1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension	virt");
50 #endif
51 
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55 
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58 
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63 
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66 	BUG_ON(preemptible());
67 	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69 
70 /**
71  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72  * Must be called from non-preemptible context
73  */
kvm_arm_get_running_vcpu(void)74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76 	BUG_ON(preemptible());
77 	return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79 
80 /**
81  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82  */
kvm_get_running_vcpus(void)83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85 	return &kvm_arm_running_vcpu;
86 }
87 
kvm_arch_hardware_enable(void)88 int kvm_arch_hardware_enable(void)
89 {
90 	return 0;
91 }
92 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97 
kvm_arch_hardware_setup(void)98 int kvm_arch_hardware_setup(void)
99 {
100 	return 0;
101 }
102 
kvm_arch_check_processor_compat(void * rtn)103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105 	*(int *)rtn = 0;
106 }
107 
108 
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:	pointer to the KVM struct
112  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115 	int ret = 0;
116 
117 	if (type)
118 		return -EINVAL;
119 
120 	ret = kvm_alloc_stage2_pgd(kvm);
121 	if (ret)
122 		goto out_fail_alloc;
123 
124 	ret = create_hyp_mappings(kvm, kvm + 1);
125 	if (ret)
126 		goto out_free_stage2_pgd;
127 
128 	kvm_vgic_early_init(kvm);
129 	kvm_timer_init(kvm);
130 
131 	/* Mark the initial VMID generation invalid */
132 	kvm->arch.vmid_gen = 0;
133 
134 	/* The maximum number of VCPUs is limited by the host's GIC model */
135 	kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
136 
137 	return ret;
138 out_free_stage2_pgd:
139 	kvm_free_stage2_pgd(kvm);
140 out_fail_alloc:
141 	return ret;
142 }
143 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)144 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
145 {
146 	return VM_FAULT_SIGBUS;
147 }
148 
149 
150 /**
151  * kvm_arch_destroy_vm - destroy the VM data structure
152  * @kvm:	pointer to the KVM struct
153  */
kvm_arch_destroy_vm(struct kvm * kvm)154 void kvm_arch_destroy_vm(struct kvm *kvm)
155 {
156 	int i;
157 
158 	kvm_free_stage2_pgd(kvm);
159 
160 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
161 		if (kvm->vcpus[i]) {
162 			kvm_arch_vcpu_free(kvm->vcpus[i]);
163 			kvm->vcpus[i] = NULL;
164 		}
165 	}
166 
167 	kvm_vgic_destroy(kvm);
168 }
169 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)170 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
171 {
172 	int r;
173 	switch (ext) {
174 	case KVM_CAP_IRQCHIP:
175 	case KVM_CAP_IOEVENTFD:
176 	case KVM_CAP_DEVICE_CTRL:
177 	case KVM_CAP_USER_MEMORY:
178 	case KVM_CAP_SYNC_MMU:
179 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180 	case KVM_CAP_ONE_REG:
181 	case KVM_CAP_ARM_PSCI:
182 	case KVM_CAP_ARM_PSCI_0_2:
183 	case KVM_CAP_READONLY_MEM:
184 	case KVM_CAP_MP_STATE:
185 		r = 1;
186 		break;
187 	case KVM_CAP_COALESCED_MMIO:
188 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189 		break;
190 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
191 		r = 1;
192 		break;
193 	case KVM_CAP_NR_VCPUS:
194 		r = num_online_cpus();
195 		break;
196 	case KVM_CAP_MAX_VCPUS:
197 		r = KVM_MAX_VCPUS;
198 		break;
199 	default:
200 		r = kvm_arch_dev_ioctl_check_extension(ext);
201 		break;
202 	}
203 	return r;
204 }
205 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)206 long kvm_arch_dev_ioctl(struct file *filp,
207 			unsigned int ioctl, unsigned long arg)
208 {
209 	return -EINVAL;
210 }
211 
212 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)213 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
214 {
215 	int err;
216 	struct kvm_vcpu *vcpu;
217 
218 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219 		err = -EBUSY;
220 		goto out;
221 	}
222 
223 	if (id >= kvm->arch.max_vcpus) {
224 		err = -EINVAL;
225 		goto out;
226 	}
227 
228 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229 	if (!vcpu) {
230 		err = -ENOMEM;
231 		goto out;
232 	}
233 
234 	err = kvm_vcpu_init(vcpu, kvm, id);
235 	if (err)
236 		goto free_vcpu;
237 
238 	err = create_hyp_mappings(vcpu, vcpu + 1);
239 	if (err)
240 		goto vcpu_uninit;
241 
242 	return vcpu;
243 vcpu_uninit:
244 	kvm_vcpu_uninit(vcpu);
245 free_vcpu:
246 	kmem_cache_free(kvm_vcpu_cache, vcpu);
247 out:
248 	return ERR_PTR(err);
249 }
250 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)251 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252 {
253 	kvm_vgic_vcpu_early_init(vcpu);
254 }
255 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)256 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
257 {
258 	kvm_mmu_free_memory_caches(vcpu);
259 	kvm_timer_vcpu_terminate(vcpu);
260 	kvm_vgic_vcpu_destroy(vcpu);
261 	kmem_cache_free(kvm_vcpu_cache, vcpu);
262 }
263 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)264 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
265 {
266 	kvm_arch_vcpu_free(vcpu);
267 }
268 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)269 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
270 {
271 	return kvm_timer_should_fire(vcpu);
272 }
273 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)274 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
275 {
276 	kvm_timer_schedule(vcpu);
277 }
278 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)279 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
280 {
281 	kvm_timer_unschedule(vcpu);
282 }
283 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)284 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
285 {
286 	/* Force users to call KVM_ARM_VCPU_INIT */
287 	vcpu->arch.target = -1;
288 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
289 
290 	/* Set up the timer */
291 	kvm_timer_vcpu_init(vcpu);
292 
293 	kvm_arm_reset_debug_ptr(vcpu);
294 
295 	return 0;
296 }
297 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)298 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
299 {
300 	vcpu->cpu = cpu;
301 	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
302 
303 	kvm_arm_set_running_vcpu(vcpu);
304 }
305 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)306 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
307 {
308 	/*
309 	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
310 	 * if the vcpu is no longer assigned to a cpu.  This is used for the
311 	 * optimized make_all_cpus_request path.
312 	 */
313 	vcpu->cpu = -1;
314 
315 	kvm_arm_set_running_vcpu(NULL);
316 }
317 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)318 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
319 				    struct kvm_mp_state *mp_state)
320 {
321 	if (vcpu->arch.power_off)
322 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
323 	else
324 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
325 
326 	return 0;
327 }
328 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)329 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
330 				    struct kvm_mp_state *mp_state)
331 {
332 	switch (mp_state->mp_state) {
333 	case KVM_MP_STATE_RUNNABLE:
334 		vcpu->arch.power_off = false;
335 		break;
336 	case KVM_MP_STATE_STOPPED:
337 		vcpu->arch.power_off = true;
338 		break;
339 	default:
340 		return -EINVAL;
341 	}
342 
343 	return 0;
344 }
345 
346 /**
347  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
348  * @v:		The VCPU pointer
349  *
350  * If the guest CPU is not waiting for interrupts or an interrupt line is
351  * asserted, the CPU is by definition runnable.
352  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)353 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
354 {
355 	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
356 		&& !v->arch.power_off && !v->arch.pause);
357 }
358 
359 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)360 static void exit_vm_noop(void *info)
361 {
362 }
363 
force_vm_exit(const cpumask_t * mask)364 void force_vm_exit(const cpumask_t *mask)
365 {
366 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
367 }
368 
369 /**
370  * need_new_vmid_gen - check that the VMID is still valid
371  * @kvm: The VM's VMID to checkt
372  *
373  * return true if there is a new generation of VMIDs being used
374  *
375  * The hardware supports only 256 values with the value zero reserved for the
376  * host, so we check if an assigned value belongs to a previous generation,
377  * which which requires us to assign a new value. If we're the first to use a
378  * VMID for the new generation, we must flush necessary caches and TLBs on all
379  * CPUs.
380  */
need_new_vmid_gen(struct kvm * kvm)381 static bool need_new_vmid_gen(struct kvm *kvm)
382 {
383 	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
384 }
385 
386 /**
387  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
388  * @kvm	The guest that we are about to run
389  *
390  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
391  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
392  * caches and TLBs.
393  */
update_vttbr(struct kvm * kvm)394 static void update_vttbr(struct kvm *kvm)
395 {
396 	phys_addr_t pgd_phys;
397 	u64 vmid;
398 
399 	if (!need_new_vmid_gen(kvm))
400 		return;
401 
402 	spin_lock(&kvm_vmid_lock);
403 
404 	/*
405 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
406 	 * already allocated a valid vmid for this vm, then this vcpu should
407 	 * use the same vmid.
408 	 */
409 	if (!need_new_vmid_gen(kvm)) {
410 		spin_unlock(&kvm_vmid_lock);
411 		return;
412 	}
413 
414 	/* First user of a new VMID generation? */
415 	if (unlikely(kvm_next_vmid == 0)) {
416 		atomic64_inc(&kvm_vmid_gen);
417 		kvm_next_vmid = 1;
418 
419 		/*
420 		 * On SMP we know no other CPUs can use this CPU's or each
421 		 * other's VMID after force_vm_exit returns since the
422 		 * kvm_vmid_lock blocks them from reentry to the guest.
423 		 */
424 		force_vm_exit(cpu_all_mask);
425 		/*
426 		 * Now broadcast TLB + ICACHE invalidation over the inner
427 		 * shareable domain to make sure all data structures are
428 		 * clean.
429 		 */
430 		kvm_call_hyp(__kvm_flush_vm_context);
431 	}
432 
433 	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
434 	kvm->arch.vmid = kvm_next_vmid;
435 	kvm_next_vmid++;
436 
437 	/* update vttbr to be used with the new vmid */
438 	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
439 	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
440 	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
441 	kvm->arch.vttbr = pgd_phys | vmid;
442 
443 	spin_unlock(&kvm_vmid_lock);
444 }
445 
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)446 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
447 {
448 	struct kvm *kvm = vcpu->kvm;
449 	int ret;
450 
451 	if (likely(vcpu->arch.has_run_once))
452 		return 0;
453 
454 	vcpu->arch.has_run_once = true;
455 
456 	/*
457 	 * Map the VGIC hardware resources before running a vcpu the first
458 	 * time on this VM.
459 	 */
460 	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
461 		ret = kvm_vgic_map_resources(kvm);
462 		if (ret)
463 			return ret;
464 	}
465 
466 	/*
467 	 * Enable the arch timers only if we have an in-kernel VGIC
468 	 * and it has been properly initialized, since we cannot handle
469 	 * interrupts from the virtual timer with a userspace gic.
470 	 */
471 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
472 		kvm_timer_enable(kvm);
473 
474 	return 0;
475 }
476 
kvm_arch_intc_initialized(struct kvm * kvm)477 bool kvm_arch_intc_initialized(struct kvm *kvm)
478 {
479 	return vgic_initialized(kvm);
480 }
481 
482 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
483 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
484 
kvm_arm_halt_guest(struct kvm * kvm)485 static void kvm_arm_halt_guest(struct kvm *kvm)
486 {
487 	int i;
488 	struct kvm_vcpu *vcpu;
489 
490 	kvm_for_each_vcpu(i, vcpu, kvm)
491 		vcpu->arch.pause = true;
492 	force_vm_exit(cpu_all_mask);
493 }
494 
kvm_arm_resume_guest(struct kvm * kvm)495 static void kvm_arm_resume_guest(struct kvm *kvm)
496 {
497 	int i;
498 	struct kvm_vcpu *vcpu;
499 
500 	kvm_for_each_vcpu(i, vcpu, kvm) {
501 		wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
502 
503 		vcpu->arch.pause = false;
504 		wake_up_interruptible(wq);
505 	}
506 }
507 
vcpu_sleep(struct kvm_vcpu * vcpu)508 static void vcpu_sleep(struct kvm_vcpu *vcpu)
509 {
510 	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
511 
512 	wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
513 				       (!vcpu->arch.pause)));
514 }
515 
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)516 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
517 {
518 	return vcpu->arch.target >= 0;
519 }
520 
521 /**
522  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
523  * @vcpu:	The VCPU pointer
524  * @run:	The kvm_run structure pointer used for userspace state exchange
525  *
526  * This function is called through the VCPU_RUN ioctl called from user space. It
527  * will execute VM code in a loop until the time slice for the process is used
528  * or some emulation is needed from user space in which case the function will
529  * return with return value 0 and with the kvm_run structure filled in with the
530  * required data for the requested emulation.
531  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)532 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
533 {
534 	int ret;
535 	sigset_t sigsaved;
536 
537 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
538 		return -ENOEXEC;
539 
540 	ret = kvm_vcpu_first_run_init(vcpu);
541 	if (ret)
542 		return ret;
543 
544 	if (run->exit_reason == KVM_EXIT_MMIO) {
545 		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
546 		if (ret)
547 			return ret;
548 	}
549 
550 	if (vcpu->sigset_active)
551 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
552 
553 	ret = 1;
554 	run->exit_reason = KVM_EXIT_UNKNOWN;
555 	while (ret > 0) {
556 		/*
557 		 * Check conditions before entering the guest
558 		 */
559 		cond_resched();
560 
561 		update_vttbr(vcpu->kvm);
562 
563 		if (vcpu->arch.power_off || vcpu->arch.pause)
564 			vcpu_sleep(vcpu);
565 
566 		/*
567 		 * Preparing the interrupts to be injected also
568 		 * involves poking the GIC, which must be done in a
569 		 * non-preemptible context.
570 		 */
571 		preempt_disable();
572 		kvm_timer_flush_hwstate(vcpu);
573 		kvm_vgic_flush_hwstate(vcpu);
574 
575 		local_irq_disable();
576 
577 		/*
578 		 * Re-check atomic conditions
579 		 */
580 		if (signal_pending(current)) {
581 			ret = -EINTR;
582 			run->exit_reason = KVM_EXIT_INTR;
583 		}
584 
585 		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
586 			vcpu->arch.power_off || vcpu->arch.pause) {
587 			local_irq_enable();
588 			kvm_timer_sync_hwstate(vcpu);
589 			kvm_vgic_sync_hwstate(vcpu);
590 			preempt_enable();
591 			continue;
592 		}
593 
594 		kvm_arm_setup_debug(vcpu);
595 
596 		/**************************************************************
597 		 * Enter the guest
598 		 */
599 		trace_kvm_entry(*vcpu_pc(vcpu));
600 		__kvm_guest_enter();
601 		vcpu->mode = IN_GUEST_MODE;
602 
603 		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
604 
605 		vcpu->mode = OUTSIDE_GUEST_MODE;
606 		/*
607 		 * Back from guest
608 		 *************************************************************/
609 
610 		kvm_arm_clear_debug(vcpu);
611 
612 		/*
613 		 * We may have taken a host interrupt in HYP mode (ie
614 		 * while executing the guest). This interrupt is still
615 		 * pending, as we haven't serviced it yet!
616 		 *
617 		 * We're now back in SVC mode, with interrupts
618 		 * disabled.  Enabling the interrupts now will have
619 		 * the effect of taking the interrupt again, in SVC
620 		 * mode this time.
621 		 */
622 		local_irq_enable();
623 
624 		/*
625 		 * We do local_irq_enable() before calling kvm_guest_exit() so
626 		 * that if a timer interrupt hits while running the guest we
627 		 * account that tick as being spent in the guest.  We enable
628 		 * preemption after calling kvm_guest_exit() so that if we get
629 		 * preempted we make sure ticks after that is not counted as
630 		 * guest time.
631 		 */
632 		kvm_guest_exit();
633 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
634 
635 		/*
636 		 * We must sync the timer state before the vgic state so that
637 		 * the vgic can properly sample the updated state of the
638 		 * interrupt line.
639 		 */
640 		kvm_timer_sync_hwstate(vcpu);
641 
642 		kvm_vgic_sync_hwstate(vcpu);
643 
644 		preempt_enable();
645 
646 		ret = handle_exit(vcpu, run, ret);
647 	}
648 
649 	if (vcpu->sigset_active)
650 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
651 	return ret;
652 }
653 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)654 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
655 {
656 	int bit_index;
657 	bool set;
658 	unsigned long *ptr;
659 
660 	if (number == KVM_ARM_IRQ_CPU_IRQ)
661 		bit_index = __ffs(HCR_VI);
662 	else /* KVM_ARM_IRQ_CPU_FIQ */
663 		bit_index = __ffs(HCR_VF);
664 
665 	ptr = (unsigned long *)&vcpu->arch.irq_lines;
666 	if (level)
667 		set = test_and_set_bit(bit_index, ptr);
668 	else
669 		set = test_and_clear_bit(bit_index, ptr);
670 
671 	/*
672 	 * If we didn't change anything, no need to wake up or kick other CPUs
673 	 */
674 	if (set == level)
675 		return 0;
676 
677 	/*
678 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
679 	 * trigger a world-switch round on the running physical CPU to set the
680 	 * virtual IRQ/FIQ fields in the HCR appropriately.
681 	 */
682 	kvm_vcpu_kick(vcpu);
683 
684 	return 0;
685 }
686 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)687 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
688 			  bool line_status)
689 {
690 	u32 irq = irq_level->irq;
691 	unsigned int irq_type, vcpu_idx, irq_num;
692 	int nrcpus = atomic_read(&kvm->online_vcpus);
693 	struct kvm_vcpu *vcpu = NULL;
694 	bool level = irq_level->level;
695 
696 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
697 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
698 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
699 
700 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
701 
702 	switch (irq_type) {
703 	case KVM_ARM_IRQ_TYPE_CPU:
704 		if (irqchip_in_kernel(kvm))
705 			return -ENXIO;
706 
707 		if (vcpu_idx >= nrcpus)
708 			return -EINVAL;
709 
710 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
711 		if (!vcpu)
712 			return -EINVAL;
713 
714 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
715 			return -EINVAL;
716 
717 		return vcpu_interrupt_line(vcpu, irq_num, level);
718 	case KVM_ARM_IRQ_TYPE_PPI:
719 		if (!irqchip_in_kernel(kvm))
720 			return -ENXIO;
721 
722 		if (vcpu_idx >= nrcpus)
723 			return -EINVAL;
724 
725 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
726 		if (!vcpu)
727 			return -EINVAL;
728 
729 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
730 			return -EINVAL;
731 
732 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
733 	case KVM_ARM_IRQ_TYPE_SPI:
734 		if (!irqchip_in_kernel(kvm))
735 			return -ENXIO;
736 
737 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
738 			return -EINVAL;
739 
740 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
741 	}
742 
743 	return -EINVAL;
744 }
745 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)746 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
747 			       const struct kvm_vcpu_init *init)
748 {
749 	unsigned int i;
750 	int phys_target = kvm_target_cpu();
751 
752 	if (init->target != phys_target)
753 		return -EINVAL;
754 
755 	/*
756 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
757 	 * use the same target.
758 	 */
759 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
760 		return -EINVAL;
761 
762 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
763 	for (i = 0; i < sizeof(init->features) * 8; i++) {
764 		bool set = (init->features[i / 32] & (1 << (i % 32)));
765 
766 		if (set && i >= KVM_VCPU_MAX_FEATURES)
767 			return -ENOENT;
768 
769 		/*
770 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
771 		 * use the same feature set.
772 		 */
773 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
774 		    test_bit(i, vcpu->arch.features) != set)
775 			return -EINVAL;
776 
777 		if (set)
778 			set_bit(i, vcpu->arch.features);
779 	}
780 
781 	vcpu->arch.target = phys_target;
782 
783 	/* Now we know what it is, we can reset it. */
784 	return kvm_reset_vcpu(vcpu);
785 }
786 
787 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)788 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
789 					 struct kvm_vcpu_init *init)
790 {
791 	int ret;
792 
793 	ret = kvm_vcpu_set_target(vcpu, init);
794 	if (ret)
795 		return ret;
796 
797 	/*
798 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
799 	 * guest MMU is turned off and flush the caches as needed.
800 	 */
801 	if (vcpu->arch.has_run_once)
802 		stage2_unmap_vm(vcpu->kvm);
803 
804 	vcpu_reset_hcr(vcpu);
805 
806 	/*
807 	 * Handle the "start in power-off" case.
808 	 */
809 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
810 		vcpu->arch.power_off = true;
811 	else
812 		vcpu->arch.power_off = false;
813 
814 	return 0;
815 }
816 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)817 long kvm_arch_vcpu_ioctl(struct file *filp,
818 			 unsigned int ioctl, unsigned long arg)
819 {
820 	struct kvm_vcpu *vcpu = filp->private_data;
821 	void __user *argp = (void __user *)arg;
822 
823 	switch (ioctl) {
824 	case KVM_ARM_VCPU_INIT: {
825 		struct kvm_vcpu_init init;
826 
827 		if (copy_from_user(&init, argp, sizeof(init)))
828 			return -EFAULT;
829 
830 		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
831 	}
832 	case KVM_SET_ONE_REG:
833 	case KVM_GET_ONE_REG: {
834 		struct kvm_one_reg reg;
835 
836 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
837 			return -ENOEXEC;
838 
839 		if (copy_from_user(&reg, argp, sizeof(reg)))
840 			return -EFAULT;
841 		if (ioctl == KVM_SET_ONE_REG)
842 			return kvm_arm_set_reg(vcpu, &reg);
843 		else
844 			return kvm_arm_get_reg(vcpu, &reg);
845 	}
846 	case KVM_GET_REG_LIST: {
847 		struct kvm_reg_list __user *user_list = argp;
848 		struct kvm_reg_list reg_list;
849 		unsigned n;
850 
851 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
852 			return -ENOEXEC;
853 
854 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
855 			return -EFAULT;
856 		n = reg_list.n;
857 		reg_list.n = kvm_arm_num_regs(vcpu);
858 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
859 			return -EFAULT;
860 		if (n < reg_list.n)
861 			return -E2BIG;
862 		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
863 	}
864 	default:
865 		return -EINVAL;
866 	}
867 }
868 
869 /**
870  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
871  * @kvm: kvm instance
872  * @log: slot id and address to which we copy the log
873  *
874  * Steps 1-4 below provide general overview of dirty page logging. See
875  * kvm_get_dirty_log_protect() function description for additional details.
876  *
877  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
878  * always flush the TLB (step 4) even if previous step failed  and the dirty
879  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
880  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
881  * writes will be marked dirty for next log read.
882  *
883  *   1. Take a snapshot of the bit and clear it if needed.
884  *   2. Write protect the corresponding page.
885  *   3. Copy the snapshot to the userspace.
886  *   4. Flush TLB's if needed.
887  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)888 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
889 {
890 	bool is_dirty = false;
891 	int r;
892 
893 	mutex_lock(&kvm->slots_lock);
894 
895 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
896 
897 	if (is_dirty)
898 		kvm_flush_remote_tlbs(kvm);
899 
900 	mutex_unlock(&kvm->slots_lock);
901 	return r;
902 }
903 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)904 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
905 					struct kvm_arm_device_addr *dev_addr)
906 {
907 	unsigned long dev_id, type;
908 
909 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
910 		KVM_ARM_DEVICE_ID_SHIFT;
911 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
912 		KVM_ARM_DEVICE_TYPE_SHIFT;
913 
914 	switch (dev_id) {
915 	case KVM_ARM_DEVICE_VGIC_V2:
916 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
917 	default:
918 		return -ENODEV;
919 	}
920 }
921 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)922 long kvm_arch_vm_ioctl(struct file *filp,
923 		       unsigned int ioctl, unsigned long arg)
924 {
925 	struct kvm *kvm = filp->private_data;
926 	void __user *argp = (void __user *)arg;
927 
928 	switch (ioctl) {
929 	case KVM_CREATE_IRQCHIP: {
930 		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
931 	}
932 	case KVM_ARM_SET_DEVICE_ADDR: {
933 		struct kvm_arm_device_addr dev_addr;
934 
935 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
936 			return -EFAULT;
937 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
938 	}
939 	case KVM_ARM_PREFERRED_TARGET: {
940 		int err;
941 		struct kvm_vcpu_init init;
942 
943 		err = kvm_vcpu_preferred_target(&init);
944 		if (err)
945 			return err;
946 
947 		if (copy_to_user(argp, &init, sizeof(init)))
948 			return -EFAULT;
949 
950 		return 0;
951 	}
952 	default:
953 		return -EINVAL;
954 	}
955 }
956 
cpu_init_hyp_mode(void * dummy)957 static void cpu_init_hyp_mode(void *dummy)
958 {
959 	phys_addr_t boot_pgd_ptr;
960 	phys_addr_t pgd_ptr;
961 	unsigned long hyp_stack_ptr;
962 	unsigned long stack_page;
963 	unsigned long vector_ptr;
964 
965 	/* Switch from the HYP stub to our own HYP init vector */
966 	__hyp_set_vectors(kvm_get_idmap_vector());
967 
968 	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
969 	pgd_ptr = kvm_mmu_get_httbr();
970 	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
971 	hyp_stack_ptr = stack_page + PAGE_SIZE;
972 	vector_ptr = (unsigned long)__kvm_hyp_vector;
973 
974 	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
975 
976 	kvm_arm_init_debug();
977 }
978 
hyp_init_cpu_notify(struct notifier_block * self,unsigned long action,void * cpu)979 static int hyp_init_cpu_notify(struct notifier_block *self,
980 			       unsigned long action, void *cpu)
981 {
982 	switch (action) {
983 	case CPU_STARTING:
984 	case CPU_STARTING_FROZEN:
985 		if (__hyp_get_vectors() == hyp_default_vectors)
986 			cpu_init_hyp_mode(NULL);
987 		break;
988 	}
989 
990 	return NOTIFY_OK;
991 }
992 
993 static struct notifier_block hyp_init_cpu_nb = {
994 	.notifier_call = hyp_init_cpu_notify,
995 };
996 
997 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)998 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
999 				    unsigned long cmd,
1000 				    void *v)
1001 {
1002 	if (cmd == CPU_PM_EXIT &&
1003 	    __hyp_get_vectors() == hyp_default_vectors) {
1004 		cpu_init_hyp_mode(NULL);
1005 		return NOTIFY_OK;
1006 	}
1007 
1008 	return NOTIFY_DONE;
1009 }
1010 
1011 static struct notifier_block hyp_init_cpu_pm_nb = {
1012 	.notifier_call = hyp_init_cpu_pm_notifier,
1013 };
1014 
hyp_cpu_pm_init(void)1015 static void __init hyp_cpu_pm_init(void)
1016 {
1017 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1018 }
1019 #else
hyp_cpu_pm_init(void)1020 static inline void hyp_cpu_pm_init(void)
1021 {
1022 }
1023 #endif
1024 
1025 /**
1026  * Inits Hyp-mode on all online CPUs
1027  */
init_hyp_mode(void)1028 static int init_hyp_mode(void)
1029 {
1030 	int cpu;
1031 	int err = 0;
1032 
1033 	/*
1034 	 * Allocate Hyp PGD and setup Hyp identity mapping
1035 	 */
1036 	err = kvm_mmu_init();
1037 	if (err)
1038 		goto out_err;
1039 
1040 	/*
1041 	 * It is probably enough to obtain the default on one
1042 	 * CPU. It's unlikely to be different on the others.
1043 	 */
1044 	hyp_default_vectors = __hyp_get_vectors();
1045 
1046 	/*
1047 	 * Allocate stack pages for Hypervisor-mode
1048 	 */
1049 	for_each_possible_cpu(cpu) {
1050 		unsigned long stack_page;
1051 
1052 		stack_page = __get_free_page(GFP_KERNEL);
1053 		if (!stack_page) {
1054 			err = -ENOMEM;
1055 			goto out_free_stack_pages;
1056 		}
1057 
1058 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1059 	}
1060 
1061 	/*
1062 	 * Map the Hyp-code called directly from the host
1063 	 */
1064 	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1065 	if (err) {
1066 		kvm_err("Cannot map world-switch code\n");
1067 		goto out_free_mappings;
1068 	}
1069 
1070 	/*
1071 	 * Map the Hyp stack pages
1072 	 */
1073 	for_each_possible_cpu(cpu) {
1074 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1075 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1076 
1077 		if (err) {
1078 			kvm_err("Cannot map hyp stack\n");
1079 			goto out_free_mappings;
1080 		}
1081 	}
1082 
1083 	/*
1084 	 * Map the host CPU structures
1085 	 */
1086 	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1087 	if (!kvm_host_cpu_state) {
1088 		err = -ENOMEM;
1089 		kvm_err("Cannot allocate host CPU state\n");
1090 		goto out_free_mappings;
1091 	}
1092 
1093 	for_each_possible_cpu(cpu) {
1094 		kvm_cpu_context_t *cpu_ctxt;
1095 
1096 		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1097 		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1098 
1099 		if (err) {
1100 			kvm_err("Cannot map host CPU state: %d\n", err);
1101 			goto out_free_context;
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * Execute the init code on each CPU.
1107 	 */
1108 	on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1109 
1110 	/*
1111 	 * Init HYP view of VGIC
1112 	 */
1113 	err = kvm_vgic_hyp_init();
1114 	if (err)
1115 		goto out_free_context;
1116 
1117 	/*
1118 	 * Init HYP architected timer support
1119 	 */
1120 	err = kvm_timer_hyp_init();
1121 	if (err)
1122 		goto out_free_context;
1123 
1124 #ifndef CONFIG_HOTPLUG_CPU
1125 	free_boot_hyp_pgd();
1126 #endif
1127 
1128 	kvm_perf_init();
1129 
1130 	kvm_info("Hyp mode initialized successfully\n");
1131 
1132 	return 0;
1133 out_free_context:
1134 	free_percpu(kvm_host_cpu_state);
1135 out_free_mappings:
1136 	free_hyp_pgds();
1137 out_free_stack_pages:
1138 	for_each_possible_cpu(cpu)
1139 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1140 out_err:
1141 	kvm_err("error initializing Hyp mode: %d\n", err);
1142 	return err;
1143 }
1144 
check_kvm_target_cpu(void * ret)1145 static void check_kvm_target_cpu(void *ret)
1146 {
1147 	*(int *)ret = kvm_target_cpu();
1148 }
1149 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1150 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1151 {
1152 	struct kvm_vcpu *vcpu;
1153 	int i;
1154 
1155 	mpidr &= MPIDR_HWID_BITMASK;
1156 	kvm_for_each_vcpu(i, vcpu, kvm) {
1157 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1158 			return vcpu;
1159 	}
1160 	return NULL;
1161 }
1162 
1163 /**
1164  * Initialize Hyp-mode and memory mappings on all CPUs.
1165  */
kvm_arch_init(void * opaque)1166 int kvm_arch_init(void *opaque)
1167 {
1168 	int err;
1169 	int ret, cpu;
1170 
1171 	if (!is_hyp_mode_available()) {
1172 		kvm_err("HYP mode not available\n");
1173 		return -ENODEV;
1174 	}
1175 
1176 	for_each_online_cpu(cpu) {
1177 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1178 		if (ret < 0) {
1179 			kvm_err("Error, CPU %d not supported!\n", cpu);
1180 			return -ENODEV;
1181 		}
1182 	}
1183 
1184 	cpu_notifier_register_begin();
1185 
1186 	err = init_hyp_mode();
1187 	if (err)
1188 		goto out_err;
1189 
1190 	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1191 	if (err) {
1192 		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1193 		goto out_err;
1194 	}
1195 
1196 	cpu_notifier_register_done();
1197 
1198 	hyp_cpu_pm_init();
1199 
1200 	kvm_coproc_table_init();
1201 	return 0;
1202 out_err:
1203 	cpu_notifier_register_done();
1204 	return err;
1205 }
1206 
1207 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1208 void kvm_arch_exit(void)
1209 {
1210 	kvm_perf_teardown();
1211 }
1212 
arm_init(void)1213 static int arm_init(void)
1214 {
1215 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1216 	return rc;
1217 }
1218 
1219 module_init(arm_init);
1220