1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142 
143 #define RING_EXECLIST_QFULL		(1 << 0x2)
144 #define RING_EXECLIST1_VALID		(1 << 0x3)
145 #define RING_EXECLIST0_VALID		(1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
149 
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156 
157 #define CTX_LRI_HEADER_0		0x01
158 #define CTX_CONTEXT_CONTROL		0x02
159 #define CTX_RING_HEAD			0x04
160 #define CTX_RING_TAIL			0x06
161 #define CTX_RING_BUFFER_START		0x08
162 #define CTX_RING_BUFFER_CONTROL		0x0a
163 #define CTX_BB_HEAD_U			0x0c
164 #define CTX_BB_HEAD_L			0x0e
165 #define CTX_BB_STATE			0x10
166 #define CTX_SECOND_BB_HEAD_U		0x12
167 #define CTX_SECOND_BB_HEAD_L		0x14
168 #define CTX_SECOND_BB_STATE		0x16
169 #define CTX_BB_PER_CTX_PTR		0x18
170 #define CTX_RCS_INDIRECT_CTX		0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
172 #define CTX_LRI_HEADER_1		0x21
173 #define CTX_CTX_TIMESTAMP		0x22
174 #define CTX_PDP3_UDW			0x24
175 #define CTX_PDP3_LDW			0x26
176 #define CTX_PDP2_UDW			0x28
177 #define CTX_PDP2_LDW			0x2a
178 #define CTX_PDP1_UDW			0x2c
179 #define CTX_PDP1_LDW			0x2e
180 #define CTX_PDP0_UDW			0x30
181 #define CTX_PDP0_LDW			0x32
182 #define CTX_LRI_HEADER_2		0x41
183 #define CTX_R_PWR_CLK_STATE		0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
185 
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192 	ADVANCED_CONTEXT = 0,
193 	LEGACY_CONTEXT,
194 	ADVANCED_AD_CONTEXT,
195 	LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199 	FAULT_AND_HANG = 0,
200 	FAULT_AND_HALT, /* Debug only */
201 	FAULT_AND_STREAM,
202 	FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205 
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207 		struct intel_context *ctx);
208 
209 /**
210  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211  * @dev: DRM device.
212  * @enable_execlists: value of i915.enable_execlists module parameter.
213  *
214  * Only certain platforms support Execlists (the prerequisites being
215  * support for Logical Ring Contexts and Aliasing PPGTT or better).
216  *
217  * Return: 1 if Execlists is supported and has to be enabled.
218  */
intel_sanitize_enable_execlists(struct drm_device * dev,int enable_execlists)219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221 	WARN_ON(i915.enable_ppgtt == -1);
222 
223 	if (INTEL_INFO(dev)->gen >= 9)
224 		return 1;
225 
226 	if (enable_execlists == 0)
227 		return 0;
228 
229 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230 	    i915.use_mmio_flip >= 0)
231 		return 1;
232 
233 	return 0;
234 }
235 
236 /**
237  * intel_execlists_ctx_id() - get the Execlists Context ID
238  * @ctx_obj: Logical Ring Context backing object.
239  *
240  * Do not confuse with ctx->id! Unfortunately we have a name overload
241  * here: the old context ID we pass to userspace as a handler so that
242  * they can refer to a context, and the new context ID we pass to the
243  * ELSP so that the GPU can inform us of the context status via
244  * interrupts.
245  *
246  * Return: 20-bits globally unique context ID.
247  */
intel_execlists_ctx_id(struct drm_i915_gem_object * ctx_obj)248 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249 {
250 	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251 
252 	/* LRCA is required to be 4K aligned so the more significant 20 bits
253 	 * are globally unique */
254 	return lrca >> 12;
255 }
256 
execlists_ctx_descriptor(struct intel_engine_cs * ring,struct drm_i915_gem_object * ctx_obj)257 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
258 					 struct drm_i915_gem_object *ctx_obj)
259 {
260 	struct drm_device *dev = ring->dev;
261 	uint64_t desc;
262 	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263 
264 	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265 
266 	desc = GEN8_CTX_VALID;
267 	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
268 	desc |= GEN8_CTX_L3LLC_COHERENT;
269 	desc |= GEN8_CTX_PRIVILEGE;
270 	desc |= lrca;
271 	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
272 
273 	/* TODO: WaDisableLiteRestore when we start using semaphore
274 	 * signalling between Command Streamers */
275 	/* desc |= GEN8_CTX_FORCE_RESTORE; */
276 
277 	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
278 	if (IS_GEN9(dev) &&
279 	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
280 	    (ring->id == BCS || ring->id == VCS ||
281 	    ring->id == VECS || ring->id == VCS2))
282 		desc |= GEN8_CTX_FORCE_RESTORE;
283 
284 	return desc;
285 }
286 
execlists_elsp_write(struct intel_engine_cs * ring,struct drm_i915_gem_object * ctx_obj0,struct drm_i915_gem_object * ctx_obj1)287 static void execlists_elsp_write(struct intel_engine_cs *ring,
288 				 struct drm_i915_gem_object *ctx_obj0,
289 				 struct drm_i915_gem_object *ctx_obj1)
290 {
291 	struct drm_device *dev = ring->dev;
292 	struct drm_i915_private *dev_priv = dev->dev_private;
293 	uint64_t temp = 0;
294 	uint32_t desc[4];
295 
296 	/* XXX: You must always write both descriptors in the order below. */
297 	if (ctx_obj1)
298 		temp = execlists_ctx_descriptor(ring, ctx_obj1);
299 	else
300 		temp = 0;
301 	desc[1] = (u32)(temp >> 32);
302 	desc[0] = (u32)temp;
303 
304 	temp = execlists_ctx_descriptor(ring, ctx_obj0);
305 	desc[3] = (u32)(temp >> 32);
306 	desc[2] = (u32)temp;
307 
308 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309 	I915_WRITE(RING_ELSP(ring), desc[1]);
310 	I915_WRITE(RING_ELSP(ring), desc[0]);
311 	I915_WRITE(RING_ELSP(ring), desc[3]);
312 
313 	/* The context is automatically loaded after the following */
314 	I915_WRITE(RING_ELSP(ring), desc[2]);
315 
316 	/* ELSP is a wo register, so use another nearby reg for posting instead */
317 	POSTING_READ(RING_EXECLIST_STATUS(ring));
318 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319 }
320 
execlists_update_context(struct drm_i915_gem_object * ctx_obj,struct drm_i915_gem_object * ring_obj,u32 tail)321 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
322 				    struct drm_i915_gem_object *ring_obj,
323 				    u32 tail)
324 {
325 	struct page *page;
326 	uint32_t *reg_state;
327 
328 	page = i915_gem_object_get_page(ctx_obj, 1);
329 	reg_state = kmap_atomic(page);
330 
331 	reg_state[CTX_RING_TAIL+1] = tail;
332 	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333 
334 	kunmap_atomic(reg_state);
335 
336 	return 0;
337 }
338 
execlists_submit_contexts(struct intel_engine_cs * ring,struct intel_context * to0,u32 tail0,struct intel_context * to1,u32 tail1)339 static void execlists_submit_contexts(struct intel_engine_cs *ring,
340 				      struct intel_context *to0, u32 tail0,
341 				      struct intel_context *to1, u32 tail1)
342 {
343 	struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
344 	struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345 	struct drm_i915_gem_object *ctx_obj1 = NULL;
346 	struct intel_ringbuffer *ringbuf1 = NULL;
347 
348 	BUG_ON(!ctx_obj0);
349 	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350 	WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351 
352 	execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353 
354 	if (to1) {
355 		ringbuf1 = to1->engine[ring->id].ringbuf;
356 		ctx_obj1 = to1->engine[ring->id].state;
357 		BUG_ON(!ctx_obj1);
358 		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359 		WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360 
361 		execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362 	}
363 
364 	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
365 }
366 
execlists_context_unqueue(struct intel_engine_cs * ring)367 static void execlists_context_unqueue(struct intel_engine_cs *ring)
368 {
369 	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
370 	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371 
372 	assert_spin_locked(&ring->execlist_lock);
373 
374 	if (list_empty(&ring->execlist_queue))
375 		return;
376 
377 	/* Try to read in pairs */
378 	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
379 				 execlist_link) {
380 		if (!req0) {
381 			req0 = cursor;
382 		} else if (req0->ctx == cursor->ctx) {
383 			/* Same ctx: ignore first request, as second request
384 			 * will update tail past first request's workload */
385 			cursor->elsp_submitted = req0->elsp_submitted;
386 			list_del(&req0->execlist_link);
387 			list_add_tail(&req0->execlist_link,
388 				&ring->execlist_retired_req_list);
389 			req0 = cursor;
390 		} else {
391 			req1 = cursor;
392 			break;
393 		}
394 	}
395 
396 	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
397 		/*
398 		 * WaIdleLiteRestore: make sure we never cause a lite
399 		 * restore with HEAD==TAIL
400 		 */
401 		if (req0 && req0->elsp_submitted) {
402 			/*
403 			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
404 			 * as we resubmit the request. See gen8_emit_request()
405 			 * for where we prepare the padding after the end of the
406 			 * request.
407 			 */
408 			struct intel_ringbuffer *ringbuf;
409 
410 			ringbuf = req0->ctx->engine[ring->id].ringbuf;
411 			req0->tail += 8;
412 			req0->tail &= ringbuf->size - 1;
413 		}
414 	}
415 
416 	WARN_ON(req1 && req1->elsp_submitted);
417 
418 	execlists_submit_contexts(ring, req0->ctx, req0->tail,
419 				  req1 ? req1->ctx : NULL,
420 				  req1 ? req1->tail : 0);
421 
422 	req0->elsp_submitted++;
423 	if (req1)
424 		req1->elsp_submitted++;
425 }
426 
execlists_check_remove_request(struct intel_engine_cs * ring,u32 request_id)427 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
428 					   u32 request_id)
429 {
430 	struct drm_i915_gem_request *head_req;
431 
432 	assert_spin_locked(&ring->execlist_lock);
433 
434 	head_req = list_first_entry_or_null(&ring->execlist_queue,
435 					    struct drm_i915_gem_request,
436 					    execlist_link);
437 
438 	if (head_req != NULL) {
439 		struct drm_i915_gem_object *ctx_obj =
440 				head_req->ctx->engine[ring->id].state;
441 		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
442 			WARN(head_req->elsp_submitted == 0,
443 			     "Never submitted head request\n");
444 
445 			if (--head_req->elsp_submitted <= 0) {
446 				list_del(&head_req->execlist_link);
447 				list_add_tail(&head_req->execlist_link,
448 					&ring->execlist_retired_req_list);
449 				return true;
450 			}
451 		}
452 	}
453 
454 	return false;
455 }
456 
457 /**
458  * intel_lrc_irq_handler() - handle Context Switch interrupts
459  * @ring: Engine Command Streamer to handle.
460  *
461  * Check the unread Context Status Buffers and manage the submission of new
462  * contexts to the ELSP accordingly.
463  */
intel_lrc_irq_handler(struct intel_engine_cs * ring)464 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
465 {
466 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
467 	u32 status_pointer;
468 	u8 read_pointer;
469 	u8 write_pointer;
470 	u32 status;
471 	u32 status_id;
472 	u32 submit_contexts = 0;
473 
474 	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
475 
476 	read_pointer = ring->next_context_status_buffer;
477 	write_pointer = status_pointer & 0x07;
478 	if (read_pointer > write_pointer)
479 		write_pointer += 6;
480 
481 	spin_lock(&ring->execlist_lock);
482 
483 	while (read_pointer < write_pointer) {
484 		read_pointer++;
485 		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486 				(read_pointer % 6) * 8);
487 		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
488 				(read_pointer % 6) * 8 + 4);
489 
490 		if (status & GEN8_CTX_STATUS_PREEMPTED) {
491 			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
492 				if (execlists_check_remove_request(ring, status_id))
493 					WARN(1, "Lite Restored request removed from queue\n");
494 			} else
495 				WARN(1, "Preemption without Lite Restore\n");
496 		}
497 
498 		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
499 		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
500 			if (execlists_check_remove_request(ring, status_id))
501 				submit_contexts++;
502 		}
503 	}
504 
505 	if (submit_contexts != 0)
506 		execlists_context_unqueue(ring);
507 
508 	spin_unlock(&ring->execlist_lock);
509 
510 	WARN(submit_contexts > 2, "More than two context complete events?\n");
511 	ring->next_context_status_buffer = write_pointer % 6;
512 
513 	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
514 		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
515 }
516 
execlists_context_queue(struct intel_engine_cs * ring,struct intel_context * to,u32 tail,struct drm_i915_gem_request * request)517 static int execlists_context_queue(struct intel_engine_cs *ring,
518 				   struct intel_context *to,
519 				   u32 tail,
520 				   struct drm_i915_gem_request *request)
521 {
522 	struct drm_i915_gem_request *cursor;
523 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
524 	unsigned long flags;
525 	int num_elements = 0;
526 
527 	if (to != ring->default_context)
528 		intel_lr_context_pin(ring, to);
529 
530 	if (!request) {
531 		/*
532 		 * If there isn't a request associated with this submission,
533 		 * create one as a temporary holder.
534 		 */
535 		request = kzalloc(sizeof(*request), GFP_KERNEL);
536 		if (request == NULL)
537 			return -ENOMEM;
538 		request->ring = ring;
539 		request->ctx = to;
540 		kref_init(&request->ref);
541 		request->uniq = dev_priv->request_uniq++;
542 		i915_gem_context_reference(request->ctx);
543 	} else {
544 		i915_gem_request_reference(request);
545 		WARN_ON(to != request->ctx);
546 	}
547 	request->tail = tail;
548 
549 	intel_runtime_pm_get(dev_priv);
550 
551 	spin_lock_irqsave(&ring->execlist_lock, flags);
552 
553 	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554 		if (++num_elements > 2)
555 			break;
556 
557 	if (num_elements > 2) {
558 		struct drm_i915_gem_request *tail_req;
559 
560 		tail_req = list_last_entry(&ring->execlist_queue,
561 					   struct drm_i915_gem_request,
562 					   execlist_link);
563 
564 		if (to == tail_req->ctx) {
565 			WARN(tail_req->elsp_submitted != 0,
566 				"More than 2 already-submitted reqs queued\n");
567 			list_del(&tail_req->execlist_link);
568 			list_add_tail(&tail_req->execlist_link,
569 				&ring->execlist_retired_req_list);
570 		}
571 	}
572 
573 	list_add_tail(&request->execlist_link, &ring->execlist_queue);
574 	if (num_elements == 0)
575 		execlists_context_unqueue(ring);
576 
577 	spin_unlock_irqrestore(&ring->execlist_lock, flags);
578 
579 	return 0;
580 }
581 
logical_ring_invalidate_all_caches(struct intel_ringbuffer * ringbuf,struct intel_context * ctx)582 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
583 					      struct intel_context *ctx)
584 {
585 	struct intel_engine_cs *ring = ringbuf->ring;
586 	uint32_t flush_domains;
587 	int ret;
588 
589 	flush_domains = 0;
590 	if (ring->gpu_caches_dirty)
591 		flush_domains = I915_GEM_GPU_DOMAINS;
592 
593 	ret = ring->emit_flush(ringbuf, ctx,
594 			       I915_GEM_GPU_DOMAINS, flush_domains);
595 	if (ret)
596 		return ret;
597 
598 	ring->gpu_caches_dirty = false;
599 	return 0;
600 }
601 
execlists_move_to_gpu(struct intel_ringbuffer * ringbuf,struct intel_context * ctx,struct list_head * vmas)602 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
603 				 struct intel_context *ctx,
604 				 struct list_head *vmas)
605 {
606 	struct intel_engine_cs *ring = ringbuf->ring;
607 	struct i915_vma *vma;
608 	uint32_t flush_domains = 0;
609 	bool flush_chipset = false;
610 	int ret;
611 
612 	list_for_each_entry(vma, vmas, exec_list) {
613 		struct drm_i915_gem_object *obj = vma->obj;
614 
615 		ret = i915_gem_object_sync(obj, ring);
616 		if (ret)
617 			return ret;
618 
619 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
620 			flush_chipset |= i915_gem_clflush_object(obj, false);
621 
622 		flush_domains |= obj->base.write_domain;
623 	}
624 
625 	if (flush_domains & I915_GEM_DOMAIN_GTT)
626 		wmb();
627 
628 	/* Unconditionally invalidate gpu caches and ensure that we do flush
629 	 * any residual writes from the previous batch.
630 	 */
631 	return logical_ring_invalidate_all_caches(ringbuf, ctx);
632 }
633 
634 /**
635  * execlists_submission() - submit a batchbuffer for execution, Execlists style
636  * @dev: DRM device.
637  * @file: DRM file.
638  * @ring: Engine Command Streamer to submit to.
639  * @ctx: Context to employ for this submission.
640  * @args: execbuffer call arguments.
641  * @vmas: list of vmas.
642  * @batch_obj: the batchbuffer to submit.
643  * @exec_start: batchbuffer start virtual address pointer.
644  * @dispatch_flags: translated execbuffer call flags.
645  *
646  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
647  * away the submission details of the execbuffer ioctl call.
648  *
649  * Return: non-zero if the submission fails.
650  */
intel_execlists_submission(struct drm_device * dev,struct drm_file * file,struct intel_engine_cs * ring,struct intel_context * ctx,struct drm_i915_gem_execbuffer2 * args,struct list_head * vmas,struct drm_i915_gem_object * batch_obj,u64 exec_start,u32 dispatch_flags)651 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
652 			       struct intel_engine_cs *ring,
653 			       struct intel_context *ctx,
654 			       struct drm_i915_gem_execbuffer2 *args,
655 			       struct list_head *vmas,
656 			       struct drm_i915_gem_object *batch_obj,
657 			       u64 exec_start, u32 dispatch_flags)
658 {
659 	struct drm_i915_private *dev_priv = dev->dev_private;
660 	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
661 	int instp_mode;
662 	u32 instp_mask;
663 	int ret;
664 
665 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
666 	instp_mask = I915_EXEC_CONSTANTS_MASK;
667 	switch (instp_mode) {
668 	case I915_EXEC_CONSTANTS_REL_GENERAL:
669 	case I915_EXEC_CONSTANTS_ABSOLUTE:
670 	case I915_EXEC_CONSTANTS_REL_SURFACE:
671 		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
672 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
673 			return -EINVAL;
674 		}
675 
676 		if (instp_mode != dev_priv->relative_constants_mode) {
677 			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
678 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
679 				return -EINVAL;
680 			}
681 
682 			/* The HW changed the meaning on this bit on gen6 */
683 			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
684 		}
685 		break;
686 	default:
687 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
688 		return -EINVAL;
689 	}
690 
691 	if (args->num_cliprects != 0) {
692 		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
693 		return -EINVAL;
694 	} else {
695 		if (args->DR4 == 0xffffffff) {
696 			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
697 			args->DR4 = 0;
698 		}
699 
700 		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
701 			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
702 			return -EINVAL;
703 		}
704 	}
705 
706 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
707 		DRM_DEBUG("sol reset is gen7 only\n");
708 		return -EINVAL;
709 	}
710 
711 	ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
712 	if (ret)
713 		return ret;
714 
715 	if (ring == &dev_priv->ring[RCS] &&
716 	    instp_mode != dev_priv->relative_constants_mode) {
717 		ret = intel_logical_ring_begin(ringbuf, ctx, 4);
718 		if (ret)
719 			return ret;
720 
721 		intel_logical_ring_emit(ringbuf, MI_NOOP);
722 		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
723 		intel_logical_ring_emit(ringbuf, INSTPM);
724 		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
725 		intel_logical_ring_advance(ringbuf);
726 
727 		dev_priv->relative_constants_mode = instp_mode;
728 	}
729 
730 	ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
731 	if (ret)
732 		return ret;
733 
734 	trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
735 
736 	i915_gem_execbuffer_move_to_active(vmas, ring);
737 	i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
738 
739 	return 0;
740 }
741 
intel_execlists_retire_requests(struct intel_engine_cs * ring)742 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
743 {
744 	struct drm_i915_gem_request *req, *tmp;
745 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
746 	unsigned long flags;
747 	struct list_head retired_list;
748 
749 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
750 	if (list_empty(&ring->execlist_retired_req_list))
751 		return;
752 
753 	INIT_LIST_HEAD(&retired_list);
754 	spin_lock_irqsave(&ring->execlist_lock, flags);
755 	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
756 	spin_unlock_irqrestore(&ring->execlist_lock, flags);
757 
758 	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
759 		struct intel_context *ctx = req->ctx;
760 		struct drm_i915_gem_object *ctx_obj =
761 				ctx->engine[ring->id].state;
762 
763 		if (ctx_obj && (ctx != ring->default_context))
764 			intel_lr_context_unpin(ring, ctx);
765 		intel_runtime_pm_put(dev_priv);
766 		list_del(&req->execlist_link);
767 		i915_gem_request_unreference(req);
768 	}
769 }
770 
intel_logical_ring_stop(struct intel_engine_cs * ring)771 void intel_logical_ring_stop(struct intel_engine_cs *ring)
772 {
773 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
774 	int ret;
775 
776 	if (!intel_ring_initialized(ring))
777 		return;
778 
779 	ret = intel_ring_idle(ring);
780 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
781 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
782 			  ring->name, ret);
783 
784 	/* TODO: Is this correct with Execlists enabled? */
785 	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
786 	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
787 		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
788 		return;
789 	}
790 	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
791 }
792 
logical_ring_flush_all_caches(struct intel_ringbuffer * ringbuf,struct intel_context * ctx)793 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
794 				  struct intel_context *ctx)
795 {
796 	struct intel_engine_cs *ring = ringbuf->ring;
797 	int ret;
798 
799 	if (!ring->gpu_caches_dirty)
800 		return 0;
801 
802 	ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
803 	if (ret)
804 		return ret;
805 
806 	ring->gpu_caches_dirty = false;
807 	return 0;
808 }
809 
810 /*
811  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
812  * @ringbuf: Logical Ringbuffer to advance.
813  *
814  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
815  * really happens during submission is that the context and current tail will be placed
816  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
817  * point, the tail *inside* the context is updated and the ELSP written to.
818  */
819 static void
intel_logical_ring_advance_and_submit(struct intel_ringbuffer * ringbuf,struct intel_context * ctx,struct drm_i915_gem_request * request)820 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
821 				      struct intel_context *ctx,
822 				      struct drm_i915_gem_request *request)
823 {
824 	struct intel_engine_cs *ring = ringbuf->ring;
825 
826 	intel_logical_ring_advance(ringbuf);
827 
828 	if (intel_ring_stopped(ring))
829 		return;
830 
831 	execlists_context_queue(ring, ctx, ringbuf->tail, request);
832 }
833 
intel_lr_context_pin(struct intel_engine_cs * ring,struct intel_context * ctx)834 static int intel_lr_context_pin(struct intel_engine_cs *ring,
835 		struct intel_context *ctx)
836 {
837 	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
838 	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
839 	int ret = 0;
840 
841 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
842 	if (ctx->engine[ring->id].pin_count++ == 0) {
843 		ret = i915_gem_obj_ggtt_pin(ctx_obj,
844 				GEN8_LR_CONTEXT_ALIGN, 0);
845 		if (ret)
846 			goto reset_pin_count;
847 
848 		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
849 		if (ret)
850 			goto unpin_ctx_obj;
851 
852 		ctx_obj->dirty = true;
853 	}
854 
855 	return ret;
856 
857 unpin_ctx_obj:
858 	i915_gem_object_ggtt_unpin(ctx_obj);
859 reset_pin_count:
860 	ctx->engine[ring->id].pin_count = 0;
861 
862 	return ret;
863 }
864 
intel_lr_context_unpin(struct intel_engine_cs * ring,struct intel_context * ctx)865 void intel_lr_context_unpin(struct intel_engine_cs *ring,
866 		struct intel_context *ctx)
867 {
868 	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
869 	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
870 
871 	if (ctx_obj) {
872 		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
873 		if (--ctx->engine[ring->id].pin_count == 0) {
874 			intel_unpin_ringbuffer_obj(ringbuf);
875 			i915_gem_object_ggtt_unpin(ctx_obj);
876 		}
877 	}
878 }
879 
logical_ring_alloc_request(struct intel_engine_cs * ring,struct intel_context * ctx)880 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
881 				      struct intel_context *ctx)
882 {
883 	struct drm_i915_gem_request *request;
884 	struct drm_i915_private *dev_private = ring->dev->dev_private;
885 	int ret;
886 
887 	if (ring->outstanding_lazy_request)
888 		return 0;
889 
890 	request = kzalloc(sizeof(*request), GFP_KERNEL);
891 	if (request == NULL)
892 		return -ENOMEM;
893 
894 	if (ctx != ring->default_context) {
895 		ret = intel_lr_context_pin(ring, ctx);
896 		if (ret) {
897 			kfree(request);
898 			return ret;
899 		}
900 	}
901 
902 	kref_init(&request->ref);
903 	request->ring = ring;
904 	request->uniq = dev_private->request_uniq++;
905 
906 	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
907 	if (ret) {
908 		intel_lr_context_unpin(ring, ctx);
909 		kfree(request);
910 		return ret;
911 	}
912 
913 	request->ctx = ctx;
914 	i915_gem_context_reference(request->ctx);
915 	request->ringbuf = ctx->engine[ring->id].ringbuf;
916 
917 	ring->outstanding_lazy_request = request;
918 	return 0;
919 }
920 
logical_ring_wait_request(struct intel_ringbuffer * ringbuf,int bytes)921 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
922 				     int bytes)
923 {
924 	struct intel_engine_cs *ring = ringbuf->ring;
925 	struct drm_i915_gem_request *request;
926 	int ret;
927 
928 	if (intel_ring_space(ringbuf) >= bytes)
929 		return 0;
930 
931 	list_for_each_entry(request, &ring->request_list, list) {
932 		/*
933 		 * The request queue is per-engine, so can contain requests
934 		 * from multiple ringbuffers. Here, we must ignore any that
935 		 * aren't from the ringbuffer we're considering.
936 		 */
937 		struct intel_context *ctx = request->ctx;
938 		if (ctx->engine[ring->id].ringbuf != ringbuf)
939 			continue;
940 
941 		/* Would completion of this request free enough space? */
942 		if (__intel_ring_space(request->tail, ringbuf->tail,
943 				       ringbuf->size) >= bytes) {
944 			break;
945 		}
946 	}
947 
948 	if (&request->list == &ring->request_list)
949 		return -ENOSPC;
950 
951 	ret = i915_wait_request(request);
952 	if (ret)
953 		return ret;
954 
955 	i915_gem_retire_requests_ring(ring);
956 
957 	return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
958 }
959 
logical_ring_wait_for_space(struct intel_ringbuffer * ringbuf,struct intel_context * ctx,int bytes)960 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
961 				       struct intel_context *ctx,
962 				       int bytes)
963 {
964 	struct intel_engine_cs *ring = ringbuf->ring;
965 	struct drm_device *dev = ring->dev;
966 	struct drm_i915_private *dev_priv = dev->dev_private;
967 	unsigned long end;
968 	int ret;
969 
970 	ret = logical_ring_wait_request(ringbuf, bytes);
971 	if (ret != -ENOSPC)
972 		return ret;
973 
974 	/* Force the context submission in case we have been skipping it */
975 	intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
976 
977 	/* With GEM the hangcheck timer should kick us out of the loop,
978 	 * leaving it early runs the risk of corrupting GEM state (due
979 	 * to running on almost untested codepaths). But on resume
980 	 * timers don't work yet, so prevent a complete hang in that
981 	 * case by choosing an insanely large timeout. */
982 	end = jiffies + 60 * HZ;
983 
984 	ret = 0;
985 	do {
986 		if (intel_ring_space(ringbuf) >= bytes)
987 			break;
988 
989 		msleep(1);
990 
991 		if (dev_priv->mm.interruptible && signal_pending(current)) {
992 			ret = -ERESTARTSYS;
993 			break;
994 		}
995 
996 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
997 					   dev_priv->mm.interruptible);
998 		if (ret)
999 			break;
1000 
1001 		if (time_after(jiffies, end)) {
1002 			ret = -EBUSY;
1003 			break;
1004 		}
1005 	} while (1);
1006 
1007 	return ret;
1008 }
1009 
logical_ring_wrap_buffer(struct intel_ringbuffer * ringbuf,struct intel_context * ctx)1010 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
1011 				    struct intel_context *ctx)
1012 {
1013 	uint32_t __iomem *virt;
1014 	int rem = ringbuf->size - ringbuf->tail;
1015 
1016 	if (ringbuf->space < rem) {
1017 		int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
1018 
1019 		if (ret)
1020 			return ret;
1021 	}
1022 
1023 	virt = ringbuf->virtual_start + ringbuf->tail;
1024 	rem /= 4;
1025 	while (rem--)
1026 		iowrite32(MI_NOOP, virt++);
1027 
1028 	ringbuf->tail = 0;
1029 	intel_ring_update_space(ringbuf);
1030 
1031 	return 0;
1032 }
1033 
logical_ring_prepare(struct intel_ringbuffer * ringbuf,struct intel_context * ctx,int bytes)1034 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
1035 				struct intel_context *ctx, int bytes)
1036 {
1037 	int ret;
1038 
1039 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1040 		ret = logical_ring_wrap_buffer(ringbuf, ctx);
1041 		if (unlikely(ret))
1042 			return ret;
1043 	}
1044 
1045 	if (unlikely(ringbuf->space < bytes)) {
1046 		ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1047 		if (unlikely(ret))
1048 			return ret;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 /**
1055  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1056  *
1057  * @ringbuf: Logical ringbuffer.
1058  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1059  *
1060  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1061  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1062  * and also preallocates a request (every workload submission is still mediated through
1063  * requests, same as it did with legacy ringbuffer submission).
1064  *
1065  * Return: non-zero if the ringbuffer is not ready to be written to.
1066  */
intel_logical_ring_begin(struct intel_ringbuffer * ringbuf,struct intel_context * ctx,int num_dwords)1067 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
1068 			     struct intel_context *ctx, int num_dwords)
1069 {
1070 	struct intel_engine_cs *ring = ringbuf->ring;
1071 	struct drm_device *dev = ring->dev;
1072 	struct drm_i915_private *dev_priv = dev->dev_private;
1073 	int ret;
1074 
1075 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1076 				   dev_priv->mm.interruptible);
1077 	if (ret)
1078 		return ret;
1079 
1080 	ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1081 	if (ret)
1082 		return ret;
1083 
1084 	/* Preallocate the olr before touching the ring */
1085 	ret = logical_ring_alloc_request(ring, ctx);
1086 	if (ret)
1087 		return ret;
1088 
1089 	ringbuf->space -= num_dwords * sizeof(uint32_t);
1090 	return 0;
1091 }
1092 
intel_logical_ring_workarounds_emit(struct intel_engine_cs * ring,struct intel_context * ctx)1093 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1094 					       struct intel_context *ctx)
1095 {
1096 	int ret, i;
1097 	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1098 	struct drm_device *dev = ring->dev;
1099 	struct drm_i915_private *dev_priv = dev->dev_private;
1100 	struct i915_workarounds *w = &dev_priv->workarounds;
1101 
1102 	if (WARN_ON_ONCE(w->count == 0))
1103 		return 0;
1104 
1105 	ring->gpu_caches_dirty = true;
1106 	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1107 	if (ret)
1108 		return ret;
1109 
1110 	ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1111 	if (ret)
1112 		return ret;
1113 
1114 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1115 	for (i = 0; i < w->count; i++) {
1116 		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1117 		intel_logical_ring_emit(ringbuf, w->reg[i].value);
1118 	}
1119 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1120 
1121 	intel_logical_ring_advance(ringbuf);
1122 
1123 	ring->gpu_caches_dirty = true;
1124 	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1125 	if (ret)
1126 		return ret;
1127 
1128 	return 0;
1129 }
1130 
gen8_init_common_ring(struct intel_engine_cs * ring)1131 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1132 {
1133 	struct drm_device *dev = ring->dev;
1134 	struct drm_i915_private *dev_priv = dev->dev_private;
1135 
1136 	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1137 	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1138 
1139 	if (ring->status_page.obj) {
1140 		I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1141 			   (u32)ring->status_page.gfx_addr);
1142 		POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1143 	}
1144 
1145 	I915_WRITE(RING_MODE_GEN7(ring),
1146 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1147 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1148 	POSTING_READ(RING_MODE_GEN7(ring));
1149 	ring->next_context_status_buffer = 0;
1150 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1151 
1152 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1153 
1154 	return 0;
1155 }
1156 
gen8_init_render_ring(struct intel_engine_cs * ring)1157 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1158 {
1159 	struct drm_device *dev = ring->dev;
1160 	struct drm_i915_private *dev_priv = dev->dev_private;
1161 	int ret;
1162 
1163 	ret = gen8_init_common_ring(ring);
1164 	if (ret)
1165 		return ret;
1166 
1167 	/* We need to disable the AsyncFlip performance optimisations in order
1168 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1169 	 * programmed to '1' on all products.
1170 	 *
1171 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1172 	 */
1173 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1174 
1175 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1176 
1177 	return init_workarounds_ring(ring);
1178 }
1179 
gen9_init_render_ring(struct intel_engine_cs * ring)1180 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1181 {
1182 	int ret;
1183 
1184 	ret = gen8_init_common_ring(ring);
1185 	if (ret)
1186 		return ret;
1187 
1188 	return init_workarounds_ring(ring);
1189 }
1190 
gen8_emit_bb_start(struct intel_ringbuffer * ringbuf,struct intel_context * ctx,u64 offset,unsigned dispatch_flags)1191 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1192 			      struct intel_context *ctx,
1193 			      u64 offset, unsigned dispatch_flags)
1194 {
1195 	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1196 	int ret;
1197 
1198 	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1199 	if (ret)
1200 		return ret;
1201 
1202 	/* FIXME(BDW): Address space and security selectors. */
1203 	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1204 	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1205 	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1206 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1207 	intel_logical_ring_advance(ringbuf);
1208 
1209 	return 0;
1210 }
1211 
gen8_logical_ring_get_irq(struct intel_engine_cs * ring)1212 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1213 {
1214 	struct drm_device *dev = ring->dev;
1215 	struct drm_i915_private *dev_priv = dev->dev_private;
1216 	unsigned long flags;
1217 
1218 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1219 		return false;
1220 
1221 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1222 	if (ring->irq_refcount++ == 0) {
1223 		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1224 		POSTING_READ(RING_IMR(ring->mmio_base));
1225 	}
1226 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1227 
1228 	return true;
1229 }
1230 
gen8_logical_ring_put_irq(struct intel_engine_cs * ring)1231 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1232 {
1233 	struct drm_device *dev = ring->dev;
1234 	struct drm_i915_private *dev_priv = dev->dev_private;
1235 	unsigned long flags;
1236 
1237 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1238 	if (--ring->irq_refcount == 0) {
1239 		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1240 		POSTING_READ(RING_IMR(ring->mmio_base));
1241 	}
1242 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1243 }
1244 
gen8_emit_flush(struct intel_ringbuffer * ringbuf,struct intel_context * ctx,u32 invalidate_domains,u32 unused)1245 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1246 			   struct intel_context *ctx,
1247 			   u32 invalidate_domains,
1248 			   u32 unused)
1249 {
1250 	struct intel_engine_cs *ring = ringbuf->ring;
1251 	struct drm_device *dev = ring->dev;
1252 	struct drm_i915_private *dev_priv = dev->dev_private;
1253 	uint32_t cmd;
1254 	int ret;
1255 
1256 	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1257 	if (ret)
1258 		return ret;
1259 
1260 	cmd = MI_FLUSH_DW + 1;
1261 
1262 	/* We always require a command barrier so that subsequent
1263 	 * commands, such as breadcrumb interrupts, are strictly ordered
1264 	 * wrt the contents of the write cache being flushed to memory
1265 	 * (and thus being coherent from the CPU).
1266 	 */
1267 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1268 
1269 	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1270 		cmd |= MI_INVALIDATE_TLB;
1271 		if (ring == &dev_priv->ring[VCS])
1272 			cmd |= MI_INVALIDATE_BSD;
1273 	}
1274 
1275 	intel_logical_ring_emit(ringbuf, cmd);
1276 	intel_logical_ring_emit(ringbuf,
1277 				I915_GEM_HWS_SCRATCH_ADDR |
1278 				MI_FLUSH_DW_USE_GTT);
1279 	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1280 	intel_logical_ring_emit(ringbuf, 0); /* value */
1281 	intel_logical_ring_advance(ringbuf);
1282 
1283 	return 0;
1284 }
1285 
gen8_emit_flush_render(struct intel_ringbuffer * ringbuf,struct intel_context * ctx,u32 invalidate_domains,u32 flush_domains)1286 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1287 				  struct intel_context *ctx,
1288 				  u32 invalidate_domains,
1289 				  u32 flush_domains)
1290 {
1291 	struct intel_engine_cs *ring = ringbuf->ring;
1292 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1293 	u32 flags = 0;
1294 	int ret;
1295 
1296 	flags |= PIPE_CONTROL_CS_STALL;
1297 
1298 	if (flush_domains) {
1299 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1300 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1301 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1302 	}
1303 
1304 	if (invalidate_domains) {
1305 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1306 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1307 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1308 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1309 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1310 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1311 		flags |= PIPE_CONTROL_QW_WRITE;
1312 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1313 	}
1314 
1315 	ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1316 	if (ret)
1317 		return ret;
1318 
1319 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1320 	intel_logical_ring_emit(ringbuf, flags);
1321 	intel_logical_ring_emit(ringbuf, scratch_addr);
1322 	intel_logical_ring_emit(ringbuf, 0);
1323 	intel_logical_ring_emit(ringbuf, 0);
1324 	intel_logical_ring_emit(ringbuf, 0);
1325 	intel_logical_ring_advance(ringbuf);
1326 
1327 	return 0;
1328 }
1329 
gen8_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1330 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1331 {
1332 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1333 }
1334 
gen8_set_seqno(struct intel_engine_cs * ring,u32 seqno)1335 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1336 {
1337 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1338 }
1339 
gen8_emit_request(struct intel_ringbuffer * ringbuf,struct drm_i915_gem_request * request)1340 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1341 			     struct drm_i915_gem_request *request)
1342 {
1343 	struct intel_engine_cs *ring = ringbuf->ring;
1344 	u32 cmd;
1345 	int ret;
1346 
1347 	/*
1348 	 * Reserve space for 2 NOOPs at the end of each request to be
1349 	 * used as a workaround for not being allowed to do lite
1350 	 * restore with HEAD==TAIL (WaIdleLiteRestore).
1351 	 */
1352 	ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1353 	if (ret)
1354 		return ret;
1355 
1356 	cmd = MI_STORE_DWORD_IMM_GEN4;
1357 	cmd |= MI_GLOBAL_GTT;
1358 
1359 	intel_logical_ring_emit(ringbuf, cmd);
1360 	intel_logical_ring_emit(ringbuf,
1361 				(ring->status_page.gfx_addr +
1362 				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1363 	intel_logical_ring_emit(ringbuf, 0);
1364 	intel_logical_ring_emit(ringbuf,
1365 		i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1366 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1367 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1368 	intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1369 
1370 	/*
1371 	 * Here we add two extra NOOPs as padding to avoid
1372 	 * lite restore of a context with HEAD==TAIL.
1373 	 */
1374 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1375 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1376 	intel_logical_ring_advance(ringbuf);
1377 
1378 	return 0;
1379 }
1380 
intel_lr_context_render_state_init(struct intel_engine_cs * ring,struct intel_context * ctx)1381 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1382 					      struct intel_context *ctx)
1383 {
1384 	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1385 	struct render_state so;
1386 	struct drm_i915_file_private *file_priv = ctx->file_priv;
1387 	struct drm_file *file = file_priv ? file_priv->file : NULL;
1388 	int ret;
1389 
1390 	ret = i915_gem_render_state_prepare(ring, &so);
1391 	if (ret)
1392 		return ret;
1393 
1394 	if (so.rodata == NULL)
1395 		return 0;
1396 
1397 	ret = ring->emit_bb_start(ringbuf,
1398 			ctx,
1399 			so.ggtt_offset,
1400 			I915_DISPATCH_SECURE);
1401 	if (ret)
1402 		goto out;
1403 
1404 	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1405 
1406 	ret = __i915_add_request(ring, file, so.obj);
1407 	/* intel_logical_ring_add_request moves object to inactive if it
1408 	 * fails */
1409 out:
1410 	i915_gem_render_state_fini(&so);
1411 	return ret;
1412 }
1413 
gen8_init_rcs_context(struct intel_engine_cs * ring,struct intel_context * ctx)1414 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1415 		       struct intel_context *ctx)
1416 {
1417 	int ret;
1418 
1419 	ret = intel_logical_ring_workarounds_emit(ring, ctx);
1420 	if (ret)
1421 		return ret;
1422 
1423 	return intel_lr_context_render_state_init(ring, ctx);
1424 }
1425 
1426 /**
1427  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1428  *
1429  * @ring: Engine Command Streamer.
1430  *
1431  */
intel_logical_ring_cleanup(struct intel_engine_cs * ring)1432 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1433 {
1434 	struct drm_i915_private *dev_priv;
1435 
1436 	if (!intel_ring_initialized(ring))
1437 		return;
1438 
1439 	dev_priv = ring->dev->dev_private;
1440 
1441 	intel_logical_ring_stop(ring);
1442 	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1443 	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1444 
1445 	if (ring->cleanup)
1446 		ring->cleanup(ring);
1447 
1448 	i915_cmd_parser_fini_ring(ring);
1449 
1450 	if (ring->status_page.obj) {
1451 		kunmap(sg_page(ring->status_page.obj->pages->sgl));
1452 		ring->status_page.obj = NULL;
1453 	}
1454 }
1455 
logical_ring_init(struct drm_device * dev,struct intel_engine_cs * ring)1456 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1457 {
1458 	int ret;
1459 
1460 	/* Intentionally left blank. */
1461 	ring->buffer = NULL;
1462 
1463 	ring->dev = dev;
1464 	INIT_LIST_HEAD(&ring->active_list);
1465 	INIT_LIST_HEAD(&ring->request_list);
1466 	init_waitqueue_head(&ring->irq_queue);
1467 
1468 	INIT_LIST_HEAD(&ring->execlist_queue);
1469 	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1470 	spin_lock_init(&ring->execlist_lock);
1471 
1472 	ret = i915_cmd_parser_init_ring(ring);
1473 	if (ret)
1474 		return ret;
1475 
1476 	ret = intel_lr_context_deferred_create(ring->default_context, ring);
1477 
1478 	return ret;
1479 }
1480 
logical_render_ring_init(struct drm_device * dev)1481 static int logical_render_ring_init(struct drm_device *dev)
1482 {
1483 	struct drm_i915_private *dev_priv = dev->dev_private;
1484 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1485 	int ret;
1486 
1487 	ring->name = "render ring";
1488 	ring->id = RCS;
1489 	ring->mmio_base = RENDER_RING_BASE;
1490 	ring->irq_enable_mask =
1491 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1492 	ring->irq_keep_mask =
1493 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1494 	if (HAS_L3_DPF(dev))
1495 		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1496 
1497 	if (INTEL_INFO(dev)->gen >= 9)
1498 		ring->init_hw = gen9_init_render_ring;
1499 	else
1500 		ring->init_hw = gen8_init_render_ring;
1501 	ring->init_context = gen8_init_rcs_context;
1502 	ring->cleanup = intel_fini_pipe_control;
1503 	ring->get_seqno = gen8_get_seqno;
1504 	ring->set_seqno = gen8_set_seqno;
1505 	ring->emit_request = gen8_emit_request;
1506 	ring->emit_flush = gen8_emit_flush_render;
1507 	ring->irq_get = gen8_logical_ring_get_irq;
1508 	ring->irq_put = gen8_logical_ring_put_irq;
1509 	ring->emit_bb_start = gen8_emit_bb_start;
1510 
1511 	ring->dev = dev;
1512 	ret = logical_ring_init(dev, ring);
1513 	if (ret)
1514 		return ret;
1515 
1516 	return intel_init_pipe_control(ring);
1517 }
1518 
logical_bsd_ring_init(struct drm_device * dev)1519 static int logical_bsd_ring_init(struct drm_device *dev)
1520 {
1521 	struct drm_i915_private *dev_priv = dev->dev_private;
1522 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1523 
1524 	ring->name = "bsd ring";
1525 	ring->id = VCS;
1526 	ring->mmio_base = GEN6_BSD_RING_BASE;
1527 	ring->irq_enable_mask =
1528 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1529 	ring->irq_keep_mask =
1530 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1531 
1532 	ring->init_hw = gen8_init_common_ring;
1533 	ring->get_seqno = gen8_get_seqno;
1534 	ring->set_seqno = gen8_set_seqno;
1535 	ring->emit_request = gen8_emit_request;
1536 	ring->emit_flush = gen8_emit_flush;
1537 	ring->irq_get = gen8_logical_ring_get_irq;
1538 	ring->irq_put = gen8_logical_ring_put_irq;
1539 	ring->emit_bb_start = gen8_emit_bb_start;
1540 
1541 	return logical_ring_init(dev, ring);
1542 }
1543 
logical_bsd2_ring_init(struct drm_device * dev)1544 static int logical_bsd2_ring_init(struct drm_device *dev)
1545 {
1546 	struct drm_i915_private *dev_priv = dev->dev_private;
1547 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1548 
1549 	ring->name = "bds2 ring";
1550 	ring->id = VCS2;
1551 	ring->mmio_base = GEN8_BSD2_RING_BASE;
1552 	ring->irq_enable_mask =
1553 		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1554 	ring->irq_keep_mask =
1555 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1556 
1557 	ring->init_hw = gen8_init_common_ring;
1558 	ring->get_seqno = gen8_get_seqno;
1559 	ring->set_seqno = gen8_set_seqno;
1560 	ring->emit_request = gen8_emit_request;
1561 	ring->emit_flush = gen8_emit_flush;
1562 	ring->irq_get = gen8_logical_ring_get_irq;
1563 	ring->irq_put = gen8_logical_ring_put_irq;
1564 	ring->emit_bb_start = gen8_emit_bb_start;
1565 
1566 	return logical_ring_init(dev, ring);
1567 }
1568 
logical_blt_ring_init(struct drm_device * dev)1569 static int logical_blt_ring_init(struct drm_device *dev)
1570 {
1571 	struct drm_i915_private *dev_priv = dev->dev_private;
1572 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1573 
1574 	ring->name = "blitter ring";
1575 	ring->id = BCS;
1576 	ring->mmio_base = BLT_RING_BASE;
1577 	ring->irq_enable_mask =
1578 		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1579 	ring->irq_keep_mask =
1580 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1581 
1582 	ring->init_hw = gen8_init_common_ring;
1583 	ring->get_seqno = gen8_get_seqno;
1584 	ring->set_seqno = gen8_set_seqno;
1585 	ring->emit_request = gen8_emit_request;
1586 	ring->emit_flush = gen8_emit_flush;
1587 	ring->irq_get = gen8_logical_ring_get_irq;
1588 	ring->irq_put = gen8_logical_ring_put_irq;
1589 	ring->emit_bb_start = gen8_emit_bb_start;
1590 
1591 	return logical_ring_init(dev, ring);
1592 }
1593 
logical_vebox_ring_init(struct drm_device * dev)1594 static int logical_vebox_ring_init(struct drm_device *dev)
1595 {
1596 	struct drm_i915_private *dev_priv = dev->dev_private;
1597 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1598 
1599 	ring->name = "video enhancement ring";
1600 	ring->id = VECS;
1601 	ring->mmio_base = VEBOX_RING_BASE;
1602 	ring->irq_enable_mask =
1603 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1604 	ring->irq_keep_mask =
1605 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1606 
1607 	ring->init_hw = gen8_init_common_ring;
1608 	ring->get_seqno = gen8_get_seqno;
1609 	ring->set_seqno = gen8_set_seqno;
1610 	ring->emit_request = gen8_emit_request;
1611 	ring->emit_flush = gen8_emit_flush;
1612 	ring->irq_get = gen8_logical_ring_get_irq;
1613 	ring->irq_put = gen8_logical_ring_put_irq;
1614 	ring->emit_bb_start = gen8_emit_bb_start;
1615 
1616 	return logical_ring_init(dev, ring);
1617 }
1618 
1619 /**
1620  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1621  * @dev: DRM device.
1622  *
1623  * This function inits the engines for an Execlists submission style (the equivalent in the
1624  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1625  * those engines that are present in the hardware.
1626  *
1627  * Return: non-zero if the initialization failed.
1628  */
intel_logical_rings_init(struct drm_device * dev)1629 int intel_logical_rings_init(struct drm_device *dev)
1630 {
1631 	struct drm_i915_private *dev_priv = dev->dev_private;
1632 	int ret;
1633 
1634 	ret = logical_render_ring_init(dev);
1635 	if (ret)
1636 		return ret;
1637 
1638 	if (HAS_BSD(dev)) {
1639 		ret = logical_bsd_ring_init(dev);
1640 		if (ret)
1641 			goto cleanup_render_ring;
1642 	}
1643 
1644 	if (HAS_BLT(dev)) {
1645 		ret = logical_blt_ring_init(dev);
1646 		if (ret)
1647 			goto cleanup_bsd_ring;
1648 	}
1649 
1650 	if (HAS_VEBOX(dev)) {
1651 		ret = logical_vebox_ring_init(dev);
1652 		if (ret)
1653 			goto cleanup_blt_ring;
1654 	}
1655 
1656 	if (HAS_BSD2(dev)) {
1657 		ret = logical_bsd2_ring_init(dev);
1658 		if (ret)
1659 			goto cleanup_vebox_ring;
1660 	}
1661 
1662 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1663 	if (ret)
1664 		goto cleanup_bsd2_ring;
1665 
1666 	return 0;
1667 
1668 cleanup_bsd2_ring:
1669 	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1670 cleanup_vebox_ring:
1671 	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1672 cleanup_blt_ring:
1673 	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1674 cleanup_bsd_ring:
1675 	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1676 cleanup_render_ring:
1677 	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1678 
1679 	return ret;
1680 }
1681 
1682 static u32
make_rpcs(struct drm_device * dev)1683 make_rpcs(struct drm_device *dev)
1684 {
1685 	u32 rpcs = 0;
1686 
1687 	/*
1688 	 * No explicit RPCS request is needed to ensure full
1689 	 * slice/subslice/EU enablement prior to Gen9.
1690 	*/
1691 	if (INTEL_INFO(dev)->gen < 9)
1692 		return 0;
1693 
1694 	/*
1695 	 * Starting in Gen9, render power gating can leave
1696 	 * slice/subslice/EU in a partially enabled state. We
1697 	 * must make an explicit request through RPCS for full
1698 	 * enablement.
1699 	*/
1700 	if (INTEL_INFO(dev)->has_slice_pg) {
1701 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1702 		rpcs |= INTEL_INFO(dev)->slice_total <<
1703 			GEN8_RPCS_S_CNT_SHIFT;
1704 		rpcs |= GEN8_RPCS_ENABLE;
1705 	}
1706 
1707 	if (INTEL_INFO(dev)->has_subslice_pg) {
1708 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1709 		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1710 			GEN8_RPCS_SS_CNT_SHIFT;
1711 		rpcs |= GEN8_RPCS_ENABLE;
1712 	}
1713 
1714 	if (INTEL_INFO(dev)->has_eu_pg) {
1715 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1716 			GEN8_RPCS_EU_MIN_SHIFT;
1717 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1718 			GEN8_RPCS_EU_MAX_SHIFT;
1719 		rpcs |= GEN8_RPCS_ENABLE;
1720 	}
1721 
1722 	return rpcs;
1723 }
1724 
1725 static int
populate_lr_context(struct intel_context * ctx,struct drm_i915_gem_object * ctx_obj,struct intel_engine_cs * ring,struct intel_ringbuffer * ringbuf)1726 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1727 		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1728 {
1729 	struct drm_device *dev = ring->dev;
1730 	struct drm_i915_private *dev_priv = dev->dev_private;
1731 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1732 	struct page *page;
1733 	uint32_t *reg_state;
1734 	int ret;
1735 
1736 	if (!ppgtt)
1737 		ppgtt = dev_priv->mm.aliasing_ppgtt;
1738 
1739 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1740 	if (ret) {
1741 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1742 		return ret;
1743 	}
1744 
1745 	ret = i915_gem_object_get_pages(ctx_obj);
1746 	if (ret) {
1747 		DRM_DEBUG_DRIVER("Could not get object pages\n");
1748 		return ret;
1749 	}
1750 
1751 	i915_gem_object_pin_pages(ctx_obj);
1752 
1753 	/* The second page of the context object contains some fields which must
1754 	 * be set up prior to the first execution. */
1755 	page = i915_gem_object_get_page(ctx_obj, 1);
1756 	reg_state = kmap_atomic(page);
1757 
1758 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1759 	 * commands followed by (reg, value) pairs. The values we are setting here are
1760 	 * only for the first context restore: on a subsequent save, the GPU will
1761 	 * recreate this batchbuffer with new values (including all the missing
1762 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1763 	if (ring->id == RCS)
1764 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1765 	else
1766 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1767 	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1768 	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1769 	reg_state[CTX_CONTEXT_CONTROL+1] =
1770 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1771 				CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1772 	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1773 	reg_state[CTX_RING_HEAD+1] = 0;
1774 	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1775 	reg_state[CTX_RING_TAIL+1] = 0;
1776 	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1777 	/* Ring buffer start address is not known until the buffer is pinned.
1778 	 * It is written to the context image in execlists_update_context()
1779 	 */
1780 	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1781 	reg_state[CTX_RING_BUFFER_CONTROL+1] =
1782 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1783 	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1784 	reg_state[CTX_BB_HEAD_U+1] = 0;
1785 	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1786 	reg_state[CTX_BB_HEAD_L+1] = 0;
1787 	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1788 	reg_state[CTX_BB_STATE+1] = (1<<5);
1789 	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1790 	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1791 	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1792 	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1793 	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1794 	reg_state[CTX_SECOND_BB_STATE+1] = 0;
1795 	if (ring->id == RCS) {
1796 		/* TODO: according to BSpec, the register state context
1797 		 * for CHV does not have these. OTOH, these registers do
1798 		 * exist in CHV. I'm waiting for a clarification */
1799 		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1800 		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1801 		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1802 		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1803 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1804 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1805 	}
1806 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1807 	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1808 	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1809 	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1810 	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1811 	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1812 	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1813 	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1814 	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1815 	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1816 	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1817 	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1818 	reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1819 	reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1820 	reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1821 	reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1822 	reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1823 	reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1824 	reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1825 	reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1826 	if (ring->id == RCS) {
1827 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1828 		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1829 		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1830 	}
1831 
1832 	kunmap_atomic(reg_state);
1833 
1834 	ctx_obj->dirty = 1;
1835 	set_page_dirty(page);
1836 	i915_gem_object_unpin_pages(ctx_obj);
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * intel_lr_context_free() - free the LRC specific bits of a context
1843  * @ctx: the LR context to free.
1844  *
1845  * The real context freeing is done in i915_gem_context_free: this only
1846  * takes care of the bits that are LRC related: the per-engine backing
1847  * objects and the logical ringbuffer.
1848  */
intel_lr_context_free(struct intel_context * ctx)1849 void intel_lr_context_free(struct intel_context *ctx)
1850 {
1851 	int i;
1852 
1853 	for (i = 0; i < I915_NUM_RINGS; i++) {
1854 		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1855 
1856 		if (ctx_obj) {
1857 			struct intel_ringbuffer *ringbuf =
1858 					ctx->engine[i].ringbuf;
1859 			struct intel_engine_cs *ring = ringbuf->ring;
1860 
1861 			if (ctx == ring->default_context) {
1862 				intel_unpin_ringbuffer_obj(ringbuf);
1863 				i915_gem_object_ggtt_unpin(ctx_obj);
1864 			}
1865 			WARN_ON(ctx->engine[ring->id].pin_count);
1866 			intel_destroy_ringbuffer_obj(ringbuf);
1867 			kfree(ringbuf);
1868 			drm_gem_object_unreference(&ctx_obj->base);
1869 		}
1870 	}
1871 }
1872 
get_lr_context_size(struct intel_engine_cs * ring)1873 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1874 {
1875 	int ret = 0;
1876 
1877 	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1878 
1879 	switch (ring->id) {
1880 	case RCS:
1881 		if (INTEL_INFO(ring->dev)->gen >= 9)
1882 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1883 		else
1884 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1885 		break;
1886 	case VCS:
1887 	case BCS:
1888 	case VECS:
1889 	case VCS2:
1890 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1891 		break;
1892 	}
1893 
1894 	return ret;
1895 }
1896 
lrc_setup_hardware_status_page(struct intel_engine_cs * ring,struct drm_i915_gem_object * default_ctx_obj)1897 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1898 		struct drm_i915_gem_object *default_ctx_obj)
1899 {
1900 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1901 
1902 	/* The status page is offset 0 from the default context object
1903 	 * in LRC mode. */
1904 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1905 	ring->status_page.page_addr =
1906 			kmap(sg_page(default_ctx_obj->pages->sgl));
1907 	ring->status_page.obj = default_ctx_obj;
1908 
1909 	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1910 			(u32)ring->status_page.gfx_addr);
1911 	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1912 }
1913 
1914 /**
1915  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1916  * @ctx: LR context to create.
1917  * @ring: engine to be used with the context.
1918  *
1919  * This function can be called more than once, with different engines, if we plan
1920  * to use the context with them. The context backing objects and the ringbuffers
1921  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1922  * the creation is a deferred call: it's better to make sure first that we need to use
1923  * a given ring with the context.
1924  *
1925  * Return: non-zero on error.
1926  */
intel_lr_context_deferred_create(struct intel_context * ctx,struct intel_engine_cs * ring)1927 int intel_lr_context_deferred_create(struct intel_context *ctx,
1928 				     struct intel_engine_cs *ring)
1929 {
1930 	const bool is_global_default_ctx = (ctx == ring->default_context);
1931 	struct drm_device *dev = ring->dev;
1932 	struct drm_i915_gem_object *ctx_obj;
1933 	uint32_t context_size;
1934 	struct intel_ringbuffer *ringbuf;
1935 	int ret;
1936 
1937 	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1938 	WARN_ON(ctx->engine[ring->id].state);
1939 
1940 	context_size = round_up(get_lr_context_size(ring), 4096);
1941 
1942 	ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1943 	if (IS_ERR(ctx_obj)) {
1944 		ret = PTR_ERR(ctx_obj);
1945 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1946 		return ret;
1947 	}
1948 
1949 	if (is_global_default_ctx) {
1950 		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1951 		if (ret) {
1952 			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1953 					ret);
1954 			drm_gem_object_unreference(&ctx_obj->base);
1955 			return ret;
1956 		}
1957 	}
1958 
1959 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1960 	if (!ringbuf) {
1961 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1962 				ring->name);
1963 		ret = -ENOMEM;
1964 		goto error_unpin_ctx;
1965 	}
1966 
1967 	ringbuf->ring = ring;
1968 
1969 	ringbuf->size = 32 * PAGE_SIZE;
1970 	ringbuf->effective_size = ringbuf->size;
1971 	ringbuf->head = 0;
1972 	ringbuf->tail = 0;
1973 	ringbuf->last_retired_head = -1;
1974 	intel_ring_update_space(ringbuf);
1975 
1976 	if (ringbuf->obj == NULL) {
1977 		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1978 		if (ret) {
1979 			DRM_DEBUG_DRIVER(
1980 				"Failed to allocate ringbuffer obj %s: %d\n",
1981 				ring->name, ret);
1982 			goto error_free_rbuf;
1983 		}
1984 
1985 		if (is_global_default_ctx) {
1986 			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1987 			if (ret) {
1988 				DRM_ERROR(
1989 					"Failed to pin and map ringbuffer %s: %d\n",
1990 					ring->name, ret);
1991 				goto error_destroy_rbuf;
1992 			}
1993 		}
1994 
1995 	}
1996 
1997 	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1998 	if (ret) {
1999 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2000 		goto error;
2001 	}
2002 
2003 	ctx->engine[ring->id].ringbuf = ringbuf;
2004 	ctx->engine[ring->id].state = ctx_obj;
2005 
2006 	if (ctx == ring->default_context)
2007 		lrc_setup_hardware_status_page(ring, ctx_obj);
2008 	else if (ring->id == RCS && !ctx->rcs_initialized) {
2009 		if (ring->init_context) {
2010 			ret = ring->init_context(ring, ctx);
2011 			if (ret) {
2012 				DRM_ERROR("ring init context: %d\n", ret);
2013 				ctx->engine[ring->id].ringbuf = NULL;
2014 				ctx->engine[ring->id].state = NULL;
2015 				goto error;
2016 			}
2017 		}
2018 
2019 		ctx->rcs_initialized = true;
2020 	}
2021 
2022 	return 0;
2023 
2024 error:
2025 	if (is_global_default_ctx)
2026 		intel_unpin_ringbuffer_obj(ringbuf);
2027 error_destroy_rbuf:
2028 	intel_destroy_ringbuffer_obj(ringbuf);
2029 error_free_rbuf:
2030 	kfree(ringbuf);
2031 error_unpin_ctx:
2032 	if (is_global_default_ctx)
2033 		i915_gem_object_ggtt_unpin(ctx_obj);
2034 	drm_gem_object_unreference(&ctx_obj->base);
2035 	return ret;
2036 }
2037 
intel_lr_context_reset(struct drm_device * dev,struct intel_context * ctx)2038 void intel_lr_context_reset(struct drm_device *dev,
2039 			struct intel_context *ctx)
2040 {
2041 	struct drm_i915_private *dev_priv = dev->dev_private;
2042 	struct intel_engine_cs *ring;
2043 	int i;
2044 
2045 	for_each_ring(ring, dev_priv, i) {
2046 		struct drm_i915_gem_object *ctx_obj =
2047 				ctx->engine[ring->id].state;
2048 		struct intel_ringbuffer *ringbuf =
2049 				ctx->engine[ring->id].ringbuf;
2050 		uint32_t *reg_state;
2051 		struct page *page;
2052 
2053 		if (!ctx_obj)
2054 			continue;
2055 
2056 		if (i915_gem_object_get_pages(ctx_obj)) {
2057 			WARN(1, "Failed get_pages for context obj\n");
2058 			continue;
2059 		}
2060 		page = i915_gem_object_get_page(ctx_obj, 1);
2061 		reg_state = kmap_atomic(page);
2062 
2063 		reg_state[CTX_RING_HEAD+1] = 0;
2064 		reg_state[CTX_RING_TAIL+1] = 0;
2065 
2066 		kunmap_atomic(reg_state);
2067 
2068 		ringbuf->head = 0;
2069 		ringbuf->tail = 0;
2070 	}
2071 }
2072