon->flags & CON_ENABLED))
2505 		return;
2506 
2507 	/*
2508 	 * If we have a bootconsole, and are switching to a real console,
2509 	 * don't print everything out again, since when the boot console, and
2510 	 * the real console are the same physical device, it's annoying to
2511 	 * see the beginning boot messages twice
2512 	 */
2513 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2514 		newcon->flags &= ~CON_PRINTBUFFER;
2515 
2516 	/*
2517 	 *	Put this console in the list - keep the
2518 	 *	preferred driver at the head of the list.
2519 	 */
2520 	console_lock();
2521 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2522 		newcon->next = console_drivers;
2523 		console_drivers = newcon;
2524 		if (newcon->next)
2525 			newcon->next->flags &= ~CON_CONSDEV;
2526 	} else {
2527 		newcon->next = console_drivers->next;
2528 		console_drivers->next = newcon;
2529 	}
2530 	if (newcon->flags & CON_PRINTBUFFER) {
2531 		/*
2532 		 * console_unlock(); will print out the buffered messages
2533 		 * for us.
2534 		 */
2535 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2536 		console_seq = syslog_seq;
2537 		console_idx = syslog_idx;
2538 		console_prev = syslog_prev;
2539 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2540 		/*
2541 		 * We're about to replay the log buffer.  Only do this to the
2542 		 * just-registered console to avoid excessive message spam to
2543 		 * the already-registered consoles.
2544 		 */
2545 		exclusive_console = newcon;
2546 	}
2547 	console_unlock();
2548 	console_sysfs_notify();
2549 
2550 	/*
2551 	 * By unregistering the bootconsoles after we enable the real console
2552 	 * we get the "console xxx enabled" message on all the consoles -
2553 	 * boot consoles, real consoles, etc - this is to ensure that end
2554 	 * users know there might be something in the kernel's log buffer that
2555 	 * went to the bootconsole (that they do not see on the real console)
2556 	 */
2557 	pr_info("%sconsole [%s%d] enabled\n",
2558 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2559 		newcon->name, newcon->index);
2560 	if (bcon &&
2561 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2562 	    !keep_bootcon) {
2563 		/* We need to iterate through all boot consoles, to make
2564 		 * sure we print everything out, before we unregister them.
2565 		 */
2566 		for_each_console(bcon)
2567 			if (bcon->flags & CON_BOOT)
2568 				unregister_console(bcon);
2569 	}
2570 }
2571 EXPORT_SYMBOL(register_console);
2572 
unregister_console(struct console * console)2573 int unregister_console(struct console *console)
2574 {
2575         struct console *a, *b;
2576 	int res;
2577 
2578 	pr_info("%sconsole [%s%d] disabled\n",
2579 		(console->flags & CON_BOOT) ? "boot" : "" ,
2580 		console->name, console->index);
2581 
2582 	res = _braille_unregister_console(console);
2583 	if (res)
2584 		return res;
2585 
2586 	res = 1;
2587 	console_lock();
2588 	if (console_drivers == console) {
2589 		console_drivers=console->next;
2590 		res = 0;
2591 	} else if (console_drivers) {
2592 		for (a=console_drivers->next, b=console_drivers ;
2593 		     a; b=a, a=b->next) {
2594 			if (a == console) {
2595 				b->next = a->next;
2596 				res = 0;
2597 				break;
2598 			}
2599 		}
2600 	}
2601 
2602 	/*
2603 	 * If this isn't the last console and it has CON_CONSDEV set, we
2604 	 * need to set it on the next preferred console.
2605 	 */
2606 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2607 		console_drivers->flags |= CON_CONSDEV;
2608 
2609 	console->flags &= ~CON_ENABLED;
2610 	console_unlock();
2611 	console_sysfs_notify();
2612 	return res;
2613 }
2614 EXPORT_SYMBOL(unregister_console);
2615 
printk_late_init(void)2616 static int __init printk_late_init(void)
2617 {
2618 	struct console *con;
2619 
2620 	for_each_console(con) {
2621 		if (!keep_bootcon && con->flags & CON_BOOT) {
2622 			unregister_console(con);
2623 		}
2624 	}
2625 	hotcpu_notifier(console_cpu_notify, 0);
2626 	return 0;
2627 }
2628 late_initcall(printk_late_init);
2629 
2630 #if defined CONFIG_PRINTK
2631 /*
2632  * Delayed printk version, for scheduler-internal messages:
2633  */
2634 #define PRINTK_PENDING_WAKEUP	0x01
2635 #define PRINTK_PENDING_OUTPUT	0x02
2636 
2637 static DEFINE_PER_CPU(int, printk_pending);
2638 
wake_up_klogd_work_func(struct irq_work * irq_work)2639 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2640 {
2641 	int pending = __this_cpu_xchg(printk_pending, 0);
2642 
2643 	if (pending & PRINTK_PENDING_OUTPUT) {
2644 		/* If trylock fails, someone else is doing the printing */
2645 		if (console_trylock())
2646 			console_unlock();
2647 	}
2648 
2649 	if (pending & PRINTK_PENDING_WAKEUP)
2650 		wake_up_interruptible(&log_wait);
2651 }
2652 
2653 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2654 	.func = wake_up_klogd_work_func,
2655 	.flags = IRQ_WORK_LAZY,
2656 };
2657 
wake_up_klogd(void)2658 void wake_up_klogd(void)
2659 {
2660 	preempt_disable();
2661 	if (waitqueue_active(&log_wait)) {
2662 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2663 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2664 	}
2665 	preempt_enable();
2666 }
2667 
printk_deferred(const char * fmt,...)2668 int printk_deferred(const char *fmt, ...)
2669 {
2670 	va_list args;
2671 	int r;
2672 
2673 	preempt_disable();
2674 	va_start(args, fmt);
2675 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2676 	va_end(args);
2677 
2678 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2679 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2680 	preempt_enable();
2681 
2682 	return r;
2683 }
2684 
2685 /*
2686  * printk rate limiting, lifted from the networking subsystem.
2687  *
2688  * This enforces a rate limit: not more than 10 kernel messages
2689  * every 5s to make a denial-of-service attack impossible.
2690  */
2691 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2692 
__printk_ratelimit(const char * func)2693 int __printk_ratelimit(const char *func)
2694 {
2695 	return ___ratelimit(&printk_ratelimit_state, func);
2696 }
2697 EXPORT_SYMBOL(__printk_ratelimit);
2698 
2699 /**
2700  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2701  * @caller_jiffies: pointer to caller's state
2702  * @interval_msecs: minimum interval between prints
2703  *
2704  * printk_timed_ratelimit() returns true if more than @interval_msecs
2705  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2706  * returned true.
2707  */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)2708 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2709 			unsigned int interval_msecs)
2710 {
2711 	unsigned long elapsed = jiffies - *caller_jiffies;
2712 
2713 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2714 		return false;
2715 
2716 	*caller_jiffies = jiffies;
2717 	return true;
2718 }
2719 EXPORT_SYMBOL(printk_timed_ratelimit);
2720 
2721 static DEFINE_SPINLOCK(dump_list_lock);
2722 static LIST_HEAD(dump_list);
2723 
2724 /**
2725  * kmsg_dump_register - register a kernel log dumper.
2726  * @dumper: pointer to the kmsg_dumper structure
2727  *
2728  * Adds a kernel log dumper to the system. The dump callback in the
2729  * structure will be called when the kernel oopses or panics and must be
2730  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2731  */
kmsg_dump_register(struct kmsg_dumper * dumper)2732 int kmsg_dump_register(struct kmsg_dumper *dumper)
2733 {
2734 	unsigned long flags;
2735 	int err = -EBUSY;
2736 
2737 	/* The dump callback needs to be set */
2738 	if (!dumper->dump)
2739 		return -EINVAL;
2740 
2741 	spin_lock_irqsave(&dump_list_lock, flags);
2742 	/* Don't allow registering multiple times */
2743 	if (!dumper->registered) {
2744 		dumper->registered = 1;
2745 		list_add_tail_rcu(&dumper->list, &dump_list);
2746 		err = 0;
2747 	}
2748 	spin_unlock_irqrestore(&dump_list_lock, flags);
2749 
2750 	return err;
2751 }
2752 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2753 
2754 /**
2755  * kmsg_dump_unregister - unregister a kmsg dumper.
2756  * @dumper: pointer to the kmsg_dumper structure
2757  *
2758  * Removes a dump device from the system. Returns zero on success and
2759  * %-EINVAL otherwise.
2760  */
kmsg_dump_unregister(struct kmsg_dumper * dumper)2761 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2762 {
2763 	unsigned long flags;
2764 	int err = -EINVAL;
2765 
2766 	spin_lock_irqsave(&dump_list_lock, flags);
2767 	if (dumper->registered) {
2768 		dumper->registered = 0;
2769 		list_del_rcu(&dumper->list);
2770 		err = 0;
2771 	}
2772 	spin_unlock_irqrestore(&dump_list_lock, flags);
2773 	synchronize_rcu();
2774 
2775 	return err;
2776 }
2777 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2778 
2779 static bool always_kmsg_dump;
2780 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2781 
2782 /**
2783  * kmsg_dump - dump kernel log to kernel message dumpers.
2784  * @reason: the reason (oops, panic etc) for dumping
2785  *
2786  * Call each of the registered dumper's dump() callback, which can
2787  * retrieve the kmsg records with kmsg_dump_get_line() or
2788  * kmsg_dump_get_buffer().
2789  */
kmsg_dump(enum kmsg_dump_reason reason)2790 void kmsg_dump(enum kmsg_dump_reason reason)
2791 {
2792 	struct kmsg_dumper *dumper;
2793 	unsigned long flags;
2794 
2795 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2796 		return;
2797 
2798 	rcu_read_lock();
2799 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2800 		if (dumper->max_reason && reason > dumper->max_reason)
2801 			continue;
2802 
2803 		/* initialize iterator with data about the stored records */
2804 		dumper->active = true;
2805 
2806 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2807 		dumper->cur_seq = clear_seq;
2808 		dumper->cur_idx = clear_idx;
2809 		dumper->next_seq = log_next_seq;
2810 		dumper->next_idx = log_next_idx;
2811 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2812 
2813 		/* invoke dumper which will iterate over records */
2814 		dumper->dump(dumper, reason);
2815 
2816 		/* reset iterator */
2817 		dumper->active = false;
2818 	}
2819 	rcu_read_unlock();
2820 }
2821 
2822 /**
2823  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2824  * @dumper: registered kmsg dumper
2825  * @syslog: include the "<4>" prefixes
2826  * @line: buffer to copy the line to
2827  * @size: maximum size of the buffer
2828  * @len: length of line placed into buffer
2829  *
2830  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2831  * record, and copy one record into the provided buffer.
2832  *
2833  * Consecutive calls will return the next available record moving
2834  * towards the end of the buffer with the youngest messages.
2835  *
2836  * A return value of FALSE indicates that there are no more records to
2837  * read.
2838  *
2839  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2840  */
kmsg_dump_get_line_nolock(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)2841 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2842 			       char *line, size_t size, size_t *len)
2843 {
2844 	struct printk_log *msg;
2845 	size_t l = 0;
2846 	bool ret = false;
2847 
2848 	if (!dumper->active)
2849 		goto out;
2850 
2851 	if (dumper->cur_seq < log_first_seq) {
2852 		/* messages are gone, move to first available one */
2853 		dumper->cur_seq = log_first_seq;
2854 		dumper->cur_idx = log_first_idx;
2855 	}
2856 
2857 	/* last entry */
2858 	if (dumper->cur_seq >= log_next_seq)
2859 		goto out;
2860 
2861 	msg = log_from_idx(dumper->cur_idx);
2862 	l = msg_print_text(msg, 0, syslog, line, size);
2863 
2864 	dumper->cur_idx = log_next(dumper->cur_idx);
2865 	dumper->cur_seq++;
2866 	ret = true;
2867 out:
2868 	if (len)
2869 		*len = l;
2870 	return ret;
2871 }
2872 
2873 /**
2874  * kmsg_dump_get_line - retrieve one kmsg log line
2875  * @dumper: registered kmsg dumper
2876  * @syslog: include the "<4>" prefixes
2877  * @line: buffer to copy the line to
2878  * @size: maximum size of the buffer
2879  * @len: length of line placed into buffer
2880  *
2881  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2882  * record, and copy one record into the provided buffer.
2883  *
2884  * Consecutive calls will return the next available record moving
2885  * towards the end of the buffer with the youngest messages.
2886  *
2887  * A return value of FALSE indicates that there are no more records to
2888  * read.
2889  */
kmsg_dump_get_line(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)2890 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2891 			char *line, size_t size, size_t *len)
2892 {
2893 	unsigned long flags;
2894 	bool ret;
2895 
2896 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2897 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2898 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2899 
2900 	return ret;
2901 }
2902 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2903 
2904 /**
2905  * kmsg_dump_get_buffer - copy kmsg log lines
2906  * @dumper: registered kmsg dumper
2907  * @syslog: include the "<4>" prefixes
2908  * @buf: buffer to copy the line to
2909  * @size: maximum size of the buffer
2910  * @len: length of line placed into buffer
2911  *
2912  * Start at the end of the kmsg buffer and fill the provided buffer
2913  * with as many of the the *youngest* kmsg records that fit into it.
2914  * If the buffer is large enough, all available kmsg records will be
2915  * copied with a single call.
2916  *
2917  * Consecutive calls will fill the buffer with the next block of
2918  * available older records, not including the earlier retrieved ones.
2919  *
2920  * A return value of FALSE indicates that there are no more records to
2921  * read.
2922  */
kmsg_dump_get_buffer(struct kmsg_dumper * dumper,bool syslog,char * buf,size_t size,size_t * len)2923 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2924 			  char *buf, size_t size, size_t *len)
2925 {
2926 	unsigned long flags;
2927 	u64 seq;
2928 	u32 idx;
2929 	u64 next_seq;
2930 	u32 next_idx;
2931 	enum log_flags prev;
2932 	size_t l = 0;
2933 	bool ret = false;
2934 
2935 	if (!dumper->active)
2936 		goto out;
2937 
2938 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2939 	if (dumper->cur_seq < log_first_seq) {
2940 		/* messages are gone, move to first available one */
2941 		dumper->cur_seq = log_first_seq;
2942 		dumper->cur_idx = log_first_idx;
2943 	}
2944 
2945 	/* last entry */
2946 	if (dumper->cur_seq >= dumper->next_seq) {
2947 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2948 		goto out;
2949 	}
2950 
2951 	/* calculate length of entire buffer */
2952 	seq = dumper->cur_seq;
2953 	idx = dumper->cur_idx;
2954 	prev = 0;
2955 	while (seq < dumper->next_seq) {
2956 		struct printk_log *msg = log_from_idx(idx);
2957 
2958 		l += msg_print_text(msg, prev, true, NULL, 0);
2959 		idx = log_next(idx);
2960 		seq++;
2961 		prev = msg->flags;
2962 	}
2963 
2964 	/* move first record forward until length fits into the buffer */
2965 	seq = dumper->cur_seq;
2966 	idx = dumper->cur_idx;
2967 	prev = 0;
2968 	while (l > size && seq < dumper->next_seq) {
2969 		struct printk_log *msg = log_from_idx(idx);
2970 
2971 		l -= msg_print_text(msg, prev, true, NULL, 0);
2972 		idx = log_next(idx);
2973 		seq++;
2974 		prev = msg->flags;
2975 	}
2976 
2977 	/* last message in next interation */
2978 	next_seq = seq;
2979 	next_idx = idx;
2980 
2981 	l = 0;
2982 	while (seq < dumper->next_seq) {
2983 		struct printk_log *msg = log_from_idx(idx);
2984 
2985 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2986 		idx = log_next(idx);
2987 		seq++;
2988 		prev = msg->flags;
2989 	}
2990 
2991 	dumper->next_seq = next_seq;
2992 	dumper->next_idx = next_idx;
2993 	ret = true;
2994 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2995 out:
2996 	if (len)
2997 		*len = l;
2998 	return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3001 
3002 /**
3003  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3004  * @dumper: registered kmsg dumper
3005  *
3006  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3007  * kmsg_dump_get_buffer() can be called again and used multiple
3008  * times within the same dumper.dump() callback.
3009  *
3010  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3011  */
kmsg_dump_rewind_nolock(struct kmsg_dumper * dumper)3012 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3013 {
3014 	dumper->cur_seq = clear_seq;
3015 	dumper->cur_idx = clear_idx;
3016 	dumper->next_seq = log_next_seq;
3017 	dumper->next_idx = log_next_idx;
3018 }
3019 
3020 /**
3021  * kmsg_dump_rewind - reset the interator
3022  * @dumper: registered kmsg dumper
3023  *
3024  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3025  * kmsg_dump_get_buffer() can be called again and used multiple
3026  * times within the same dumper.dump() callback.
3027  */
kmsg_dump_rewind(struct kmsg_dumper * dumper)3028 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3029 {
3030 	unsigned long flags;
3031 
3032 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3033 	kmsg_dump_rewind_nolock(dumper);
3034 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3035 }
3036 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3037 
3038 static char dump_stack_arch_desc_str[128];
3039 
3040 /**
3041  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3042  * @fmt: printf-style format string
3043  * @...: arguments for the format string
3044  *
3045  * The configured string will be printed right after utsname during task
3046  * dumps.  Usually used to add arch-specific system identifiers.  If an
3047  * arch wants to make use of such an ID string, it should initialize this
3048  * as soon as possible during boot.
3049  */
dump_stack_set_arch_desc(const char * fmt,...)3050 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3051 {
3052 	va_list args;
3053 
3054 	va_start(args, fmt);
3055 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3056 		  fmt, args);
3057 	va_end(args);
3058 }
3059 
3060 /**
3061  * dump_stack_print_info - print generic debug info for dump_stack()
3062  * @log_lvl: log level
3063  *
3064  * Arch-specific dump_stack() implementations can use this function to
3065  * print out the same debug information as the generic dump_stack().
3066  */
dump_stack_print_info(const char * log_lvl)3067 void dump_stack_print_info(const char *log_lvl)
3068 {
3069 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3070 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3071 	       print_tainted(), init_utsname()->release,
3072 	       (int)strcspn(init_utsname()->version, " "),
3073 	       init_utsname()->version);
3074 
3075 	if (dump_stack_arch_desc_str[0] != '\0')
3076 		printk("%sHardware name: %s\n",
3077 		       log_lvl, dump_stack_arch_desc_str);
3078 
3079 	print_worker_info(log_lvl, current);
3080 }
3081 
3082 /**
3083  * show_regs_print_info - print generic debug info for show_regs()
3084  * @log_lvl: log level
3085  *
3086  * show_regs() implementations can use this function to print out generic
3087  * debug information.
3088  */
show_regs_print_info(const char * log_lvl)3089 void show_regs_print_info(const char *log_lvl)
3090 {
3091 	dump_stack_print_info(log_lvl);
3092 
3093 	printk("%stask: %p ti: %p task.ti: %p\n",
3094 	       log_lvl, current, current_thread_info(),
3095 	       task_thread_info(current));
3096 }
3097 
3098 #endif
3099