1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kprobes.h>
12 #include <linux/kgdb.h>
13 #include <linux/smp.h>
14 #include <linux/io.h>
15 
16 #include <asm/stackprotector.h>
17 #include <asm/perf_event.h>
18 #include <asm/mmu_context.h>
19 #include <asm/archrandom.h>
20 #include <asm/hypervisor.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/debugreg.h>
24 #include <asm/sections.h>
25 #include <asm/vsyscall.h>
26 #include <linux/topology.h>
27 #include <linux/cpumask.h>
28 #include <asm/pgtable.h>
29 #include <linux/atomic.h>
30 #include <asm/proto.h>
31 #include <asm/setup.h>
32 #include <asm/apic.h>
33 #include <asm/desc.h>
34 #include <asm/i387.h>
35 #include <asm/fpu-internal.h>
36 #include <asm/mtrr.h>
37 #include <linux/numa.h>
38 #include <asm/asm.h>
39 #include <asm/cpu.h>
40 #include <asm/mce.h>
41 #include <asm/msr.h>
42 #include <asm/pat.h>
43 #include <asm/microcode.h>
44 #include <asm/microcode_intel.h>
45 
46 #ifdef CONFIG_X86_LOCAL_APIC
47 #include <asm/uv/uv.h>
48 #endif
49 
50 #include "cpu.h"
51 
52 /* all of these masks are initialized in setup_cpu_local_masks() */
53 cpumask_var_t cpu_initialized_mask;
54 cpumask_var_t cpu_callout_mask;
55 cpumask_var_t cpu_callin_mask;
56 
57 /* representing cpus for which sibling maps can be computed */
58 cpumask_var_t cpu_sibling_setup_mask;
59 
60 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)61 void __init setup_cpu_local_masks(void)
62 {
63 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
64 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
65 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
66 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
67 }
68 
default_init(struct cpuinfo_x86 * c)69 static void default_init(struct cpuinfo_x86 *c)
70 {
71 #ifdef CONFIG_X86_64
72 	cpu_detect_cache_sizes(c);
73 #else
74 	/* Not much we can do here... */
75 	/* Check if at least it has cpuid */
76 	if (c->cpuid_level == -1) {
77 		/* No cpuid. It must be an ancient CPU */
78 		if (c->x86 == 4)
79 			strcpy(c->x86_model_id, "486");
80 		else if (c->x86 == 3)
81 			strcpy(c->x86_model_id, "386");
82 	}
83 #endif
84 }
85 
86 static const struct cpu_dev default_cpu = {
87 	.c_init		= default_init,
88 	.c_vendor	= "Unknown",
89 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
90 };
91 
92 static const struct cpu_dev *this_cpu = &default_cpu;
93 
94 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
95 #ifdef CONFIG_X86_64
96 	/*
97 	 * We need valid kernel segments for data and code in long mode too
98 	 * IRET will check the segment types  kkeil 2000/10/28
99 	 * Also sysret mandates a special GDT layout
100 	 *
101 	 * TLS descriptors are currently at a different place compared to i386.
102 	 * Hopefully nobody expects them at a fixed place (Wine?)
103 	 */
104 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
105 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
106 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
107 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
110 #else
111 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
112 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
113 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
115 	/*
116 	 * Segments used for calling PnP BIOS have byte granularity.
117 	 * They code segments and data segments have fixed 64k limits,
118 	 * the transfer segment sizes are set at run time.
119 	 */
120 	/* 32-bit code */
121 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
122 	/* 16-bit code */
123 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
124 	/* 16-bit data */
125 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
126 	/* 16-bit data */
127 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
128 	/* 16-bit data */
129 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
130 	/*
131 	 * The APM segments have byte granularity and their bases
132 	 * are set at run time.  All have 64k limits.
133 	 */
134 	/* 32-bit code */
135 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
136 	/* 16-bit code */
137 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
138 	/* data */
139 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
140 
141 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 	GDT_STACK_CANARY_INIT
144 #endif
145 } };
146 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
147 
x86_xsave_setup(char * s)148 static int __init x86_xsave_setup(char *s)
149 {
150 	if (strlen(s))
151 		return 0;
152 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
153 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
154 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
155 	setup_clear_cpu_cap(X86_FEATURE_AVX);
156 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
157 	return 1;
158 }
159 __setup("noxsave", x86_xsave_setup);
160 
x86_xsaveopt_setup(char * s)161 static int __init x86_xsaveopt_setup(char *s)
162 {
163 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
164 	return 1;
165 }
166 __setup("noxsaveopt", x86_xsaveopt_setup);
167 
x86_xsaves_setup(char * s)168 static int __init x86_xsaves_setup(char *s)
169 {
170 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
171 	return 1;
172 }
173 __setup("noxsaves", x86_xsaves_setup);
174 
175 #ifdef CONFIG_X86_32
176 static int cachesize_override = -1;
177 static int disable_x86_serial_nr = 1;
178 
cachesize_setup(char * str)179 static int __init cachesize_setup(char *str)
180 {
181 	get_option(&str, &cachesize_override);
182 	return 1;
183 }
184 __setup("cachesize=", cachesize_setup);
185 
x86_fxsr_setup(char * s)186 static int __init x86_fxsr_setup(char *s)
187 {
188 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
189 	setup_clear_cpu_cap(X86_FEATURE_XMM);
190 	return 1;
191 }
192 __setup("nofxsr", x86_fxsr_setup);
193 
x86_sep_setup(char * s)194 static int __init x86_sep_setup(char *s)
195 {
196 	setup_clear_cpu_cap(X86_FEATURE_SEP);
197 	return 1;
198 }
199 __setup("nosep", x86_sep_setup);
200 
201 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)202 static inline int flag_is_changeable_p(u32 flag)
203 {
204 	u32 f1, f2;
205 
206 	/*
207 	 * Cyrix and IDT cpus allow disabling of CPUID
208 	 * so the code below may return different results
209 	 * when it is executed before and after enabling
210 	 * the CPUID. Add "volatile" to not allow gcc to
211 	 * optimize the subsequent calls to this function.
212 	 */
213 	asm volatile ("pushfl		\n\t"
214 		      "pushfl		\n\t"
215 		      "popl %0		\n\t"
216 		      "movl %0, %1	\n\t"
217 		      "xorl %2, %0	\n\t"
218 		      "pushl %0		\n\t"
219 		      "popfl		\n\t"
220 		      "pushfl		\n\t"
221 		      "popl %0		\n\t"
222 		      "popfl		\n\t"
223 
224 		      : "=&r" (f1), "=&r" (f2)
225 		      : "ir" (flag));
226 
227 	return ((f1^f2) & flag) != 0;
228 }
229 
230 /* Probe for the CPUID instruction */
have_cpuid_p(void)231 int have_cpuid_p(void)
232 {
233 	return flag_is_changeable_p(X86_EFLAGS_ID);
234 }
235 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)236 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
237 {
238 	unsigned long lo, hi;
239 
240 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
241 		return;
242 
243 	/* Disable processor serial number: */
244 
245 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
246 	lo |= 0x200000;
247 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
248 
249 	printk(KERN_NOTICE "CPU serial number disabled.\n");
250 	clear_cpu_cap(c, X86_FEATURE_PN);
251 
252 	/* Disabling the serial number may affect the cpuid level */
253 	c->cpuid_level = cpuid_eax(0);
254 }
255 
x86_serial_nr_setup(char * s)256 static int __init x86_serial_nr_setup(char *s)
257 {
258 	disable_x86_serial_nr = 0;
259 	return 1;
260 }
261 __setup("serialnumber", x86_serial_nr_setup);
262 #else
flag_is_changeable_p(u32 flag)263 static inline int flag_is_changeable_p(u32 flag)
264 {
265 	return 1;
266 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)267 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 }
270 #endif
271 
setup_disable_smep(char * arg)272 static __init int setup_disable_smep(char *arg)
273 {
274 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
275 	return 1;
276 }
277 __setup("nosmep", setup_disable_smep);
278 
setup_smep(struct cpuinfo_x86 * c)279 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
280 {
281 	if (cpu_has(c, X86_FEATURE_SMEP))
282 		cr4_set_bits(X86_CR4_SMEP);
283 }
284 
setup_disable_smap(char * arg)285 static __init int setup_disable_smap(char *arg)
286 {
287 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
288 	return 1;
289 }
290 __setup("nosmap", setup_disable_smap);
291 
setup_smap(struct cpuinfo_x86 * c)292 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
293 {
294 	unsigned long eflags = native_save_fl();
295 
296 	/* This should have been cleared long ago */
297 	BUG_ON(eflags & X86_EFLAGS_AC);
298 
299 	if (cpu_has(c, X86_FEATURE_SMAP)) {
300 #ifdef CONFIG_X86_SMAP
301 		cr4_set_bits(X86_CR4_SMAP);
302 #else
303 		cr4_clear_bits(X86_CR4_SMAP);
304 #endif
305 	}
306 }
307 
308 /*
309  * Some CPU features depend on higher CPUID levels, which may not always
310  * be available due to CPUID level capping or broken virtualization
311  * software.  Add those features to this table to auto-disable them.
312  */
313 struct cpuid_dependent_feature {
314 	u32 feature;
315 	u32 level;
316 };
317 
318 static const struct cpuid_dependent_feature
319 cpuid_dependent_features[] = {
320 	{ X86_FEATURE_MWAIT,		0x00000005 },
321 	{ X86_FEATURE_DCA,		0x00000009 },
322 	{ X86_FEATURE_XSAVE,		0x0000000d },
323 	{ 0, 0 }
324 };
325 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)326 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
327 {
328 	const struct cpuid_dependent_feature *df;
329 
330 	for (df = cpuid_dependent_features; df->feature; df++) {
331 
332 		if (!cpu_has(c, df->feature))
333 			continue;
334 		/*
335 		 * Note: cpuid_level is set to -1 if unavailable, but
336 		 * extended_extended_level is set to 0 if unavailable
337 		 * and the legitimate extended levels are all negative
338 		 * when signed; hence the weird messing around with
339 		 * signs here...
340 		 */
341 		if (!((s32)df->level < 0 ?
342 		     (u32)df->level > (u32)c->extended_cpuid_level :
343 		     (s32)df->level > (s32)c->cpuid_level))
344 			continue;
345 
346 		clear_cpu_cap(c, df->feature);
347 		if (!warn)
348 			continue;
349 
350 		printk(KERN_WARNING
351 		       "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
352 				x86_cap_flag(df->feature), df->level);
353 	}
354 }
355 
356 /*
357  * Naming convention should be: <Name> [(<Codename>)]
358  * This table only is used unless init_<vendor>() below doesn't set it;
359  * in particular, if CPUID levels 0x80000002..4 are supported, this
360  * isn't used
361  */
362 
363 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)364 static const char *table_lookup_model(struct cpuinfo_x86 *c)
365 {
366 #ifdef CONFIG_X86_32
367 	const struct legacy_cpu_model_info *info;
368 
369 	if (c->x86_model >= 16)
370 		return NULL;	/* Range check */
371 
372 	if (!this_cpu)
373 		return NULL;
374 
375 	info = this_cpu->legacy_models;
376 
377 	while (info->family) {
378 		if (info->family == c->x86)
379 			return info->model_names[c->x86_model];
380 		info++;
381 	}
382 #endif
383 	return NULL;		/* Not found */
384 }
385 
386 __u32 cpu_caps_cleared[NCAPINTS];
387 __u32 cpu_caps_set[NCAPINTS];
388 
load_percpu_segment(int cpu)389 void load_percpu_segment(int cpu)
390 {
391 #ifdef CONFIG_X86_32
392 	loadsegment(fs, __KERNEL_PERCPU);
393 #else
394 	loadsegment(gs, 0);
395 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
396 #endif
397 	load_stack_canary_segment();
398 }
399 
400 /*
401  * Current gdt points %fs at the "master" per-cpu area: after this,
402  * it's on the real one.
403  */
switch_to_new_gdt(int cpu)404 void switch_to_new_gdt(int cpu)
405 {
406 	struct desc_ptr gdt_descr;
407 
408 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
409 	gdt_descr.size = GDT_SIZE - 1;
410 	load_gdt(&gdt_descr);
411 	/* Reload the per-cpu base */
412 
413 	load_percpu_segment(cpu);
414 }
415 
416 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
417 
get_model_name(struct cpuinfo_x86 * c)418 static void get_model_name(struct cpuinfo_x86 *c)
419 {
420 	unsigned int *v;
421 	char *p, *q;
422 
423 	if (c->extended_cpuid_level < 0x80000004)
424 		return;
425 
426 	v = (unsigned int *)c->x86_model_id;
427 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
428 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
429 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
430 	c->x86_model_id[48] = 0;
431 
432 	/*
433 	 * Intel chips right-justify this string for some dumb reason;
434 	 * undo that brain damage:
435 	 */
436 	p = q = &c->x86_model_id[0];
437 	while (*p == ' ')
438 		p++;
439 	if (p != q) {
440 		while (*p)
441 			*q++ = *p++;
442 		while (q <= &c->x86_model_id[48])
443 			*q++ = '\0';	/* Zero-pad the rest */
444 	}
445 }
446 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)447 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
448 {
449 	unsigned int n, dummy, ebx, ecx, edx, l2size;
450 
451 	n = c->extended_cpuid_level;
452 
453 	if (n >= 0x80000005) {
454 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
455 		c->x86_cache_size = (ecx>>24) + (edx>>24);
456 #ifdef CONFIG_X86_64
457 		/* On K8 L1 TLB is inclusive, so don't count it */
458 		c->x86_tlbsize = 0;
459 #endif
460 	}
461 
462 	if (n < 0x80000006)	/* Some chips just has a large L1. */
463 		return;
464 
465 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
466 	l2size = ecx >> 16;
467 
468 #ifdef CONFIG_X86_64
469 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
470 #else
471 	/* do processor-specific cache resizing */
472 	if (this_cpu->legacy_cache_size)
473 		l2size = this_cpu->legacy_cache_size(c, l2size);
474 
475 	/* Allow user to override all this if necessary. */
476 	if (cachesize_override != -1)
477 		l2size = cachesize_override;
478 
479 	if (l2size == 0)
480 		return;		/* Again, no L2 cache is possible */
481 #endif
482 
483 	c->x86_cache_size = l2size;
484 }
485 
486 u16 __read_mostly tlb_lli_4k[NR_INFO];
487 u16 __read_mostly tlb_lli_2m[NR_INFO];
488 u16 __read_mostly tlb_lli_4m[NR_INFO];
489 u16 __read_mostly tlb_lld_4k[NR_INFO];
490 u16 __read_mostly tlb_lld_2m[NR_INFO];
491 u16 __read_mostly tlb_lld_4m[NR_INFO];
492 u16 __read_mostly tlb_lld_1g[NR_INFO];
493 
cpu_detect_tlb(struct cpuinfo_x86 * c)494 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
495 {
496 	if (this_cpu->c_detect_tlb)
497 		this_cpu->c_detect_tlb(c);
498 
499 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
500 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
501 		tlb_lli_4m[ENTRIES]);
502 
503 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
504 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
505 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
506 }
507 
detect_ht(struct cpuinfo_x86 * c)508 void detect_ht(struct cpuinfo_x86 *c)
509 {
510 #ifdef CONFIG_X86_HT
511 	u32 eax, ebx, ecx, edx;
512 	int index_msb, core_bits;
513 	static bool printed;
514 
515 	if (!cpu_has(c, X86_FEATURE_HT))
516 		return;
517 
518 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
519 		goto out;
520 
521 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
522 		return;
523 
524 	cpuid(1, &eax, &ebx, &ecx, &edx);
525 
526 	smp_num_siblings = (ebx & 0xff0000) >> 16;
527 
528 	if (smp_num_siblings == 1) {
529 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
530 		goto out;
531 	}
532 
533 	if (smp_num_siblings <= 1)
534 		goto out;
535 
536 	index_msb = get_count_order(smp_num_siblings);
537 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
538 
539 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
540 
541 	index_msb = get_count_order(smp_num_siblings);
542 
543 	core_bits = get_count_order(c->x86_max_cores);
544 
545 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
546 				       ((1 << core_bits) - 1);
547 
548 out:
549 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
550 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
551 		       c->phys_proc_id);
552 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
553 		       c->cpu_core_id);
554 		printed = 1;
555 	}
556 #endif
557 }
558 
get_cpu_vendor(struct cpuinfo_x86 * c)559 static void get_cpu_vendor(struct cpuinfo_x86 *c)
560 {
561 	char *v = c->x86_vendor_id;
562 	int i;
563 
564 	for (i = 0; i < X86_VENDOR_NUM; i++) {
565 		if (!cpu_devs[i])
566 			break;
567 
568 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
569 		    (cpu_devs[i]->c_ident[1] &&
570 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
571 
572 			this_cpu = cpu_devs[i];
573 			c->x86_vendor = this_cpu->c_x86_vendor;
574 			return;
575 		}
576 	}
577 
578 	printk_once(KERN_ERR
579 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
580 			"CPU: Your system may be unstable.\n", v);
581 
582 	c->x86_vendor = X86_VENDOR_UNKNOWN;
583 	this_cpu = &default_cpu;
584 }
585 
cpu_detect(struct cpuinfo_x86 * c)586 void cpu_detect(struct cpuinfo_x86 *c)
587 {
588 	/* Get vendor name */
589 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
590 	      (unsigned int *)&c->x86_vendor_id[0],
591 	      (unsigned int *)&c->x86_vendor_id[8],
592 	      (unsigned int *)&c->x86_vendor_id[4]);
593 
594 	c->x86 = 4;
595 	/* Intel-defined flags: level 0x00000001 */
596 	if (c->cpuid_level >= 0x00000001) {
597 		u32 junk, tfms, cap0, misc;
598 
599 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
600 		c->x86 = (tfms >> 8) & 0xf;
601 		c->x86_model = (tfms >> 4) & 0xf;
602 		c->x86_mask = tfms & 0xf;
603 
604 		if (c->x86 == 0xf)
605 			c->x86 += (tfms >> 20) & 0xff;
606 		if (c->x86 >= 0x6)
607 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
608 
609 		if (cap0 & (1<<19)) {
610 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
611 			c->x86_cache_alignment = c->x86_clflush_size;
612 		}
613 	}
614 }
615 
get_cpu_cap(struct cpuinfo_x86 * c)616 void get_cpu_cap(struct cpuinfo_x86 *c)
617 {
618 	u32 tfms, xlvl;
619 	u32 ebx;
620 
621 	/* Intel-defined flags: level 0x00000001 */
622 	if (c->cpuid_level >= 0x00000001) {
623 		u32 capability, excap;
624 
625 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
626 		c->x86_capability[0] = capability;
627 		c->x86_capability[4] = excap;
628 	}
629 
630 	/* Additional Intel-defined flags: level 0x00000007 */
631 	if (c->cpuid_level >= 0x00000007) {
632 		u32 eax, ebx, ecx, edx;
633 
634 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
635 
636 		c->x86_capability[9] = ebx;
637 	}
638 
639 	/* Extended state features: level 0x0000000d */
640 	if (c->cpuid_level >= 0x0000000d) {
641 		u32 eax, ebx, ecx, edx;
642 
643 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
644 
645 		c->x86_capability[10] = eax;
646 	}
647 
648 	/* Additional Intel-defined flags: level 0x0000000F */
649 	if (c->cpuid_level >= 0x0000000F) {
650 		u32 eax, ebx, ecx, edx;
651 
652 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
653 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
654 		c->x86_capability[11] = edx;
655 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
656 			/* will be overridden if occupancy monitoring exists */
657 			c->x86_cache_max_rmid = ebx;
658 
659 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
660 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
661 			c->x86_capability[12] = edx;
662 			if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
663 				c->x86_cache_max_rmid = ecx;
664 				c->x86_cache_occ_scale = ebx;
665 			}
666 		} else {
667 			c->x86_cache_max_rmid = -1;
668 			c->x86_cache_occ_scale = -1;
669 		}
670 	}
671 
672 	/* AMD-defined flags: level 0x80000001 */
673 	xlvl = cpuid_eax(0x80000000);
674 	c->extended_cpuid_level = xlvl;
675 
676 	if ((xlvl & 0xffff0000) == 0x80000000) {
677 		if (xlvl >= 0x80000001) {
678 			c->x86_capability[1] = cpuid_edx(0x80000001);
679 			c->x86_capability[6] = cpuid_ecx(0x80000001);
680 		}
681 	}
682 
683 	if (c->extended_cpuid_level >= 0x80000008) {
684 		u32 eax = cpuid_eax(0x80000008);
685 
686 		c->x86_virt_bits = (eax >> 8) & 0xff;
687 		c->x86_phys_bits = eax & 0xff;
688 	}
689 #ifdef CONFIG_X86_32
690 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
691 		c->x86_phys_bits = 36;
692 #endif
693 
694 	if (c->extended_cpuid_level >= 0x80000007)
695 		c->x86_power = cpuid_edx(0x80000007);
696 
697 	init_scattered_cpuid_features(c);
698 }
699 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)700 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
701 {
702 #ifdef CONFIG_X86_32
703 	int i;
704 
705 	/*
706 	 * First of all, decide if this is a 486 or higher
707 	 * It's a 486 if we can modify the AC flag
708 	 */
709 	if (flag_is_changeable_p(X86_EFLAGS_AC))
710 		c->x86 = 4;
711 	else
712 		c->x86 = 3;
713 
714 	for (i = 0; i < X86_VENDOR_NUM; i++)
715 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
716 			c->x86_vendor_id[0] = 0;
717 			cpu_devs[i]->c_identify(c);
718 			if (c->x86_vendor_id[0]) {
719 				get_cpu_vendor(c);
720 				break;
721 			}
722 		}
723 #endif
724 }
725 
726 /*
727  * Do minimum CPU detection early.
728  * Fields really needed: vendor, cpuid_level, family, model, mask,
729  * cache alignment.
730  * The others are not touched to avoid unwanted side effects.
731  *
732  * WARNING: this function is only called on the BP.  Don't add code here
733  * that is supposed to run on all CPUs.
734  */
early_identify_cpu(struct cpuinfo_x86 * c)735 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
736 {
737 #ifdef CONFIG_X86_64
738 	c->x86_clflush_size = 64;
739 	c->x86_phys_bits = 36;
740 	c->x86_virt_bits = 48;
741 #else
742 	c->x86_clflush_size = 32;
743 	c->x86_phys_bits = 32;
744 	c->x86_virt_bits = 32;
745 #endif
746 	c->x86_cache_alignment = c->x86_clflush_size;
747 
748 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
749 	c->extended_cpuid_level = 0;
750 
751 	if (!have_cpuid_p())
752 		identify_cpu_without_cpuid(c);
753 
754 	/* cyrix could have cpuid enabled via c_identify()*/
755 	if (!have_cpuid_p())
756 		return;
757 
758 	cpu_detect(c);
759 	get_cpu_vendor(c);
760 	get_cpu_cap(c);
761 	fpu_detect(c);
762 
763 	if (this_cpu->c_early_init)
764 		this_cpu->c_early_init(c);
765 
766 	c->cpu_index = 0;
767 	filter_cpuid_features(c, false);
768 
769 	if (this_cpu->c_bsp_init)
770 		this_cpu->c_bsp_init(c);
771 
772 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
773 }
774 
early_cpu_init(void)775 void __init early_cpu_init(void)
776 {
777 	const struct cpu_dev *const *cdev;
778 	int count = 0;
779 
780 #ifdef CONFIG_PROCESSOR_SELECT
781 	printk(KERN_INFO "KERNEL supported cpus:\n");
782 #endif
783 
784 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
785 		const struct cpu_dev *cpudev = *cdev;
786 
787 		if (count >= X86_VENDOR_NUM)
788 			break;
789 		cpu_devs[count] = cpudev;
790 		count++;
791 
792 #ifdef CONFIG_PROCESSOR_SELECT
793 		{
794 			unsigned int j;
795 
796 			for (j = 0; j < 2; j++) {
797 				if (!cpudev->c_ident[j])
798 					continue;
799 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
800 					cpudev->c_ident[j]);
801 			}
802 		}
803 #endif
804 	}
805 	early_identify_cpu(&boot_cpu_data);
806 }
807 
808 /*
809  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
810  * unfortunately, that's not true in practice because of early VIA
811  * chips and (more importantly) broken virtualizers that are not easy
812  * to detect. In the latter case it doesn't even *fail* reliably, so
813  * probing for it doesn't even work. Disable it completely on 32-bit
814  * unless we can find a reliable way to detect all the broken cases.
815  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
816  */
detect_nopl(struct cpuinfo_x86 * c)817 static void detect_nopl(struct cpuinfo_x86 *c)
818 {
819 #ifdef CONFIG_X86_32
820 	clear_cpu_cap(c, X86_FEATURE_NOPL);
821 #else
822 	set_cpu_cap(c, X86_FEATURE_NOPL);
823 #endif
824 }
825 
generic_identify(struct cpuinfo_x86 * c)826 static void generic_identify(struct cpuinfo_x86 *c)
827 {
828 	c->extended_cpuid_level = 0;
829 
830 	if (!have_cpuid_p())
831 		identify_cpu_without_cpuid(c);
832 
833 	/* cyrix could have cpuid enabled via c_identify()*/
834 	if (!have_cpuid_p())
835 		return;
836 
837 	cpu_detect(c);
838 
839 	get_cpu_vendor(c);
840 
841 	get_cpu_cap(c);
842 
843 	if (c->cpuid_level >= 0x00000001) {
844 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
845 #ifdef CONFIG_X86_32
846 # ifdef CONFIG_X86_HT
847 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
848 # else
849 		c->apicid = c->initial_apicid;
850 # endif
851 #endif
852 		c->phys_proc_id = c->initial_apicid;
853 	}
854 
855 	get_model_name(c); /* Default name */
856 
857 	detect_nopl(c);
858 }
859 
x86_init_cache_qos(struct cpuinfo_x86 * c)860 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
861 {
862 	/*
863 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
864 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
865 	 * in case CQM bits really aren't there in this CPU.
866 	 */
867 	if (c != &boot_cpu_data) {
868 		boot_cpu_data.x86_cache_max_rmid =
869 			min(boot_cpu_data.x86_cache_max_rmid,
870 			    c->x86_cache_max_rmid);
871 	}
872 }
873 
874 /*
875  * This does the hard work of actually picking apart the CPU stuff...
876  */
identify_cpu(struct cpuinfo_x86 * c)877 static void identify_cpu(struct cpuinfo_x86 *c)
878 {
879 	int i;
880 
881 	c->loops_per_jiffy = loops_per_jiffy;
882 	c->x86_cache_size = -1;
883 	c->x86_vendor = X86_VENDOR_UNKNOWN;
884 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
885 	c->x86_vendor_id[0] = '\0'; /* Unset */
886 	c->x86_model_id[0] = '\0';  /* Unset */
887 	c->x86_max_cores = 1;
888 	c->x86_coreid_bits = 0;
889 #ifdef CONFIG_X86_64
890 	c->x86_clflush_size = 64;
891 	c->x86_phys_bits = 36;
892 	c->x86_virt_bits = 48;
893 #else
894 	c->cpuid_level = -1;	/* CPUID not detected */
895 	c->x86_clflush_size = 32;
896 	c->x86_phys_bits = 32;
897 	c->x86_virt_bits = 32;
898 #endif
899 	c->x86_cache_alignment = c->x86_clflush_size;
900 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
901 
902 	generic_identify(c);
903 
904 	if (this_cpu->c_identify)
905 		this_cpu->c_identify(c);
906 
907 	/* Clear/Set all flags overriden by options, after probe */
908 	for (i = 0; i < NCAPINTS; i++) {
909 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
910 		c->x86_capability[i] |= cpu_caps_set[i];
911 	}
912 
913 #ifdef CONFIG_X86_64
914 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
915 #endif
916 
917 	/*
918 	 * Vendor-specific initialization.  In this section we
919 	 * canonicalize the feature flags, meaning if there are
920 	 * features a certain CPU supports which CPUID doesn't
921 	 * tell us, CPUID claiming incorrect flags, or other bugs,
922 	 * we handle them here.
923 	 *
924 	 * At the end of this section, c->x86_capability better
925 	 * indicate the features this CPU genuinely supports!
926 	 */
927 	if (this_cpu->c_init)
928 		this_cpu->c_init(c);
929 
930 	/* Disable the PN if appropriate */
931 	squash_the_stupid_serial_number(c);
932 
933 	/* Set up SMEP/SMAP */
934 	setup_smep(c);
935 	setup_smap(c);
936 
937 	/*
938 	 * The vendor-specific functions might have changed features.
939 	 * Now we do "generic changes."
940 	 */
941 
942 	/* Filter out anything that depends on CPUID levels we don't have */
943 	filter_cpuid_features(c, true);
944 
945 	/* If the model name is still unset, do table lookup. */
946 	if (!c->x86_model_id[0]) {
947 		const char *p;
948 		p = table_lookup_model(c);
949 		if (p)
950 			strcpy(c->x86_model_id, p);
951 		else
952 			/* Last resort... */
953 			sprintf(c->x86_model_id, "%02x/%02x",
954 				c->x86, c->x86_model);
955 	}
956 
957 #ifdef CONFIG_X86_64
958 	detect_ht(c);
959 #endif
960 
961 	init_hypervisor(c);
962 	x86_init_rdrand(c);
963 	x86_init_cache_qos(c);
964 
965 	/*
966 	 * Clear/Set all flags overriden by options, need do it
967 	 * before following smp all cpus cap AND.
968 	 */
969 	for (i = 0; i < NCAPINTS; i++) {
970 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
971 		c->x86_capability[i] |= cpu_caps_set[i];
972 	}
973 
974 	/*
975 	 * On SMP, boot_cpu_data holds the common feature set between
976 	 * all CPUs; so make sure that we indicate which features are
977 	 * common between the CPUs.  The first time this routine gets
978 	 * executed, c == &boot_cpu_data.
979 	 */
980 	if (c != &boot_cpu_data) {
981 		/* AND the already accumulated flags with these */
982 		for (i = 0; i < NCAPINTS; i++)
983 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
984 
985 		/* OR, i.e. replicate the bug flags */
986 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
987 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
988 	}
989 
990 	/* Init Machine Check Exception if available. */
991 	mcheck_cpu_init(c);
992 
993 	select_idle_routine(c);
994 
995 #ifdef CONFIG_NUMA
996 	numa_add_cpu(smp_processor_id());
997 #endif
998 }
999 
1000 /*
1001  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1002  * on 32-bit kernels:
1003  */
1004 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1005 void enable_sep_cpu(void)
1006 {
1007 	struct tss_struct *tss;
1008 	int cpu;
1009 
1010 	cpu = get_cpu();
1011 	tss = &per_cpu(cpu_tss, cpu);
1012 
1013 	if (!boot_cpu_has(X86_FEATURE_SEP))
1014 		goto out;
1015 
1016 	/*
1017 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1018 	 * see the big comment in struct x86_hw_tss's definition.
1019 	 */
1020 
1021 	tss->x86_tss.ss1 = __KERNEL_CS;
1022 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1023 
1024 	wrmsr(MSR_IA32_SYSENTER_ESP,
1025 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1026 	      0);
1027 
1028 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)ia32_sysenter_target, 0);
1029 
1030 out:
1031 	put_cpu();
1032 }
1033 #endif
1034 
identify_boot_cpu(void)1035 void __init identify_boot_cpu(void)
1036 {
1037 	identify_cpu(&boot_cpu_data);
1038 	init_amd_e400_c1e_mask();
1039 #ifdef CONFIG_X86_32
1040 	sysenter_setup();
1041 	enable_sep_cpu();
1042 #endif
1043 	cpu_detect_tlb(&boot_cpu_data);
1044 }
1045 
identify_secondary_cpu(struct cpuinfo_x86 * c)1046 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1047 {
1048 	BUG_ON(c == &boot_cpu_data);
1049 	identify_cpu(c);
1050 #ifdef CONFIG_X86_32
1051 	enable_sep_cpu();
1052 #endif
1053 	mtrr_ap_init();
1054 }
1055 
1056 struct msr_range {
1057 	unsigned	min;
1058 	unsigned	max;
1059 };
1060 
1061 static const struct msr_range msr_range_array[] = {
1062 	{ 0x00000000, 0x00000418},
1063 	{ 0xc0000000, 0xc000040b},
1064 	{ 0xc0010000, 0xc0010142},
1065 	{ 0xc0011000, 0xc001103b},
1066 };
1067 
__print_cpu_msr(void)1068 static void __print_cpu_msr(void)
1069 {
1070 	unsigned index_min, index_max;
1071 	unsigned index;
1072 	u64 val;
1073 	int i;
1074 
1075 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1076 		index_min = msr_range_array[i].min;
1077 		index_max = msr_range_array[i].max;
1078 
1079 		for (index = index_min; index < index_max; index++) {
1080 			if (rdmsrl_safe(index, &val))
1081 				continue;
1082 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1083 		}
1084 	}
1085 }
1086 
1087 static int show_msr;
1088 
setup_show_msr(char * arg)1089 static __init int setup_show_msr(char *arg)
1090 {
1091 	int num;
1092 
1093 	get_option(&arg, &num);
1094 
1095 	if (num > 0)
1096 		show_msr = num;
1097 	return 1;
1098 }
1099 __setup("show_msr=", setup_show_msr);
1100 
setup_noclflush(char * arg)1101 static __init int setup_noclflush(char *arg)
1102 {
1103 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1104 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1105 	return 1;
1106 }
1107 __setup("noclflush", setup_noclflush);
1108 
print_cpu_info(struct cpuinfo_x86 * c)1109 void print_cpu_info(struct cpuinfo_x86 *c)
1110 {
1111 	const char *vendor = NULL;
1112 
1113 	if (c->x86_vendor < X86_VENDOR_NUM) {
1114 		vendor = this_cpu->c_vendor;
1115 	} else {
1116 		if (c->cpuid_level >= 0)
1117 			vendor = c->x86_vendor_id;
1118 	}
1119 
1120 	if (vendor && !strstr(c->x86_model_id, vendor))
1121 		printk(KERN_CONT "%s ", vendor);
1122 
1123 	if (c->x86_model_id[0])
1124 		printk(KERN_CONT "%s", strim(c->x86_model_id));
1125 	else
1126 		printk(KERN_CONT "%d86", c->x86);
1127 
1128 	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1129 
1130 	if (c->x86_mask || c->cpuid_level >= 0)
1131 		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1132 	else
1133 		printk(KERN_CONT ")\n");
1134 
1135 	print_cpu_msr(c);
1136 }
1137 
print_cpu_msr(struct cpuinfo_x86 * c)1138 void print_cpu_msr(struct cpuinfo_x86 *c)
1139 {
1140 	if (c->cpu_index < show_msr)
1141 		__print_cpu_msr();
1142 }
1143 
setup_disablecpuid(char * arg)1144 static __init int setup_disablecpuid(char *arg)
1145 {
1146 	int bit;
1147 
1148 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1149 		setup_clear_cpu_cap(bit);
1150 	else
1151 		return 0;
1152 
1153 	return 1;
1154 }
1155 __setup("clearcpuid=", setup_disablecpuid);
1156 
1157 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1158 	(unsigned long)&init_thread_union + THREAD_SIZE;
1159 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1160 
1161 #ifdef CONFIG_X86_64
1162 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1163 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1164 				    (unsigned long) debug_idt_table };
1165 
1166 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1167 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1168 
1169 /*
1170  * The following percpu variables are hot.  Align current_task to
1171  * cacheline size such that they fall in the same cacheline.
1172  */
1173 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1174 	&init_task;
1175 EXPORT_PER_CPU_SYMBOL(current_task);
1176 
1177 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1178 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1179 
1180 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1181 
1182 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1183 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1184 
1185 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1186 
1187 /*
1188  * Special IST stacks which the CPU switches to when it calls
1189  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1190  * limit), all of them are 4K, except the debug stack which
1191  * is 8K.
1192  */
1193 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1194 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1195 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1196 };
1197 
1198 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1199 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1200 
1201 /* May not be marked __init: used by software suspend */
syscall_init(void)1202 void syscall_init(void)
1203 {
1204 	/*
1205 	 * LSTAR and STAR live in a bit strange symbiosis.
1206 	 * They both write to the same internal register. STAR allows to
1207 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1208 	 */
1209 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1210 	wrmsrl(MSR_LSTAR, system_call);
1211 
1212 #ifdef CONFIG_IA32_EMULATION
1213 	wrmsrl(MSR_CSTAR, ia32_cstar_target);
1214 	/*
1215 	 * This only works on Intel CPUs.
1216 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1217 	 * This does not cause SYSENTER to jump to the wrong location, because
1218 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1219 	 */
1220 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1221 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1222 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
1223 #else
1224 	wrmsrl(MSR_CSTAR, ignore_sysret);
1225 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1226 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1227 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1228 #endif
1229 
1230 	/* Flags to clear on syscall */
1231 	wrmsrl(MSR_SYSCALL_MASK,
1232 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1233 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1234 }
1235 
1236 /*
1237  * Copies of the original ist values from the tss are only accessed during
1238  * debugging, no special alignment required.
1239  */
1240 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1241 
1242 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1243 DEFINE_PER_CPU(int, debug_stack_usage);
1244 
is_debug_stack(unsigned long addr)1245 int is_debug_stack(unsigned long addr)
1246 {
1247 	return __this_cpu_read(debug_stack_usage) ||
1248 		(addr <= __this_cpu_read(debug_stack_addr) &&
1249 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1250 }
1251 NOKPROBE_SYMBOL(is_debug_stack);
1252 
1253 DEFINE_PER_CPU(u32, debug_idt_ctr);
1254 
debug_stack_set_zero(void)1255 void debug_stack_set_zero(void)
1256 {
1257 	this_cpu_inc(debug_idt_ctr);
1258 	load_current_idt();
1259 }
1260 NOKPROBE_SYMBOL(debug_stack_set_zero);
1261 
debug_stack_reset(void)1262 void debug_stack_reset(void)
1263 {
1264 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1265 		return;
1266 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1267 		load_current_idt();
1268 }
1269 NOKPROBE_SYMBOL(debug_stack_reset);
1270 
1271 #else	/* CONFIG_X86_64 */
1272 
1273 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1274 EXPORT_PER_CPU_SYMBOL(current_task);
1275 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1276 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1277 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1278 
1279 /*
1280  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1281  * the top of the kernel stack.  Use an extra percpu variable to track the
1282  * top of the kernel stack directly.
1283  */
1284 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1285 	(unsigned long)&init_thread_union + THREAD_SIZE;
1286 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1287 
1288 #ifdef CONFIG_CC_STACKPROTECTOR
1289 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1290 #endif
1291 
1292 #endif	/* CONFIG_X86_64 */
1293 
1294 /*
1295  * Clear all 6 debug registers:
1296  */
clear_all_debug_regs(void)1297 static void clear_all_debug_regs(void)
1298 {
1299 	int i;
1300 
1301 	for (i = 0; i < 8; i++) {
1302 		/* Ignore db4, db5 */
1303 		if ((i == 4) || (i == 5))
1304 			continue;
1305 
1306 		set_debugreg(0, i);
1307 	}
1308 }
1309 
1310 #ifdef CONFIG_KGDB
1311 /*
1312  * Restore debug regs if using kgdbwait and you have a kernel debugger
1313  * connection established.
1314  */
dbg_restore_debug_regs(void)1315 static void dbg_restore_debug_regs(void)
1316 {
1317 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1318 		arch_kgdb_ops.correct_hw_break();
1319 }
1320 #else /* ! CONFIG_KGDB */
1321 #define dbg_restore_debug_regs()
1322 #endif /* ! CONFIG_KGDB */
1323 
wait_for_master_cpu(int cpu)1324 static void wait_for_master_cpu(int cpu)
1325 {
1326 #ifdef CONFIG_SMP
1327 	/*
1328 	 * wait for ACK from master CPU before continuing
1329 	 * with AP initialization
1330 	 */
1331 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1332 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1333 		cpu_relax();
1334 #endif
1335 }
1336 
1337 /*
1338  * cpu_init() initializes state that is per-CPU. Some data is already
1339  * initialized (naturally) in the bootstrap process, such as the GDT
1340  * and IDT. We reload them nevertheless, this function acts as a
1341  * 'CPU state barrier', nothing should get across.
1342  * A lot of state is already set up in PDA init for 64 bit
1343  */
1344 #ifdef CONFIG_X86_64
1345 
cpu_init(void)1346 void cpu_init(void)
1347 {
1348 	struct orig_ist *oist;
1349 	struct task_struct *me;
1350 	struct tss_struct *t;
1351 	unsigned long v;
1352 	int cpu = stack_smp_processor_id();
1353 	int i;
1354 
1355 	wait_for_master_cpu(cpu);
1356 
1357 	/*
1358 	 * Initialize the CR4 shadow before doing anything that could
1359 	 * try to read it.
1360 	 */
1361 	cr4_init_shadow();
1362 
1363 	/*
1364 	 * Load microcode on this cpu if a valid microcode is available.
1365 	 * This is early microcode loading procedure.
1366 	 */
1367 	load_ucode_ap();
1368 
1369 	t = &per_cpu(cpu_tss, cpu);
1370 	oist = &per_cpu(orig_ist, cpu);
1371 
1372 #ifdef CONFIG_NUMA
1373 	if (this_cpu_read(numa_node) == 0 &&
1374 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1375 		set_numa_node(early_cpu_to_node(cpu));
1376 #endif
1377 
1378 	me = current;
1379 
1380 	pr_debug("Initializing CPU#%d\n", cpu);
1381 
1382 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1383 
1384 	/*
1385 	 * Initialize the per-CPU GDT with the boot GDT,
1386 	 * and set up the GDT descriptor:
1387 	 */
1388 
1389 	switch_to_new_gdt(cpu);
1390 	loadsegment(fs, 0);
1391 
1392 	load_current_idt();
1393 
1394 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1395 	syscall_init();
1396 
1397 	wrmsrl(MSR_FS_BASE, 0);
1398 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1399 	barrier();
1400 
1401 	x86_configure_nx();
1402 	x2apic_setup();
1403 
1404 	/*
1405 	 * set up and load the per-CPU TSS
1406 	 */
1407 	if (!oist->ist[0]) {
1408 		char *estacks = per_cpu(exception_stacks, cpu);
1409 
1410 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1411 			estacks += exception_stack_sizes[v];
1412 			oist->ist[v] = t->x86_tss.ist[v] =
1413 					(unsigned long)estacks;
1414 			if (v == DEBUG_STACK-1)
1415 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1416 		}
1417 	}
1418 
1419 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1420 
1421 	/*
1422 	 * <= is required because the CPU will access up to
1423 	 * 8 bits beyond the end of the IO permission bitmap.
1424 	 */
1425 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1426 		t->io_bitmap[i] = ~0UL;
1427 
1428 	atomic_inc(&init_mm.mm_count);
1429 	me->active_mm = &init_mm;
1430 	BUG_ON(me->mm);
1431 	enter_lazy_tlb(&init_mm, me);
1432 
1433 	load_sp0(t, &current->thread);
1434 	set_tss_desc(cpu, t);
1435 	load_TR_desc();
1436 	load_mm_ldt(&init_mm);
1437 
1438 	clear_all_debug_regs();
1439 	dbg_restore_debug_regs();
1440 
1441 	fpu_init();
1442 
1443 	if (is_uv_system())
1444 		uv_cpu_init();
1445 }
1446 
1447 #else
1448 
cpu_init(void)1449 void cpu_init(void)
1450 {
1451 	int cpu = smp_processor_id();
1452 	struct task_struct *curr = current;
1453 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1454 	struct thread_struct *thread = &curr->thread;
1455 
1456 	wait_for_master_cpu(cpu);
1457 
1458 	/*
1459 	 * Initialize the CR4 shadow before doing anything that could
1460 	 * try to read it.
1461 	 */
1462 	cr4_init_shadow();
1463 
1464 	show_ucode_info_early();
1465 
1466 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1467 
1468 	if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1469 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1470 
1471 	load_current_idt();
1472 	switch_to_new_gdt(cpu);
1473 
1474 	/*
1475 	 * Set up and load the per-CPU TSS and LDT
1476 	 */
1477 	atomic_inc(&init_mm.mm_count);
1478 	curr->active_mm = &init_mm;
1479 	BUG_ON(curr->mm);
1480 	enter_lazy_tlb(&init_mm, curr);
1481 
1482 	load_sp0(t, thread);
1483 	set_tss_desc(cpu, t);
1484 	load_TR_desc();
1485 	load_mm_ldt(&init_mm);
1486 
1487 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1488 
1489 #ifdef CONFIG_DOUBLEFAULT
1490 	/* Set up doublefault TSS pointer in the GDT */
1491 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1492 #endif
1493 
1494 	clear_all_debug_regs();
1495 	dbg_restore_debug_regs();
1496 
1497 	fpu_init();
1498 }
1499 #endif
1500 
1501 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
warn_pre_alternatives(void)1502 void warn_pre_alternatives(void)
1503 {
1504 	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1505 }
1506 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1507 #endif
1508 
__static_cpu_has_safe(u16 bit)1509 inline bool __static_cpu_has_safe(u16 bit)
1510 {
1511 	return boot_cpu_has(bit);
1512 }
1513 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1514