1 /*
2  * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
3  * reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the NetLogic
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/delay.h>
39 
40 #include <asm/mipsregs.h>
41 #include <asm/time.h>
42 
43 #include <asm/netlogic/common.h>
44 #include <asm/netlogic/haldefs.h>
45 #include <asm/netlogic/xlp-hal/iomap.h>
46 #include <asm/netlogic/xlp-hal/xlp.h>
47 #include <asm/netlogic/xlp-hal/bridge.h>
48 #include <asm/netlogic/xlp-hal/pic.h>
49 #include <asm/netlogic/xlp-hal/sys.h>
50 
51 /* Main initialization */
nlm_node_init(int node)52 void nlm_node_init(int node)
53 {
54 	struct nlm_soc_info *nodep;
55 
56 	nodep = nlm_get_node(node);
57 	if (node == 0)
58 		nodep->coremask = 1;	/* node 0, boot cpu */
59 	nodep->sysbase = nlm_get_sys_regbase(node);
60 	nodep->picbase = nlm_get_pic_regbase(node);
61 	nodep->ebase = read_c0_ebase() & (~((1 << 12) - 1));
62 	if (cpu_is_xlp9xx())
63 		nodep->socbus = xlp9xx_get_socbus(node);
64 	else
65 		nodep->socbus = 0;
66 	spin_lock_init(&nodep->piclock);
67 }
68 
xlp9xx_irq_to_irt(int irq)69 static int xlp9xx_irq_to_irt(int irq)
70 {
71 	switch (irq) {
72 	case PIC_GPIO_IRQ:
73 		return 12;
74 	case PIC_I2C_0_IRQ:
75 		return 125;
76 	case PIC_I2C_1_IRQ:
77 		return 126;
78 	case PIC_I2C_2_IRQ:
79 		return 127;
80 	case PIC_I2C_3_IRQ:
81 		return 128;
82 	case PIC_9XX_XHCI_0_IRQ:
83 		return 114;
84 	case PIC_9XX_XHCI_1_IRQ:
85 		return 115;
86 	case PIC_9XX_XHCI_2_IRQ:
87 		return 116;
88 	case PIC_UART_0_IRQ:
89 		return 133;
90 	case PIC_UART_1_IRQ:
91 		return 134;
92 	case PIC_SATA_IRQ:
93 		return 143;
94 	case PIC_SPI_IRQ:
95 		return 152;
96 	case PIC_MMC_IRQ:
97 		return 153;
98 	case PIC_PCIE_LINK_LEGACY_IRQ(0):
99 	case PIC_PCIE_LINK_LEGACY_IRQ(1):
100 	case PIC_PCIE_LINK_LEGACY_IRQ(2):
101 	case PIC_PCIE_LINK_LEGACY_IRQ(3):
102 		return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
103 	}
104 	return -1;
105 }
106 
xlp_irq_to_irt(int irq)107 static int xlp_irq_to_irt(int irq)
108 {
109 	uint64_t pcibase;
110 	int devoff, irt;
111 
112 	devoff = 0;
113 	switch (irq) {
114 	case PIC_UART_0_IRQ:
115 		devoff = XLP_IO_UART0_OFFSET(0);
116 		break;
117 	case PIC_UART_1_IRQ:
118 		devoff = XLP_IO_UART1_OFFSET(0);
119 		break;
120 	case PIC_MMC_IRQ:
121 		devoff = XLP_IO_MMC_OFFSET(0);
122 		break;
123 	case PIC_I2C_0_IRQ:	/* I2C will be fixed up */
124 	case PIC_I2C_1_IRQ:
125 	case PIC_I2C_2_IRQ:
126 	case PIC_I2C_3_IRQ:
127 		if (cpu_is_xlpii())
128 			devoff = XLP2XX_IO_I2C_OFFSET(0);
129 		else
130 			devoff = XLP_IO_I2C0_OFFSET(0);
131 		break;
132 	case PIC_SATA_IRQ:
133 		devoff = XLP_IO_SATA_OFFSET(0);
134 		break;
135 	case PIC_GPIO_IRQ:
136 		devoff = XLP_IO_GPIO_OFFSET(0);
137 		break;
138 	case PIC_NAND_IRQ:
139 		devoff = XLP_IO_NAND_OFFSET(0);
140 		break;
141 	case PIC_SPI_IRQ:
142 		devoff = XLP_IO_SPI_OFFSET(0);
143 		break;
144 	default:
145 		if (cpu_is_xlpii()) {
146 			switch (irq) {
147 				/* XLP2XX has three XHCI USB controller */
148 			case PIC_2XX_XHCI_0_IRQ:
149 				devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
150 				break;
151 			case PIC_2XX_XHCI_1_IRQ:
152 				devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
153 				break;
154 			case PIC_2XX_XHCI_2_IRQ:
155 				devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
156 				break;
157 			}
158 		} else {
159 			switch (irq) {
160 			case PIC_EHCI_0_IRQ:
161 				devoff = XLP_IO_USB_EHCI0_OFFSET(0);
162 				break;
163 			case PIC_EHCI_1_IRQ:
164 				devoff = XLP_IO_USB_EHCI1_OFFSET(0);
165 				break;
166 			case PIC_OHCI_0_IRQ:
167 				devoff = XLP_IO_USB_OHCI0_OFFSET(0);
168 				break;
169 			case PIC_OHCI_1_IRQ:
170 				devoff = XLP_IO_USB_OHCI1_OFFSET(0);
171 				break;
172 			case PIC_OHCI_2_IRQ:
173 				devoff = XLP_IO_USB_OHCI2_OFFSET(0);
174 				break;
175 			case PIC_OHCI_3_IRQ:
176 				devoff = XLP_IO_USB_OHCI3_OFFSET(0);
177 				break;
178 			}
179 		}
180 	}
181 
182 	if (devoff != 0) {
183 		uint32_t val;
184 
185 		pcibase = nlm_pcicfg_base(devoff);
186 		val = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG);
187 		if (val == 0xffffffff) {
188 			irt = -1;
189 		} else {
190 			irt = val & 0xffff;
191 			/* HW weirdness, I2C IRT entry has to be fixed up */
192 			switch (irq) {
193 			case PIC_I2C_1_IRQ:
194 				irt = irt + 1; break;
195 			case PIC_I2C_2_IRQ:
196 				irt = irt + 2; break;
197 			case PIC_I2C_3_IRQ:
198 				irt = irt + 3; break;
199 			}
200 		}
201 	} else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
202 			irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
203 		/* HW bug, PCI IRT entries are bad on early silicon, fix */
204 		irt = PIC_IRT_PCIE_LINK_INDEX(irq -
205 					PIC_PCIE_LINK_LEGACY_IRQ_BASE);
206 	} else {
207 		irt = -1;
208 	}
209 	return irt;
210 }
211 
nlm_irq_to_irt(int irq)212 int nlm_irq_to_irt(int irq)
213 {
214 	/* return -2 for irqs without 1-1 mapping */
215 	if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
216 		return -2;
217 	if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
218 		return -2;
219 
220 	if (cpu_is_xlp9xx())
221 		return xlp9xx_irq_to_irt(irq);
222 	else
223 		return xlp_irq_to_irt(irq);
224 }
225 
nlm_xlp2_get_core_frequency(int node,int core)226 static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
227 {
228 	unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
229 	uint64_t num, sysbase, clockbase;
230 
231 	if (cpu_is_xlp9xx()) {
232 		clockbase = nlm_get_clock_regbase(node);
233 		ctrl_val0 = nlm_read_sys_reg(clockbase,
234 					SYS_9XX_CPU_PLL_CTRL0(core));
235 		ctrl_val1 = nlm_read_sys_reg(clockbase,
236 					SYS_9XX_CPU_PLL_CTRL1(core));
237 	} else {
238 		sysbase = nlm_get_node(node)->sysbase;
239 		ctrl_val0 = nlm_read_sys_reg(sysbase,
240 						SYS_CPU_PLL_CTRL0(core));
241 		ctrl_val1 = nlm_read_sys_reg(sysbase,
242 						SYS_CPU_PLL_CTRL1(core));
243 	}
244 
245 	/* Find PLL post divider value */
246 	switch ((ctrl_val0 >> 24) & 0x7) {
247 	case 1:
248 		pll_post_div = 2;
249 		break;
250 	case 3:
251 		pll_post_div = 4;
252 		break;
253 	case 7:
254 		pll_post_div = 8;
255 		break;
256 	case 6:
257 		pll_post_div = 16;
258 		break;
259 	case 0:
260 	default:
261 		pll_post_div = 1;
262 		break;
263 	}
264 
265 	num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
266 	denom = 3 * pll_post_div;
267 	do_div(num, denom);
268 
269 	return (unsigned int)num;
270 }
271 
nlm_xlp_get_core_frequency(int node,int core)272 static unsigned int nlm_xlp_get_core_frequency(int node, int core)
273 {
274 	unsigned int pll_divf, pll_divr, dfs_div, ext_div;
275 	unsigned int rstval, dfsval, denom;
276 	uint64_t num, sysbase;
277 
278 	sysbase = nlm_get_node(node)->sysbase;
279 	rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
280 	dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
281 	pll_divf = ((rstval >> 10) & 0x7f) + 1;
282 	pll_divr = ((rstval >> 8)  & 0x3) + 1;
283 	ext_div  = ((rstval >> 30) & 0x3) + 1;
284 	dfs_div  = ((dfsval >> (core * 4)) & 0xf) + 1;
285 
286 	num = 800000000ULL * pll_divf;
287 	denom = 3 * pll_divr * ext_div * dfs_div;
288 	do_div(num, denom);
289 
290 	return (unsigned int)num;
291 }
292 
nlm_get_core_frequency(int node,int core)293 unsigned int nlm_get_core_frequency(int node, int core)
294 {
295 	if (cpu_is_xlpii())
296 		return nlm_xlp2_get_core_frequency(node, core);
297 	else
298 		return nlm_xlp_get_core_frequency(node, core);
299 }
300 
301 /*
302  * Calculate PIC frequency from PLL registers.
303  * freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
304  * 		((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
305  */
nlm_xlp2_get_pic_frequency(int node)306 static unsigned int nlm_xlp2_get_pic_frequency(int node)
307 {
308 	u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
309 	u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
310 	u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
311 
312 	sysbase = nlm_get_node(node)->sysbase;
313 	clockbase = nlm_get_clock_regbase(node);
314 	cpu_xlp9xx = cpu_is_xlp9xx();
315 
316 	/* Find ref_clk_base */
317 	if (cpu_xlp9xx)
318 		ref_clk_select = (nlm_read_sys_reg(sysbase,
319 				SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
320 	else
321 		ref_clk_select = (nlm_read_sys_reg(sysbase,
322 					SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
323 	switch (ref_clk_select) {
324 	case 0:
325 		ref_clk = 200000000ULL;
326 		ref_div = 3;
327 		break;
328 	case 1:
329 		ref_clk = 100000000ULL;
330 		ref_div = 1;
331 		break;
332 	case 2:
333 		ref_clk = 125000000ULL;
334 		ref_div = 1;
335 		break;
336 	case 3:
337 		ref_clk = 400000000ULL;
338 		ref_div = 3;
339 		break;
340 	}
341 
342 	/* Find the clock source PLL device for PIC */
343 	if (cpu_xlp9xx) {
344 		reg_select = nlm_read_sys_reg(clockbase,
345 				SYS_9XX_CLK_DEV_SEL_REG) & 0x3;
346 		switch (reg_select) {
347 		case 0:
348 			ctrl_val0 = nlm_read_sys_reg(clockbase,
349 					SYS_9XX_PLL_CTRL0);
350 			ctrl_val2 = nlm_read_sys_reg(clockbase,
351 					SYS_9XX_PLL_CTRL2);
352 			break;
353 		case 1:
354 			ctrl_val0 = nlm_read_sys_reg(clockbase,
355 					SYS_9XX_PLL_CTRL0_DEVX(0));
356 			ctrl_val2 = nlm_read_sys_reg(clockbase,
357 					SYS_9XX_PLL_CTRL2_DEVX(0));
358 			break;
359 		case 2:
360 			ctrl_val0 = nlm_read_sys_reg(clockbase,
361 					SYS_9XX_PLL_CTRL0_DEVX(1));
362 			ctrl_val2 = nlm_read_sys_reg(clockbase,
363 					SYS_9XX_PLL_CTRL2_DEVX(1));
364 			break;
365 		case 3:
366 			ctrl_val0 = nlm_read_sys_reg(clockbase,
367 					SYS_9XX_PLL_CTRL0_DEVX(2));
368 			ctrl_val2 = nlm_read_sys_reg(clockbase,
369 					SYS_9XX_PLL_CTRL2_DEVX(2));
370 			break;
371 		}
372 	} else {
373 		reg_select = (nlm_read_sys_reg(sysbase,
374 					SYS_CLK_DEV_SEL_REG) >> 22) & 0x3;
375 		switch (reg_select) {
376 		case 0:
377 			ctrl_val0 = nlm_read_sys_reg(sysbase,
378 					SYS_PLL_CTRL0);
379 			ctrl_val2 = nlm_read_sys_reg(sysbase,
380 					SYS_PLL_CTRL2);
381 			break;
382 		case 1:
383 			ctrl_val0 = nlm_read_sys_reg(sysbase,
384 					SYS_PLL_CTRL0_DEVX(0));
385 			ctrl_val2 = nlm_read_sys_reg(sysbase,
386 					SYS_PLL_CTRL2_DEVX(0));
387 			break;
388 		case 2:
389 			ctrl_val0 = nlm_read_sys_reg(sysbase,
390 					SYS_PLL_CTRL0_DEVX(1));
391 			ctrl_val2 = nlm_read_sys_reg(sysbase,
392 					SYS_PLL_CTRL2_DEVX(1));
393 			break;
394 		case 3:
395 			ctrl_val0 = nlm_read_sys_reg(sysbase,
396 					SYS_PLL_CTRL0_DEVX(2));
397 			ctrl_val2 = nlm_read_sys_reg(sysbase,
398 					SYS_PLL_CTRL2_DEVX(2));
399 			break;
400 		}
401 	}
402 
403 	vco_post_div = (ctrl_val0 >> 5) & 0x7;
404 	pll_post_div = (ctrl_val0 >> 24) & 0x7;
405 	mdiv = ctrl_val2 & 0xff;
406 	fdiv = (ctrl_val2 >> 8) & 0x1fff;
407 
408 	/* Find PLL post divider value */
409 	switch (pll_post_div) {
410 	case 1:
411 		pll_post_div = 2;
412 		break;
413 	case 3:
414 		pll_post_div = 4;
415 		break;
416 	case 7:
417 		pll_post_div = 8;
418 		break;
419 	case 6:
420 		pll_post_div = 16;
421 		break;
422 	case 0:
423 	default:
424 		pll_post_div = 1;
425 		break;
426 	}
427 
428 	fdiv = fdiv/(1 << 13);
429 	pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
430 	pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div;
431 
432 	if (pll_out_freq_den > 0)
433 		do_div(pll_out_freq_num, pll_out_freq_den);
434 
435 	/* PIC post divider, which happens after PLL */
436 	if (cpu_xlp9xx)
437 		pic_div = nlm_read_sys_reg(clockbase,
438 				SYS_9XX_CLK_DEV_DIV_REG) & 0x3;
439 	else
440 		pic_div = (nlm_read_sys_reg(sysbase,
441 					SYS_CLK_DEV_DIV_REG) >> 22) & 0x3;
442 	do_div(pll_out_freq_num, 1 << pic_div);
443 
444 	return pll_out_freq_num;
445 }
446 
nlm_get_pic_frequency(int node)447 unsigned int nlm_get_pic_frequency(int node)
448 {
449 	if (cpu_is_xlpii())
450 		return nlm_xlp2_get_pic_frequency(node);
451 	else
452 		return 133333333;
453 }
454 
nlm_get_cpu_frequency(void)455 unsigned int nlm_get_cpu_frequency(void)
456 {
457 	return nlm_get_core_frequency(0, 0);
458 }
459 
460 /*
461  * Fills upto 8 pairs of entries containing the DRAM map of a node
462  * if node < 0, get dram map for all nodes
463  */
nlm_get_dram_map(int node,uint64_t * dram_map,int nentries)464 int nlm_get_dram_map(int node, uint64_t *dram_map, int nentries)
465 {
466 	uint64_t bridgebase, base, lim;
467 	uint32_t val;
468 	unsigned int barreg, limreg, xlatreg;
469 	int i, n, rv;
470 
471 	/* Look only at mapping on Node 0, we don't handle crazy configs */
472 	bridgebase = nlm_get_bridge_regbase(0);
473 	rv = 0;
474 	for (i = 0; i < 8; i++) {
475 		if (rv + 1 >= nentries)
476 			break;
477 		if (cpu_is_xlp9xx()) {
478 			barreg = BRIDGE_9XX_DRAM_BAR(i);
479 			limreg = BRIDGE_9XX_DRAM_LIMIT(i);
480 			xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
481 		} else {
482 			barreg = BRIDGE_DRAM_BAR(i);
483 			limreg = BRIDGE_DRAM_LIMIT(i);
484 			xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
485 		}
486 		if (node >= 0) {
487 			/* node specified, get node mapping of BAR */
488 			val = nlm_read_bridge_reg(bridgebase, xlatreg);
489 			n = (val >> 1) & 0x3;
490 			if (n != node)
491 				continue;
492 		}
493 		val = nlm_read_bridge_reg(bridgebase, barreg);
494 		val = (val >>  12) & 0xfffff;
495 		base = (uint64_t) val << 20;
496 		val = nlm_read_bridge_reg(bridgebase, limreg);
497 		val = (val >>  12) & 0xfffff;
498 		if (val == 0)   /* BAR not used */
499 			continue;
500 		lim = ((uint64_t)val + 1) << 20;
501 		dram_map[rv] = base;
502 		dram_map[rv + 1] = lim;
503 		rv += 2;
504 	}
505 	return rv;
506 }
507