1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE			(1<<0)
52 #define INTEL_RC6p_ENABLE			(1<<1)
53 #define INTEL_RC6pp_ENABLE			(1<<2)
54 
bxt_init_clock_gating(struct drm_device * dev)55 static void bxt_init_clock_gating(struct drm_device *dev)
56 {
57 	struct drm_i915_private *dev_priv = dev->dev_private;
58 
59 	/* WaDisableSDEUnitClockGating:bxt */
60 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
61 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
62 
63 	/*
64 	 * FIXME:
65 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 	 */
67 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 }
70 
i915_pineview_get_mem_freq(struct drm_device * dev)71 static void i915_pineview_get_mem_freq(struct drm_device *dev)
72 {
73 	struct drm_i915_private *dev_priv = dev->dev_private;
74 	u32 tmp;
75 
76 	tmp = I915_READ(CLKCFG);
77 
78 	switch (tmp & CLKCFG_FSB_MASK) {
79 	case CLKCFG_FSB_533:
80 		dev_priv->fsb_freq = 533; /* 133*4 */
81 		break;
82 	case CLKCFG_FSB_800:
83 		dev_priv->fsb_freq = 800; /* 200*4 */
84 		break;
85 	case CLKCFG_FSB_667:
86 		dev_priv->fsb_freq =  667; /* 167*4 */
87 		break;
88 	case CLKCFG_FSB_400:
89 		dev_priv->fsb_freq = 400; /* 100*4 */
90 		break;
91 	}
92 
93 	switch (tmp & CLKCFG_MEM_MASK) {
94 	case CLKCFG_MEM_533:
95 		dev_priv->mem_freq = 533;
96 		break;
97 	case CLKCFG_MEM_667:
98 		dev_priv->mem_freq = 667;
99 		break;
100 	case CLKCFG_MEM_800:
101 		dev_priv->mem_freq = 800;
102 		break;
103 	}
104 
105 	/* detect pineview DDR3 setting */
106 	tmp = I915_READ(CSHRDDR3CTL);
107 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
108 }
109 
i915_ironlake_get_mem_freq(struct drm_device * dev)110 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
111 {
112 	struct drm_i915_private *dev_priv = dev->dev_private;
113 	u16 ddrpll, csipll;
114 
115 	ddrpll = I915_READ16(DDRMPLL1);
116 	csipll = I915_READ16(CSIPLL0);
117 
118 	switch (ddrpll & 0xff) {
119 	case 0xc:
120 		dev_priv->mem_freq = 800;
121 		break;
122 	case 0x10:
123 		dev_priv->mem_freq = 1066;
124 		break;
125 	case 0x14:
126 		dev_priv->mem_freq = 1333;
127 		break;
128 	case 0x18:
129 		dev_priv->mem_freq = 1600;
130 		break;
131 	default:
132 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
133 				 ddrpll & 0xff);
134 		dev_priv->mem_freq = 0;
135 		break;
136 	}
137 
138 	dev_priv->ips.r_t = dev_priv->mem_freq;
139 
140 	switch (csipll & 0x3ff) {
141 	case 0x00c:
142 		dev_priv->fsb_freq = 3200;
143 		break;
144 	case 0x00e:
145 		dev_priv->fsb_freq = 3733;
146 		break;
147 	case 0x010:
148 		dev_priv->fsb_freq = 4266;
149 		break;
150 	case 0x012:
151 		dev_priv->fsb_freq = 4800;
152 		break;
153 	case 0x014:
154 		dev_priv->fsb_freq = 5333;
155 		break;
156 	case 0x016:
157 		dev_priv->fsb_freq = 5866;
158 		break;
159 	case 0x018:
160 		dev_priv->fsb_freq = 6400;
161 		break;
162 	default:
163 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
164 				 csipll & 0x3ff);
165 		dev_priv->fsb_freq = 0;
166 		break;
167 	}
168 
169 	if (dev_priv->fsb_freq == 3200) {
170 		dev_priv->ips.c_m = 0;
171 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
172 		dev_priv->ips.c_m = 1;
173 	} else {
174 		dev_priv->ips.c_m = 2;
175 	}
176 }
177 
178 static const struct cxsr_latency cxsr_latency_table[] = {
179 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
180 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
181 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
182 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
183 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
184 
185 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
186 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
187 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
188 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
189 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
190 
191 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
192 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
193 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
194 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
195 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
196 
197 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
198 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
199 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
200 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
201 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
202 
203 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
204 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
205 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
206 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
207 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
208 
209 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
210 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
211 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
212 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
213 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
214 };
215 
intel_get_cxsr_latency(int is_desktop,int is_ddr3,int fsb,int mem)216 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
217 							 int is_ddr3,
218 							 int fsb,
219 							 int mem)
220 {
221 	const struct cxsr_latency *latency;
222 	int i;
223 
224 	if (fsb == 0 || mem == 0)
225 		return NULL;
226 
227 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
228 		latency = &cxsr_latency_table[i];
229 		if (is_desktop == latency->is_desktop &&
230 		    is_ddr3 == latency->is_ddr3 &&
231 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
232 			return latency;
233 	}
234 
235 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
236 
237 	return NULL;
238 }
239 
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)240 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
241 {
242 	u32 val;
243 
244 	mutex_lock(&dev_priv->rps.hw_lock);
245 
246 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
247 	if (enable)
248 		val &= ~FORCE_DDR_HIGH_FREQ;
249 	else
250 		val |= FORCE_DDR_HIGH_FREQ;
251 	val &= ~FORCE_DDR_LOW_FREQ;
252 	val |= FORCE_DDR_FREQ_REQ_ACK;
253 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
254 
255 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
256 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
257 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
258 
259 	mutex_unlock(&dev_priv->rps.hw_lock);
260 }
261 
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)262 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
263 {
264 	u32 val;
265 
266 	mutex_lock(&dev_priv->rps.hw_lock);
267 
268 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
269 	if (enable)
270 		val |= DSP_MAXFIFO_PM5_ENABLE;
271 	else
272 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
273 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
274 
275 	mutex_unlock(&dev_priv->rps.hw_lock);
276 }
277 
278 #define FW_WM(value, plane) \
279 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
280 
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)281 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
282 {
283 	struct drm_device *dev = dev_priv->dev;
284 	u32 val;
285 
286 	if (IS_VALLEYVIEW(dev)) {
287 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
288 		POSTING_READ(FW_BLC_SELF_VLV);
289 		dev_priv->wm.vlv.cxsr = enable;
290 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
291 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
292 		POSTING_READ(FW_BLC_SELF);
293 	} else if (IS_PINEVIEW(dev)) {
294 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
295 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
296 		I915_WRITE(DSPFW3, val);
297 		POSTING_READ(DSPFW3);
298 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
299 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
300 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
301 		I915_WRITE(FW_BLC_SELF, val);
302 		POSTING_READ(FW_BLC_SELF);
303 	} else if (IS_I915GM(dev)) {
304 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
305 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
306 		I915_WRITE(INSTPM, val);
307 		POSTING_READ(INSTPM);
308 	} else {
309 		return;
310 	}
311 
312 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
313 		      enable ? "enabled" : "disabled");
314 }
315 
316 
317 /*
318  * Latency for FIFO fetches is dependent on several factors:
319  *   - memory configuration (speed, channels)
320  *   - chipset
321  *   - current MCH state
322  * It can be fairly high in some situations, so here we assume a fairly
323  * pessimal value.  It's a tradeoff between extra memory fetches (if we
324  * set this value too high, the FIFO will fetch frequently to stay full)
325  * and power consumption (set it too low to save power and we might see
326  * FIFO underruns and display "flicker").
327  *
328  * A value of 5us seems to be a good balance; safe for very low end
329  * platforms but not overly aggressive on lower latency configs.
330  */
331 static const int pessimal_latency_ns = 5000;
332 
333 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
334 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
335 
vlv_get_fifo_size(struct drm_device * dev,enum pipe pipe,int plane)336 static int vlv_get_fifo_size(struct drm_device *dev,
337 			      enum pipe pipe, int plane)
338 {
339 	struct drm_i915_private *dev_priv = dev->dev_private;
340 	int sprite0_start, sprite1_start, size;
341 
342 	switch (pipe) {
343 		uint32_t dsparb, dsparb2, dsparb3;
344 	case PIPE_A:
345 		dsparb = I915_READ(DSPARB);
346 		dsparb2 = I915_READ(DSPARB2);
347 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
348 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
349 		break;
350 	case PIPE_B:
351 		dsparb = I915_READ(DSPARB);
352 		dsparb2 = I915_READ(DSPARB2);
353 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
354 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
355 		break;
356 	case PIPE_C:
357 		dsparb2 = I915_READ(DSPARB2);
358 		dsparb3 = I915_READ(DSPARB3);
359 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
360 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
361 		break;
362 	default:
363 		return 0;
364 	}
365 
366 	switch (plane) {
367 	case 0:
368 		size = sprite0_start;
369 		break;
370 	case 1:
371 		size = sprite1_start - sprite0_start;
372 		break;
373 	case 2:
374 		size = 512 - 1 - sprite1_start;
375 		break;
376 	default:
377 		return 0;
378 	}
379 
380 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
381 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
382 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
383 		      size);
384 
385 	return size;
386 }
387 
i9xx_get_fifo_size(struct drm_device * dev,int plane)388 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
389 {
390 	struct drm_i915_private *dev_priv = dev->dev_private;
391 	uint32_t dsparb = I915_READ(DSPARB);
392 	int size;
393 
394 	size = dsparb & 0x7f;
395 	if (plane)
396 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
397 
398 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
399 		      plane ? "B" : "A", size);
400 
401 	return size;
402 }
403 
i830_get_fifo_size(struct drm_device * dev,int plane)404 static int i830_get_fifo_size(struct drm_device *dev, int plane)
405 {
406 	struct drm_i915_private *dev_priv = dev->dev_private;
407 	uint32_t dsparb = I915_READ(DSPARB);
408 	int size;
409 
410 	size = dsparb & 0x1ff;
411 	if (plane)
412 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
413 	size >>= 1; /* Convert to cachelines */
414 
415 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
416 		      plane ? "B" : "A", size);
417 
418 	return size;
419 }
420 
i845_get_fifo_size(struct drm_device * dev,int plane)421 static int i845_get_fifo_size(struct drm_device *dev, int plane)
422 {
423 	struct drm_i915_private *dev_priv = dev->dev_private;
424 	uint32_t dsparb = I915_READ(DSPARB);
425 	int size;
426 
427 	size = dsparb & 0x7f;
428 	size >>= 2; /* Convert to cachelines */
429 
430 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
431 		      plane ? "B" : "A",
432 		      size);
433 
434 	return size;
435 }
436 
437 /* Pineview has different values for various configs */
438 static const struct intel_watermark_params pineview_display_wm = {
439 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
440 	.max_wm = PINEVIEW_MAX_WM,
441 	.default_wm = PINEVIEW_DFT_WM,
442 	.guard_size = PINEVIEW_GUARD_WM,
443 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
444 };
445 static const struct intel_watermark_params pineview_display_hplloff_wm = {
446 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
447 	.max_wm = PINEVIEW_MAX_WM,
448 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
449 	.guard_size = PINEVIEW_GUARD_WM,
450 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
451 };
452 static const struct intel_watermark_params pineview_cursor_wm = {
453 	.fifo_size = PINEVIEW_CURSOR_FIFO,
454 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
455 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
456 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
457 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 };
459 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
460 	.fifo_size = PINEVIEW_CURSOR_FIFO,
461 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
462 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
463 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
464 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 };
466 static const struct intel_watermark_params g4x_wm_info = {
467 	.fifo_size = G4X_FIFO_SIZE,
468 	.max_wm = G4X_MAX_WM,
469 	.default_wm = G4X_MAX_WM,
470 	.guard_size = 2,
471 	.cacheline_size = G4X_FIFO_LINE_SIZE,
472 };
473 static const struct intel_watermark_params g4x_cursor_wm_info = {
474 	.fifo_size = I965_CURSOR_FIFO,
475 	.max_wm = I965_CURSOR_MAX_WM,
476 	.default_wm = I965_CURSOR_DFT_WM,
477 	.guard_size = 2,
478 	.cacheline_size = G4X_FIFO_LINE_SIZE,
479 };
480 static const struct intel_watermark_params valleyview_wm_info = {
481 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
482 	.max_wm = VALLEYVIEW_MAX_WM,
483 	.default_wm = VALLEYVIEW_MAX_WM,
484 	.guard_size = 2,
485 	.cacheline_size = G4X_FIFO_LINE_SIZE,
486 };
487 static const struct intel_watermark_params valleyview_cursor_wm_info = {
488 	.fifo_size = I965_CURSOR_FIFO,
489 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
490 	.default_wm = I965_CURSOR_DFT_WM,
491 	.guard_size = 2,
492 	.cacheline_size = G4X_FIFO_LINE_SIZE,
493 };
494 static const struct intel_watermark_params i965_cursor_wm_info = {
495 	.fifo_size = I965_CURSOR_FIFO,
496 	.max_wm = I965_CURSOR_MAX_WM,
497 	.default_wm = I965_CURSOR_DFT_WM,
498 	.guard_size = 2,
499 	.cacheline_size = I915_FIFO_LINE_SIZE,
500 };
501 static const struct intel_watermark_params i945_wm_info = {
502 	.fifo_size = I945_FIFO_SIZE,
503 	.max_wm = I915_MAX_WM,
504 	.default_wm = 1,
505 	.guard_size = 2,
506 	.cacheline_size = I915_FIFO_LINE_SIZE,
507 };
508 static const struct intel_watermark_params i915_wm_info = {
509 	.fifo_size = I915_FIFO_SIZE,
510 	.max_wm = I915_MAX_WM,
511 	.default_wm = 1,
512 	.guard_size = 2,
513 	.cacheline_size = I915_FIFO_LINE_SIZE,
514 };
515 static const struct intel_watermark_params i830_a_wm_info = {
516 	.fifo_size = I855GM_FIFO_SIZE,
517 	.max_wm = I915_MAX_WM,
518 	.default_wm = 1,
519 	.guard_size = 2,
520 	.cacheline_size = I830_FIFO_LINE_SIZE,
521 };
522 static const struct intel_watermark_params i830_bc_wm_info = {
523 	.fifo_size = I855GM_FIFO_SIZE,
524 	.max_wm = I915_MAX_WM/2,
525 	.default_wm = 1,
526 	.guard_size = 2,
527 	.cacheline_size = I830_FIFO_LINE_SIZE,
528 };
529 static const struct intel_watermark_params i845_wm_info = {
530 	.fifo_size = I830_FIFO_SIZE,
531 	.max_wm = I915_MAX_WM,
532 	.default_wm = 1,
533 	.guard_size = 2,
534 	.cacheline_size = I830_FIFO_LINE_SIZE,
535 };
536 
537 /**
538  * intel_calculate_wm - calculate watermark level
539  * @clock_in_khz: pixel clock
540  * @wm: chip FIFO params
541  * @pixel_size: display pixel size
542  * @latency_ns: memory latency for the platform
543  *
544  * Calculate the watermark level (the level at which the display plane will
545  * start fetching from memory again).  Each chip has a different display
546  * FIFO size and allocation, so the caller needs to figure that out and pass
547  * in the correct intel_watermark_params structure.
548  *
549  * As the pixel clock runs, the FIFO will be drained at a rate that depends
550  * on the pixel size.  When it reaches the watermark level, it'll start
551  * fetching FIFO line sized based chunks from memory until the FIFO fills
552  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
553  * will occur, and a display engine hang could result.
554  */
intel_calculate_wm(unsigned long clock_in_khz,const struct intel_watermark_params * wm,int fifo_size,int pixel_size,unsigned long latency_ns)555 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
556 					const struct intel_watermark_params *wm,
557 					int fifo_size,
558 					int pixel_size,
559 					unsigned long latency_ns)
560 {
561 	long entries_required, wm_size;
562 
563 	/*
564 	 * Note: we need to make sure we don't overflow for various clock &
565 	 * latency values.
566 	 * clocks go from a few thousand to several hundred thousand.
567 	 * latency is usually a few thousand
568 	 */
569 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
570 		1000;
571 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
572 
573 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
574 
575 	wm_size = fifo_size - (entries_required + wm->guard_size);
576 
577 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
578 
579 	/* Don't promote wm_size to unsigned... */
580 	if (wm_size > (long)wm->max_wm)
581 		wm_size = wm->max_wm;
582 	if (wm_size <= 0)
583 		wm_size = wm->default_wm;
584 
585 	/*
586 	 * Bspec seems to indicate that the value shouldn't be lower than
587 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
588 	 * Lets go for 8 which is the burst size since certain platforms
589 	 * already use a hardcoded 8 (which is what the spec says should be
590 	 * done).
591 	 */
592 	if (wm_size <= 8)
593 		wm_size = 8;
594 
595 	return wm_size;
596 }
597 
single_enabled_crtc(struct drm_device * dev)598 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
599 {
600 	struct drm_crtc *crtc, *enabled = NULL;
601 
602 	for_each_crtc(dev, crtc) {
603 		if (intel_crtc_active(crtc)) {
604 			if (enabled)
605 				return NULL;
606 			enabled = crtc;
607 		}
608 	}
609 
610 	return enabled;
611 }
612 
pineview_update_wm(struct drm_crtc * unused_crtc)613 static void pineview_update_wm(struct drm_crtc *unused_crtc)
614 {
615 	struct drm_device *dev = unused_crtc->dev;
616 	struct drm_i915_private *dev_priv = dev->dev_private;
617 	struct drm_crtc *crtc;
618 	const struct cxsr_latency *latency;
619 	u32 reg;
620 	unsigned long wm;
621 
622 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
623 					 dev_priv->fsb_freq, dev_priv->mem_freq);
624 	if (!latency) {
625 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
626 		intel_set_memory_cxsr(dev_priv, false);
627 		return;
628 	}
629 
630 	crtc = single_enabled_crtc(dev);
631 	if (crtc) {
632 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
633 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
634 		int clock = adjusted_mode->crtc_clock;
635 
636 		/* Display SR */
637 		wm = intel_calculate_wm(clock, &pineview_display_wm,
638 					pineview_display_wm.fifo_size,
639 					pixel_size, latency->display_sr);
640 		reg = I915_READ(DSPFW1);
641 		reg &= ~DSPFW_SR_MASK;
642 		reg |= FW_WM(wm, SR);
643 		I915_WRITE(DSPFW1, reg);
644 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
645 
646 		/* cursor SR */
647 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
648 					pineview_display_wm.fifo_size,
649 					pixel_size, latency->cursor_sr);
650 		reg = I915_READ(DSPFW3);
651 		reg &= ~DSPFW_CURSOR_SR_MASK;
652 		reg |= FW_WM(wm, CURSOR_SR);
653 		I915_WRITE(DSPFW3, reg);
654 
655 		/* Display HPLL off SR */
656 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
657 					pineview_display_hplloff_wm.fifo_size,
658 					pixel_size, latency->display_hpll_disable);
659 		reg = I915_READ(DSPFW3);
660 		reg &= ~DSPFW_HPLL_SR_MASK;
661 		reg |= FW_WM(wm, HPLL_SR);
662 		I915_WRITE(DSPFW3, reg);
663 
664 		/* cursor HPLL off SR */
665 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
666 					pineview_display_hplloff_wm.fifo_size,
667 					pixel_size, latency->cursor_hpll_disable);
668 		reg = I915_READ(DSPFW3);
669 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
670 		reg |= FW_WM(wm, HPLL_CURSOR);
671 		I915_WRITE(DSPFW3, reg);
672 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
673 
674 		intel_set_memory_cxsr(dev_priv, true);
675 	} else {
676 		intel_set_memory_cxsr(dev_priv, false);
677 	}
678 }
679 
g4x_compute_wm0(struct drm_device * dev,int plane,const struct intel_watermark_params * display,int display_latency_ns,const struct intel_watermark_params * cursor,int cursor_latency_ns,int * plane_wm,int * cursor_wm)680 static bool g4x_compute_wm0(struct drm_device *dev,
681 			    int plane,
682 			    const struct intel_watermark_params *display,
683 			    int display_latency_ns,
684 			    const struct intel_watermark_params *cursor,
685 			    int cursor_latency_ns,
686 			    int *plane_wm,
687 			    int *cursor_wm)
688 {
689 	struct drm_crtc *crtc;
690 	const struct drm_display_mode *adjusted_mode;
691 	int htotal, hdisplay, clock, pixel_size;
692 	int line_time_us, line_count;
693 	int entries, tlb_miss;
694 
695 	crtc = intel_get_crtc_for_plane(dev, plane);
696 	if (!intel_crtc_active(crtc)) {
697 		*cursor_wm = cursor->guard_size;
698 		*plane_wm = display->guard_size;
699 		return false;
700 	}
701 
702 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
703 	clock = adjusted_mode->crtc_clock;
704 	htotal = adjusted_mode->crtc_htotal;
705 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
706 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
707 
708 	/* Use the small buffer method to calculate plane watermark */
709 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
710 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
711 	if (tlb_miss > 0)
712 		entries += tlb_miss;
713 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
714 	*plane_wm = entries + display->guard_size;
715 	if (*plane_wm > (int)display->max_wm)
716 		*plane_wm = display->max_wm;
717 
718 	/* Use the large buffer method to calculate cursor watermark */
719 	line_time_us = max(htotal * 1000 / clock, 1);
720 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
721 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
722 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
723 	if (tlb_miss > 0)
724 		entries += tlb_miss;
725 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
726 	*cursor_wm = entries + cursor->guard_size;
727 	if (*cursor_wm > (int)cursor->max_wm)
728 		*cursor_wm = (int)cursor->max_wm;
729 
730 	return true;
731 }
732 
733 /*
734  * Check the wm result.
735  *
736  * If any calculated watermark values is larger than the maximum value that
737  * can be programmed into the associated watermark register, that watermark
738  * must be disabled.
739  */
g4x_check_srwm(struct drm_device * dev,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)740 static bool g4x_check_srwm(struct drm_device *dev,
741 			   int display_wm, int cursor_wm,
742 			   const struct intel_watermark_params *display,
743 			   const struct intel_watermark_params *cursor)
744 {
745 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
746 		      display_wm, cursor_wm);
747 
748 	if (display_wm > display->max_wm) {
749 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
750 			      display_wm, display->max_wm);
751 		return false;
752 	}
753 
754 	if (cursor_wm > cursor->max_wm) {
755 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
756 			      cursor_wm, cursor->max_wm);
757 		return false;
758 	}
759 
760 	if (!(display_wm || cursor_wm)) {
761 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
762 		return false;
763 	}
764 
765 	return true;
766 }
767 
g4x_compute_srwm(struct drm_device * dev,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * display_wm,int * cursor_wm)768 static bool g4x_compute_srwm(struct drm_device *dev,
769 			     int plane,
770 			     int latency_ns,
771 			     const struct intel_watermark_params *display,
772 			     const struct intel_watermark_params *cursor,
773 			     int *display_wm, int *cursor_wm)
774 {
775 	struct drm_crtc *crtc;
776 	const struct drm_display_mode *adjusted_mode;
777 	int hdisplay, htotal, pixel_size, clock;
778 	unsigned long line_time_us;
779 	int line_count, line_size;
780 	int small, large;
781 	int entries;
782 
783 	if (!latency_ns) {
784 		*display_wm = *cursor_wm = 0;
785 		return false;
786 	}
787 
788 	crtc = intel_get_crtc_for_plane(dev, plane);
789 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
790 	clock = adjusted_mode->crtc_clock;
791 	htotal = adjusted_mode->crtc_htotal;
792 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
793 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
794 
795 	line_time_us = max(htotal * 1000 / clock, 1);
796 	line_count = (latency_ns / line_time_us + 1000) / 1000;
797 	line_size = hdisplay * pixel_size;
798 
799 	/* Use the minimum of the small and large buffer method for primary */
800 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
801 	large = line_count * line_size;
802 
803 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
804 	*display_wm = entries + display->guard_size;
805 
806 	/* calculate the self-refresh watermark for display cursor */
807 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
808 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
809 	*cursor_wm = entries + cursor->guard_size;
810 
811 	return g4x_check_srwm(dev,
812 			      *display_wm, *cursor_wm,
813 			      display, cursor);
814 }
815 
816 #define FW_WM_VLV(value, plane) \
817 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
818 
vlv_write_wm_values(struct intel_crtc * crtc,const struct vlv_wm_values * wm)819 static void vlv_write_wm_values(struct intel_crtc *crtc,
820 				const struct vlv_wm_values *wm)
821 {
822 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
823 	enum pipe pipe = crtc->pipe;
824 
825 	I915_WRITE(VLV_DDL(pipe),
826 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
827 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
828 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
829 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
830 
831 	I915_WRITE(DSPFW1,
832 		   FW_WM(wm->sr.plane, SR) |
833 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
834 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
835 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
836 	I915_WRITE(DSPFW2,
837 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
838 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
839 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
840 	I915_WRITE(DSPFW3,
841 		   FW_WM(wm->sr.cursor, CURSOR_SR));
842 
843 	if (IS_CHERRYVIEW(dev_priv)) {
844 		I915_WRITE(DSPFW7_CHV,
845 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
846 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
847 		I915_WRITE(DSPFW8_CHV,
848 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
849 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
850 		I915_WRITE(DSPFW9_CHV,
851 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
852 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
853 		I915_WRITE(DSPHOWM,
854 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
855 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
856 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
857 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
858 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
859 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
860 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
861 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
862 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
863 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
864 	} else {
865 		I915_WRITE(DSPFW7,
866 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
867 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
868 		I915_WRITE(DSPHOWM,
869 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
870 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
871 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
872 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
873 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
874 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
875 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
876 	}
877 
878 	/* zero (unused) WM1 watermarks */
879 	I915_WRITE(DSPFW4, 0);
880 	I915_WRITE(DSPFW5, 0);
881 	I915_WRITE(DSPFW6, 0);
882 	I915_WRITE(DSPHOWM1, 0);
883 
884 	POSTING_READ(DSPFW1);
885 }
886 
887 #undef FW_WM_VLV
888 
889 enum vlv_wm_level {
890 	VLV_WM_LEVEL_PM2,
891 	VLV_WM_LEVEL_PM5,
892 	VLV_WM_LEVEL_DDR_DVFS,
893 };
894 
895 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int pipe_htotal,unsigned int horiz_pixels,unsigned int bytes_per_pixel,unsigned int latency)896 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
897 				   unsigned int pipe_htotal,
898 				   unsigned int horiz_pixels,
899 				   unsigned int bytes_per_pixel,
900 				   unsigned int latency)
901 {
902 	unsigned int ret;
903 
904 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
905 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
906 	ret = DIV_ROUND_UP(ret, 64);
907 
908 	return ret;
909 }
910 
vlv_setup_wm_latency(struct drm_device * dev)911 static void vlv_setup_wm_latency(struct drm_device *dev)
912 {
913 	struct drm_i915_private *dev_priv = dev->dev_private;
914 
915 	/* all latencies in usec */
916 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
917 
918 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
919 
920 	if (IS_CHERRYVIEW(dev_priv)) {
921 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
922 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
923 
924 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
925 	}
926 }
927 
vlv_compute_wm_level(struct intel_plane * plane,struct intel_crtc * crtc,const struct intel_plane_state * state,int level)928 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
929 				     struct intel_crtc *crtc,
930 				     const struct intel_plane_state *state,
931 				     int level)
932 {
933 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
934 	int clock, htotal, pixel_size, width, wm;
935 
936 	if (dev_priv->wm.pri_latency[level] == 0)
937 		return USHRT_MAX;
938 
939 	if (!state->visible)
940 		return 0;
941 
942 	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
943 	clock = crtc->config->base.adjusted_mode.crtc_clock;
944 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
945 	width = crtc->config->pipe_src_w;
946 	if (WARN_ON(htotal == 0))
947 		htotal = 1;
948 
949 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
950 		/*
951 		 * FIXME the formula gives values that are
952 		 * too big for the cursor FIFO, and hence we
953 		 * would never be able to use cursors. For
954 		 * now just hardcode the watermark.
955 		 */
956 		wm = 63;
957 	} else {
958 		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
959 				    dev_priv->wm.pri_latency[level] * 10);
960 	}
961 
962 	return min_t(int, wm, USHRT_MAX);
963 }
964 
vlv_compute_fifo(struct intel_crtc * crtc)965 static void vlv_compute_fifo(struct intel_crtc *crtc)
966 {
967 	struct drm_device *dev = crtc->base.dev;
968 	struct vlv_wm_state *wm_state = &crtc->wm_state;
969 	struct intel_plane *plane;
970 	unsigned int total_rate = 0;
971 	const int fifo_size = 512 - 1;
972 	int fifo_extra, fifo_left = fifo_size;
973 
974 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
975 		struct intel_plane_state *state =
976 			to_intel_plane_state(plane->base.state);
977 
978 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
979 			continue;
980 
981 		if (state->visible) {
982 			wm_state->num_active_planes++;
983 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
984 		}
985 	}
986 
987 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
988 		struct intel_plane_state *state =
989 			to_intel_plane_state(plane->base.state);
990 		unsigned int rate;
991 
992 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
993 			plane->wm.fifo_size = 63;
994 			continue;
995 		}
996 
997 		if (!state->visible) {
998 			plane->wm.fifo_size = 0;
999 			continue;
1000 		}
1001 
1002 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1003 		plane->wm.fifo_size = fifo_size * rate / total_rate;
1004 		fifo_left -= plane->wm.fifo_size;
1005 	}
1006 
1007 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1008 
1009 	/* spread the remainder evenly */
1010 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1011 		int plane_extra;
1012 
1013 		if (fifo_left == 0)
1014 			break;
1015 
1016 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1017 			continue;
1018 
1019 		/* give it all to the first plane if none are active */
1020 		if (plane->wm.fifo_size == 0 &&
1021 		    wm_state->num_active_planes)
1022 			continue;
1023 
1024 		plane_extra = min(fifo_extra, fifo_left);
1025 		plane->wm.fifo_size += plane_extra;
1026 		fifo_left -= plane_extra;
1027 	}
1028 
1029 	WARN_ON(fifo_left != 0);
1030 }
1031 
vlv_invert_wms(struct intel_crtc * crtc)1032 static void vlv_invert_wms(struct intel_crtc *crtc)
1033 {
1034 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1035 	int level;
1036 
1037 	for (level = 0; level < wm_state->num_levels; level++) {
1038 		struct drm_device *dev = crtc->base.dev;
1039 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1040 		struct intel_plane *plane;
1041 
1042 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1043 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1044 
1045 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1046 			switch (plane->base.type) {
1047 				int sprite;
1048 			case DRM_PLANE_TYPE_CURSOR:
1049 				wm_state->wm[level].cursor = plane->wm.fifo_size -
1050 					wm_state->wm[level].cursor;
1051 				break;
1052 			case DRM_PLANE_TYPE_PRIMARY:
1053 				wm_state->wm[level].primary = plane->wm.fifo_size -
1054 					wm_state->wm[level].primary;
1055 				break;
1056 			case DRM_PLANE_TYPE_OVERLAY:
1057 				sprite = plane->plane;
1058 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1059 					wm_state->wm[level].sprite[sprite];
1060 				break;
1061 			}
1062 		}
1063 	}
1064 }
1065 
vlv_compute_wm(struct intel_crtc * crtc)1066 static void vlv_compute_wm(struct intel_crtc *crtc)
1067 {
1068 	struct drm_device *dev = crtc->base.dev;
1069 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1070 	struct intel_plane *plane;
1071 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1072 	int level;
1073 
1074 	memset(wm_state, 0, sizeof(*wm_state));
1075 
1076 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1077 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1078 
1079 	wm_state->num_active_planes = 0;
1080 
1081 	vlv_compute_fifo(crtc);
1082 
1083 	if (wm_state->num_active_planes != 1)
1084 		wm_state->cxsr = false;
1085 
1086 	if (wm_state->cxsr) {
1087 		for (level = 0; level < wm_state->num_levels; level++) {
1088 			wm_state->sr[level].plane = sr_fifo_size;
1089 			wm_state->sr[level].cursor = 63;
1090 		}
1091 	}
1092 
1093 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1094 		struct intel_plane_state *state =
1095 			to_intel_plane_state(plane->base.state);
1096 
1097 		if (!state->visible)
1098 			continue;
1099 
1100 		/* normal watermarks */
1101 		for (level = 0; level < wm_state->num_levels; level++) {
1102 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1103 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1104 
1105 			/* hack */
1106 			if (WARN_ON(level == 0 && wm > max_wm))
1107 				wm = max_wm;
1108 
1109 			if (wm > plane->wm.fifo_size)
1110 				break;
1111 
1112 			switch (plane->base.type) {
1113 				int sprite;
1114 			case DRM_PLANE_TYPE_CURSOR:
1115 				wm_state->wm[level].cursor = wm;
1116 				break;
1117 			case DRM_PLANE_TYPE_PRIMARY:
1118 				wm_state->wm[level].primary = wm;
1119 				break;
1120 			case DRM_PLANE_TYPE_OVERLAY:
1121 				sprite = plane->plane;
1122 				wm_state->wm[level].sprite[sprite] = wm;
1123 				break;
1124 			}
1125 		}
1126 
1127 		wm_state->num_levels = level;
1128 
1129 		if (!wm_state->cxsr)
1130 			continue;
1131 
1132 		/* maxfifo watermarks */
1133 		switch (plane->base.type) {
1134 			int sprite, level;
1135 		case DRM_PLANE_TYPE_CURSOR:
1136 			for (level = 0; level < wm_state->num_levels; level++)
1137 				wm_state->sr[level].cursor =
1138 					wm_state->wm[level].cursor;
1139 			break;
1140 		case DRM_PLANE_TYPE_PRIMARY:
1141 			for (level = 0; level < wm_state->num_levels; level++)
1142 				wm_state->sr[level].plane =
1143 					min(wm_state->sr[level].plane,
1144 					    wm_state->wm[level].primary);
1145 			break;
1146 		case DRM_PLANE_TYPE_OVERLAY:
1147 			sprite = plane->plane;
1148 			for (level = 0; level < wm_state->num_levels; level++)
1149 				wm_state->sr[level].plane =
1150 					min(wm_state->sr[level].plane,
1151 					    wm_state->wm[level].sprite[sprite]);
1152 			break;
1153 		}
1154 	}
1155 
1156 	/* clear any (partially) filled invalid levels */
1157 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1158 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1159 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1160 	}
1161 
1162 	vlv_invert_wms(crtc);
1163 }
1164 
1165 #define VLV_FIFO(plane, value) \
1166 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1167 
vlv_pipe_set_fifo_size(struct intel_crtc * crtc)1168 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1169 {
1170 	struct drm_device *dev = crtc->base.dev;
1171 	struct drm_i915_private *dev_priv = to_i915(dev);
1172 	struct intel_plane *plane;
1173 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1174 
1175 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1176 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1177 			WARN_ON(plane->wm.fifo_size != 63);
1178 			continue;
1179 		}
1180 
1181 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1182 			sprite0_start = plane->wm.fifo_size;
1183 		else if (plane->plane == 0)
1184 			sprite1_start = sprite0_start + plane->wm.fifo_size;
1185 		else
1186 			fifo_size = sprite1_start + plane->wm.fifo_size;
1187 	}
1188 
1189 	WARN_ON(fifo_size != 512 - 1);
1190 
1191 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1192 		      pipe_name(crtc->pipe), sprite0_start,
1193 		      sprite1_start, fifo_size);
1194 
1195 	switch (crtc->pipe) {
1196 		uint32_t dsparb, dsparb2, dsparb3;
1197 	case PIPE_A:
1198 		dsparb = I915_READ(DSPARB);
1199 		dsparb2 = I915_READ(DSPARB2);
1200 
1201 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1202 			    VLV_FIFO(SPRITEB, 0xff));
1203 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1204 			   VLV_FIFO(SPRITEB, sprite1_start));
1205 
1206 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1207 			     VLV_FIFO(SPRITEB_HI, 0x1));
1208 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1209 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1210 
1211 		I915_WRITE(DSPARB, dsparb);
1212 		I915_WRITE(DSPARB2, dsparb2);
1213 		break;
1214 	case PIPE_B:
1215 		dsparb = I915_READ(DSPARB);
1216 		dsparb2 = I915_READ(DSPARB2);
1217 
1218 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1219 			    VLV_FIFO(SPRITED, 0xff));
1220 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1221 			   VLV_FIFO(SPRITED, sprite1_start));
1222 
1223 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1224 			     VLV_FIFO(SPRITED_HI, 0xff));
1225 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1226 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1227 
1228 		I915_WRITE(DSPARB, dsparb);
1229 		I915_WRITE(DSPARB2, dsparb2);
1230 		break;
1231 	case PIPE_C:
1232 		dsparb3 = I915_READ(DSPARB3);
1233 		dsparb2 = I915_READ(DSPARB2);
1234 
1235 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1236 			     VLV_FIFO(SPRITEF, 0xff));
1237 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1238 			    VLV_FIFO(SPRITEF, sprite1_start));
1239 
1240 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1241 			     VLV_FIFO(SPRITEF_HI, 0xff));
1242 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1243 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1244 
1245 		I915_WRITE(DSPARB3, dsparb3);
1246 		I915_WRITE(DSPARB2, dsparb2);
1247 		break;
1248 	default:
1249 		break;
1250 	}
1251 }
1252 
1253 #undef VLV_FIFO
1254 
vlv_merge_wm(struct drm_device * dev,struct vlv_wm_values * wm)1255 static void vlv_merge_wm(struct drm_device *dev,
1256 			 struct vlv_wm_values *wm)
1257 {
1258 	struct intel_crtc *crtc;
1259 	int num_active_crtcs = 0;
1260 
1261 	wm->level = to_i915(dev)->wm.max_level;
1262 	wm->cxsr = true;
1263 
1264 	for_each_intel_crtc(dev, crtc) {
1265 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1266 
1267 		if (!crtc->active)
1268 			continue;
1269 
1270 		if (!wm_state->cxsr)
1271 			wm->cxsr = false;
1272 
1273 		num_active_crtcs++;
1274 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1275 	}
1276 
1277 	if (num_active_crtcs != 1)
1278 		wm->cxsr = false;
1279 
1280 	if (num_active_crtcs > 1)
1281 		wm->level = VLV_WM_LEVEL_PM2;
1282 
1283 	for_each_intel_crtc(dev, crtc) {
1284 		struct vlv_wm_state *wm_state = &crtc->wm_state;
1285 		enum pipe pipe = crtc->pipe;
1286 
1287 		if (!crtc->active)
1288 			continue;
1289 
1290 		wm->pipe[pipe] = wm_state->wm[wm->level];
1291 		if (wm->cxsr)
1292 			wm->sr = wm_state->sr[wm->level];
1293 
1294 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1295 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1296 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1297 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1298 	}
1299 }
1300 
vlv_update_wm(struct drm_crtc * crtc)1301 static void vlv_update_wm(struct drm_crtc *crtc)
1302 {
1303 	struct drm_device *dev = crtc->dev;
1304 	struct drm_i915_private *dev_priv = dev->dev_private;
1305 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1306 	enum pipe pipe = intel_crtc->pipe;
1307 	struct vlv_wm_values wm = {};
1308 
1309 	vlv_compute_wm(intel_crtc);
1310 	vlv_merge_wm(dev, &wm);
1311 
1312 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1313 		/* FIXME should be part of crtc atomic commit */
1314 		vlv_pipe_set_fifo_size(intel_crtc);
1315 		return;
1316 	}
1317 
1318 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1319 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1320 		chv_set_memory_dvfs(dev_priv, false);
1321 
1322 	if (wm.level < VLV_WM_LEVEL_PM5 &&
1323 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1324 		chv_set_memory_pm5(dev_priv, false);
1325 
1326 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327 		intel_set_memory_cxsr(dev_priv, false);
1328 
1329 	/* FIXME should be part of crtc atomic commit */
1330 	vlv_pipe_set_fifo_size(intel_crtc);
1331 
1332 	vlv_write_wm_values(intel_crtc, &wm);
1333 
1334 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1335 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1336 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1337 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1338 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1339 
1340 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341 		intel_set_memory_cxsr(dev_priv, true);
1342 
1343 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1344 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1345 		chv_set_memory_pm5(dev_priv, true);
1346 
1347 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1348 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1349 		chv_set_memory_dvfs(dev_priv, true);
1350 
1351 	dev_priv->wm.vlv = wm;
1352 }
1353 
1354 #define single_plane_enabled(mask) is_power_of_2(mask)
1355 
g4x_update_wm(struct drm_crtc * crtc)1356 static void g4x_update_wm(struct drm_crtc *crtc)
1357 {
1358 	struct drm_device *dev = crtc->dev;
1359 	static const int sr_latency_ns = 12000;
1360 	struct drm_i915_private *dev_priv = dev->dev_private;
1361 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1362 	int plane_sr, cursor_sr;
1363 	unsigned int enabled = 0;
1364 	bool cxsr_enabled;
1365 
1366 	if (g4x_compute_wm0(dev, PIPE_A,
1367 			    &g4x_wm_info, pessimal_latency_ns,
1368 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1369 			    &planea_wm, &cursora_wm))
1370 		enabled |= 1 << PIPE_A;
1371 
1372 	if (g4x_compute_wm0(dev, PIPE_B,
1373 			    &g4x_wm_info, pessimal_latency_ns,
1374 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1375 			    &planeb_wm, &cursorb_wm))
1376 		enabled |= 1 << PIPE_B;
1377 
1378 	if (single_plane_enabled(enabled) &&
1379 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1380 			     sr_latency_ns,
1381 			     &g4x_wm_info,
1382 			     &g4x_cursor_wm_info,
1383 			     &plane_sr, &cursor_sr)) {
1384 		cxsr_enabled = true;
1385 	} else {
1386 		cxsr_enabled = false;
1387 		intel_set_memory_cxsr(dev_priv, false);
1388 		plane_sr = cursor_sr = 0;
1389 	}
1390 
1391 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1392 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393 		      planea_wm, cursora_wm,
1394 		      planeb_wm, cursorb_wm,
1395 		      plane_sr, cursor_sr);
1396 
1397 	I915_WRITE(DSPFW1,
1398 		   FW_WM(plane_sr, SR) |
1399 		   FW_WM(cursorb_wm, CURSORB) |
1400 		   FW_WM(planeb_wm, PLANEB) |
1401 		   FW_WM(planea_wm, PLANEA));
1402 	I915_WRITE(DSPFW2,
1403 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1404 		   FW_WM(cursora_wm, CURSORA));
1405 	/* HPLL off in SR has some issues on G4x... disable it */
1406 	I915_WRITE(DSPFW3,
1407 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1408 		   FW_WM(cursor_sr, CURSOR_SR));
1409 
1410 	if (cxsr_enabled)
1411 		intel_set_memory_cxsr(dev_priv, true);
1412 }
1413 
i965_update_wm(struct drm_crtc * unused_crtc)1414 static void i965_update_wm(struct drm_crtc *unused_crtc)
1415 {
1416 	struct drm_device *dev = unused_crtc->dev;
1417 	struct drm_i915_private *dev_priv = dev->dev_private;
1418 	struct drm_crtc *crtc;
1419 	int srwm = 1;
1420 	int cursor_sr = 16;
1421 	bool cxsr_enabled;
1422 
1423 	/* Calc sr entries for one plane configs */
1424 	crtc = single_enabled_crtc(dev);
1425 	if (crtc) {
1426 		/* self-refresh has much higher latency */
1427 		static const int sr_latency_ns = 12000;
1428 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1429 		int clock = adjusted_mode->crtc_clock;
1430 		int htotal = adjusted_mode->crtc_htotal;
1431 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1432 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1433 		unsigned long line_time_us;
1434 		int entries;
1435 
1436 		line_time_us = max(htotal * 1000 / clock, 1);
1437 
1438 		/* Use ns/us then divide to preserve precision */
1439 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1440 			pixel_size * hdisplay;
1441 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1442 		srwm = I965_FIFO_SIZE - entries;
1443 		if (srwm < 0)
1444 			srwm = 1;
1445 		srwm &= 0x1ff;
1446 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1447 			      entries, srwm);
1448 
1449 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450 			pixel_size * crtc->cursor->state->crtc_w;
1451 		entries = DIV_ROUND_UP(entries,
1452 					  i965_cursor_wm_info.cacheline_size);
1453 		cursor_sr = i965_cursor_wm_info.fifo_size -
1454 			(entries + i965_cursor_wm_info.guard_size);
1455 
1456 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1457 			cursor_sr = i965_cursor_wm_info.max_wm;
1458 
1459 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1460 			      "cursor %d\n", srwm, cursor_sr);
1461 
1462 		cxsr_enabled = true;
1463 	} else {
1464 		cxsr_enabled = false;
1465 		/* Turn off self refresh if both pipes are enabled */
1466 		intel_set_memory_cxsr(dev_priv, false);
1467 	}
1468 
1469 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1470 		      srwm);
1471 
1472 	/* 965 has limitations... */
1473 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1474 		   FW_WM(8, CURSORB) |
1475 		   FW_WM(8, PLANEB) |
1476 		   FW_WM(8, PLANEA));
1477 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1478 		   FW_WM(8, PLANEC_OLD));
1479 	/* update cursor SR watermark */
1480 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1481 
1482 	if (cxsr_enabled)
1483 		intel_set_memory_cxsr(dev_priv, true);
1484 }
1485 
1486 #undef FW_WM
1487 
i9xx_update_wm(struct drm_crtc * unused_crtc)1488 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1489 {
1490 	struct drm_device *dev = unused_crtc->dev;
1491 	struct drm_i915_private *dev_priv = dev->dev_private;
1492 	const struct intel_watermark_params *wm_info;
1493 	uint32_t fwater_lo;
1494 	uint32_t fwater_hi;
1495 	int cwm, srwm = 1;
1496 	int fifo_size;
1497 	int planea_wm, planeb_wm;
1498 	struct drm_crtc *crtc, *enabled = NULL;
1499 
1500 	if (IS_I945GM(dev))
1501 		wm_info = &i945_wm_info;
1502 	else if (!IS_GEN2(dev))
1503 		wm_info = &i915_wm_info;
1504 	else
1505 		wm_info = &i830_a_wm_info;
1506 
1507 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1508 	crtc = intel_get_crtc_for_plane(dev, 0);
1509 	if (intel_crtc_active(crtc)) {
1510 		const struct drm_display_mode *adjusted_mode;
1511 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1512 		if (IS_GEN2(dev))
1513 			cpp = 4;
1514 
1515 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1516 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1517 					       wm_info, fifo_size, cpp,
1518 					       pessimal_latency_ns);
1519 		enabled = crtc;
1520 	} else {
1521 		planea_wm = fifo_size - wm_info->guard_size;
1522 		if (planea_wm > (long)wm_info->max_wm)
1523 			planea_wm = wm_info->max_wm;
1524 	}
1525 
1526 	if (IS_GEN2(dev))
1527 		wm_info = &i830_bc_wm_info;
1528 
1529 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1530 	crtc = intel_get_crtc_for_plane(dev, 1);
1531 	if (intel_crtc_active(crtc)) {
1532 		const struct drm_display_mode *adjusted_mode;
1533 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1534 		if (IS_GEN2(dev))
1535 			cpp = 4;
1536 
1537 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539 					       wm_info, fifo_size, cpp,
1540 					       pessimal_latency_ns);
1541 		if (enabled == NULL)
1542 			enabled = crtc;
1543 		else
1544 			enabled = NULL;
1545 	} else {
1546 		planeb_wm = fifo_size - wm_info->guard_size;
1547 		if (planeb_wm > (long)wm_info->max_wm)
1548 			planeb_wm = wm_info->max_wm;
1549 	}
1550 
1551 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1552 
1553 	if (IS_I915GM(dev) && enabled) {
1554 		struct drm_i915_gem_object *obj;
1555 
1556 		obj = intel_fb_obj(enabled->primary->state->fb);
1557 
1558 		/* self-refresh seems busted with untiled */
1559 		if (obj->tiling_mode == I915_TILING_NONE)
1560 			enabled = NULL;
1561 	}
1562 
1563 	/*
1564 	 * Overlay gets an aggressive default since video jitter is bad.
1565 	 */
1566 	cwm = 2;
1567 
1568 	/* Play safe and disable self-refresh before adjusting watermarks. */
1569 	intel_set_memory_cxsr(dev_priv, false);
1570 
1571 	/* Calc sr entries for one plane configs */
1572 	if (HAS_FW_BLC(dev) && enabled) {
1573 		/* self-refresh has much higher latency */
1574 		static const int sr_latency_ns = 6000;
1575 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1576 		int clock = adjusted_mode->crtc_clock;
1577 		int htotal = adjusted_mode->crtc_htotal;
1578 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1579 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1580 		unsigned long line_time_us;
1581 		int entries;
1582 
1583 		line_time_us = max(htotal * 1000 / clock, 1);
1584 
1585 		/* Use ns/us then divide to preserve precision */
1586 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1587 			pixel_size * hdisplay;
1588 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1589 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1590 		srwm = wm_info->fifo_size - entries;
1591 		if (srwm < 0)
1592 			srwm = 1;
1593 
1594 		if (IS_I945G(dev) || IS_I945GM(dev))
1595 			I915_WRITE(FW_BLC_SELF,
1596 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1597 		else if (IS_I915GM(dev))
1598 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1599 	}
1600 
1601 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1602 		      planea_wm, planeb_wm, cwm, srwm);
1603 
1604 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1605 	fwater_hi = (cwm & 0x1f);
1606 
1607 	/* Set request length to 8 cachelines per fetch */
1608 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1609 	fwater_hi = fwater_hi | (1 << 8);
1610 
1611 	I915_WRITE(FW_BLC, fwater_lo);
1612 	I915_WRITE(FW_BLC2, fwater_hi);
1613 
1614 	if (enabled)
1615 		intel_set_memory_cxsr(dev_priv, true);
1616 }
1617 
i845_update_wm(struct drm_crtc * unused_crtc)1618 static void i845_update_wm(struct drm_crtc *unused_crtc)
1619 {
1620 	struct drm_device *dev = unused_crtc->dev;
1621 	struct drm_i915_private *dev_priv = dev->dev_private;
1622 	struct drm_crtc *crtc;
1623 	const struct drm_display_mode *adjusted_mode;
1624 	uint32_t fwater_lo;
1625 	int planea_wm;
1626 
1627 	crtc = single_enabled_crtc(dev);
1628 	if (crtc == NULL)
1629 		return;
1630 
1631 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1632 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1633 				       &i845_wm_info,
1634 				       dev_priv->display.get_fifo_size(dev, 0),
1635 				       4, pessimal_latency_ns);
1636 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1637 	fwater_lo |= (3<<8) | planea_wm;
1638 
1639 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1640 
1641 	I915_WRITE(FW_BLC, fwater_lo);
1642 }
1643 
ilk_pipe_pixel_rate(const struct intel_crtc_state * pipe_config)1644 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1645 {
1646 	uint32_t pixel_rate;
1647 
1648 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1649 
1650 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1651 	 * adjust the pixel_rate here. */
1652 
1653 	if (pipe_config->pch_pfit.enabled) {
1654 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655 		uint32_t pfit_size = pipe_config->pch_pfit.size;
1656 
1657 		pipe_w = pipe_config->pipe_src_w;
1658 		pipe_h = pipe_config->pipe_src_h;
1659 
1660 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1661 		pfit_h = pfit_size & 0xFFFF;
1662 		if (pipe_w < pfit_w)
1663 			pipe_w = pfit_w;
1664 		if (pipe_h < pfit_h)
1665 			pipe_h = pfit_h;
1666 
1667 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1668 				     pfit_w * pfit_h);
1669 	}
1670 
1671 	return pixel_rate;
1672 }
1673 
1674 /* latency must be in 0.1us units. */
ilk_wm_method1(uint32_t pixel_rate,uint8_t bytes_per_pixel,uint32_t latency)1675 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1676 			       uint32_t latency)
1677 {
1678 	uint64_t ret;
1679 
1680 	if (WARN(latency == 0, "Latency value missing\n"))
1681 		return UINT_MAX;
1682 
1683 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1684 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1685 
1686 	return ret;
1687 }
1688 
1689 /* latency must be in 0.1us units. */
ilk_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t horiz_pixels,uint8_t bytes_per_pixel,uint32_t latency)1690 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1691 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1692 			       uint32_t latency)
1693 {
1694 	uint32_t ret;
1695 
1696 	if (WARN(latency == 0, "Latency value missing\n"))
1697 		return UINT_MAX;
1698 
1699 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1700 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1701 	ret = DIV_ROUND_UP(ret, 64) + 2;
1702 	return ret;
1703 }
1704 
ilk_wm_fbc(uint32_t pri_val,uint32_t horiz_pixels,uint8_t bytes_per_pixel)1705 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1706 			   uint8_t bytes_per_pixel)
1707 {
1708 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1709 }
1710 
1711 struct skl_pipe_wm_parameters {
1712 	bool active;
1713 	uint32_t pipe_htotal;
1714 	uint32_t pixel_rate; /* in KHz */
1715 	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1716 };
1717 
1718 struct ilk_wm_maximums {
1719 	uint16_t pri;
1720 	uint16_t spr;
1721 	uint16_t cur;
1722 	uint16_t fbc;
1723 };
1724 
1725 /* used in computing the new watermarks state */
1726 struct intel_wm_config {
1727 	unsigned int num_pipes_active;
1728 	bool sprites_enabled;
1729 	bool sprites_scaled;
1730 };
1731 
1732 /*
1733  * For both WM_PIPE and WM_LP.
1734  * mem_value must be in 0.1us units.
1735  */
ilk_compute_pri_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value,bool is_lp)1736 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1737 				   const struct intel_plane_state *pstate,
1738 				   uint32_t mem_value,
1739 				   bool is_lp)
1740 {
1741 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1742 	uint32_t method1, method2;
1743 
1744 	if (!cstate->base.active || !pstate->visible)
1745 		return 0;
1746 
1747 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1748 
1749 	if (!is_lp)
1750 		return method1;
1751 
1752 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1753 				 cstate->base.adjusted_mode.crtc_htotal,
1754 				 drm_rect_width(&pstate->dst),
1755 				 bpp,
1756 				 mem_value);
1757 
1758 	return min(method1, method2);
1759 }
1760 
1761 /*
1762  * For both WM_PIPE and WM_LP.
1763  * mem_value must be in 0.1us units.
1764  */
ilk_compute_spr_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)1765 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1766 				   const struct intel_plane_state *pstate,
1767 				   uint32_t mem_value)
1768 {
1769 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1770 	uint32_t method1, method2;
1771 
1772 	if (!cstate->base.active || !pstate->visible)
1773 		return 0;
1774 
1775 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1776 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1777 				 cstate->base.adjusted_mode.crtc_htotal,
1778 				 drm_rect_width(&pstate->dst),
1779 				 bpp,
1780 				 mem_value);
1781 	return min(method1, method2);
1782 }
1783 
1784 /*
1785  * For both WM_PIPE and WM_LP.
1786  * mem_value must be in 0.1us units.
1787  */
ilk_compute_cur_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)1788 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1789 				   const struct intel_plane_state *pstate,
1790 				   uint32_t mem_value)
1791 {
1792 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1793 
1794 	if (!cstate->base.active || !pstate->visible)
1795 		return 0;
1796 
1797 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1798 			      cstate->base.adjusted_mode.crtc_htotal,
1799 			      drm_rect_width(&pstate->dst),
1800 			      bpp,
1801 			      mem_value);
1802 }
1803 
1804 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t pri_val)1805 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1806 				   const struct intel_plane_state *pstate,
1807 				   uint32_t pri_val)
1808 {
1809 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1810 
1811 	if (!cstate->base.active || !pstate->visible)
1812 		return 0;
1813 
1814 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1815 }
1816 
ilk_display_fifo_size(const struct drm_device * dev)1817 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1818 {
1819 	if (INTEL_INFO(dev)->gen >= 8)
1820 		return 3072;
1821 	else if (INTEL_INFO(dev)->gen >= 7)
1822 		return 768;
1823 	else
1824 		return 512;
1825 }
1826 
ilk_plane_wm_reg_max(const struct drm_device * dev,int level,bool is_sprite)1827 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1828 					 int level, bool is_sprite)
1829 {
1830 	if (INTEL_INFO(dev)->gen >= 8)
1831 		/* BDW primary/sprite plane watermarks */
1832 		return level == 0 ? 255 : 2047;
1833 	else if (INTEL_INFO(dev)->gen >= 7)
1834 		/* IVB/HSW primary/sprite plane watermarks */
1835 		return level == 0 ? 127 : 1023;
1836 	else if (!is_sprite)
1837 		/* ILK/SNB primary plane watermarks */
1838 		return level == 0 ? 127 : 511;
1839 	else
1840 		/* ILK/SNB sprite plane watermarks */
1841 		return level == 0 ? 63 : 255;
1842 }
1843 
ilk_cursor_wm_reg_max(const struct drm_device * dev,int level)1844 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1845 					  int level)
1846 {
1847 	if (INTEL_INFO(dev)->gen >= 7)
1848 		return level == 0 ? 63 : 255;
1849 	else
1850 		return level == 0 ? 31 : 63;
1851 }
1852 
ilk_fbc_wm_reg_max(const struct drm_device * dev)1853 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1854 {
1855 	if (INTEL_INFO(dev)->gen >= 8)
1856 		return 31;
1857 	else
1858 		return 15;
1859 }
1860 
1861 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)1862 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1863 				     int level,
1864 				     const struct intel_wm_config *config,
1865 				     enum intel_ddb_partitioning ddb_partitioning,
1866 				     bool is_sprite)
1867 {
1868 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1869 
1870 	/* if sprites aren't enabled, sprites get nothing */
1871 	if (is_sprite && !config->sprites_enabled)
1872 		return 0;
1873 
1874 	/* HSW allows LP1+ watermarks even with multiple pipes */
1875 	if (level == 0 || config->num_pipes_active > 1) {
1876 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1877 
1878 		/*
1879 		 * For some reason the non self refresh
1880 		 * FIFO size is only half of the self
1881 		 * refresh FIFO size on ILK/SNB.
1882 		 */
1883 		if (INTEL_INFO(dev)->gen <= 6)
1884 			fifo_size /= 2;
1885 	}
1886 
1887 	if (config->sprites_enabled) {
1888 		/* level 0 is always calculated with 1:1 split */
1889 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1890 			if (is_sprite)
1891 				fifo_size *= 5;
1892 			fifo_size /= 6;
1893 		} else {
1894 			fifo_size /= 2;
1895 		}
1896 	}
1897 
1898 	/* clamp to max that the registers can hold */
1899 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1900 }
1901 
1902 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config)1903 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1904 				      int level,
1905 				      const struct intel_wm_config *config)
1906 {
1907 	/* HSW LP1+ watermarks w/ multiple pipes */
1908 	if (level > 0 && config->num_pipes_active > 1)
1909 		return 64;
1910 
1911 	/* otherwise just report max that registers can hold */
1912 	return ilk_cursor_wm_reg_max(dev, level);
1913 }
1914 
ilk_compute_wm_maximums(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)1915 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1916 				    int level,
1917 				    const struct intel_wm_config *config,
1918 				    enum intel_ddb_partitioning ddb_partitioning,
1919 				    struct ilk_wm_maximums *max)
1920 {
1921 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1922 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1923 	max->cur = ilk_cursor_wm_max(dev, level, config);
1924 	max->fbc = ilk_fbc_wm_reg_max(dev);
1925 }
1926 
ilk_compute_wm_reg_maximums(struct drm_device * dev,int level,struct ilk_wm_maximums * max)1927 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1928 					int level,
1929 					struct ilk_wm_maximums *max)
1930 {
1931 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1932 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1933 	max->cur = ilk_cursor_wm_reg_max(dev, level);
1934 	max->fbc = ilk_fbc_wm_reg_max(dev);
1935 }
1936 
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)1937 static bool ilk_validate_wm_level(int level,
1938 				  const struct ilk_wm_maximums *max,
1939 				  struct intel_wm_level *result)
1940 {
1941 	bool ret;
1942 
1943 	/* already determined to be invalid? */
1944 	if (!result->enable)
1945 		return false;
1946 
1947 	result->enable = result->pri_val <= max->pri &&
1948 			 result->spr_val <= max->spr &&
1949 			 result->cur_val <= max->cur;
1950 
1951 	ret = result->enable;
1952 
1953 	/*
1954 	 * HACK until we can pre-compute everything,
1955 	 * and thus fail gracefully if LP0 watermarks
1956 	 * are exceeded...
1957 	 */
1958 	if (level == 0 && !result->enable) {
1959 		if (result->pri_val > max->pri)
1960 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1961 				      level, result->pri_val, max->pri);
1962 		if (result->spr_val > max->spr)
1963 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1964 				      level, result->spr_val, max->spr);
1965 		if (result->cur_val > max->cur)
1966 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1967 				      level, result->cur_val, max->cur);
1968 
1969 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1970 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1971 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1972 		result->enable = true;
1973 	}
1974 
1975 	return ret;
1976 }
1977 
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * intel_crtc,int level,struct intel_crtc_state * cstate,struct intel_wm_level * result)1978 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1979 				 const struct intel_crtc *intel_crtc,
1980 				 int level,
1981 				 struct intel_crtc_state *cstate,
1982 				 struct intel_wm_level *result)
1983 {
1984 	struct intel_plane *intel_plane;
1985 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1986 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1987 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1988 
1989 	/* WM1+ latency values stored in 0.5us units */
1990 	if (level > 0) {
1991 		pri_latency *= 5;
1992 		spr_latency *= 5;
1993 		cur_latency *= 5;
1994 	}
1995 
1996 	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
1997 		struct intel_plane_state *pstate =
1998 			to_intel_plane_state(intel_plane->base.state);
1999 
2000 		switch (intel_plane->base.type) {
2001 		case DRM_PLANE_TYPE_PRIMARY:
2002 			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2003 							     pri_latency,
2004 							     level);
2005 			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2006 							     result->pri_val);
2007 			break;
2008 		case DRM_PLANE_TYPE_OVERLAY:
2009 			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2010 							     spr_latency);
2011 			break;
2012 		case DRM_PLANE_TYPE_CURSOR:
2013 			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2014 							     cur_latency);
2015 			break;
2016 		}
2017 	}
2018 
2019 	result->enable = true;
2020 }
2021 
2022 static uint32_t
hsw_compute_linetime_wm(struct drm_device * dev,struct drm_crtc * crtc)2023 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2024 {
2025 	struct drm_i915_private *dev_priv = dev->dev_private;
2026 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2027 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2028 	u32 linetime, ips_linetime;
2029 
2030 	if (!intel_crtc->active)
2031 		return 0;
2032 
2033 	/* The WM are computed with base on how long it takes to fill a single
2034 	 * row at the given clock rate, multiplied by 8.
2035 	 * */
2036 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2037 				     adjusted_mode->crtc_clock);
2038 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2039 					 dev_priv->cdclk_freq);
2040 
2041 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2042 	       PIPE_WM_LINETIME_TIME(linetime);
2043 }
2044 
intel_read_wm_latency(struct drm_device * dev,uint16_t wm[8])2045 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2046 {
2047 	struct drm_i915_private *dev_priv = dev->dev_private;
2048 
2049 	if (IS_GEN9(dev)) {
2050 		uint32_t val;
2051 		int ret, i;
2052 		int level, max_level = ilk_wm_max_level(dev);
2053 
2054 		/* read the first set of memory latencies[0:3] */
2055 		val = 0; /* data0 to be programmed to 0 for first set */
2056 		mutex_lock(&dev_priv->rps.hw_lock);
2057 		ret = sandybridge_pcode_read(dev_priv,
2058 					     GEN9_PCODE_READ_MEM_LATENCY,
2059 					     &val);
2060 		mutex_unlock(&dev_priv->rps.hw_lock);
2061 
2062 		if (ret) {
2063 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2064 			return;
2065 		}
2066 
2067 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2068 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2069 				GEN9_MEM_LATENCY_LEVEL_MASK;
2070 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2071 				GEN9_MEM_LATENCY_LEVEL_MASK;
2072 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2073 				GEN9_MEM_LATENCY_LEVEL_MASK;
2074 
2075 		/* read the second set of memory latencies[4:7] */
2076 		val = 1; /* data0 to be programmed to 1 for second set */
2077 		mutex_lock(&dev_priv->rps.hw_lock);
2078 		ret = sandybridge_pcode_read(dev_priv,
2079 					     GEN9_PCODE_READ_MEM_LATENCY,
2080 					     &val);
2081 		mutex_unlock(&dev_priv->rps.hw_lock);
2082 		if (ret) {
2083 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2084 			return;
2085 		}
2086 
2087 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2088 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2089 				GEN9_MEM_LATENCY_LEVEL_MASK;
2090 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2091 				GEN9_MEM_LATENCY_LEVEL_MASK;
2092 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2093 				GEN9_MEM_LATENCY_LEVEL_MASK;
2094 
2095 		/*
2096 		 * WaWmMemoryReadLatency:skl
2097 		 *
2098 		 * punit doesn't take into account the read latency so we need
2099 		 * to add 2us to the various latency levels we retrieve from
2100 		 * the punit.
2101 		 *   - W0 is a bit special in that it's the only level that
2102 		 *   can't be disabled if we want to have display working, so
2103 		 *   we always add 2us there.
2104 		 *   - For levels >=1, punit returns 0us latency when they are
2105 		 *   disabled, so we respect that and don't add 2us then
2106 		 *
2107 		 * Additionally, if a level n (n > 1) has a 0us latency, all
2108 		 * levels m (m >= n) need to be disabled. We make sure to
2109 		 * sanitize the values out of the punit to satisfy this
2110 		 * requirement.
2111 		 */
2112 		wm[0] += 2;
2113 		for (level = 1; level <= max_level; level++)
2114 			if (wm[level] != 0)
2115 				wm[level] += 2;
2116 			else {
2117 				for (i = level + 1; i <= max_level; i++)
2118 					wm[i] = 0;
2119 
2120 				break;
2121 			}
2122 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2123 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2124 
2125 		wm[0] = (sskpd >> 56) & 0xFF;
2126 		if (wm[0] == 0)
2127 			wm[0] = sskpd & 0xF;
2128 		wm[1] = (sskpd >> 4) & 0xFF;
2129 		wm[2] = (sskpd >> 12) & 0xFF;
2130 		wm[3] = (sskpd >> 20) & 0x1FF;
2131 		wm[4] = (sskpd >> 32) & 0x1FF;
2132 	} else if (INTEL_INFO(dev)->gen >= 6) {
2133 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2134 
2135 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2136 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2137 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2138 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2139 	} else if (INTEL_INFO(dev)->gen >= 5) {
2140 		uint32_t mltr = I915_READ(MLTR_ILK);
2141 
2142 		/* ILK primary LP0 latency is 700 ns */
2143 		wm[0] = 7;
2144 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2145 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2146 	}
2147 }
2148 
intel_fixup_spr_wm_latency(struct drm_device * dev,uint16_t wm[5])2149 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2150 {
2151 	/* ILK sprite LP0 latency is 1300 ns */
2152 	if (INTEL_INFO(dev)->gen == 5)
2153 		wm[0] = 13;
2154 }
2155 
intel_fixup_cur_wm_latency(struct drm_device * dev,uint16_t wm[5])2156 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2157 {
2158 	/* ILK cursor LP0 latency is 1300 ns */
2159 	if (INTEL_INFO(dev)->gen == 5)
2160 		wm[0] = 13;
2161 
2162 	/* WaDoubleCursorLP3Latency:ivb */
2163 	if (IS_IVYBRIDGE(dev))
2164 		wm[3] *= 2;
2165 }
2166 
ilk_wm_max_level(const struct drm_device * dev)2167 int ilk_wm_max_level(const struct drm_device *dev)
2168 {
2169 	/* how many WM levels are we expecting */
2170 	if (INTEL_INFO(dev)->gen >= 9)
2171 		return 7;
2172 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2173 		return 4;
2174 	else if (INTEL_INFO(dev)->gen >= 6)
2175 		return 3;
2176 	else
2177 		return 2;
2178 }
2179 
intel_print_wm_latency(struct drm_device * dev,const char * name,const uint16_t wm[8])2180 static void intel_print_wm_latency(struct drm_device *dev,
2181 				   const char *name,
2182 				   const uint16_t wm[8])
2183 {
2184 	int level, max_level = ilk_wm_max_level(dev);
2185 
2186 	for (level = 0; level <= max_level; level++) {
2187 		unsigned int latency = wm[level];
2188 
2189 		if (latency == 0) {
2190 			DRM_ERROR("%s WM%d latency not provided\n",
2191 				  name, level);
2192 			continue;
2193 		}
2194 
2195 		/*
2196 		 * - latencies are in us on gen9.
2197 		 * - before then, WM1+ latency values are in 0.5us units
2198 		 */
2199 		if (IS_GEN9(dev))
2200 			latency *= 10;
2201 		else if (level > 0)
2202 			latency *= 5;
2203 
2204 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2205 			      name, level, wm[level],
2206 			      latency / 10, latency % 10);
2207 	}
2208 }
2209 
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5],uint16_t min)2210 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2211 				    uint16_t wm[5], uint16_t min)
2212 {
2213 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2214 
2215 	if (wm[0] >= min)
2216 		return false;
2217 
2218 	wm[0] = max(wm[0], min);
2219 	for (level = 1; level <= max_level; level++)
2220 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2221 
2222 	return true;
2223 }
2224 
snb_wm_latency_quirk(struct drm_device * dev)2225 static void snb_wm_latency_quirk(struct drm_device *dev)
2226 {
2227 	struct drm_i915_private *dev_priv = dev->dev_private;
2228 	bool changed;
2229 
2230 	/*
2231 	 * The BIOS provided WM memory latency values are often
2232 	 * inadequate for high resolution displays. Adjust them.
2233 	 */
2234 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2235 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2236 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2237 
2238 	if (!changed)
2239 		return;
2240 
2241 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2242 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2243 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2244 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2245 }
2246 
ilk_setup_wm_latency(struct drm_device * dev)2247 static void ilk_setup_wm_latency(struct drm_device *dev)
2248 {
2249 	struct drm_i915_private *dev_priv = dev->dev_private;
2250 
2251 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2252 
2253 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2254 	       sizeof(dev_priv->wm.pri_latency));
2255 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2256 	       sizeof(dev_priv->wm.pri_latency));
2257 
2258 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2259 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2260 
2261 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2262 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2263 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2264 
2265 	if (IS_GEN6(dev))
2266 		snb_wm_latency_quirk(dev);
2267 }
2268 
skl_setup_wm_latency(struct drm_device * dev)2269 static void skl_setup_wm_latency(struct drm_device *dev)
2270 {
2271 	struct drm_i915_private *dev_priv = dev->dev_private;
2272 
2273 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2274 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2275 }
2276 
ilk_compute_wm_config(struct drm_device * dev,struct intel_wm_config * config)2277 static void ilk_compute_wm_config(struct drm_device *dev,
2278 				  struct intel_wm_config *config)
2279 {
2280 	struct intel_crtc *intel_crtc;
2281 
2282 	/* Compute the currently _active_ config */
2283 	for_each_intel_crtc(dev, intel_crtc) {
2284 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2285 
2286 		if (!wm->pipe_enabled)
2287 			continue;
2288 
2289 		config->sprites_enabled |= wm->sprites_enabled;
2290 		config->sprites_scaled |= wm->sprites_scaled;
2291 		config->num_pipes_active++;
2292 	}
2293 }
2294 
2295 /* Compute new watermarks for the pipe */
intel_compute_pipe_wm(struct intel_crtc_state * cstate,struct intel_pipe_wm * pipe_wm)2296 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
2297 				  struct intel_pipe_wm *pipe_wm)
2298 {
2299 	struct drm_crtc *crtc = cstate->base.crtc;
2300 	struct drm_device *dev = crtc->dev;
2301 	const struct drm_i915_private *dev_priv = dev->dev_private;
2302 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2303 	struct intel_plane *intel_plane;
2304 	struct intel_plane_state *sprstate = NULL;
2305 	int level, max_level = ilk_wm_max_level(dev);
2306 	/* LP0 watermark maximums depend on this pipe alone */
2307 	struct intel_wm_config config = {
2308 		.num_pipes_active = 1,
2309 	};
2310 	struct ilk_wm_maximums max;
2311 
2312 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2313 		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2314 			sprstate = to_intel_plane_state(intel_plane->base.state);
2315 			break;
2316 		}
2317 	}
2318 
2319 	config.sprites_enabled = sprstate->visible;
2320 	config.sprites_scaled = sprstate->visible &&
2321 		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2322 		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2323 
2324 	pipe_wm->pipe_enabled = cstate->base.active;
2325 	pipe_wm->sprites_enabled = sprstate->visible;
2326 	pipe_wm->sprites_scaled = config.sprites_scaled;
2327 
2328 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2329 	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2330 		max_level = 1;
2331 
2332 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2333 	if (config.sprites_scaled)
2334 		max_level = 0;
2335 
2336 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2337 
2338 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2339 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2340 
2341 	/* LP0 watermarks always use 1/2 DDB partitioning */
2342 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2343 
2344 	/* At least LP0 must be valid */
2345 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2346 		return false;
2347 
2348 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2349 
2350 	for (level = 1; level <= max_level; level++) {
2351 		struct intel_wm_level wm = {};
2352 
2353 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2354 
2355 		/*
2356 		 * Disable any watermark level that exceeds the
2357 		 * register maximums since such watermarks are
2358 		 * always invalid.
2359 		 */
2360 		if (!ilk_validate_wm_level(level, &max, &wm))
2361 			break;
2362 
2363 		pipe_wm->wm[level] = wm;
2364 	}
2365 
2366 	return true;
2367 }
2368 
2369 /*
2370  * Merge the watermarks from all active pipes for a specific level.
2371  */
ilk_merge_wm_level(struct drm_device * dev,int level,struct intel_wm_level * ret_wm)2372 static void ilk_merge_wm_level(struct drm_device *dev,
2373 			       int level,
2374 			       struct intel_wm_level *ret_wm)
2375 {
2376 	const struct intel_crtc *intel_crtc;
2377 
2378 	ret_wm->enable = true;
2379 
2380 	for_each_intel_crtc(dev, intel_crtc) {
2381 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2382 		const struct intel_wm_level *wm = &active->wm[level];
2383 
2384 		if (!active->pipe_enabled)
2385 			continue;
2386 
2387 		/*
2388 		 * The watermark values may have been used in the past,
2389 		 * so we must maintain them in the registers for some
2390 		 * time even if the level is now disabled.
2391 		 */
2392 		if (!wm->enable)
2393 			ret_wm->enable = false;
2394 
2395 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2396 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2397 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2398 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2399 	}
2400 }
2401 
2402 /*
2403  * Merge all low power watermarks for all active pipes.
2404  */
ilk_wm_merge(struct drm_device * dev,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)2405 static void ilk_wm_merge(struct drm_device *dev,
2406 			 const struct intel_wm_config *config,
2407 			 const struct ilk_wm_maximums *max,
2408 			 struct intel_pipe_wm *merged)
2409 {
2410 	struct drm_i915_private *dev_priv = dev->dev_private;
2411 	int level, max_level = ilk_wm_max_level(dev);
2412 	int last_enabled_level = max_level;
2413 
2414 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2415 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2416 	    config->num_pipes_active > 1)
2417 		return;
2418 
2419 	/* ILK: FBC WM must be disabled always */
2420 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2421 
2422 	/* merge each WM1+ level */
2423 	for (level = 1; level <= max_level; level++) {
2424 		struct intel_wm_level *wm = &merged->wm[level];
2425 
2426 		ilk_merge_wm_level(dev, level, wm);
2427 
2428 		if (level > last_enabled_level)
2429 			wm->enable = false;
2430 		else if (!ilk_validate_wm_level(level, max, wm))
2431 			/* make sure all following levels get disabled */
2432 			last_enabled_level = level - 1;
2433 
2434 		/*
2435 		 * The spec says it is preferred to disable
2436 		 * FBC WMs instead of disabling a WM level.
2437 		 */
2438 		if (wm->fbc_val > max->fbc) {
2439 			if (wm->enable)
2440 				merged->fbc_wm_enabled = false;
2441 			wm->fbc_val = 0;
2442 		}
2443 	}
2444 
2445 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2446 	/*
2447 	 * FIXME this is racy. FBC might get enabled later.
2448 	 * What we should check here is whether FBC can be
2449 	 * enabled sometime later.
2450 	 */
2451 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2452 	    intel_fbc_enabled(dev_priv)) {
2453 		for (level = 2; level <= max_level; level++) {
2454 			struct intel_wm_level *wm = &merged->wm[level];
2455 
2456 			wm->enable = false;
2457 		}
2458 	}
2459 }
2460 
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)2461 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2462 {
2463 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2464 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2465 }
2466 
2467 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_device * dev,int level)2468 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2469 {
2470 	struct drm_i915_private *dev_priv = dev->dev_private;
2471 
2472 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2473 		return 2 * level;
2474 	else
2475 		return dev_priv->wm.pri_latency[level];
2476 }
2477 
ilk_compute_wm_results(struct drm_device * dev,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)2478 static void ilk_compute_wm_results(struct drm_device *dev,
2479 				   const struct intel_pipe_wm *merged,
2480 				   enum intel_ddb_partitioning partitioning,
2481 				   struct ilk_wm_values *results)
2482 {
2483 	struct intel_crtc *intel_crtc;
2484 	int level, wm_lp;
2485 
2486 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2487 	results->partitioning = partitioning;
2488 
2489 	/* LP1+ register values */
2490 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2491 		const struct intel_wm_level *r;
2492 
2493 		level = ilk_wm_lp_to_level(wm_lp, merged);
2494 
2495 		r = &merged->wm[level];
2496 
2497 		/*
2498 		 * Maintain the watermark values even if the level is
2499 		 * disabled. Doing otherwise could cause underruns.
2500 		 */
2501 		results->wm_lp[wm_lp - 1] =
2502 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2503 			(r->pri_val << WM1_LP_SR_SHIFT) |
2504 			r->cur_val;
2505 
2506 		if (r->enable)
2507 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2508 
2509 		if (INTEL_INFO(dev)->gen >= 8)
2510 			results->wm_lp[wm_lp - 1] |=
2511 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2512 		else
2513 			results->wm_lp[wm_lp - 1] |=
2514 				r->fbc_val << WM1_LP_FBC_SHIFT;
2515 
2516 		/*
2517 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2518 		 * level is disabled. Doing otherwise could cause underruns.
2519 		 */
2520 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2521 			WARN_ON(wm_lp != 1);
2522 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2523 		} else
2524 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2525 	}
2526 
2527 	/* LP0 register values */
2528 	for_each_intel_crtc(dev, intel_crtc) {
2529 		enum pipe pipe = intel_crtc->pipe;
2530 		const struct intel_wm_level *r =
2531 			&intel_crtc->wm.active.wm[0];
2532 
2533 		if (WARN_ON(!r->enable))
2534 			continue;
2535 
2536 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2537 
2538 		results->wm_pipe[pipe] =
2539 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2540 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2541 			r->cur_val;
2542 	}
2543 }
2544 
2545 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2546  * case both are at the same level. Prefer r1 in case they're the same. */
ilk_find_best_result(struct drm_device * dev,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)2547 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2548 						  struct intel_pipe_wm *r1,
2549 						  struct intel_pipe_wm *r2)
2550 {
2551 	int level, max_level = ilk_wm_max_level(dev);
2552 	int level1 = 0, level2 = 0;
2553 
2554 	for (level = 1; level <= max_level; level++) {
2555 		if (r1->wm[level].enable)
2556 			level1 = level;
2557 		if (r2->wm[level].enable)
2558 			level2 = level;
2559 	}
2560 
2561 	if (level1 == level2) {
2562 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2563 			return r2;
2564 		else
2565 			return r1;
2566 	} else if (level1 > level2) {
2567 		return r1;
2568 	} else {
2569 		return r2;
2570 	}
2571 }
2572 
2573 /* dirty bits used to track which watermarks need changes */
2574 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2575 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2576 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2577 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2578 #define WM_DIRTY_FBC (1 << 24)
2579 #define WM_DIRTY_DDB (1 << 25)
2580 
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)2581 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2582 					 const struct ilk_wm_values *old,
2583 					 const struct ilk_wm_values *new)
2584 {
2585 	unsigned int dirty = 0;
2586 	enum pipe pipe;
2587 	int wm_lp;
2588 
2589 	for_each_pipe(dev_priv, pipe) {
2590 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2591 			dirty |= WM_DIRTY_LINETIME(pipe);
2592 			/* Must disable LP1+ watermarks too */
2593 			dirty |= WM_DIRTY_LP_ALL;
2594 		}
2595 
2596 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2597 			dirty |= WM_DIRTY_PIPE(pipe);
2598 			/* Must disable LP1+ watermarks too */
2599 			dirty |= WM_DIRTY_LP_ALL;
2600 		}
2601 	}
2602 
2603 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2604 		dirty |= WM_DIRTY_FBC;
2605 		/* Must disable LP1+ watermarks too */
2606 		dirty |= WM_DIRTY_LP_ALL;
2607 	}
2608 
2609 	if (old->partitioning != new->partitioning) {
2610 		dirty |= WM_DIRTY_DDB;
2611 		/* Must disable LP1+ watermarks too */
2612 		dirty |= WM_DIRTY_LP_ALL;
2613 	}
2614 
2615 	/* LP1+ watermarks already deemed dirty, no need to continue */
2616 	if (dirty & WM_DIRTY_LP_ALL)
2617 		return dirty;
2618 
2619 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2620 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2621 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2622 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2623 			break;
2624 	}
2625 
2626 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2627 	for (; wm_lp <= 3; wm_lp++)
2628 		dirty |= WM_DIRTY_LP(wm_lp);
2629 
2630 	return dirty;
2631 }
2632 
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)2633 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2634 			       unsigned int dirty)
2635 {
2636 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2637 	bool changed = false;
2638 
2639 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2640 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2641 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2642 		changed = true;
2643 	}
2644 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2645 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2646 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2647 		changed = true;
2648 	}
2649 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2650 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2651 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2652 		changed = true;
2653 	}
2654 
2655 	/*
2656 	 * Don't touch WM1S_LP_EN here.
2657 	 * Doing so could cause underruns.
2658 	 */
2659 
2660 	return changed;
2661 }
2662 
2663 /*
2664  * The spec says we shouldn't write when we don't need, because every write
2665  * causes WMs to be re-evaluated, expending some power.
2666  */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)2667 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2668 				struct ilk_wm_values *results)
2669 {
2670 	struct drm_device *dev = dev_priv->dev;
2671 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2672 	unsigned int dirty;
2673 	uint32_t val;
2674 
2675 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2676 	if (!dirty)
2677 		return;
2678 
2679 	_ilk_disable_lp_wm(dev_priv, dirty);
2680 
2681 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2682 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2683 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2684 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2685 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2686 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2687 
2688 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2689 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2690 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2691 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2692 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2693 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2694 
2695 	if (dirty & WM_DIRTY_DDB) {
2696 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2697 			val = I915_READ(WM_MISC);
2698 			if (results->partitioning == INTEL_DDB_PART_1_2)
2699 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2700 			else
2701 				val |= WM_MISC_DATA_PARTITION_5_6;
2702 			I915_WRITE(WM_MISC, val);
2703 		} else {
2704 			val = I915_READ(DISP_ARB_CTL2);
2705 			if (results->partitioning == INTEL_DDB_PART_1_2)
2706 				val &= ~DISP_DATA_PARTITION_5_6;
2707 			else
2708 				val |= DISP_DATA_PARTITION_5_6;
2709 			I915_WRITE(DISP_ARB_CTL2, val);
2710 		}
2711 	}
2712 
2713 	if (dirty & WM_DIRTY_FBC) {
2714 		val = I915_READ(DISP_ARB_CTL);
2715 		if (results->enable_fbc_wm)
2716 			val &= ~DISP_FBC_WM_DIS;
2717 		else
2718 			val |= DISP_FBC_WM_DIS;
2719 		I915_WRITE(DISP_ARB_CTL, val);
2720 	}
2721 
2722 	if (dirty & WM_DIRTY_LP(1) &&
2723 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2724 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2725 
2726 	if (INTEL_INFO(dev)->gen >= 7) {
2727 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2728 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2729 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2730 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2731 	}
2732 
2733 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2734 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2735 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2736 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2737 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2738 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2739 
2740 	dev_priv->wm.hw = *results;
2741 }
2742 
ilk_disable_lp_wm(struct drm_device * dev)2743 static bool ilk_disable_lp_wm(struct drm_device *dev)
2744 {
2745 	struct drm_i915_private *dev_priv = dev->dev_private;
2746 
2747 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2748 }
2749 
2750 /*
2751  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2752  * different active planes.
2753  */
2754 
2755 #define SKL_DDB_SIZE		896	/* in blocks */
2756 #define BXT_DDB_SIZE		512
2757 
2758 static void
skl_ddb_get_pipe_allocation_limits(struct drm_device * dev,struct drm_crtc * for_crtc,const struct intel_wm_config * config,const struct skl_pipe_wm_parameters * params,struct skl_ddb_entry * alloc)2759 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2760 				   struct drm_crtc *for_crtc,
2761 				   const struct intel_wm_config *config,
2762 				   const struct skl_pipe_wm_parameters *params,
2763 				   struct skl_ddb_entry *alloc /* out */)
2764 {
2765 	struct drm_crtc *crtc;
2766 	unsigned int pipe_size, ddb_size;
2767 	int nth_active_pipe;
2768 
2769 	if (!params->active) {
2770 		alloc->start = 0;
2771 		alloc->end = 0;
2772 		return;
2773 	}
2774 
2775 	if (IS_BROXTON(dev))
2776 		ddb_size = BXT_DDB_SIZE;
2777 	else
2778 		ddb_size = SKL_DDB_SIZE;
2779 
2780 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2781 
2782 	nth_active_pipe = 0;
2783 	for_each_crtc(dev, crtc) {
2784 		if (!to_intel_crtc(crtc)->active)
2785 			continue;
2786 
2787 		if (crtc == for_crtc)
2788 			break;
2789 
2790 		nth_active_pipe++;
2791 	}
2792 
2793 	pipe_size = ddb_size / config->num_pipes_active;
2794 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2795 	alloc->end = alloc->start + pipe_size;
2796 }
2797 
skl_cursor_allocation(const struct intel_wm_config * config)2798 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2799 {
2800 	if (config->num_pipes_active == 1)
2801 		return 32;
2802 
2803 	return 8;
2804 }
2805 
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)2806 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2807 {
2808 	entry->start = reg & 0x3ff;
2809 	entry->end = (reg >> 16) & 0x3ff;
2810 	if (entry->end)
2811 		entry->end += 1;
2812 }
2813 
skl_ddb_get_hw_state(struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb)2814 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2815 			  struct skl_ddb_allocation *ddb /* out */)
2816 {
2817 	enum pipe pipe;
2818 	int plane;
2819 	u32 val;
2820 
2821 	memset(ddb, 0, sizeof(*ddb));
2822 
2823 	for_each_pipe(dev_priv, pipe) {
2824 		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2825 			continue;
2826 
2827 		for_each_plane(dev_priv, pipe, plane) {
2828 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2829 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2830 						   val);
2831 		}
2832 
2833 		val = I915_READ(CUR_BUF_CFG(pipe));
2834 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2835 					   val);
2836 	}
2837 }
2838 
2839 static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters * p,int y)2840 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2841 {
2842 
2843 	/* for planar format */
2844 	if (p->y_bytes_per_pixel) {
2845 		if (y)  /* y-plane data rate */
2846 			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2847 		else    /* uv-plane data rate */
2848 			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2849 	}
2850 
2851 	/* for packed formats */
2852 	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2853 }
2854 
2855 /*
2856  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2857  * a 8192x4096@32bpp framebuffer:
2858  *   3 * 4096 * 8192  * 4 < 2^32
2859  */
2860 static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc * intel_crtc,const struct skl_pipe_wm_parameters * params)2861 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2862 				 const struct skl_pipe_wm_parameters *params)
2863 {
2864 	unsigned int total_data_rate = 0;
2865 	int plane;
2866 
2867 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2868 		const struct intel_plane_wm_parameters *p;
2869 
2870 		p = &params->plane[plane];
2871 		if (!p->enabled)
2872 			continue;
2873 
2874 		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2875 		if (p->y_bytes_per_pixel) {
2876 			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2877 		}
2878 	}
2879 
2880 	return total_data_rate;
2881 }
2882 
2883 static void
skl_allocate_pipe_ddb(struct drm_crtc * crtc,const struct intel_wm_config * config,const struct skl_pipe_wm_parameters * params,struct skl_ddb_allocation * ddb)2884 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2885 		      const struct intel_wm_config *config,
2886 		      const struct skl_pipe_wm_parameters *params,
2887 		      struct skl_ddb_allocation *ddb /* out */)
2888 {
2889 	struct drm_device *dev = crtc->dev;
2890 	struct drm_i915_private *dev_priv = dev->dev_private;
2891 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2892 	enum pipe pipe = intel_crtc->pipe;
2893 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2894 	uint16_t alloc_size, start, cursor_blocks;
2895 	uint16_t minimum[I915_MAX_PLANES];
2896 	uint16_t y_minimum[I915_MAX_PLANES];
2897 	unsigned int total_data_rate;
2898 	int plane;
2899 
2900 	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2901 	alloc_size = skl_ddb_entry_size(alloc);
2902 	if (alloc_size == 0) {
2903 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2904 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2905 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2906 		return;
2907 	}
2908 
2909 	cursor_blocks = skl_cursor_allocation(config);
2910 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2911 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2912 
2913 	alloc_size -= cursor_blocks;
2914 	alloc->end -= cursor_blocks;
2915 
2916 	/* 1. Allocate the mininum required blocks for each active plane */
2917 	for_each_plane(dev_priv, pipe, plane) {
2918 		const struct intel_plane_wm_parameters *p;
2919 
2920 		p = &params->plane[plane];
2921 		if (!p->enabled)
2922 			continue;
2923 
2924 		minimum[plane] = 8;
2925 		alloc_size -= minimum[plane];
2926 		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2927 		alloc_size -= y_minimum[plane];
2928 	}
2929 
2930 	/*
2931 	 * 2. Distribute the remaining space in proportion to the amount of
2932 	 * data each plane needs to fetch from memory.
2933 	 *
2934 	 * FIXME: we may not allocate every single block here.
2935 	 */
2936 	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2937 
2938 	start = alloc->start;
2939 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2940 		const struct intel_plane_wm_parameters *p;
2941 		unsigned int data_rate, y_data_rate;
2942 		uint16_t plane_blocks, y_plane_blocks = 0;
2943 
2944 		p = &params->plane[plane];
2945 		if (!p->enabled)
2946 			continue;
2947 
2948 		data_rate = skl_plane_relative_data_rate(p, 0);
2949 
2950 		/*
2951 		 * allocation for (packed formats) or (uv-plane part of planar format):
2952 		 * promote the expression to 64 bits to avoid overflowing, the
2953 		 * result is < available as data_rate / total_data_rate < 1
2954 		 */
2955 		plane_blocks = minimum[plane];
2956 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2957 					total_data_rate);
2958 
2959 		ddb->plane[pipe][plane].start = start;
2960 		ddb->plane[pipe][plane].end = start + plane_blocks;
2961 
2962 		start += plane_blocks;
2963 
2964 		/*
2965 		 * allocation for y_plane part of planar format:
2966 		 */
2967 		if (p->y_bytes_per_pixel) {
2968 			y_data_rate = skl_plane_relative_data_rate(p, 1);
2969 			y_plane_blocks = y_minimum[plane];
2970 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2971 						total_data_rate);
2972 
2973 			ddb->y_plane[pipe][plane].start = start;
2974 			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2975 
2976 			start += y_plane_blocks;
2977 		}
2978 
2979 	}
2980 
2981 }
2982 
skl_pipe_pixel_rate(const struct intel_crtc_state * config)2983 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2984 {
2985 	/* TODO: Take into account the scalers once we support them */
2986 	return config->base.adjusted_mode.crtc_clock;
2987 }
2988 
2989 /*
2990  * The max latency should be 257 (max the punit can code is 255 and we add 2us
2991  * for the read latency) and bytes_per_pixel should always be <= 8, so that
2992  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2993  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2994 */
skl_wm_method1(uint32_t pixel_rate,uint8_t bytes_per_pixel,uint32_t latency)2995 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2996 			       uint32_t latency)
2997 {
2998 	uint32_t wm_intermediate_val, ret;
2999 
3000 	if (latency == 0)
3001 		return UINT_MAX;
3002 
3003 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3004 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3005 
3006 	return ret;
3007 }
3008 
skl_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t horiz_pixels,uint8_t bytes_per_pixel,uint64_t tiling,uint32_t latency)3009 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3010 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3011 			       uint64_t tiling, uint32_t latency)
3012 {
3013 	uint32_t ret;
3014 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3015 	uint32_t wm_intermediate_val;
3016 
3017 	if (latency == 0)
3018 		return UINT_MAX;
3019 
3020 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3021 
3022 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3023 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3024 		plane_bytes_per_line *= 4;
3025 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3026 		plane_blocks_per_line /= 4;
3027 	} else {
3028 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3029 	}
3030 
3031 	wm_intermediate_val = latency * pixel_rate;
3032 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3033 				plane_blocks_per_line;
3034 
3035 	return ret;
3036 }
3037 
skl_ddb_allocation_changed(const struct skl_ddb_allocation * new_ddb,const struct intel_crtc * intel_crtc)3038 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3039 				       const struct intel_crtc *intel_crtc)
3040 {
3041 	struct drm_device *dev = intel_crtc->base.dev;
3042 	struct drm_i915_private *dev_priv = dev->dev_private;
3043 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3044 	enum pipe pipe = intel_crtc->pipe;
3045 
3046 	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3047 		   sizeof(new_ddb->plane[pipe])))
3048 		return true;
3049 
3050 	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3051 		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3052 		return true;
3053 
3054 	return false;
3055 }
3056 
skl_compute_wm_global_parameters(struct drm_device * dev,struct intel_wm_config * config)3057 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3058 					     struct intel_wm_config *config)
3059 {
3060 	struct drm_crtc *crtc;
3061 	struct drm_plane *plane;
3062 
3063 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3064 		config->num_pipes_active += to_intel_crtc(crtc)->active;
3065 
3066 	/* FIXME: I don't think we need those two global parameters on SKL */
3067 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3068 		struct intel_plane *intel_plane = to_intel_plane(plane);
3069 
3070 		config->sprites_enabled |= intel_plane->wm.enabled;
3071 		config->sprites_scaled |= intel_plane->wm.scaled;
3072 	}
3073 }
3074 
skl_compute_wm_pipe_parameters(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * p)3075 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3076 					   struct skl_pipe_wm_parameters *p)
3077 {
3078 	struct drm_device *dev = crtc->dev;
3079 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080 	enum pipe pipe = intel_crtc->pipe;
3081 	struct drm_plane *plane;
3082 	struct drm_framebuffer *fb;
3083 	int i = 1; /* Index for sprite planes start */
3084 
3085 	p->active = intel_crtc->active;
3086 	if (p->active) {
3087 		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3088 		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3089 
3090 		fb = crtc->primary->state->fb;
3091 		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3092 		if (fb) {
3093 			p->plane[0].enabled = true;
3094 			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3095 				drm_format_plane_cpp(fb->pixel_format, 1) :
3096 				drm_format_plane_cpp(fb->pixel_format, 0);
3097 			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3098 				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3099 			p->plane[0].tiling = fb->modifier[0];
3100 		} else {
3101 			p->plane[0].enabled = false;
3102 			p->plane[0].bytes_per_pixel = 0;
3103 			p->plane[0].y_bytes_per_pixel = 0;
3104 			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3105 		}
3106 		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3107 		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3108 		p->plane[0].rotation = crtc->primary->state->rotation;
3109 
3110 		fb = crtc->cursor->state->fb;
3111 		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3112 		if (fb) {
3113 			p->plane[PLANE_CURSOR].enabled = true;
3114 			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3115 			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3116 			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3117 		} else {
3118 			p->plane[PLANE_CURSOR].enabled = false;
3119 			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3120 			p->plane[PLANE_CURSOR].horiz_pixels = 64;
3121 			p->plane[PLANE_CURSOR].vert_pixels = 64;
3122 		}
3123 	}
3124 
3125 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3126 		struct intel_plane *intel_plane = to_intel_plane(plane);
3127 
3128 		if (intel_plane->pipe == pipe &&
3129 			plane->type == DRM_PLANE_TYPE_OVERLAY)
3130 			p->plane[i++] = intel_plane->wm;
3131 	}
3132 }
3133 
skl_compute_plane_wm(const struct drm_i915_private * dev_priv,struct skl_pipe_wm_parameters * p,struct intel_plane_wm_parameters * p_params,uint16_t ddb_allocation,int level,uint16_t * out_blocks,uint8_t * out_lines)3134 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3135 				 struct skl_pipe_wm_parameters *p,
3136 				 struct intel_plane_wm_parameters *p_params,
3137 				 uint16_t ddb_allocation,
3138 				 int level,
3139 				 uint16_t *out_blocks, /* out */
3140 				 uint8_t *out_lines /* out */)
3141 {
3142 	uint32_t latency = dev_priv->wm.skl_latency[level];
3143 	uint32_t method1, method2;
3144 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3145 	uint32_t res_blocks, res_lines;
3146 	uint32_t selected_result;
3147 	uint8_t bytes_per_pixel;
3148 
3149 	if (latency == 0 || !p->active || !p_params->enabled)
3150 		return false;
3151 
3152 	bytes_per_pixel = p_params->y_bytes_per_pixel ?
3153 		p_params->y_bytes_per_pixel :
3154 		p_params->bytes_per_pixel;
3155 	method1 = skl_wm_method1(p->pixel_rate,
3156 				 bytes_per_pixel,
3157 				 latency);
3158 	method2 = skl_wm_method2(p->pixel_rate,
3159 				 p->pipe_htotal,
3160 				 p_params->horiz_pixels,
3161 				 bytes_per_pixel,
3162 				 p_params->tiling,
3163 				 latency);
3164 
3165 	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3166 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3167 
3168 	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3169 	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3170 		uint32_t min_scanlines = 4;
3171 		uint32_t y_tile_minimum;
3172 		if (intel_rotation_90_or_270(p_params->rotation)) {
3173 			switch (p_params->bytes_per_pixel) {
3174 			case 1:
3175 				min_scanlines = 16;
3176 				break;
3177 			case 2:
3178 				min_scanlines = 8;
3179 				break;
3180 			case 8:
3181 				WARN(1, "Unsupported pixel depth for rotation");
3182 			}
3183 		}
3184 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3185 		selected_result = max(method2, y_tile_minimum);
3186 	} else {
3187 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3188 			selected_result = min(method1, method2);
3189 		else
3190 			selected_result = method1;
3191 	}
3192 
3193 	res_blocks = selected_result + 1;
3194 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3195 
3196 	if (level >= 1 && level <= 7) {
3197 		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3198 		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3199 			res_lines += 4;
3200 		else
3201 			res_blocks++;
3202 	}
3203 
3204 	if (res_blocks >= ddb_allocation || res_lines > 31)
3205 		return false;
3206 
3207 	*out_blocks = res_blocks;
3208 	*out_lines = res_lines;
3209 
3210 	return true;
3211 }
3212 
skl_compute_wm_level(const struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb,struct skl_pipe_wm_parameters * p,enum pipe pipe,int level,int num_planes,struct skl_wm_level * result)3213 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3214 				 struct skl_ddb_allocation *ddb,
3215 				 struct skl_pipe_wm_parameters *p,
3216 				 enum pipe pipe,
3217 				 int level,
3218 				 int num_planes,
3219 				 struct skl_wm_level *result)
3220 {
3221 	uint16_t ddb_blocks;
3222 	int i;
3223 
3224 	for (i = 0; i < num_planes; i++) {
3225 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3226 
3227 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3228 						p, &p->plane[i],
3229 						ddb_blocks,
3230 						level,
3231 						&result->plane_res_b[i],
3232 						&result->plane_res_l[i]);
3233 	}
3234 
3235 	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3236 	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3237 						 &p->plane[PLANE_CURSOR],
3238 						 ddb_blocks, level,
3239 						 &result->plane_res_b[PLANE_CURSOR],
3240 						 &result->plane_res_l[PLANE_CURSOR]);
3241 }
3242 
3243 static uint32_t
skl_compute_linetime_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * p)3244 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3245 {
3246 	if (!to_intel_crtc(crtc)->active)
3247 		return 0;
3248 
3249 	if (WARN_ON(p->pixel_rate == 0))
3250 		return 0;
3251 
3252 	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3253 }
3254 
skl_compute_transition_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * params,struct skl_wm_level * trans_wm)3255 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3256 				      struct skl_pipe_wm_parameters *params,
3257 				      struct skl_wm_level *trans_wm /* out */)
3258 {
3259 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3260 	int i;
3261 
3262 	if (!params->active)
3263 		return;
3264 
3265 	/* Until we know more, just disable transition WMs */
3266 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3267 		trans_wm->plane_en[i] = false;
3268 	trans_wm->plane_en[PLANE_CURSOR] = false;
3269 }
3270 
skl_compute_pipe_wm(struct drm_crtc * crtc,struct skl_ddb_allocation * ddb,struct skl_pipe_wm_parameters * params,struct skl_pipe_wm * pipe_wm)3271 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3272 				struct skl_ddb_allocation *ddb,
3273 				struct skl_pipe_wm_parameters *params,
3274 				struct skl_pipe_wm *pipe_wm)
3275 {
3276 	struct drm_device *dev = crtc->dev;
3277 	const struct drm_i915_private *dev_priv = dev->dev_private;
3278 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3279 	int level, max_level = ilk_wm_max_level(dev);
3280 
3281 	for (level = 0; level <= max_level; level++) {
3282 		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3283 				     level, intel_num_planes(intel_crtc),
3284 				     &pipe_wm->wm[level]);
3285 	}
3286 	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3287 
3288 	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3289 }
3290 
skl_compute_wm_results(struct drm_device * dev,struct skl_pipe_wm_parameters * p,struct skl_pipe_wm * p_wm,struct skl_wm_values * r,struct intel_crtc * intel_crtc)3291 static void skl_compute_wm_results(struct drm_device *dev,
3292 				   struct skl_pipe_wm_parameters *p,
3293 				   struct skl_pipe_wm *p_wm,
3294 				   struct skl_wm_values *r,
3295 				   struct intel_crtc *intel_crtc)
3296 {
3297 	int level, max_level = ilk_wm_max_level(dev);
3298 	enum pipe pipe = intel_crtc->pipe;
3299 	uint32_t temp;
3300 	int i;
3301 
3302 	for (level = 0; level <= max_level; level++) {
3303 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3304 			temp = 0;
3305 
3306 			temp |= p_wm->wm[level].plane_res_l[i] <<
3307 					PLANE_WM_LINES_SHIFT;
3308 			temp |= p_wm->wm[level].plane_res_b[i];
3309 			if (p_wm->wm[level].plane_en[i])
3310 				temp |= PLANE_WM_EN;
3311 
3312 			r->plane[pipe][i][level] = temp;
3313 		}
3314 
3315 		temp = 0;
3316 
3317 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3318 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3319 
3320 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3321 			temp |= PLANE_WM_EN;
3322 
3323 		r->plane[pipe][PLANE_CURSOR][level] = temp;
3324 
3325 	}
3326 
3327 	/* transition WMs */
3328 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3329 		temp = 0;
3330 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3331 		temp |= p_wm->trans_wm.plane_res_b[i];
3332 		if (p_wm->trans_wm.plane_en[i])
3333 			temp |= PLANE_WM_EN;
3334 
3335 		r->plane_trans[pipe][i] = temp;
3336 	}
3337 
3338 	temp = 0;
3339 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3340 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3341 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3342 		temp |= PLANE_WM_EN;
3343 
3344 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3345 
3346 	r->wm_linetime[pipe] = p_wm->linetime;
3347 }
3348 
skl_ddb_entry_write(struct drm_i915_private * dev_priv,uint32_t reg,const struct skl_ddb_entry * entry)3349 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3350 				const struct skl_ddb_entry *entry)
3351 {
3352 	if (entry->end)
3353 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3354 	else
3355 		I915_WRITE(reg, 0);
3356 }
3357 
skl_write_wm_values(struct drm_i915_private * dev_priv,const struct skl_wm_values * new)3358 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3359 				const struct skl_wm_values *new)
3360 {
3361 	struct drm_device *dev = dev_priv->dev;
3362 	struct intel_crtc *crtc;
3363 
3364 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3365 		int i, level, max_level = ilk_wm_max_level(dev);
3366 		enum pipe pipe = crtc->pipe;
3367 
3368 		if (!new->dirty[pipe])
3369 			continue;
3370 
3371 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3372 
3373 		for (level = 0; level <= max_level; level++) {
3374 			for (i = 0; i < intel_num_planes(crtc); i++)
3375 				I915_WRITE(PLANE_WM(pipe, i, level),
3376 					   new->plane[pipe][i][level]);
3377 			I915_WRITE(CUR_WM(pipe, level),
3378 				   new->plane[pipe][PLANE_CURSOR][level]);
3379 		}
3380 		for (i = 0; i < intel_num_planes(crtc); i++)
3381 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3382 				   new->plane_trans[pipe][i]);
3383 		I915_WRITE(CUR_WM_TRANS(pipe),
3384 			   new->plane_trans[pipe][PLANE_CURSOR]);
3385 
3386 		for (i = 0; i < intel_num_planes(crtc); i++) {
3387 			skl_ddb_entry_write(dev_priv,
3388 					    PLANE_BUF_CFG(pipe, i),
3389 					    &new->ddb.plane[pipe][i]);
3390 			skl_ddb_entry_write(dev_priv,
3391 					    PLANE_NV12_BUF_CFG(pipe, i),
3392 					    &new->ddb.y_plane[pipe][i]);
3393 		}
3394 
3395 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3396 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3397 	}
3398 }
3399 
3400 /*
3401  * When setting up a new DDB allocation arrangement, we need to correctly
3402  * sequence the times at which the new allocations for the pipes are taken into
3403  * account or we'll have pipes fetching from space previously allocated to
3404  * another pipe.
3405  *
3406  * Roughly the sequence looks like:
3407  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3408  *     overlapping with a previous light-up pipe (another way to put it is:
3409  *     pipes with their new allocation strickly included into their old ones).
3410  *  2. re-allocate the other pipes that get their allocation reduced
3411  *  3. allocate the pipes having their allocation increased
3412  *
3413  * Steps 1. and 2. are here to take care of the following case:
3414  * - Initially DDB looks like this:
3415  *     |   B    |   C    |
3416  * - enable pipe A.
3417  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3418  *   allocation
3419  *     |  A  |  B  |  C  |
3420  *
3421  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3422  */
3423 
3424 static void
skl_wm_flush_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,int pass)3425 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3426 {
3427 	int plane;
3428 
3429 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3430 
3431 	for_each_plane(dev_priv, pipe, plane) {
3432 		I915_WRITE(PLANE_SURF(pipe, plane),
3433 			   I915_READ(PLANE_SURF(pipe, plane)));
3434 	}
3435 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3436 }
3437 
3438 static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation * old,const struct skl_ddb_allocation * new,enum pipe pipe)3439 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3440 			    const struct skl_ddb_allocation *new,
3441 			    enum pipe pipe)
3442 {
3443 	uint16_t old_size, new_size;
3444 
3445 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3446 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3447 
3448 	return old_size != new_size &&
3449 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3450 	       new->pipe[pipe].end <= old->pipe[pipe].end;
3451 }
3452 
skl_flush_wm_values(struct drm_i915_private * dev_priv,struct skl_wm_values * new_values)3453 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3454 				struct skl_wm_values *new_values)
3455 {
3456 	struct drm_device *dev = dev_priv->dev;
3457 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3458 	bool reallocated[I915_MAX_PIPES] = {};
3459 	struct intel_crtc *crtc;
3460 	enum pipe pipe;
3461 
3462 	new_ddb = &new_values->ddb;
3463 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3464 
3465 	/*
3466 	 * First pass: flush the pipes with the new allocation contained into
3467 	 * the old space.
3468 	 *
3469 	 * We'll wait for the vblank on those pipes to ensure we can safely
3470 	 * re-allocate the freed space without this pipe fetching from it.
3471 	 */
3472 	for_each_intel_crtc(dev, crtc) {
3473 		if (!crtc->active)
3474 			continue;
3475 
3476 		pipe = crtc->pipe;
3477 
3478 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3479 			continue;
3480 
3481 		skl_wm_flush_pipe(dev_priv, pipe, 1);
3482 		intel_wait_for_vblank(dev, pipe);
3483 
3484 		reallocated[pipe] = true;
3485 	}
3486 
3487 
3488 	/*
3489 	 * Second pass: flush the pipes that are having their allocation
3490 	 * reduced, but overlapping with a previous allocation.
3491 	 *
3492 	 * Here as well we need to wait for the vblank to make sure the freed
3493 	 * space is not used anymore.
3494 	 */
3495 	for_each_intel_crtc(dev, crtc) {
3496 		if (!crtc->active)
3497 			continue;
3498 
3499 		pipe = crtc->pipe;
3500 
3501 		if (reallocated[pipe])
3502 			continue;
3503 
3504 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3505 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3506 			skl_wm_flush_pipe(dev_priv, pipe, 2);
3507 			intel_wait_for_vblank(dev, pipe);
3508 			reallocated[pipe] = true;
3509 		}
3510 	}
3511 
3512 	/*
3513 	 * Third pass: flush the pipes that got more space allocated.
3514 	 *
3515 	 * We don't need to actively wait for the update here, next vblank
3516 	 * will just get more DDB space with the correct WM values.
3517 	 */
3518 	for_each_intel_crtc(dev, crtc) {
3519 		if (!crtc->active)
3520 			continue;
3521 
3522 		pipe = crtc->pipe;
3523 
3524 		/*
3525 		 * At this point, only the pipes more space than before are
3526 		 * left to re-allocate.
3527 		 */
3528 		if (reallocated[pipe])
3529 			continue;
3530 
3531 		skl_wm_flush_pipe(dev_priv, pipe, 3);
3532 	}
3533 }
3534 
skl_update_pipe_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * params,struct intel_wm_config * config,struct skl_ddb_allocation * ddb,struct skl_pipe_wm * pipe_wm)3535 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3536 			       struct skl_pipe_wm_parameters *params,
3537 			       struct intel_wm_config *config,
3538 			       struct skl_ddb_allocation *ddb, /* out */
3539 			       struct skl_pipe_wm *pipe_wm /* out */)
3540 {
3541 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3542 
3543 	skl_compute_wm_pipe_parameters(crtc, params);
3544 	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3545 	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3546 
3547 	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3548 		return false;
3549 
3550 	intel_crtc->wm.skl_active = *pipe_wm;
3551 
3552 	return true;
3553 }
3554 
skl_update_other_pipe_wm(struct drm_device * dev,struct drm_crtc * crtc,struct intel_wm_config * config,struct skl_wm_values * r)3555 static void skl_update_other_pipe_wm(struct drm_device *dev,
3556 				     struct drm_crtc *crtc,
3557 				     struct intel_wm_config *config,
3558 				     struct skl_wm_values *r)
3559 {
3560 	struct intel_crtc *intel_crtc;
3561 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3562 
3563 	/*
3564 	 * If the WM update hasn't changed the allocation for this_crtc (the
3565 	 * crtc we are currently computing the new WM values for), other
3566 	 * enabled crtcs will keep the same allocation and we don't need to
3567 	 * recompute anything for them.
3568 	 */
3569 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3570 		return;
3571 
3572 	/*
3573 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3574 	 * other active pipes need new DDB allocation and WM values.
3575 	 */
3576 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3577 				base.head) {
3578 		struct skl_pipe_wm_parameters params = {};
3579 		struct skl_pipe_wm pipe_wm = {};
3580 		bool wm_changed;
3581 
3582 		if (this_crtc->pipe == intel_crtc->pipe)
3583 			continue;
3584 
3585 		if (!intel_crtc->active)
3586 			continue;
3587 
3588 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3589 						&params, config,
3590 						&r->ddb, &pipe_wm);
3591 
3592 		/*
3593 		 * If we end up re-computing the other pipe WM values, it's
3594 		 * because it was really needed, so we expect the WM values to
3595 		 * be different.
3596 		 */
3597 		WARN_ON(!wm_changed);
3598 
3599 		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3600 		r->dirty[intel_crtc->pipe] = true;
3601 	}
3602 }
3603 
skl_clear_wm(struct skl_wm_values * watermarks,enum pipe pipe)3604 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3605 {
3606 	watermarks->wm_linetime[pipe] = 0;
3607 	memset(watermarks->plane[pipe], 0,
3608 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3609 	memset(watermarks->plane_trans[pipe],
3610 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3611 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3612 
3613 	/* Clear ddb entries for pipe */
3614 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3615 	memset(&watermarks->ddb.plane[pipe], 0,
3616 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3617 	memset(&watermarks->ddb.y_plane[pipe], 0,
3618 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3619 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3620 	       sizeof(struct skl_ddb_entry));
3621 
3622 }
3623 
skl_update_wm(struct drm_crtc * crtc)3624 static void skl_update_wm(struct drm_crtc *crtc)
3625 {
3626 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3627 	struct drm_device *dev = crtc->dev;
3628 	struct drm_i915_private *dev_priv = dev->dev_private;
3629 	struct skl_pipe_wm_parameters params = {};
3630 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3631 	struct skl_pipe_wm pipe_wm = {};
3632 	struct intel_wm_config config = {};
3633 
3634 
3635 	/* Clear all dirty flags */
3636 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3637 
3638 	skl_clear_wm(results, intel_crtc->pipe);
3639 
3640 	skl_compute_wm_global_parameters(dev, &config);
3641 
3642 	if (!skl_update_pipe_wm(crtc, &params, &config,
3643 				&results->ddb, &pipe_wm))
3644 		return;
3645 
3646 	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3647 	results->dirty[intel_crtc->pipe] = true;
3648 
3649 	skl_update_other_pipe_wm(dev, crtc, &config, results);
3650 	skl_write_wm_values(dev_priv, results);
3651 	skl_flush_wm_values(dev_priv, results);
3652 
3653 	/* store the new configuration */
3654 	dev_priv->wm.skl_hw = *results;
3655 }
3656 
3657 static void
skl_update_sprite_wm(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)3658 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3659 		     uint32_t sprite_width, uint32_t sprite_height,
3660 		     int pixel_size, bool enabled, bool scaled)
3661 {
3662 	struct intel_plane *intel_plane = to_intel_plane(plane);
3663 	struct drm_framebuffer *fb = plane->state->fb;
3664 
3665 	intel_plane->wm.enabled = enabled;
3666 	intel_plane->wm.scaled = scaled;
3667 	intel_plane->wm.horiz_pixels = sprite_width;
3668 	intel_plane->wm.vert_pixels = sprite_height;
3669 	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3670 
3671 	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3672 	intel_plane->wm.bytes_per_pixel =
3673 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3674 		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3675 	intel_plane->wm.y_bytes_per_pixel =
3676 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3677 		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3678 
3679 	/*
3680 	 * Framebuffer can be NULL on plane disable, but it does not
3681 	 * matter for watermarks if we assume no tiling in that case.
3682 	 */
3683 	if (fb)
3684 		intel_plane->wm.tiling = fb->modifier[0];
3685 	intel_plane->wm.rotation = plane->state->rotation;
3686 
3687 	skl_update_wm(crtc);
3688 }
3689 
ilk_update_wm(struct drm_crtc * crtc)3690 static void ilk_update_wm(struct drm_crtc *crtc)
3691 {
3692 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3693 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3694 	struct drm_device *dev = crtc->dev;
3695 	struct drm_i915_private *dev_priv = dev->dev_private;
3696 	struct ilk_wm_maximums max;
3697 	struct ilk_wm_values results = {};
3698 	enum intel_ddb_partitioning partitioning;
3699 	struct intel_pipe_wm pipe_wm = {};
3700 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3701 	struct intel_wm_config config = {};
3702 
3703 	WARN_ON(cstate->base.active != intel_crtc->active);
3704 
3705 	intel_compute_pipe_wm(cstate, &pipe_wm);
3706 
3707 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3708 		return;
3709 
3710 	intel_crtc->wm.active = pipe_wm;
3711 
3712 	ilk_compute_wm_config(dev, &config);
3713 
3714 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3715 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3716 
3717 	/* 5/6 split only in single pipe config on IVB+ */
3718 	if (INTEL_INFO(dev)->gen >= 7 &&
3719 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3720 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3721 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3722 
3723 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3724 	} else {
3725 		best_lp_wm = &lp_wm_1_2;
3726 	}
3727 
3728 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3729 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3730 
3731 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3732 
3733 	ilk_write_wm_values(dev_priv, &results);
3734 }
3735 
3736 static void
ilk_update_sprite_wm(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)3737 ilk_update_sprite_wm(struct drm_plane *plane,
3738 		     struct drm_crtc *crtc,
3739 		     uint32_t sprite_width, uint32_t sprite_height,
3740 		     int pixel_size, bool enabled, bool scaled)
3741 {
3742 	struct drm_device *dev = plane->dev;
3743 	struct intel_plane *intel_plane = to_intel_plane(plane);
3744 
3745 	/*
3746 	 * IVB workaround: must disable low power watermarks for at least
3747 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3748 	 * when scaling is disabled.
3749 	 *
3750 	 * WaCxSRDisabledForSpriteScaling:ivb
3751 	 */
3752 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3753 		intel_wait_for_vblank(dev, intel_plane->pipe);
3754 
3755 	ilk_update_wm(crtc);
3756 }
3757 
skl_pipe_wm_active_state(uint32_t val,struct skl_pipe_wm * active,bool is_transwm,bool is_cursor,int i,int level)3758 static void skl_pipe_wm_active_state(uint32_t val,
3759 				     struct skl_pipe_wm *active,
3760 				     bool is_transwm,
3761 				     bool is_cursor,
3762 				     int i,
3763 				     int level)
3764 {
3765 	bool is_enabled = (val & PLANE_WM_EN) != 0;
3766 
3767 	if (!is_transwm) {
3768 		if (!is_cursor) {
3769 			active->wm[level].plane_en[i] = is_enabled;
3770 			active->wm[level].plane_res_b[i] =
3771 					val & PLANE_WM_BLOCKS_MASK;
3772 			active->wm[level].plane_res_l[i] =
3773 					(val >> PLANE_WM_LINES_SHIFT) &
3774 						PLANE_WM_LINES_MASK;
3775 		} else {
3776 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3777 			active->wm[level].plane_res_b[PLANE_CURSOR] =
3778 					val & PLANE_WM_BLOCKS_MASK;
3779 			active->wm[level].plane_res_l[PLANE_CURSOR] =
3780 					(val >> PLANE_WM_LINES_SHIFT) &
3781 						PLANE_WM_LINES_MASK;
3782 		}
3783 	} else {
3784 		if (!is_cursor) {
3785 			active->trans_wm.plane_en[i] = is_enabled;
3786 			active->trans_wm.plane_res_b[i] =
3787 					val & PLANE_WM_BLOCKS_MASK;
3788 			active->trans_wm.plane_res_l[i] =
3789 					(val >> PLANE_WM_LINES_SHIFT) &
3790 						PLANE_WM_LINES_MASK;
3791 		} else {
3792 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3793 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3794 					val & PLANE_WM_BLOCKS_MASK;
3795 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3796 					(val >> PLANE_WM_LINES_SHIFT) &
3797 						PLANE_WM_LINES_MASK;
3798 		}
3799 	}
3800 }
3801 
skl_pipe_wm_get_hw_state(struct drm_crtc * crtc)3802 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3803 {
3804 	struct drm_device *dev = crtc->dev;
3805 	struct drm_i915_private *dev_priv = dev->dev_private;
3806 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3807 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3808 	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3809 	enum pipe pipe = intel_crtc->pipe;
3810 	int level, i, max_level;
3811 	uint32_t temp;
3812 
3813 	max_level = ilk_wm_max_level(dev);
3814 
3815 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3816 
3817 	for (level = 0; level <= max_level; level++) {
3818 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3819 			hw->plane[pipe][i][level] =
3820 					I915_READ(PLANE_WM(pipe, i, level));
3821 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3822 	}
3823 
3824 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3825 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3826 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3827 
3828 	if (!intel_crtc->active)
3829 		return;
3830 
3831 	hw->dirty[pipe] = true;
3832 
3833 	active->linetime = hw->wm_linetime[pipe];
3834 
3835 	for (level = 0; level <= max_level; level++) {
3836 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3837 			temp = hw->plane[pipe][i][level];
3838 			skl_pipe_wm_active_state(temp, active, false,
3839 						false, i, level);
3840 		}
3841 		temp = hw->plane[pipe][PLANE_CURSOR][level];
3842 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3843 	}
3844 
3845 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3846 		temp = hw->plane_trans[pipe][i];
3847 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3848 	}
3849 
3850 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3851 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3852 }
3853 
skl_wm_get_hw_state(struct drm_device * dev)3854 void skl_wm_get_hw_state(struct drm_device *dev)
3855 {
3856 	struct drm_i915_private *dev_priv = dev->dev_private;
3857 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3858 	struct drm_crtc *crtc;
3859 
3860 	skl_ddb_get_hw_state(dev_priv, ddb);
3861 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3862 		skl_pipe_wm_get_hw_state(crtc);
3863 }
3864 
ilk_pipe_wm_get_hw_state(struct drm_crtc * crtc)3865 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3866 {
3867 	struct drm_device *dev = crtc->dev;
3868 	struct drm_i915_private *dev_priv = dev->dev_private;
3869 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3870 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3871 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3872 	enum pipe pipe = intel_crtc->pipe;
3873 	static const unsigned int wm0_pipe_reg[] = {
3874 		[PIPE_A] = WM0_PIPEA_ILK,
3875 		[PIPE_B] = WM0_PIPEB_ILK,
3876 		[PIPE_C] = WM0_PIPEC_IVB,
3877 	};
3878 
3879 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3880 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3881 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3882 
3883 	memset(active, 0, sizeof(*active));
3884 
3885 	active->pipe_enabled = intel_crtc->active;
3886 
3887 	if (active->pipe_enabled) {
3888 		u32 tmp = hw->wm_pipe[pipe];
3889 
3890 		/*
3891 		 * For active pipes LP0 watermark is marked as
3892 		 * enabled, and LP1+ watermaks as disabled since
3893 		 * we can't really reverse compute them in case
3894 		 * multiple pipes are active.
3895 		 */
3896 		active->wm[0].enable = true;
3897 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3898 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3899 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3900 		active->linetime = hw->wm_linetime[pipe];
3901 	} else {
3902 		int level, max_level = ilk_wm_max_level(dev);
3903 
3904 		/*
3905 		 * For inactive pipes, all watermark levels
3906 		 * should be marked as enabled but zeroed,
3907 		 * which is what we'd compute them to.
3908 		 */
3909 		for (level = 0; level <= max_level; level++)
3910 			active->wm[level].enable = true;
3911 	}
3912 }
3913 
3914 #define _FW_WM(value, plane) \
3915 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3916 #define _FW_WM_VLV(value, plane) \
3917 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3918 
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)3919 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3920 			       struct vlv_wm_values *wm)
3921 {
3922 	enum pipe pipe;
3923 	uint32_t tmp;
3924 
3925 	for_each_pipe(dev_priv, pipe) {
3926 		tmp = I915_READ(VLV_DDL(pipe));
3927 
3928 		wm->ddl[pipe].primary =
3929 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3930 		wm->ddl[pipe].cursor =
3931 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3932 		wm->ddl[pipe].sprite[0] =
3933 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3934 		wm->ddl[pipe].sprite[1] =
3935 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3936 	}
3937 
3938 	tmp = I915_READ(DSPFW1);
3939 	wm->sr.plane = _FW_WM(tmp, SR);
3940 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3941 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3942 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3943 
3944 	tmp = I915_READ(DSPFW2);
3945 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3946 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3947 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3948 
3949 	tmp = I915_READ(DSPFW3);
3950 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3951 
3952 	if (IS_CHERRYVIEW(dev_priv)) {
3953 		tmp = I915_READ(DSPFW7_CHV);
3954 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3955 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3956 
3957 		tmp = I915_READ(DSPFW8_CHV);
3958 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3959 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3960 
3961 		tmp = I915_READ(DSPFW9_CHV);
3962 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3963 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3964 
3965 		tmp = I915_READ(DSPHOWM);
3966 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3967 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3968 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3969 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3970 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3971 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3972 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3973 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3974 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3975 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3976 	} else {
3977 		tmp = I915_READ(DSPFW7);
3978 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3979 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3980 
3981 		tmp = I915_READ(DSPHOWM);
3982 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3983 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3984 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3985 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3986 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3987 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3988 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3989 	}
3990 }
3991 
3992 #undef _FW_WM
3993 #undef _FW_WM_VLV
3994 
vlv_wm_get_hw_state(struct drm_device * dev)3995 void vlv_wm_get_hw_state(struct drm_device *dev)
3996 {
3997 	struct drm_i915_private *dev_priv = to_i915(dev);
3998 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3999 	struct intel_plane *plane;
4000 	enum pipe pipe;
4001 	u32 val;
4002 
4003 	vlv_read_wm_values(dev_priv, wm);
4004 
4005 	for_each_intel_plane(dev, plane) {
4006 		switch (plane->base.type) {
4007 			int sprite;
4008 		case DRM_PLANE_TYPE_CURSOR:
4009 			plane->wm.fifo_size = 63;
4010 			break;
4011 		case DRM_PLANE_TYPE_PRIMARY:
4012 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4013 			break;
4014 		case DRM_PLANE_TYPE_OVERLAY:
4015 			sprite = plane->plane;
4016 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4017 			break;
4018 		}
4019 	}
4020 
4021 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4022 	wm->level = VLV_WM_LEVEL_PM2;
4023 
4024 	if (IS_CHERRYVIEW(dev_priv)) {
4025 		mutex_lock(&dev_priv->rps.hw_lock);
4026 
4027 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4028 		if (val & DSP_MAXFIFO_PM5_ENABLE)
4029 			wm->level = VLV_WM_LEVEL_PM5;
4030 
4031 		/*
4032 		 * If DDR DVFS is disabled in the BIOS, Punit
4033 		 * will never ack the request. So if that happens
4034 		 * assume we don't have to enable/disable DDR DVFS
4035 		 * dynamically. To test that just set the REQ_ACK
4036 		 * bit to poke the Punit, but don't change the
4037 		 * HIGH/LOW bits so that we don't actually change
4038 		 * the current state.
4039 		 */
4040 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4041 		val |= FORCE_DDR_FREQ_REQ_ACK;
4042 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4043 
4044 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4045 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4046 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4047 				      "assuming DDR DVFS is disabled\n");
4048 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4049 		} else {
4050 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4051 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4052 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4053 		}
4054 
4055 		mutex_unlock(&dev_priv->rps.hw_lock);
4056 	}
4057 
4058 	for_each_pipe(dev_priv, pipe)
4059 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4060 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4061 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4062 
4063 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4064 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4065 }
4066 
ilk_wm_get_hw_state(struct drm_device * dev)4067 void ilk_wm_get_hw_state(struct drm_device *dev)
4068 {
4069 	struct drm_i915_private *dev_priv = dev->dev_private;
4070 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4071 	struct drm_crtc *crtc;
4072 
4073 	for_each_crtc(dev, crtc)
4074 		ilk_pipe_wm_get_hw_state(crtc);
4075 
4076 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4077 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4078 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4079 
4080 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4081 	if (INTEL_INFO(dev)->gen >= 7) {
4082 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4083 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4084 	}
4085 
4086 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4087 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4088 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4089 	else if (IS_IVYBRIDGE(dev))
4090 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4091 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4092 
4093 	hw->enable_fbc_wm =
4094 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4095 }
4096 
4097 /**
4098  * intel_update_watermarks - update FIFO watermark values based on current modes
4099  *
4100  * Calculate watermark values for the various WM regs based on current mode
4101  * and plane configuration.
4102  *
4103  * There are several cases to deal with here:
4104  *   - normal (i.e. non-self-refresh)
4105  *   - self-refresh (SR) mode
4106  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4107  *   - lines are small relative to FIFO size (buffer can hold more than 2
4108  *     lines), so need to account for TLB latency
4109  *
4110  *   The normal calculation is:
4111  *     watermark = dotclock * bytes per pixel * latency
4112  *   where latency is platform & configuration dependent (we assume pessimal
4113  *   values here).
4114  *
4115  *   The SR calculation is:
4116  *     watermark = (trunc(latency/line time)+1) * surface width *
4117  *       bytes per pixel
4118  *   where
4119  *     line time = htotal / dotclock
4120  *     surface width = hdisplay for normal plane and 64 for cursor
4121  *   and latency is assumed to be high, as above.
4122  *
4123  * The final value programmed to the register should always be rounded up,
4124  * and include an extra 2 entries to account for clock crossings.
4125  *
4126  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4127  * to set the non-SR watermarks to 8.
4128  */
intel_update_watermarks(struct drm_crtc * crtc)4129 void intel_update_watermarks(struct drm_crtc *crtc)
4130 {
4131 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4132 
4133 	if (dev_priv->display.update_wm)
4134 		dev_priv->display.update_wm(crtc);
4135 }
4136 
intel_update_sprite_watermarks(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)4137 void intel_update_sprite_watermarks(struct drm_plane *plane,
4138 				    struct drm_crtc *crtc,
4139 				    uint32_t sprite_width,
4140 				    uint32_t sprite_height,
4141 				    int pixel_size,
4142 				    bool enabled, bool scaled)
4143 {
4144 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
4145 
4146 	if (dev_priv->display.update_sprite_wm)
4147 		dev_priv->display.update_sprite_wm(plane, crtc,
4148 						   sprite_width, sprite_height,
4149 						   pixel_size, enabled, scaled);
4150 }
4151 
4152 /**
4153  * Lock protecting IPS related data structures
4154  */
4155 DEFINE_SPINLOCK(mchdev_lock);
4156 
4157 /* Global for IPS driver to get at the current i915 device. Protected by
4158  * mchdev_lock. */
4159 static struct drm_i915_private *i915_mch_dev;
4160 
ironlake_set_drps(struct drm_device * dev,u8 val)4161 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4162 {
4163 	struct drm_i915_private *dev_priv = dev->dev_private;
4164 	u16 rgvswctl;
4165 
4166 	assert_spin_locked(&mchdev_lock);
4167 
4168 	rgvswctl = I915_READ16(MEMSWCTL);
4169 	if (rgvswctl & MEMCTL_CMD_STS) {
4170 		DRM_DEBUG("gpu busy, RCS change rejected\n");
4171 		return false; /* still busy with another command */
4172 	}
4173 
4174 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4175 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4176 	I915_WRITE16(MEMSWCTL, rgvswctl);
4177 	POSTING_READ16(MEMSWCTL);
4178 
4179 	rgvswctl |= MEMCTL_CMD_STS;
4180 	I915_WRITE16(MEMSWCTL, rgvswctl);
4181 
4182 	return true;
4183 }
4184 
ironlake_enable_drps(struct drm_device * dev)4185 static void ironlake_enable_drps(struct drm_device *dev)
4186 {
4187 	struct drm_i915_private *dev_priv = dev->dev_private;
4188 	u32 rgvmodectl = I915_READ(MEMMODECTL);
4189 	u8 fmax, fmin, fstart, vstart;
4190 
4191 	spin_lock_irq(&mchdev_lock);
4192 
4193 	/* Enable temp reporting */
4194 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4195 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4196 
4197 	/* 100ms RC evaluation intervals */
4198 	I915_WRITE(RCUPEI, 100000);
4199 	I915_WRITE(RCDNEI, 100000);
4200 
4201 	/* Set max/min thresholds to 90ms and 80ms respectively */
4202 	I915_WRITE(RCBMAXAVG, 90000);
4203 	I915_WRITE(RCBMINAVG, 80000);
4204 
4205 	I915_WRITE(MEMIHYST, 1);
4206 
4207 	/* Set up min, max, and cur for interrupt handling */
4208 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4209 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4210 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4211 		MEMMODE_FSTART_SHIFT;
4212 
4213 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4214 		PXVFREQ_PX_SHIFT;
4215 
4216 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4217 	dev_priv->ips.fstart = fstart;
4218 
4219 	dev_priv->ips.max_delay = fstart;
4220 	dev_priv->ips.min_delay = fmin;
4221 	dev_priv->ips.cur_delay = fstart;
4222 
4223 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4224 			 fmax, fmin, fstart);
4225 
4226 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4227 
4228 	/*
4229 	 * Interrupts will be enabled in ironlake_irq_postinstall
4230 	 */
4231 
4232 	I915_WRITE(VIDSTART, vstart);
4233 	POSTING_READ(VIDSTART);
4234 
4235 	rgvmodectl |= MEMMODE_SWMODE_EN;
4236 	I915_WRITE(MEMMODECTL, rgvmodectl);
4237 
4238 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4239 		DRM_ERROR("stuck trying to change perf mode\n");
4240 	mdelay(1);
4241 
4242 	ironlake_set_drps(dev, fstart);
4243 
4244 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4245 		I915_READ(DDREC) + I915_READ(CSIEC);
4246 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4247 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4248 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4249 
4250 	spin_unlock_irq(&mchdev_lock);
4251 }
4252 
ironlake_disable_drps(struct drm_device * dev)4253 static void ironlake_disable_drps(struct drm_device *dev)
4254 {
4255 	struct drm_i915_private *dev_priv = dev->dev_private;
4256 	u16 rgvswctl;
4257 
4258 	spin_lock_irq(&mchdev_lock);
4259 
4260 	rgvswctl = I915_READ16(MEMSWCTL);
4261 
4262 	/* Ack interrupts, disable EFC interrupt */
4263 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4264 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4265 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4266 	I915_WRITE(DEIIR, DE_PCU_EVENT);
4267 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4268 
4269 	/* Go back to the starting frequency */
4270 	ironlake_set_drps(dev, dev_priv->ips.fstart);
4271 	mdelay(1);
4272 	rgvswctl |= MEMCTL_CMD_STS;
4273 	I915_WRITE(MEMSWCTL, rgvswctl);
4274 	mdelay(1);
4275 
4276 	spin_unlock_irq(&mchdev_lock);
4277 }
4278 
4279 /* There's a funny hw issue where the hw returns all 0 when reading from
4280  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4281  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4282  * all limits and the gpu stuck at whatever frequency it is at atm).
4283  */
intel_rps_limits(struct drm_i915_private * dev_priv,u8 val)4284 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4285 {
4286 	u32 limits;
4287 
4288 	/* Only set the down limit when we've reached the lowest level to avoid
4289 	 * getting more interrupts, otherwise leave this clear. This prevents a
4290 	 * race in the hw when coming out of rc6: There's a tiny window where
4291 	 * the hw runs at the minimal clock before selecting the desired
4292 	 * frequency, if the down threshold expires in that window we will not
4293 	 * receive a down interrupt. */
4294 	if (IS_GEN9(dev_priv->dev)) {
4295 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4296 		if (val <= dev_priv->rps.min_freq_softlimit)
4297 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4298 	} else {
4299 		limits = dev_priv->rps.max_freq_softlimit << 24;
4300 		if (val <= dev_priv->rps.min_freq_softlimit)
4301 			limits |= dev_priv->rps.min_freq_softlimit << 16;
4302 	}
4303 
4304 	return limits;
4305 }
4306 
gen6_set_rps_thresholds(struct drm_i915_private * dev_priv,u8 val)4307 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4308 {
4309 	int new_power;
4310 	u32 threshold_up = 0, threshold_down = 0; /* in % */
4311 	u32 ei_up = 0, ei_down = 0;
4312 
4313 	new_power = dev_priv->rps.power;
4314 	switch (dev_priv->rps.power) {
4315 	case LOW_POWER:
4316 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4317 			new_power = BETWEEN;
4318 		break;
4319 
4320 	case BETWEEN:
4321 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4322 			new_power = LOW_POWER;
4323 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4324 			new_power = HIGH_POWER;
4325 		break;
4326 
4327 	case HIGH_POWER:
4328 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4329 			new_power = BETWEEN;
4330 		break;
4331 	}
4332 	/* Max/min bins are special */
4333 	if (val <= dev_priv->rps.min_freq_softlimit)
4334 		new_power = LOW_POWER;
4335 	if (val >= dev_priv->rps.max_freq_softlimit)
4336 		new_power = HIGH_POWER;
4337 	if (new_power == dev_priv->rps.power)
4338 		return;
4339 
4340 	/* Note the units here are not exactly 1us, but 1280ns. */
4341 	switch (new_power) {
4342 	case LOW_POWER:
4343 		/* Upclock if more than 95% busy over 16ms */
4344 		ei_up = 16000;
4345 		threshold_up = 95;
4346 
4347 		/* Downclock if less than 85% busy over 32ms */
4348 		ei_down = 32000;
4349 		threshold_down = 85;
4350 		break;
4351 
4352 	case BETWEEN:
4353 		/* Upclock if more than 90% busy over 13ms */
4354 		ei_up = 13000;
4355 		threshold_up = 90;
4356 
4357 		/* Downclock if less than 75% busy over 32ms */
4358 		ei_down = 32000;
4359 		threshold_down = 75;
4360 		break;
4361 
4362 	case HIGH_POWER:
4363 		/* Upclock if more than 85% busy over 10ms */
4364 		ei_up = 10000;
4365 		threshold_up = 85;
4366 
4367 		/* Downclock if less than 60% busy over 32ms */
4368 		ei_down = 32000;
4369 		threshold_down = 60;
4370 		break;
4371 	}
4372 
4373 	I915_WRITE(GEN6_RP_UP_EI,
4374 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4375 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4376 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4377 
4378 	I915_WRITE(GEN6_RP_DOWN_EI,
4379 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4380 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4381 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4382 
4383 	 I915_WRITE(GEN6_RP_CONTROL,
4384 		    GEN6_RP_MEDIA_TURBO |
4385 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4386 		    GEN6_RP_MEDIA_IS_GFX |
4387 		    GEN6_RP_ENABLE |
4388 		    GEN6_RP_UP_BUSY_AVG |
4389 		    GEN6_RP_DOWN_IDLE_AVG);
4390 
4391 	dev_priv->rps.power = new_power;
4392 	dev_priv->rps.up_threshold = threshold_up;
4393 	dev_priv->rps.down_threshold = threshold_down;
4394 	dev_priv->rps.last_adj = 0;
4395 }
4396 
gen6_rps_pm_mask(struct drm_i915_private * dev_priv,u8 val)4397 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4398 {
4399 	u32 mask = 0;
4400 
4401 	if (val > dev_priv->rps.min_freq_softlimit)
4402 		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4403 	if (val < dev_priv->rps.max_freq_softlimit)
4404 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4405 
4406 	mask &= dev_priv->pm_rps_events;
4407 
4408 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4409 }
4410 
4411 /* gen6_set_rps is called to update the frequency request, but should also be
4412  * called when the range (min_delay and max_delay) is modified so that we can
4413  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
gen6_set_rps(struct drm_device * dev,u8 val)4414 static void gen6_set_rps(struct drm_device *dev, u8 val)
4415 {
4416 	struct drm_i915_private *dev_priv = dev->dev_private;
4417 
4418 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4419 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4420 		return;
4421 
4422 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4423 	WARN_ON(val > dev_priv->rps.max_freq);
4424 	WARN_ON(val < dev_priv->rps.min_freq);
4425 
4426 	/* min/max delay may still have been modified so be sure to
4427 	 * write the limits value.
4428 	 */
4429 	if (val != dev_priv->rps.cur_freq) {
4430 		gen6_set_rps_thresholds(dev_priv, val);
4431 
4432 		if (IS_GEN9(dev))
4433 			I915_WRITE(GEN6_RPNSWREQ,
4434 				   GEN9_FREQUENCY(val));
4435 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4436 			I915_WRITE(GEN6_RPNSWREQ,
4437 				   HSW_FREQUENCY(val));
4438 		else
4439 			I915_WRITE(GEN6_RPNSWREQ,
4440 				   GEN6_FREQUENCY(val) |
4441 				   GEN6_OFFSET(0) |
4442 				   GEN6_AGGRESSIVE_TURBO);
4443 	}
4444 
4445 	/* Make sure we continue to get interrupts
4446 	 * until we hit the minimum or maximum frequencies.
4447 	 */
4448 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4449 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4450 
4451 	POSTING_READ(GEN6_RPNSWREQ);
4452 
4453 	dev_priv->rps.cur_freq = val;
4454 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4455 }
4456 
valleyview_set_rps(struct drm_device * dev,u8 val)4457 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4458 {
4459 	struct drm_i915_private *dev_priv = dev->dev_private;
4460 
4461 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4462 	WARN_ON(val > dev_priv->rps.max_freq);
4463 	WARN_ON(val < dev_priv->rps.min_freq);
4464 
4465 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4466 		      "Odd GPU freq value\n"))
4467 		val &= ~1;
4468 
4469 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4470 
4471 	if (val != dev_priv->rps.cur_freq) {
4472 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4473 		if (!IS_CHERRYVIEW(dev_priv))
4474 			gen6_set_rps_thresholds(dev_priv, val);
4475 	}
4476 
4477 	dev_priv->rps.cur_freq = val;
4478 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4479 }
4480 
4481 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4482  *
4483  * * If Gfx is Idle, then
4484  * 1. Forcewake Media well.
4485  * 2. Request idle freq.
4486  * 3. Release Forcewake of Media well.
4487 */
vlv_set_rps_idle(struct drm_i915_private * dev_priv)4488 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4489 {
4490 	u32 val = dev_priv->rps.idle_freq;
4491 
4492 	if (dev_priv->rps.cur_freq <= val)
4493 		return;
4494 
4495 	/* Wake up the media well, as that takes a lot less
4496 	 * power than the Render well. */
4497 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4498 	valleyview_set_rps(dev_priv->dev, val);
4499 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4500 }
4501 
gen6_rps_busy(struct drm_i915_private * dev_priv)4502 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4503 {
4504 	mutex_lock(&dev_priv->rps.hw_lock);
4505 	if (dev_priv->rps.enabled) {
4506 		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4507 			gen6_rps_reset_ei(dev_priv);
4508 		I915_WRITE(GEN6_PMINTRMSK,
4509 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4510 	}
4511 	mutex_unlock(&dev_priv->rps.hw_lock);
4512 }
4513 
gen6_rps_idle(struct drm_i915_private * dev_priv)4514 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4515 {
4516 	struct drm_device *dev = dev_priv->dev;
4517 
4518 	mutex_lock(&dev_priv->rps.hw_lock);
4519 	if (dev_priv->rps.enabled) {
4520 		if (IS_VALLEYVIEW(dev))
4521 			vlv_set_rps_idle(dev_priv);
4522 		else
4523 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4524 		dev_priv->rps.last_adj = 0;
4525 		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4526 	}
4527 	mutex_unlock(&dev_priv->rps.hw_lock);
4528 
4529 	spin_lock(&dev_priv->rps.client_lock);
4530 	while (!list_empty(&dev_priv->rps.clients))
4531 		list_del_init(dev_priv->rps.clients.next);
4532 	spin_unlock(&dev_priv->rps.client_lock);
4533 }
4534 
gen6_rps_boost(struct drm_i915_private * dev_priv,struct intel_rps_client * rps,unsigned long submitted)4535 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4536 		    struct intel_rps_client *rps,
4537 		    unsigned long submitted)
4538 {
4539 	/* This is intentionally racy! We peek at the state here, then
4540 	 * validate inside the RPS worker.
4541 	 */
4542 	if (!(dev_priv->mm.busy &&
4543 	      dev_priv->rps.enabled &&
4544 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4545 		return;
4546 
4547 	/* Force a RPS boost (and don't count it against the client) if
4548 	 * the GPU is severely congested.
4549 	 */
4550 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4551 		rps = NULL;
4552 
4553 	spin_lock(&dev_priv->rps.client_lock);
4554 	if (rps == NULL || list_empty(&rps->link)) {
4555 		spin_lock_irq(&dev_priv->irq_lock);
4556 		if (dev_priv->rps.interrupts_enabled) {
4557 			dev_priv->rps.client_boost = true;
4558 			queue_work(dev_priv->wq, &dev_priv->rps.work);
4559 		}
4560 		spin_unlock_irq(&dev_priv->irq_lock);
4561 
4562 		if (rps != NULL) {
4563 			list_add(&rps->link, &dev_priv->rps.clients);
4564 			rps->boosts++;
4565 		} else
4566 			dev_priv->rps.boosts++;
4567 	}
4568 	spin_unlock(&dev_priv->rps.client_lock);
4569 }
4570 
intel_set_rps(struct drm_device * dev,u8 val)4571 void intel_set_rps(struct drm_device *dev, u8 val)
4572 {
4573 	if (IS_VALLEYVIEW(dev))
4574 		valleyview_set_rps(dev, val);
4575 	else
4576 		gen6_set_rps(dev, val);
4577 }
4578 
gen9_disable_rps(struct drm_device * dev)4579 static void gen9_disable_rps(struct drm_device *dev)
4580 {
4581 	struct drm_i915_private *dev_priv = dev->dev_private;
4582 
4583 	I915_WRITE(GEN6_RC_CONTROL, 0);
4584 	I915_WRITE(GEN9_PG_ENABLE, 0);
4585 }
4586 
gen6_disable_rps(struct drm_device * dev)4587 static void gen6_disable_rps(struct drm_device *dev)
4588 {
4589 	struct drm_i915_private *dev_priv = dev->dev_private;
4590 
4591 	I915_WRITE(GEN6_RC_CONTROL, 0);
4592 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4593 }
4594 
cherryview_disable_rps(struct drm_device * dev)4595 static void cherryview_disable_rps(struct drm_device *dev)
4596 {
4597 	struct drm_i915_private *dev_priv = dev->dev_private;
4598 
4599 	I915_WRITE(GEN6_RC_CONTROL, 0);
4600 }
4601 
valleyview_disable_rps(struct drm_device * dev)4602 static void valleyview_disable_rps(struct drm_device *dev)
4603 {
4604 	struct drm_i915_private *dev_priv = dev->dev_private;
4605 
4606 	/* we're doing forcewake before Disabling RC6,
4607 	 * This what the BIOS expects when going into suspend */
4608 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4609 
4610 	I915_WRITE(GEN6_RC_CONTROL, 0);
4611 
4612 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4613 }
4614 
intel_print_rc6_info(struct drm_device * dev,u32 mode)4615 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4616 {
4617 	if (IS_VALLEYVIEW(dev)) {
4618 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4619 			mode = GEN6_RC_CTL_RC6_ENABLE;
4620 		else
4621 			mode = 0;
4622 	}
4623 	if (HAS_RC6p(dev))
4624 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4625 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4626 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4627 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4628 
4629 	else
4630 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4631 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4632 }
4633 
sanitize_rc6_option(const struct drm_device * dev,int enable_rc6)4634 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4635 {
4636 	/* No RC6 before Ironlake and code is gone for ilk. */
4637 	if (INTEL_INFO(dev)->gen < 6)
4638 		return 0;
4639 
4640 	/* Respect the kernel parameter if it is set */
4641 	if (enable_rc6 >= 0) {
4642 		int mask;
4643 
4644 		if (HAS_RC6p(dev))
4645 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4646 			       INTEL_RC6pp_ENABLE;
4647 		else
4648 			mask = INTEL_RC6_ENABLE;
4649 
4650 		if ((enable_rc6 & mask) != enable_rc6)
4651 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4652 				      enable_rc6 & mask, enable_rc6, mask);
4653 
4654 		return enable_rc6 & mask;
4655 	}
4656 
4657 	if (IS_IVYBRIDGE(dev))
4658 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4659 
4660 	return INTEL_RC6_ENABLE;
4661 }
4662 
intel_enable_rc6(const struct drm_device * dev)4663 int intel_enable_rc6(const struct drm_device *dev)
4664 {
4665 	return i915.enable_rc6;
4666 }
4667 
gen6_init_rps_frequencies(struct drm_device * dev)4668 static void gen6_init_rps_frequencies(struct drm_device *dev)
4669 {
4670 	struct drm_i915_private *dev_priv = dev->dev_private;
4671 	uint32_t rp_state_cap;
4672 	u32 ddcc_status = 0;
4673 	int ret;
4674 
4675 	/* All of these values are in units of 50MHz */
4676 	dev_priv->rps.cur_freq		= 0;
4677 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4678 	if (IS_BROXTON(dev)) {
4679 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4680 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4681 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4682 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4683 	} else {
4684 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4685 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4686 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4687 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4688 	}
4689 
4690 	/* hw_max = RP0 until we check for overclocking */
4691 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4692 
4693 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4694 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4695 		ret = sandybridge_pcode_read(dev_priv,
4696 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4697 					&ddcc_status);
4698 		if (0 == ret)
4699 			dev_priv->rps.efficient_freq =
4700 				clamp_t(u8,
4701 					((ddcc_status >> 8) & 0xff),
4702 					dev_priv->rps.min_freq,
4703 					dev_priv->rps.max_freq);
4704 	}
4705 
4706 	if (IS_SKYLAKE(dev)) {
4707 		/* Store the frequency values in 16.66 MHZ units, which is
4708 		   the natural hardware unit for SKL */
4709 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4710 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4711 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4712 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4713 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4714 	}
4715 
4716 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4717 
4718 	/* Preserve min/max settings in case of re-init */
4719 	if (dev_priv->rps.max_freq_softlimit == 0)
4720 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4721 
4722 	if (dev_priv->rps.min_freq_softlimit == 0) {
4723 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4724 			dev_priv->rps.min_freq_softlimit =
4725 				max_t(int, dev_priv->rps.efficient_freq,
4726 				      intel_freq_opcode(dev_priv, 450));
4727 		else
4728 			dev_priv->rps.min_freq_softlimit =
4729 				dev_priv->rps.min_freq;
4730 	}
4731 }
4732 
4733 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_enable_rps(struct drm_device * dev)4734 static void gen9_enable_rps(struct drm_device *dev)
4735 {
4736 	struct drm_i915_private *dev_priv = dev->dev_private;
4737 
4738 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4739 
4740 	gen6_init_rps_frequencies(dev);
4741 
4742 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4743 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4744 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4745 		return;
4746 	}
4747 
4748 	/* Program defaults and thresholds for RPS*/
4749 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4750 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4751 
4752 	/* 1 second timeout*/
4753 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4754 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4755 
4756 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4757 
4758 	/* Leaning on the below call to gen6_set_rps to program/setup the
4759 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4760 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4761 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4762 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4763 
4764 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4765 }
4766 
gen9_enable_rc6(struct drm_device * dev)4767 static void gen9_enable_rc6(struct drm_device *dev)
4768 {
4769 	struct drm_i915_private *dev_priv = dev->dev_private;
4770 	struct intel_engine_cs *ring;
4771 	uint32_t rc6_mask = 0;
4772 	int unused;
4773 
4774 	/* 1a: Software RC state - RC0 */
4775 	I915_WRITE(GEN6_RC_STATE, 0);
4776 
4777 	/* 1b: Get forcewake during program sequence. Although the driver
4778 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4779 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4780 
4781 	/* 2a: Disable RC states. */
4782 	I915_WRITE(GEN6_RC_CONTROL, 0);
4783 
4784 	/* 2b: Program RC6 thresholds.*/
4785 
4786 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4787 	if (IS_SKYLAKE(dev))
4788 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4789 	else
4790 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4791 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4792 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4793 	for_each_ring(ring, dev_priv, unused)
4794 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4795 
4796 	if (HAS_GUC_UCODE(dev))
4797 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4798 
4799 	I915_WRITE(GEN6_RC_SLEEP, 0);
4800 
4801 	/* 2c: Program Coarse Power Gating Policies. */
4802 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4803 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4804 
4805 	/* 3a: Enable RC6 */
4806 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4807 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4808 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4809 			"on" : "off");
4810 	/* WaRsUseTimeoutMode */
4811 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4812 	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4813 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4814 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4815 			   GEN7_RC_CTL_TO_MODE |
4816 			   rc6_mask);
4817 	} else {
4818 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4819 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4820 			   GEN6_RC_CTL_EI_MODE(1) |
4821 			   rc6_mask);
4822 	}
4823 
4824 	/*
4825 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4826 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4827 	 */
4828 	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4829 	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4830 		I915_WRITE(GEN9_PG_ENABLE, 0);
4831 	else
4832 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4833 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4834 
4835 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4836 
4837 }
4838 
gen8_enable_rps(struct drm_device * dev)4839 static void gen8_enable_rps(struct drm_device *dev)
4840 {
4841 	struct drm_i915_private *dev_priv = dev->dev_private;
4842 	struct intel_engine_cs *ring;
4843 	uint32_t rc6_mask = 0;
4844 	int unused;
4845 
4846 	/* 1a: Software RC state - RC0 */
4847 	I915_WRITE(GEN6_RC_STATE, 0);
4848 
4849 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4850 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4851 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4852 
4853 	/* 2a: Disable RC states. */
4854 	I915_WRITE(GEN6_RC_CONTROL, 0);
4855 
4856 	/* Initialize rps frequencies */
4857 	gen6_init_rps_frequencies(dev);
4858 
4859 	/* 2b: Program RC6 thresholds.*/
4860 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4861 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4862 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4863 	for_each_ring(ring, dev_priv, unused)
4864 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4865 	I915_WRITE(GEN6_RC_SLEEP, 0);
4866 	if (IS_BROADWELL(dev))
4867 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4868 	else
4869 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4870 
4871 	/* 3: Enable RC6 */
4872 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4873 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4874 	intel_print_rc6_info(dev, rc6_mask);
4875 	if (IS_BROADWELL(dev))
4876 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4877 				GEN7_RC_CTL_TO_MODE |
4878 				rc6_mask);
4879 	else
4880 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4881 				GEN6_RC_CTL_EI_MODE(1) |
4882 				rc6_mask);
4883 
4884 	/* 4 Program defaults and thresholds for RPS*/
4885 	I915_WRITE(GEN6_RPNSWREQ,
4886 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4887 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4888 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4889 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4890 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4891 
4892 	/* Docs recommend 900MHz, and 300 MHz respectively */
4893 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4894 		   dev_priv->rps.max_freq_softlimit << 24 |
4895 		   dev_priv->rps.min_freq_softlimit << 16);
4896 
4897 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4898 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4899 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4900 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4901 
4902 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4903 
4904 	/* 5: Enable RPS */
4905 	I915_WRITE(GEN6_RP_CONTROL,
4906 		   GEN6_RP_MEDIA_TURBO |
4907 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4908 		   GEN6_RP_MEDIA_IS_GFX |
4909 		   GEN6_RP_ENABLE |
4910 		   GEN6_RP_UP_BUSY_AVG |
4911 		   GEN6_RP_DOWN_IDLE_AVG);
4912 
4913 	/* 6: Ring frequency + overclocking (our driver does this later */
4914 
4915 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4916 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4917 
4918 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4919 }
4920 
gen6_enable_rps(struct drm_device * dev)4921 static void gen6_enable_rps(struct drm_device *dev)
4922 {
4923 	struct drm_i915_private *dev_priv = dev->dev_private;
4924 	struct intel_engine_cs *ring;
4925 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4926 	u32 gtfifodbg;
4927 	int rc6_mode;
4928 	int i, ret;
4929 
4930 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4931 
4932 	/* Here begins a magic sequence of register writes to enable
4933 	 * auto-downclocking.
4934 	 *
4935 	 * Perhaps there might be some value in exposing these to
4936 	 * userspace...
4937 	 */
4938 	I915_WRITE(GEN6_RC_STATE, 0);
4939 
4940 	/* Clear the DBG now so we don't confuse earlier errors */
4941 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4942 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4943 		I915_WRITE(GTFIFODBG, gtfifodbg);
4944 	}
4945 
4946 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4947 
4948 	/* Initialize rps frequencies */
4949 	gen6_init_rps_frequencies(dev);
4950 
4951 	/* disable the counters and set deterministic thresholds */
4952 	I915_WRITE(GEN6_RC_CONTROL, 0);
4953 
4954 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4955 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4956 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4957 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4958 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4959 
4960 	for_each_ring(ring, dev_priv, i)
4961 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4962 
4963 	I915_WRITE(GEN6_RC_SLEEP, 0);
4964 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4965 	if (IS_IVYBRIDGE(dev))
4966 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4967 	else
4968 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4969 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4970 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4971 
4972 	/* Check if we are enabling RC6 */
4973 	rc6_mode = intel_enable_rc6(dev_priv->dev);
4974 	if (rc6_mode & INTEL_RC6_ENABLE)
4975 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4976 
4977 	/* We don't use those on Haswell */
4978 	if (!IS_HASWELL(dev)) {
4979 		if (rc6_mode & INTEL_RC6p_ENABLE)
4980 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4981 
4982 		if (rc6_mode & INTEL_RC6pp_ENABLE)
4983 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4984 	}
4985 
4986 	intel_print_rc6_info(dev, rc6_mask);
4987 
4988 	I915_WRITE(GEN6_RC_CONTROL,
4989 		   rc6_mask |
4990 		   GEN6_RC_CTL_EI_MODE(1) |
4991 		   GEN6_RC_CTL_HW_ENABLE);
4992 
4993 	/* Power down if completely idle for over 50ms */
4994 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4995 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4996 
4997 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4998 	if (ret)
4999 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5000 
5001 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5002 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5003 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5004 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5005 				 (pcu_mbox & 0xff) * 50);
5006 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5007 	}
5008 
5009 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5010 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5011 
5012 	rc6vids = 0;
5013 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5014 	if (IS_GEN6(dev) && ret) {
5015 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5016 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5017 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5018 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5019 		rc6vids &= 0xffff00;
5020 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5021 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5022 		if (ret)
5023 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5024 	}
5025 
5026 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5027 }
5028 
__gen6_update_ring_freq(struct drm_device * dev)5029 static void __gen6_update_ring_freq(struct drm_device *dev)
5030 {
5031 	struct drm_i915_private *dev_priv = dev->dev_private;
5032 	int min_freq = 15;
5033 	unsigned int gpu_freq;
5034 	unsigned int max_ia_freq, min_ring_freq;
5035 	unsigned int max_gpu_freq, min_gpu_freq;
5036 	int scaling_factor = 180;
5037 	struct cpufreq_policy *policy;
5038 
5039 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5040 
5041 	policy = cpufreq_cpu_get(0);
5042 	if (policy) {
5043 		max_ia_freq = policy->cpuinfo.max_freq;
5044 		cpufreq_cpu_put(policy);
5045 	} else {
5046 		/*
5047 		 * Default to measured freq if none found, PCU will ensure we
5048 		 * don't go over
5049 		 */
5050 		max_ia_freq = tsc_khz;
5051 	}
5052 
5053 	/* Convert from kHz to MHz */
5054 	max_ia_freq /= 1000;
5055 
5056 	min_ring_freq = I915_READ(DCLK) & 0xf;
5057 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5058 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5059 
5060 	if (IS_SKYLAKE(dev)) {
5061 		/* Convert GT frequency to 50 HZ units */
5062 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5063 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5064 	} else {
5065 		min_gpu_freq = dev_priv->rps.min_freq;
5066 		max_gpu_freq = dev_priv->rps.max_freq;
5067 	}
5068 
5069 	/*
5070 	 * For each potential GPU frequency, load a ring frequency we'd like
5071 	 * to use for memory access.  We do this by specifying the IA frequency
5072 	 * the PCU should use as a reference to determine the ring frequency.
5073 	 */
5074 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5075 		int diff = max_gpu_freq - gpu_freq;
5076 		unsigned int ia_freq = 0, ring_freq = 0;
5077 
5078 		if (IS_SKYLAKE(dev)) {
5079 			/*
5080 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5081 			 * No floor required for ring frequency on SKL.
5082 			 */
5083 			ring_freq = gpu_freq;
5084 		} else if (INTEL_INFO(dev)->gen >= 8) {
5085 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5086 			ring_freq = max(min_ring_freq, gpu_freq);
5087 		} else if (IS_HASWELL(dev)) {
5088 			ring_freq = mult_frac(gpu_freq, 5, 4);
5089 			ring_freq = max(min_ring_freq, ring_freq);
5090 			/* leave ia_freq as the default, chosen by cpufreq */
5091 		} else {
5092 			/* On older processors, there is no separate ring
5093 			 * clock domain, so in order to boost the bandwidth
5094 			 * of the ring, we need to upclock the CPU (ia_freq).
5095 			 *
5096 			 * For GPU frequencies less than 750MHz,
5097 			 * just use the lowest ring freq.
5098 			 */
5099 			if (gpu_freq < min_freq)
5100 				ia_freq = 800;
5101 			else
5102 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5103 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5104 		}
5105 
5106 		sandybridge_pcode_write(dev_priv,
5107 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5108 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5109 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5110 					gpu_freq);
5111 	}
5112 }
5113 
gen6_update_ring_freq(struct drm_device * dev)5114 void gen6_update_ring_freq(struct drm_device *dev)
5115 {
5116 	struct drm_i915_private *dev_priv = dev->dev_private;
5117 
5118 	if (!HAS_CORE_RING_FREQ(dev))
5119 		return;
5120 
5121 	mutex_lock(&dev_priv->rps.hw_lock);
5122 	__gen6_update_ring_freq(dev);
5123 	mutex_unlock(&dev_priv->rps.hw_lock);
5124 }
5125 
cherryview_rps_max_freq(struct drm_i915_private * dev_priv)5126 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5127 {
5128 	struct drm_device *dev = dev_priv->dev;
5129 	u32 val, rp0;
5130 
5131 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5132 
5133 	switch (INTEL_INFO(dev)->eu_total) {
5134 	case 8:
5135 		/* (2 * 4) config */
5136 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5137 		break;
5138 	case 12:
5139 		/* (2 * 6) config */
5140 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5141 		break;
5142 	case 16:
5143 		/* (2 * 8) config */
5144 	default:
5145 		/* Setting (2 * 8) Min RP0 for any other combination */
5146 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5147 		break;
5148 	}
5149 
5150 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5151 
5152 	return rp0;
5153 }
5154 
cherryview_rps_rpe_freq(struct drm_i915_private * dev_priv)5155 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5156 {
5157 	u32 val, rpe;
5158 
5159 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5160 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5161 
5162 	return rpe;
5163 }
5164 
cherryview_rps_guar_freq(struct drm_i915_private * dev_priv)5165 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5166 {
5167 	u32 val, rp1;
5168 
5169 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5170 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5171 
5172 	return rp1;
5173 }
5174 
valleyview_rps_guar_freq(struct drm_i915_private * dev_priv)5175 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5176 {
5177 	u32 val, rp1;
5178 
5179 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5180 
5181 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5182 
5183 	return rp1;
5184 }
5185 
valleyview_rps_max_freq(struct drm_i915_private * dev_priv)5186 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5187 {
5188 	u32 val, rp0;
5189 
5190 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5191 
5192 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5193 	/* Clamp to max */
5194 	rp0 = min_t(u32, rp0, 0xea);
5195 
5196 	return rp0;
5197 }
5198 
valleyview_rps_rpe_freq(struct drm_i915_private * dev_priv)5199 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5200 {
5201 	u32 val, rpe;
5202 
5203 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5204 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5205 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5206 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5207 
5208 	return rpe;
5209 }
5210 
valleyview_rps_min_freq(struct drm_i915_private * dev_priv)5211 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5212 {
5213 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5214 }
5215 
5216 /* Check that the pctx buffer wasn't move under us. */
valleyview_check_pctx(struct drm_i915_private * dev_priv)5217 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5218 {
5219 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5220 
5221 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5222 			     dev_priv->vlv_pctx->stolen->start);
5223 }
5224 
5225 
5226 /* Check that the pcbr address is not empty. */
cherryview_check_pctx(struct drm_i915_private * dev_priv)5227 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5228 {
5229 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5230 
5231 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5232 }
5233 
cherryview_setup_pctx(struct drm_device * dev)5234 static void cherryview_setup_pctx(struct drm_device *dev)
5235 {
5236 	struct drm_i915_private *dev_priv = dev->dev_private;
5237 	unsigned long pctx_paddr, paddr;
5238 	struct i915_gtt *gtt = &dev_priv->gtt;
5239 	u32 pcbr;
5240 	int pctx_size = 32*1024;
5241 
5242 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5243 
5244 	pcbr = I915_READ(VLV_PCBR);
5245 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5246 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5247 		paddr = (dev_priv->mm.stolen_base +
5248 			 (gtt->stolen_size - pctx_size));
5249 
5250 		pctx_paddr = (paddr & (~4095));
5251 		I915_WRITE(VLV_PCBR, pctx_paddr);
5252 	}
5253 
5254 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5255 }
5256 
valleyview_setup_pctx(struct drm_device * dev)5257 static void valleyview_setup_pctx(struct drm_device *dev)
5258 {
5259 	struct drm_i915_private *dev_priv = dev->dev_private;
5260 	struct drm_i915_gem_object *pctx;
5261 	unsigned long pctx_paddr;
5262 	u32 pcbr;
5263 	int pctx_size = 24*1024;
5264 
5265 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5266 
5267 	pcbr = I915_READ(VLV_PCBR);
5268 	if (pcbr) {
5269 		/* BIOS set it up already, grab the pre-alloc'd space */
5270 		int pcbr_offset;
5271 
5272 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5273 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5274 								      pcbr_offset,
5275 								      I915_GTT_OFFSET_NONE,
5276 								      pctx_size);
5277 		goto out;
5278 	}
5279 
5280 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5281 
5282 	/*
5283 	 * From the Gunit register HAS:
5284 	 * The Gfx driver is expected to program this register and ensure
5285 	 * proper allocation within Gfx stolen memory.  For example, this
5286 	 * register should be programmed such than the PCBR range does not
5287 	 * overlap with other ranges, such as the frame buffer, protected
5288 	 * memory, or any other relevant ranges.
5289 	 */
5290 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5291 	if (!pctx) {
5292 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5293 		return;
5294 	}
5295 
5296 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5297 	I915_WRITE(VLV_PCBR, pctx_paddr);
5298 
5299 out:
5300 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5301 	dev_priv->vlv_pctx = pctx;
5302 }
5303 
valleyview_cleanup_pctx(struct drm_device * dev)5304 static void valleyview_cleanup_pctx(struct drm_device *dev)
5305 {
5306 	struct drm_i915_private *dev_priv = dev->dev_private;
5307 
5308 	if (WARN_ON(!dev_priv->vlv_pctx))
5309 		return;
5310 
5311 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5312 	dev_priv->vlv_pctx = NULL;
5313 }
5314 
valleyview_init_gt_powersave(struct drm_device * dev)5315 static void valleyview_init_gt_powersave(struct drm_device *dev)
5316 {
5317 	struct drm_i915_private *dev_priv = dev->dev_private;
5318 	u32 val;
5319 
5320 	valleyview_setup_pctx(dev);
5321 
5322 	mutex_lock(&dev_priv->rps.hw_lock);
5323 
5324 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5325 	switch ((val >> 6) & 3) {
5326 	case 0:
5327 	case 1:
5328 		dev_priv->mem_freq = 800;
5329 		break;
5330 	case 2:
5331 		dev_priv->mem_freq = 1066;
5332 		break;
5333 	case 3:
5334 		dev_priv->mem_freq = 1333;
5335 		break;
5336 	}
5337 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5338 
5339 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5340 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5341 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5342 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5343 			 dev_priv->rps.max_freq);
5344 
5345 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5346 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5347 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5348 			 dev_priv->rps.efficient_freq);
5349 
5350 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5351 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5352 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5353 			 dev_priv->rps.rp1_freq);
5354 
5355 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5356 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5357 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5358 			 dev_priv->rps.min_freq);
5359 
5360 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5361 
5362 	/* Preserve min/max settings in case of re-init */
5363 	if (dev_priv->rps.max_freq_softlimit == 0)
5364 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5365 
5366 	if (dev_priv->rps.min_freq_softlimit == 0)
5367 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5368 
5369 	mutex_unlock(&dev_priv->rps.hw_lock);
5370 }
5371 
cherryview_init_gt_powersave(struct drm_device * dev)5372 static void cherryview_init_gt_powersave(struct drm_device *dev)
5373 {
5374 	struct drm_i915_private *dev_priv = dev->dev_private;
5375 	u32 val;
5376 
5377 	cherryview_setup_pctx(dev);
5378 
5379 	mutex_lock(&dev_priv->rps.hw_lock);
5380 
5381 	mutex_lock(&dev_priv->sb_lock);
5382 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5383 	mutex_unlock(&dev_priv->sb_lock);
5384 
5385 	switch ((val >> 2) & 0x7) {
5386 	case 3:
5387 		dev_priv->mem_freq = 2000;
5388 		break;
5389 	default:
5390 		dev_priv->mem_freq = 1600;
5391 		break;
5392 	}
5393 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5394 
5395 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5396 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5397 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5398 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5399 			 dev_priv->rps.max_freq);
5400 
5401 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5402 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5403 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5404 			 dev_priv->rps.efficient_freq);
5405 
5406 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5407 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5408 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5409 			 dev_priv->rps.rp1_freq);
5410 
5411 	/* PUnit validated range is only [RPe, RP0] */
5412 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5413 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5414 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5415 			 dev_priv->rps.min_freq);
5416 
5417 	WARN_ONCE((dev_priv->rps.max_freq |
5418 		   dev_priv->rps.efficient_freq |
5419 		   dev_priv->rps.rp1_freq |
5420 		   dev_priv->rps.min_freq) & 1,
5421 		  "Odd GPU freq values\n");
5422 
5423 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5424 
5425 	/* Preserve min/max settings in case of re-init */
5426 	if (dev_priv->rps.max_freq_softlimit == 0)
5427 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5428 
5429 	if (dev_priv->rps.min_freq_softlimit == 0)
5430 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5431 
5432 	mutex_unlock(&dev_priv->rps.hw_lock);
5433 }
5434 
valleyview_cleanup_gt_powersave(struct drm_device * dev)5435 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5436 {
5437 	valleyview_cleanup_pctx(dev);
5438 }
5439 
cherryview_enable_rps(struct drm_device * dev)5440 static void cherryview_enable_rps(struct drm_device *dev)
5441 {
5442 	struct drm_i915_private *dev_priv = dev->dev_private;
5443 	struct intel_engine_cs *ring;
5444 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5445 	int i;
5446 
5447 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5448 
5449 	gtfifodbg = I915_READ(GTFIFODBG);
5450 	if (gtfifodbg) {
5451 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5452 				 gtfifodbg);
5453 		I915_WRITE(GTFIFODBG, gtfifodbg);
5454 	}
5455 
5456 	cherryview_check_pctx(dev_priv);
5457 
5458 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5459 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5460 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5461 
5462 	/*  Disable RC states. */
5463 	I915_WRITE(GEN6_RC_CONTROL, 0);
5464 
5465 	/* 2a: Program RC6 thresholds.*/
5466 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5467 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5468 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5469 
5470 	for_each_ring(ring, dev_priv, i)
5471 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5472 	I915_WRITE(GEN6_RC_SLEEP, 0);
5473 
5474 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5475 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5476 
5477 	/* allows RC6 residency counter to work */
5478 	I915_WRITE(VLV_COUNTER_CONTROL,
5479 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5480 				      VLV_MEDIA_RC6_COUNT_EN |
5481 				      VLV_RENDER_RC6_COUNT_EN));
5482 
5483 	/* For now we assume BIOS is allocating and populating the PCBR  */
5484 	pcbr = I915_READ(VLV_PCBR);
5485 
5486 	/* 3: Enable RC6 */
5487 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5488 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5489 		rc6_mode = GEN7_RC_CTL_TO_MODE;
5490 
5491 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5492 
5493 	/* 4 Program defaults and thresholds for RPS*/
5494 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5495 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5496 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5497 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5498 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5499 
5500 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5501 
5502 	/* 5: Enable RPS */
5503 	I915_WRITE(GEN6_RP_CONTROL,
5504 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5505 		   GEN6_RP_MEDIA_IS_GFX |
5506 		   GEN6_RP_ENABLE |
5507 		   GEN6_RP_UP_BUSY_AVG |
5508 		   GEN6_RP_DOWN_IDLE_AVG);
5509 
5510 	/* Setting Fixed Bias */
5511 	val = VLV_OVERRIDE_EN |
5512 		  VLV_SOC_TDP_EN |
5513 		  CHV_BIAS_CPU_50_SOC_50;
5514 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5515 
5516 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5517 
5518 	/* RPS code assumes GPLL is used */
5519 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5520 
5521 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5522 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5523 
5524 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5525 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5526 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5527 			 dev_priv->rps.cur_freq);
5528 
5529 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5530 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5531 			 dev_priv->rps.efficient_freq);
5532 
5533 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5534 
5535 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5536 }
5537 
valleyview_enable_rps(struct drm_device * dev)5538 static void valleyview_enable_rps(struct drm_device *dev)
5539 {
5540 	struct drm_i915_private *dev_priv = dev->dev_private;
5541 	struct intel_engine_cs *ring;
5542 	u32 gtfifodbg, val, rc6_mode = 0;
5543 	int i;
5544 
5545 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5546 
5547 	valleyview_check_pctx(dev_priv);
5548 
5549 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5550 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5551 				 gtfifodbg);
5552 		I915_WRITE(GTFIFODBG, gtfifodbg);
5553 	}
5554 
5555 	/* If VLV, Forcewake all wells, else re-direct to regular path */
5556 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5557 
5558 	/*  Disable RC states. */
5559 	I915_WRITE(GEN6_RC_CONTROL, 0);
5560 
5561 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5562 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5563 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5564 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5565 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5566 
5567 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5568 
5569 	I915_WRITE(GEN6_RP_CONTROL,
5570 		   GEN6_RP_MEDIA_TURBO |
5571 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5572 		   GEN6_RP_MEDIA_IS_GFX |
5573 		   GEN6_RP_ENABLE |
5574 		   GEN6_RP_UP_BUSY_AVG |
5575 		   GEN6_RP_DOWN_IDLE_CONT);
5576 
5577 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5578 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5579 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5580 
5581 	for_each_ring(ring, dev_priv, i)
5582 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5583 
5584 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5585 
5586 	/* allows RC6 residency counter to work */
5587 	I915_WRITE(VLV_COUNTER_CONTROL,
5588 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5589 				      VLV_RENDER_RC0_COUNT_EN |
5590 				      VLV_MEDIA_RC6_COUNT_EN |
5591 				      VLV_RENDER_RC6_COUNT_EN));
5592 
5593 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5594 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5595 
5596 	intel_print_rc6_info(dev, rc6_mode);
5597 
5598 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5599 
5600 	/* Setting Fixed Bias */
5601 	val = VLV_OVERRIDE_EN |
5602 		  VLV_SOC_TDP_EN |
5603 		  VLV_BIAS_CPU_125_SOC_875;
5604 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5605 
5606 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5607 
5608 	/* RPS code assumes GPLL is used */
5609 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5610 
5611 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5612 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5613 
5614 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5615 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5616 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5617 			 dev_priv->rps.cur_freq);
5618 
5619 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5620 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5621 			 dev_priv->rps.efficient_freq);
5622 
5623 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5624 
5625 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5626 }
5627 
intel_pxfreq(u32 vidfreq)5628 static unsigned long intel_pxfreq(u32 vidfreq)
5629 {
5630 	unsigned long freq;
5631 	int div = (vidfreq & 0x3f0000) >> 16;
5632 	int post = (vidfreq & 0x3000) >> 12;
5633 	int pre = (vidfreq & 0x7);
5634 
5635 	if (!pre)
5636 		return 0;
5637 
5638 	freq = ((div * 133333) / ((1<<post) * pre));
5639 
5640 	return freq;
5641 }
5642 
5643 static const struct cparams {
5644 	u16 i;
5645 	u16 t;
5646 	u16 m;
5647 	u16 c;
5648 } cparams[] = {
5649 	{ 1, 1333, 301, 28664 },
5650 	{ 1, 1066, 294, 24460 },
5651 	{ 1, 800, 294, 25192 },
5652 	{ 0, 1333, 276, 27605 },
5653 	{ 0, 1066, 276, 27605 },
5654 	{ 0, 800, 231, 23784 },
5655 };
5656 
__i915_chipset_val(struct drm_i915_private * dev_priv)5657 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5658 {
5659 	u64 total_count, diff, ret;
5660 	u32 count1, count2, count3, m = 0, c = 0;
5661 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5662 	int i;
5663 
5664 	assert_spin_locked(&mchdev_lock);
5665 
5666 	diff1 = now - dev_priv->ips.last_time1;
5667 
5668 	/* Prevent division-by-zero if we are asking too fast.
5669 	 * Also, we don't get interesting results if we are polling
5670 	 * faster than once in 10ms, so just return the saved value
5671 	 * in such cases.
5672 	 */
5673 	if (diff1 <= 10)
5674 		return dev_priv->ips.chipset_power;
5675 
5676 	count1 = I915_READ(DMIEC);
5677 	count2 = I915_READ(DDREC);
5678 	count3 = I915_READ(CSIEC);
5679 
5680 	total_count = count1 + count2 + count3;
5681 
5682 	/* FIXME: handle per-counter overflow */
5683 	if (total_count < dev_priv->ips.last_count1) {
5684 		diff = ~0UL - dev_priv->ips.last_count1;
5685 		diff += total_count;
5686 	} else {
5687 		diff = total_count - dev_priv->ips.last_count1;
5688 	}
5689 
5690 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5691 		if (cparams[i].i == dev_priv->ips.c_m &&
5692 		    cparams[i].t == dev_priv->ips.r_t) {
5693 			m = cparams[i].m;
5694 			c = cparams[i].c;
5695 			break;
5696 		}
5697 	}
5698 
5699 	diff = div_u64(diff, diff1);
5700 	ret = ((m * diff) + c);
5701 	ret = div_u64(ret, 10);
5702 
5703 	dev_priv->ips.last_count1 = total_count;
5704 	dev_priv->ips.last_time1 = now;
5705 
5706 	dev_priv->ips.chipset_power = ret;
5707 
5708 	return ret;
5709 }
5710 
i915_chipset_val(struct drm_i915_private * dev_priv)5711 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5712 {
5713 	struct drm_device *dev = dev_priv->dev;
5714 	unsigned long val;
5715 
5716 	if (INTEL_INFO(dev)->gen != 5)
5717 		return 0;
5718 
5719 	spin_lock_irq(&mchdev_lock);
5720 
5721 	val = __i915_chipset_val(dev_priv);
5722 
5723 	spin_unlock_irq(&mchdev_lock);
5724 
5725 	return val;
5726 }
5727 
i915_mch_val(struct drm_i915_private * dev_priv)5728 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5729 {
5730 	unsigned long m, x, b;
5731 	u32 tsfs;
5732 
5733 	tsfs = I915_READ(TSFS);
5734 
5735 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5736 	x = I915_READ8(TR1);
5737 
5738 	b = tsfs & TSFS_INTR_MASK;
5739 
5740 	return ((m * x) / 127) - b;
5741 }
5742 
_pxvid_to_vd(u8 pxvid)5743 static int _pxvid_to_vd(u8 pxvid)
5744 {
5745 	if (pxvid == 0)
5746 		return 0;
5747 
5748 	if (pxvid >= 8 && pxvid < 31)
5749 		pxvid = 31;
5750 
5751 	return (pxvid + 2) * 125;
5752 }
5753 
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)5754 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5755 {
5756 	struct drm_device *dev = dev_priv->dev;
5757 	const int vd = _pxvid_to_vd(pxvid);
5758 	const int vm = vd - 1125;
5759 
5760 	if (INTEL_INFO(dev)->is_mobile)
5761 		return vm > 0 ? vm : 0;
5762 
5763 	return vd;
5764 }
5765 
__i915_update_gfx_val(struct drm_i915_private * dev_priv)5766 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5767 {
5768 	u64 now, diff, diffms;
5769 	u32 count;
5770 
5771 	assert_spin_locked(&mchdev_lock);
5772 
5773 	now = ktime_get_raw_ns();
5774 	diffms = now - dev_priv->ips.last_time2;
5775 	do_div(diffms, NSEC_PER_MSEC);
5776 
5777 	/* Don't divide by 0 */
5778 	if (!diffms)
5779 		return;
5780 
5781 	count = I915_READ(GFXEC);
5782 
5783 	if (count < dev_priv->ips.last_count2) {
5784 		diff = ~0UL - dev_priv->ips.last_count2;
5785 		diff += count;
5786 	} else {
5787 		diff = count - dev_priv->ips.last_count2;
5788 	}
5789 
5790 	dev_priv->ips.last_count2 = count;
5791 	dev_priv->ips.last_time2 = now;
5792 
5793 	/* More magic constants... */
5794 	diff = diff * 1181;
5795 	diff = div_u64(diff, diffms * 10);
5796 	dev_priv->ips.gfx_power = diff;
5797 }
5798 
i915_update_gfx_val(struct drm_i915_private * dev_priv)5799 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5800 {
5801 	struct drm_device *dev = dev_priv->dev;
5802 
5803 	if (INTEL_INFO(dev)->gen != 5)
5804 		return;
5805 
5806 	spin_lock_irq(&mchdev_lock);
5807 
5808 	__i915_update_gfx_val(dev_priv);
5809 
5810 	spin_unlock_irq(&mchdev_lock);
5811 }
5812 
__i915_gfx_val(struct drm_i915_private * dev_priv)5813 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5814 {
5815 	unsigned long t, corr, state1, corr2, state2;
5816 	u32 pxvid, ext_v;
5817 
5818 	assert_spin_locked(&mchdev_lock);
5819 
5820 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5821 	pxvid = (pxvid >> 24) & 0x7f;
5822 	ext_v = pvid_to_extvid(dev_priv, pxvid);
5823 
5824 	state1 = ext_v;
5825 
5826 	t = i915_mch_val(dev_priv);
5827 
5828 	/* Revel in the empirically derived constants */
5829 
5830 	/* Correction factor in 1/100000 units */
5831 	if (t > 80)
5832 		corr = ((t * 2349) + 135940);
5833 	else if (t >= 50)
5834 		corr = ((t * 964) + 29317);
5835 	else /* < 50 */
5836 		corr = ((t * 301) + 1004);
5837 
5838 	corr = corr * ((150142 * state1) / 10000 - 78642);
5839 	corr /= 100000;
5840 	corr2 = (corr * dev_priv->ips.corr);
5841 
5842 	state2 = (corr2 * state1) / 10000;
5843 	state2 /= 100; /* convert to mW */
5844 
5845 	__i915_update_gfx_val(dev_priv);
5846 
5847 	return dev_priv->ips.gfx_power + state2;
5848 }
5849 
i915_gfx_val(struct drm_i915_private * dev_priv)5850 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5851 {
5852 	struct drm_device *dev = dev_priv->dev;
5853 	unsigned long val;
5854 
5855 	if (INTEL_INFO(dev)->gen != 5)
5856 		return 0;
5857 
5858 	spin_lock_irq(&mchdev_lock);
5859 
5860 	val = __i915_gfx_val(dev_priv);
5861 
5862 	spin_unlock_irq(&mchdev_lock);
5863 
5864 	return val;
5865 }
5866 
5867 /**
5868  * i915_read_mch_val - return value for IPS use
5869  *
5870  * Calculate and return a value for the IPS driver to use when deciding whether
5871  * we have thermal and power headroom to increase CPU or GPU power budget.
5872  */
i915_read_mch_val(void)5873 unsigned long i915_read_mch_val(void)
5874 {
5875 	struct drm_i915_private *dev_priv;
5876 	unsigned long chipset_val, graphics_val, ret = 0;
5877 
5878 	spin_lock_irq(&mchdev_lock);
5879 	if (!i915_mch_dev)
5880 		goto out_unlock;
5881 	dev_priv = i915_mch_dev;
5882 
5883 	chipset_val = __i915_chipset_val(dev_priv);
5884 	graphics_val = __i915_gfx_val(dev_priv);
5885 
5886 	ret = chipset_val + graphics_val;
5887 
5888 out_unlock:
5889 	spin_unlock_irq(&mchdev_lock);
5890 
5891 	return ret;
5892 }
5893 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5894 
5895 /**
5896  * i915_gpu_raise - raise GPU frequency limit
5897  *
5898  * Raise the limit; IPS indicates we have thermal headroom.
5899  */
i915_gpu_raise(void)5900 bool i915_gpu_raise(void)
5901 {
5902 	struct drm_i915_private *dev_priv;
5903 	bool ret = true;
5904 
5905 	spin_lock_irq(&mchdev_lock);
5906 	if (!i915_mch_dev) {
5907 		ret = false;
5908 		goto out_unlock;
5909 	}
5910 	dev_priv = i915_mch_dev;
5911 
5912 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5913 		dev_priv->ips.max_delay--;
5914 
5915 out_unlock:
5916 	spin_unlock_irq(&mchdev_lock);
5917 
5918 	return ret;
5919 }
5920 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5921 
5922 /**
5923  * i915_gpu_lower - lower GPU frequency limit
5924  *
5925  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5926  * frequency maximum.
5927  */
i915_gpu_lower(void)5928 bool i915_gpu_lower(void)
5929 {
5930 	struct drm_i915_private *dev_priv;
5931 	bool ret = true;
5932 
5933 	spin_lock_irq(&mchdev_lock);
5934 	if (!i915_mch_dev) {
5935 		ret = false;
5936 		goto out_unlock;
5937 	}
5938 	dev_priv = i915_mch_dev;
5939 
5940 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5941 		dev_priv->ips.max_delay++;
5942 
5943 out_unlock:
5944 	spin_unlock_irq(&mchdev_lock);
5945 
5946 	return ret;
5947 }
5948 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5949 
5950 /**
5951  * i915_gpu_busy - indicate GPU business to IPS
5952  *
5953  * Tell the IPS driver whether or not the GPU is busy.
5954  */
i915_gpu_busy(void)5955 bool i915_gpu_busy(void)
5956 {
5957 	struct drm_i915_private *dev_priv;
5958 	struct intel_engine_cs *ring;
5959 	bool ret = false;
5960 	int i;
5961 
5962 	spin_lock_irq(&mchdev_lock);
5963 	if (!i915_mch_dev)
5964 		goto out_unlock;
5965 	dev_priv = i915_mch_dev;
5966 
5967 	for_each_ring(ring, dev_priv, i)
5968 		ret |= !list_empty(&ring->request_list);
5969 
5970 out_unlock:
5971 	spin_unlock_irq(&mchdev_lock);
5972 
5973 	return ret;
5974 }
5975 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5976 
5977 /**
5978  * i915_gpu_turbo_disable - disable graphics turbo
5979  *
5980  * Disable graphics turbo by resetting the max frequency and setting the
5981  * current frequency to the default.
5982  */
i915_gpu_turbo_disable(void)5983 bool i915_gpu_turbo_disable(void)
5984 {
5985 	struct drm_i915_private *dev_priv;
5986 	bool ret = true;
5987 
5988 	spin_lock_irq(&mchdev_lock);
5989 	if (!i915_mch_dev) {
5990 		ret = false;
5991 		goto out_unlock;
5992 	}
5993 	dev_priv = i915_mch_dev;
5994 
5995 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5996 
5997 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5998 		ret = false;
5999 
6000 out_unlock:
6001 	spin_unlock_irq(&mchdev_lock);
6002 
6003 	return ret;
6004 }
6005 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6006 
6007 /**
6008  * Tells the intel_ips driver that the i915 driver is now loaded, if
6009  * IPS got loaded first.
6010  *
6011  * This awkward dance is so that neither module has to depend on the
6012  * other in order for IPS to do the appropriate communication of
6013  * GPU turbo limits to i915.
6014  */
6015 static void
ips_ping_for_i915_load(void)6016 ips_ping_for_i915_load(void)
6017 {
6018 	void (*link)(void);
6019 
6020 	link = symbol_get(ips_link_to_i915_driver);
6021 	if (link) {
6022 		link();
6023 		symbol_put(ips_link_to_i915_driver);
6024 	}
6025 }
6026 
intel_gpu_ips_init(struct drm_i915_private * dev_priv)6027 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6028 {
6029 	/* We only register the i915 ips part with intel-ips once everything is
6030 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6031 	spin_lock_irq(&mchdev_lock);
6032 	i915_mch_dev = dev_priv;
6033 	spin_unlock_irq(&mchdev_lock);
6034 
6035 	ips_ping_for_i915_load();
6036 }
6037 
intel_gpu_ips_teardown(void)6038 void intel_gpu_ips_teardown(void)
6039 {
6040 	spin_lock_irq(&mchdev_lock);
6041 	i915_mch_dev = NULL;
6042 	spin_unlock_irq(&mchdev_lock);
6043 }
6044 
intel_init_emon(struct drm_device * dev)6045 static void intel_init_emon(struct drm_device *dev)
6046 {
6047 	struct drm_i915_private *dev_priv = dev->dev_private;
6048 	u32 lcfuse;
6049 	u8 pxw[16];
6050 	int i;
6051 
6052 	/* Disable to program */
6053 	I915_WRITE(ECR, 0);
6054 	POSTING_READ(ECR);
6055 
6056 	/* Program energy weights for various events */
6057 	I915_WRITE(SDEW, 0x15040d00);
6058 	I915_WRITE(CSIEW0, 0x007f0000);
6059 	I915_WRITE(CSIEW1, 0x1e220004);
6060 	I915_WRITE(CSIEW2, 0x04000004);
6061 
6062 	for (i = 0; i < 5; i++)
6063 		I915_WRITE(PEW(i), 0);
6064 	for (i = 0; i < 3; i++)
6065 		I915_WRITE(DEW(i), 0);
6066 
6067 	/* Program P-state weights to account for frequency power adjustment */
6068 	for (i = 0; i < 16; i++) {
6069 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6070 		unsigned long freq = intel_pxfreq(pxvidfreq);
6071 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6072 			PXVFREQ_PX_SHIFT;
6073 		unsigned long val;
6074 
6075 		val = vid * vid;
6076 		val *= (freq / 1000);
6077 		val *= 255;
6078 		val /= (127*127*900);
6079 		if (val > 0xff)
6080 			DRM_ERROR("bad pxval: %ld\n", val);
6081 		pxw[i] = val;
6082 	}
6083 	/* Render standby states get 0 weight */
6084 	pxw[14] = 0;
6085 	pxw[15] = 0;
6086 
6087 	for (i = 0; i < 4; i++) {
6088 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6089 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6090 		I915_WRITE(PXW(i), val);
6091 	}
6092 
6093 	/* Adjust magic regs to magic values (more experimental results) */
6094 	I915_WRITE(OGW0, 0);
6095 	I915_WRITE(OGW1, 0);
6096 	I915_WRITE(EG0, 0x00007f00);
6097 	I915_WRITE(EG1, 0x0000000e);
6098 	I915_WRITE(EG2, 0x000e0000);
6099 	I915_WRITE(EG3, 0x68000300);
6100 	I915_WRITE(EG4, 0x42000000);
6101 	I915_WRITE(EG5, 0x00140031);
6102 	I915_WRITE(EG6, 0);
6103 	I915_WRITE(EG7, 0);
6104 
6105 	for (i = 0; i < 8; i++)
6106 		I915_WRITE(PXWL(i), 0);
6107 
6108 	/* Enable PMON + select events */
6109 	I915_WRITE(ECR, 0x80000019);
6110 
6111 	lcfuse = I915_READ(LCFUSE02);
6112 
6113 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6114 }
6115 
intel_init_gt_powersave(struct drm_device * dev)6116 void intel_init_gt_powersave(struct drm_device *dev)
6117 {
6118 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6119 
6120 	if (IS_CHERRYVIEW(dev))
6121 		cherryview_init_gt_powersave(dev);
6122 	else if (IS_VALLEYVIEW(dev))
6123 		valleyview_init_gt_powersave(dev);
6124 }
6125 
intel_cleanup_gt_powersave(struct drm_device * dev)6126 void intel_cleanup_gt_powersave(struct drm_device *dev)
6127 {
6128 	if (IS_CHERRYVIEW(dev))
6129 		return;
6130 	else if (IS_VALLEYVIEW(dev))
6131 		valleyview_cleanup_gt_powersave(dev);
6132 }
6133 
gen6_suspend_rps(struct drm_device * dev)6134 static void gen6_suspend_rps(struct drm_device *dev)
6135 {
6136 	struct drm_i915_private *dev_priv = dev->dev_private;
6137 
6138 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6139 
6140 	gen6_disable_rps_interrupts(dev);
6141 }
6142 
6143 /**
6144  * intel_suspend_gt_powersave - suspend PM work and helper threads
6145  * @dev: drm device
6146  *
6147  * We don't want to disable RC6 or other features here, we just want
6148  * to make sure any work we've queued has finished and won't bother
6149  * us while we're suspended.
6150  */
intel_suspend_gt_powersave(struct drm_device * dev)6151 void intel_suspend_gt_powersave(struct drm_device *dev)
6152 {
6153 	struct drm_i915_private *dev_priv = dev->dev_private;
6154 
6155 	if (INTEL_INFO(dev)->gen < 6)
6156 		return;
6157 
6158 	gen6_suspend_rps(dev);
6159 
6160 	/* Force GPU to min freq during suspend */
6161 	gen6_rps_idle(dev_priv);
6162 }
6163 
intel_disable_gt_powersave(struct drm_device * dev)6164 void intel_disable_gt_powersave(struct drm_device *dev)
6165 {
6166 	struct drm_i915_private *dev_priv = dev->dev_private;
6167 
6168 	if (IS_IRONLAKE_M(dev)) {
6169 		ironlake_disable_drps(dev);
6170 	} else if (INTEL_INFO(dev)->gen >= 6) {
6171 		intel_suspend_gt_powersave(dev);
6172 
6173 		mutex_lock(&dev_priv->rps.hw_lock);
6174 		if (INTEL_INFO(dev)->gen >= 9)
6175 			gen9_disable_rps(dev);
6176 		else if (IS_CHERRYVIEW(dev))
6177 			cherryview_disable_rps(dev);
6178 		else if (IS_VALLEYVIEW(dev))
6179 			valleyview_disable_rps(dev);
6180 		else
6181 			gen6_disable_rps(dev);
6182 
6183 		dev_priv->rps.enabled = false;
6184 		mutex_unlock(&dev_priv->rps.hw_lock);
6185 	}
6186 }
6187 
intel_gen6_powersave_work(struct work_struct * work)6188 static void intel_gen6_powersave_work(struct work_struct *work)
6189 {
6190 	struct drm_i915_private *dev_priv =
6191 		container_of(work, struct drm_i915_private,
6192 			     rps.delayed_resume_work.work);
6193 	struct drm_device *dev = dev_priv->dev;
6194 
6195 	mutex_lock(&dev_priv->rps.hw_lock);
6196 
6197 	gen6_reset_rps_interrupts(dev);
6198 
6199 	if (IS_CHERRYVIEW(dev)) {
6200 		cherryview_enable_rps(dev);
6201 	} else if (IS_VALLEYVIEW(dev)) {
6202 		valleyview_enable_rps(dev);
6203 	} else if (INTEL_INFO(dev)->gen >= 9) {
6204 		gen9_enable_rc6(dev);
6205 		gen9_enable_rps(dev);
6206 		if (IS_SKYLAKE(dev))
6207 			__gen6_update_ring_freq(dev);
6208 	} else if (IS_BROADWELL(dev)) {
6209 		gen8_enable_rps(dev);
6210 		__gen6_update_ring_freq(dev);
6211 	} else {
6212 		gen6_enable_rps(dev);
6213 		__gen6_update_ring_freq(dev);
6214 	}
6215 
6216 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6217 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6218 
6219 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6220 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6221 
6222 	dev_priv->rps.enabled = true;
6223 
6224 	gen6_enable_rps_interrupts(dev);
6225 
6226 	mutex_unlock(&dev_priv->rps.hw_lock);
6227 
6228 	intel_runtime_pm_put(dev_priv);
6229 }
6230 
intel_enable_gt_powersave(struct drm_device * dev)6231 void intel_enable_gt_powersave(struct drm_device *dev)
6232 {
6233 	struct drm_i915_private *dev_priv = dev->dev_private;
6234 
6235 	/* Powersaving is controlled by the host when inside a VM */
6236 	if (intel_vgpu_active(dev))
6237 		return;
6238 
6239 	if (IS_IRONLAKE_M(dev)) {
6240 		mutex_lock(&dev->struct_mutex);
6241 		ironlake_enable_drps(dev);
6242 		intel_init_emon(dev);
6243 		mutex_unlock(&dev->struct_mutex);
6244 	} else if (INTEL_INFO(dev)->gen >= 6) {
6245 		/*
6246 		 * PCU communication is slow and this doesn't need to be
6247 		 * done at any specific time, so do this out of our fast path
6248 		 * to make resume and init faster.
6249 		 *
6250 		 * We depend on the HW RC6 power context save/restore
6251 		 * mechanism when entering D3 through runtime PM suspend. So
6252 		 * disable RPM until RPS/RC6 is properly setup. We can only
6253 		 * get here via the driver load/system resume/runtime resume
6254 		 * paths, so the _noresume version is enough (and in case of
6255 		 * runtime resume it's necessary).
6256 		 */
6257 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6258 					   round_jiffies_up_relative(HZ)))
6259 			intel_runtime_pm_get_noresume(dev_priv);
6260 	}
6261 }
6262 
intel_reset_gt_powersave(struct drm_device * dev)6263 void intel_reset_gt_powersave(struct drm_device *dev)
6264 {
6265 	struct drm_i915_private *dev_priv = dev->dev_private;
6266 
6267 	if (INTEL_INFO(dev)->gen < 6)
6268 		return;
6269 
6270 	gen6_suspend_rps(dev);
6271 	dev_priv->rps.enabled = false;
6272 }
6273 
ibx_init_clock_gating(struct drm_device * dev)6274 static void ibx_init_clock_gating(struct drm_device *dev)
6275 {
6276 	struct drm_i915_private *dev_priv = dev->dev_private;
6277 
6278 	/*
6279 	 * On Ibex Peak and Cougar Point, we need to disable clock
6280 	 * gating for the panel power sequencer or it will fail to
6281 	 * start up when no ports are active.
6282 	 */
6283 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6284 }
6285 
g4x_disable_trickle_feed(struct drm_device * dev)6286 static void g4x_disable_trickle_feed(struct drm_device *dev)
6287 {
6288 	struct drm_i915_private *dev_priv = dev->dev_private;
6289 	enum pipe pipe;
6290 
6291 	for_each_pipe(dev_priv, pipe) {
6292 		I915_WRITE(DSPCNTR(pipe),
6293 			   I915_READ(DSPCNTR(pipe)) |
6294 			   DISPPLANE_TRICKLE_FEED_DISABLE);
6295 
6296 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6297 		POSTING_READ(DSPSURF(pipe));
6298 	}
6299 }
6300 
ilk_init_lp_watermarks(struct drm_device * dev)6301 static void ilk_init_lp_watermarks(struct drm_device *dev)
6302 {
6303 	struct drm_i915_private *dev_priv = dev->dev_private;
6304 
6305 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6306 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6307 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6308 
6309 	/*
6310 	 * Don't touch WM1S_LP_EN here.
6311 	 * Doing so could cause underruns.
6312 	 */
6313 }
6314 
ironlake_init_clock_gating(struct drm_device * dev)6315 static void ironlake_init_clock_gating(struct drm_device *dev)
6316 {
6317 	struct drm_i915_private *dev_priv = dev->dev_private;
6318 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6319 
6320 	/*
6321 	 * Required for FBC
6322 	 * WaFbcDisableDpfcClockGating:ilk
6323 	 */
6324 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6325 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6326 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6327 
6328 	I915_WRITE(PCH_3DCGDIS0,
6329 		   MARIUNIT_CLOCK_GATE_DISABLE |
6330 		   SVSMUNIT_CLOCK_GATE_DISABLE);
6331 	I915_WRITE(PCH_3DCGDIS1,
6332 		   VFMUNIT_CLOCK_GATE_DISABLE);
6333 
6334 	/*
6335 	 * According to the spec the following bits should be set in
6336 	 * order to enable memory self-refresh
6337 	 * The bit 22/21 of 0x42004
6338 	 * The bit 5 of 0x42020
6339 	 * The bit 15 of 0x45000
6340 	 */
6341 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6342 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6343 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6344 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6345 	I915_WRITE(DISP_ARB_CTL,
6346 		   (I915_READ(DISP_ARB_CTL) |
6347 		    DISP_FBC_WM_DIS));
6348 
6349 	ilk_init_lp_watermarks(dev);
6350 
6351 	/*
6352 	 * Based on the document from hardware guys the following bits
6353 	 * should be set unconditionally in order to enable FBC.
6354 	 * The bit 22 of 0x42000
6355 	 * The bit 22 of 0x42004
6356 	 * The bit 7,8,9 of 0x42020.
6357 	 */
6358 	if (IS_IRONLAKE_M(dev)) {
6359 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6360 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6361 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6362 			   ILK_FBCQ_DIS);
6363 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6364 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6365 			   ILK_DPARB_GATE);
6366 	}
6367 
6368 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6369 
6370 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6371 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6372 		   ILK_ELPIN_409_SELECT);
6373 	I915_WRITE(_3D_CHICKEN2,
6374 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6375 		   _3D_CHICKEN2_WM_READ_PIPELINED);
6376 
6377 	/* WaDisableRenderCachePipelinedFlush:ilk */
6378 	I915_WRITE(CACHE_MODE_0,
6379 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6380 
6381 	/* WaDisable_RenderCache_OperationalFlush:ilk */
6382 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6383 
6384 	g4x_disable_trickle_feed(dev);
6385 
6386 	ibx_init_clock_gating(dev);
6387 }
6388 
cpt_init_clock_gating(struct drm_device * dev)6389 static void cpt_init_clock_gating(struct drm_device *dev)
6390 {
6391 	struct drm_i915_private *dev_priv = dev->dev_private;
6392 	int pipe;
6393 	uint32_t val;
6394 
6395 	/*
6396 	 * On Ibex Peak and Cougar Point, we need to disable clock
6397 	 * gating for the panel power sequencer or it will fail to
6398 	 * start up when no ports are active.
6399 	 */
6400 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6401 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6402 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6403 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6404 		   DPLS_EDP_PPS_FIX_DIS);
6405 	/* The below fixes the weird display corruption, a few pixels shifted
6406 	 * downward, on (only) LVDS of some HP laptops with IVY.
6407 	 */
6408 	for_each_pipe(dev_priv, pipe) {
6409 		val = I915_READ(TRANS_CHICKEN2(pipe));
6410 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6411 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6412 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6413 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6414 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6415 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6416 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6417 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6418 	}
6419 	/* WADP0ClockGatingDisable */
6420 	for_each_pipe(dev_priv, pipe) {
6421 		I915_WRITE(TRANS_CHICKEN1(pipe),
6422 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6423 	}
6424 }
6425 
gen6_check_mch_setup(struct drm_device * dev)6426 static void gen6_check_mch_setup(struct drm_device *dev)
6427 {
6428 	struct drm_i915_private *dev_priv = dev->dev_private;
6429 	uint32_t tmp;
6430 
6431 	tmp = I915_READ(MCH_SSKPD);
6432 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6433 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6434 			      tmp);
6435 }
6436 
gen6_init_clock_gating(struct drm_device * dev)6437 static void gen6_init_clock_gating(struct drm_device *dev)
6438 {
6439 	struct drm_i915_private *dev_priv = dev->dev_private;
6440 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6441 
6442 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6443 
6444 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6445 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6446 		   ILK_ELPIN_409_SELECT);
6447 
6448 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6449 	I915_WRITE(_3D_CHICKEN,
6450 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6451 
6452 	/* WaDisable_RenderCache_OperationalFlush:snb */
6453 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6454 
6455 	/*
6456 	 * BSpec recoomends 8x4 when MSAA is used,
6457 	 * however in practice 16x4 seems fastest.
6458 	 *
6459 	 * Note that PS/WM thread counts depend on the WIZ hashing
6460 	 * disable bit, which we don't touch here, but it's good
6461 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6462 	 */
6463 	I915_WRITE(GEN6_GT_MODE,
6464 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6465 
6466 	ilk_init_lp_watermarks(dev);
6467 
6468 	I915_WRITE(CACHE_MODE_0,
6469 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6470 
6471 	I915_WRITE(GEN6_UCGCTL1,
6472 		   I915_READ(GEN6_UCGCTL1) |
6473 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6474 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6475 
6476 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6477 	 * gating disable must be set.  Failure to set it results in
6478 	 * flickering pixels due to Z write ordering failures after
6479 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6480 	 * Sanctuary and Tropics, and apparently anything else with
6481 	 * alpha test or pixel discard.
6482 	 *
6483 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6484 	 * but we didn't debug actual testcases to find it out.
6485 	 *
6486 	 * WaDisableRCCUnitClockGating:snb
6487 	 * WaDisableRCPBUnitClockGating:snb
6488 	 */
6489 	I915_WRITE(GEN6_UCGCTL2,
6490 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6491 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6492 
6493 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6494 	I915_WRITE(_3D_CHICKEN3,
6495 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6496 
6497 	/*
6498 	 * Bspec says:
6499 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6500 	 * 3DSTATE_SF number of SF output attributes is more than 16."
6501 	 */
6502 	I915_WRITE(_3D_CHICKEN3,
6503 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6504 
6505 	/*
6506 	 * According to the spec the following bits should be
6507 	 * set in order to enable memory self-refresh and fbc:
6508 	 * The bit21 and bit22 of 0x42000
6509 	 * The bit21 and bit22 of 0x42004
6510 	 * The bit5 and bit7 of 0x42020
6511 	 * The bit14 of 0x70180
6512 	 * The bit14 of 0x71180
6513 	 *
6514 	 * WaFbcAsynchFlipDisableFbcQueue:snb
6515 	 */
6516 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6517 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6518 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6519 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6520 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6521 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6522 	I915_WRITE(ILK_DSPCLK_GATE_D,
6523 		   I915_READ(ILK_DSPCLK_GATE_D) |
6524 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6525 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6526 
6527 	g4x_disable_trickle_feed(dev);
6528 
6529 	cpt_init_clock_gating(dev);
6530 
6531 	gen6_check_mch_setup(dev);
6532 }
6533 
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)6534 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6535 {
6536 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6537 
6538 	/*
6539 	 * WaVSThreadDispatchOverride:ivb,vlv
6540 	 *
6541 	 * This actually overrides the dispatch
6542 	 * mode for all thread types.
6543 	 */
6544 	reg &= ~GEN7_FF_SCHED_MASK;
6545 	reg |= GEN7_FF_TS_SCHED_HW;
6546 	reg |= GEN7_FF_VS_SCHED_HW;
6547 	reg |= GEN7_FF_DS_SCHED_HW;
6548 
6549 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6550 }
6551 
lpt_init_clock_gating(struct drm_device * dev)6552 static void lpt_init_clock_gating(struct drm_device *dev)
6553 {
6554 	struct drm_i915_private *dev_priv = dev->dev_private;
6555 
6556 	/*
6557 	 * TODO: this bit should only be enabled when really needed, then
6558 	 * disabled when not needed anymore in order to save power.
6559 	 */
6560 	if (HAS_PCH_LPT_LP(dev))
6561 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6562 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6563 			   PCH_LP_PARTITION_LEVEL_DISABLE);
6564 
6565 	/* WADPOClockGatingDisable:hsw */
6566 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6567 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6568 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6569 }
6570 
lpt_suspend_hw(struct drm_device * dev)6571 static void lpt_suspend_hw(struct drm_device *dev)
6572 {
6573 	struct drm_i915_private *dev_priv = dev->dev_private;
6574 
6575 	if (HAS_PCH_LPT_LP(dev)) {
6576 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6577 
6578 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6579 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6580 	}
6581 }
6582 
broadwell_init_clock_gating(struct drm_device * dev)6583 static void broadwell_init_clock_gating(struct drm_device *dev)
6584 {
6585 	struct drm_i915_private *dev_priv = dev->dev_private;
6586 	enum pipe pipe;
6587 	uint32_t misccpctl;
6588 
6589 	ilk_init_lp_watermarks(dev);
6590 
6591 	/* WaSwitchSolVfFArbitrationPriority:bdw */
6592 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6593 
6594 	/* WaPsrDPAMaskVBlankInSRD:bdw */
6595 	I915_WRITE(CHICKEN_PAR1_1,
6596 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6597 
6598 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6599 	for_each_pipe(dev_priv, pipe) {
6600 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6601 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6602 			   BDW_DPRS_MASK_VBLANK_SRD);
6603 	}
6604 
6605 	/* WaVSRefCountFullforceMissDisable:bdw */
6606 	/* WaDSRefCountFullforceMissDisable:bdw */
6607 	I915_WRITE(GEN7_FF_THREAD_MODE,
6608 		   I915_READ(GEN7_FF_THREAD_MODE) &
6609 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6610 
6611 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6612 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6613 
6614 	/* WaDisableSDEUnitClockGating:bdw */
6615 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6616 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6617 
6618 	/*
6619 	 * WaProgramL3SqcReg1Default:bdw
6620 	 * WaTempDisableDOPClkGating:bdw
6621 	 */
6622 	misccpctl = I915_READ(GEN7_MISCCPCTL);
6623 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6624 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6625 	/*
6626 	 * Wait at least 100 clocks before re-enabling clock gating. See
6627 	 * the definition of L3SQCREG1 in BSpec.
6628 	 */
6629 	POSTING_READ(GEN8_L3SQCREG1);
6630 	udelay(1);
6631 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6632 
6633 	/*
6634 	 * WaGttCachingOffByDefault:bdw
6635 	 * GTT cache may not work with big pages, so if those
6636 	 * are ever enabled GTT cache may need to be disabled.
6637 	 */
6638 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6639 
6640 	lpt_init_clock_gating(dev);
6641 }
6642 
haswell_init_clock_gating(struct drm_device * dev)6643 static void haswell_init_clock_gating(struct drm_device *dev)
6644 {
6645 	struct drm_i915_private *dev_priv = dev->dev_private;
6646 
6647 	ilk_init_lp_watermarks(dev);
6648 
6649 	/* L3 caching of data atomics doesn't work -- disable it. */
6650 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6651 	I915_WRITE(HSW_ROW_CHICKEN3,
6652 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6653 
6654 	/* This is required by WaCatErrorRejectionIssue:hsw */
6655 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6656 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6657 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6658 
6659 	/* WaVSRefCountFullforceMissDisable:hsw */
6660 	I915_WRITE(GEN7_FF_THREAD_MODE,
6661 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6662 
6663 	/* WaDisable_RenderCache_OperationalFlush:hsw */
6664 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6665 
6666 	/* enable HiZ Raw Stall Optimization */
6667 	I915_WRITE(CACHE_MODE_0_GEN7,
6668 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6669 
6670 	/* WaDisable4x2SubspanOptimization:hsw */
6671 	I915_WRITE(CACHE_MODE_1,
6672 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6673 
6674 	/*
6675 	 * BSpec recommends 8x4 when MSAA is used,
6676 	 * however in practice 16x4 seems fastest.
6677 	 *
6678 	 * Note that PS/WM thread counts depend on the WIZ hashing
6679 	 * disable bit, which we don't touch here, but it's good
6680 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6681 	 */
6682 	I915_WRITE(GEN7_GT_MODE,
6683 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6684 
6685 	/* WaSampleCChickenBitEnable:hsw */
6686 	I915_WRITE(HALF_SLICE_CHICKEN3,
6687 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6688 
6689 	/* WaSwitchSolVfFArbitrationPriority:hsw */
6690 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6691 
6692 	/* WaRsPkgCStateDisplayPMReq:hsw */
6693 	I915_WRITE(CHICKEN_PAR1_1,
6694 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6695 
6696 	lpt_init_clock_gating(dev);
6697 }
6698 
ivybridge_init_clock_gating(struct drm_device * dev)6699 static void ivybridge_init_clock_gating(struct drm_device *dev)
6700 {
6701 	struct drm_i915_private *dev_priv = dev->dev_private;
6702 	uint32_t snpcr;
6703 
6704 	ilk_init_lp_watermarks(dev);
6705 
6706 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6707 
6708 	/* WaDisableEarlyCull:ivb */
6709 	I915_WRITE(_3D_CHICKEN3,
6710 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6711 
6712 	/* WaDisableBackToBackFlipFix:ivb */
6713 	I915_WRITE(IVB_CHICKEN3,
6714 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6715 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6716 
6717 	/* WaDisablePSDDualDispatchEnable:ivb */
6718 	if (IS_IVB_GT1(dev))
6719 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6720 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6721 
6722 	/* WaDisable_RenderCache_OperationalFlush:ivb */
6723 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6724 
6725 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6726 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6727 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6728 
6729 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6730 	I915_WRITE(GEN7_L3CNTLREG1,
6731 			GEN7_WA_FOR_GEN7_L3_CONTROL);
6732 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6733 		   GEN7_WA_L3_CHICKEN_MODE);
6734 	if (IS_IVB_GT1(dev))
6735 		I915_WRITE(GEN7_ROW_CHICKEN2,
6736 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6737 	else {
6738 		/* must write both registers */
6739 		I915_WRITE(GEN7_ROW_CHICKEN2,
6740 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6741 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6742 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6743 	}
6744 
6745 	/* WaForceL3Serialization:ivb */
6746 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6747 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6748 
6749 	/*
6750 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6751 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6752 	 */
6753 	I915_WRITE(GEN6_UCGCTL2,
6754 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6755 
6756 	/* This is required by WaCatErrorRejectionIssue:ivb */
6757 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6758 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6759 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6760 
6761 	g4x_disable_trickle_feed(dev);
6762 
6763 	gen7_setup_fixed_func_scheduler(dev_priv);
6764 
6765 	if (0) { /* causes HiZ corruption on ivb:gt1 */
6766 		/* enable HiZ Raw Stall Optimization */
6767 		I915_WRITE(CACHE_MODE_0_GEN7,
6768 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6769 	}
6770 
6771 	/* WaDisable4x2SubspanOptimization:ivb */
6772 	I915_WRITE(CACHE_MODE_1,
6773 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6774 
6775 	/*
6776 	 * BSpec recommends 8x4 when MSAA is used,
6777 	 * however in practice 16x4 seems fastest.
6778 	 *
6779 	 * Note that PS/WM thread counts depend on the WIZ hashing
6780 	 * disable bit, which we don't touch here, but it's good
6781 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6782 	 */
6783 	I915_WRITE(GEN7_GT_MODE,
6784 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6785 
6786 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6787 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6788 	snpcr |= GEN6_MBC_SNPCR_MED;
6789 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6790 
6791 	if (!HAS_PCH_NOP(dev))
6792 		cpt_init_clock_gating(dev);
6793 
6794 	gen6_check_mch_setup(dev);
6795 }
6796 
vlv_init_display_clock_gating(struct drm_i915_private * dev_priv)6797 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6798 {
6799 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6800 
6801 	/*
6802 	 * Disable trickle feed and enable pnd deadline calculation
6803 	 */
6804 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6805 	I915_WRITE(CBR1_VLV, 0);
6806 }
6807 
valleyview_init_clock_gating(struct drm_device * dev)6808 static void valleyview_init_clock_gating(struct drm_device *dev)
6809 {
6810 	struct drm_i915_private *dev_priv = dev->dev_private;
6811 
6812 	vlv_init_display_clock_gating(dev_priv);
6813 
6814 	/* WaDisableEarlyCull:vlv */
6815 	I915_WRITE(_3D_CHICKEN3,
6816 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6817 
6818 	/* WaDisableBackToBackFlipFix:vlv */
6819 	I915_WRITE(IVB_CHICKEN3,
6820 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6821 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6822 
6823 	/* WaPsdDispatchEnable:vlv */
6824 	/* WaDisablePSDDualDispatchEnable:vlv */
6825 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6826 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6827 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6828 
6829 	/* WaDisable_RenderCache_OperationalFlush:vlv */
6830 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6831 
6832 	/* WaForceL3Serialization:vlv */
6833 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6834 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6835 
6836 	/* WaDisableDopClockGating:vlv */
6837 	I915_WRITE(GEN7_ROW_CHICKEN2,
6838 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6839 
6840 	/* This is required by WaCatErrorRejectionIssue:vlv */
6841 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6842 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6843 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6844 
6845 	gen7_setup_fixed_func_scheduler(dev_priv);
6846 
6847 	/*
6848 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6849 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6850 	 */
6851 	I915_WRITE(GEN6_UCGCTL2,
6852 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6853 
6854 	/* WaDisableL3Bank2xClockGate:vlv
6855 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6856 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6857 	I915_WRITE(GEN7_UCGCTL4,
6858 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6859 
6860 	/*
6861 	 * BSpec says this must be set, even though
6862 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6863 	 */
6864 	I915_WRITE(CACHE_MODE_1,
6865 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6866 
6867 	/*
6868 	 * BSpec recommends 8x4 when MSAA is used,
6869 	 * however in practice 16x4 seems fastest.
6870 	 *
6871 	 * Note that PS/WM thread counts depend on the WIZ hashing
6872 	 * disable bit, which we don't touch here, but it's good
6873 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6874 	 */
6875 	I915_WRITE(GEN7_GT_MODE,
6876 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6877 
6878 	/*
6879 	 * WaIncreaseL3CreditsForVLVB0:vlv
6880 	 * This is the hardware default actually.
6881 	 */
6882 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6883 
6884 	/*
6885 	 * WaDisableVLVClockGating_VBIIssue:vlv
6886 	 * Disable clock gating on th GCFG unit to prevent a delay
6887 	 * in the reporting of vblank events.
6888 	 */
6889 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6890 }
6891 
cherryview_init_clock_gating(struct drm_device * dev)6892 static void cherryview_init_clock_gating(struct drm_device *dev)
6893 {
6894 	struct drm_i915_private *dev_priv = dev->dev_private;
6895 
6896 	vlv_init_display_clock_gating(dev_priv);
6897 
6898 	/* WaVSRefCountFullforceMissDisable:chv */
6899 	/* WaDSRefCountFullforceMissDisable:chv */
6900 	I915_WRITE(GEN7_FF_THREAD_MODE,
6901 		   I915_READ(GEN7_FF_THREAD_MODE) &
6902 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6903 
6904 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6905 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6906 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6907 
6908 	/* WaDisableCSUnitClockGating:chv */
6909 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6910 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6911 
6912 	/* WaDisableSDEUnitClockGating:chv */
6913 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6914 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6915 
6916 	/*
6917 	 * GTT cache may not work with big pages, so if those
6918 	 * are ever enabled GTT cache may need to be disabled.
6919 	 */
6920 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6921 }
6922 
g4x_init_clock_gating(struct drm_device * dev)6923 static void g4x_init_clock_gating(struct drm_device *dev)
6924 {
6925 	struct drm_i915_private *dev_priv = dev->dev_private;
6926 	uint32_t dspclk_gate;
6927 
6928 	I915_WRITE(RENCLK_GATE_D1, 0);
6929 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6930 		   GS_UNIT_CLOCK_GATE_DISABLE |
6931 		   CL_UNIT_CLOCK_GATE_DISABLE);
6932 	I915_WRITE(RAMCLK_GATE_D, 0);
6933 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6934 		OVRUNIT_CLOCK_GATE_DISABLE |
6935 		OVCUNIT_CLOCK_GATE_DISABLE;
6936 	if (IS_GM45(dev))
6937 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6938 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6939 
6940 	/* WaDisableRenderCachePipelinedFlush */
6941 	I915_WRITE(CACHE_MODE_0,
6942 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6943 
6944 	/* WaDisable_RenderCache_OperationalFlush:g4x */
6945 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6946 
6947 	g4x_disable_trickle_feed(dev);
6948 }
6949 
crestline_init_clock_gating(struct drm_device * dev)6950 static void crestline_init_clock_gating(struct drm_device *dev)
6951 {
6952 	struct drm_i915_private *dev_priv = dev->dev_private;
6953 
6954 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6955 	I915_WRITE(RENCLK_GATE_D2, 0);
6956 	I915_WRITE(DSPCLK_GATE_D, 0);
6957 	I915_WRITE(RAMCLK_GATE_D, 0);
6958 	I915_WRITE16(DEUC, 0);
6959 	I915_WRITE(MI_ARB_STATE,
6960 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6961 
6962 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6963 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6964 }
6965 
broadwater_init_clock_gating(struct drm_device * dev)6966 static void broadwater_init_clock_gating(struct drm_device *dev)
6967 {
6968 	struct drm_i915_private *dev_priv = dev->dev_private;
6969 
6970 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6971 		   I965_RCC_CLOCK_GATE_DISABLE |
6972 		   I965_RCPB_CLOCK_GATE_DISABLE |
6973 		   I965_ISC_CLOCK_GATE_DISABLE |
6974 		   I965_FBC_CLOCK_GATE_DISABLE);
6975 	I915_WRITE(RENCLK_GATE_D2, 0);
6976 	I915_WRITE(MI_ARB_STATE,
6977 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6978 
6979 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6980 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6981 }
6982 
gen3_init_clock_gating(struct drm_device * dev)6983 static void gen3_init_clock_gating(struct drm_device *dev)
6984 {
6985 	struct drm_i915_private *dev_priv = dev->dev_private;
6986 	u32 dstate = I915_READ(D_STATE);
6987 
6988 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6989 		DSTATE_DOT_CLOCK_GATING;
6990 	I915_WRITE(D_STATE, dstate);
6991 
6992 	if (IS_PINEVIEW(dev))
6993 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6994 
6995 	/* IIR "flip pending" means done if this bit is set */
6996 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6997 
6998 	/* interrupts should cause a wake up from C3 */
6999 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7000 
7001 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7002 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7003 
7004 	I915_WRITE(MI_ARB_STATE,
7005 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7006 }
7007 
i85x_init_clock_gating(struct drm_device * dev)7008 static void i85x_init_clock_gating(struct drm_device *dev)
7009 {
7010 	struct drm_i915_private *dev_priv = dev->dev_private;
7011 
7012 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7013 
7014 	/* interrupts should cause a wake up from C3 */
7015 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7016 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7017 
7018 	I915_WRITE(MEM_MODE,
7019 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7020 }
7021 
i830_init_clock_gating(struct drm_device * dev)7022 static void i830_init_clock_gating(struct drm_device *dev)
7023 {
7024 	struct drm_i915_private *dev_priv = dev->dev_private;
7025 
7026 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7027 
7028 	I915_WRITE(MEM_MODE,
7029 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7030 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7031 }
7032 
intel_init_clock_gating(struct drm_device * dev)7033 void intel_init_clock_gating(struct drm_device *dev)
7034 {
7035 	struct drm_i915_private *dev_priv = dev->dev_private;
7036 
7037 	if (dev_priv->display.init_clock_gating)
7038 		dev_priv->display.init_clock_gating(dev);
7039 }
7040 
intel_suspend_hw(struct drm_device * dev)7041 void intel_suspend_hw(struct drm_device *dev)
7042 {
7043 	if (HAS_PCH_LPT(dev))
7044 		lpt_suspend_hw(dev);
7045 }
7046 
7047 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_device * dev)7048 void intel_init_pm(struct drm_device *dev)
7049 {
7050 	struct drm_i915_private *dev_priv = dev->dev_private;
7051 
7052 	intel_fbc_init(dev_priv);
7053 
7054 	/* For cxsr */
7055 	if (IS_PINEVIEW(dev))
7056 		i915_pineview_get_mem_freq(dev);
7057 	else if (IS_GEN5(dev))
7058 		i915_ironlake_get_mem_freq(dev);
7059 
7060 	/* For FIFO watermark updates */
7061 	if (INTEL_INFO(dev)->gen >= 9) {
7062 		skl_setup_wm_latency(dev);
7063 
7064 		if (IS_BROXTON(dev))
7065 			dev_priv->display.init_clock_gating =
7066 				bxt_init_clock_gating;
7067 		dev_priv->display.update_wm = skl_update_wm;
7068 		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7069 	} else if (HAS_PCH_SPLIT(dev)) {
7070 		ilk_setup_wm_latency(dev);
7071 
7072 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7073 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7074 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7075 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7076 			dev_priv->display.update_wm = ilk_update_wm;
7077 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7078 		} else {
7079 			DRM_DEBUG_KMS("Failed to read display plane latency. "
7080 				      "Disable CxSR\n");
7081 		}
7082 
7083 		if (IS_GEN5(dev))
7084 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7085 		else if (IS_GEN6(dev))
7086 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7087 		else if (IS_IVYBRIDGE(dev))
7088 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7089 		else if (IS_HASWELL(dev))
7090 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7091 		else if (INTEL_INFO(dev)->gen == 8)
7092 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7093 	} else if (IS_CHERRYVIEW(dev)) {
7094 		vlv_setup_wm_latency(dev);
7095 
7096 		dev_priv->display.update_wm = vlv_update_wm;
7097 		dev_priv->display.init_clock_gating =
7098 			cherryview_init_clock_gating;
7099 	} else if (IS_VALLEYVIEW(dev)) {
7100 		vlv_setup_wm_latency(dev);
7101 
7102 		dev_priv->display.update_wm = vlv_update_wm;
7103 		dev_priv->display.init_clock_gating =
7104 			valleyview_init_clock_gating;
7105 	} else if (IS_PINEVIEW(dev)) {
7106 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7107 					    dev_priv->is_ddr3,
7108 					    dev_priv->fsb_freq,
7109 					    dev_priv->mem_freq)) {
7110 			DRM_INFO("failed to find known CxSR latency "
7111 				 "(found ddr%s fsb freq %d, mem freq %d), "
7112 				 "disabling CxSR\n",
7113 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7114 				 dev_priv->fsb_freq, dev_priv->mem_freq);
7115 			/* Disable CxSR and never update its watermark again */
7116 			intel_set_memory_cxsr(dev_priv, false);
7117 			dev_priv->display.update_wm = NULL;
7118 		} else
7119 			dev_priv->display.update_wm = pineview_update_wm;
7120 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7121 	} else if (IS_G4X(dev)) {
7122 		dev_priv->display.update_wm = g4x_update_wm;
7123 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7124 	} else if (IS_GEN4(dev)) {
7125 		dev_priv->display.update_wm = i965_update_wm;
7126 		if (IS_CRESTLINE(dev))
7127 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7128 		else if (IS_BROADWATER(dev))
7129 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7130 	} else if (IS_GEN3(dev)) {
7131 		dev_priv->display.update_wm = i9xx_update_wm;
7132 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7133 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7134 	} else if (IS_GEN2(dev)) {
7135 		if (INTEL_INFO(dev)->num_pipes == 1) {
7136 			dev_priv->display.update_wm = i845_update_wm;
7137 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7138 		} else {
7139 			dev_priv->display.update_wm = i9xx_update_wm;
7140 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7141 		}
7142 
7143 		if (IS_I85X(dev) || IS_I865G(dev))
7144 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7145 		else
7146 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7147 	} else {
7148 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7149 	}
7150 }
7151 
sandybridge_pcode_read(struct drm_i915_private * dev_priv,u32 mbox,u32 * val)7152 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7153 {
7154 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7155 
7156 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7157 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7158 		return -EAGAIN;
7159 	}
7160 
7161 	I915_WRITE(GEN6_PCODE_DATA, *val);
7162 	I915_WRITE(GEN6_PCODE_DATA1, 0);
7163 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7164 
7165 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7166 		     500)) {
7167 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7168 		return -ETIMEDOUT;
7169 	}
7170 
7171 	*val = I915_READ(GEN6_PCODE_DATA);
7172 	I915_WRITE(GEN6_PCODE_DATA, 0);
7173 
7174 	return 0;
7175 }
7176 
sandybridge_pcode_write(struct drm_i915_private * dev_priv,u32 mbox,u32 val)7177 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7178 {
7179 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7180 
7181 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7182 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7183 		return -EAGAIN;
7184 	}
7185 
7186 	I915_WRITE(GEN6_PCODE_DATA, val);
7187 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7188 
7189 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7190 		     500)) {
7191 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7192 		return -ETIMEDOUT;
7193 	}
7194 
7195 	I915_WRITE(GEN6_PCODE_DATA, 0);
7196 
7197 	return 0;
7198 }
7199 
vlv_gpu_freq_div(unsigned int czclk_freq)7200 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7201 {
7202 	switch (czclk_freq) {
7203 	case 200:
7204 		return 10;
7205 	case 267:
7206 		return 12;
7207 	case 320:
7208 	case 333:
7209 		return 16;
7210 	case 400:
7211 		return 20;
7212 	default:
7213 		return -1;
7214 	}
7215 }
7216 
byt_gpu_freq(struct drm_i915_private * dev_priv,int val)7217 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7218 {
7219 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7220 
7221 	div = vlv_gpu_freq_div(czclk_freq);
7222 	if (div < 0)
7223 		return div;
7224 
7225 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7226 }
7227 
byt_freq_opcode(struct drm_i915_private * dev_priv,int val)7228 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7229 {
7230 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7231 
7232 	mul = vlv_gpu_freq_div(czclk_freq);
7233 	if (mul < 0)
7234 		return mul;
7235 
7236 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7237 }
7238 
chv_gpu_freq(struct drm_i915_private * dev_priv,int val)7239 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7240 {
7241 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7242 
7243 	div = vlv_gpu_freq_div(czclk_freq) / 2;
7244 	if (div < 0)
7245 		return div;
7246 
7247 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7248 }
7249 
chv_freq_opcode(struct drm_i915_private * dev_priv,int val)7250 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7251 {
7252 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7253 
7254 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
7255 	if (mul < 0)
7256 		return mul;
7257 
7258 	/* CHV needs even values */
7259 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7260 }
7261 
intel_gpu_freq(struct drm_i915_private * dev_priv,int val)7262 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7263 {
7264 	if (IS_GEN9(dev_priv->dev))
7265 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7266 					 GEN9_FREQ_SCALER);
7267 	else if (IS_CHERRYVIEW(dev_priv->dev))
7268 		return chv_gpu_freq(dev_priv, val);
7269 	else if (IS_VALLEYVIEW(dev_priv->dev))
7270 		return byt_gpu_freq(dev_priv, val);
7271 	else
7272 		return val * GT_FREQUENCY_MULTIPLIER;
7273 }
7274 
intel_freq_opcode(struct drm_i915_private * dev_priv,int val)7275 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7276 {
7277 	if (IS_GEN9(dev_priv->dev))
7278 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7279 					 GT_FREQUENCY_MULTIPLIER);
7280 	else if (IS_CHERRYVIEW(dev_priv->dev))
7281 		return chv_freq_opcode(dev_priv, val);
7282 	else if (IS_VALLEYVIEW(dev_priv->dev))
7283 		return byt_freq_opcode(dev_priv, val);
7284 	else
7285 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7286 }
7287 
7288 struct request_boost {
7289 	struct work_struct work;
7290 	struct drm_i915_gem_request *req;
7291 };
7292 
__intel_rps_boost_work(struct work_struct * work)7293 static void __intel_rps_boost_work(struct work_struct *work)
7294 {
7295 	struct request_boost *boost = container_of(work, struct request_boost, work);
7296 	struct drm_i915_gem_request *req = boost->req;
7297 
7298 	if (!i915_gem_request_completed(req, true))
7299 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7300 			       req->emitted_jiffies);
7301 
7302 	i915_gem_request_unreference__unlocked(req);
7303 	kfree(boost);
7304 }
7305 
intel_queue_rps_boost_for_request(struct drm_device * dev,struct drm_i915_gem_request * req)7306 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7307 				       struct drm_i915_gem_request *req)
7308 {
7309 	struct request_boost *boost;
7310 
7311 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7312 		return;
7313 
7314 	if (i915_gem_request_completed(req, true))
7315 		return;
7316 
7317 	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7318 	if (boost == NULL)
7319 		return;
7320 
7321 	i915_gem_request_reference(req);
7322 	boost->req = req;
7323 
7324 	INIT_WORK(&boost->work, __intel_rps_boost_work);
7325 	queue_work(to_i915(dev)->wq, &boost->work);
7326 }
7327 
intel_pm_setup(struct drm_device * dev)7328 void intel_pm_setup(struct drm_device *dev)
7329 {
7330 	struct drm_i915_private *dev_priv = dev->dev_private;
7331 
7332 	mutex_init(&dev_priv->rps.hw_lock);
7333 	spin_lock_init(&dev_priv->rps.client_lock);
7334 
7335 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7336 			  intel_gen6_powersave_work);
7337 	INIT_LIST_HEAD(&dev_priv->rps.clients);
7338 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7339 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7340 
7341 	dev_priv->pm.suspended = false;
7342 }
7343