1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 *   The contents of this file are subject to the Mozilla Public
11 *   License Version 1.1 (the "License"); you may not use this file
12 *   except in compliance with the License. You may obtain a copy of
13 *   the License at http://www.mozilla.org/MPL/
14 *
15 *   Software distributed under the License is distributed on an "AS
16 *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 *   implied. See the License for the specific language governing
18 *   rights and limitations under the License.
19 *
20 *   Alternatively, the contents of this file may be used under the
21 *   terms of the GNU Public License version 2 (the "GPL"), in which
22 *   case the provisions of the GPL are applicable instead of the
23 *   above.  If you wish to allow the use of your version of this file
24 *   only under the terms of the GPL and not to allow others to use
25 *   your version of this file under the MPL, indicate your decision
26 *   by deleting the provisions above and replace them with the notice
27 *   and other provisions required by the GPL.  If you do not delete
28 *   the provisions above, a recipient may use your version of this
29 *   file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction.  The lowest level functions are simply C-callable wrappers
52 * around the register accesses.  The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable.  The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx	Highest level abstractions provided by the
59 *			hfa384x code.  They are driver defined wrappers
60 *			for common sequences.  These functions generally
61 *			use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
64 *			functions are wrappers for the RID get/set
65 *			sequence. They call copy_[to|from]_bap() and
66 *			cmd_access(). These functions operate on the
67 *			RIDs and buffers without validation. The caller
68 *			is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx	functions that provide access to the f/w commands.
72 *			The function arguments correspond to each command
73 *			argument, even command arguments that get packed
74 *			into single registers.  These functions _just_
75 *			issue the command by setting the cmd/parm regs
76 *			& reading the status/resp regs.  Additional
77 *			activities required to fully use a command
78 *			(read/write from/to bap, get/set int status etc.)
79 *			are implemented separately.  Think of these as
80 *			C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx	These functions implement the sequence required
84 *			to issue any prism2 command.  Primarily used by the
85 *			hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx	BAP read/write access functions.
88 *			Note: we usually use BAP0 for non-interrupt context
89 *			 and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx	download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo.  The four
96 * functions are create(), destroy(), start(), and stop().  create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up.  The start() function gets
99 * the actual hardware running and enables the interrupts.  The stop()
100 * function shuts the hardware down.  The sequence should be:
101 * create()
102 * start()
103 *  .
104 *  .  Do interesting things w/ the hardware
105 *  .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112 
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128 
129 #define SUBMIT_URB(u, f)  usb_submit_urb(u, f)
130 
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142 
143 enum cmd_mode {
144 	DOWAIT = 0,
145 	DOASYNC
146 };
147 
148 #define THROTTLE_JIFFIES	(HZ/8)
149 #define URB_ASYNC_UNLINK 0
150 #define USB_QUEUE_BULK 0
151 
152 #define ROUNDUP64(a) (((a)+63)&~63)
153 
154 #ifdef DEBUG_USB
155 static void dbprint_urb(struct urb *urb);
156 #endif
157 
158 static void
159 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
160 
161 static void hfa384x_usb_defer(struct work_struct *data);
162 
163 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
164 
165 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
166 
167 /*---------------------------------------------------*/
168 /* Callbacks */
169 static void hfa384x_usbout_callback(struct urb *urb);
170 static void hfa384x_ctlxout_callback(struct urb *urb);
171 static void hfa384x_usbin_callback(struct urb *urb);
172 
173 static void
174 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
175 
176 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
177 
178 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
179 
180 static void
181 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
182 
183 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
184 			       int urb_status);
185 
186 /*---------------------------------------------------*/
187 /* Functions to support the prism2 usb command queue */
188 
189 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
190 
191 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
192 
193 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
194 
195 static void hfa384x_usb_throttlefn(unsigned long data);
196 
197 static void hfa384x_usbctlx_completion_task(unsigned long data);
198 
199 static void hfa384x_usbctlx_reaper_task(unsigned long data);
200 
201 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
202 
203 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
204 
205 struct usbctlx_completor {
206 	int (*complete)(struct usbctlx_completor *);
207 };
208 
209 static int
210 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
211 			      hfa384x_usbctlx_t *ctlx,
212 			      struct usbctlx_completor *completor);
213 
214 static int
215 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
216 
217 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
218 
219 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220 
221 static int
222 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
223 		   hfa384x_cmdresult_t *result);
224 
225 static void
226 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
227 		       hfa384x_rridresult_t *result);
228 
229 /*---------------------------------------------------*/
230 /* Low level req/resp CTLX formatters and submitters */
231 static int
232 hfa384x_docmd(hfa384x_t *hw,
233 	      enum cmd_mode mode,
234 	      hfa384x_metacmd_t *cmd,
235 	      ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
236 
237 static int
238 hfa384x_dorrid(hfa384x_t *hw,
239 	       enum cmd_mode mode,
240 	       u16 rid,
241 	       void *riddata,
242 	       unsigned int riddatalen,
243 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
244 
245 static int
246 hfa384x_dowrid(hfa384x_t *hw,
247 	       enum cmd_mode mode,
248 	       u16 rid,
249 	       void *riddata,
250 	       unsigned int riddatalen,
251 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
252 
253 static int
254 hfa384x_dormem(hfa384x_t *hw,
255 	       enum cmd_mode mode,
256 	       u16 page,
257 	       u16 offset,
258 	       void *data,
259 	       unsigned int len,
260 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
261 
262 static int
263 hfa384x_dowmem(hfa384x_t *hw,
264 	       enum cmd_mode mode,
265 	       u16 page,
266 	       u16 offset,
267 	       void *data,
268 	       unsigned int len,
269 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
270 
271 static int hfa384x_isgood_pdrcode(u16 pdrcode);
272 
ctlxstr(CTLX_STATE s)273 static inline const char *ctlxstr(CTLX_STATE s)
274 {
275 	static const char * const ctlx_str[] = {
276 		"Initial state",
277 		"Complete",
278 		"Request failed",
279 		"Request pending",
280 		"Request packet submitted",
281 		"Request packet completed",
282 		"Response packet completed"
283 	};
284 
285 	return ctlx_str[s];
286 };
287 
get_active_ctlx(hfa384x_t * hw)288 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t *hw)
289 {
290 	return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
291 }
292 
293 #ifdef DEBUG_USB
dbprint_urb(struct urb * urb)294 void dbprint_urb(struct urb *urb)
295 {
296 	pr_debug("urb->pipe=0x%08x\n", urb->pipe);
297 	pr_debug("urb->status=0x%08x\n", urb->status);
298 	pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
299 	pr_debug("urb->transfer_buffer=0x%08x\n",
300 		 (unsigned int)urb->transfer_buffer);
301 	pr_debug("urb->transfer_buffer_length=0x%08x\n",
302 		 urb->transfer_buffer_length);
303 	pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
304 	pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
305 	pr_debug("urb->setup_packet(ctl)=0x%08x\n",
306 		 (unsigned int)urb->setup_packet);
307 	pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
308 	pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
309 	pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
310 	pr_debug("urb->timeout=0x%08x\n", urb->timeout);
311 	pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
312 	pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
313 }
314 #endif
315 
316 /*----------------------------------------------------------------
317 * submit_rx_urb
318 *
319 * Listen for input data on the BULK-IN pipe. If the pipe has
320 * stalled then schedule it to be reset.
321 *
322 * Arguments:
323 *	hw		device struct
324 *	memflags	memory allocation flags
325 *
326 * Returns:
327 *	error code from submission
328 *
329 * Call context:
330 *	Any
331 ----------------------------------------------------------------*/
submit_rx_urb(hfa384x_t * hw,gfp_t memflags)332 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
333 {
334 	struct sk_buff *skb;
335 	int result;
336 
337 	skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
338 	if (skb == NULL) {
339 		result = -ENOMEM;
340 		goto done;
341 	}
342 
343 	/* Post the IN urb */
344 	usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
345 			  hw->endp_in,
346 			  skb->data, sizeof(hfa384x_usbin_t),
347 			  hfa384x_usbin_callback, hw->wlandev);
348 
349 	hw->rx_urb_skb = skb;
350 
351 	result = -ENOLINK;
352 	if (!hw->wlandev->hwremoved &&
353 	    !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
354 		result = SUBMIT_URB(&hw->rx_urb, memflags);
355 
356 		/* Check whether we need to reset the RX pipe */
357 		if (result == -EPIPE) {
358 			netdev_warn(hw->wlandev->netdev,
359 				    "%s rx pipe stalled: requesting reset\n",
360 				    hw->wlandev->netdev->name);
361 			if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
362 				schedule_work(&hw->usb_work);
363 		}
364 	}
365 
366 	/* Don't leak memory if anything should go wrong */
367 	if (result != 0) {
368 		dev_kfree_skb(skb);
369 		hw->rx_urb_skb = NULL;
370 	}
371 
372 done:
373 	return result;
374 }
375 
376 /*----------------------------------------------------------------
377 * submit_tx_urb
378 *
379 * Prepares and submits the URB of transmitted data. If the
380 * submission fails then it will schedule the output pipe to
381 * be reset.
382 *
383 * Arguments:
384 *	hw		device struct
385 *	tx_urb		URB of data for transmission
386 *	memflags	memory allocation flags
387 *
388 * Returns:
389 *	error code from submission
390 *
391 * Call context:
392 *	Any
393 ----------------------------------------------------------------*/
submit_tx_urb(hfa384x_t * hw,struct urb * tx_urb,gfp_t memflags)394 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
395 {
396 	struct net_device *netdev = hw->wlandev->netdev;
397 	int result;
398 
399 	result = -ENOLINK;
400 	if (netif_running(netdev)) {
401 		if (!hw->wlandev->hwremoved &&
402 		    !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
403 			result = SUBMIT_URB(tx_urb, memflags);
404 
405 			/* Test whether we need to reset the TX pipe */
406 			if (result == -EPIPE) {
407 				netdev_warn(hw->wlandev->netdev,
408 					    "%s tx pipe stalled: requesting reset\n",
409 					    netdev->name);
410 				set_bit(WORK_TX_HALT, &hw->usb_flags);
411 				schedule_work(&hw->usb_work);
412 			} else if (result == 0) {
413 				netif_stop_queue(netdev);
414 			}
415 		}
416 	}
417 
418 	return result;
419 }
420 
421 /*----------------------------------------------------------------
422 * hfa394x_usb_defer
423 *
424 * There are some things that the USB stack cannot do while
425 * in interrupt context, so we arrange this function to run
426 * in process context.
427 *
428 * Arguments:
429 *	hw	device structure
430 *
431 * Returns:
432 *	nothing
433 *
434 * Call context:
435 *	process (by design)
436 ----------------------------------------------------------------*/
hfa384x_usb_defer(struct work_struct * data)437 static void hfa384x_usb_defer(struct work_struct *data)
438 {
439 	hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
440 	struct net_device *netdev = hw->wlandev->netdev;
441 
442 	/* Don't bother trying to reset anything if the plug
443 	 * has been pulled ...
444 	 */
445 	if (hw->wlandev->hwremoved)
446 		return;
447 
448 	/* Reception has stopped: try to reset the input pipe */
449 	if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
450 		int ret;
451 
452 		usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
453 
454 		ret = usb_clear_halt(hw->usb, hw->endp_in);
455 		if (ret != 0) {
456 			netdev_err(hw->wlandev->netdev,
457 				   "Failed to clear rx pipe for %s: err=%d\n",
458 				   netdev->name, ret);
459 		} else {
460 			netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
461 				    netdev->name);
462 			clear_bit(WORK_RX_HALT, &hw->usb_flags);
463 			set_bit(WORK_RX_RESUME, &hw->usb_flags);
464 		}
465 	}
466 
467 	/* Resume receiving data back from the device. */
468 	if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
469 		int ret;
470 
471 		ret = submit_rx_urb(hw, GFP_KERNEL);
472 		if (ret != 0) {
473 			netdev_err(hw->wlandev->netdev,
474 				   "Failed to resume %s rx pipe.\n",
475 				   netdev->name);
476 		} else {
477 			clear_bit(WORK_RX_RESUME, &hw->usb_flags);
478 		}
479 	}
480 
481 	/* Transmission has stopped: try to reset the output pipe */
482 	if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
483 		int ret;
484 
485 		usb_kill_urb(&hw->tx_urb);
486 		ret = usb_clear_halt(hw->usb, hw->endp_out);
487 		if (ret != 0) {
488 			netdev_err(hw->wlandev->netdev,
489 				   "Failed to clear tx pipe for %s: err=%d\n",
490 				   netdev->name, ret);
491 		} else {
492 			netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
493 				    netdev->name);
494 			clear_bit(WORK_TX_HALT, &hw->usb_flags);
495 			set_bit(WORK_TX_RESUME, &hw->usb_flags);
496 
497 			/* Stopping the BULK-OUT pipe also blocked
498 			 * us from sending any more CTLX URBs, so
499 			 * we need to re-run our queue ...
500 			 */
501 			hfa384x_usbctlxq_run(hw);
502 		}
503 	}
504 
505 	/* Resume transmitting. */
506 	if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
507 		netif_wake_queue(hw->wlandev->netdev);
508 }
509 
510 /*----------------------------------------------------------------
511 * hfa384x_create
512 *
513 * Sets up the hfa384x_t data structure for use.  Note this
514 * does _not_ initialize the actual hardware, just the data structures
515 * we use to keep track of its state.
516 *
517 * Arguments:
518 *	hw		device structure
519 *	irq		device irq number
520 *	iobase		i/o base address for register access
521 *	membase		memory base address for register access
522 *
523 * Returns:
524 *	nothing
525 *
526 * Side effects:
527 *
528 * Call context:
529 *	process
530 ----------------------------------------------------------------*/
hfa384x_create(hfa384x_t * hw,struct usb_device * usb)531 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
532 {
533 	memset(hw, 0, sizeof(hfa384x_t));
534 	hw->usb = usb;
535 
536 	/* set up the endpoints */
537 	hw->endp_in = usb_rcvbulkpipe(usb, 1);
538 	hw->endp_out = usb_sndbulkpipe(usb, 2);
539 
540 	/* Set up the waitq */
541 	init_waitqueue_head(&hw->cmdq);
542 
543 	/* Initialize the command queue */
544 	spin_lock_init(&hw->ctlxq.lock);
545 	INIT_LIST_HEAD(&hw->ctlxq.pending);
546 	INIT_LIST_HEAD(&hw->ctlxq.active);
547 	INIT_LIST_HEAD(&hw->ctlxq.completing);
548 	INIT_LIST_HEAD(&hw->ctlxq.reapable);
549 
550 	/* Initialize the authentication queue */
551 	skb_queue_head_init(&hw->authq);
552 
553 	tasklet_init(&hw->reaper_bh,
554 		     hfa384x_usbctlx_reaper_task, (unsigned long)hw);
555 	tasklet_init(&hw->completion_bh,
556 		     hfa384x_usbctlx_completion_task, (unsigned long)hw);
557 	INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
558 	INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
559 
560 	setup_timer(&hw->throttle, hfa384x_usb_throttlefn, (unsigned long)hw);
561 
562 	setup_timer(&hw->resptimer, hfa384x_usbctlx_resptimerfn,
563 		    (unsigned long)hw);
564 
565 	setup_timer(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn,
566 		    (unsigned long)hw);
567 
568 	usb_init_urb(&hw->rx_urb);
569 	usb_init_urb(&hw->tx_urb);
570 	usb_init_urb(&hw->ctlx_urb);
571 
572 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
573 	hw->state = HFA384x_STATE_INIT;
574 
575 	INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
576 	setup_timer(&hw->commsqual_timer, prism2sta_commsqual_timer,
577 		    (unsigned long)hw);
578 }
579 
580 /*----------------------------------------------------------------
581 * hfa384x_destroy
582 *
583 * Partner to hfa384x_create().  This function cleans up the hw
584 * structure so that it can be freed by the caller using a simple
585 * kfree.  Currently, this function is just a placeholder.  If, at some
586 * point in the future, an hw in the 'shutdown' state requires a 'deep'
587 * kfree, this is where it should be done.  Note that if this function
588 * is called on a _running_ hw structure, the drvr_stop() function is
589 * called.
590 *
591 * Arguments:
592 *	hw		device structure
593 *
594 * Returns:
595 *	nothing, this function is not allowed to fail.
596 *
597 * Side effects:
598 *
599 * Call context:
600 *	process
601 ----------------------------------------------------------------*/
hfa384x_destroy(hfa384x_t * hw)602 void hfa384x_destroy(hfa384x_t *hw)
603 {
604 	struct sk_buff *skb;
605 
606 	if (hw->state == HFA384x_STATE_RUNNING)
607 		hfa384x_drvr_stop(hw);
608 	hw->state = HFA384x_STATE_PREINIT;
609 
610 	kfree(hw->scanresults);
611 	hw->scanresults = NULL;
612 
613 	/* Now to clean out the auth queue */
614 	while ((skb = skb_dequeue(&hw->authq)))
615 		dev_kfree_skb(skb);
616 }
617 
usbctlx_alloc(void)618 static hfa384x_usbctlx_t *usbctlx_alloc(void)
619 {
620 	hfa384x_usbctlx_t *ctlx;
621 
622 	ctlx = kzalloc(sizeof(*ctlx),
623 		       in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
624 	if (ctlx != NULL)
625 		init_completion(&ctlx->done);
626 
627 	return ctlx;
628 }
629 
630 static int
usbctlx_get_status(const hfa384x_usb_cmdresp_t * cmdresp,hfa384x_cmdresult_t * result)631 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
632 		   hfa384x_cmdresult_t *result)
633 {
634 	result->status = le16_to_cpu(cmdresp->status);
635 	result->resp0 = le16_to_cpu(cmdresp->resp0);
636 	result->resp1 = le16_to_cpu(cmdresp->resp1);
637 	result->resp2 = le16_to_cpu(cmdresp->resp2);
638 
639 	pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
640 		 result->status, result->resp0, result->resp1, result->resp2);
641 
642 	return result->status & HFA384x_STATUS_RESULT;
643 }
644 
645 static void
usbctlx_get_rridresult(const hfa384x_usb_rridresp_t * rridresp,hfa384x_rridresult_t * result)646 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
647 		       hfa384x_rridresult_t *result)
648 {
649 	result->rid = le16_to_cpu(rridresp->rid);
650 	result->riddata = rridresp->data;
651 	result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
652 }
653 
654 /*----------------------------------------------------------------
655 * Completor object:
656 * This completor must be passed to hfa384x_usbctlx_complete_sync()
657 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
658 ----------------------------------------------------------------*/
659 struct usbctlx_cmd_completor {
660 	struct usbctlx_completor head;
661 
662 	const hfa384x_usb_cmdresp_t *cmdresp;
663 	hfa384x_cmdresult_t *result;
664 };
665 
usbctlx_cmd_completor_fn(struct usbctlx_completor * head)666 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
667 {
668 	struct usbctlx_cmd_completor *complete;
669 
670 	complete = (struct usbctlx_cmd_completor *)head;
671 	return usbctlx_get_status(complete->cmdresp, complete->result);
672 }
673 
init_cmd_completor(struct usbctlx_cmd_completor * completor,const hfa384x_usb_cmdresp_t * cmdresp,hfa384x_cmdresult_t * result)674 static inline struct usbctlx_completor *init_cmd_completor(
675 						struct usbctlx_cmd_completor
676 							*completor,
677 						const hfa384x_usb_cmdresp_t
678 							*cmdresp,
679 						hfa384x_cmdresult_t *result)
680 {
681 	completor->head.complete = usbctlx_cmd_completor_fn;
682 	completor->cmdresp = cmdresp;
683 	completor->result = result;
684 	return &(completor->head);
685 }
686 
687 /*----------------------------------------------------------------
688 * Completor object:
689 * This completor must be passed to hfa384x_usbctlx_complete_sync()
690 * when processing a CTLX that reads a RID.
691 ----------------------------------------------------------------*/
692 struct usbctlx_rrid_completor {
693 	struct usbctlx_completor head;
694 
695 	const hfa384x_usb_rridresp_t *rridresp;
696 	void *riddata;
697 	unsigned int riddatalen;
698 };
699 
usbctlx_rrid_completor_fn(struct usbctlx_completor * head)700 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
701 {
702 	struct usbctlx_rrid_completor *complete;
703 	hfa384x_rridresult_t rridresult;
704 
705 	complete = (struct usbctlx_rrid_completor *)head;
706 	usbctlx_get_rridresult(complete->rridresp, &rridresult);
707 
708 	/* Validate the length, note body len calculation in bytes */
709 	if (rridresult.riddata_len != complete->riddatalen) {
710 		pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
711 			rridresult.rid,
712 			complete->riddatalen, rridresult.riddata_len);
713 		return -ENODATA;
714 	}
715 
716 	memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
717 	return 0;
718 }
719 
init_rrid_completor(struct usbctlx_rrid_completor * completor,const hfa384x_usb_rridresp_t * rridresp,void * riddata,unsigned int riddatalen)720 static inline struct usbctlx_completor *init_rrid_completor(
721 						struct usbctlx_rrid_completor
722 							*completor,
723 						const hfa384x_usb_rridresp_t
724 							*rridresp,
725 						void *riddata,
726 						unsigned int riddatalen)
727 {
728 	completor->head.complete = usbctlx_rrid_completor_fn;
729 	completor->rridresp = rridresp;
730 	completor->riddata = riddata;
731 	completor->riddatalen = riddatalen;
732 	return &(completor->head);
733 }
734 
735 /*----------------------------------------------------------------
736 * Completor object:
737 * Interprets the results of a synchronous RID-write
738 ----------------------------------------------------------------*/
739 #define init_wrid_completor  init_cmd_completor
740 
741 /*----------------------------------------------------------------
742 * Completor object:
743 * Interprets the results of a synchronous memory-write
744 ----------------------------------------------------------------*/
745 #define init_wmem_completor  init_cmd_completor
746 
747 /*----------------------------------------------------------------
748 * Completor object:
749 * Interprets the results of a synchronous memory-read
750 ----------------------------------------------------------------*/
751 struct usbctlx_rmem_completor {
752 	struct usbctlx_completor head;
753 
754 	const hfa384x_usb_rmemresp_t *rmemresp;
755 	void *data;
756 	unsigned int len;
757 };
758 
usbctlx_rmem_completor_fn(struct usbctlx_completor * head)759 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
760 {
761 	struct usbctlx_rmem_completor *complete =
762 		(struct usbctlx_rmem_completor *)head;
763 
764 	pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
765 	memcpy(complete->data, complete->rmemresp->data, complete->len);
766 	return 0;
767 }
768 
init_rmem_completor(struct usbctlx_rmem_completor * completor,hfa384x_usb_rmemresp_t * rmemresp,void * data,unsigned int len)769 static inline struct usbctlx_completor *init_rmem_completor(
770 						struct usbctlx_rmem_completor
771 							*completor,
772 						hfa384x_usb_rmemresp_t
773 							*rmemresp,
774 						void *data,
775 						unsigned int len)
776 {
777 	completor->head.complete = usbctlx_rmem_completor_fn;
778 	completor->rmemresp = rmemresp;
779 	completor->data = data;
780 	completor->len = len;
781 	return &(completor->head);
782 }
783 
784 /*----------------------------------------------------------------
785 * hfa384x_cb_status
786 *
787 * Ctlx_complete handler for async CMD type control exchanges.
788 * mark the hw struct as such.
789 *
790 * Note: If the handling is changed here, it should probably be
791 *       changed in docmd as well.
792 *
793 * Arguments:
794 *	hw		hw struct
795 *	ctlx		completed CTLX
796 *
797 * Returns:
798 *	nothing
799 *
800 * Side effects:
801 *
802 * Call context:
803 *	interrupt
804 ----------------------------------------------------------------*/
hfa384x_cb_status(hfa384x_t * hw,const hfa384x_usbctlx_t * ctlx)805 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
806 {
807 	if (ctlx->usercb != NULL) {
808 		hfa384x_cmdresult_t cmdresult;
809 
810 		if (ctlx->state != CTLX_COMPLETE) {
811 			memset(&cmdresult, 0, sizeof(cmdresult));
812 			cmdresult.status =
813 			    HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
814 		} else {
815 			usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
816 		}
817 
818 		ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
819 	}
820 }
821 
822 /*----------------------------------------------------------------
823 * hfa384x_cb_rrid
824 *
825 * CTLX completion handler for async RRID type control exchanges.
826 *
827 * Note: If the handling is changed here, it should probably be
828 *       changed in dorrid as well.
829 *
830 * Arguments:
831 *	hw		hw struct
832 *	ctlx		completed CTLX
833 *
834 * Returns:
835 *	nothing
836 *
837 * Side effects:
838 *
839 * Call context:
840 *	interrupt
841 ----------------------------------------------------------------*/
hfa384x_cb_rrid(hfa384x_t * hw,const hfa384x_usbctlx_t * ctlx)842 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
843 {
844 	if (ctlx->usercb != NULL) {
845 		hfa384x_rridresult_t rridresult;
846 
847 		if (ctlx->state != CTLX_COMPLETE) {
848 			memset(&rridresult, 0, sizeof(rridresult));
849 			rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
850 		} else {
851 			usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
852 					       &rridresult);
853 		}
854 
855 		ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
856 	}
857 }
858 
hfa384x_docmd_wait(hfa384x_t * hw,hfa384x_metacmd_t * cmd)859 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
860 {
861 	return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
862 }
863 
864 static inline int
hfa384x_docmd_async(hfa384x_t * hw,hfa384x_metacmd_t * cmd,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)865 hfa384x_docmd_async(hfa384x_t *hw,
866 		    hfa384x_metacmd_t *cmd,
867 		    ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
868 {
869 	return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
870 }
871 
872 static inline int
hfa384x_dorrid_wait(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen)873 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
874 		    unsigned int riddatalen)
875 {
876 	return hfa384x_dorrid(hw, DOWAIT,
877 			      rid, riddata, riddatalen, NULL, NULL, NULL);
878 }
879 
880 static inline int
hfa384x_dorrid_async(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)881 hfa384x_dorrid_async(hfa384x_t *hw,
882 		     u16 rid, void *riddata, unsigned int riddatalen,
883 		     ctlx_cmdcb_t cmdcb,
884 		     ctlx_usercb_t usercb, void *usercb_data)
885 {
886 	return hfa384x_dorrid(hw, DOASYNC,
887 			      rid, riddata, riddatalen,
888 			      cmdcb, usercb, usercb_data);
889 }
890 
891 static inline int
hfa384x_dowrid_wait(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen)892 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
893 		    unsigned int riddatalen)
894 {
895 	return hfa384x_dowrid(hw, DOWAIT,
896 			      rid, riddata, riddatalen, NULL, NULL, NULL);
897 }
898 
899 static inline int
hfa384x_dowrid_async(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)900 hfa384x_dowrid_async(hfa384x_t *hw,
901 		     u16 rid, void *riddata, unsigned int riddatalen,
902 		     ctlx_cmdcb_t cmdcb,
903 		     ctlx_usercb_t usercb, void *usercb_data)
904 {
905 	return hfa384x_dowrid(hw, DOASYNC,
906 			      rid, riddata, riddatalen,
907 			      cmdcb, usercb, usercb_data);
908 }
909 
910 static inline int
hfa384x_dormem_wait(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len)911 hfa384x_dormem_wait(hfa384x_t *hw,
912 		    u16 page, u16 offset, void *data, unsigned int len)
913 {
914 	return hfa384x_dormem(hw, DOWAIT,
915 			      page, offset, data, len, NULL, NULL, NULL);
916 }
917 
918 static inline int
hfa384x_dormem_async(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)919 hfa384x_dormem_async(hfa384x_t *hw,
920 		     u16 page, u16 offset, void *data, unsigned int len,
921 		     ctlx_cmdcb_t cmdcb,
922 		     ctlx_usercb_t usercb, void *usercb_data)
923 {
924 	return hfa384x_dormem(hw, DOASYNC,
925 			      page, offset, data, len,
926 			      cmdcb, usercb, usercb_data);
927 }
928 
929 static inline int
hfa384x_dowmem_wait(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len)930 hfa384x_dowmem_wait(hfa384x_t *hw,
931 		    u16 page, u16 offset, void *data, unsigned int len)
932 {
933 	return hfa384x_dowmem(hw, DOWAIT,
934 			      page, offset, data, len, NULL, NULL, NULL);
935 }
936 
937 static inline int
hfa384x_dowmem_async(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)938 hfa384x_dowmem_async(hfa384x_t *hw,
939 		     u16 page,
940 		     u16 offset,
941 		     void *data,
942 		     unsigned int len,
943 		     ctlx_cmdcb_t cmdcb,
944 		     ctlx_usercb_t usercb, void *usercb_data)
945 {
946 	return hfa384x_dowmem(hw, DOASYNC,
947 			      page, offset, data, len,
948 			      cmdcb, usercb, usercb_data);
949 }
950 
951 /*----------------------------------------------------------------
952 * hfa384x_cmd_initialize
953 *
954 * Issues the initialize command and sets the hw->state based
955 * on the result.
956 *
957 * Arguments:
958 *	hw		device structure
959 *
960 * Returns:
961 *	0		success
962 *	>0		f/w reported error - f/w status code
963 *	<0		driver reported error
964 *
965 * Side effects:
966 *
967 * Call context:
968 *	process
969 ----------------------------------------------------------------*/
hfa384x_cmd_initialize(hfa384x_t * hw)970 int hfa384x_cmd_initialize(hfa384x_t *hw)
971 {
972 	int result = 0;
973 	int i;
974 	hfa384x_metacmd_t cmd;
975 
976 	cmd.cmd = HFA384x_CMDCODE_INIT;
977 	cmd.parm0 = 0;
978 	cmd.parm1 = 0;
979 	cmd.parm2 = 0;
980 
981 	result = hfa384x_docmd_wait(hw, &cmd);
982 
983 	pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
984 		 cmd.result.status,
985 		 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
986 	if (result == 0) {
987 		for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
988 			hw->port_enabled[i] = 0;
989 	}
990 
991 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
992 
993 	return result;
994 }
995 
996 /*----------------------------------------------------------------
997 * hfa384x_cmd_disable
998 *
999 * Issues the disable command to stop communications on one of
1000 * the MACs 'ports'.
1001 *
1002 * Arguments:
1003 *	hw		device structure
1004 *	macport		MAC port number (host order)
1005 *
1006 * Returns:
1007 *	0		success
1008 *	>0		f/w reported failure - f/w status code
1009 *	<0		driver reported error (timeout|bad arg)
1010 *
1011 * Side effects:
1012 *
1013 * Call context:
1014 *	process
1015 ----------------------------------------------------------------*/
hfa384x_cmd_disable(hfa384x_t * hw,u16 macport)1016 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1017 {
1018 	int result = 0;
1019 	hfa384x_metacmd_t cmd;
1020 
1021 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1022 	    HFA384x_CMD_MACPORT_SET(macport);
1023 	cmd.parm0 = 0;
1024 	cmd.parm1 = 0;
1025 	cmd.parm2 = 0;
1026 
1027 	result = hfa384x_docmd_wait(hw, &cmd);
1028 
1029 	return result;
1030 }
1031 
1032 /*----------------------------------------------------------------
1033 * hfa384x_cmd_enable
1034 *
1035 * Issues the enable command to enable communications on one of
1036 * the MACs 'ports'.
1037 *
1038 * Arguments:
1039 *	hw		device structure
1040 *	macport		MAC port number
1041 *
1042 * Returns:
1043 *	0		success
1044 *	>0		f/w reported failure - f/w status code
1045 *	<0		driver reported error (timeout|bad arg)
1046 *
1047 * Side effects:
1048 *
1049 * Call context:
1050 *	process
1051 ----------------------------------------------------------------*/
hfa384x_cmd_enable(hfa384x_t * hw,u16 macport)1052 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1053 {
1054 	int result = 0;
1055 	hfa384x_metacmd_t cmd;
1056 
1057 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1058 	    HFA384x_CMD_MACPORT_SET(macport);
1059 	cmd.parm0 = 0;
1060 	cmd.parm1 = 0;
1061 	cmd.parm2 = 0;
1062 
1063 	result = hfa384x_docmd_wait(hw, &cmd);
1064 
1065 	return result;
1066 }
1067 
1068 /*----------------------------------------------------------------
1069 * hfa384x_cmd_monitor
1070 *
1071 * Enables the 'monitor mode' of the MAC.  Here's the description of
1072 * monitor mode that I've received thus far:
1073 *
1074 *  "The "monitor mode" of operation is that the MAC passes all
1075 *  frames for which the PLCP checks are correct. All received
1076 *  MPDUs are passed to the host with MAC Port = 7, with a
1077 *  receive status of good, FCS error, or undecryptable. Passing
1078 *  certain MPDUs is a violation of the 802.11 standard, but useful
1079 *  for a debugging tool."  Normal communication is not possible
1080 *  while monitor mode is enabled.
1081 *
1082 * Arguments:
1083 *	hw		device structure
1084 *	enable		a code (0x0b|0x0f) that enables/disables
1085 *			monitor mode. (host order)
1086 *
1087 * Returns:
1088 *	0		success
1089 *	>0		f/w reported failure - f/w status code
1090 *	<0		driver reported error (timeout|bad arg)
1091 *
1092 * Side effects:
1093 *
1094 * Call context:
1095 *	process
1096 ----------------------------------------------------------------*/
hfa384x_cmd_monitor(hfa384x_t * hw,u16 enable)1097 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1098 {
1099 	int result = 0;
1100 	hfa384x_metacmd_t cmd;
1101 
1102 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1103 	    HFA384x_CMD_AINFO_SET(enable);
1104 	cmd.parm0 = 0;
1105 	cmd.parm1 = 0;
1106 	cmd.parm2 = 0;
1107 
1108 	result = hfa384x_docmd_wait(hw, &cmd);
1109 
1110 	return result;
1111 }
1112 
1113 /*----------------------------------------------------------------
1114 * hfa384x_cmd_download
1115 *
1116 * Sets the controls for the MAC controller code/data download
1117 * process.  The arguments set the mode and address associated
1118 * with a download.  Note that the aux registers should be enabled
1119 * prior to setting one of the download enable modes.
1120 *
1121 * Arguments:
1122 *	hw		device structure
1123 *	mode		0 - Disable programming and begin code exec
1124 *			1 - Enable volatile mem programming
1125 *			2 - Enable non-volatile mem programming
1126 *			3 - Program non-volatile section from NV download
1127 *			    buffer.
1128 *			(host order)
1129 *	lowaddr
1130 *	highaddr	For mode 1, sets the high & low order bits of
1131 *			the "destination address".  This address will be
1132 *			the execution start address when download is
1133 *			subsequently disabled.
1134 *			For mode 2, sets the high & low order bits of
1135 *			the destination in NV ram.
1136 *			For modes 0 & 3, should be zero. (host order)
1137 *			NOTE: these are CMD format.
1138 *	codelen		Length of the data to write in mode 2,
1139 *			zero otherwise. (host order)
1140 *
1141 * Returns:
1142 *	0		success
1143 *	>0		f/w reported failure - f/w status code
1144 *	<0		driver reported error (timeout|bad arg)
1145 *
1146 * Side effects:
1147 *
1148 * Call context:
1149 *	process
1150 ----------------------------------------------------------------*/
hfa384x_cmd_download(hfa384x_t * hw,u16 mode,u16 lowaddr,u16 highaddr,u16 codelen)1151 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1152 			 u16 highaddr, u16 codelen)
1153 {
1154 	int result = 0;
1155 	hfa384x_metacmd_t cmd;
1156 
1157 	pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1158 		 mode, lowaddr, highaddr, codelen);
1159 
1160 	cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1161 		   HFA384x_CMD_PROGMODE_SET(mode));
1162 
1163 	cmd.parm0 = lowaddr;
1164 	cmd.parm1 = highaddr;
1165 	cmd.parm2 = codelen;
1166 
1167 	result = hfa384x_docmd_wait(hw, &cmd);
1168 
1169 	return result;
1170 }
1171 
1172 /*----------------------------------------------------------------
1173 * hfa384x_corereset
1174 *
1175 * Perform a reset of the hfa38xx MAC core.  We assume that the hw
1176 * structure is in its "created" state.  That is, it is initialized
1177 * with proper values.  Note that if a reset is done after the
1178 * device has been active for awhile, the caller might have to clean
1179 * up some leftover cruft in the hw structure.
1180 *
1181 * Arguments:
1182 *	hw		device structure
1183 *	holdtime	how long (in ms) to hold the reset
1184 *	settletime	how long (in ms) to wait after releasing
1185 *			the reset
1186 *
1187 * Returns:
1188 *	nothing
1189 *
1190 * Side effects:
1191 *
1192 * Call context:
1193 *	process
1194 ----------------------------------------------------------------*/
hfa384x_corereset(hfa384x_t * hw,int holdtime,int settletime,int genesis)1195 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1196 {
1197 	int result;
1198 
1199 	result = usb_reset_device(hw->usb);
1200 	if (result < 0) {
1201 		netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1202 			   result);
1203 	}
1204 
1205 	return result;
1206 }
1207 
1208 /*----------------------------------------------------------------
1209 * hfa384x_usbctlx_complete_sync
1210 *
1211 * Waits for a synchronous CTLX object to complete,
1212 * and then handles the response.
1213 *
1214 * Arguments:
1215 *	hw		device structure
1216 *	ctlx		CTLX ptr
1217 *	completor	functor object to decide what to
1218 *			do with the CTLX's result.
1219 *
1220 * Returns:
1221 *	0		Success
1222 *	-ERESTARTSYS	Interrupted by a signal
1223 *	-EIO		CTLX failed
1224 *	-ENODEV		Adapter was unplugged
1225 *	???		Result from completor
1226 *
1227 * Side effects:
1228 *
1229 * Call context:
1230 *	process
1231 ----------------------------------------------------------------*/
hfa384x_usbctlx_complete_sync(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx,struct usbctlx_completor * completor)1232 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1233 					 hfa384x_usbctlx_t *ctlx,
1234 					 struct usbctlx_completor *completor)
1235 {
1236 	unsigned long flags;
1237 	int result;
1238 
1239 	result = wait_for_completion_interruptible(&ctlx->done);
1240 
1241 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
1242 
1243 	/*
1244 	 * We can only handle the CTLX if the USB disconnect
1245 	 * function has not run yet ...
1246 	 */
1247 cleanup:
1248 	if (hw->wlandev->hwremoved) {
1249 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1250 		result = -ENODEV;
1251 	} else if (result != 0) {
1252 		int runqueue = 0;
1253 
1254 		/*
1255 		 * We were probably interrupted, so delete
1256 		 * this CTLX asynchronously, kill the timers
1257 		 * and the URB, and then start the next
1258 		 * pending CTLX.
1259 		 *
1260 		 * NOTE: We can only delete the timers and
1261 		 *       the URB if this CTLX is active.
1262 		 */
1263 		if (ctlx == get_active_ctlx(hw)) {
1264 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1265 
1266 			del_singleshot_timer_sync(&hw->reqtimer);
1267 			del_singleshot_timer_sync(&hw->resptimer);
1268 			hw->req_timer_done = 1;
1269 			hw->resp_timer_done = 1;
1270 			usb_kill_urb(&hw->ctlx_urb);
1271 
1272 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
1273 
1274 			runqueue = 1;
1275 
1276 			/*
1277 			 * This scenario is so unlikely that I'm
1278 			 * happy with a grubby "goto" solution ...
1279 			 */
1280 			if (hw->wlandev->hwremoved)
1281 				goto cleanup;
1282 		}
1283 
1284 		/*
1285 		 * The completion task will send this CTLX
1286 		 * to the reaper the next time it runs. We
1287 		 * are no longer in a hurry.
1288 		 */
1289 		ctlx->reapable = 1;
1290 		ctlx->state = CTLX_REQ_FAILED;
1291 		list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1292 
1293 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1294 
1295 		if (runqueue)
1296 			hfa384x_usbctlxq_run(hw);
1297 	} else {
1298 		if (ctlx->state == CTLX_COMPLETE) {
1299 			result = completor->complete(completor);
1300 		} else {
1301 			netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1302 				    le16_to_cpu(ctlx->outbuf.type),
1303 				    ctlxstr(ctlx->state));
1304 			result = -EIO;
1305 		}
1306 
1307 		list_del(&ctlx->list);
1308 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1309 		kfree(ctlx);
1310 	}
1311 
1312 	return result;
1313 }
1314 
1315 /*----------------------------------------------------------------
1316 * hfa384x_docmd
1317 *
1318 * Constructs a command CTLX and submits it.
1319 *
1320 * NOTE: Any changes to the 'post-submit' code in this function
1321 *       need to be carried over to hfa384x_cbcmd() since the handling
1322 *       is virtually identical.
1323 *
1324 * Arguments:
1325 *	hw		device structure
1326 *	mode		DOWAIT or DOASYNC
1327 *       cmd             cmd structure.  Includes all arguments and result
1328 *                       data points.  All in host order. in host order
1329 *	cmdcb		command-specific callback
1330 *	usercb		user callback for async calls, NULL for DOWAIT calls
1331 *	usercb_data	user supplied data pointer for async calls, NULL
1332 *			for DOASYNC calls
1333 *
1334 * Returns:
1335 *	0		success
1336 *	-EIO		CTLX failure
1337 *	-ERESTARTSYS	Awakened on signal
1338 *	>0		command indicated error, Status and Resp0-2 are
1339 *			in hw structure.
1340 *
1341 * Side effects:
1342 *
1343 *
1344 * Call context:
1345 *	process
1346 ----------------------------------------------------------------*/
1347 static int
hfa384x_docmd(hfa384x_t * hw,enum cmd_mode mode,hfa384x_metacmd_t * cmd,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1348 hfa384x_docmd(hfa384x_t *hw,
1349 	      enum cmd_mode mode,
1350 	      hfa384x_metacmd_t *cmd,
1351 	      ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1352 {
1353 	int result;
1354 	hfa384x_usbctlx_t *ctlx;
1355 
1356 	ctlx = usbctlx_alloc();
1357 	if (ctlx == NULL) {
1358 		result = -ENOMEM;
1359 		goto done;
1360 	}
1361 
1362 	/* Initialize the command */
1363 	ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1364 	ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1365 	ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1366 	ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1367 	ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1368 
1369 	ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1370 
1371 	pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1372 		 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1373 
1374 	ctlx->reapable = mode;
1375 	ctlx->cmdcb = cmdcb;
1376 	ctlx->usercb = usercb;
1377 	ctlx->usercb_data = usercb_data;
1378 
1379 	result = hfa384x_usbctlx_submit(hw, ctlx);
1380 	if (result != 0) {
1381 		kfree(ctlx);
1382 	} else if (mode == DOWAIT) {
1383 		struct usbctlx_cmd_completor completor;
1384 
1385 		result =
1386 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1387 						  init_cmd_completor(&completor,
1388 								     &ctlx->
1389 								     inbuf.
1390 								     cmdresp,
1391 								     &cmd->
1392 								     result));
1393 	}
1394 
1395 done:
1396 	return result;
1397 }
1398 
1399 /*----------------------------------------------------------------
1400 * hfa384x_dorrid
1401 *
1402 * Constructs a read rid CTLX and issues it.
1403 *
1404 * NOTE: Any changes to the 'post-submit' code in this function
1405 *       need to be carried over to hfa384x_cbrrid() since the handling
1406 *       is virtually identical.
1407 *
1408 * Arguments:
1409 *	hw		device structure
1410 *	mode		DOWAIT or DOASYNC
1411 *	rid		Read RID number (host order)
1412 *	riddata		Caller supplied buffer that MAC formatted RID.data
1413 *			record will be written to for DOWAIT calls. Should
1414 *			be NULL for DOASYNC calls.
1415 *	riddatalen	Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1416 *	cmdcb		command callback for async calls, NULL for DOWAIT calls
1417 *	usercb		user callback for async calls, NULL for DOWAIT calls
1418 *	usercb_data	user supplied data pointer for async calls, NULL
1419 *			for DOWAIT calls
1420 *
1421 * Returns:
1422 *	0		success
1423 *	-EIO		CTLX failure
1424 *	-ERESTARTSYS	Awakened on signal
1425 *	-ENODATA	riddatalen != macdatalen
1426 *	>0		command indicated error, Status and Resp0-2 are
1427 *			in hw structure.
1428 *
1429 * Side effects:
1430 *
1431 * Call context:
1432 *	interrupt (DOASYNC)
1433 *	process (DOWAIT or DOASYNC)
1434 ----------------------------------------------------------------*/
1435 static int
hfa384x_dorrid(hfa384x_t * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1436 hfa384x_dorrid(hfa384x_t *hw,
1437 	       enum cmd_mode mode,
1438 	       u16 rid,
1439 	       void *riddata,
1440 	       unsigned int riddatalen,
1441 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1442 {
1443 	int result;
1444 	hfa384x_usbctlx_t *ctlx;
1445 
1446 	ctlx = usbctlx_alloc();
1447 	if (ctlx == NULL) {
1448 		result = -ENOMEM;
1449 		goto done;
1450 	}
1451 
1452 	/* Initialize the command */
1453 	ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1454 	ctlx->outbuf.rridreq.frmlen =
1455 	    cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1456 	ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1457 
1458 	ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1459 
1460 	ctlx->reapable = mode;
1461 	ctlx->cmdcb = cmdcb;
1462 	ctlx->usercb = usercb;
1463 	ctlx->usercb_data = usercb_data;
1464 
1465 	/* Submit the CTLX */
1466 	result = hfa384x_usbctlx_submit(hw, ctlx);
1467 	if (result != 0) {
1468 		kfree(ctlx);
1469 	} else if (mode == DOWAIT) {
1470 		struct usbctlx_rrid_completor completor;
1471 
1472 		result =
1473 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1474 						  init_rrid_completor
1475 						  (&completor,
1476 						   &ctlx->inbuf.rridresp,
1477 						   riddata, riddatalen));
1478 	}
1479 
1480 done:
1481 	return result;
1482 }
1483 
1484 /*----------------------------------------------------------------
1485 * hfa384x_dowrid
1486 *
1487 * Constructs a write rid CTLX and issues it.
1488 *
1489 * NOTE: Any changes to the 'post-submit' code in this function
1490 *       need to be carried over to hfa384x_cbwrid() since the handling
1491 *       is virtually identical.
1492 *
1493 * Arguments:
1494 *	hw		device structure
1495 *	enum cmd_mode	DOWAIT or DOASYNC
1496 *	rid		RID code
1497 *	riddata		Data portion of RID formatted for MAC
1498 *	riddatalen	Length of the data portion in bytes
1499 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1500 *	usercb		user callback for async calls, NULL for DOWAIT calls
1501 *	usercb_data	user supplied data pointer for async calls
1502 *
1503 * Returns:
1504 *	0		success
1505 *	-ETIMEDOUT	timed out waiting for register ready or
1506 *			command completion
1507 *	>0		command indicated error, Status and Resp0-2 are
1508 *			in hw structure.
1509 *
1510 * Side effects:
1511 *
1512 * Call context:
1513 *	interrupt (DOASYNC)
1514 *	process (DOWAIT or DOASYNC)
1515 ----------------------------------------------------------------*/
1516 static int
hfa384x_dowrid(hfa384x_t * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1517 hfa384x_dowrid(hfa384x_t *hw,
1518 	       enum cmd_mode mode,
1519 	       u16 rid,
1520 	       void *riddata,
1521 	       unsigned int riddatalen,
1522 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1523 {
1524 	int result;
1525 	hfa384x_usbctlx_t *ctlx;
1526 
1527 	ctlx = usbctlx_alloc();
1528 	if (ctlx == NULL) {
1529 		result = -ENOMEM;
1530 		goto done;
1531 	}
1532 
1533 	/* Initialize the command */
1534 	ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1535 	ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1536 						   (ctlx->outbuf.wridreq.rid) +
1537 						   riddatalen + 1) / 2);
1538 	ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1539 	memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1540 
1541 	ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1542 	    sizeof(ctlx->outbuf.wridreq.frmlen) +
1543 	    sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1544 
1545 	ctlx->reapable = mode;
1546 	ctlx->cmdcb = cmdcb;
1547 	ctlx->usercb = usercb;
1548 	ctlx->usercb_data = usercb_data;
1549 
1550 	/* Submit the CTLX */
1551 	result = hfa384x_usbctlx_submit(hw, ctlx);
1552 	if (result != 0) {
1553 		kfree(ctlx);
1554 	} else if (mode == DOWAIT) {
1555 		struct usbctlx_cmd_completor completor;
1556 		hfa384x_cmdresult_t wridresult;
1557 
1558 		result = hfa384x_usbctlx_complete_sync(hw,
1559 						       ctlx,
1560 						       init_wrid_completor
1561 						       (&completor,
1562 							&ctlx->inbuf.wridresp,
1563 							&wridresult));
1564 	}
1565 
1566 done:
1567 	return result;
1568 }
1569 
1570 /*----------------------------------------------------------------
1571 * hfa384x_dormem
1572 *
1573 * Constructs a readmem CTLX and issues it.
1574 *
1575 * NOTE: Any changes to the 'post-submit' code in this function
1576 *       need to be carried over to hfa384x_cbrmem() since the handling
1577 *       is virtually identical.
1578 *
1579 * Arguments:
1580 *	hw		device structure
1581 *	mode		DOWAIT or DOASYNC
1582 *	page		MAC address space page (CMD format)
1583 *	offset		MAC address space offset
1584 *	data		Ptr to data buffer to receive read
1585 *	len		Length of the data to read (max == 2048)
1586 *	cmdcb		command callback for async calls, NULL for DOWAIT calls
1587 *	usercb		user callback for async calls, NULL for DOWAIT calls
1588 *	usercb_data	user supplied data pointer for async calls
1589 *
1590 * Returns:
1591 *	0		success
1592 *	-ETIMEDOUT	timed out waiting for register ready or
1593 *			command completion
1594 *	>0		command indicated error, Status and Resp0-2 are
1595 *			in hw structure.
1596 *
1597 * Side effects:
1598 *
1599 * Call context:
1600 *	interrupt (DOASYNC)
1601 *	process (DOWAIT or DOASYNC)
1602 ----------------------------------------------------------------*/
1603 static int
hfa384x_dormem(hfa384x_t * hw,enum cmd_mode mode,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1604 hfa384x_dormem(hfa384x_t *hw,
1605 	       enum cmd_mode mode,
1606 	       u16 page,
1607 	       u16 offset,
1608 	       void *data,
1609 	       unsigned int len,
1610 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1611 {
1612 	int result;
1613 	hfa384x_usbctlx_t *ctlx;
1614 
1615 	ctlx = usbctlx_alloc();
1616 	if (ctlx == NULL) {
1617 		result = -ENOMEM;
1618 		goto done;
1619 	}
1620 
1621 	/* Initialize the command */
1622 	ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1623 	ctlx->outbuf.rmemreq.frmlen =
1624 	    cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1625 			sizeof(ctlx->outbuf.rmemreq.page) + len);
1626 	ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1627 	ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1628 
1629 	ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1630 
1631 	pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1632 		 ctlx->outbuf.rmemreq.type,
1633 		 ctlx->outbuf.rmemreq.frmlen,
1634 		 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1635 
1636 	pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1637 
1638 	ctlx->reapable = mode;
1639 	ctlx->cmdcb = cmdcb;
1640 	ctlx->usercb = usercb;
1641 	ctlx->usercb_data = usercb_data;
1642 
1643 	result = hfa384x_usbctlx_submit(hw, ctlx);
1644 	if (result != 0) {
1645 		kfree(ctlx);
1646 	} else if (mode == DOWAIT) {
1647 		struct usbctlx_rmem_completor completor;
1648 
1649 		result =
1650 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1651 						  init_rmem_completor
1652 						  (&completor,
1653 						   &ctlx->inbuf.rmemresp, data,
1654 						   len));
1655 	}
1656 
1657 done:
1658 	return result;
1659 }
1660 
1661 /*----------------------------------------------------------------
1662 * hfa384x_dowmem
1663 *
1664 * Constructs a writemem CTLX and issues it.
1665 *
1666 * NOTE: Any changes to the 'post-submit' code in this function
1667 *       need to be carried over to hfa384x_cbwmem() since the handling
1668 *       is virtually identical.
1669 *
1670 * Arguments:
1671 *	hw		device structure
1672 *	mode		DOWAIT or DOASYNC
1673 *	page		MAC address space page (CMD format)
1674 *	offset		MAC address space offset
1675 *	data		Ptr to data buffer containing write data
1676 *	len		Length of the data to read (max == 2048)
1677 *	cmdcb		command callback for async calls, NULL for DOWAIT calls
1678 *	usercb		user callback for async calls, NULL for DOWAIT calls
1679 *	usercb_data	user supplied data pointer for async calls.
1680 *
1681 * Returns:
1682 *	0		success
1683 *	-ETIMEDOUT	timed out waiting for register ready or
1684 *			command completion
1685 *	>0		command indicated error, Status and Resp0-2 are
1686 *			in hw structure.
1687 *
1688 * Side effects:
1689 *
1690 * Call context:
1691 *	interrupt (DOWAIT)
1692 *	process (DOWAIT or DOASYNC)
1693 ----------------------------------------------------------------*/
1694 static int
hfa384x_dowmem(hfa384x_t * hw,enum cmd_mode mode,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1695 hfa384x_dowmem(hfa384x_t *hw,
1696 	       enum cmd_mode mode,
1697 	       u16 page,
1698 	       u16 offset,
1699 	       void *data,
1700 	       unsigned int len,
1701 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1702 {
1703 	int result;
1704 	hfa384x_usbctlx_t *ctlx;
1705 
1706 	pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1707 
1708 	ctlx = usbctlx_alloc();
1709 	if (ctlx == NULL) {
1710 		result = -ENOMEM;
1711 		goto done;
1712 	}
1713 
1714 	/* Initialize the command */
1715 	ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1716 	ctlx->outbuf.wmemreq.frmlen =
1717 	    cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1718 			sizeof(ctlx->outbuf.wmemreq.page) + len);
1719 	ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1720 	ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1721 	memcpy(ctlx->outbuf.wmemreq.data, data, len);
1722 
1723 	ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1724 	    sizeof(ctlx->outbuf.wmemreq.frmlen) +
1725 	    sizeof(ctlx->outbuf.wmemreq.offset) +
1726 	    sizeof(ctlx->outbuf.wmemreq.page) + len;
1727 
1728 	ctlx->reapable = mode;
1729 	ctlx->cmdcb = cmdcb;
1730 	ctlx->usercb = usercb;
1731 	ctlx->usercb_data = usercb_data;
1732 
1733 	result = hfa384x_usbctlx_submit(hw, ctlx);
1734 	if (result != 0) {
1735 		kfree(ctlx);
1736 	} else if (mode == DOWAIT) {
1737 		struct usbctlx_cmd_completor completor;
1738 		hfa384x_cmdresult_t wmemresult;
1739 
1740 		result = hfa384x_usbctlx_complete_sync(hw,
1741 						       ctlx,
1742 						       init_wmem_completor
1743 						       (&completor,
1744 							&ctlx->inbuf.wmemresp,
1745 							&wmemresult));
1746 	}
1747 
1748 done:
1749 	return result;
1750 }
1751 
1752 /*----------------------------------------------------------------
1753 * hfa384x_drvr_commtallies
1754 *
1755 * Send a commtallies inquiry to the MAC.  Note that this is an async
1756 * call that will result in an info frame arriving sometime later.
1757 *
1758 * Arguments:
1759 *	hw		device structure
1760 *
1761 * Returns:
1762 *	zero		success.
1763 *
1764 * Side effects:
1765 *
1766 * Call context:
1767 *	process
1768 ----------------------------------------------------------------*/
hfa384x_drvr_commtallies(hfa384x_t * hw)1769 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1770 {
1771 	hfa384x_metacmd_t cmd;
1772 
1773 	cmd.cmd = HFA384x_CMDCODE_INQ;
1774 	cmd.parm0 = HFA384x_IT_COMMTALLIES;
1775 	cmd.parm1 = 0;
1776 	cmd.parm2 = 0;
1777 
1778 	hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1779 
1780 	return 0;
1781 }
1782 
1783 /*----------------------------------------------------------------
1784 * hfa384x_drvr_disable
1785 *
1786 * Issues the disable command to stop communications on one of
1787 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1788 * APs may also disable macports 1-6.  Only ports that have been
1789 * previously enabled may be disabled.
1790 *
1791 * Arguments:
1792 *	hw		device structure
1793 *	macport		MAC port number (host order)
1794 *
1795 * Returns:
1796 *	0		success
1797 *	>0		f/w reported failure - f/w status code
1798 *	<0		driver reported error (timeout|bad arg)
1799 *
1800 * Side effects:
1801 *
1802 * Call context:
1803 *	process
1804 ----------------------------------------------------------------*/
hfa384x_drvr_disable(hfa384x_t * hw,u16 macport)1805 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1806 {
1807 	int result = 0;
1808 
1809 	if ((!hw->isap && macport != 0) ||
1810 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1811 	    !(hw->port_enabled[macport])) {
1812 		result = -EINVAL;
1813 	} else {
1814 		result = hfa384x_cmd_disable(hw, macport);
1815 		if (result == 0)
1816 			hw->port_enabled[macport] = 0;
1817 	}
1818 	return result;
1819 }
1820 
1821 /*----------------------------------------------------------------
1822 * hfa384x_drvr_enable
1823 *
1824 * Issues the enable command to enable communications on one of
1825 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1826 * APs may also enable macports 1-6.  Only ports that are currently
1827 * disabled may be enabled.
1828 *
1829 * Arguments:
1830 *	hw		device structure
1831 *	macport		MAC port number
1832 *
1833 * Returns:
1834 *	0		success
1835 *	>0		f/w reported failure - f/w status code
1836 *	<0		driver reported error (timeout|bad arg)
1837 *
1838 * Side effects:
1839 *
1840 * Call context:
1841 *	process
1842 ----------------------------------------------------------------*/
hfa384x_drvr_enable(hfa384x_t * hw,u16 macport)1843 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1844 {
1845 	int result = 0;
1846 
1847 	if ((!hw->isap && macport != 0) ||
1848 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1849 	    (hw->port_enabled[macport])) {
1850 		result = -EINVAL;
1851 	} else {
1852 		result = hfa384x_cmd_enable(hw, macport);
1853 		if (result == 0)
1854 			hw->port_enabled[macport] = 1;
1855 	}
1856 	return result;
1857 }
1858 
1859 /*----------------------------------------------------------------
1860 * hfa384x_drvr_flashdl_enable
1861 *
1862 * Begins the flash download state.  Checks to see that we're not
1863 * already in a download state and that a port isn't enabled.
1864 * Sets the download state and retrieves the flash download
1865 * buffer location, buffer size, and timeout length.
1866 *
1867 * Arguments:
1868 *	hw		device structure
1869 *
1870 * Returns:
1871 *	0		success
1872 *	>0		f/w reported error - f/w status code
1873 *	<0		driver reported error
1874 *
1875 * Side effects:
1876 *
1877 * Call context:
1878 *	process
1879 ----------------------------------------------------------------*/
hfa384x_drvr_flashdl_enable(hfa384x_t * hw)1880 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1881 {
1882 	int result = 0;
1883 	int i;
1884 
1885 	/* Check that a port isn't active */
1886 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1887 		if (hw->port_enabled[i]) {
1888 			pr_debug("called when port enabled.\n");
1889 			return -EINVAL;
1890 		}
1891 	}
1892 
1893 	/* Check that we're not already in a download state */
1894 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1895 		return -EINVAL;
1896 
1897 	/* Retrieve the buffer loc&size and timeout */
1898 	result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1899 					&(hw->bufinfo), sizeof(hw->bufinfo));
1900 	if (result)
1901 		return result;
1902 
1903 	hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1904 	hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1905 	hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1906 	result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1907 					  &(hw->dltimeout));
1908 	if (result)
1909 		return result;
1910 
1911 	hw->dltimeout = le16_to_cpu(hw->dltimeout);
1912 
1913 	pr_debug("flashdl_enable\n");
1914 
1915 	hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1916 
1917 	return result;
1918 }
1919 
1920 /*----------------------------------------------------------------
1921 * hfa384x_drvr_flashdl_disable
1922 *
1923 * Ends the flash download state.  Note that this will cause the MAC
1924 * firmware to restart.
1925 *
1926 * Arguments:
1927 *	hw		device structure
1928 *
1929 * Returns:
1930 *	0		success
1931 *	>0		f/w reported error - f/w status code
1932 *	<0		driver reported error
1933 *
1934 * Side effects:
1935 *
1936 * Call context:
1937 *	process
1938 ----------------------------------------------------------------*/
hfa384x_drvr_flashdl_disable(hfa384x_t * hw)1939 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1940 {
1941 	/* Check that we're already in the download state */
1942 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1943 		return -EINVAL;
1944 
1945 	pr_debug("flashdl_enable\n");
1946 
1947 	/* There isn't much we can do at this point, so I don't */
1948 	/*  bother  w/ the return value */
1949 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1950 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
1951 
1952 	return 0;
1953 }
1954 
1955 /*----------------------------------------------------------------
1956 * hfa384x_drvr_flashdl_write
1957 *
1958 * Performs a FLASH download of a chunk of data. First checks to see
1959 * that we're in the FLASH download state, then sets the download
1960 * mode, uses the aux functions to 1) copy the data to the flash
1961 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1962 * compare.  Lather rinse, repeat as many times an necessary to get
1963 * all the given data into flash.
1964 * When all data has been written using this function (possibly
1965 * repeatedly), call drvr_flashdl_disable() to end the download state
1966 * and restart the MAC.
1967 *
1968 * Arguments:
1969 *	hw		device structure
1970 *	daddr		Card address to write to. (host order)
1971 *	buf		Ptr to data to write.
1972 *	len		Length of data (host order).
1973 *
1974 * Returns:
1975 *	0		success
1976 *	>0		f/w reported error - f/w status code
1977 *	<0		driver reported error
1978 *
1979 * Side effects:
1980 *
1981 * Call context:
1982 *	process
1983 ----------------------------------------------------------------*/
hfa384x_drvr_flashdl_write(hfa384x_t * hw,u32 daddr,void * buf,u32 len)1984 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1985 {
1986 	int result = 0;
1987 	u32 dlbufaddr;
1988 	int nburns;
1989 	u32 burnlen;
1990 	u32 burndaddr;
1991 	u16 burnlo;
1992 	u16 burnhi;
1993 	int nwrites;
1994 	u8 *writebuf;
1995 	u16 writepage;
1996 	u16 writeoffset;
1997 	u32 writelen;
1998 	int i;
1999 	int j;
2000 
2001 	pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2002 
2003 	/* Check that we're in the flash download state */
2004 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2005 		return -EINVAL;
2006 
2007 	netdev_info(hw->wlandev->netdev,
2008 		    "Download %d bytes to flash @0x%06x\n", len, daddr);
2009 
2010 	/* Convert to flat address for arithmetic */
2011 	/* NOTE: dlbuffer RID stores the address in AUX format */
2012 	dlbufaddr =
2013 	    HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2014 	pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2015 		 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2016 	/* Calculations to determine how many fills of the dlbuffer to do
2017 	 * and how many USB wmemreq's to do for each fill.  At this point
2018 	 * in time, the dlbuffer size and the wmemreq size are the same.
2019 	 * Therefore, nwrites should always be 1.  The extra complexity
2020 	 * here is a hedge against future changes.
2021 	 */
2022 
2023 	/* Figure out how many times to do the flash programming */
2024 	nburns = len / hw->bufinfo.len;
2025 	nburns += (len % hw->bufinfo.len) ? 1 : 0;
2026 
2027 	/* For each flash program cycle, how many USB wmemreq's are needed? */
2028 	nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2029 	nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2030 
2031 	/* For each burn */
2032 	for (i = 0; i < nburns; i++) {
2033 		/* Get the dest address and len */
2034 		burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2035 		    hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2036 		burndaddr = daddr + (hw->bufinfo.len * i);
2037 		burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2038 		burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2039 
2040 		netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
2041 			    burnlen, burndaddr);
2042 
2043 		/* Set the download mode */
2044 		result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2045 					      burnlo, burnhi, burnlen);
2046 		if (result) {
2047 			netdev_err(hw->wlandev->netdev,
2048 				   "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2049 				   burnlo, burnhi, burnlen, result);
2050 			goto exit_proc;
2051 		}
2052 
2053 		/* copy the data to the flash download buffer */
2054 		for (j = 0; j < nwrites; j++) {
2055 			writebuf = buf +
2056 			    (i * hw->bufinfo.len) +
2057 			    (j * HFA384x_USB_RWMEM_MAXLEN);
2058 
2059 			writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2060 						(j * HFA384x_USB_RWMEM_MAXLEN));
2061 			writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2062 						(j * HFA384x_USB_RWMEM_MAXLEN));
2063 
2064 			writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2065 			writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2066 			    HFA384x_USB_RWMEM_MAXLEN : writelen;
2067 
2068 			result = hfa384x_dowmem_wait(hw,
2069 						     writepage,
2070 						     writeoffset,
2071 						     writebuf, writelen);
2072 		}
2073 
2074 		/* set the download 'write flash' mode */
2075 		result = hfa384x_cmd_download(hw,
2076 					      HFA384x_PROGMODE_NVWRITE,
2077 					      0, 0, 0);
2078 		if (result) {
2079 			netdev_err(hw->wlandev->netdev,
2080 				   "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2081 				   burnlo, burnhi, burnlen, result);
2082 			goto exit_proc;
2083 		}
2084 
2085 		/* TODO: We really should do a readback and compare. */
2086 	}
2087 
2088 exit_proc:
2089 
2090 	/* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
2091 	/*  actually disable programming mode.  Remember, that will cause the */
2092 	/*  the firmware to effectively reset itself. */
2093 
2094 	return result;
2095 }
2096 
2097 /*----------------------------------------------------------------
2098 * hfa384x_drvr_getconfig
2099 *
2100 * Performs the sequence necessary to read a config/info item.
2101 *
2102 * Arguments:
2103 *	hw		device structure
2104 *	rid		config/info record id (host order)
2105 *	buf		host side record buffer.  Upon return it will
2106 *			contain the body portion of the record (minus the
2107 *			RID and len).
2108 *	len		buffer length (in bytes, should match record length)
2109 *
2110 * Returns:
2111 *	0		success
2112 *	>0		f/w reported error - f/w status code
2113 *	<0		driver reported error
2114 *	-ENODATA	length mismatch between argument and retrieved
2115 *			record.
2116 *
2117 * Side effects:
2118 *
2119 * Call context:
2120 *	process
2121 ----------------------------------------------------------------*/
hfa384x_drvr_getconfig(hfa384x_t * hw,u16 rid,void * buf,u16 len)2122 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2123 {
2124 	return hfa384x_dorrid_wait(hw, rid, buf, len);
2125 }
2126 
2127 /*----------------------------------------------------------------
2128  * hfa384x_drvr_getconfig_async
2129  *
2130  * Performs the sequence necessary to perform an async read of
2131  * of a config/info item.
2132  *
2133  * Arguments:
2134  *       hw              device structure
2135  *       rid             config/info record id (host order)
2136  *       buf             host side record buffer.  Upon return it will
2137  *                       contain the body portion of the record (minus the
2138  *                       RID and len).
2139  *       len             buffer length (in bytes, should match record length)
2140  *       cbfn            caller supplied callback, called when the command
2141  *                       is done (successful or not).
2142  *       cbfndata        pointer to some caller supplied data that will be
2143  *                       passed in as an argument to the cbfn.
2144  *
2145  * Returns:
2146  *       nothing         the cbfn gets a status argument identifying if
2147  *                       any errors occur.
2148  * Side effects:
2149  *       Queues an hfa384x_usbcmd_t for subsequent execution.
2150  *
2151  * Call context:
2152  *       Any
2153  ----------------------------------------------------------------*/
2154 int
hfa384x_drvr_getconfig_async(hfa384x_t * hw,u16 rid,ctlx_usercb_t usercb,void * usercb_data)2155 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2156 			     u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2157 {
2158 	return hfa384x_dorrid_async(hw, rid, NULL, 0,
2159 				    hfa384x_cb_rrid, usercb, usercb_data);
2160 }
2161 
2162 /*----------------------------------------------------------------
2163  * hfa384x_drvr_setconfig_async
2164  *
2165  * Performs the sequence necessary to write a config/info item.
2166  *
2167  * Arguments:
2168  *       hw              device structure
2169  *       rid             config/info record id (in host order)
2170  *       buf             host side record buffer
2171  *       len             buffer length (in bytes)
2172  *       usercb          completion callback
2173  *       usercb_data     completion callback argument
2174  *
2175  * Returns:
2176  *       0               success
2177  *       >0              f/w reported error - f/w status code
2178  *       <0              driver reported error
2179  *
2180  * Side effects:
2181  *
2182  * Call context:
2183  *       process
2184  ----------------------------------------------------------------*/
2185 int
hfa384x_drvr_setconfig_async(hfa384x_t * hw,u16 rid,void * buf,u16 len,ctlx_usercb_t usercb,void * usercb_data)2186 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2187 			     u16 rid,
2188 			     void *buf,
2189 			     u16 len, ctlx_usercb_t usercb, void *usercb_data)
2190 {
2191 	return hfa384x_dowrid_async(hw, rid, buf, len,
2192 				    hfa384x_cb_status, usercb, usercb_data);
2193 }
2194 
2195 /*----------------------------------------------------------------
2196 * hfa384x_drvr_ramdl_disable
2197 *
2198 * Ends the ram download state.
2199 *
2200 * Arguments:
2201 *	hw		device structure
2202 *
2203 * Returns:
2204 *	0		success
2205 *	>0		f/w reported error - f/w status code
2206 *	<0		driver reported error
2207 *
2208 * Side effects:
2209 *
2210 * Call context:
2211 *	process
2212 ----------------------------------------------------------------*/
hfa384x_drvr_ramdl_disable(hfa384x_t * hw)2213 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2214 {
2215 	/* Check that we're already in the download state */
2216 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2217 		return -EINVAL;
2218 
2219 	pr_debug("ramdl_disable()\n");
2220 
2221 	/* There isn't much we can do at this point, so I don't */
2222 	/*  bother  w/ the return value */
2223 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2224 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
2225 
2226 	return 0;
2227 }
2228 
2229 /*----------------------------------------------------------------
2230 * hfa384x_drvr_ramdl_enable
2231 *
2232 * Begins the ram download state.  Checks to see that we're not
2233 * already in a download state and that a port isn't enabled.
2234 * Sets the download state and calls cmd_download with the
2235 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2236 *
2237 * Arguments:
2238 *	hw		device structure
2239 *	exeaddr		the card execution address that will be
2240 *                       jumped to when ramdl_disable() is called
2241 *			(host order).
2242 *
2243 * Returns:
2244 *	0		success
2245 *	>0		f/w reported error - f/w status code
2246 *	<0		driver reported error
2247 *
2248 * Side effects:
2249 *
2250 * Call context:
2251 *	process
2252 ----------------------------------------------------------------*/
hfa384x_drvr_ramdl_enable(hfa384x_t * hw,u32 exeaddr)2253 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2254 {
2255 	int result = 0;
2256 	u16 lowaddr;
2257 	u16 hiaddr;
2258 	int i;
2259 
2260 	/* Check that a port isn't active */
2261 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2262 		if (hw->port_enabled[i]) {
2263 			netdev_err(hw->wlandev->netdev,
2264 				   "Can't download with a macport enabled.\n");
2265 			return -EINVAL;
2266 		}
2267 	}
2268 
2269 	/* Check that we're not already in a download state */
2270 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2271 		netdev_err(hw->wlandev->netdev, "Download state not disabled.\n");
2272 		return -EINVAL;
2273 	}
2274 
2275 	pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2276 
2277 	/* Call the download(1,addr) function */
2278 	lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2279 	hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2280 
2281 	result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2282 				      lowaddr, hiaddr, 0);
2283 
2284 	if (result == 0) {
2285 		/* Set the download state */
2286 		hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2287 	} else {
2288 		pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2289 			 lowaddr, hiaddr, result);
2290 	}
2291 
2292 	return result;
2293 }
2294 
2295 /*----------------------------------------------------------------
2296 * hfa384x_drvr_ramdl_write
2297 *
2298 * Performs a RAM download of a chunk of data. First checks to see
2299 * that we're in the RAM download state, then uses the [read|write]mem USB
2300 * commands to 1) copy the data, 2) readback and compare.  The download
2301 * state is unaffected.  When all data has been written using
2302 * this function, call drvr_ramdl_disable() to end the download state
2303 * and restart the MAC.
2304 *
2305 * Arguments:
2306 *	hw		device structure
2307 *	daddr		Card address to write to. (host order)
2308 *	buf		Ptr to data to write.
2309 *	len		Length of data (host order).
2310 *
2311 * Returns:
2312 *	0		success
2313 *	>0		f/w reported error - f/w status code
2314 *	<0		driver reported error
2315 *
2316 * Side effects:
2317 *
2318 * Call context:
2319 *	process
2320 ----------------------------------------------------------------*/
hfa384x_drvr_ramdl_write(hfa384x_t * hw,u32 daddr,void * buf,u32 len)2321 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2322 {
2323 	int result = 0;
2324 	int nwrites;
2325 	u8 *data = buf;
2326 	int i;
2327 	u32 curraddr;
2328 	u16 currpage;
2329 	u16 curroffset;
2330 	u16 currlen;
2331 
2332 	/* Check that we're in the ram download state */
2333 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2334 		return -EINVAL;
2335 
2336 	netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2337 		    len, daddr);
2338 
2339 	/* How many dowmem calls?  */
2340 	nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2341 	nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2342 
2343 	/* Do blocking wmem's */
2344 	for (i = 0; i < nwrites; i++) {
2345 		/* make address args */
2346 		curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2347 		currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2348 		curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2349 		currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2350 		if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2351 			currlen = HFA384x_USB_RWMEM_MAXLEN;
2352 
2353 		/* Do blocking ctlx */
2354 		result = hfa384x_dowmem_wait(hw,
2355 					     currpage,
2356 					     curroffset,
2357 					     data +
2358 					     (i * HFA384x_USB_RWMEM_MAXLEN),
2359 					     currlen);
2360 
2361 		if (result)
2362 			break;
2363 
2364 		/* TODO: We really should have a readback. */
2365 	}
2366 
2367 	return result;
2368 }
2369 
2370 /*----------------------------------------------------------------
2371 * hfa384x_drvr_readpda
2372 *
2373 * Performs the sequence to read the PDA space.  Note there is no
2374 * drvr_writepda() function.  Writing a PDA is
2375 * generally implemented by a calling component via calls to
2376 * cmd_download and writing to the flash download buffer via the
2377 * aux regs.
2378 *
2379 * Arguments:
2380 *	hw		device structure
2381 *	buf		buffer to store PDA in
2382 *	len		buffer length
2383 *
2384 * Returns:
2385 *	0		success
2386 *	>0		f/w reported error - f/w status code
2387 *	<0		driver reported error
2388 *	-ETIMEDOUT	timeout waiting for the cmd regs to become
2389 *			available, or waiting for the control reg
2390 *			to indicate the Aux port is enabled.
2391 *	-ENODATA	the buffer does NOT contain a valid PDA.
2392 *			Either the card PDA is bad, or the auxdata
2393 *			reads are giving us garbage.
2394 
2395 *
2396 * Side effects:
2397 *
2398 * Call context:
2399 *	process or non-card interrupt.
2400 ----------------------------------------------------------------*/
hfa384x_drvr_readpda(hfa384x_t * hw,void * buf,unsigned int len)2401 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2402 {
2403 	int result = 0;
2404 	u16 *pda = buf;
2405 	int pdaok = 0;
2406 	int morepdrs = 1;
2407 	int currpdr = 0;	/* word offset of the current pdr */
2408 	size_t i;
2409 	u16 pdrlen;		/* pdr length in bytes, host order */
2410 	u16 pdrcode;		/* pdr code, host order */
2411 	u16 currpage;
2412 	u16 curroffset;
2413 	struct pdaloc {
2414 		u32 cardaddr;
2415 		u16 auxctl;
2416 	} pdaloc[] = {
2417 		{
2418 		HFA3842_PDA_BASE, 0}, {
2419 		HFA3841_PDA_BASE, 0}, {
2420 		HFA3841_PDA_BOGUS_BASE, 0}
2421 	};
2422 
2423 	/* Read the pda from each known address.  */
2424 	for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2425 		/* Make address */
2426 		currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2427 		curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2428 
2429 		/* units of bytes */
2430 		result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2431 						len);
2432 
2433 		if (result) {
2434 			netdev_warn(hw->wlandev->netdev,
2435 				    "Read from index %zd failed, continuing\n",
2436 				    i);
2437 			continue;
2438 		}
2439 
2440 		/* Test for garbage */
2441 		pdaok = 1;	/* initially assume good */
2442 		morepdrs = 1;
2443 		while (pdaok && morepdrs) {
2444 			pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2445 			pdrcode = le16_to_cpu(pda[currpdr + 1]);
2446 			/* Test the record length */
2447 			if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2448 				netdev_err(hw->wlandev->netdev,
2449 					   "pdrlen invalid=%d\n", pdrlen);
2450 				pdaok = 0;
2451 				break;
2452 			}
2453 			/* Test the code */
2454 			if (!hfa384x_isgood_pdrcode(pdrcode)) {
2455 				netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2456 					   pdrcode);
2457 				pdaok = 0;
2458 				break;
2459 			}
2460 			/* Test for completion */
2461 			if (pdrcode == HFA384x_PDR_END_OF_PDA)
2462 				morepdrs = 0;
2463 
2464 			/* Move to the next pdr (if necessary) */
2465 			if (morepdrs) {
2466 				/* note the access to pda[], need words here */
2467 				currpdr += le16_to_cpu(pda[currpdr]) + 1;
2468 			}
2469 		}
2470 		if (pdaok) {
2471 			netdev_info(hw->wlandev->netdev,
2472 				    "PDA Read from 0x%08x in %s space.\n",
2473 				    pdaloc[i].cardaddr,
2474 				    pdaloc[i].auxctl == 0 ? "EXTDS" :
2475 				    pdaloc[i].auxctl == 1 ? "NV" :
2476 				    pdaloc[i].auxctl == 2 ? "PHY" :
2477 				    pdaloc[i].auxctl == 3 ? "ICSRAM" :
2478 				    "<bogus auxctl>");
2479 			break;
2480 		}
2481 	}
2482 	result = pdaok ? 0 : -ENODATA;
2483 
2484 	if (result)
2485 		pr_debug("Failure: pda is not okay\n");
2486 
2487 	return result;
2488 }
2489 
2490 /*----------------------------------------------------------------
2491 * hfa384x_drvr_setconfig
2492 *
2493 * Performs the sequence necessary to write a config/info item.
2494 *
2495 * Arguments:
2496 *	hw		device structure
2497 *	rid		config/info record id (in host order)
2498 *	buf		host side record buffer
2499 *	len		buffer length (in bytes)
2500 *
2501 * Returns:
2502 *	0		success
2503 *	>0		f/w reported error - f/w status code
2504 *	<0		driver reported error
2505 *
2506 * Side effects:
2507 *
2508 * Call context:
2509 *	process
2510 ----------------------------------------------------------------*/
hfa384x_drvr_setconfig(hfa384x_t * hw,u16 rid,void * buf,u16 len)2511 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2512 {
2513 	return hfa384x_dowrid_wait(hw, rid, buf, len);
2514 }
2515 
2516 /*----------------------------------------------------------------
2517 * hfa384x_drvr_start
2518 *
2519 * Issues the MAC initialize command, sets up some data structures,
2520 * and enables the interrupts.  After this function completes, the
2521 * low-level stuff should be ready for any/all commands.
2522 *
2523 * Arguments:
2524 *	hw		device structure
2525 * Returns:
2526 *	0		success
2527 *	>0		f/w reported error - f/w status code
2528 *	<0		driver reported error
2529 *
2530 * Side effects:
2531 *
2532 * Call context:
2533 *	process
2534 ----------------------------------------------------------------*/
2535 
hfa384x_drvr_start(hfa384x_t * hw)2536 int hfa384x_drvr_start(hfa384x_t *hw)
2537 {
2538 	int result, result1, result2;
2539 	u16 status;
2540 
2541 	might_sleep();
2542 
2543 	/* Clear endpoint stalls - but only do this if the endpoint
2544 	 * is showing a stall status. Some prism2 cards seem to behave
2545 	 * badly if a clear_halt is called when the endpoint is already
2546 	 * ok
2547 	 */
2548 	result =
2549 	    usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2550 	if (result < 0) {
2551 		netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2552 		goto done;
2553 	}
2554 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2555 		netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2556 
2557 	result =
2558 	    usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2559 	if (result < 0) {
2560 		netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2561 		goto done;
2562 	}
2563 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2564 		netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2565 
2566 	/* Synchronous unlink, in case we're trying to restart the driver */
2567 	usb_kill_urb(&hw->rx_urb);
2568 
2569 	/* Post the IN urb */
2570 	result = submit_rx_urb(hw, GFP_KERNEL);
2571 	if (result != 0) {
2572 		netdev_err(hw->wlandev->netdev,
2573 			   "Fatal, failed to submit RX URB, result=%d\n",
2574 			   result);
2575 		goto done;
2576 	}
2577 
2578 	/* Call initialize twice, with a 1 second sleep in between.
2579 	 * This is a nasty work-around since many prism2 cards seem to
2580 	 * need time to settle after an init from cold. The second
2581 	 * call to initialize in theory is not necessary - but we call
2582 	 * it anyway as a double insurance policy:
2583 	 * 1) If the first init should fail, the second may well succeed
2584 	 *    and the card can still be used
2585 	 * 2) It helps ensures all is well with the card after the first
2586 	 *    init and settle time.
2587 	 */
2588 	result1 = hfa384x_cmd_initialize(hw);
2589 	msleep(1000);
2590 	result = hfa384x_cmd_initialize(hw);
2591 	result2 = result;
2592 	if (result1 != 0) {
2593 		if (result2 != 0) {
2594 			netdev_err(hw->wlandev->netdev,
2595 				   "cmd_initialize() failed on two attempts, results %d and %d\n",
2596 				   result1, result2);
2597 			usb_kill_urb(&hw->rx_urb);
2598 			goto done;
2599 		} else {
2600 			pr_debug("First cmd_initialize() failed (result %d),\n",
2601 				 result1);
2602 			pr_debug("but second attempt succeeded. All should be ok\n");
2603 		}
2604 	} else if (result2 != 0) {
2605 		netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2606 			    result2);
2607 		netdev_warn(hw->wlandev->netdev,
2608 			    "Most likely the card will be functional\n");
2609 		goto done;
2610 	}
2611 
2612 	hw->state = HFA384x_STATE_RUNNING;
2613 
2614 done:
2615 	return result;
2616 }
2617 
2618 /*----------------------------------------------------------------
2619 * hfa384x_drvr_stop
2620 *
2621 * Shuts down the MAC to the point where it is safe to unload the
2622 * driver.  Any subsystem that may be holding a data or function
2623 * ptr into the driver must be cleared/deinitialized.
2624 *
2625 * Arguments:
2626 *	hw		device structure
2627 * Returns:
2628 *	0		success
2629 *	>0		f/w reported error - f/w status code
2630 *	<0		driver reported error
2631 *
2632 * Side effects:
2633 *
2634 * Call context:
2635 *	process
2636 ----------------------------------------------------------------*/
hfa384x_drvr_stop(hfa384x_t * hw)2637 int hfa384x_drvr_stop(hfa384x_t *hw)
2638 {
2639 	int i;
2640 
2641 	might_sleep();
2642 
2643 	/* There's no need for spinlocks here. The USB "disconnect"
2644 	 * function sets this "removed" flag and then calls us.
2645 	 */
2646 	if (!hw->wlandev->hwremoved) {
2647 		/* Call initialize to leave the MAC in its 'reset' state */
2648 		hfa384x_cmd_initialize(hw);
2649 
2650 		/* Cancel the rxurb */
2651 		usb_kill_urb(&hw->rx_urb);
2652 	}
2653 
2654 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
2655 	hw->state = HFA384x_STATE_INIT;
2656 
2657 	del_timer_sync(&hw->commsqual_timer);
2658 
2659 	/* Clear all the port status */
2660 	for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2661 		hw->port_enabled[i] = 0;
2662 
2663 	return 0;
2664 }
2665 
2666 /*----------------------------------------------------------------
2667 * hfa384x_drvr_txframe
2668 *
2669 * Takes a frame from prism2sta and queues it for transmission.
2670 *
2671 * Arguments:
2672 *	hw		device structure
2673 *	skb		packet buffer struct.  Contains an 802.11
2674 *			data frame.
2675 *       p80211_hdr      points to the 802.11 header for the packet.
2676 * Returns:
2677 *	0		Success and more buffs available
2678 *	1		Success but no more buffs
2679 *	2		Allocation failure
2680 *	4		Buffer full or queue busy
2681 *
2682 * Side effects:
2683 *
2684 * Call context:
2685 *	interrupt
2686 ----------------------------------------------------------------*/
hfa384x_drvr_txframe(hfa384x_t * hw,struct sk_buff * skb,union p80211_hdr * p80211_hdr,struct p80211_metawep * p80211_wep)2687 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2688 			 union p80211_hdr *p80211_hdr,
2689 			 struct p80211_metawep *p80211_wep)
2690 {
2691 	int usbpktlen = sizeof(hfa384x_tx_frame_t);
2692 	int result;
2693 	int ret;
2694 	char *ptr;
2695 
2696 	if (hw->tx_urb.status == -EINPROGRESS) {
2697 		netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2698 		result = 3;
2699 		goto exit;
2700 	}
2701 
2702 	/* Build Tx frame structure */
2703 	/* Set up the control field */
2704 	memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2705 
2706 	/* Setup the usb type field */
2707 	hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2708 
2709 	/* Set up the sw_support field to identify this frame */
2710 	hw->txbuff.txfrm.desc.sw_support = 0x0123;
2711 
2712 /* Tx complete and Tx exception disable per dleach.  Might be causing
2713  * buf depletion
2714  */
2715 /* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2716 #if defined(DOBOTH)
2717 	hw->txbuff.txfrm.desc.tx_control =
2718 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2719 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2720 #elif defined(DOEXC)
2721 	hw->txbuff.txfrm.desc.tx_control =
2722 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2723 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2724 #else
2725 	hw->txbuff.txfrm.desc.tx_control =
2726 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2727 	    HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2728 #endif
2729 	hw->txbuff.txfrm.desc.tx_control =
2730 	    cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2731 
2732 	/* copy the header over to the txdesc */
2733 	memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2734 	       sizeof(union p80211_hdr));
2735 
2736 	/* if we're using host WEP, increase size by IV+ICV */
2737 	if (p80211_wep->data) {
2738 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2739 		usbpktlen += 8;
2740 	} else {
2741 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2742 	}
2743 
2744 	usbpktlen += skb->len;
2745 
2746 	/* copy over the WEP IV if we are using host WEP */
2747 	ptr = hw->txbuff.txfrm.data;
2748 	if (p80211_wep->data) {
2749 		memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2750 		ptr += sizeof(p80211_wep->iv);
2751 		memcpy(ptr, p80211_wep->data, skb->len);
2752 	} else {
2753 		memcpy(ptr, skb->data, skb->len);
2754 	}
2755 	/* copy over the packet data */
2756 	ptr += skb->len;
2757 
2758 	/* copy over the WEP ICV if we are using host WEP */
2759 	if (p80211_wep->data)
2760 		memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2761 
2762 	/* Send the USB packet */
2763 	usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2764 			  hw->endp_out,
2765 			  &(hw->txbuff), ROUNDUP64(usbpktlen),
2766 			  hfa384x_usbout_callback, hw->wlandev);
2767 	hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2768 
2769 	result = 1;
2770 	ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2771 	if (ret != 0) {
2772 		netdev_err(hw->wlandev->netdev,
2773 			   "submit_tx_urb() failed, error=%d\n", ret);
2774 		result = 3;
2775 	}
2776 
2777 exit:
2778 	return result;
2779 }
2780 
hfa384x_tx_timeout(wlandevice_t * wlandev)2781 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2782 {
2783 	hfa384x_t *hw = wlandev->priv;
2784 	unsigned long flags;
2785 
2786 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2787 
2788 	if (!hw->wlandev->hwremoved) {
2789 		int sched;
2790 
2791 		sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2792 		sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2793 		if (sched)
2794 			schedule_work(&hw->usb_work);
2795 	}
2796 
2797 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2798 }
2799 
2800 /*----------------------------------------------------------------
2801 * hfa384x_usbctlx_reaper_task
2802 *
2803 * Tasklet to delete dead CTLX objects
2804 *
2805 * Arguments:
2806 *	data	ptr to a hfa384x_t
2807 *
2808 * Returns:
2809 *
2810 * Call context:
2811 *	Interrupt
2812 ----------------------------------------------------------------*/
hfa384x_usbctlx_reaper_task(unsigned long data)2813 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2814 {
2815 	hfa384x_t *hw = (hfa384x_t *)data;
2816 	struct list_head *entry;
2817 	struct list_head *temp;
2818 	unsigned long flags;
2819 
2820 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2821 
2822 	/* This list is guaranteed to be empty if someone
2823 	 * has unplugged the adapter.
2824 	 */
2825 	list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2826 		hfa384x_usbctlx_t *ctlx;
2827 
2828 		ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2829 		list_del(&ctlx->list);
2830 		kfree(ctlx);
2831 	}
2832 
2833 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2834 }
2835 
2836 /*----------------------------------------------------------------
2837 * hfa384x_usbctlx_completion_task
2838 *
2839 * Tasklet to call completion handlers for returned CTLXs
2840 *
2841 * Arguments:
2842 *	data	ptr to hfa384x_t
2843 *
2844 * Returns:
2845 *	Nothing
2846 *
2847 * Call context:
2848 *	Interrupt
2849 ----------------------------------------------------------------*/
hfa384x_usbctlx_completion_task(unsigned long data)2850 static void hfa384x_usbctlx_completion_task(unsigned long data)
2851 {
2852 	hfa384x_t *hw = (hfa384x_t *)data;
2853 	struct list_head *entry;
2854 	struct list_head *temp;
2855 	unsigned long flags;
2856 
2857 	int reap = 0;
2858 
2859 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2860 
2861 	/* This list is guaranteed to be empty if someone
2862 	 * has unplugged the adapter ...
2863 	 */
2864 	list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2865 		hfa384x_usbctlx_t *ctlx;
2866 
2867 		ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2868 
2869 		/* Call the completion function that this
2870 		 * command was assigned, assuming it has one.
2871 		 */
2872 		if (ctlx->cmdcb != NULL) {
2873 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2874 			ctlx->cmdcb(hw, ctlx);
2875 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
2876 
2877 			/* Make sure we don't try and complete
2878 			 * this CTLX more than once!
2879 			 */
2880 			ctlx->cmdcb = NULL;
2881 
2882 			/* Did someone yank the adapter out
2883 			 * while our list was (briefly) unlocked?
2884 			 */
2885 			if (hw->wlandev->hwremoved) {
2886 				reap = 0;
2887 				break;
2888 			}
2889 		}
2890 
2891 		/*
2892 		 * "Reapable" CTLXs are ones which don't have any
2893 		 * threads waiting for them to die. Hence they must
2894 		 * be delivered to The Reaper!
2895 		 */
2896 		if (ctlx->reapable) {
2897 			/* Move the CTLX off the "completing" list (hopefully)
2898 			 * on to the "reapable" list where the reaper task
2899 			 * can find it. And "reapable" means that this CTLX
2900 			 * isn't sitting on a wait-queue somewhere.
2901 			 */
2902 			list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2903 			reap = 1;
2904 		}
2905 
2906 		complete(&ctlx->done);
2907 	}
2908 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2909 
2910 	if (reap)
2911 		tasklet_schedule(&hw->reaper_bh);
2912 }
2913 
2914 /*----------------------------------------------------------------
2915 * unlocked_usbctlx_cancel_async
2916 *
2917 * Mark the CTLX dead asynchronously, and ensure that the
2918 * next command on the queue is run afterwards.
2919 *
2920 * Arguments:
2921 *	hw	ptr to the hfa384x_t structure
2922 *	ctlx	ptr to a CTLX structure
2923 *
2924 * Returns:
2925 *	0	the CTLX's URB is inactive
2926 * -EINPROGRESS	the URB is currently being unlinked
2927 *
2928 * Call context:
2929 *	Either process or interrupt, but presumably interrupt
2930 ----------------------------------------------------------------*/
unlocked_usbctlx_cancel_async(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx)2931 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2932 					 hfa384x_usbctlx_t *ctlx)
2933 {
2934 	int ret;
2935 
2936 	/*
2937 	 * Try to delete the URB containing our request packet.
2938 	 * If we succeed, then its completion handler will be
2939 	 * called with a status of -ECONNRESET.
2940 	 */
2941 	hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2942 	ret = usb_unlink_urb(&hw->ctlx_urb);
2943 
2944 	if (ret != -EINPROGRESS) {
2945 		/*
2946 		 * The OUT URB had either already completed
2947 		 * or was still in the pending queue, so the
2948 		 * URB's completion function will not be called.
2949 		 * We will have to complete the CTLX ourselves.
2950 		 */
2951 		ctlx->state = CTLX_REQ_FAILED;
2952 		unlocked_usbctlx_complete(hw, ctlx);
2953 		ret = 0;
2954 	}
2955 
2956 	return ret;
2957 }
2958 
2959 /*----------------------------------------------------------------
2960 * unlocked_usbctlx_complete
2961 *
2962 * A CTLX has completed.  It may have been successful, it may not
2963 * have been. At this point, the CTLX should be quiescent.  The URBs
2964 * aren't active and the timers should have been stopped.
2965 *
2966 * The CTLX is migrated to the "completing" queue, and the completing
2967 * tasklet is scheduled.
2968 *
2969 * Arguments:
2970 *	hw		ptr to a hfa384x_t structure
2971 *	ctlx		ptr to a ctlx structure
2972 *
2973 * Returns:
2974 *	nothing
2975 *
2976 * Side effects:
2977 *
2978 * Call context:
2979 *	Either, assume interrupt
2980 ----------------------------------------------------------------*/
unlocked_usbctlx_complete(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx)2981 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2982 {
2983 	/* Timers have been stopped, and ctlx should be in
2984 	 * a terminal state. Retire it from the "active"
2985 	 * queue.
2986 	 */
2987 	list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2988 	tasklet_schedule(&hw->completion_bh);
2989 
2990 	switch (ctlx->state) {
2991 	case CTLX_COMPLETE:
2992 	case CTLX_REQ_FAILED:
2993 		/* This are the correct terminating states. */
2994 		break;
2995 
2996 	default:
2997 		netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2998 			   le16_to_cpu(ctlx->outbuf.type),
2999 			   ctlxstr(ctlx->state));
3000 		break;
3001 	}			/* switch */
3002 }
3003 
3004 /*----------------------------------------------------------------
3005 * hfa384x_usbctlxq_run
3006 *
3007 * Checks to see if the head item is running.  If not, starts it.
3008 *
3009 * Arguments:
3010 *	hw	ptr to hfa384x_t
3011 *
3012 * Returns:
3013 *	nothing
3014 *
3015 * Side effects:
3016 *
3017 * Call context:
3018 *	any
3019 ----------------------------------------------------------------*/
hfa384x_usbctlxq_run(hfa384x_t * hw)3020 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3021 {
3022 	unsigned long flags;
3023 
3024 	/* acquire lock */
3025 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3026 
3027 	/* Only one active CTLX at any one time, because there's no
3028 	 * other (reliable) way to match the response URB to the
3029 	 * correct CTLX.
3030 	 *
3031 	 * Don't touch any of these CTLXs if the hardware
3032 	 * has been removed or the USB subsystem is stalled.
3033 	 */
3034 	if (!list_empty(&hw->ctlxq.active) ||
3035 	    test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3036 		goto unlock;
3037 
3038 	while (!list_empty(&hw->ctlxq.pending)) {
3039 		hfa384x_usbctlx_t *head;
3040 		int result;
3041 
3042 		/* This is the first pending command */
3043 		head = list_entry(hw->ctlxq.pending.next,
3044 				  hfa384x_usbctlx_t, list);
3045 
3046 		/* We need to split this off to avoid a race condition */
3047 		list_move_tail(&head->list, &hw->ctlxq.active);
3048 
3049 		/* Fill the out packet */
3050 		usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3051 				  hw->endp_out,
3052 				  &(head->outbuf), ROUNDUP64(head->outbufsize),
3053 				  hfa384x_ctlxout_callback, hw);
3054 		hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3055 
3056 		/* Now submit the URB and update the CTLX's state */
3057 		result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3058 		if (result == 0) {
3059 			/* This CTLX is now running on the active queue */
3060 			head->state = CTLX_REQ_SUBMITTED;
3061 
3062 			/* Start the OUT wait timer */
3063 			hw->req_timer_done = 0;
3064 			hw->reqtimer.expires = jiffies + HZ;
3065 			add_timer(&hw->reqtimer);
3066 
3067 			/* Start the IN wait timer */
3068 			hw->resp_timer_done = 0;
3069 			hw->resptimer.expires = jiffies + 2 * HZ;
3070 			add_timer(&hw->resptimer);
3071 
3072 			break;
3073 		}
3074 
3075 		if (result == -EPIPE) {
3076 			/* The OUT pipe needs resetting, so put
3077 			 * this CTLX back in the "pending" queue
3078 			 * and schedule a reset ...
3079 			 */
3080 			netdev_warn(hw->wlandev->netdev,
3081 				    "%s tx pipe stalled: requesting reset\n",
3082 				    hw->wlandev->netdev->name);
3083 			list_move(&head->list, &hw->ctlxq.pending);
3084 			set_bit(WORK_TX_HALT, &hw->usb_flags);
3085 			schedule_work(&hw->usb_work);
3086 			break;
3087 		}
3088 
3089 		if (result == -ESHUTDOWN) {
3090 			netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
3091 				    hw->wlandev->netdev->name);
3092 			break;
3093 		}
3094 
3095 		netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
3096 			   le16_to_cpu(head->outbuf.type), result);
3097 		unlocked_usbctlx_complete(hw, head);
3098 	}			/* while */
3099 
3100 unlock:
3101 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3102 }
3103 
3104 /*----------------------------------------------------------------
3105 * hfa384x_usbin_callback
3106 *
3107 * Callback for URBs on the BULKIN endpoint.
3108 *
3109 * Arguments:
3110 *	urb		ptr to the completed urb
3111 *
3112 * Returns:
3113 *	nothing
3114 *
3115 * Side effects:
3116 *
3117 * Call context:
3118 *	interrupt
3119 ----------------------------------------------------------------*/
hfa384x_usbin_callback(struct urb * urb)3120 static void hfa384x_usbin_callback(struct urb *urb)
3121 {
3122 	wlandevice_t *wlandev = urb->context;
3123 	hfa384x_t *hw;
3124 	hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)urb->transfer_buffer;
3125 	struct sk_buff *skb = NULL;
3126 	int result;
3127 	int urb_status;
3128 	u16 type;
3129 
3130 	enum USBIN_ACTION {
3131 		HANDLE,
3132 		RESUBMIT,
3133 		ABORT
3134 	} action;
3135 
3136 	if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3137 		goto exit;
3138 
3139 	hw = wlandev->priv;
3140 	if (!hw)
3141 		goto exit;
3142 
3143 	skb = hw->rx_urb_skb;
3144 	BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3145 
3146 	hw->rx_urb_skb = NULL;
3147 
3148 	/* Check for error conditions within the URB */
3149 	switch (urb->status) {
3150 	case 0:
3151 		action = HANDLE;
3152 
3153 		/* Check for short packet */
3154 		if (urb->actual_length == 0) {
3155 			wlandev->netdev->stats.rx_errors++;
3156 			wlandev->netdev->stats.rx_length_errors++;
3157 			action = RESUBMIT;
3158 		}
3159 		break;
3160 
3161 	case -EPIPE:
3162 		netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
3163 			    wlandev->netdev->name);
3164 		if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3165 			schedule_work(&hw->usb_work);
3166 		wlandev->netdev->stats.rx_errors++;
3167 		action = ABORT;
3168 		break;
3169 
3170 	case -EILSEQ:
3171 	case -ETIMEDOUT:
3172 	case -EPROTO:
3173 		if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3174 		    !timer_pending(&hw->throttle)) {
3175 			mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3176 		}
3177 		wlandev->netdev->stats.rx_errors++;
3178 		action = ABORT;
3179 		break;
3180 
3181 	case -EOVERFLOW:
3182 		wlandev->netdev->stats.rx_over_errors++;
3183 		action = RESUBMIT;
3184 		break;
3185 
3186 	case -ENODEV:
3187 	case -ESHUTDOWN:
3188 		pr_debug("status=%d, device removed.\n", urb->status);
3189 		action = ABORT;
3190 		break;
3191 
3192 	case -ENOENT:
3193 	case -ECONNRESET:
3194 		pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3195 		action = ABORT;
3196 		break;
3197 
3198 	default:
3199 		pr_debug("urb status=%d, transfer flags=0x%x\n",
3200 			 urb->status, urb->transfer_flags);
3201 		wlandev->netdev->stats.rx_errors++;
3202 		action = RESUBMIT;
3203 		break;
3204 	}
3205 
3206 	urb_status = urb->status;
3207 
3208 	if (action != ABORT) {
3209 		/* Repost the RX URB */
3210 		result = submit_rx_urb(hw, GFP_ATOMIC);
3211 
3212 		if (result != 0) {
3213 			netdev_err(hw->wlandev->netdev,
3214 				   "Fatal, failed to resubmit rx_urb. error=%d\n",
3215 				   result);
3216 		}
3217 	}
3218 
3219 	/* Handle any USB-IN packet */
3220 	/* Note: the check of the sw_support field, the type field doesn't
3221 	 *       have bit 12 set like the docs suggest.
3222 	 */
3223 	type = le16_to_cpu(usbin->type);
3224 	if (HFA384x_USB_ISRXFRM(type)) {
3225 		if (action == HANDLE) {
3226 			if (usbin->txfrm.desc.sw_support == 0x0123) {
3227 				hfa384x_usbin_txcompl(wlandev, usbin);
3228 			} else {
3229 				skb_put(skb, sizeof(*usbin));
3230 				hfa384x_usbin_rx(wlandev, skb);
3231 				skb = NULL;
3232 			}
3233 		}
3234 		goto exit;
3235 	}
3236 	if (HFA384x_USB_ISTXFRM(type)) {
3237 		if (action == HANDLE)
3238 			hfa384x_usbin_txcompl(wlandev, usbin);
3239 		goto exit;
3240 	}
3241 	switch (type) {
3242 	case HFA384x_USB_INFOFRM:
3243 		if (action == ABORT)
3244 			goto exit;
3245 		if (action == HANDLE)
3246 			hfa384x_usbin_info(wlandev, usbin);
3247 		break;
3248 
3249 	case HFA384x_USB_CMDRESP:
3250 	case HFA384x_USB_WRIDRESP:
3251 	case HFA384x_USB_RRIDRESP:
3252 	case HFA384x_USB_WMEMRESP:
3253 	case HFA384x_USB_RMEMRESP:
3254 		/* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3255 		hfa384x_usbin_ctlx(hw, usbin, urb_status);
3256 		break;
3257 
3258 	case HFA384x_USB_BUFAVAIL:
3259 		pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3260 			 usbin->bufavail.frmlen);
3261 		break;
3262 
3263 	case HFA384x_USB_ERROR:
3264 		pr_debug("Received USB_ERROR packet, errortype=%d\n",
3265 			 usbin->usberror.errortype);
3266 		break;
3267 
3268 	default:
3269 		pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3270 			 usbin->type, urb_status);
3271 		break;
3272 	}			/* switch */
3273 
3274 exit:
3275 
3276 	if (skb)
3277 		dev_kfree_skb(skb);
3278 }
3279 
3280 /*----------------------------------------------------------------
3281 * hfa384x_usbin_ctlx
3282 *
3283 * We've received a URB containing a Prism2 "response" message.
3284 * This message needs to be matched up with a CTLX on the active
3285 * queue and our state updated accordingly.
3286 *
3287 * Arguments:
3288 *	hw		ptr to hfa384x_t
3289 *	usbin		ptr to USB IN packet
3290 *	urb_status	status of this Bulk-In URB
3291 *
3292 * Returns:
3293 *	nothing
3294 *
3295 * Side effects:
3296 *
3297 * Call context:
3298 *	interrupt
3299 ----------------------------------------------------------------*/
hfa384x_usbin_ctlx(hfa384x_t * hw,hfa384x_usbin_t * usbin,int urb_status)3300 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3301 			       int urb_status)
3302 {
3303 	hfa384x_usbctlx_t *ctlx;
3304 	int run_queue = 0;
3305 	unsigned long flags;
3306 
3307 retry:
3308 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3309 
3310 	/* There can be only one CTLX on the active queue
3311 	 * at any one time, and this is the CTLX that the
3312 	 * timers are waiting for.
3313 	 */
3314 	if (list_empty(&hw->ctlxq.active))
3315 		goto unlock;
3316 
3317 	/* Remove the "response timeout". It's possible that
3318 	 * we are already too late, and that the timeout is
3319 	 * already running. And that's just too bad for us,
3320 	 * because we could lose our CTLX from the active
3321 	 * queue here ...
3322 	 */
3323 	if (del_timer(&hw->resptimer) == 0) {
3324 		if (hw->resp_timer_done == 0) {
3325 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3326 			goto retry;
3327 		}
3328 	} else {
3329 		hw->resp_timer_done = 1;
3330 	}
3331 
3332 	ctlx = get_active_ctlx(hw);
3333 
3334 	if (urb_status != 0) {
3335 		/*
3336 		 * Bad CTLX, so get rid of it. But we only
3337 		 * remove it from the active queue if we're no
3338 		 * longer expecting the OUT URB to complete.
3339 		 */
3340 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3341 			run_queue = 1;
3342 	} else {
3343 		const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3344 
3345 		/*
3346 		 * Check that our message is what we're expecting ...
3347 		 */
3348 		if (ctlx->outbuf.type != intype) {
3349 			netdev_warn(hw->wlandev->netdev,
3350 				    "Expected IN[%d], received IN[%d] - ignored.\n",
3351 				    le16_to_cpu(ctlx->outbuf.type),
3352 				    le16_to_cpu(intype));
3353 			goto unlock;
3354 		}
3355 
3356 		/* This URB has succeeded, so grab the data ... */
3357 		memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3358 
3359 		switch (ctlx->state) {
3360 		case CTLX_REQ_SUBMITTED:
3361 			/*
3362 			 * We have received our response URB before
3363 			 * our request has been acknowledged. Odd,
3364 			 * but our OUT URB is still alive...
3365 			 */
3366 			pr_debug("Causality violation: please reboot Universe\n");
3367 			ctlx->state = CTLX_RESP_COMPLETE;
3368 			break;
3369 
3370 		case CTLX_REQ_COMPLETE:
3371 			/*
3372 			 * This is the usual path: our request
3373 			 * has already been acknowledged, and
3374 			 * now we have received the reply too.
3375 			 */
3376 			ctlx->state = CTLX_COMPLETE;
3377 			unlocked_usbctlx_complete(hw, ctlx);
3378 			run_queue = 1;
3379 			break;
3380 
3381 		default:
3382 			/*
3383 			 * Throw this CTLX away ...
3384 			 */
3385 			netdev_err(hw->wlandev->netdev,
3386 				   "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3387 				   le16_to_cpu(ctlx->outbuf.type),
3388 				   ctlxstr(ctlx->state));
3389 			if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3390 				run_queue = 1;
3391 			break;
3392 		}		/* switch */
3393 	}
3394 
3395 unlock:
3396 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3397 
3398 	if (run_queue)
3399 		hfa384x_usbctlxq_run(hw);
3400 }
3401 
3402 /*----------------------------------------------------------------
3403 * hfa384x_usbin_txcompl
3404 *
3405 * At this point we have the results of a previous transmit.
3406 *
3407 * Arguments:
3408 *	wlandev		wlan device
3409 *	usbin		ptr to the usb transfer buffer
3410 *
3411 * Returns:
3412 *	nothing
3413 *
3414 * Side effects:
3415 *
3416 * Call context:
3417 *	interrupt
3418 ----------------------------------------------------------------*/
hfa384x_usbin_txcompl(wlandevice_t * wlandev,hfa384x_usbin_t * usbin)3419 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3420 				  hfa384x_usbin_t *usbin)
3421 {
3422 	u16 status;
3423 
3424 	status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3425 
3426 	/* Was there an error? */
3427 	if (HFA384x_TXSTATUS_ISERROR(status))
3428 		prism2sta_ev_txexc(wlandev, status);
3429 	else
3430 		prism2sta_ev_tx(wlandev, status);
3431 }
3432 
3433 /*----------------------------------------------------------------
3434 * hfa384x_usbin_rx
3435 *
3436 * At this point we have a successful received a rx frame packet.
3437 *
3438 * Arguments:
3439 *	wlandev		wlan device
3440 *	usbin		ptr to the usb transfer buffer
3441 *
3442 * Returns:
3443 *	nothing
3444 *
3445 * Side effects:
3446 *
3447 * Call context:
3448 *	interrupt
3449 ----------------------------------------------------------------*/
hfa384x_usbin_rx(wlandevice_t * wlandev,struct sk_buff * skb)3450 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3451 {
3452 	hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)skb->data;
3453 	hfa384x_t *hw = wlandev->priv;
3454 	int hdrlen;
3455 	struct p80211_rxmeta *rxmeta;
3456 	u16 data_len;
3457 	u16 fc;
3458 
3459 	/* Byte order convert once up front. */
3460 	usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3461 	usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3462 
3463 	/* Now handle frame based on port# */
3464 	switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3465 	case 0:
3466 		fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3467 
3468 		/* If exclude and we receive an unencrypted, drop it */
3469 		if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3470 		    !WLAN_GET_FC_ISWEP(fc)) {
3471 			break;
3472 		}
3473 
3474 		data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3475 
3476 		/* How much header data do we have? */
3477 		hdrlen = p80211_headerlen(fc);
3478 
3479 		/* Pull off the descriptor */
3480 		skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3481 
3482 		/* Now shunt the header block up against the data block
3483 		 * with an "overlapping" copy
3484 		 */
3485 		memmove(skb_push(skb, hdrlen),
3486 			&usbin->rxfrm.desc.frame_control, hdrlen);
3487 
3488 		skb->dev = wlandev->netdev;
3489 		skb->dev->last_rx = jiffies;
3490 
3491 		/* And set the frame length properly */
3492 		skb_trim(skb, data_len + hdrlen);
3493 
3494 		/* The prism2 series does not return the CRC */
3495 		memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3496 
3497 		skb_reset_mac_header(skb);
3498 
3499 		/* Attach the rxmeta, set some stuff */
3500 		p80211skb_rxmeta_attach(wlandev, skb);
3501 		rxmeta = P80211SKB_RXMETA(skb);
3502 		rxmeta->mactime = usbin->rxfrm.desc.time;
3503 		rxmeta->rxrate = usbin->rxfrm.desc.rate;
3504 		rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3505 		rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3506 
3507 		prism2sta_ev_rx(wlandev, skb);
3508 
3509 		break;
3510 
3511 	case 7:
3512 		if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3513 			/* Copy to wlansnif skb */
3514 			hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3515 			dev_kfree_skb(skb);
3516 		} else {
3517 			pr_debug("Received monitor frame: FCSerr set\n");
3518 		}
3519 		break;
3520 
3521 	default:
3522 		netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3523 			    HFA384x_RXSTATUS_MACPORT_GET(
3524 				    usbin->rxfrm.desc.status));
3525 		break;
3526 	}
3527 }
3528 
3529 /*----------------------------------------------------------------
3530 * hfa384x_int_rxmonitor
3531 *
3532 * Helper function for int_rx.  Handles monitor frames.
3533 * Note that this function allocates space for the FCS and sets it
3534 * to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3535 * higher layers expect it.  0xffffffff is used as a flag to indicate
3536 * the FCS is bogus.
3537 *
3538 * Arguments:
3539 *	wlandev		wlan device structure
3540 *	rxfrm		rx descriptor read from card in int_rx
3541 *
3542 * Returns:
3543 *	nothing
3544 *
3545 * Side effects:
3546 *	Allocates an skb and passes it up via the PF_PACKET interface.
3547 * Call context:
3548 *	interrupt
3549 ----------------------------------------------------------------*/
hfa384x_int_rxmonitor(wlandevice_t * wlandev,hfa384x_usb_rxfrm_t * rxfrm)3550 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3551 				  hfa384x_usb_rxfrm_t *rxfrm)
3552 {
3553 	hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3554 	unsigned int hdrlen = 0;
3555 	unsigned int datalen = 0;
3556 	unsigned int skblen = 0;
3557 	u8 *datap;
3558 	u16 fc;
3559 	struct sk_buff *skb;
3560 	hfa384x_t *hw = wlandev->priv;
3561 
3562 	/* Remember the status, time, and data_len fields are in host order */
3563 	/* Figure out how big the frame is */
3564 	fc = le16_to_cpu(rxdesc->frame_control);
3565 	hdrlen = p80211_headerlen(fc);
3566 	datalen = le16_to_cpu(rxdesc->data_len);
3567 
3568 	/* Allocate an ind message+framesize skb */
3569 	skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3570 
3571 	/* sanity check the length */
3572 	if (skblen >
3573 	    (sizeof(struct p80211_caphdr) +
3574 	     WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3575 		pr_debug("overlen frm: len=%zd\n",
3576 			 skblen - sizeof(struct p80211_caphdr));
3577 	}
3578 
3579 	skb = dev_alloc_skb(skblen);
3580 	if (skb == NULL)
3581 		return;
3582 
3583 	/* only prepend the prism header if in the right mode */
3584 	if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3585 	    (hw->sniffhdr != 0)) {
3586 		struct p80211_caphdr *caphdr;
3587 		/* The NEW header format! */
3588 		datap = skb_put(skb, sizeof(struct p80211_caphdr));
3589 		caphdr = (struct p80211_caphdr *)datap;
3590 
3591 		caphdr->version = htonl(P80211CAPTURE_VERSION);
3592 		caphdr->length = htonl(sizeof(struct p80211_caphdr));
3593 		caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3594 		caphdr->hosttime = __cpu_to_be64(jiffies);
3595 		caphdr->phytype = htonl(4);	/* dss_dot11_b */
3596 		caphdr->channel = htonl(hw->sniff_channel);
3597 		caphdr->datarate = htonl(rxdesc->rate);
3598 		caphdr->antenna = htonl(0);	/* unknown */
3599 		caphdr->priority = htonl(0);	/* unknown */
3600 		caphdr->ssi_type = htonl(3);	/* rssi_raw */
3601 		caphdr->ssi_signal = htonl(rxdesc->signal);
3602 		caphdr->ssi_noise = htonl(rxdesc->silence);
3603 		caphdr->preamble = htonl(0);	/* unknown */
3604 		caphdr->encoding = htonl(1);	/* cck */
3605 	}
3606 
3607 	/* Copy the 802.11 header to the skb
3608 	   (ctl frames may be less than a full header) */
3609 	datap = skb_put(skb, hdrlen);
3610 	memcpy(datap, &(rxdesc->frame_control), hdrlen);
3611 
3612 	/* If any, copy the data from the card to the skb */
3613 	if (datalen > 0) {
3614 		datap = skb_put(skb, datalen);
3615 		memcpy(datap, rxfrm->data, datalen);
3616 
3617 		/* check for unencrypted stuff if WEP bit set. */
3618 		if (*(datap - hdrlen + 1) & 0x40)	/* wep set */
3619 			if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3620 				/* clear wep; it's the 802.2 header! */
3621 				*(datap - hdrlen + 1) &= 0xbf;
3622 	}
3623 
3624 	if (hw->sniff_fcs) {
3625 		/* Set the FCS */
3626 		datap = skb_put(skb, WLAN_CRC_LEN);
3627 		memset(datap, 0xff, WLAN_CRC_LEN);
3628 	}
3629 
3630 	/* pass it back up */
3631 	prism2sta_ev_rx(wlandev, skb);
3632 }
3633 
3634 /*----------------------------------------------------------------
3635 * hfa384x_usbin_info
3636 *
3637 * At this point we have a successful received a Prism2 info frame.
3638 *
3639 * Arguments:
3640 *	wlandev		wlan device
3641 *	usbin		ptr to the usb transfer buffer
3642 *
3643 * Returns:
3644 *	nothing
3645 *
3646 * Side effects:
3647 *
3648 * Call context:
3649 *	interrupt
3650 ----------------------------------------------------------------*/
hfa384x_usbin_info(wlandevice_t * wlandev,hfa384x_usbin_t * usbin)3651 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3652 {
3653 	usbin->infofrm.info.framelen =
3654 	    le16_to_cpu(usbin->infofrm.info.framelen);
3655 	prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3656 }
3657 
3658 /*----------------------------------------------------------------
3659 * hfa384x_usbout_callback
3660 *
3661 * Callback for URBs on the BULKOUT endpoint.
3662 *
3663 * Arguments:
3664 *	urb		ptr to the completed urb
3665 *
3666 * Returns:
3667 *	nothing
3668 *
3669 * Side effects:
3670 *
3671 * Call context:
3672 *	interrupt
3673 ----------------------------------------------------------------*/
hfa384x_usbout_callback(struct urb * urb)3674 static void hfa384x_usbout_callback(struct urb *urb)
3675 {
3676 	wlandevice_t *wlandev = urb->context;
3677 	hfa384x_usbout_t *usbout = urb->transfer_buffer;
3678 
3679 #ifdef DEBUG_USB
3680 	dbprint_urb(urb);
3681 #endif
3682 
3683 	if (wlandev && wlandev->netdev) {
3684 		switch (urb->status) {
3685 		case 0:
3686 			hfa384x_usbout_tx(wlandev, usbout);
3687 			break;
3688 
3689 		case -EPIPE:
3690 			{
3691 				hfa384x_t *hw = wlandev->priv;
3692 
3693 				netdev_warn(hw->wlandev->netdev,
3694 					    "%s tx pipe stalled: requesting reset\n",
3695 					    wlandev->netdev->name);
3696 				if (!test_and_set_bit
3697 				    (WORK_TX_HALT, &hw->usb_flags))
3698 					schedule_work(&hw->usb_work);
3699 				wlandev->netdev->stats.tx_errors++;
3700 				break;
3701 			}
3702 
3703 		case -EPROTO:
3704 		case -ETIMEDOUT:
3705 		case -EILSEQ:
3706 			{
3707 				hfa384x_t *hw = wlandev->priv;
3708 
3709 				if (!test_and_set_bit
3710 				    (THROTTLE_TX, &hw->usb_flags) &&
3711 				    !timer_pending(&hw->throttle)) {
3712 					mod_timer(&hw->throttle,
3713 						  jiffies + THROTTLE_JIFFIES);
3714 				}
3715 				wlandev->netdev->stats.tx_errors++;
3716 				netif_stop_queue(wlandev->netdev);
3717 				break;
3718 			}
3719 
3720 		case -ENOENT:
3721 		case -ESHUTDOWN:
3722 			/* Ignorable errors */
3723 			break;
3724 
3725 		default:
3726 			netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3727 				    urb->status);
3728 			wlandev->netdev->stats.tx_errors++;
3729 			break;
3730 		}		/* switch */
3731 	}
3732 }
3733 
3734 /*----------------------------------------------------------------
3735 * hfa384x_ctlxout_callback
3736 *
3737 * Callback for control data on the BULKOUT endpoint.
3738 *
3739 * Arguments:
3740 *	urb		ptr to the completed urb
3741 *
3742 * Returns:
3743 * nothing
3744 *
3745 * Side effects:
3746 *
3747 * Call context:
3748 * interrupt
3749 ----------------------------------------------------------------*/
hfa384x_ctlxout_callback(struct urb * urb)3750 static void hfa384x_ctlxout_callback(struct urb *urb)
3751 {
3752 	hfa384x_t *hw = urb->context;
3753 	int delete_resptimer = 0;
3754 	int timer_ok = 1;
3755 	int run_queue = 0;
3756 	hfa384x_usbctlx_t *ctlx;
3757 	unsigned long flags;
3758 
3759 	pr_debug("urb->status=%d\n", urb->status);
3760 #ifdef DEBUG_USB
3761 	dbprint_urb(urb);
3762 #endif
3763 	if ((urb->status == -ESHUTDOWN) ||
3764 	    (urb->status == -ENODEV) || (hw == NULL))
3765 		return;
3766 
3767 retry:
3768 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3769 
3770 	/*
3771 	 * Only one CTLX at a time on the "active" list, and
3772 	 * none at all if we are unplugged. However, we can
3773 	 * rely on the disconnect function to clean everything
3774 	 * up if someone unplugged the adapter.
3775 	 */
3776 	if (list_empty(&hw->ctlxq.active)) {
3777 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3778 		return;
3779 	}
3780 
3781 	/*
3782 	 * Having something on the "active" queue means
3783 	 * that we have timers to worry about ...
3784 	 */
3785 	if (del_timer(&hw->reqtimer) == 0) {
3786 		if (hw->req_timer_done == 0) {
3787 			/*
3788 			 * This timer was actually running while we
3789 			 * were trying to delete it. Let it terminate
3790 			 * gracefully instead.
3791 			 */
3792 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3793 			goto retry;
3794 		}
3795 	} else {
3796 		hw->req_timer_done = 1;
3797 	}
3798 
3799 	ctlx = get_active_ctlx(hw);
3800 
3801 	if (urb->status == 0) {
3802 		/* Request portion of a CTLX is successful */
3803 		switch (ctlx->state) {
3804 		case CTLX_REQ_SUBMITTED:
3805 			/* This OUT-ACK received before IN */
3806 			ctlx->state = CTLX_REQ_COMPLETE;
3807 			break;
3808 
3809 		case CTLX_RESP_COMPLETE:
3810 			/* IN already received before this OUT-ACK,
3811 			 * so this command must now be complete.
3812 			 */
3813 			ctlx->state = CTLX_COMPLETE;
3814 			unlocked_usbctlx_complete(hw, ctlx);
3815 			run_queue = 1;
3816 			break;
3817 
3818 		default:
3819 			/* This is NOT a valid CTLX "success" state! */
3820 			netdev_err(hw->wlandev->netdev,
3821 				   "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3822 				   le16_to_cpu(ctlx->outbuf.type),
3823 				   ctlxstr(ctlx->state), urb->status);
3824 			break;
3825 		}		/* switch */
3826 	} else {
3827 		/* If the pipe has stalled then we need to reset it */
3828 		if ((urb->status == -EPIPE) &&
3829 		    !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3830 			netdev_warn(hw->wlandev->netdev,
3831 				    "%s tx pipe stalled: requesting reset\n",
3832 				    hw->wlandev->netdev->name);
3833 			schedule_work(&hw->usb_work);
3834 		}
3835 
3836 		/* If someone cancels the OUT URB then its status
3837 		 * should be either -ECONNRESET or -ENOENT.
3838 		 */
3839 		ctlx->state = CTLX_REQ_FAILED;
3840 		unlocked_usbctlx_complete(hw, ctlx);
3841 		delete_resptimer = 1;
3842 		run_queue = 1;
3843 	}
3844 
3845 delresp:
3846 	if (delete_resptimer) {
3847 		timer_ok = del_timer(&hw->resptimer);
3848 		if (timer_ok != 0)
3849 			hw->resp_timer_done = 1;
3850 	}
3851 
3852 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3853 
3854 	if (!timer_ok && (hw->resp_timer_done == 0)) {
3855 		spin_lock_irqsave(&hw->ctlxq.lock, flags);
3856 		goto delresp;
3857 	}
3858 
3859 	if (run_queue)
3860 		hfa384x_usbctlxq_run(hw);
3861 }
3862 
3863 /*----------------------------------------------------------------
3864 * hfa384x_usbctlx_reqtimerfn
3865 *
3866 * Timer response function for CTLX request timeouts.  If this
3867 * function is called, it means that the callback for the OUT
3868 * URB containing a Prism2.x XXX_Request was never called.
3869 *
3870 * Arguments:
3871 *	data		a ptr to the hfa384x_t
3872 *
3873 * Returns:
3874 *	nothing
3875 *
3876 * Side effects:
3877 *
3878 * Call context:
3879 *	interrupt
3880 ----------------------------------------------------------------*/
hfa384x_usbctlx_reqtimerfn(unsigned long data)3881 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3882 {
3883 	hfa384x_t *hw = (hfa384x_t *)data;
3884 	unsigned long flags;
3885 
3886 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3887 
3888 	hw->req_timer_done = 1;
3889 
3890 	/* Removing the hardware automatically empties
3891 	 * the active list ...
3892 	 */
3893 	if (!list_empty(&hw->ctlxq.active)) {
3894 		/*
3895 		 * We must ensure that our URB is removed from
3896 		 * the system, if it hasn't already expired.
3897 		 */
3898 		hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3899 		if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3900 			hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3901 
3902 			ctlx->state = CTLX_REQ_FAILED;
3903 
3904 			/* This URB was active, but has now been
3905 			 * cancelled. It will now have a status of
3906 			 * -ECONNRESET in the callback function.
3907 			 *
3908 			 * We are cancelling this CTLX, so we're
3909 			 * not going to need to wait for a response.
3910 			 * The URB's callback function will check
3911 			 * that this timer is truly dead.
3912 			 */
3913 			if (del_timer(&hw->resptimer) != 0)
3914 				hw->resp_timer_done = 1;
3915 		}
3916 	}
3917 
3918 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3919 }
3920 
3921 /*----------------------------------------------------------------
3922 * hfa384x_usbctlx_resptimerfn
3923 *
3924 * Timer response function for CTLX response timeouts.  If this
3925 * function is called, it means that the callback for the IN
3926 * URB containing a Prism2.x XXX_Response was never called.
3927 *
3928 * Arguments:
3929 *	data		a ptr to the hfa384x_t
3930 *
3931 * Returns:
3932 *	nothing
3933 *
3934 * Side effects:
3935 *
3936 * Call context:
3937 *	interrupt
3938 ----------------------------------------------------------------*/
hfa384x_usbctlx_resptimerfn(unsigned long data)3939 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3940 {
3941 	hfa384x_t *hw = (hfa384x_t *)data;
3942 	unsigned long flags;
3943 
3944 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3945 
3946 	hw->resp_timer_done = 1;
3947 
3948 	/* The active list will be empty if the
3949 	 * adapter has been unplugged ...
3950 	 */
3951 	if (!list_empty(&hw->ctlxq.active)) {
3952 		hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3953 
3954 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3955 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3956 			hfa384x_usbctlxq_run(hw);
3957 			return;
3958 		}
3959 	}
3960 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3961 }
3962 
3963 /*----------------------------------------------------------------
3964 * hfa384x_usb_throttlefn
3965 *
3966 *
3967 * Arguments:
3968 *	data	ptr to hw
3969 *
3970 * Returns:
3971 *	Nothing
3972 *
3973 * Side effects:
3974 *
3975 * Call context:
3976 *	Interrupt
3977 ----------------------------------------------------------------*/
hfa384x_usb_throttlefn(unsigned long data)3978 static void hfa384x_usb_throttlefn(unsigned long data)
3979 {
3980 	hfa384x_t *hw = (hfa384x_t *)data;
3981 	unsigned long flags;
3982 
3983 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3984 
3985 	/*
3986 	 * We need to check BOTH the RX and the TX throttle controls,
3987 	 * so we use the bitwise OR instead of the logical OR.
3988 	 */
3989 	pr_debug("flags=0x%lx\n", hw->usb_flags);
3990 	if (!hw->wlandev->hwremoved &&
3991 	    ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3992 	      !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
3993 	     |
3994 	     (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3995 	      !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
3996 	    )) {
3997 		schedule_work(&hw->usb_work);
3998 	}
3999 
4000 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4001 }
4002 
4003 /*----------------------------------------------------------------
4004 * hfa384x_usbctlx_submit
4005 *
4006 * Called from the doxxx functions to submit a CTLX to the queue
4007 *
4008 * Arguments:
4009 *	hw		ptr to the hw struct
4010 *	ctlx		ctlx structure to enqueue
4011 *
4012 * Returns:
4013 *	-ENODEV if the adapter is unplugged
4014 *	0
4015 *
4016 * Side effects:
4017 *
4018 * Call context:
4019 *	process or interrupt
4020 ----------------------------------------------------------------*/
hfa384x_usbctlx_submit(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx)4021 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4022 {
4023 	unsigned long flags;
4024 
4025 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
4026 
4027 	if (hw->wlandev->hwremoved) {
4028 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4029 		return -ENODEV;
4030 	}
4031 
4032 	ctlx->state = CTLX_PENDING;
4033 	list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4034 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4035 	hfa384x_usbctlxq_run(hw);
4036 
4037 	return 0;
4038 }
4039 
4040 /*----------------------------------------------------------------
4041 * hfa384x_usbout_tx
4042 *
4043 * At this point we have finished a send of a frame.  Mark the URB
4044 * as available and call ev_alloc to notify higher layers we're
4045 * ready for more.
4046 *
4047 * Arguments:
4048 *	wlandev		wlan device
4049 *	usbout		ptr to the usb transfer buffer
4050 *
4051 * Returns:
4052 *	nothing
4053 *
4054 * Side effects:
4055 *
4056 * Call context:
4057 *	interrupt
4058 ----------------------------------------------------------------*/
hfa384x_usbout_tx(wlandevice_t * wlandev,hfa384x_usbout_t * usbout)4059 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4060 {
4061 	prism2sta_ev_alloc(wlandev);
4062 }
4063 
4064 /*----------------------------------------------------------------
4065 * hfa384x_isgood_pdrcore
4066 *
4067 * Quick check of PDR codes.
4068 *
4069 * Arguments:
4070 *	pdrcode		PDR code number (host order)
4071 *
4072 * Returns:
4073 *	zero		not good.
4074 *	one		is good.
4075 *
4076 * Side effects:
4077 *
4078 * Call context:
4079 ----------------------------------------------------------------*/
hfa384x_isgood_pdrcode(u16 pdrcode)4080 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4081 {
4082 	switch (pdrcode) {
4083 	case HFA384x_PDR_END_OF_PDA:
4084 	case HFA384x_PDR_PCB_PARTNUM:
4085 	case HFA384x_PDR_PDAVER:
4086 	case HFA384x_PDR_NIC_SERIAL:
4087 	case HFA384x_PDR_MKK_MEASUREMENTS:
4088 	case HFA384x_PDR_NIC_RAMSIZE:
4089 	case HFA384x_PDR_MFISUPRANGE:
4090 	case HFA384x_PDR_CFISUPRANGE:
4091 	case HFA384x_PDR_NICID:
4092 	case HFA384x_PDR_MAC_ADDRESS:
4093 	case HFA384x_PDR_REGDOMAIN:
4094 	case HFA384x_PDR_ALLOWED_CHANNEL:
4095 	case HFA384x_PDR_DEFAULT_CHANNEL:
4096 	case HFA384x_PDR_TEMPTYPE:
4097 	case HFA384x_PDR_IFR_SETTING:
4098 	case HFA384x_PDR_RFR_SETTING:
4099 	case HFA384x_PDR_HFA3861_BASELINE:
4100 	case HFA384x_PDR_HFA3861_SHADOW:
4101 	case HFA384x_PDR_HFA3861_IFRF:
4102 	case HFA384x_PDR_HFA3861_CHCALSP:
4103 	case HFA384x_PDR_HFA3861_CHCALI:
4104 	case HFA384x_PDR_3842_NIC_CONFIG:
4105 	case HFA384x_PDR_USB_ID:
4106 	case HFA384x_PDR_PCI_ID:
4107 	case HFA384x_PDR_PCI_IFCONF:
4108 	case HFA384x_PDR_PCI_PMCONF:
4109 	case HFA384x_PDR_RFENRGY:
4110 	case HFA384x_PDR_HFA3861_MANF_TESTSP:
4111 	case HFA384x_PDR_HFA3861_MANF_TESTI:
4112 		/* code is OK */
4113 		return 1;
4114 	default:
4115 		if (pdrcode < 0x1000) {
4116 			/* code is OK, but we don't know exactly what it is */
4117 			pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
4118 				 pdrcode);
4119 			return 1;
4120 		}
4121 		break;
4122 	}
4123 	/* bad code */
4124 	pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
4125 		 pdrcode);
4126 	return 0;
4127 }
4128