1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cache.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/kvm_book3s.h>
46 #include <asm/mmu_context.h>
47 #include <asm/lppaca.h>
48 #include <asm/processor.h>
49 #include <asm/cputhreads.h>
50 #include <asm/page.h>
51 #include <asm/hvcall.h>
52 #include <asm/switch_to.h>
53 #include <asm/smp.h>
54 #include <asm/dbell.h>
55 #include <linux/gfp.h>
56 #include <linux/vmalloc.h>
57 #include <linux/highmem.h>
58 #include <linux/hugetlb.h>
59 #include <linux/module.h>
60 
61 #include "book3s.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include "trace_hv.h"
65 
66 /* #define EXIT_DEBUG */
67 /* #define EXIT_DEBUG_SIMPLE */
68 /* #define EXIT_DEBUG_INT */
69 
70 /* Used to indicate that a guest page fault needs to be handled */
71 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
72 
73 /* Used as a "null" value for timebase values */
74 #define TB_NIL	(~(u64)0)
75 
76 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
77 
78 #if defined(CONFIG_PPC_64K_PAGES)
79 #define MPP_BUFFER_ORDER	0
80 #elif defined(CONFIG_PPC_4K_PAGES)
81 #define MPP_BUFFER_ORDER	3
82 #endif
83 
84 
85 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
86 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
87 
kvmppc_ipi_thread(int cpu)88 static bool kvmppc_ipi_thread(int cpu)
89 {
90 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
91 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
92 		preempt_disable();
93 		if (cpu_first_thread_sibling(cpu) ==
94 		    cpu_first_thread_sibling(smp_processor_id())) {
95 			unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
96 			msg |= cpu_thread_in_core(cpu);
97 			smp_mb();
98 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
99 			preempt_enable();
100 			return true;
101 		}
102 		preempt_enable();
103 	}
104 
105 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
106 	if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
107 		xics_wake_cpu(cpu);
108 		return true;
109 	}
110 #endif
111 
112 	return false;
113 }
114 
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)115 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
116 {
117 	int cpu = vcpu->cpu;
118 	wait_queue_head_t *wqp;
119 
120 	wqp = kvm_arch_vcpu_wq(vcpu);
121 	if (waitqueue_active(wqp)) {
122 		wake_up_interruptible(wqp);
123 		++vcpu->stat.halt_wakeup;
124 	}
125 
126 	if (kvmppc_ipi_thread(cpu + vcpu->arch.ptid))
127 		return;
128 
129 	/* CPU points to the first thread of the core */
130 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
131 		smp_send_reschedule(cpu);
132 }
133 
134 /*
135  * We use the vcpu_load/put functions to measure stolen time.
136  * Stolen time is counted as time when either the vcpu is able to
137  * run as part of a virtual core, but the task running the vcore
138  * is preempted or sleeping, or when the vcpu needs something done
139  * in the kernel by the task running the vcpu, but that task is
140  * preempted or sleeping.  Those two things have to be counted
141  * separately, since one of the vcpu tasks will take on the job
142  * of running the core, and the other vcpu tasks in the vcore will
143  * sleep waiting for it to do that, but that sleep shouldn't count
144  * as stolen time.
145  *
146  * Hence we accumulate stolen time when the vcpu can run as part of
147  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
148  * needs its task to do other things in the kernel (for example,
149  * service a page fault) in busy_stolen.  We don't accumulate
150  * stolen time for a vcore when it is inactive, or for a vcpu
151  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
152  * a misnomer; it means that the vcpu task is not executing in
153  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
154  * the kernel.  We don't have any way of dividing up that time
155  * between time that the vcpu is genuinely stopped, time that
156  * the task is actively working on behalf of the vcpu, and time
157  * that the task is preempted, so we don't count any of it as
158  * stolen.
159  *
160  * Updates to busy_stolen are protected by arch.tbacct_lock;
161  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
162  * lock.  The stolen times are measured in units of timebase ticks.
163  * (Note that the != TB_NIL checks below are purely defensive;
164  * they should never fail.)
165  */
166 
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)167 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
168 {
169 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
170 	unsigned long flags;
171 
172 	/*
173 	 * We can test vc->runner without taking the vcore lock,
174 	 * because only this task ever sets vc->runner to this
175 	 * vcpu, and once it is set to this vcpu, only this task
176 	 * ever sets it to NULL.
177 	 */
178 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
179 		spin_lock_irqsave(&vc->stoltb_lock, flags);
180 		if (vc->preempt_tb != TB_NIL) {
181 			vc->stolen_tb += mftb() - vc->preempt_tb;
182 			vc->preempt_tb = TB_NIL;
183 		}
184 		spin_unlock_irqrestore(&vc->stoltb_lock, flags);
185 	}
186 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
187 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
188 	    vcpu->arch.busy_preempt != TB_NIL) {
189 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
190 		vcpu->arch.busy_preempt = TB_NIL;
191 	}
192 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
193 }
194 
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)195 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
196 {
197 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
198 	unsigned long flags;
199 
200 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
201 		spin_lock_irqsave(&vc->stoltb_lock, flags);
202 		vc->preempt_tb = mftb();
203 		spin_unlock_irqrestore(&vc->stoltb_lock, flags);
204 	}
205 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
206 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
207 		vcpu->arch.busy_preempt = mftb();
208 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
209 }
210 
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)211 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
212 {
213 	/*
214 	 * Check for illegal transactional state bit combination
215 	 * and if we find it, force the TS field to a safe state.
216 	 */
217 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
218 		msr &= ~MSR_TS_MASK;
219 	vcpu->arch.shregs.msr = msr;
220 	kvmppc_end_cede(vcpu);
221 }
222 
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)223 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
224 {
225 	vcpu->arch.pvr = pvr;
226 }
227 
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)228 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
229 {
230 	unsigned long pcr = 0;
231 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
232 
233 	if (arch_compat) {
234 		switch (arch_compat) {
235 		case PVR_ARCH_205:
236 			/*
237 			 * If an arch bit is set in PCR, all the defined
238 			 * higher-order arch bits also have to be set.
239 			 */
240 			pcr = PCR_ARCH_206 | PCR_ARCH_205;
241 			break;
242 		case PVR_ARCH_206:
243 		case PVR_ARCH_206p:
244 			pcr = PCR_ARCH_206;
245 			break;
246 		case PVR_ARCH_207:
247 			break;
248 		default:
249 			return -EINVAL;
250 		}
251 
252 		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
253 			/* POWER7 can't emulate POWER8 */
254 			if (!(pcr & PCR_ARCH_206))
255 				return -EINVAL;
256 			pcr &= ~PCR_ARCH_206;
257 		}
258 	}
259 
260 	spin_lock(&vc->lock);
261 	vc->arch_compat = arch_compat;
262 	vc->pcr = pcr;
263 	spin_unlock(&vc->lock);
264 
265 	return 0;
266 }
267 
kvmppc_dump_regs(struct kvm_vcpu * vcpu)268 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
269 {
270 	int r;
271 
272 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
273 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
274 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
275 	for (r = 0; r < 16; ++r)
276 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
277 		       r, kvmppc_get_gpr(vcpu, r),
278 		       r+16, kvmppc_get_gpr(vcpu, r+16));
279 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
280 	       vcpu->arch.ctr, vcpu->arch.lr);
281 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
282 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
283 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
284 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
285 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
286 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
287 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
288 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
289 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
290 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
291 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
292 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
293 	for (r = 0; r < vcpu->arch.slb_max; ++r)
294 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
295 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
296 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
297 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
298 	       vcpu->arch.last_inst);
299 }
300 
kvmppc_find_vcpu(struct kvm * kvm,int id)301 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
302 {
303 	int r;
304 	struct kvm_vcpu *v, *ret = NULL;
305 
306 	mutex_lock(&kvm->lock);
307 	kvm_for_each_vcpu(r, v, kvm) {
308 		if (v->vcpu_id == id) {
309 			ret = v;
310 			break;
311 		}
312 	}
313 	mutex_unlock(&kvm->lock);
314 	return ret;
315 }
316 
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)317 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
318 {
319 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
320 	vpa->yield_count = cpu_to_be32(1);
321 }
322 
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)323 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
324 		   unsigned long addr, unsigned long len)
325 {
326 	/* check address is cacheline aligned */
327 	if (addr & (L1_CACHE_BYTES - 1))
328 		return -EINVAL;
329 	spin_lock(&vcpu->arch.vpa_update_lock);
330 	if (v->next_gpa != addr || v->len != len) {
331 		v->next_gpa = addr;
332 		v->len = addr ? len : 0;
333 		v->update_pending = 1;
334 	}
335 	spin_unlock(&vcpu->arch.vpa_update_lock);
336 	return 0;
337 }
338 
339 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
340 struct reg_vpa {
341 	u32 dummy;
342 	union {
343 		__be16 hword;
344 		__be32 word;
345 	} length;
346 };
347 
vpa_is_registered(struct kvmppc_vpa * vpap)348 static int vpa_is_registered(struct kvmppc_vpa *vpap)
349 {
350 	if (vpap->update_pending)
351 		return vpap->next_gpa != 0;
352 	return vpap->pinned_addr != NULL;
353 }
354 
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)355 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
356 				       unsigned long flags,
357 				       unsigned long vcpuid, unsigned long vpa)
358 {
359 	struct kvm *kvm = vcpu->kvm;
360 	unsigned long len, nb;
361 	void *va;
362 	struct kvm_vcpu *tvcpu;
363 	int err;
364 	int subfunc;
365 	struct kvmppc_vpa *vpap;
366 
367 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
368 	if (!tvcpu)
369 		return H_PARAMETER;
370 
371 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
372 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
373 	    subfunc == H_VPA_REG_SLB) {
374 		/* Registering new area - address must be cache-line aligned */
375 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
376 			return H_PARAMETER;
377 
378 		/* convert logical addr to kernel addr and read length */
379 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
380 		if (va == NULL)
381 			return H_PARAMETER;
382 		if (subfunc == H_VPA_REG_VPA)
383 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
384 		else
385 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
386 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
387 
388 		/* Check length */
389 		if (len > nb || len < sizeof(struct reg_vpa))
390 			return H_PARAMETER;
391 	} else {
392 		vpa = 0;
393 		len = 0;
394 	}
395 
396 	err = H_PARAMETER;
397 	vpap = NULL;
398 	spin_lock(&tvcpu->arch.vpa_update_lock);
399 
400 	switch (subfunc) {
401 	case H_VPA_REG_VPA:		/* register VPA */
402 		if (len < sizeof(struct lppaca))
403 			break;
404 		vpap = &tvcpu->arch.vpa;
405 		err = 0;
406 		break;
407 
408 	case H_VPA_REG_DTL:		/* register DTL */
409 		if (len < sizeof(struct dtl_entry))
410 			break;
411 		len -= len % sizeof(struct dtl_entry);
412 
413 		/* Check that they have previously registered a VPA */
414 		err = H_RESOURCE;
415 		if (!vpa_is_registered(&tvcpu->arch.vpa))
416 			break;
417 
418 		vpap = &tvcpu->arch.dtl;
419 		err = 0;
420 		break;
421 
422 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
423 		/* Check that they have previously registered a VPA */
424 		err = H_RESOURCE;
425 		if (!vpa_is_registered(&tvcpu->arch.vpa))
426 			break;
427 
428 		vpap = &tvcpu->arch.slb_shadow;
429 		err = 0;
430 		break;
431 
432 	case H_VPA_DEREG_VPA:		/* deregister VPA */
433 		/* Check they don't still have a DTL or SLB buf registered */
434 		err = H_RESOURCE;
435 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
436 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
437 			break;
438 
439 		vpap = &tvcpu->arch.vpa;
440 		err = 0;
441 		break;
442 
443 	case H_VPA_DEREG_DTL:		/* deregister DTL */
444 		vpap = &tvcpu->arch.dtl;
445 		err = 0;
446 		break;
447 
448 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
449 		vpap = &tvcpu->arch.slb_shadow;
450 		err = 0;
451 		break;
452 	}
453 
454 	if (vpap) {
455 		vpap->next_gpa = vpa;
456 		vpap->len = len;
457 		vpap->update_pending = 1;
458 	}
459 
460 	spin_unlock(&tvcpu->arch.vpa_update_lock);
461 
462 	return err;
463 }
464 
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)465 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
466 {
467 	struct kvm *kvm = vcpu->kvm;
468 	void *va;
469 	unsigned long nb;
470 	unsigned long gpa;
471 
472 	/*
473 	 * We need to pin the page pointed to by vpap->next_gpa,
474 	 * but we can't call kvmppc_pin_guest_page under the lock
475 	 * as it does get_user_pages() and down_read().  So we
476 	 * have to drop the lock, pin the page, then get the lock
477 	 * again and check that a new area didn't get registered
478 	 * in the meantime.
479 	 */
480 	for (;;) {
481 		gpa = vpap->next_gpa;
482 		spin_unlock(&vcpu->arch.vpa_update_lock);
483 		va = NULL;
484 		nb = 0;
485 		if (gpa)
486 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
487 		spin_lock(&vcpu->arch.vpa_update_lock);
488 		if (gpa == vpap->next_gpa)
489 			break;
490 		/* sigh... unpin that one and try again */
491 		if (va)
492 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
493 	}
494 
495 	vpap->update_pending = 0;
496 	if (va && nb < vpap->len) {
497 		/*
498 		 * If it's now too short, it must be that userspace
499 		 * has changed the mappings underlying guest memory,
500 		 * so unregister the region.
501 		 */
502 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
503 		va = NULL;
504 	}
505 	if (vpap->pinned_addr)
506 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
507 					vpap->dirty);
508 	vpap->gpa = gpa;
509 	vpap->pinned_addr = va;
510 	vpap->dirty = false;
511 	if (va)
512 		vpap->pinned_end = va + vpap->len;
513 }
514 
kvmppc_update_vpas(struct kvm_vcpu * vcpu)515 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
516 {
517 	if (!(vcpu->arch.vpa.update_pending ||
518 	      vcpu->arch.slb_shadow.update_pending ||
519 	      vcpu->arch.dtl.update_pending))
520 		return;
521 
522 	spin_lock(&vcpu->arch.vpa_update_lock);
523 	if (vcpu->arch.vpa.update_pending) {
524 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
525 		if (vcpu->arch.vpa.pinned_addr)
526 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
527 	}
528 	if (vcpu->arch.dtl.update_pending) {
529 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
530 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
531 		vcpu->arch.dtl_index = 0;
532 	}
533 	if (vcpu->arch.slb_shadow.update_pending)
534 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
535 	spin_unlock(&vcpu->arch.vpa_update_lock);
536 }
537 
538 /*
539  * Return the accumulated stolen time for the vcore up until `now'.
540  * The caller should hold the vcore lock.
541  */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)542 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
543 {
544 	u64 p;
545 	unsigned long flags;
546 
547 	spin_lock_irqsave(&vc->stoltb_lock, flags);
548 	p = vc->stolen_tb;
549 	if (vc->vcore_state != VCORE_INACTIVE &&
550 	    vc->preempt_tb != TB_NIL)
551 		p += now - vc->preempt_tb;
552 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
553 	return p;
554 }
555 
kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)556 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
557 				    struct kvmppc_vcore *vc)
558 {
559 	struct dtl_entry *dt;
560 	struct lppaca *vpa;
561 	unsigned long stolen;
562 	unsigned long core_stolen;
563 	u64 now;
564 
565 	dt = vcpu->arch.dtl_ptr;
566 	vpa = vcpu->arch.vpa.pinned_addr;
567 	now = mftb();
568 	core_stolen = vcore_stolen_time(vc, now);
569 	stolen = core_stolen - vcpu->arch.stolen_logged;
570 	vcpu->arch.stolen_logged = core_stolen;
571 	spin_lock_irq(&vcpu->arch.tbacct_lock);
572 	stolen += vcpu->arch.busy_stolen;
573 	vcpu->arch.busy_stolen = 0;
574 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
575 	if (!dt || !vpa)
576 		return;
577 	memset(dt, 0, sizeof(struct dtl_entry));
578 	dt->dispatch_reason = 7;
579 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
580 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
581 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
582 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
583 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
584 	++dt;
585 	if (dt == vcpu->arch.dtl.pinned_end)
586 		dt = vcpu->arch.dtl.pinned_addr;
587 	vcpu->arch.dtl_ptr = dt;
588 	/* order writing *dt vs. writing vpa->dtl_idx */
589 	smp_wmb();
590 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
591 	vcpu->arch.dtl.dirty = true;
592 }
593 
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)594 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
595 {
596 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
597 		return true;
598 	if ((!vcpu->arch.vcore->arch_compat) &&
599 	    cpu_has_feature(CPU_FTR_ARCH_207S))
600 		return true;
601 	return false;
602 }
603 
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)604 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
605 			     unsigned long resource, unsigned long value1,
606 			     unsigned long value2)
607 {
608 	switch (resource) {
609 	case H_SET_MODE_RESOURCE_SET_CIABR:
610 		if (!kvmppc_power8_compatible(vcpu))
611 			return H_P2;
612 		if (value2)
613 			return H_P4;
614 		if (mflags)
615 			return H_UNSUPPORTED_FLAG_START;
616 		/* Guests can't breakpoint the hypervisor */
617 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
618 			return H_P3;
619 		vcpu->arch.ciabr  = value1;
620 		return H_SUCCESS;
621 	case H_SET_MODE_RESOURCE_SET_DAWR:
622 		if (!kvmppc_power8_compatible(vcpu))
623 			return H_P2;
624 		if (mflags)
625 			return H_UNSUPPORTED_FLAG_START;
626 		if (value2 & DABRX_HYP)
627 			return H_P4;
628 		vcpu->arch.dawr  = value1;
629 		vcpu->arch.dawrx = value2;
630 		return H_SUCCESS;
631 	default:
632 		return H_TOO_HARD;
633 	}
634 }
635 
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)636 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
637 {
638 	struct kvmppc_vcore *vcore = target->arch.vcore;
639 
640 	/*
641 	 * We expect to have been called by the real mode handler
642 	 * (kvmppc_rm_h_confer()) which would have directly returned
643 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
644 	 * have useful work to do and should not confer) so we don't
645 	 * recheck that here.
646 	 */
647 
648 	spin_lock(&vcore->lock);
649 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
650 	    vcore->vcore_state != VCORE_INACTIVE)
651 		target = vcore->runner;
652 	spin_unlock(&vcore->lock);
653 
654 	return kvm_vcpu_yield_to(target);
655 }
656 
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)657 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
658 {
659 	int yield_count = 0;
660 	struct lppaca *lppaca;
661 
662 	spin_lock(&vcpu->arch.vpa_update_lock);
663 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
664 	if (lppaca)
665 		yield_count = be32_to_cpu(lppaca->yield_count);
666 	spin_unlock(&vcpu->arch.vpa_update_lock);
667 	return yield_count;
668 }
669 
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)670 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
671 {
672 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
673 	unsigned long target, ret = H_SUCCESS;
674 	int yield_count;
675 	struct kvm_vcpu *tvcpu;
676 	int idx, rc;
677 
678 	if (req <= MAX_HCALL_OPCODE &&
679 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
680 		return RESUME_HOST;
681 
682 	switch (req) {
683 	case H_CEDE:
684 		break;
685 	case H_PROD:
686 		target = kvmppc_get_gpr(vcpu, 4);
687 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
688 		if (!tvcpu) {
689 			ret = H_PARAMETER;
690 			break;
691 		}
692 		tvcpu->arch.prodded = 1;
693 		smp_mb();
694 		if (vcpu->arch.ceded) {
695 			if (waitqueue_active(&vcpu->wq)) {
696 				wake_up_interruptible(&vcpu->wq);
697 				vcpu->stat.halt_wakeup++;
698 			}
699 		}
700 		break;
701 	case H_CONFER:
702 		target = kvmppc_get_gpr(vcpu, 4);
703 		if (target == -1)
704 			break;
705 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
706 		if (!tvcpu) {
707 			ret = H_PARAMETER;
708 			break;
709 		}
710 		yield_count = kvmppc_get_gpr(vcpu, 5);
711 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
712 			break;
713 		kvm_arch_vcpu_yield_to(tvcpu);
714 		break;
715 	case H_REGISTER_VPA:
716 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
717 					kvmppc_get_gpr(vcpu, 5),
718 					kvmppc_get_gpr(vcpu, 6));
719 		break;
720 	case H_RTAS:
721 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
722 			return RESUME_HOST;
723 
724 		idx = srcu_read_lock(&vcpu->kvm->srcu);
725 		rc = kvmppc_rtas_hcall(vcpu);
726 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
727 
728 		if (rc == -ENOENT)
729 			return RESUME_HOST;
730 		else if (rc == 0)
731 			break;
732 
733 		/* Send the error out to userspace via KVM_RUN */
734 		return rc;
735 	case H_LOGICAL_CI_LOAD:
736 		ret = kvmppc_h_logical_ci_load(vcpu);
737 		if (ret == H_TOO_HARD)
738 			return RESUME_HOST;
739 		break;
740 	case H_LOGICAL_CI_STORE:
741 		ret = kvmppc_h_logical_ci_store(vcpu);
742 		if (ret == H_TOO_HARD)
743 			return RESUME_HOST;
744 		break;
745 	case H_SET_MODE:
746 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
747 					kvmppc_get_gpr(vcpu, 5),
748 					kvmppc_get_gpr(vcpu, 6),
749 					kvmppc_get_gpr(vcpu, 7));
750 		if (ret == H_TOO_HARD)
751 			return RESUME_HOST;
752 		break;
753 	case H_XIRR:
754 	case H_CPPR:
755 	case H_EOI:
756 	case H_IPI:
757 	case H_IPOLL:
758 	case H_XIRR_X:
759 		if (kvmppc_xics_enabled(vcpu)) {
760 			ret = kvmppc_xics_hcall(vcpu, req);
761 			break;
762 		} /* fallthrough */
763 	default:
764 		return RESUME_HOST;
765 	}
766 	kvmppc_set_gpr(vcpu, 3, ret);
767 	vcpu->arch.hcall_needed = 0;
768 	return RESUME_GUEST;
769 }
770 
kvmppc_hcall_impl_hv(unsigned long cmd)771 static int kvmppc_hcall_impl_hv(unsigned long cmd)
772 {
773 	switch (cmd) {
774 	case H_CEDE:
775 	case H_PROD:
776 	case H_CONFER:
777 	case H_REGISTER_VPA:
778 	case H_SET_MODE:
779 	case H_LOGICAL_CI_LOAD:
780 	case H_LOGICAL_CI_STORE:
781 #ifdef CONFIG_KVM_XICS
782 	case H_XIRR:
783 	case H_CPPR:
784 	case H_EOI:
785 	case H_IPI:
786 	case H_IPOLL:
787 	case H_XIRR_X:
788 #endif
789 		return 1;
790 	}
791 
792 	/* See if it's in the real-mode table */
793 	return kvmppc_hcall_impl_hv_realmode(cmd);
794 }
795 
kvmppc_emulate_debug_inst(struct kvm_run * run,struct kvm_vcpu * vcpu)796 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
797 					struct kvm_vcpu *vcpu)
798 {
799 	u32 last_inst;
800 
801 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
802 					EMULATE_DONE) {
803 		/*
804 		 * Fetch failed, so return to guest and
805 		 * try executing it again.
806 		 */
807 		return RESUME_GUEST;
808 	}
809 
810 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
811 		run->exit_reason = KVM_EXIT_DEBUG;
812 		run->debug.arch.address = kvmppc_get_pc(vcpu);
813 		return RESUME_HOST;
814 	} else {
815 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
816 		return RESUME_GUEST;
817 	}
818 }
819 
kvmppc_handle_exit_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,struct task_struct * tsk)820 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
821 				 struct task_struct *tsk)
822 {
823 	int r = RESUME_HOST;
824 
825 	vcpu->stat.sum_exits++;
826 
827 	run->exit_reason = KVM_EXIT_UNKNOWN;
828 	run->ready_for_interrupt_injection = 1;
829 	switch (vcpu->arch.trap) {
830 	/* We're good on these - the host merely wanted to get our attention */
831 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
832 		vcpu->stat.dec_exits++;
833 		r = RESUME_GUEST;
834 		break;
835 	case BOOK3S_INTERRUPT_EXTERNAL:
836 	case BOOK3S_INTERRUPT_H_DOORBELL:
837 		vcpu->stat.ext_intr_exits++;
838 		r = RESUME_GUEST;
839 		break;
840 	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
841 	case BOOK3S_INTERRUPT_HMI:
842 	case BOOK3S_INTERRUPT_PERFMON:
843 		r = RESUME_GUEST;
844 		break;
845 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
846 		/*
847 		 * Deliver a machine check interrupt to the guest.
848 		 * We have to do this, even if the host has handled the
849 		 * machine check, because machine checks use SRR0/1 and
850 		 * the interrupt might have trashed guest state in them.
851 		 */
852 		kvmppc_book3s_queue_irqprio(vcpu,
853 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
854 		r = RESUME_GUEST;
855 		break;
856 	case BOOK3S_INTERRUPT_PROGRAM:
857 	{
858 		ulong flags;
859 		/*
860 		 * Normally program interrupts are delivered directly
861 		 * to the guest by the hardware, but we can get here
862 		 * as a result of a hypervisor emulation interrupt
863 		 * (e40) getting turned into a 700 by BML RTAS.
864 		 */
865 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
866 		kvmppc_core_queue_program(vcpu, flags);
867 		r = RESUME_GUEST;
868 		break;
869 	}
870 	case BOOK3S_INTERRUPT_SYSCALL:
871 	{
872 		/* hcall - punt to userspace */
873 		int i;
874 
875 		/* hypercall with MSR_PR has already been handled in rmode,
876 		 * and never reaches here.
877 		 */
878 
879 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
880 		for (i = 0; i < 9; ++i)
881 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
882 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
883 		vcpu->arch.hcall_needed = 1;
884 		r = RESUME_HOST;
885 		break;
886 	}
887 	/*
888 	 * We get these next two if the guest accesses a page which it thinks
889 	 * it has mapped but which is not actually present, either because
890 	 * it is for an emulated I/O device or because the corresonding
891 	 * host page has been paged out.  Any other HDSI/HISI interrupts
892 	 * have been handled already.
893 	 */
894 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
895 		r = RESUME_PAGE_FAULT;
896 		break;
897 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
898 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
899 		vcpu->arch.fault_dsisr = 0;
900 		r = RESUME_PAGE_FAULT;
901 		break;
902 	/*
903 	 * This occurs if the guest executes an illegal instruction.
904 	 * If the guest debug is disabled, generate a program interrupt
905 	 * to the guest. If guest debug is enabled, we need to check
906 	 * whether the instruction is a software breakpoint instruction.
907 	 * Accordingly return to Guest or Host.
908 	 */
909 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
910 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
911 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
912 				swab32(vcpu->arch.emul_inst) :
913 				vcpu->arch.emul_inst;
914 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
915 			r = kvmppc_emulate_debug_inst(run, vcpu);
916 		} else {
917 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
918 			r = RESUME_GUEST;
919 		}
920 		break;
921 	/*
922 	 * This occurs if the guest (kernel or userspace), does something that
923 	 * is prohibited by HFSCR.  We just generate a program interrupt to
924 	 * the guest.
925 	 */
926 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
927 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
928 		r = RESUME_GUEST;
929 		break;
930 	default:
931 		kvmppc_dump_regs(vcpu);
932 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
933 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
934 			vcpu->arch.shregs.msr);
935 		run->hw.hardware_exit_reason = vcpu->arch.trap;
936 		r = RESUME_HOST;
937 		break;
938 	}
939 
940 	return r;
941 }
942 
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)943 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
944 					    struct kvm_sregs *sregs)
945 {
946 	int i;
947 
948 	memset(sregs, 0, sizeof(struct kvm_sregs));
949 	sregs->pvr = vcpu->arch.pvr;
950 	for (i = 0; i < vcpu->arch.slb_max; i++) {
951 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
952 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
953 	}
954 
955 	return 0;
956 }
957 
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)958 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
959 					    struct kvm_sregs *sregs)
960 {
961 	int i, j;
962 
963 	/* Only accept the same PVR as the host's, since we can't spoof it */
964 	if (sregs->pvr != vcpu->arch.pvr)
965 		return -EINVAL;
966 
967 	j = 0;
968 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
969 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
970 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
971 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
972 			++j;
973 		}
974 	}
975 	vcpu->arch.slb_max = j;
976 
977 	return 0;
978 }
979 
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)980 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
981 		bool preserve_top32)
982 {
983 	struct kvm *kvm = vcpu->kvm;
984 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
985 	u64 mask;
986 
987 	mutex_lock(&kvm->lock);
988 	spin_lock(&vc->lock);
989 	/*
990 	 * If ILE (interrupt little-endian) has changed, update the
991 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
992 	 */
993 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
994 		struct kvm_vcpu *vcpu;
995 		int i;
996 
997 		kvm_for_each_vcpu(i, vcpu, kvm) {
998 			if (vcpu->arch.vcore != vc)
999 				continue;
1000 			if (new_lpcr & LPCR_ILE)
1001 				vcpu->arch.intr_msr |= MSR_LE;
1002 			else
1003 				vcpu->arch.intr_msr &= ~MSR_LE;
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * Userspace can only modify DPFD (default prefetch depth),
1009 	 * ILE (interrupt little-endian) and TC (translation control).
1010 	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1011 	 */
1012 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1013 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1014 		mask |= LPCR_AIL;
1015 
1016 	/* Broken 32-bit version of LPCR must not clear top bits */
1017 	if (preserve_top32)
1018 		mask &= 0xFFFFFFFF;
1019 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1020 	spin_unlock(&vc->lock);
1021 	mutex_unlock(&kvm->lock);
1022 }
1023 
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1024 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1025 				 union kvmppc_one_reg *val)
1026 {
1027 	int r = 0;
1028 	long int i;
1029 
1030 	switch (id) {
1031 	case KVM_REG_PPC_DEBUG_INST:
1032 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1033 		break;
1034 	case KVM_REG_PPC_HIOR:
1035 		*val = get_reg_val(id, 0);
1036 		break;
1037 	case KVM_REG_PPC_DABR:
1038 		*val = get_reg_val(id, vcpu->arch.dabr);
1039 		break;
1040 	case KVM_REG_PPC_DABRX:
1041 		*val = get_reg_val(id, vcpu->arch.dabrx);
1042 		break;
1043 	case KVM_REG_PPC_DSCR:
1044 		*val = get_reg_val(id, vcpu->arch.dscr);
1045 		break;
1046 	case KVM_REG_PPC_PURR:
1047 		*val = get_reg_val(id, vcpu->arch.purr);
1048 		break;
1049 	case KVM_REG_PPC_SPURR:
1050 		*val = get_reg_val(id, vcpu->arch.spurr);
1051 		break;
1052 	case KVM_REG_PPC_AMR:
1053 		*val = get_reg_val(id, vcpu->arch.amr);
1054 		break;
1055 	case KVM_REG_PPC_UAMOR:
1056 		*val = get_reg_val(id, vcpu->arch.uamor);
1057 		break;
1058 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1059 		i = id - KVM_REG_PPC_MMCR0;
1060 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1061 		break;
1062 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1063 		i = id - KVM_REG_PPC_PMC1;
1064 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1065 		break;
1066 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1067 		i = id - KVM_REG_PPC_SPMC1;
1068 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1069 		break;
1070 	case KVM_REG_PPC_SIAR:
1071 		*val = get_reg_val(id, vcpu->arch.siar);
1072 		break;
1073 	case KVM_REG_PPC_SDAR:
1074 		*val = get_reg_val(id, vcpu->arch.sdar);
1075 		break;
1076 	case KVM_REG_PPC_SIER:
1077 		*val = get_reg_val(id, vcpu->arch.sier);
1078 		break;
1079 	case KVM_REG_PPC_IAMR:
1080 		*val = get_reg_val(id, vcpu->arch.iamr);
1081 		break;
1082 	case KVM_REG_PPC_PSPB:
1083 		*val = get_reg_val(id, vcpu->arch.pspb);
1084 		break;
1085 	case KVM_REG_PPC_DPDES:
1086 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1087 		break;
1088 	case KVM_REG_PPC_DAWR:
1089 		*val = get_reg_val(id, vcpu->arch.dawr);
1090 		break;
1091 	case KVM_REG_PPC_DAWRX:
1092 		*val = get_reg_val(id, vcpu->arch.dawrx);
1093 		break;
1094 	case KVM_REG_PPC_CIABR:
1095 		*val = get_reg_val(id, vcpu->arch.ciabr);
1096 		break;
1097 	case KVM_REG_PPC_CSIGR:
1098 		*val = get_reg_val(id, vcpu->arch.csigr);
1099 		break;
1100 	case KVM_REG_PPC_TACR:
1101 		*val = get_reg_val(id, vcpu->arch.tacr);
1102 		break;
1103 	case KVM_REG_PPC_TCSCR:
1104 		*val = get_reg_val(id, vcpu->arch.tcscr);
1105 		break;
1106 	case KVM_REG_PPC_PID:
1107 		*val = get_reg_val(id, vcpu->arch.pid);
1108 		break;
1109 	case KVM_REG_PPC_ACOP:
1110 		*val = get_reg_val(id, vcpu->arch.acop);
1111 		break;
1112 	case KVM_REG_PPC_WORT:
1113 		*val = get_reg_val(id, vcpu->arch.wort);
1114 		break;
1115 	case KVM_REG_PPC_VPA_ADDR:
1116 		spin_lock(&vcpu->arch.vpa_update_lock);
1117 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1118 		spin_unlock(&vcpu->arch.vpa_update_lock);
1119 		break;
1120 	case KVM_REG_PPC_VPA_SLB:
1121 		spin_lock(&vcpu->arch.vpa_update_lock);
1122 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1123 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1124 		spin_unlock(&vcpu->arch.vpa_update_lock);
1125 		break;
1126 	case KVM_REG_PPC_VPA_DTL:
1127 		spin_lock(&vcpu->arch.vpa_update_lock);
1128 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1129 		val->vpaval.length = vcpu->arch.dtl.len;
1130 		spin_unlock(&vcpu->arch.vpa_update_lock);
1131 		break;
1132 	case KVM_REG_PPC_TB_OFFSET:
1133 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1134 		break;
1135 	case KVM_REG_PPC_LPCR:
1136 	case KVM_REG_PPC_LPCR_64:
1137 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1138 		break;
1139 	case KVM_REG_PPC_PPR:
1140 		*val = get_reg_val(id, vcpu->arch.ppr);
1141 		break;
1142 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1143 	case KVM_REG_PPC_TFHAR:
1144 		*val = get_reg_val(id, vcpu->arch.tfhar);
1145 		break;
1146 	case KVM_REG_PPC_TFIAR:
1147 		*val = get_reg_val(id, vcpu->arch.tfiar);
1148 		break;
1149 	case KVM_REG_PPC_TEXASR:
1150 		*val = get_reg_val(id, vcpu->arch.texasr);
1151 		break;
1152 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1153 		i = id - KVM_REG_PPC_TM_GPR0;
1154 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1155 		break;
1156 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1157 	{
1158 		int j;
1159 		i = id - KVM_REG_PPC_TM_VSR0;
1160 		if (i < 32)
1161 			for (j = 0; j < TS_FPRWIDTH; j++)
1162 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1163 		else {
1164 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1165 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1166 			else
1167 				r = -ENXIO;
1168 		}
1169 		break;
1170 	}
1171 	case KVM_REG_PPC_TM_CR:
1172 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1173 		break;
1174 	case KVM_REG_PPC_TM_LR:
1175 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1176 		break;
1177 	case KVM_REG_PPC_TM_CTR:
1178 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1179 		break;
1180 	case KVM_REG_PPC_TM_FPSCR:
1181 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1182 		break;
1183 	case KVM_REG_PPC_TM_AMR:
1184 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1185 		break;
1186 	case KVM_REG_PPC_TM_PPR:
1187 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1188 		break;
1189 	case KVM_REG_PPC_TM_VRSAVE:
1190 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1191 		break;
1192 	case KVM_REG_PPC_TM_VSCR:
1193 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1194 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1195 		else
1196 			r = -ENXIO;
1197 		break;
1198 	case KVM_REG_PPC_TM_DSCR:
1199 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1200 		break;
1201 	case KVM_REG_PPC_TM_TAR:
1202 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1203 		break;
1204 #endif
1205 	case KVM_REG_PPC_ARCH_COMPAT:
1206 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1207 		break;
1208 	default:
1209 		r = -EINVAL;
1210 		break;
1211 	}
1212 
1213 	return r;
1214 }
1215 
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1216 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1217 				 union kvmppc_one_reg *val)
1218 {
1219 	int r = 0;
1220 	long int i;
1221 	unsigned long addr, len;
1222 
1223 	switch (id) {
1224 	case KVM_REG_PPC_HIOR:
1225 		/* Only allow this to be set to zero */
1226 		if (set_reg_val(id, *val))
1227 			r = -EINVAL;
1228 		break;
1229 	case KVM_REG_PPC_DABR:
1230 		vcpu->arch.dabr = set_reg_val(id, *val);
1231 		break;
1232 	case KVM_REG_PPC_DABRX:
1233 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1234 		break;
1235 	case KVM_REG_PPC_DSCR:
1236 		vcpu->arch.dscr = set_reg_val(id, *val);
1237 		break;
1238 	case KVM_REG_PPC_PURR:
1239 		vcpu->arch.purr = set_reg_val(id, *val);
1240 		break;
1241 	case KVM_REG_PPC_SPURR:
1242 		vcpu->arch.spurr = set_reg_val(id, *val);
1243 		break;
1244 	case KVM_REG_PPC_AMR:
1245 		vcpu->arch.amr = set_reg_val(id, *val);
1246 		break;
1247 	case KVM_REG_PPC_UAMOR:
1248 		vcpu->arch.uamor = set_reg_val(id, *val);
1249 		break;
1250 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1251 		i = id - KVM_REG_PPC_MMCR0;
1252 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1253 		break;
1254 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1255 		i = id - KVM_REG_PPC_PMC1;
1256 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1257 		break;
1258 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1259 		i = id - KVM_REG_PPC_SPMC1;
1260 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1261 		break;
1262 	case KVM_REG_PPC_SIAR:
1263 		vcpu->arch.siar = set_reg_val(id, *val);
1264 		break;
1265 	case KVM_REG_PPC_SDAR:
1266 		vcpu->arch.sdar = set_reg_val(id, *val);
1267 		break;
1268 	case KVM_REG_PPC_SIER:
1269 		vcpu->arch.sier = set_reg_val(id, *val);
1270 		break;
1271 	case KVM_REG_PPC_IAMR:
1272 		vcpu->arch.iamr = set_reg_val(id, *val);
1273 		break;
1274 	case KVM_REG_PPC_PSPB:
1275 		vcpu->arch.pspb = set_reg_val(id, *val);
1276 		break;
1277 	case KVM_REG_PPC_DPDES:
1278 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1279 		break;
1280 	case KVM_REG_PPC_DAWR:
1281 		vcpu->arch.dawr = set_reg_val(id, *val);
1282 		break;
1283 	case KVM_REG_PPC_DAWRX:
1284 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1285 		break;
1286 	case KVM_REG_PPC_CIABR:
1287 		vcpu->arch.ciabr = set_reg_val(id, *val);
1288 		/* Don't allow setting breakpoints in hypervisor code */
1289 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1290 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1291 		break;
1292 	case KVM_REG_PPC_CSIGR:
1293 		vcpu->arch.csigr = set_reg_val(id, *val);
1294 		break;
1295 	case KVM_REG_PPC_TACR:
1296 		vcpu->arch.tacr = set_reg_val(id, *val);
1297 		break;
1298 	case KVM_REG_PPC_TCSCR:
1299 		vcpu->arch.tcscr = set_reg_val(id, *val);
1300 		break;
1301 	case KVM_REG_PPC_PID:
1302 		vcpu->arch.pid = set_reg_val(id, *val);
1303 		break;
1304 	case KVM_REG_PPC_ACOP:
1305 		vcpu->arch.acop = set_reg_val(id, *val);
1306 		break;
1307 	case KVM_REG_PPC_WORT:
1308 		vcpu->arch.wort = set_reg_val(id, *val);
1309 		break;
1310 	case KVM_REG_PPC_VPA_ADDR:
1311 		addr = set_reg_val(id, *val);
1312 		r = -EINVAL;
1313 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1314 			      vcpu->arch.dtl.next_gpa))
1315 			break;
1316 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1317 		break;
1318 	case KVM_REG_PPC_VPA_SLB:
1319 		addr = val->vpaval.addr;
1320 		len = val->vpaval.length;
1321 		r = -EINVAL;
1322 		if (addr && !vcpu->arch.vpa.next_gpa)
1323 			break;
1324 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1325 		break;
1326 	case KVM_REG_PPC_VPA_DTL:
1327 		addr = val->vpaval.addr;
1328 		len = val->vpaval.length;
1329 		r = -EINVAL;
1330 		if (addr && (len < sizeof(struct dtl_entry) ||
1331 			     !vcpu->arch.vpa.next_gpa))
1332 			break;
1333 		len -= len % sizeof(struct dtl_entry);
1334 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1335 		break;
1336 	case KVM_REG_PPC_TB_OFFSET:
1337 		/* round up to multiple of 2^24 */
1338 		vcpu->arch.vcore->tb_offset =
1339 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1340 		break;
1341 	case KVM_REG_PPC_LPCR:
1342 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1343 		break;
1344 	case KVM_REG_PPC_LPCR_64:
1345 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1346 		break;
1347 	case KVM_REG_PPC_PPR:
1348 		vcpu->arch.ppr = set_reg_val(id, *val);
1349 		break;
1350 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1351 	case KVM_REG_PPC_TFHAR:
1352 		vcpu->arch.tfhar = set_reg_val(id, *val);
1353 		break;
1354 	case KVM_REG_PPC_TFIAR:
1355 		vcpu->arch.tfiar = set_reg_val(id, *val);
1356 		break;
1357 	case KVM_REG_PPC_TEXASR:
1358 		vcpu->arch.texasr = set_reg_val(id, *val);
1359 		break;
1360 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1361 		i = id - KVM_REG_PPC_TM_GPR0;
1362 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1363 		break;
1364 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1365 	{
1366 		int j;
1367 		i = id - KVM_REG_PPC_TM_VSR0;
1368 		if (i < 32)
1369 			for (j = 0; j < TS_FPRWIDTH; j++)
1370 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1371 		else
1372 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1373 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1374 			else
1375 				r = -ENXIO;
1376 		break;
1377 	}
1378 	case KVM_REG_PPC_TM_CR:
1379 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1380 		break;
1381 	case KVM_REG_PPC_TM_LR:
1382 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1383 		break;
1384 	case KVM_REG_PPC_TM_CTR:
1385 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1386 		break;
1387 	case KVM_REG_PPC_TM_FPSCR:
1388 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1389 		break;
1390 	case KVM_REG_PPC_TM_AMR:
1391 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1392 		break;
1393 	case KVM_REG_PPC_TM_PPR:
1394 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1395 		break;
1396 	case KVM_REG_PPC_TM_VRSAVE:
1397 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1398 		break;
1399 	case KVM_REG_PPC_TM_VSCR:
1400 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1401 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1402 		else
1403 			r = - ENXIO;
1404 		break;
1405 	case KVM_REG_PPC_TM_DSCR:
1406 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1407 		break;
1408 	case KVM_REG_PPC_TM_TAR:
1409 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1410 		break;
1411 #endif
1412 	case KVM_REG_PPC_ARCH_COMPAT:
1413 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1414 		break;
1415 	default:
1416 		r = -EINVAL;
1417 		break;
1418 	}
1419 
1420 	return r;
1421 }
1422 
kvmppc_vcore_create(struct kvm * kvm,int core)1423 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1424 {
1425 	struct kvmppc_vcore *vcore;
1426 
1427 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1428 
1429 	if (vcore == NULL)
1430 		return NULL;
1431 
1432 	INIT_LIST_HEAD(&vcore->runnable_threads);
1433 	spin_lock_init(&vcore->lock);
1434 	spin_lock_init(&vcore->stoltb_lock);
1435 	init_waitqueue_head(&vcore->wq);
1436 	vcore->preempt_tb = TB_NIL;
1437 	vcore->lpcr = kvm->arch.lpcr;
1438 	vcore->first_vcpuid = core * threads_per_subcore;
1439 	vcore->kvm = kvm;
1440 
1441 	vcore->mpp_buffer_is_valid = false;
1442 
1443 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1444 		vcore->mpp_buffer = (void *)__get_free_pages(
1445 			GFP_KERNEL|__GFP_ZERO,
1446 			MPP_BUFFER_ORDER);
1447 
1448 	return vcore;
1449 }
1450 
1451 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1452 static struct debugfs_timings_element {
1453 	const char *name;
1454 	size_t offset;
1455 } timings[] = {
1456 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1457 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1458 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1459 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1460 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1461 };
1462 
1463 #define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))
1464 
1465 struct debugfs_timings_state {
1466 	struct kvm_vcpu	*vcpu;
1467 	unsigned int	buflen;
1468 	char		buf[N_TIMINGS * 100];
1469 };
1470 
debugfs_timings_open(struct inode * inode,struct file * file)1471 static int debugfs_timings_open(struct inode *inode, struct file *file)
1472 {
1473 	struct kvm_vcpu *vcpu = inode->i_private;
1474 	struct debugfs_timings_state *p;
1475 
1476 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1477 	if (!p)
1478 		return -ENOMEM;
1479 
1480 	kvm_get_kvm(vcpu->kvm);
1481 	p->vcpu = vcpu;
1482 	file->private_data = p;
1483 
1484 	return nonseekable_open(inode, file);
1485 }
1486 
debugfs_timings_release(struct inode * inode,struct file * file)1487 static int debugfs_timings_release(struct inode *inode, struct file *file)
1488 {
1489 	struct debugfs_timings_state *p = file->private_data;
1490 
1491 	kvm_put_kvm(p->vcpu->kvm);
1492 	kfree(p);
1493 	return 0;
1494 }
1495 
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1496 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1497 				    size_t len, loff_t *ppos)
1498 {
1499 	struct debugfs_timings_state *p = file->private_data;
1500 	struct kvm_vcpu *vcpu = p->vcpu;
1501 	char *s, *buf_end;
1502 	struct kvmhv_tb_accumulator tb;
1503 	u64 count;
1504 	loff_t pos;
1505 	ssize_t n;
1506 	int i, loops;
1507 	bool ok;
1508 
1509 	if (!p->buflen) {
1510 		s = p->buf;
1511 		buf_end = s + sizeof(p->buf);
1512 		for (i = 0; i < N_TIMINGS; ++i) {
1513 			struct kvmhv_tb_accumulator *acc;
1514 
1515 			acc = (struct kvmhv_tb_accumulator *)
1516 				((unsigned long)vcpu + timings[i].offset);
1517 			ok = false;
1518 			for (loops = 0; loops < 1000; ++loops) {
1519 				count = acc->seqcount;
1520 				if (!(count & 1)) {
1521 					smp_rmb();
1522 					tb = *acc;
1523 					smp_rmb();
1524 					if (count == acc->seqcount) {
1525 						ok = true;
1526 						break;
1527 					}
1528 				}
1529 				udelay(1);
1530 			}
1531 			if (!ok)
1532 				snprintf(s, buf_end - s, "%s: stuck\n",
1533 					timings[i].name);
1534 			else
1535 				snprintf(s, buf_end - s,
1536 					"%s: %llu %llu %llu %llu\n",
1537 					timings[i].name, count / 2,
1538 					tb_to_ns(tb.tb_total),
1539 					tb_to_ns(tb.tb_min),
1540 					tb_to_ns(tb.tb_max));
1541 			s += strlen(s);
1542 		}
1543 		p->buflen = s - p->buf;
1544 	}
1545 
1546 	pos = *ppos;
1547 	if (pos >= p->buflen)
1548 		return 0;
1549 	if (len > p->buflen - pos)
1550 		len = p->buflen - pos;
1551 	n = copy_to_user(buf, p->buf + pos, len);
1552 	if (n) {
1553 		if (n == len)
1554 			return -EFAULT;
1555 		len -= n;
1556 	}
1557 	*ppos = pos + len;
1558 	return len;
1559 }
1560 
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1561 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1562 				     size_t len, loff_t *ppos)
1563 {
1564 	return -EACCES;
1565 }
1566 
1567 static const struct file_operations debugfs_timings_ops = {
1568 	.owner	 = THIS_MODULE,
1569 	.open	 = debugfs_timings_open,
1570 	.release = debugfs_timings_release,
1571 	.read	 = debugfs_timings_read,
1572 	.write	 = debugfs_timings_write,
1573 	.llseek	 = generic_file_llseek,
1574 };
1575 
1576 /* Create a debugfs directory for the vcpu */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)1577 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1578 {
1579 	char buf[16];
1580 	struct kvm *kvm = vcpu->kvm;
1581 
1582 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1583 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1584 		return;
1585 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1586 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1587 		return;
1588 	vcpu->arch.debugfs_timings =
1589 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1590 				    vcpu, &debugfs_timings_ops);
1591 }
1592 
1593 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)1594 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1595 {
1596 }
1597 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1598 
kvmppc_core_vcpu_create_hv(struct kvm * kvm,unsigned int id)1599 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1600 						   unsigned int id)
1601 {
1602 	struct kvm_vcpu *vcpu;
1603 	int err = -EINVAL;
1604 	int core;
1605 	struct kvmppc_vcore *vcore;
1606 
1607 	core = id / threads_per_subcore;
1608 	if (core >= KVM_MAX_VCORES)
1609 		goto out;
1610 
1611 	err = -ENOMEM;
1612 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1613 	if (!vcpu)
1614 		goto out;
1615 
1616 	err = kvm_vcpu_init(vcpu, kvm, id);
1617 	if (err)
1618 		goto free_vcpu;
1619 
1620 	vcpu->arch.shared = &vcpu->arch.shregs;
1621 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1622 	/*
1623 	 * The shared struct is never shared on HV,
1624 	 * so we can always use host endianness
1625 	 */
1626 #ifdef __BIG_ENDIAN__
1627 	vcpu->arch.shared_big_endian = true;
1628 #else
1629 	vcpu->arch.shared_big_endian = false;
1630 #endif
1631 #endif
1632 	vcpu->arch.mmcr[0] = MMCR0_FC;
1633 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1634 	/* default to host PVR, since we can't spoof it */
1635 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1636 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1637 	spin_lock_init(&vcpu->arch.tbacct_lock);
1638 	vcpu->arch.busy_preempt = TB_NIL;
1639 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1640 
1641 	kvmppc_mmu_book3s_hv_init(vcpu);
1642 
1643 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1644 
1645 	init_waitqueue_head(&vcpu->arch.cpu_run);
1646 
1647 	mutex_lock(&kvm->lock);
1648 	vcore = kvm->arch.vcores[core];
1649 	if (!vcore) {
1650 		vcore = kvmppc_vcore_create(kvm, core);
1651 		kvm->arch.vcores[core] = vcore;
1652 		kvm->arch.online_vcores++;
1653 	}
1654 	mutex_unlock(&kvm->lock);
1655 
1656 	if (!vcore)
1657 		goto free_vcpu;
1658 
1659 	spin_lock(&vcore->lock);
1660 	++vcore->num_threads;
1661 	spin_unlock(&vcore->lock);
1662 	vcpu->arch.vcore = vcore;
1663 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1664 
1665 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1666 	kvmppc_sanity_check(vcpu);
1667 
1668 	debugfs_vcpu_init(vcpu, id);
1669 
1670 	return vcpu;
1671 
1672 free_vcpu:
1673 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1674 out:
1675 	return ERR_PTR(err);
1676 }
1677 
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)1678 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1679 {
1680 	if (vpa->pinned_addr)
1681 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1682 					vpa->dirty);
1683 }
1684 
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)1685 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1686 {
1687 	spin_lock(&vcpu->arch.vpa_update_lock);
1688 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1689 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1690 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1691 	spin_unlock(&vcpu->arch.vpa_update_lock);
1692 	kvm_vcpu_uninit(vcpu);
1693 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1694 }
1695 
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)1696 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1697 {
1698 	/* Indicate we want to get back into the guest */
1699 	return 1;
1700 }
1701 
kvmppc_set_timer(struct kvm_vcpu * vcpu)1702 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1703 {
1704 	unsigned long dec_nsec, now;
1705 
1706 	now = get_tb();
1707 	if (now > vcpu->arch.dec_expires) {
1708 		/* decrementer has already gone negative */
1709 		kvmppc_core_queue_dec(vcpu);
1710 		kvmppc_core_prepare_to_enter(vcpu);
1711 		return;
1712 	}
1713 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1714 		   / tb_ticks_per_sec;
1715 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1716 		      HRTIMER_MODE_REL);
1717 	vcpu->arch.timer_running = 1;
1718 }
1719 
kvmppc_end_cede(struct kvm_vcpu * vcpu)1720 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1721 {
1722 	vcpu->arch.ceded = 0;
1723 	if (vcpu->arch.timer_running) {
1724 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1725 		vcpu->arch.timer_running = 0;
1726 	}
1727 }
1728 
1729 extern void __kvmppc_vcore_entry(void);
1730 
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu)1731 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1732 				   struct kvm_vcpu *vcpu)
1733 {
1734 	u64 now;
1735 
1736 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1737 		return;
1738 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1739 	now = mftb();
1740 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1741 		vcpu->arch.stolen_logged;
1742 	vcpu->arch.busy_preempt = now;
1743 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1744 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1745 	--vc->n_runnable;
1746 	list_del(&vcpu->arch.run_list);
1747 }
1748 
kvmppc_grab_hwthread(int cpu)1749 static int kvmppc_grab_hwthread(int cpu)
1750 {
1751 	struct paca_struct *tpaca;
1752 	long timeout = 10000;
1753 
1754 	tpaca = &paca[cpu];
1755 
1756 	/* Ensure the thread won't go into the kernel if it wakes */
1757 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1758 	tpaca->kvm_hstate.napping = 0;
1759 	smp_wmb();
1760 	tpaca->kvm_hstate.hwthread_req = 1;
1761 
1762 	/*
1763 	 * If the thread is already executing in the kernel (e.g. handling
1764 	 * a stray interrupt), wait for it to get back to nap mode.
1765 	 * The smp_mb() is to ensure that our setting of hwthread_req
1766 	 * is visible before we look at hwthread_state, so if this
1767 	 * races with the code at system_reset_pSeries and the thread
1768 	 * misses our setting of hwthread_req, we are sure to see its
1769 	 * setting of hwthread_state, and vice versa.
1770 	 */
1771 	smp_mb();
1772 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1773 		if (--timeout <= 0) {
1774 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1775 			return -EBUSY;
1776 		}
1777 		udelay(1);
1778 	}
1779 	return 0;
1780 }
1781 
kvmppc_release_hwthread(int cpu)1782 static void kvmppc_release_hwthread(int cpu)
1783 {
1784 	struct paca_struct *tpaca;
1785 
1786 	tpaca = &paca[cpu];
1787 	tpaca->kvm_hstate.hwthread_req = 0;
1788 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1789 }
1790 
kvmppc_start_thread(struct kvm_vcpu * vcpu)1791 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1792 {
1793 	int cpu;
1794 	struct paca_struct *tpaca;
1795 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1796 
1797 	if (vcpu->arch.timer_running) {
1798 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1799 		vcpu->arch.timer_running = 0;
1800 	}
1801 	cpu = vc->pcpu + vcpu->arch.ptid;
1802 	tpaca = &paca[cpu];
1803 	tpaca->kvm_hstate.kvm_vcore = vc;
1804 	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1805 	vcpu->cpu = vc->pcpu;
1806 	/* Order stores to hstate.kvm_vcore etc. before store to kvm_vcpu */
1807 	smp_wmb();
1808 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1809 	if (cpu != smp_processor_id())
1810 		kvmppc_ipi_thread(cpu);
1811 }
1812 
kvmppc_wait_for_nap(void)1813 static void kvmppc_wait_for_nap(void)
1814 {
1815 	int cpu = smp_processor_id();
1816 	int i, loops;
1817 
1818 	for (loops = 0; loops < 1000000; ++loops) {
1819 		/*
1820 		 * Check if all threads are finished.
1821 		 * We set the vcpu pointer when starting a thread
1822 		 * and the thread clears it when finished, so we look
1823 		 * for any threads that still have a non-NULL vcpu ptr.
1824 		 */
1825 		for (i = 1; i < threads_per_subcore; ++i)
1826 			if (paca[cpu + i].kvm_hstate.kvm_vcpu)
1827 				break;
1828 		if (i == threads_per_subcore) {
1829 			HMT_medium();
1830 			return;
1831 		}
1832 		HMT_low();
1833 	}
1834 	HMT_medium();
1835 	for (i = 1; i < threads_per_subcore; ++i)
1836 		if (paca[cpu + i].kvm_hstate.kvm_vcpu)
1837 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1838 }
1839 
1840 /*
1841  * Check that we are on thread 0 and that any other threads in
1842  * this core are off-line.  Then grab the threads so they can't
1843  * enter the kernel.
1844  */
on_primary_thread(void)1845 static int on_primary_thread(void)
1846 {
1847 	int cpu = smp_processor_id();
1848 	int thr;
1849 
1850 	/* Are we on a primary subcore? */
1851 	if (cpu_thread_in_subcore(cpu))
1852 		return 0;
1853 
1854 	thr = 0;
1855 	while (++thr < threads_per_subcore)
1856 		if (cpu_online(cpu + thr))
1857 			return 0;
1858 
1859 	/* Grab all hw threads so they can't go into the kernel */
1860 	for (thr = 1; thr < threads_per_subcore; ++thr) {
1861 		if (kvmppc_grab_hwthread(cpu + thr)) {
1862 			/* Couldn't grab one; let the others go */
1863 			do {
1864 				kvmppc_release_hwthread(cpu + thr);
1865 			} while (--thr > 0);
1866 			return 0;
1867 		}
1868 	}
1869 	return 1;
1870 }
1871 
kvmppc_start_saving_l2_cache(struct kvmppc_vcore * vc)1872 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1873 {
1874 	phys_addr_t phy_addr, mpp_addr;
1875 
1876 	phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1877 	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1878 
1879 	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1880 	logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1881 
1882 	vc->mpp_buffer_is_valid = true;
1883 }
1884 
kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore * vc)1885 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1886 {
1887 	phys_addr_t phy_addr, mpp_addr;
1888 
1889 	phy_addr = virt_to_phys(vc->mpp_buffer);
1890 	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1891 
1892 	/* We must abort any in-progress save operations to ensure
1893 	 * the table is valid so that prefetch engine knows when to
1894 	 * stop prefetching. */
1895 	logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1896 	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1897 }
1898 
prepare_threads(struct kvmppc_vcore * vc)1899 static void prepare_threads(struct kvmppc_vcore *vc)
1900 {
1901 	struct kvm_vcpu *vcpu, *vnext;
1902 
1903 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1904 				 arch.run_list) {
1905 		if (signal_pending(vcpu->arch.run_task))
1906 			vcpu->arch.ret = -EINTR;
1907 		else if (vcpu->arch.vpa.update_pending ||
1908 			 vcpu->arch.slb_shadow.update_pending ||
1909 			 vcpu->arch.dtl.update_pending)
1910 			vcpu->arch.ret = RESUME_GUEST;
1911 		else
1912 			continue;
1913 		kvmppc_remove_runnable(vc, vcpu);
1914 		wake_up(&vcpu->arch.cpu_run);
1915 	}
1916 }
1917 
post_guest_process(struct kvmppc_vcore * vc)1918 static void post_guest_process(struct kvmppc_vcore *vc)
1919 {
1920 	u64 now;
1921 	long ret;
1922 	struct kvm_vcpu *vcpu, *vnext;
1923 
1924 	now = get_tb();
1925 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1926 				 arch.run_list) {
1927 		/* cancel pending dec exception if dec is positive */
1928 		if (now < vcpu->arch.dec_expires &&
1929 		    kvmppc_core_pending_dec(vcpu))
1930 			kvmppc_core_dequeue_dec(vcpu);
1931 
1932 		trace_kvm_guest_exit(vcpu);
1933 
1934 		ret = RESUME_GUEST;
1935 		if (vcpu->arch.trap)
1936 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1937 						    vcpu->arch.run_task);
1938 
1939 		vcpu->arch.ret = ret;
1940 		vcpu->arch.trap = 0;
1941 
1942 		if (vcpu->arch.ceded) {
1943 			if (!is_kvmppc_resume_guest(ret))
1944 				kvmppc_end_cede(vcpu);
1945 			else
1946 				kvmppc_set_timer(vcpu);
1947 		}
1948 		if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1949 			kvmppc_remove_runnable(vc, vcpu);
1950 			wake_up(&vcpu->arch.cpu_run);
1951 		}
1952 	}
1953 }
1954 
1955 /*
1956  * Run a set of guest threads on a physical core.
1957  * Called with vc->lock held.
1958  */
kvmppc_run_core(struct kvmppc_vcore * vc)1959 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
1960 {
1961 	struct kvm_vcpu *vcpu, *vnext;
1962 	int i;
1963 	int srcu_idx;
1964 
1965 	/*
1966 	 * Remove from the list any threads that have a signal pending
1967 	 * or need a VPA update done
1968 	 */
1969 	prepare_threads(vc);
1970 
1971 	/* if the runner is no longer runnable, let the caller pick a new one */
1972 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
1973 		return;
1974 
1975 	/*
1976 	 * Initialize *vc.
1977 	 */
1978 	vc->entry_exit_map = 0;
1979 	vc->preempt_tb = TB_NIL;
1980 	vc->in_guest = 0;
1981 	vc->napping_threads = 0;
1982 	vc->conferring_threads = 0;
1983 
1984 	/*
1985 	 * Make sure we are running on primary threads, and that secondary
1986 	 * threads are offline.  Also check if the number of threads in this
1987 	 * guest are greater than the current system threads per guest.
1988 	 */
1989 	if ((threads_per_core > 1) &&
1990 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1991 		list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1992 					 arch.run_list) {
1993 			vcpu->arch.ret = -EBUSY;
1994 			kvmppc_remove_runnable(vc, vcpu);
1995 			wake_up(&vcpu->arch.cpu_run);
1996 		}
1997 		goto out;
1998 	}
1999 
2000 
2001 	vc->pcpu = smp_processor_id();
2002 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2003 		kvmppc_start_thread(vcpu);
2004 		kvmppc_create_dtl_entry(vcpu, vc);
2005 		trace_kvm_guest_enter(vcpu);
2006 	}
2007 
2008 	/* Set this explicitly in case thread 0 doesn't have a vcpu */
2009 	get_paca()->kvm_hstate.kvm_vcore = vc;
2010 	get_paca()->kvm_hstate.ptid = 0;
2011 
2012 	vc->vcore_state = VCORE_RUNNING;
2013 	preempt_disable();
2014 
2015 	trace_kvmppc_run_core(vc, 0);
2016 
2017 	spin_unlock(&vc->lock);
2018 
2019 	kvm_guest_enter();
2020 
2021 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2022 
2023 	if (vc->mpp_buffer_is_valid)
2024 		kvmppc_start_restoring_l2_cache(vc);
2025 
2026 	__kvmppc_vcore_entry();
2027 
2028 	spin_lock(&vc->lock);
2029 
2030 	if (vc->mpp_buffer)
2031 		kvmppc_start_saving_l2_cache(vc);
2032 
2033 	/* disable sending of IPIs on virtual external irqs */
2034 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
2035 		vcpu->cpu = -1;
2036 	/* wait for secondary threads to finish writing their state to memory */
2037 	kvmppc_wait_for_nap();
2038 	for (i = 0; i < threads_per_subcore; ++i)
2039 		kvmppc_release_hwthread(vc->pcpu + i);
2040 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2041 	vc->vcore_state = VCORE_EXITING;
2042 	spin_unlock(&vc->lock);
2043 
2044 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2045 
2046 	/* make sure updates to secondary vcpu structs are visible now */
2047 	smp_mb();
2048 	kvm_guest_exit();
2049 
2050 	preempt_enable();
2051 
2052 	spin_lock(&vc->lock);
2053 	post_guest_process(vc);
2054 
2055  out:
2056 	vc->vcore_state = VCORE_INACTIVE;
2057 	trace_kvmppc_run_core(vc, 1);
2058 }
2059 
2060 /*
2061  * Wait for some other vcpu thread to execute us, and
2062  * wake us up when we need to handle something in the host.
2063  */
kvmppc_wait_for_exec(struct kvm_vcpu * vcpu,int wait_state)2064 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
2065 {
2066 	DEFINE_WAIT(wait);
2067 
2068 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2069 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
2070 		schedule();
2071 	finish_wait(&vcpu->arch.cpu_run, &wait);
2072 }
2073 
2074 /*
2075  * All the vcpus in this vcore are idle, so wait for a decrementer
2076  * or external interrupt to one of the vcpus.  vc->lock is held.
2077  */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)2078 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2079 {
2080 	struct kvm_vcpu *vcpu;
2081 	int do_sleep = 1;
2082 
2083 	DEFINE_WAIT(wait);
2084 
2085 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2086 
2087 	/*
2088 	 * Check one last time for pending exceptions and ceded state after
2089 	 * we put ourselves on the wait queue
2090 	 */
2091 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2092 		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2093 			do_sleep = 0;
2094 			break;
2095 		}
2096 	}
2097 
2098 	if (!do_sleep) {
2099 		finish_wait(&vc->wq, &wait);
2100 		return;
2101 	}
2102 
2103 	vc->vcore_state = VCORE_SLEEPING;
2104 	trace_kvmppc_vcore_blocked(vc, 0);
2105 	spin_unlock(&vc->lock);
2106 	schedule();
2107 	finish_wait(&vc->wq, &wait);
2108 	spin_lock(&vc->lock);
2109 	vc->vcore_state = VCORE_INACTIVE;
2110 	trace_kvmppc_vcore_blocked(vc, 1);
2111 }
2112 
kvmppc_run_vcpu(struct kvm_run * kvm_run,struct kvm_vcpu * vcpu)2113 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2114 {
2115 	int n_ceded;
2116 	struct kvmppc_vcore *vc;
2117 	struct kvm_vcpu *v, *vn;
2118 
2119 	trace_kvmppc_run_vcpu_enter(vcpu);
2120 
2121 	kvm_run->exit_reason = 0;
2122 	vcpu->arch.ret = RESUME_GUEST;
2123 	vcpu->arch.trap = 0;
2124 	kvmppc_update_vpas(vcpu);
2125 
2126 	/*
2127 	 * Synchronize with other threads in this virtual core
2128 	 */
2129 	vc = vcpu->arch.vcore;
2130 	spin_lock(&vc->lock);
2131 	vcpu->arch.ceded = 0;
2132 	vcpu->arch.run_task = current;
2133 	vcpu->arch.kvm_run = kvm_run;
2134 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2135 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2136 	vcpu->arch.busy_preempt = TB_NIL;
2137 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2138 	++vc->n_runnable;
2139 
2140 	/*
2141 	 * This happens the first time this is called for a vcpu.
2142 	 * If the vcore is already running, we may be able to start
2143 	 * this thread straight away and have it join in.
2144 	 */
2145 	if (!signal_pending(current)) {
2146 		if (vc->vcore_state == VCORE_RUNNING && !VCORE_IS_EXITING(vc)) {
2147 			kvmppc_create_dtl_entry(vcpu, vc);
2148 			kvmppc_start_thread(vcpu);
2149 			trace_kvm_guest_enter(vcpu);
2150 		} else if (vc->vcore_state == VCORE_SLEEPING) {
2151 			wake_up(&vc->wq);
2152 		}
2153 
2154 	}
2155 
2156 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2157 	       !signal_pending(current)) {
2158 		if (vc->vcore_state != VCORE_INACTIVE) {
2159 			spin_unlock(&vc->lock);
2160 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
2161 			spin_lock(&vc->lock);
2162 			continue;
2163 		}
2164 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2165 					 arch.run_list) {
2166 			kvmppc_core_prepare_to_enter(v);
2167 			if (signal_pending(v->arch.run_task)) {
2168 				kvmppc_remove_runnable(vc, v);
2169 				v->stat.signal_exits++;
2170 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2171 				v->arch.ret = -EINTR;
2172 				wake_up(&v->arch.cpu_run);
2173 			}
2174 		}
2175 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2176 			break;
2177 		n_ceded = 0;
2178 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2179 			if (!v->arch.pending_exceptions)
2180 				n_ceded += v->arch.ceded;
2181 			else
2182 				v->arch.ceded = 0;
2183 		}
2184 		vc->runner = vcpu;
2185 		if (n_ceded == vc->n_runnable) {
2186 			kvmppc_vcore_blocked(vc);
2187 		} else if (need_resched()) {
2188 			vc->vcore_state = VCORE_PREEMPT;
2189 			/* Let something else run */
2190 			cond_resched_lock(&vc->lock);
2191 			vc->vcore_state = VCORE_INACTIVE;
2192 		} else {
2193 			kvmppc_run_core(vc);
2194 		}
2195 		vc->runner = NULL;
2196 	}
2197 
2198 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2199 	       (vc->vcore_state == VCORE_RUNNING ||
2200 		vc->vcore_state == VCORE_EXITING)) {
2201 		spin_unlock(&vc->lock);
2202 		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
2203 		spin_lock(&vc->lock);
2204 	}
2205 
2206 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2207 		kvmppc_remove_runnable(vc, vcpu);
2208 		vcpu->stat.signal_exits++;
2209 		kvm_run->exit_reason = KVM_EXIT_INTR;
2210 		vcpu->arch.ret = -EINTR;
2211 	}
2212 
2213 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2214 		/* Wake up some vcpu to run the core */
2215 		v = list_first_entry(&vc->runnable_threads,
2216 				     struct kvm_vcpu, arch.run_list);
2217 		wake_up(&v->arch.cpu_run);
2218 	}
2219 
2220 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2221 	spin_unlock(&vc->lock);
2222 	return vcpu->arch.ret;
2223 }
2224 
kvmppc_vcpu_run_hv(struct kvm_run * run,struct kvm_vcpu * vcpu)2225 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2226 {
2227 	int r;
2228 	int srcu_idx;
2229 
2230 	if (!vcpu->arch.sane) {
2231 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2232 		return -EINVAL;
2233 	}
2234 
2235 	kvmppc_core_prepare_to_enter(vcpu);
2236 
2237 	/* No need to go into the guest when all we'll do is come back out */
2238 	if (signal_pending(current)) {
2239 		run->exit_reason = KVM_EXIT_INTR;
2240 		return -EINTR;
2241 	}
2242 
2243 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2244 	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2245 	smp_mb();
2246 
2247 	/* On the first time here, set up HTAB and VRMA */
2248 	if (!vcpu->kvm->arch.hpte_setup_done) {
2249 		r = kvmppc_hv_setup_htab_rma(vcpu);
2250 		if (r)
2251 			goto out;
2252 	}
2253 
2254 	flush_fp_to_thread(current);
2255 	flush_altivec_to_thread(current);
2256 	flush_vsx_to_thread(current);
2257 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2258 	vcpu->arch.pgdir = current->mm->pgd;
2259 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2260 
2261 	do {
2262 		r = kvmppc_run_vcpu(run, vcpu);
2263 
2264 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2265 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2266 			trace_kvm_hcall_enter(vcpu);
2267 			r = kvmppc_pseries_do_hcall(vcpu);
2268 			trace_kvm_hcall_exit(vcpu, r);
2269 			kvmppc_core_prepare_to_enter(vcpu);
2270 		} else if (r == RESUME_PAGE_FAULT) {
2271 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2272 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
2273 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2274 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2275 		}
2276 	} while (is_kvmppc_resume_guest(r));
2277 
2278  out:
2279 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2280 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2281 	return r;
2282 }
2283 
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int linux_psize)2284 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2285 				     int linux_psize)
2286 {
2287 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2288 
2289 	if (!def->shift)
2290 		return;
2291 	(*sps)->page_shift = def->shift;
2292 	(*sps)->slb_enc = def->sllp;
2293 	(*sps)->enc[0].page_shift = def->shift;
2294 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2295 	/*
2296 	 * Add 16MB MPSS support if host supports it
2297 	 */
2298 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2299 		(*sps)->enc[1].page_shift = 24;
2300 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2301 	}
2302 	(*sps)++;
2303 }
2304 
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)2305 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2306 					 struct kvm_ppc_smmu_info *info)
2307 {
2308 	struct kvm_ppc_one_seg_page_size *sps;
2309 
2310 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
2311 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2312 		info->flags |= KVM_PPC_1T_SEGMENTS;
2313 	info->slb_size = mmu_slb_size;
2314 
2315 	/* We only support these sizes for now, and no muti-size segments */
2316 	sps = &info->sps[0];
2317 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2318 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2319 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2320 
2321 	return 0;
2322 }
2323 
2324 /*
2325  * Get (and clear) the dirty memory log for a memory slot.
2326  */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)2327 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2328 					 struct kvm_dirty_log *log)
2329 {
2330 	struct kvm_memory_slot *memslot;
2331 	int r;
2332 	unsigned long n;
2333 
2334 	mutex_lock(&kvm->slots_lock);
2335 
2336 	r = -EINVAL;
2337 	if (log->slot >= KVM_USER_MEM_SLOTS)
2338 		goto out;
2339 
2340 	memslot = id_to_memslot(kvm->memslots, log->slot);
2341 	r = -ENOENT;
2342 	if (!memslot->dirty_bitmap)
2343 		goto out;
2344 
2345 	n = kvm_dirty_bitmap_bytes(memslot);
2346 	memset(memslot->dirty_bitmap, 0, n);
2347 
2348 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2349 	if (r)
2350 		goto out;
2351 
2352 	r = -EFAULT;
2353 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2354 		goto out;
2355 
2356 	r = 0;
2357 out:
2358 	mutex_unlock(&kvm->slots_lock);
2359 	return r;
2360 }
2361 
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)2362 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2363 					struct kvm_memory_slot *dont)
2364 {
2365 	if (!dont || free->arch.rmap != dont->arch.rmap) {
2366 		vfree(free->arch.rmap);
2367 		free->arch.rmap = NULL;
2368 	}
2369 }
2370 
kvmppc_core_create_memslot_hv(struct kvm_memory_slot * slot,unsigned long npages)2371 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2372 					 unsigned long npages)
2373 {
2374 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2375 	if (!slot->arch.rmap)
2376 		return -ENOMEM;
2377 
2378 	return 0;
2379 }
2380 
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_userspace_memory_region * mem)2381 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2382 					struct kvm_memory_slot *memslot,
2383 					struct kvm_userspace_memory_region *mem)
2384 {
2385 	return 0;
2386 }
2387 
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old)2388 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2389 				struct kvm_userspace_memory_region *mem,
2390 				const struct kvm_memory_slot *old)
2391 {
2392 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2393 	struct kvm_memory_slot *memslot;
2394 
2395 	if (npages && old->npages) {
2396 		/*
2397 		 * If modifying a memslot, reset all the rmap dirty bits.
2398 		 * If this is a new memslot, we don't need to do anything
2399 		 * since the rmap array starts out as all zeroes,
2400 		 * i.e. no pages are dirty.
2401 		 */
2402 		memslot = id_to_memslot(kvm->memslots, mem->slot);
2403 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2404 	}
2405 }
2406 
2407 /*
2408  * Update LPCR values in kvm->arch and in vcores.
2409  * Caller must hold kvm->lock.
2410  */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)2411 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2412 {
2413 	long int i;
2414 	u32 cores_done = 0;
2415 
2416 	if ((kvm->arch.lpcr & mask) == lpcr)
2417 		return;
2418 
2419 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2420 
2421 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
2422 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2423 		if (!vc)
2424 			continue;
2425 		spin_lock(&vc->lock);
2426 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2427 		spin_unlock(&vc->lock);
2428 		if (++cores_done >= kvm->arch.online_vcores)
2429 			break;
2430 	}
2431 }
2432 
kvmppc_mmu_destroy_hv(struct kvm_vcpu * vcpu)2433 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2434 {
2435 	return;
2436 }
2437 
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)2438 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2439 {
2440 	int err = 0;
2441 	struct kvm *kvm = vcpu->kvm;
2442 	unsigned long hva;
2443 	struct kvm_memory_slot *memslot;
2444 	struct vm_area_struct *vma;
2445 	unsigned long lpcr = 0, senc;
2446 	unsigned long psize, porder;
2447 	int srcu_idx;
2448 
2449 	mutex_lock(&kvm->lock);
2450 	if (kvm->arch.hpte_setup_done)
2451 		goto out;	/* another vcpu beat us to it */
2452 
2453 	/* Allocate hashed page table (if not done already) and reset it */
2454 	if (!kvm->arch.hpt_virt) {
2455 		err = kvmppc_alloc_hpt(kvm, NULL);
2456 		if (err) {
2457 			pr_err("KVM: Couldn't alloc HPT\n");
2458 			goto out;
2459 		}
2460 	}
2461 
2462 	/* Look up the memslot for guest physical address 0 */
2463 	srcu_idx = srcu_read_lock(&kvm->srcu);
2464 	memslot = gfn_to_memslot(kvm, 0);
2465 
2466 	/* We must have some memory at 0 by now */
2467 	err = -EINVAL;
2468 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2469 		goto out_srcu;
2470 
2471 	/* Look up the VMA for the start of this memory slot */
2472 	hva = memslot->userspace_addr;
2473 	down_read(&current->mm->mmap_sem);
2474 	vma = find_vma(current->mm, hva);
2475 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2476 		goto up_out;
2477 
2478 	psize = vma_kernel_pagesize(vma);
2479 	porder = __ilog2(psize);
2480 
2481 	up_read(&current->mm->mmap_sem);
2482 
2483 	/* We can handle 4k, 64k or 16M pages in the VRMA */
2484 	err = -EINVAL;
2485 	if (!(psize == 0x1000 || psize == 0x10000 ||
2486 	      psize == 0x1000000))
2487 		goto out_srcu;
2488 
2489 	/* Update VRMASD field in the LPCR */
2490 	senc = slb_pgsize_encoding(psize);
2491 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2492 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
2493 	/* the -4 is to account for senc values starting at 0x10 */
2494 	lpcr = senc << (LPCR_VRMASD_SH - 4);
2495 
2496 	/* Create HPTEs in the hash page table for the VRMA */
2497 	kvmppc_map_vrma(vcpu, memslot, porder);
2498 
2499 	kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2500 
2501 	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2502 	smp_wmb();
2503 	kvm->arch.hpte_setup_done = 1;
2504 	err = 0;
2505  out_srcu:
2506 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2507  out:
2508 	mutex_unlock(&kvm->lock);
2509 	return err;
2510 
2511  up_out:
2512 	up_read(&current->mm->mmap_sem);
2513 	goto out_srcu;
2514 }
2515 
kvmppc_core_init_vm_hv(struct kvm * kvm)2516 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2517 {
2518 	unsigned long lpcr, lpid;
2519 	char buf[32];
2520 
2521 	/* Allocate the guest's logical partition ID */
2522 
2523 	lpid = kvmppc_alloc_lpid();
2524 	if ((long)lpid < 0)
2525 		return -ENOMEM;
2526 	kvm->arch.lpid = lpid;
2527 
2528 	/*
2529 	 * Since we don't flush the TLB when tearing down a VM,
2530 	 * and this lpid might have previously been used,
2531 	 * make sure we flush on each core before running the new VM.
2532 	 */
2533 	cpumask_setall(&kvm->arch.need_tlb_flush);
2534 
2535 	/* Start out with the default set of hcalls enabled */
2536 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2537 	       sizeof(kvm->arch.enabled_hcalls));
2538 
2539 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2540 
2541 	/* Init LPCR for virtual RMA mode */
2542 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
2543 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2544 	lpcr &= LPCR_PECE | LPCR_LPES;
2545 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2546 		LPCR_VPM0 | LPCR_VPM1;
2547 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2548 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
2549 	/* On POWER8 turn on online bit to enable PURR/SPURR */
2550 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
2551 		lpcr |= LPCR_ONL;
2552 	kvm->arch.lpcr = lpcr;
2553 
2554 	/*
2555 	 * Track that we now have a HV mode VM active. This blocks secondary
2556 	 * CPU threads from coming online.
2557 	 */
2558 	kvm_hv_vm_activated();
2559 
2560 	/*
2561 	 * Create a debugfs directory for the VM
2562 	 */
2563 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
2564 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
2565 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2566 		kvmppc_mmu_debugfs_init(kvm);
2567 
2568 	return 0;
2569 }
2570 
kvmppc_free_vcores(struct kvm * kvm)2571 static void kvmppc_free_vcores(struct kvm *kvm)
2572 {
2573 	long int i;
2574 
2575 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
2576 		if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
2577 			struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2578 			free_pages((unsigned long)vc->mpp_buffer,
2579 				   MPP_BUFFER_ORDER);
2580 		}
2581 		kfree(kvm->arch.vcores[i]);
2582 	}
2583 	kvm->arch.online_vcores = 0;
2584 }
2585 
kvmppc_core_destroy_vm_hv(struct kvm * kvm)2586 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2587 {
2588 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
2589 
2590 	kvm_hv_vm_deactivated();
2591 
2592 	kvmppc_free_vcores(kvm);
2593 
2594 	kvmppc_free_hpt(kvm);
2595 }
2596 
2597 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int inst,int * advance)2598 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2599 				     unsigned int inst, int *advance)
2600 {
2601 	return EMULATE_FAIL;
2602 }
2603 
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)2604 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2605 					ulong spr_val)
2606 {
2607 	return EMULATE_FAIL;
2608 }
2609 
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)2610 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2611 					ulong *spr_val)
2612 {
2613 	return EMULATE_FAIL;
2614 }
2615 
kvmppc_core_check_processor_compat_hv(void)2616 static int kvmppc_core_check_processor_compat_hv(void)
2617 {
2618 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
2619 	    !cpu_has_feature(CPU_FTR_ARCH_206))
2620 		return -EIO;
2621 	return 0;
2622 }
2623 
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)2624 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2625 				 unsigned int ioctl, unsigned long arg)
2626 {
2627 	struct kvm *kvm __maybe_unused = filp->private_data;
2628 	void __user *argp = (void __user *)arg;
2629 	long r;
2630 
2631 	switch (ioctl) {
2632 
2633 	case KVM_PPC_ALLOCATE_HTAB: {
2634 		u32 htab_order;
2635 
2636 		r = -EFAULT;
2637 		if (get_user(htab_order, (u32 __user *)argp))
2638 			break;
2639 		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2640 		if (r)
2641 			break;
2642 		r = -EFAULT;
2643 		if (put_user(htab_order, (u32 __user *)argp))
2644 			break;
2645 		r = 0;
2646 		break;
2647 	}
2648 
2649 	case KVM_PPC_GET_HTAB_FD: {
2650 		struct kvm_get_htab_fd ghf;
2651 
2652 		r = -EFAULT;
2653 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
2654 			break;
2655 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2656 		break;
2657 	}
2658 
2659 	default:
2660 		r = -ENOTTY;
2661 	}
2662 
2663 	return r;
2664 }
2665 
2666 /*
2667  * List of hcall numbers to enable by default.
2668  * For compatibility with old userspace, we enable by default
2669  * all hcalls that were implemented before the hcall-enabling
2670  * facility was added.  Note this list should not include H_RTAS.
2671  */
2672 static unsigned int default_hcall_list[] = {
2673 	H_REMOVE,
2674 	H_ENTER,
2675 	H_READ,
2676 	H_PROTECT,
2677 	H_BULK_REMOVE,
2678 	H_GET_TCE,
2679 	H_PUT_TCE,
2680 	H_SET_DABR,
2681 	H_SET_XDABR,
2682 	H_CEDE,
2683 	H_PROD,
2684 	H_CONFER,
2685 	H_REGISTER_VPA,
2686 #ifdef CONFIG_KVM_XICS
2687 	H_EOI,
2688 	H_CPPR,
2689 	H_IPI,
2690 	H_IPOLL,
2691 	H_XIRR,
2692 	H_XIRR_X,
2693 #endif
2694 	0
2695 };
2696 
init_default_hcalls(void)2697 static void init_default_hcalls(void)
2698 {
2699 	int i;
2700 	unsigned int hcall;
2701 
2702 	for (i = 0; default_hcall_list[i]; ++i) {
2703 		hcall = default_hcall_list[i];
2704 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
2705 		__set_bit(hcall / 4, default_enabled_hcalls);
2706 	}
2707 }
2708 
2709 static struct kvmppc_ops kvm_ops_hv = {
2710 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2711 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2712 	.get_one_reg = kvmppc_get_one_reg_hv,
2713 	.set_one_reg = kvmppc_set_one_reg_hv,
2714 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
2715 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
2716 	.set_msr     = kvmppc_set_msr_hv,
2717 	.vcpu_run    = kvmppc_vcpu_run_hv,
2718 	.vcpu_create = kvmppc_core_vcpu_create_hv,
2719 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
2720 	.check_requests = kvmppc_core_check_requests_hv,
2721 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2722 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
2723 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2724 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2725 	.unmap_hva = kvm_unmap_hva_hv,
2726 	.unmap_hva_range = kvm_unmap_hva_range_hv,
2727 	.age_hva  = kvm_age_hva_hv,
2728 	.test_age_hva = kvm_test_age_hva_hv,
2729 	.set_spte_hva = kvm_set_spte_hva_hv,
2730 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
2731 	.free_memslot = kvmppc_core_free_memslot_hv,
2732 	.create_memslot = kvmppc_core_create_memslot_hv,
2733 	.init_vm =  kvmppc_core_init_vm_hv,
2734 	.destroy_vm = kvmppc_core_destroy_vm_hv,
2735 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2736 	.emulate_op = kvmppc_core_emulate_op_hv,
2737 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2738 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2739 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2740 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2741 	.hcall_implemented = kvmppc_hcall_impl_hv,
2742 };
2743 
kvmppc_book3s_init_hv(void)2744 static int kvmppc_book3s_init_hv(void)
2745 {
2746 	int r;
2747 	/*
2748 	 * FIXME!! Do we need to check on all cpus ?
2749 	 */
2750 	r = kvmppc_core_check_processor_compat_hv();
2751 	if (r < 0)
2752 		return -ENODEV;
2753 
2754 	kvm_ops_hv.owner = THIS_MODULE;
2755 	kvmppc_hv_ops = &kvm_ops_hv;
2756 
2757 	init_default_hcalls();
2758 
2759 	r = kvmppc_mmu_hv_init();
2760 	return r;
2761 }
2762 
kvmppc_book3s_exit_hv(void)2763 static void kvmppc_book3s_exit_hv(void)
2764 {
2765 	kvmppc_hv_ops = NULL;
2766 }
2767 
2768 module_init(kvmppc_book3s_init_hv);
2769 module_exit(kvmppc_book3s_exit_hv);
2770 MODULE_LICENSE("GPL");
2771 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2772 MODULE_ALIAS("devname:kvm");
2773