1 /*
2  * linux/fs/jbd/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * We cache revoke status of a buffer in the current transaction in b_states
51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
52  * status of a buffer is valid and we can rely on the cached status.
53  *
54  * Revoke information on buffers is a tri-state value:
55  *
56  * RevokeValid clear:	no cached revoke status, need to look it up
57  * RevokeValid set, Revoked clear:
58  *			buffer has not been revoked, and cancel_revoke
59  *			need do nothing.
60  * RevokeValid set, Revoked set:
61  *			buffer has been revoked.
62  *
63  * Locking rules:
64  * We keep two hash tables of revoke records. One hashtable belongs to the
65  * running transaction (is pointed to by journal->j_revoke), the other one
66  * belongs to the committing transaction. Accesses to the second hash table
67  * happen only from the kjournald and no other thread touches this table.  Also
68  * journal_switch_revoke_table() which switches which hashtable belongs to the
69  * running and which to the committing transaction is called only from
70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
71  * to the committing transaction.
72  *
73  * All users operating on the hash table belonging to the running transaction
74  * have a handle to the transaction. Therefore they are safe from kjournald
75  * switching hash tables under them. For operations on the lists of entries in
76  * the hash table j_revoke_lock is used.
77  *
78  * Finally, also replay code uses the hash tables but at this moment no one else
79  * can touch them (filesystem isn't mounted yet) and hence no locking is
80  * needed.
81  */
82 
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #endif
95 #include <linux/log2.h>
96 #include <linux/hash.h>
97 
98 static struct kmem_cache *revoke_record_cache;
99 static struct kmem_cache *revoke_table_cache;
100 
101 /* Each revoke record represents one single revoked block.  During
102    journal replay, this involves recording the transaction ID of the
103    last transaction to revoke this block. */
104 
105 struct jbd_revoke_record_s
106 {
107 	struct list_head  hash;
108 	tid_t		  sequence;	/* Used for recovery only */
109 	unsigned int	  blocknr;
110 };
111 
112 
113 /* The revoke table is just a simple hash table of revoke records. */
114 struct jbd_revoke_table_s
115 {
116 	/* It is conceivable that we might want a larger hash table
117 	 * for recovery.  Must be a power of two. */
118 	int		  hash_size;
119 	int		  hash_shift;
120 	struct list_head *hash_table;
121 };
122 
123 
124 #ifdef __KERNEL__
125 static void write_one_revoke_record(journal_t *, transaction_t *,
126 				    struct journal_head **, int *,
127 				    struct jbd_revoke_record_s *, int);
128 static void flush_descriptor(journal_t *, struct journal_head *, int, int);
129 #endif
130 
131 /* Utility functions to maintain the revoke table */
132 
hash(journal_t * journal,unsigned int block)133 static inline int hash(journal_t *journal, unsigned int block)
134 {
135 	struct jbd_revoke_table_s *table = journal->j_revoke;
136 
137 	return hash_32(block, table->hash_shift);
138 }
139 
insert_revoke_hash(journal_t * journal,unsigned int blocknr,tid_t seq)140 static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
141 			      tid_t seq)
142 {
143 	struct list_head *hash_list;
144 	struct jbd_revoke_record_s *record;
145 
146 repeat:
147 	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
148 	if (!record)
149 		goto oom;
150 
151 	record->sequence = seq;
152 	record->blocknr = blocknr;
153 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
154 	spin_lock(&journal->j_revoke_lock);
155 	list_add(&record->hash, hash_list);
156 	spin_unlock(&journal->j_revoke_lock);
157 	return 0;
158 
159 oom:
160 	if (!journal_oom_retry)
161 		return -ENOMEM;
162 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
163 	yield();
164 	goto repeat;
165 }
166 
167 /* Find a revoke record in the journal's hash table. */
168 
find_revoke_record(journal_t * journal,unsigned int blocknr)169 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
170 						      unsigned int blocknr)
171 {
172 	struct list_head *hash_list;
173 	struct jbd_revoke_record_s *record;
174 
175 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
176 
177 	spin_lock(&journal->j_revoke_lock);
178 	record = (struct jbd_revoke_record_s *) hash_list->next;
179 	while (&(record->hash) != hash_list) {
180 		if (record->blocknr == blocknr) {
181 			spin_unlock(&journal->j_revoke_lock);
182 			return record;
183 		}
184 		record = (struct jbd_revoke_record_s *) record->hash.next;
185 	}
186 	spin_unlock(&journal->j_revoke_lock);
187 	return NULL;
188 }
189 
journal_destroy_revoke_caches(void)190 void journal_destroy_revoke_caches(void)
191 {
192 	if (revoke_record_cache) {
193 		kmem_cache_destroy(revoke_record_cache);
194 		revoke_record_cache = NULL;
195 	}
196 	if (revoke_table_cache) {
197 		kmem_cache_destroy(revoke_table_cache);
198 		revoke_table_cache = NULL;
199 	}
200 }
201 
journal_init_revoke_caches(void)202 int __init journal_init_revoke_caches(void)
203 {
204 	J_ASSERT(!revoke_record_cache);
205 	J_ASSERT(!revoke_table_cache);
206 
207 	revoke_record_cache = kmem_cache_create("revoke_record",
208 					   sizeof(struct jbd_revoke_record_s),
209 					   0,
210 					   SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
211 					   NULL);
212 	if (!revoke_record_cache)
213 		goto record_cache_failure;
214 
215 	revoke_table_cache = kmem_cache_create("revoke_table",
216 					   sizeof(struct jbd_revoke_table_s),
217 					   0, SLAB_TEMPORARY, NULL);
218 	if (!revoke_table_cache)
219 		goto table_cache_failure;
220 
221 	return 0;
222 
223 table_cache_failure:
224 	journal_destroy_revoke_caches();
225 record_cache_failure:
226 	return -ENOMEM;
227 }
228 
journal_init_revoke_table(int hash_size)229 static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
230 {
231 	int i;
232 	struct jbd_revoke_table_s *table;
233 
234 	table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
235 	if (!table)
236 		goto out;
237 
238 	table->hash_size = hash_size;
239 	table->hash_shift = ilog2(hash_size);
240 	table->hash_table =
241 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
242 	if (!table->hash_table) {
243 		kmem_cache_free(revoke_table_cache, table);
244 		table = NULL;
245 		goto out;
246 	}
247 
248 	for (i = 0; i < hash_size; i++)
249 		INIT_LIST_HEAD(&table->hash_table[i]);
250 
251 out:
252 	return table;
253 }
254 
journal_destroy_revoke_table(struct jbd_revoke_table_s * table)255 static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
256 {
257 	int i;
258 	struct list_head *hash_list;
259 
260 	for (i = 0; i < table->hash_size; i++) {
261 		hash_list = &table->hash_table[i];
262 		J_ASSERT(list_empty(hash_list));
263 	}
264 
265 	kfree(table->hash_table);
266 	kmem_cache_free(revoke_table_cache, table);
267 }
268 
269 /* Initialise the revoke table for a given journal to a given size. */
journal_init_revoke(journal_t * journal,int hash_size)270 int journal_init_revoke(journal_t *journal, int hash_size)
271 {
272 	J_ASSERT(journal->j_revoke_table[0] == NULL);
273 	J_ASSERT(is_power_of_2(hash_size));
274 
275 	journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
276 	if (!journal->j_revoke_table[0])
277 		goto fail0;
278 
279 	journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
280 	if (!journal->j_revoke_table[1])
281 		goto fail1;
282 
283 	journal->j_revoke = journal->j_revoke_table[1];
284 
285 	spin_lock_init(&journal->j_revoke_lock);
286 
287 	return 0;
288 
289 fail1:
290 	journal_destroy_revoke_table(journal->j_revoke_table[0]);
291 fail0:
292 	return -ENOMEM;
293 }
294 
295 /* Destroy a journal's revoke table.  The table must already be empty! */
journal_destroy_revoke(journal_t * journal)296 void journal_destroy_revoke(journal_t *journal)
297 {
298 	journal->j_revoke = NULL;
299 	if (journal->j_revoke_table[0])
300 		journal_destroy_revoke_table(journal->j_revoke_table[0]);
301 	if (journal->j_revoke_table[1])
302 		journal_destroy_revoke_table(journal->j_revoke_table[1]);
303 }
304 
305 
306 #ifdef __KERNEL__
307 
308 /*
309  * journal_revoke: revoke a given buffer_head from the journal.  This
310  * prevents the block from being replayed during recovery if we take a
311  * crash after this current transaction commits.  Any subsequent
312  * metadata writes of the buffer in this transaction cancel the
313  * revoke.
314  *
315  * Note that this call may block --- it is up to the caller to make
316  * sure that there are no further calls to journal_write_metadata
317  * before the revoke is complete.  In ext3, this implies calling the
318  * revoke before clearing the block bitmap when we are deleting
319  * metadata.
320  *
321  * Revoke performs a journal_forget on any buffer_head passed in as a
322  * parameter, but does _not_ forget the buffer_head if the bh was only
323  * found implicitly.
324  *
325  * bh_in may not be a journalled buffer - it may have come off
326  * the hash tables without an attached journal_head.
327  *
328  * If bh_in is non-zero, journal_revoke() will decrement its b_count
329  * by one.
330  */
331 
journal_revoke(handle_t * handle,unsigned int blocknr,struct buffer_head * bh_in)332 int journal_revoke(handle_t *handle, unsigned int blocknr,
333 		   struct buffer_head *bh_in)
334 {
335 	struct buffer_head *bh = NULL;
336 	journal_t *journal;
337 	struct block_device *bdev;
338 	int err;
339 
340 	might_sleep();
341 	if (bh_in)
342 		BUFFER_TRACE(bh_in, "enter");
343 
344 	journal = handle->h_transaction->t_journal;
345 	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
346 		J_ASSERT (!"Cannot set revoke feature!");
347 		return -EINVAL;
348 	}
349 
350 	bdev = journal->j_fs_dev;
351 	bh = bh_in;
352 
353 	if (!bh) {
354 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
355 		if (bh)
356 			BUFFER_TRACE(bh, "found on hash");
357 	}
358 #ifdef JBD_EXPENSIVE_CHECKING
359 	else {
360 		struct buffer_head *bh2;
361 
362 		/* If there is a different buffer_head lying around in
363 		 * memory anywhere... */
364 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
365 		if (bh2) {
366 			/* ... and it has RevokeValid status... */
367 			if (bh2 != bh && buffer_revokevalid(bh2))
368 				/* ...then it better be revoked too,
369 				 * since it's illegal to create a revoke
370 				 * record against a buffer_head which is
371 				 * not marked revoked --- that would
372 				 * risk missing a subsequent revoke
373 				 * cancel. */
374 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
375 			put_bh(bh2);
376 		}
377 	}
378 #endif
379 
380 	/* We really ought not ever to revoke twice in a row without
381            first having the revoke cancelled: it's illegal to free a
382            block twice without allocating it in between! */
383 	if (bh) {
384 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
385 				 "inconsistent data on disk")) {
386 			if (!bh_in)
387 				brelse(bh);
388 			return -EIO;
389 		}
390 		set_buffer_revoked(bh);
391 		set_buffer_revokevalid(bh);
392 		if (bh_in) {
393 			BUFFER_TRACE(bh_in, "call journal_forget");
394 			journal_forget(handle, bh_in);
395 		} else {
396 			BUFFER_TRACE(bh, "call brelse");
397 			__brelse(bh);
398 		}
399 	}
400 
401 	jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
402 	err = insert_revoke_hash(journal, blocknr,
403 				handle->h_transaction->t_tid);
404 	BUFFER_TRACE(bh_in, "exit");
405 	return err;
406 }
407 
408 /*
409  * Cancel an outstanding revoke.  For use only internally by the
410  * journaling code (called from journal_get_write_access).
411  *
412  * We trust buffer_revoked() on the buffer if the buffer is already
413  * being journaled: if there is no revoke pending on the buffer, then we
414  * don't do anything here.
415  *
416  * This would break if it were possible for a buffer to be revoked and
417  * discarded, and then reallocated within the same transaction.  In such
418  * a case we would have lost the revoked bit, but when we arrived here
419  * the second time we would still have a pending revoke to cancel.  So,
420  * do not trust the Revoked bit on buffers unless RevokeValid is also
421  * set.
422  */
journal_cancel_revoke(handle_t * handle,struct journal_head * jh)423 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
424 {
425 	struct jbd_revoke_record_s *record;
426 	journal_t *journal = handle->h_transaction->t_journal;
427 	int need_cancel;
428 	int did_revoke = 0;	/* akpm: debug */
429 	struct buffer_head *bh = jh2bh(jh);
430 
431 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
432 
433 	/* Is the existing Revoke bit valid?  If so, we trust it, and
434 	 * only perform the full cancel if the revoke bit is set.  If
435 	 * not, we can't trust the revoke bit, and we need to do the
436 	 * full search for a revoke record. */
437 	if (test_set_buffer_revokevalid(bh)) {
438 		need_cancel = test_clear_buffer_revoked(bh);
439 	} else {
440 		need_cancel = 1;
441 		clear_buffer_revoked(bh);
442 	}
443 
444 	if (need_cancel) {
445 		record = find_revoke_record(journal, bh->b_blocknr);
446 		if (record) {
447 			jbd_debug(4, "cancelled existing revoke on "
448 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
449 			spin_lock(&journal->j_revoke_lock);
450 			list_del(&record->hash);
451 			spin_unlock(&journal->j_revoke_lock);
452 			kmem_cache_free(revoke_record_cache, record);
453 			did_revoke = 1;
454 		}
455 	}
456 
457 #ifdef JBD_EXPENSIVE_CHECKING
458 	/* There better not be one left behind by now! */
459 	record = find_revoke_record(journal, bh->b_blocknr);
460 	J_ASSERT_JH(jh, record == NULL);
461 #endif
462 
463 	/* Finally, have we just cleared revoke on an unhashed
464 	 * buffer_head?  If so, we'd better make sure we clear the
465 	 * revoked status on any hashed alias too, otherwise the revoke
466 	 * state machine will get very upset later on. */
467 	if (need_cancel) {
468 		struct buffer_head *bh2;
469 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
470 		if (bh2) {
471 			if (bh2 != bh)
472 				clear_buffer_revoked(bh2);
473 			__brelse(bh2);
474 		}
475 	}
476 	return did_revoke;
477 }
478 
479 /*
480  * journal_clear_revoked_flags clears revoked flag of buffers in
481  * revoke table to reflect there is no revoked buffer in the next
482  * transaction which is going to be started.
483  */
journal_clear_buffer_revoked_flags(journal_t * journal)484 void journal_clear_buffer_revoked_flags(journal_t *journal)
485 {
486 	struct jbd_revoke_table_s *revoke = journal->j_revoke;
487 	int i = 0;
488 
489 	for (i = 0; i < revoke->hash_size; i++) {
490 		struct list_head *hash_list;
491 		struct list_head *list_entry;
492 		hash_list = &revoke->hash_table[i];
493 
494 		list_for_each(list_entry, hash_list) {
495 			struct jbd_revoke_record_s *record;
496 			struct buffer_head *bh;
497 			record = (struct jbd_revoke_record_s *)list_entry;
498 			bh = __find_get_block(journal->j_fs_dev,
499 					      record->blocknr,
500 					      journal->j_blocksize);
501 			if (bh) {
502 				clear_buffer_revoked(bh);
503 				__brelse(bh);
504 			}
505 		}
506 	}
507 }
508 
509 /* journal_switch_revoke table select j_revoke for next transaction
510  * we do not want to suspend any processing until all revokes are
511  * written -bzzz
512  */
journal_switch_revoke_table(journal_t * journal)513 void journal_switch_revoke_table(journal_t *journal)
514 {
515 	int i;
516 
517 	if (journal->j_revoke == journal->j_revoke_table[0])
518 		journal->j_revoke = journal->j_revoke_table[1];
519 	else
520 		journal->j_revoke = journal->j_revoke_table[0];
521 
522 	for (i = 0; i < journal->j_revoke->hash_size; i++)
523 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
524 }
525 
526 /*
527  * Write revoke records to the journal for all entries in the current
528  * revoke hash, deleting the entries as we go.
529  */
journal_write_revoke_records(journal_t * journal,transaction_t * transaction,int write_op)530 void journal_write_revoke_records(journal_t *journal,
531 				  transaction_t *transaction, int write_op)
532 {
533 	struct journal_head *descriptor;
534 	struct jbd_revoke_record_s *record;
535 	struct jbd_revoke_table_s *revoke;
536 	struct list_head *hash_list;
537 	int i, offset, count;
538 
539 	descriptor = NULL;
540 	offset = 0;
541 	count = 0;
542 
543 	/* select revoke table for committing transaction */
544 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
545 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
546 
547 	for (i = 0; i < revoke->hash_size; i++) {
548 		hash_list = &revoke->hash_table[i];
549 
550 		while (!list_empty(hash_list)) {
551 			record = (struct jbd_revoke_record_s *)
552 				hash_list->next;
553 			write_one_revoke_record(journal, transaction,
554 						&descriptor, &offset,
555 						record, write_op);
556 			count++;
557 			list_del(&record->hash);
558 			kmem_cache_free(revoke_record_cache, record);
559 		}
560 	}
561 	if (descriptor)
562 		flush_descriptor(journal, descriptor, offset, write_op);
563 	jbd_debug(1, "Wrote %d revoke records\n", count);
564 }
565 
566 /*
567  * Write out one revoke record.  We need to create a new descriptor
568  * block if the old one is full or if we have not already created one.
569  */
570 
write_one_revoke_record(journal_t * journal,transaction_t * transaction,struct journal_head ** descriptorp,int * offsetp,struct jbd_revoke_record_s * record,int write_op)571 static void write_one_revoke_record(journal_t *journal,
572 				    transaction_t *transaction,
573 				    struct journal_head **descriptorp,
574 				    int *offsetp,
575 				    struct jbd_revoke_record_s *record,
576 				    int write_op)
577 {
578 	struct journal_head *descriptor;
579 	int offset;
580 	journal_header_t *header;
581 
582 	/* If we are already aborting, this all becomes a noop.  We
583            still need to go round the loop in
584            journal_write_revoke_records in order to free all of the
585            revoke records: only the IO to the journal is omitted. */
586 	if (is_journal_aborted(journal))
587 		return;
588 
589 	descriptor = *descriptorp;
590 	offset = *offsetp;
591 
592 	/* Make sure we have a descriptor with space left for the record */
593 	if (descriptor) {
594 		if (offset == journal->j_blocksize) {
595 			flush_descriptor(journal, descriptor, offset, write_op);
596 			descriptor = NULL;
597 		}
598 	}
599 
600 	if (!descriptor) {
601 		descriptor = journal_get_descriptor_buffer(journal);
602 		if (!descriptor)
603 			return;
604 		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
605 		header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
606 		header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
607 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
608 
609 		/* Record it so that we can wait for IO completion later */
610 		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
611 		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
612 
613 		offset = sizeof(journal_revoke_header_t);
614 		*descriptorp = descriptor;
615 	}
616 
617 	* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
618 		cpu_to_be32(record->blocknr);
619 	offset += 4;
620 	*offsetp = offset;
621 }
622 
623 /*
624  * Flush a revoke descriptor out to the journal.  If we are aborting,
625  * this is a noop; otherwise we are generating a buffer which needs to
626  * be waited for during commit, so it has to go onto the appropriate
627  * journal buffer list.
628  */
629 
flush_descriptor(journal_t * journal,struct journal_head * descriptor,int offset,int write_op)630 static void flush_descriptor(journal_t *journal,
631 			     struct journal_head *descriptor,
632 			     int offset, int write_op)
633 {
634 	journal_revoke_header_t *header;
635 	struct buffer_head *bh = jh2bh(descriptor);
636 
637 	if (is_journal_aborted(journal)) {
638 		put_bh(bh);
639 		return;
640 	}
641 
642 	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
643 	header->r_count = cpu_to_be32(offset);
644 	set_buffer_jwrite(bh);
645 	BUFFER_TRACE(bh, "write");
646 	set_buffer_dirty(bh);
647 	write_dirty_buffer(bh, write_op);
648 }
649 #endif
650 
651 /*
652  * Revoke support for recovery.
653  *
654  * Recovery needs to be able to:
655  *
656  *  record all revoke records, including the tid of the latest instance
657  *  of each revoke in the journal
658  *
659  *  check whether a given block in a given transaction should be replayed
660  *  (ie. has not been revoked by a revoke record in that or a subsequent
661  *  transaction)
662  *
663  *  empty the revoke table after recovery.
664  */
665 
666 /*
667  * First, setting revoke records.  We create a new revoke record for
668  * every block ever revoked in the log as we scan it for recovery, and
669  * we update the existing records if we find multiple revokes for a
670  * single block.
671  */
672 
journal_set_revoke(journal_t * journal,unsigned int blocknr,tid_t sequence)673 int journal_set_revoke(journal_t *journal,
674 		       unsigned int blocknr,
675 		       tid_t sequence)
676 {
677 	struct jbd_revoke_record_s *record;
678 
679 	record = find_revoke_record(journal, blocknr);
680 	if (record) {
681 		/* If we have multiple occurrences, only record the
682 		 * latest sequence number in the hashed record */
683 		if (tid_gt(sequence, record->sequence))
684 			record->sequence = sequence;
685 		return 0;
686 	}
687 	return insert_revoke_hash(journal, blocknr, sequence);
688 }
689 
690 /*
691  * Test revoke records.  For a given block referenced in the log, has
692  * that block been revoked?  A revoke record with a given transaction
693  * sequence number revokes all blocks in that transaction and earlier
694  * ones, but later transactions still need replayed.
695  */
696 
journal_test_revoke(journal_t * journal,unsigned int blocknr,tid_t sequence)697 int journal_test_revoke(journal_t *journal,
698 			unsigned int blocknr,
699 			tid_t sequence)
700 {
701 	struct jbd_revoke_record_s *record;
702 
703 	record = find_revoke_record(journal, blocknr);
704 	if (!record)
705 		return 0;
706 	if (tid_gt(sequence, record->sequence))
707 		return 0;
708 	return 1;
709 }
710 
711 /*
712  * Finally, once recovery is over, we need to clear the revoke table so
713  * that it can be reused by the running filesystem.
714  */
715 
journal_clear_revoke(journal_t * journal)716 void journal_clear_revoke(journal_t *journal)
717 {
718 	int i;
719 	struct list_head *hash_list;
720 	struct jbd_revoke_record_s *record;
721 	struct jbd_revoke_table_s *revoke;
722 
723 	revoke = journal->j_revoke;
724 
725 	for (i = 0; i < revoke->hash_size; i++) {
726 		hash_list = &revoke->hash_table[i];
727 		while (!list_empty(hash_list)) {
728 			record = (struct jbd_revoke_record_s*) hash_list->next;
729 			list_del(&record->hash);
730 			kmem_cache_free(revoke_record_cache, record);
731 		}
732 	}
733 }
734