1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 
68 #include <asm/futex.h>
69 
70 #include "locking/rtmutex_common.h"
71 
72 /*
73  * READ this before attempting to hack on futexes!
74  *
75  * Basic futex operation and ordering guarantees
76  * =============================================
77  *
78  * The waiter reads the futex value in user space and calls
79  * futex_wait(). This function computes the hash bucket and acquires
80  * the hash bucket lock. After that it reads the futex user space value
81  * again and verifies that the data has not changed. If it has not changed
82  * it enqueues itself into the hash bucket, releases the hash bucket lock
83  * and schedules.
84  *
85  * The waker side modifies the user space value of the futex and calls
86  * futex_wake(). This function computes the hash bucket and acquires the
87  * hash bucket lock. Then it looks for waiters on that futex in the hash
88  * bucket and wakes them.
89  *
90  * In futex wake up scenarios where no tasks are blocked on a futex, taking
91  * the hb spinlock can be avoided and simply return. In order for this
92  * optimization to work, ordering guarantees must exist so that the waiter
93  * being added to the list is acknowledged when the list is concurrently being
94  * checked by the waker, avoiding scenarios like the following:
95  *
96  * CPU 0                               CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *   uval = *futex;
101  *                                     *futex = newval;
102  *                                     sys_futex(WAKE, futex);
103  *                                       futex_wake(futex);
104  *                                       if (queue_empty())
105  *                                         return;
106  *   if (uval == val)
107  *      lock(hash_bucket(futex));
108  *      queue();
109  *     unlock(hash_bucket(futex));
110  *     schedule();
111  *
112  * This would cause the waiter on CPU 0 to wait forever because it
113  * missed the transition of the user space value from val to newval
114  * and the waker did not find the waiter in the hash bucket queue.
115  *
116  * The correct serialization ensures that a waiter either observes
117  * the changed user space value before blocking or is woken by a
118  * concurrent waker:
119  *
120  * CPU 0                                 CPU 1
121  * val = *futex;
122  * sys_futex(WAIT, futex, val);
123  *   futex_wait(futex, val);
124  *
125  *   waiters++; (a)
126  *   mb(); (A) <-- paired with -.
127  *                              |
128  *   lock(hash_bucket(futex));  |
129  *                              |
130  *   uval = *futex;             |
131  *                              |        *futex = newval;
132  *                              |        sys_futex(WAKE, futex);
133  *                              |          futex_wake(futex);
134  *                              |
135  *                              `------->  mb(); (B)
136  *   if (uval == val)
137  *     queue();
138  *     unlock(hash_bucket(futex));
139  *     schedule();                         if (waiters)
140  *                                           lock(hash_bucket(futex));
141  *   else                                    wake_waiters(futex);
142  *     waiters--; (b)                        unlock(hash_bucket(futex));
143  *
144  * Where (A) orders the waiters increment and the futex value read through
145  * atomic operations (see hb_waiters_inc) and where (B) orders the write
146  * to futex and the waiters read -- this is done by the barriers for both
147  * shared and private futexes in get_futex_key_refs().
148  *
149  * This yields the following case (where X:=waiters, Y:=futex):
150  *
151  *	X = Y = 0
152  *
153  *	w[X]=1		w[Y]=1
154  *	MB		MB
155  *	r[Y]=y		r[X]=x
156  *
157  * Which guarantees that x==0 && y==0 is impossible; which translates back into
158  * the guarantee that we cannot both miss the futex variable change and the
159  * enqueue.
160  *
161  * Note that a new waiter is accounted for in (a) even when it is possible that
162  * the wait call can return error, in which case we backtrack from it in (b).
163  * Refer to the comment in queue_lock().
164  *
165  * Similarly, in order to account for waiters being requeued on another
166  * address we always increment the waiters for the destination bucket before
167  * acquiring the lock. It then decrements them again  after releasing it -
168  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
169  * will do the additional required waiter count housekeeping. This is done for
170  * double_lock_hb() and double_unlock_hb(), respectively.
171  */
172 
173 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
174 int __read_mostly futex_cmpxchg_enabled;
175 #endif
176 
177 /*
178  * Futex flags used to encode options to functions and preserve them across
179  * restarts.
180  */
181 #define FLAGS_SHARED		0x01
182 #define FLAGS_CLOCKRT		0x02
183 #define FLAGS_HAS_TIMEOUT	0x04
184 
185 /*
186  * Priority Inheritance state:
187  */
188 struct futex_pi_state {
189 	/*
190 	 * list of 'owned' pi_state instances - these have to be
191 	 * cleaned up in do_exit() if the task exits prematurely:
192 	 */
193 	struct list_head list;
194 
195 	/*
196 	 * The PI object:
197 	 */
198 	struct rt_mutex pi_mutex;
199 
200 	struct task_struct *owner;
201 	atomic_t refcount;
202 
203 	union futex_key key;
204 };
205 
206 /**
207  * struct futex_q - The hashed futex queue entry, one per waiting task
208  * @list:		priority-sorted list of tasks waiting on this futex
209  * @task:		the task waiting on the futex
210  * @lock_ptr:		the hash bucket lock
211  * @key:		the key the futex is hashed on
212  * @pi_state:		optional priority inheritance state
213  * @rt_waiter:		rt_waiter storage for use with requeue_pi
214  * @requeue_pi_key:	the requeue_pi target futex key
215  * @bitset:		bitset for the optional bitmasked wakeup
216  *
217  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
218  * we can wake only the relevant ones (hashed queues may be shared).
219  *
220  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
221  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
222  * The order of wakeup is always to make the first condition true, then
223  * the second.
224  *
225  * PI futexes are typically woken before they are removed from the hash list via
226  * the rt_mutex code. See unqueue_me_pi().
227  */
228 struct futex_q {
229 	struct plist_node list;
230 
231 	struct task_struct *task;
232 	spinlock_t *lock_ptr;
233 	union futex_key key;
234 	struct futex_pi_state *pi_state;
235 	struct rt_mutex_waiter *rt_waiter;
236 	union futex_key *requeue_pi_key;
237 	u32 bitset;
238 };
239 
240 static const struct futex_q futex_q_init = {
241 	/* list gets initialized in queue_me()*/
242 	.key = FUTEX_KEY_INIT,
243 	.bitset = FUTEX_BITSET_MATCH_ANY
244 };
245 
246 /*
247  * Hash buckets are shared by all the futex_keys that hash to the same
248  * location.  Each key may have multiple futex_q structures, one for each task
249  * waiting on a futex.
250  */
251 struct futex_hash_bucket {
252 	atomic_t waiters;
253 	spinlock_t lock;
254 	struct plist_head chain;
255 } ____cacheline_aligned_in_smp;
256 
257 static unsigned long __read_mostly futex_hashsize;
258 
259 static struct futex_hash_bucket *futex_queues;
260 
futex_get_mm(union futex_key * key)261 static inline void futex_get_mm(union futex_key *key)
262 {
263 	atomic_inc(&key->private.mm->mm_count);
264 	/*
265 	 * Ensure futex_get_mm() implies a full barrier such that
266 	 * get_futex_key() implies a full barrier. This is relied upon
267 	 * as full barrier (B), see the ordering comment above.
268 	 */
269 	smp_mb__after_atomic();
270 }
271 
272 /*
273  * Reflects a new waiter being added to the waitqueue.
274  */
hb_waiters_inc(struct futex_hash_bucket * hb)275 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
276 {
277 #ifdef CONFIG_SMP
278 	atomic_inc(&hb->waiters);
279 	/*
280 	 * Full barrier (A), see the ordering comment above.
281 	 */
282 	smp_mb__after_atomic();
283 #endif
284 }
285 
286 /*
287  * Reflects a waiter being removed from the waitqueue by wakeup
288  * paths.
289  */
hb_waiters_dec(struct futex_hash_bucket * hb)290 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
291 {
292 #ifdef CONFIG_SMP
293 	atomic_dec(&hb->waiters);
294 #endif
295 }
296 
hb_waiters_pending(struct futex_hash_bucket * hb)297 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
298 {
299 #ifdef CONFIG_SMP
300 	return atomic_read(&hb->waiters);
301 #else
302 	return 1;
303 #endif
304 }
305 
306 /*
307  * We hash on the keys returned from get_futex_key (see below).
308  */
hash_futex(union futex_key * key)309 static struct futex_hash_bucket *hash_futex(union futex_key *key)
310 {
311 	u32 hash = jhash2((u32*)&key->both.word,
312 			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
313 			  key->both.offset);
314 	return &futex_queues[hash & (futex_hashsize - 1)];
315 }
316 
317 /*
318  * Return 1 if two futex_keys are equal, 0 otherwise.
319  */
match_futex(union futex_key * key1,union futex_key * key2)320 static inline int match_futex(union futex_key *key1, union futex_key *key2)
321 {
322 	return (key1 && key2
323 		&& key1->both.word == key2->both.word
324 		&& key1->both.ptr == key2->both.ptr
325 		&& key1->both.offset == key2->both.offset);
326 }
327 
328 /*
329  * Take a reference to the resource addressed by a key.
330  * Can be called while holding spinlocks.
331  *
332  */
get_futex_key_refs(union futex_key * key)333 static void get_futex_key_refs(union futex_key *key)
334 {
335 	if (!key->both.ptr)
336 		return;
337 
338 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
339 	case FUT_OFF_INODE:
340 		ihold(key->shared.inode); /* implies MB (B) */
341 		break;
342 	case FUT_OFF_MMSHARED:
343 		futex_get_mm(key); /* implies MB (B) */
344 		break;
345 	default:
346 		/*
347 		 * Private futexes do not hold reference on an inode or
348 		 * mm, therefore the only purpose of calling get_futex_key_refs
349 		 * is because we need the barrier for the lockless waiter check.
350 		 */
351 		smp_mb(); /* explicit MB (B) */
352 	}
353 }
354 
355 /*
356  * Drop a reference to the resource addressed by a key.
357  * The hash bucket spinlock must not be held. This is
358  * a no-op for private futexes, see comment in the get
359  * counterpart.
360  */
drop_futex_key_refs(union futex_key * key)361 static void drop_futex_key_refs(union futex_key *key)
362 {
363 	if (!key->both.ptr) {
364 		/* If we're here then we tried to put a key we failed to get */
365 		WARN_ON_ONCE(1);
366 		return;
367 	}
368 
369 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
370 	case FUT_OFF_INODE:
371 		iput(key->shared.inode);
372 		break;
373 	case FUT_OFF_MMSHARED:
374 		mmdrop(key->private.mm);
375 		break;
376 	}
377 }
378 
379 /**
380  * get_futex_key() - Get parameters which are the keys for a futex
381  * @uaddr:	virtual address of the futex
382  * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
383  * @key:	address where result is stored.
384  * @rw:		mapping needs to be read/write (values: VERIFY_READ,
385  *              VERIFY_WRITE)
386  *
387  * Return: a negative error code or 0
388  *
389  * The key words are stored in *key on success.
390  *
391  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
392  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
393  * We can usually work out the index without swapping in the page.
394  *
395  * lock_page() might sleep, the caller should not hold a spinlock.
396  */
397 static int
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key,int rw)398 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
399 {
400 	unsigned long address = (unsigned long)uaddr;
401 	struct mm_struct *mm = current->mm;
402 	struct page *page, *page_head;
403 	int err, ro = 0;
404 
405 	/*
406 	 * The futex address must be "naturally" aligned.
407 	 */
408 	key->both.offset = address % PAGE_SIZE;
409 	if (unlikely((address % sizeof(u32)) != 0))
410 		return -EINVAL;
411 	address -= key->both.offset;
412 
413 	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
414 		return -EFAULT;
415 
416 	/*
417 	 * PROCESS_PRIVATE futexes are fast.
418 	 * As the mm cannot disappear under us and the 'key' only needs
419 	 * virtual address, we dont even have to find the underlying vma.
420 	 * Note : We do have to check 'uaddr' is a valid user address,
421 	 *        but access_ok() should be faster than find_vma()
422 	 */
423 	if (!fshared) {
424 		key->private.mm = mm;
425 		key->private.address = address;
426 		get_futex_key_refs(key);  /* implies MB (B) */
427 		return 0;
428 	}
429 
430 again:
431 	err = get_user_pages_fast(address, 1, 1, &page);
432 	/*
433 	 * If write access is not required (eg. FUTEX_WAIT), try
434 	 * and get read-only access.
435 	 */
436 	if (err == -EFAULT && rw == VERIFY_READ) {
437 		err = get_user_pages_fast(address, 1, 0, &page);
438 		ro = 1;
439 	}
440 	if (err < 0)
441 		return err;
442 	else
443 		err = 0;
444 
445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
446 	page_head = page;
447 	if (unlikely(PageTail(page))) {
448 		put_page(page);
449 		/* serialize against __split_huge_page_splitting() */
450 		local_irq_disable();
451 		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
452 			page_head = compound_head(page);
453 			/*
454 			 * page_head is valid pointer but we must pin
455 			 * it before taking the PG_lock and/or
456 			 * PG_compound_lock. The moment we re-enable
457 			 * irqs __split_huge_page_splitting() can
458 			 * return and the head page can be freed from
459 			 * under us. We can't take the PG_lock and/or
460 			 * PG_compound_lock on a page that could be
461 			 * freed from under us.
462 			 */
463 			if (page != page_head) {
464 				get_page(page_head);
465 				put_page(page);
466 			}
467 			local_irq_enable();
468 		} else {
469 			local_irq_enable();
470 			goto again;
471 		}
472 	}
473 #else
474 	page_head = compound_head(page);
475 	if (page != page_head) {
476 		get_page(page_head);
477 		put_page(page);
478 	}
479 #endif
480 
481 	lock_page(page_head);
482 
483 	/*
484 	 * If page_head->mapping is NULL, then it cannot be a PageAnon
485 	 * page; but it might be the ZERO_PAGE or in the gate area or
486 	 * in a special mapping (all cases which we are happy to fail);
487 	 * or it may have been a good file page when get_user_pages_fast
488 	 * found it, but truncated or holepunched or subjected to
489 	 * invalidate_complete_page2 before we got the page lock (also
490 	 * cases which we are happy to fail).  And we hold a reference,
491 	 * so refcount care in invalidate_complete_page's remove_mapping
492 	 * prevents drop_caches from setting mapping to NULL beneath us.
493 	 *
494 	 * The case we do have to guard against is when memory pressure made
495 	 * shmem_writepage move it from filecache to swapcache beneath us:
496 	 * an unlikely race, but we do need to retry for page_head->mapping.
497 	 */
498 	if (!page_head->mapping) {
499 		int shmem_swizzled = PageSwapCache(page_head);
500 		unlock_page(page_head);
501 		put_page(page_head);
502 		if (shmem_swizzled)
503 			goto again;
504 		return -EFAULT;
505 	}
506 
507 	/*
508 	 * Private mappings are handled in a simple way.
509 	 *
510 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
511 	 * it's a read-only handle, it's expected that futexes attach to
512 	 * the object not the particular process.
513 	 */
514 	if (PageAnon(page_head)) {
515 		/*
516 		 * A RO anonymous page will never change and thus doesn't make
517 		 * sense for futex operations.
518 		 */
519 		if (ro) {
520 			err = -EFAULT;
521 			goto out;
522 		}
523 
524 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
525 		key->private.mm = mm;
526 		key->private.address = address;
527 	} else {
528 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
529 		key->shared.inode = page_head->mapping->host;
530 		key->shared.pgoff = basepage_index(page);
531 	}
532 
533 	get_futex_key_refs(key); /* implies MB (B) */
534 
535 out:
536 	unlock_page(page_head);
537 	put_page(page_head);
538 	return err;
539 }
540 
put_futex_key(union futex_key * key)541 static inline void put_futex_key(union futex_key *key)
542 {
543 	drop_futex_key_refs(key);
544 }
545 
546 /**
547  * fault_in_user_writeable() - Fault in user address and verify RW access
548  * @uaddr:	pointer to faulting user space address
549  *
550  * Slow path to fixup the fault we just took in the atomic write
551  * access to @uaddr.
552  *
553  * We have no generic implementation of a non-destructive write to the
554  * user address. We know that we faulted in the atomic pagefault
555  * disabled section so we can as well avoid the #PF overhead by
556  * calling get_user_pages() right away.
557  */
fault_in_user_writeable(u32 __user * uaddr)558 static int fault_in_user_writeable(u32 __user *uaddr)
559 {
560 	struct mm_struct *mm = current->mm;
561 	int ret;
562 
563 	down_read(&mm->mmap_sem);
564 	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
565 			       FAULT_FLAG_WRITE);
566 	up_read(&mm->mmap_sem);
567 
568 	return ret < 0 ? ret : 0;
569 }
570 
571 /**
572  * futex_top_waiter() - Return the highest priority waiter on a futex
573  * @hb:		the hash bucket the futex_q's reside in
574  * @key:	the futex key (to distinguish it from other futex futex_q's)
575  *
576  * Must be called with the hb lock held.
577  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)578 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
579 					union futex_key *key)
580 {
581 	struct futex_q *this;
582 
583 	plist_for_each_entry(this, &hb->chain, list) {
584 		if (match_futex(&this->key, key))
585 			return this;
586 	}
587 	return NULL;
588 }
589 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)590 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
591 				      u32 uval, u32 newval)
592 {
593 	int ret;
594 
595 	pagefault_disable();
596 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
597 	pagefault_enable();
598 
599 	return ret;
600 }
601 
get_futex_value_locked(u32 * dest,u32 __user * from)602 static int get_futex_value_locked(u32 *dest, u32 __user *from)
603 {
604 	int ret;
605 
606 	pagefault_disable();
607 	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
608 	pagefault_enable();
609 
610 	return ret ? -EFAULT : 0;
611 }
612 
613 
614 /*
615  * PI code:
616  */
refill_pi_state_cache(void)617 static int refill_pi_state_cache(void)
618 {
619 	struct futex_pi_state *pi_state;
620 
621 	if (likely(current->pi_state_cache))
622 		return 0;
623 
624 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
625 
626 	if (!pi_state)
627 		return -ENOMEM;
628 
629 	INIT_LIST_HEAD(&pi_state->list);
630 	/* pi_mutex gets initialized later */
631 	pi_state->owner = NULL;
632 	atomic_set(&pi_state->refcount, 1);
633 	pi_state->key = FUTEX_KEY_INIT;
634 
635 	current->pi_state_cache = pi_state;
636 
637 	return 0;
638 }
639 
alloc_pi_state(void)640 static struct futex_pi_state * alloc_pi_state(void)
641 {
642 	struct futex_pi_state *pi_state = current->pi_state_cache;
643 
644 	WARN_ON(!pi_state);
645 	current->pi_state_cache = NULL;
646 
647 	return pi_state;
648 }
649 
650 /*
651  * Must be called with the hb lock held.
652  */
free_pi_state(struct futex_pi_state * pi_state)653 static void free_pi_state(struct futex_pi_state *pi_state)
654 {
655 	if (!pi_state)
656 		return;
657 
658 	if (!atomic_dec_and_test(&pi_state->refcount))
659 		return;
660 
661 	/*
662 	 * If pi_state->owner is NULL, the owner is most probably dying
663 	 * and has cleaned up the pi_state already
664 	 */
665 	if (pi_state->owner) {
666 		raw_spin_lock_irq(&pi_state->owner->pi_lock);
667 		list_del_init(&pi_state->list);
668 		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
669 
670 		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
671 	}
672 
673 	if (current->pi_state_cache)
674 		kfree(pi_state);
675 	else {
676 		/*
677 		 * pi_state->list is already empty.
678 		 * clear pi_state->owner.
679 		 * refcount is at 0 - put it back to 1.
680 		 */
681 		pi_state->owner = NULL;
682 		atomic_set(&pi_state->refcount, 1);
683 		current->pi_state_cache = pi_state;
684 	}
685 }
686 
687 /*
688  * Look up the task based on what TID userspace gave us.
689  * We dont trust it.
690  */
futex_find_get_task(pid_t pid)691 static struct task_struct * futex_find_get_task(pid_t pid)
692 {
693 	struct task_struct *p;
694 
695 	rcu_read_lock();
696 	p = find_task_by_vpid(pid);
697 	if (p)
698 		get_task_struct(p);
699 
700 	rcu_read_unlock();
701 
702 	return p;
703 }
704 
705 /*
706  * This task is holding PI mutexes at exit time => bad.
707  * Kernel cleans up PI-state, but userspace is likely hosed.
708  * (Robust-futex cleanup is separate and might save the day for userspace.)
709  */
exit_pi_state_list(struct task_struct * curr)710 void exit_pi_state_list(struct task_struct *curr)
711 {
712 	struct list_head *next, *head = &curr->pi_state_list;
713 	struct futex_pi_state *pi_state;
714 	struct futex_hash_bucket *hb;
715 	union futex_key key = FUTEX_KEY_INIT;
716 
717 	if (!futex_cmpxchg_enabled)
718 		return;
719 	/*
720 	 * We are a ZOMBIE and nobody can enqueue itself on
721 	 * pi_state_list anymore, but we have to be careful
722 	 * versus waiters unqueueing themselves:
723 	 */
724 	raw_spin_lock_irq(&curr->pi_lock);
725 	while (!list_empty(head)) {
726 
727 		next = head->next;
728 		pi_state = list_entry(next, struct futex_pi_state, list);
729 		key = pi_state->key;
730 		hb = hash_futex(&key);
731 		raw_spin_unlock_irq(&curr->pi_lock);
732 
733 		spin_lock(&hb->lock);
734 
735 		raw_spin_lock_irq(&curr->pi_lock);
736 		/*
737 		 * We dropped the pi-lock, so re-check whether this
738 		 * task still owns the PI-state:
739 		 */
740 		if (head->next != next) {
741 			spin_unlock(&hb->lock);
742 			continue;
743 		}
744 
745 		WARN_ON(pi_state->owner != curr);
746 		WARN_ON(list_empty(&pi_state->list));
747 		list_del_init(&pi_state->list);
748 		pi_state->owner = NULL;
749 		raw_spin_unlock_irq(&curr->pi_lock);
750 
751 		rt_mutex_unlock(&pi_state->pi_mutex);
752 
753 		spin_unlock(&hb->lock);
754 
755 		raw_spin_lock_irq(&curr->pi_lock);
756 	}
757 	raw_spin_unlock_irq(&curr->pi_lock);
758 }
759 
760 /*
761  * We need to check the following states:
762  *
763  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
764  *
765  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
766  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
767  *
768  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
769  *
770  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
771  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
772  *
773  * [6]  Found  | Found    | task      | 0         | 1      | Valid
774  *
775  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
776  *
777  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
778  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
779  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
780  *
781  * [1]	Indicates that the kernel can acquire the futex atomically. We
782  *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
783  *
784  * [2]	Valid, if TID does not belong to a kernel thread. If no matching
785  *      thread is found then it indicates that the owner TID has died.
786  *
787  * [3]	Invalid. The waiter is queued on a non PI futex
788  *
789  * [4]	Valid state after exit_robust_list(), which sets the user space
790  *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
791  *
792  * [5]	The user space value got manipulated between exit_robust_list()
793  *	and exit_pi_state_list()
794  *
795  * [6]	Valid state after exit_pi_state_list() which sets the new owner in
796  *	the pi_state but cannot access the user space value.
797  *
798  * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
799  *
800  * [8]	Owner and user space value match
801  *
802  * [9]	There is no transient state which sets the user space TID to 0
803  *	except exit_robust_list(), but this is indicated by the
804  *	FUTEX_OWNER_DIED bit. See [4]
805  *
806  * [10] There is no transient state which leaves owner and user space
807  *	TID out of sync.
808  */
809 
810 /*
811  * Validate that the existing waiter has a pi_state and sanity check
812  * the pi_state against the user space value. If correct, attach to
813  * it.
814  */
attach_to_pi_state(u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)815 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
816 			      struct futex_pi_state **ps)
817 {
818 	pid_t pid = uval & FUTEX_TID_MASK;
819 
820 	/*
821 	 * Userspace might have messed up non-PI and PI futexes [3]
822 	 */
823 	if (unlikely(!pi_state))
824 		return -EINVAL;
825 
826 	WARN_ON(!atomic_read(&pi_state->refcount));
827 
828 	/*
829 	 * Handle the owner died case:
830 	 */
831 	if (uval & FUTEX_OWNER_DIED) {
832 		/*
833 		 * exit_pi_state_list sets owner to NULL and wakes the
834 		 * topmost waiter. The task which acquires the
835 		 * pi_state->rt_mutex will fixup owner.
836 		 */
837 		if (!pi_state->owner) {
838 			/*
839 			 * No pi state owner, but the user space TID
840 			 * is not 0. Inconsistent state. [5]
841 			 */
842 			if (pid)
843 				return -EINVAL;
844 			/*
845 			 * Take a ref on the state and return success. [4]
846 			 */
847 			goto out_state;
848 		}
849 
850 		/*
851 		 * If TID is 0, then either the dying owner has not
852 		 * yet executed exit_pi_state_list() or some waiter
853 		 * acquired the rtmutex in the pi state, but did not
854 		 * yet fixup the TID in user space.
855 		 *
856 		 * Take a ref on the state and return success. [6]
857 		 */
858 		if (!pid)
859 			goto out_state;
860 	} else {
861 		/*
862 		 * If the owner died bit is not set, then the pi_state
863 		 * must have an owner. [7]
864 		 */
865 		if (!pi_state->owner)
866 			return -EINVAL;
867 	}
868 
869 	/*
870 	 * Bail out if user space manipulated the futex value. If pi
871 	 * state exists then the owner TID must be the same as the
872 	 * user space TID. [9/10]
873 	 */
874 	if (pid != task_pid_vnr(pi_state->owner))
875 		return -EINVAL;
876 out_state:
877 	atomic_inc(&pi_state->refcount);
878 	*ps = pi_state;
879 	return 0;
880 }
881 
882 /*
883  * Lookup the task for the TID provided from user space and attach to
884  * it after doing proper sanity checks.
885  */
attach_to_pi_owner(u32 uval,union futex_key * key,struct futex_pi_state ** ps)886 static int attach_to_pi_owner(u32 uval, union futex_key *key,
887 			      struct futex_pi_state **ps)
888 {
889 	pid_t pid = uval & FUTEX_TID_MASK;
890 	struct futex_pi_state *pi_state;
891 	struct task_struct *p;
892 
893 	/*
894 	 * We are the first waiter - try to look up the real owner and attach
895 	 * the new pi_state to it, but bail out when TID = 0 [1]
896 	 */
897 	if (!pid)
898 		return -ESRCH;
899 	p = futex_find_get_task(pid);
900 	if (!p)
901 		return -ESRCH;
902 
903 	if (unlikely(p->flags & PF_KTHREAD)) {
904 		put_task_struct(p);
905 		return -EPERM;
906 	}
907 
908 	/*
909 	 * We need to look at the task state flags to figure out,
910 	 * whether the task is exiting. To protect against the do_exit
911 	 * change of the task flags, we do this protected by
912 	 * p->pi_lock:
913 	 */
914 	raw_spin_lock_irq(&p->pi_lock);
915 	if (unlikely(p->flags & PF_EXITING)) {
916 		/*
917 		 * The task is on the way out. When PF_EXITPIDONE is
918 		 * set, we know that the task has finished the
919 		 * cleanup:
920 		 */
921 		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
922 
923 		raw_spin_unlock_irq(&p->pi_lock);
924 		put_task_struct(p);
925 		return ret;
926 	}
927 
928 	/*
929 	 * No existing pi state. First waiter. [2]
930 	 */
931 	pi_state = alloc_pi_state();
932 
933 	/*
934 	 * Initialize the pi_mutex in locked state and make @p
935 	 * the owner of it:
936 	 */
937 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
938 
939 	/* Store the key for possible exit cleanups: */
940 	pi_state->key = *key;
941 
942 	WARN_ON(!list_empty(&pi_state->list));
943 	list_add(&pi_state->list, &p->pi_state_list);
944 	pi_state->owner = p;
945 	raw_spin_unlock_irq(&p->pi_lock);
946 
947 	put_task_struct(p);
948 
949 	*ps = pi_state;
950 
951 	return 0;
952 }
953 
lookup_pi_state(u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps)954 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
955 			   union futex_key *key, struct futex_pi_state **ps)
956 {
957 	struct futex_q *match = futex_top_waiter(hb, key);
958 
959 	/*
960 	 * If there is a waiter on that futex, validate it and
961 	 * attach to the pi_state when the validation succeeds.
962 	 */
963 	if (match)
964 		return attach_to_pi_state(uval, match->pi_state, ps);
965 
966 	/*
967 	 * We are the first waiter - try to look up the owner based on
968 	 * @uval and attach to it.
969 	 */
970 	return attach_to_pi_owner(uval, key, ps);
971 }
972 
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)973 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
974 {
975 	u32 uninitialized_var(curval);
976 
977 	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
978 		return -EFAULT;
979 
980 	/*If user space value changed, let the caller retry */
981 	return curval != uval ? -EAGAIN : 0;
982 }
983 
984 /**
985  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
986  * @uaddr:		the pi futex user address
987  * @hb:			the pi futex hash bucket
988  * @key:		the futex key associated with uaddr and hb
989  * @ps:			the pi_state pointer where we store the result of the
990  *			lookup
991  * @task:		the task to perform the atomic lock work for.  This will
992  *			be "current" except in the case of requeue pi.
993  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
994  *
995  * Return:
996  *  0 - ready to wait;
997  *  1 - acquired the lock;
998  * <0 - error
999  *
1000  * The hb->lock and futex_key refs shall be held by the caller.
1001  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,int set_waiters)1002 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1003 				union futex_key *key,
1004 				struct futex_pi_state **ps,
1005 				struct task_struct *task, int set_waiters)
1006 {
1007 	u32 uval, newval, vpid = task_pid_vnr(task);
1008 	struct futex_q *match;
1009 	int ret;
1010 
1011 	/*
1012 	 * Read the user space value first so we can validate a few
1013 	 * things before proceeding further.
1014 	 */
1015 	if (get_futex_value_locked(&uval, uaddr))
1016 		return -EFAULT;
1017 
1018 	/*
1019 	 * Detect deadlocks.
1020 	 */
1021 	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1022 		return -EDEADLK;
1023 
1024 	/*
1025 	 * Lookup existing state first. If it exists, try to attach to
1026 	 * its pi_state.
1027 	 */
1028 	match = futex_top_waiter(hb, key);
1029 	if (match)
1030 		return attach_to_pi_state(uval, match->pi_state, ps);
1031 
1032 	/*
1033 	 * No waiter and user TID is 0. We are here because the
1034 	 * waiters or the owner died bit is set or called from
1035 	 * requeue_cmp_pi or for whatever reason something took the
1036 	 * syscall.
1037 	 */
1038 	if (!(uval & FUTEX_TID_MASK)) {
1039 		/*
1040 		 * We take over the futex. No other waiters and the user space
1041 		 * TID is 0. We preserve the owner died bit.
1042 		 */
1043 		newval = uval & FUTEX_OWNER_DIED;
1044 		newval |= vpid;
1045 
1046 		/* The futex requeue_pi code can enforce the waiters bit */
1047 		if (set_waiters)
1048 			newval |= FUTEX_WAITERS;
1049 
1050 		ret = lock_pi_update_atomic(uaddr, uval, newval);
1051 		/* If the take over worked, return 1 */
1052 		return ret < 0 ? ret : 1;
1053 	}
1054 
1055 	/*
1056 	 * First waiter. Set the waiters bit before attaching ourself to
1057 	 * the owner. If owner tries to unlock, it will be forced into
1058 	 * the kernel and blocked on hb->lock.
1059 	 */
1060 	newval = uval | FUTEX_WAITERS;
1061 	ret = lock_pi_update_atomic(uaddr, uval, newval);
1062 	if (ret)
1063 		return ret;
1064 	/*
1065 	 * If the update of the user space value succeeded, we try to
1066 	 * attach to the owner. If that fails, no harm done, we only
1067 	 * set the FUTEX_WAITERS bit in the user space variable.
1068 	 */
1069 	return attach_to_pi_owner(uval, key, ps);
1070 }
1071 
1072 /**
1073  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1074  * @q:	The futex_q to unqueue
1075  *
1076  * The q->lock_ptr must not be NULL and must be held by the caller.
1077  */
__unqueue_futex(struct futex_q * q)1078 static void __unqueue_futex(struct futex_q *q)
1079 {
1080 	struct futex_hash_bucket *hb;
1081 
1082 	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1083 	    || WARN_ON(plist_node_empty(&q->list)))
1084 		return;
1085 
1086 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1087 	plist_del(&q->list, &hb->chain);
1088 	hb_waiters_dec(hb);
1089 }
1090 
1091 /*
1092  * The hash bucket lock must be held when this is called.
1093  * Afterwards, the futex_q must not be accessed.
1094  */
wake_futex(struct futex_q * q)1095 static void wake_futex(struct futex_q *q)
1096 {
1097 	struct task_struct *p = q->task;
1098 
1099 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1100 		return;
1101 
1102 	/*
1103 	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1104 	 * a non-futex wake up happens on another CPU then the task
1105 	 * might exit and p would dereference a non-existing task
1106 	 * struct. Prevent this by holding a reference on p across the
1107 	 * wake up.
1108 	 */
1109 	get_task_struct(p);
1110 
1111 	__unqueue_futex(q);
1112 	/*
1113 	 * The waiting task can free the futex_q as soon as
1114 	 * q->lock_ptr = NULL is written, without taking any locks. A
1115 	 * memory barrier is required here to prevent the following
1116 	 * store to lock_ptr from getting ahead of the plist_del.
1117 	 */
1118 	smp_wmb();
1119 	q->lock_ptr = NULL;
1120 
1121 	wake_up_state(p, TASK_NORMAL);
1122 	put_task_struct(p);
1123 }
1124 
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_q * this)1125 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1126 {
1127 	struct task_struct *new_owner;
1128 	struct futex_pi_state *pi_state = this->pi_state;
1129 	u32 uninitialized_var(curval), newval;
1130 	int ret = 0;
1131 
1132 	if (!pi_state)
1133 		return -EINVAL;
1134 
1135 	/*
1136 	 * If current does not own the pi_state then the futex is
1137 	 * inconsistent and user space fiddled with the futex value.
1138 	 */
1139 	if (pi_state->owner != current)
1140 		return -EINVAL;
1141 
1142 	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1143 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1144 
1145 	/*
1146 	 * It is possible that the next waiter (the one that brought
1147 	 * this owner to the kernel) timed out and is no longer
1148 	 * waiting on the lock.
1149 	 */
1150 	if (!new_owner)
1151 		new_owner = this->task;
1152 
1153 	/*
1154 	 * We pass it to the next owner. The WAITERS bit is always
1155 	 * kept enabled while there is PI state around. We cleanup the
1156 	 * owner died bit, because we are the owner.
1157 	 */
1158 	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1159 
1160 	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1161 		ret = -EFAULT;
1162 	} else if (curval != uval) {
1163 		/*
1164 		 * If a unconditional UNLOCK_PI operation (user space did not
1165 		 * try the TID->0 transition) raced with a waiter setting the
1166 		 * FUTEX_WAITERS flag between get_user() and locking the hash
1167 		 * bucket lock, retry the operation.
1168 		 */
1169 		if ((FUTEX_TID_MASK & curval) == uval)
1170 			ret = -EAGAIN;
1171 		else
1172 			ret = -EINVAL;
1173 	}
1174 	if (ret) {
1175 		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1176 		return ret;
1177 	}
1178 
1179 	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1180 	WARN_ON(list_empty(&pi_state->list));
1181 	list_del_init(&pi_state->list);
1182 	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1183 
1184 	raw_spin_lock_irq(&new_owner->pi_lock);
1185 	WARN_ON(!list_empty(&pi_state->list));
1186 	list_add(&pi_state->list, &new_owner->pi_state_list);
1187 	pi_state->owner = new_owner;
1188 	raw_spin_unlock_irq(&new_owner->pi_lock);
1189 
1190 	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1191 	rt_mutex_unlock(&pi_state->pi_mutex);
1192 
1193 	return 0;
1194 }
1195 
1196 /*
1197  * Express the locking dependencies for lockdep:
1198  */
1199 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1200 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1201 {
1202 	if (hb1 <= hb2) {
1203 		spin_lock(&hb1->lock);
1204 		if (hb1 < hb2)
1205 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1206 	} else { /* hb1 > hb2 */
1207 		spin_lock(&hb2->lock);
1208 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1209 	}
1210 }
1211 
1212 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1213 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1214 {
1215 	spin_unlock(&hb1->lock);
1216 	if (hb1 != hb2)
1217 		spin_unlock(&hb2->lock);
1218 }
1219 
1220 /*
1221  * Wake up waiters matching bitset queued on this futex (uaddr).
1222  */
1223 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1224 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1225 {
1226 	struct futex_hash_bucket *hb;
1227 	struct futex_q *this, *next;
1228 	union futex_key key = FUTEX_KEY_INIT;
1229 	int ret;
1230 
1231 	if (!bitset)
1232 		return -EINVAL;
1233 
1234 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1235 	if (unlikely(ret != 0))
1236 		goto out;
1237 
1238 	hb = hash_futex(&key);
1239 
1240 	/* Make sure we really have tasks to wakeup */
1241 	if (!hb_waiters_pending(hb))
1242 		goto out_put_key;
1243 
1244 	spin_lock(&hb->lock);
1245 
1246 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1247 		if (match_futex (&this->key, &key)) {
1248 			if (this->pi_state || this->rt_waiter) {
1249 				ret = -EINVAL;
1250 				break;
1251 			}
1252 
1253 			/* Check if one of the bits is set in both bitsets */
1254 			if (!(this->bitset & bitset))
1255 				continue;
1256 
1257 			wake_futex(this);
1258 			if (++ret >= nr_wake)
1259 				break;
1260 		}
1261 	}
1262 
1263 	spin_unlock(&hb->lock);
1264 out_put_key:
1265 	put_futex_key(&key);
1266 out:
1267 	return ret;
1268 }
1269 
1270 /*
1271  * Wake up all waiters hashed on the physical page that is mapped
1272  * to this virtual address:
1273  */
1274 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1275 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1276 	      int nr_wake, int nr_wake2, int op)
1277 {
1278 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1279 	struct futex_hash_bucket *hb1, *hb2;
1280 	struct futex_q *this, *next;
1281 	int ret, op_ret;
1282 
1283 retry:
1284 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1285 	if (unlikely(ret != 0))
1286 		goto out;
1287 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1288 	if (unlikely(ret != 0))
1289 		goto out_put_key1;
1290 
1291 	hb1 = hash_futex(&key1);
1292 	hb2 = hash_futex(&key2);
1293 
1294 retry_private:
1295 	double_lock_hb(hb1, hb2);
1296 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1297 	if (unlikely(op_ret < 0)) {
1298 
1299 		double_unlock_hb(hb1, hb2);
1300 
1301 #ifndef CONFIG_MMU
1302 		/*
1303 		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1304 		 * but we might get them from range checking
1305 		 */
1306 		ret = op_ret;
1307 		goto out_put_keys;
1308 #endif
1309 
1310 		if (unlikely(op_ret != -EFAULT)) {
1311 			ret = op_ret;
1312 			goto out_put_keys;
1313 		}
1314 
1315 		ret = fault_in_user_writeable(uaddr2);
1316 		if (ret)
1317 			goto out_put_keys;
1318 
1319 		if (!(flags & FLAGS_SHARED))
1320 			goto retry_private;
1321 
1322 		put_futex_key(&key2);
1323 		put_futex_key(&key1);
1324 		goto retry;
1325 	}
1326 
1327 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1328 		if (match_futex (&this->key, &key1)) {
1329 			if (this->pi_state || this->rt_waiter) {
1330 				ret = -EINVAL;
1331 				goto out_unlock;
1332 			}
1333 			wake_futex(this);
1334 			if (++ret >= nr_wake)
1335 				break;
1336 		}
1337 	}
1338 
1339 	if (op_ret > 0) {
1340 		op_ret = 0;
1341 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1342 			if (match_futex (&this->key, &key2)) {
1343 				if (this->pi_state || this->rt_waiter) {
1344 					ret = -EINVAL;
1345 					goto out_unlock;
1346 				}
1347 				wake_futex(this);
1348 				if (++op_ret >= nr_wake2)
1349 					break;
1350 			}
1351 		}
1352 		ret += op_ret;
1353 	}
1354 
1355 out_unlock:
1356 	double_unlock_hb(hb1, hb2);
1357 out_put_keys:
1358 	put_futex_key(&key2);
1359 out_put_key1:
1360 	put_futex_key(&key1);
1361 out:
1362 	return ret;
1363 }
1364 
1365 /**
1366  * requeue_futex() - Requeue a futex_q from one hb to another
1367  * @q:		the futex_q to requeue
1368  * @hb1:	the source hash_bucket
1369  * @hb2:	the target hash_bucket
1370  * @key2:	the new key for the requeued futex_q
1371  */
1372 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1373 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1374 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1375 {
1376 
1377 	/*
1378 	 * If key1 and key2 hash to the same bucket, no need to
1379 	 * requeue.
1380 	 */
1381 	if (likely(&hb1->chain != &hb2->chain)) {
1382 		plist_del(&q->list, &hb1->chain);
1383 		hb_waiters_dec(hb1);
1384 		plist_add(&q->list, &hb2->chain);
1385 		hb_waiters_inc(hb2);
1386 		q->lock_ptr = &hb2->lock;
1387 	}
1388 	get_futex_key_refs(key2);
1389 	q->key = *key2;
1390 }
1391 
1392 /**
1393  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1394  * @q:		the futex_q
1395  * @key:	the key of the requeue target futex
1396  * @hb:		the hash_bucket of the requeue target futex
1397  *
1398  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1399  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1400  * to the requeue target futex so the waiter can detect the wakeup on the right
1401  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1402  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1403  * to protect access to the pi_state to fixup the owner later.  Must be called
1404  * with both q->lock_ptr and hb->lock held.
1405  */
1406 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1407 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1408 			   struct futex_hash_bucket *hb)
1409 {
1410 	get_futex_key_refs(key);
1411 	q->key = *key;
1412 
1413 	__unqueue_futex(q);
1414 
1415 	WARN_ON(!q->rt_waiter);
1416 	q->rt_waiter = NULL;
1417 
1418 	q->lock_ptr = &hb->lock;
1419 
1420 	wake_up_state(q->task, TASK_NORMAL);
1421 }
1422 
1423 /**
1424  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1425  * @pifutex:		the user address of the to futex
1426  * @hb1:		the from futex hash bucket, must be locked by the caller
1427  * @hb2:		the to futex hash bucket, must be locked by the caller
1428  * @key1:		the from futex key
1429  * @key2:		the to futex key
1430  * @ps:			address to store the pi_state pointer
1431  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1432  *
1433  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1434  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1435  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1436  * hb1 and hb2 must be held by the caller.
1437  *
1438  * Return:
1439  *  0 - failed to acquire the lock atomically;
1440  * >0 - acquired the lock, return value is vpid of the top_waiter
1441  * <0 - error
1442  */
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,int set_waiters)1443 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1444 				 struct futex_hash_bucket *hb1,
1445 				 struct futex_hash_bucket *hb2,
1446 				 union futex_key *key1, union futex_key *key2,
1447 				 struct futex_pi_state **ps, int set_waiters)
1448 {
1449 	struct futex_q *top_waiter = NULL;
1450 	u32 curval;
1451 	int ret, vpid;
1452 
1453 	if (get_futex_value_locked(&curval, pifutex))
1454 		return -EFAULT;
1455 
1456 	/*
1457 	 * Find the top_waiter and determine if there are additional waiters.
1458 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1459 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1460 	 * as we have means to handle the possible fault.  If not, don't set
1461 	 * the bit unecessarily as it will force the subsequent unlock to enter
1462 	 * the kernel.
1463 	 */
1464 	top_waiter = futex_top_waiter(hb1, key1);
1465 
1466 	/* There are no waiters, nothing for us to do. */
1467 	if (!top_waiter)
1468 		return 0;
1469 
1470 	/* Ensure we requeue to the expected futex. */
1471 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1472 		return -EINVAL;
1473 
1474 	/*
1475 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1476 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1477 	 * in ps in contended cases.
1478 	 */
1479 	vpid = task_pid_vnr(top_waiter->task);
1480 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1481 				   set_waiters);
1482 	if (ret == 1) {
1483 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1484 		return vpid;
1485 	}
1486 	return ret;
1487 }
1488 
1489 /**
1490  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1491  * @uaddr1:	source futex user address
1492  * @flags:	futex flags (FLAGS_SHARED, etc.)
1493  * @uaddr2:	target futex user address
1494  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1495  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1496  * @cmpval:	@uaddr1 expected value (or %NULL)
1497  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1498  *		pi futex (pi to pi requeue is not supported)
1499  *
1500  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1501  * uaddr2 atomically on behalf of the top waiter.
1502  *
1503  * Return:
1504  * >=0 - on success, the number of tasks requeued or woken;
1505  *  <0 - on error
1506  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1507 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1508 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1509 			 u32 *cmpval, int requeue_pi)
1510 {
1511 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1512 	int drop_count = 0, task_count = 0, ret;
1513 	struct futex_pi_state *pi_state = NULL;
1514 	struct futex_hash_bucket *hb1, *hb2;
1515 	struct futex_q *this, *next;
1516 
1517 	if (requeue_pi) {
1518 		/*
1519 		 * Requeue PI only works on two distinct uaddrs. This
1520 		 * check is only valid for private futexes. See below.
1521 		 */
1522 		if (uaddr1 == uaddr2)
1523 			return -EINVAL;
1524 
1525 		/*
1526 		 * requeue_pi requires a pi_state, try to allocate it now
1527 		 * without any locks in case it fails.
1528 		 */
1529 		if (refill_pi_state_cache())
1530 			return -ENOMEM;
1531 		/*
1532 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1533 		 * + nr_requeue, since it acquires the rt_mutex prior to
1534 		 * returning to userspace, so as to not leave the rt_mutex with
1535 		 * waiters and no owner.  However, second and third wake-ups
1536 		 * cannot be predicted as they involve race conditions with the
1537 		 * first wake and a fault while looking up the pi_state.  Both
1538 		 * pthread_cond_signal() and pthread_cond_broadcast() should
1539 		 * use nr_wake=1.
1540 		 */
1541 		if (nr_wake != 1)
1542 			return -EINVAL;
1543 	}
1544 
1545 retry:
1546 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1547 	if (unlikely(ret != 0))
1548 		goto out;
1549 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1550 			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1551 	if (unlikely(ret != 0))
1552 		goto out_put_key1;
1553 
1554 	/*
1555 	 * The check above which compares uaddrs is not sufficient for
1556 	 * shared futexes. We need to compare the keys:
1557 	 */
1558 	if (requeue_pi && match_futex(&key1, &key2)) {
1559 		ret = -EINVAL;
1560 		goto out_put_keys;
1561 	}
1562 
1563 	hb1 = hash_futex(&key1);
1564 	hb2 = hash_futex(&key2);
1565 
1566 retry_private:
1567 	hb_waiters_inc(hb2);
1568 	double_lock_hb(hb1, hb2);
1569 
1570 	if (likely(cmpval != NULL)) {
1571 		u32 curval;
1572 
1573 		ret = get_futex_value_locked(&curval, uaddr1);
1574 
1575 		if (unlikely(ret)) {
1576 			double_unlock_hb(hb1, hb2);
1577 			hb_waiters_dec(hb2);
1578 
1579 			ret = get_user(curval, uaddr1);
1580 			if (ret)
1581 				goto out_put_keys;
1582 
1583 			if (!(flags & FLAGS_SHARED))
1584 				goto retry_private;
1585 
1586 			put_futex_key(&key2);
1587 			put_futex_key(&key1);
1588 			goto retry;
1589 		}
1590 		if (curval != *cmpval) {
1591 			ret = -EAGAIN;
1592 			goto out_unlock;
1593 		}
1594 	}
1595 
1596 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1597 		/*
1598 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1599 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1600 		 * bit.  We force this here where we are able to easily handle
1601 		 * faults rather in the requeue loop below.
1602 		 */
1603 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1604 						 &key2, &pi_state, nr_requeue);
1605 
1606 		/*
1607 		 * At this point the top_waiter has either taken uaddr2 or is
1608 		 * waiting on it.  If the former, then the pi_state will not
1609 		 * exist yet, look it up one more time to ensure we have a
1610 		 * reference to it. If the lock was taken, ret contains the
1611 		 * vpid of the top waiter task.
1612 		 */
1613 		if (ret > 0) {
1614 			WARN_ON(pi_state);
1615 			drop_count++;
1616 			task_count++;
1617 			/*
1618 			 * If we acquired the lock, then the user
1619 			 * space value of uaddr2 should be vpid. It
1620 			 * cannot be changed by the top waiter as it
1621 			 * is blocked on hb2 lock if it tries to do
1622 			 * so. If something fiddled with it behind our
1623 			 * back the pi state lookup might unearth
1624 			 * it. So we rather use the known value than
1625 			 * rereading and handing potential crap to
1626 			 * lookup_pi_state.
1627 			 */
1628 			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1629 		}
1630 
1631 		switch (ret) {
1632 		case 0:
1633 			break;
1634 		case -EFAULT:
1635 			free_pi_state(pi_state);
1636 			pi_state = NULL;
1637 			double_unlock_hb(hb1, hb2);
1638 			hb_waiters_dec(hb2);
1639 			put_futex_key(&key2);
1640 			put_futex_key(&key1);
1641 			ret = fault_in_user_writeable(uaddr2);
1642 			if (!ret)
1643 				goto retry;
1644 			goto out;
1645 		case -EAGAIN:
1646 			/*
1647 			 * Two reasons for this:
1648 			 * - Owner is exiting and we just wait for the
1649 			 *   exit to complete.
1650 			 * - The user space value changed.
1651 			 */
1652 			free_pi_state(pi_state);
1653 			pi_state = NULL;
1654 			double_unlock_hb(hb1, hb2);
1655 			hb_waiters_dec(hb2);
1656 			put_futex_key(&key2);
1657 			put_futex_key(&key1);
1658 			cond_resched();
1659 			goto retry;
1660 		default:
1661 			goto out_unlock;
1662 		}
1663 	}
1664 
1665 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1666 		if (task_count - nr_wake >= nr_requeue)
1667 			break;
1668 
1669 		if (!match_futex(&this->key, &key1))
1670 			continue;
1671 
1672 		/*
1673 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1674 		 * be paired with each other and no other futex ops.
1675 		 *
1676 		 * We should never be requeueing a futex_q with a pi_state,
1677 		 * which is awaiting a futex_unlock_pi().
1678 		 */
1679 		if ((requeue_pi && !this->rt_waiter) ||
1680 		    (!requeue_pi && this->rt_waiter) ||
1681 		    this->pi_state) {
1682 			ret = -EINVAL;
1683 			break;
1684 		}
1685 
1686 		/*
1687 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1688 		 * lock, we already woke the top_waiter.  If not, it will be
1689 		 * woken by futex_unlock_pi().
1690 		 */
1691 		if (++task_count <= nr_wake && !requeue_pi) {
1692 			wake_futex(this);
1693 			continue;
1694 		}
1695 
1696 		/* Ensure we requeue to the expected futex for requeue_pi. */
1697 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1698 			ret = -EINVAL;
1699 			break;
1700 		}
1701 
1702 		/*
1703 		 * Requeue nr_requeue waiters and possibly one more in the case
1704 		 * of requeue_pi if we couldn't acquire the lock atomically.
1705 		 */
1706 		if (requeue_pi) {
1707 			/* Prepare the waiter to take the rt_mutex. */
1708 			atomic_inc(&pi_state->refcount);
1709 			this->pi_state = pi_state;
1710 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1711 							this->rt_waiter,
1712 							this->task);
1713 			if (ret == 1) {
1714 				/* We got the lock. */
1715 				requeue_pi_wake_futex(this, &key2, hb2);
1716 				drop_count++;
1717 				continue;
1718 			} else if (ret) {
1719 				/* -EDEADLK */
1720 				this->pi_state = NULL;
1721 				free_pi_state(pi_state);
1722 				goto out_unlock;
1723 			}
1724 		}
1725 		requeue_futex(this, hb1, hb2, &key2);
1726 		drop_count++;
1727 	}
1728 
1729 out_unlock:
1730 	free_pi_state(pi_state);
1731 	double_unlock_hb(hb1, hb2);
1732 	hb_waiters_dec(hb2);
1733 
1734 	/*
1735 	 * drop_futex_key_refs() must be called outside the spinlocks. During
1736 	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1737 	 * one at key2 and updated their key pointer.  We no longer need to
1738 	 * hold the references to key1.
1739 	 */
1740 	while (--drop_count >= 0)
1741 		drop_futex_key_refs(&key1);
1742 
1743 out_put_keys:
1744 	put_futex_key(&key2);
1745 out_put_key1:
1746 	put_futex_key(&key1);
1747 out:
1748 	return ret ? ret : task_count;
1749 }
1750 
1751 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)1752 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1753 	__acquires(&hb->lock)
1754 {
1755 	struct futex_hash_bucket *hb;
1756 
1757 	hb = hash_futex(&q->key);
1758 
1759 	/*
1760 	 * Increment the counter before taking the lock so that
1761 	 * a potential waker won't miss a to-be-slept task that is
1762 	 * waiting for the spinlock. This is safe as all queue_lock()
1763 	 * users end up calling queue_me(). Similarly, for housekeeping,
1764 	 * decrement the counter at queue_unlock() when some error has
1765 	 * occurred and we don't end up adding the task to the list.
1766 	 */
1767 	hb_waiters_inc(hb);
1768 
1769 	q->lock_ptr = &hb->lock;
1770 
1771 	spin_lock(&hb->lock); /* implies MB (A) */
1772 	return hb;
1773 }
1774 
1775 static inline void
queue_unlock(struct futex_hash_bucket * hb)1776 queue_unlock(struct futex_hash_bucket *hb)
1777 	__releases(&hb->lock)
1778 {
1779 	spin_unlock(&hb->lock);
1780 	hb_waiters_dec(hb);
1781 }
1782 
1783 /**
1784  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1785  * @q:	The futex_q to enqueue
1786  * @hb:	The destination hash bucket
1787  *
1788  * The hb->lock must be held by the caller, and is released here. A call to
1789  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1790  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1791  * or nothing if the unqueue is done as part of the wake process and the unqueue
1792  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1793  * an example).
1794  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)1795 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1796 	__releases(&hb->lock)
1797 {
1798 	int prio;
1799 
1800 	/*
1801 	 * The priority used to register this element is
1802 	 * - either the real thread-priority for the real-time threads
1803 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1804 	 * - or MAX_RT_PRIO for non-RT threads.
1805 	 * Thus, all RT-threads are woken first in priority order, and
1806 	 * the others are woken last, in FIFO order.
1807 	 */
1808 	prio = min(current->normal_prio, MAX_RT_PRIO);
1809 
1810 	plist_node_init(&q->list, prio);
1811 	plist_add(&q->list, &hb->chain);
1812 	q->task = current;
1813 	spin_unlock(&hb->lock);
1814 }
1815 
1816 /**
1817  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1818  * @q:	The futex_q to unqueue
1819  *
1820  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1821  * be paired with exactly one earlier call to queue_me().
1822  *
1823  * Return:
1824  *   1 - if the futex_q was still queued (and we removed unqueued it);
1825  *   0 - if the futex_q was already removed by the waking thread
1826  */
unqueue_me(struct futex_q * q)1827 static int unqueue_me(struct futex_q *q)
1828 {
1829 	spinlock_t *lock_ptr;
1830 	int ret = 0;
1831 
1832 	/* In the common case we don't take the spinlock, which is nice. */
1833 retry:
1834 	lock_ptr = q->lock_ptr;
1835 	barrier();
1836 	if (lock_ptr != NULL) {
1837 		spin_lock(lock_ptr);
1838 		/*
1839 		 * q->lock_ptr can change between reading it and
1840 		 * spin_lock(), causing us to take the wrong lock.  This
1841 		 * corrects the race condition.
1842 		 *
1843 		 * Reasoning goes like this: if we have the wrong lock,
1844 		 * q->lock_ptr must have changed (maybe several times)
1845 		 * between reading it and the spin_lock().  It can
1846 		 * change again after the spin_lock() but only if it was
1847 		 * already changed before the spin_lock().  It cannot,
1848 		 * however, change back to the original value.  Therefore
1849 		 * we can detect whether we acquired the correct lock.
1850 		 */
1851 		if (unlikely(lock_ptr != q->lock_ptr)) {
1852 			spin_unlock(lock_ptr);
1853 			goto retry;
1854 		}
1855 		__unqueue_futex(q);
1856 
1857 		BUG_ON(q->pi_state);
1858 
1859 		spin_unlock(lock_ptr);
1860 		ret = 1;
1861 	}
1862 
1863 	drop_futex_key_refs(&q->key);
1864 	return ret;
1865 }
1866 
1867 /*
1868  * PI futexes can not be requeued and must remove themself from the
1869  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1870  * and dropped here.
1871  */
unqueue_me_pi(struct futex_q * q)1872 static void unqueue_me_pi(struct futex_q *q)
1873 	__releases(q->lock_ptr)
1874 {
1875 	__unqueue_futex(q);
1876 
1877 	BUG_ON(!q->pi_state);
1878 	free_pi_state(q->pi_state);
1879 	q->pi_state = NULL;
1880 
1881 	spin_unlock(q->lock_ptr);
1882 }
1883 
1884 /*
1885  * Fixup the pi_state owner with the new owner.
1886  *
1887  * Must be called with hash bucket lock held and mm->sem held for non
1888  * private futexes.
1889  */
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * newowner)1890 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1891 				struct task_struct *newowner)
1892 {
1893 	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1894 	struct futex_pi_state *pi_state = q->pi_state;
1895 	struct task_struct *oldowner = pi_state->owner;
1896 	u32 uval, uninitialized_var(curval), newval;
1897 	int ret;
1898 
1899 	/* Owner died? */
1900 	if (!pi_state->owner)
1901 		newtid |= FUTEX_OWNER_DIED;
1902 
1903 	/*
1904 	 * We are here either because we stole the rtmutex from the
1905 	 * previous highest priority waiter or we are the highest priority
1906 	 * waiter but failed to get the rtmutex the first time.
1907 	 * We have to replace the newowner TID in the user space variable.
1908 	 * This must be atomic as we have to preserve the owner died bit here.
1909 	 *
1910 	 * Note: We write the user space value _before_ changing the pi_state
1911 	 * because we can fault here. Imagine swapped out pages or a fork
1912 	 * that marked all the anonymous memory readonly for cow.
1913 	 *
1914 	 * Modifying pi_state _before_ the user space value would
1915 	 * leave the pi_state in an inconsistent state when we fault
1916 	 * here, because we need to drop the hash bucket lock to
1917 	 * handle the fault. This might be observed in the PID check
1918 	 * in lookup_pi_state.
1919 	 */
1920 retry:
1921 	if (get_futex_value_locked(&uval, uaddr))
1922 		goto handle_fault;
1923 
1924 	while (1) {
1925 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1926 
1927 		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1928 			goto handle_fault;
1929 		if (curval == uval)
1930 			break;
1931 		uval = curval;
1932 	}
1933 
1934 	/*
1935 	 * We fixed up user space. Now we need to fix the pi_state
1936 	 * itself.
1937 	 */
1938 	if (pi_state->owner != NULL) {
1939 		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1940 		WARN_ON(list_empty(&pi_state->list));
1941 		list_del_init(&pi_state->list);
1942 		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1943 	}
1944 
1945 	pi_state->owner = newowner;
1946 
1947 	raw_spin_lock_irq(&newowner->pi_lock);
1948 	WARN_ON(!list_empty(&pi_state->list));
1949 	list_add(&pi_state->list, &newowner->pi_state_list);
1950 	raw_spin_unlock_irq(&newowner->pi_lock);
1951 	return 0;
1952 
1953 	/*
1954 	 * To handle the page fault we need to drop the hash bucket
1955 	 * lock here. That gives the other task (either the highest priority
1956 	 * waiter itself or the task which stole the rtmutex) the
1957 	 * chance to try the fixup of the pi_state. So once we are
1958 	 * back from handling the fault we need to check the pi_state
1959 	 * after reacquiring the hash bucket lock and before trying to
1960 	 * do another fixup. When the fixup has been done already we
1961 	 * simply return.
1962 	 */
1963 handle_fault:
1964 	spin_unlock(q->lock_ptr);
1965 
1966 	ret = fault_in_user_writeable(uaddr);
1967 
1968 	spin_lock(q->lock_ptr);
1969 
1970 	/*
1971 	 * Check if someone else fixed it for us:
1972 	 */
1973 	if (pi_state->owner != oldowner)
1974 		return 0;
1975 
1976 	if (ret)
1977 		return ret;
1978 
1979 	goto retry;
1980 }
1981 
1982 static long futex_wait_restart(struct restart_block *restart);
1983 
1984 /**
1985  * fixup_owner() - Post lock pi_state and corner case management
1986  * @uaddr:	user address of the futex
1987  * @q:		futex_q (contains pi_state and access to the rt_mutex)
1988  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1989  *
1990  * After attempting to lock an rt_mutex, this function is called to cleanup
1991  * the pi_state owner as well as handle race conditions that may allow us to
1992  * acquire the lock. Must be called with the hb lock held.
1993  *
1994  * Return:
1995  *  1 - success, lock taken;
1996  *  0 - success, lock not taken;
1997  * <0 - on error (-EFAULT)
1998  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)1999 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2000 {
2001 	struct task_struct *owner;
2002 	int ret = 0;
2003 
2004 	if (locked) {
2005 		/*
2006 		 * Got the lock. We might not be the anticipated owner if we
2007 		 * did a lock-steal - fix up the PI-state in that case:
2008 		 */
2009 		if (q->pi_state->owner != current)
2010 			ret = fixup_pi_state_owner(uaddr, q, current);
2011 		goto out;
2012 	}
2013 
2014 	/*
2015 	 * Catch the rare case, where the lock was released when we were on the
2016 	 * way back before we locked the hash bucket.
2017 	 */
2018 	if (q->pi_state->owner == current) {
2019 		/*
2020 		 * Try to get the rt_mutex now. This might fail as some other
2021 		 * task acquired the rt_mutex after we removed ourself from the
2022 		 * rt_mutex waiters list.
2023 		 */
2024 		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2025 			locked = 1;
2026 			goto out;
2027 		}
2028 
2029 		/*
2030 		 * pi_state is incorrect, some other task did a lock steal and
2031 		 * we returned due to timeout or signal without taking the
2032 		 * rt_mutex. Too late.
2033 		 */
2034 		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2035 		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2036 		if (!owner)
2037 			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2038 		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2039 		ret = fixup_pi_state_owner(uaddr, q, owner);
2040 		goto out;
2041 	}
2042 
2043 	/*
2044 	 * Paranoia check. If we did not take the lock, then we should not be
2045 	 * the owner of the rt_mutex.
2046 	 */
2047 	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2048 		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2049 				"pi-state %p\n", ret,
2050 				q->pi_state->pi_mutex.owner,
2051 				q->pi_state->owner);
2052 
2053 out:
2054 	return ret ? ret : locked;
2055 }
2056 
2057 /**
2058  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2059  * @hb:		the futex hash bucket, must be locked by the caller
2060  * @q:		the futex_q to queue up on
2061  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2062  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2063 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2064 				struct hrtimer_sleeper *timeout)
2065 {
2066 	/*
2067 	 * The task state is guaranteed to be set before another task can
2068 	 * wake it. set_current_state() is implemented using set_mb() and
2069 	 * queue_me() calls spin_unlock() upon completion, both serializing
2070 	 * access to the hash list and forcing another memory barrier.
2071 	 */
2072 	set_current_state(TASK_INTERRUPTIBLE);
2073 	queue_me(q, hb);
2074 
2075 	/* Arm the timer */
2076 	if (timeout) {
2077 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2078 		if (!hrtimer_active(&timeout->timer))
2079 			timeout->task = NULL;
2080 	}
2081 
2082 	/*
2083 	 * If we have been removed from the hash list, then another task
2084 	 * has tried to wake us, and we can skip the call to schedule().
2085 	 */
2086 	if (likely(!plist_node_empty(&q->list))) {
2087 		/*
2088 		 * If the timer has already expired, current will already be
2089 		 * flagged for rescheduling. Only call schedule if there
2090 		 * is no timeout, or if it has yet to expire.
2091 		 */
2092 		if (!timeout || timeout->task)
2093 			freezable_schedule();
2094 	}
2095 	__set_current_state(TASK_RUNNING);
2096 }
2097 
2098 /**
2099  * futex_wait_setup() - Prepare to wait on a futex
2100  * @uaddr:	the futex userspace address
2101  * @val:	the expected value
2102  * @flags:	futex flags (FLAGS_SHARED, etc.)
2103  * @q:		the associated futex_q
2104  * @hb:		storage for hash_bucket pointer to be returned to caller
2105  *
2106  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2107  * compare it with the expected value.  Handle atomic faults internally.
2108  * Return with the hb lock held and a q.key reference on success, and unlocked
2109  * with no q.key reference on failure.
2110  *
2111  * Return:
2112  *  0 - uaddr contains val and hb has been locked;
2113  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2114  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2115 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2116 			   struct futex_q *q, struct futex_hash_bucket **hb)
2117 {
2118 	u32 uval;
2119 	int ret;
2120 
2121 	/*
2122 	 * Access the page AFTER the hash-bucket is locked.
2123 	 * Order is important:
2124 	 *
2125 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2126 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2127 	 *
2128 	 * The basic logical guarantee of a futex is that it blocks ONLY
2129 	 * if cond(var) is known to be true at the time of blocking, for
2130 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2131 	 * would open a race condition where we could block indefinitely with
2132 	 * cond(var) false, which would violate the guarantee.
2133 	 *
2134 	 * On the other hand, we insert q and release the hash-bucket only
2135 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2136 	 * absorb a wakeup if *uaddr does not match the desired values
2137 	 * while the syscall executes.
2138 	 */
2139 retry:
2140 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2141 	if (unlikely(ret != 0))
2142 		return ret;
2143 
2144 retry_private:
2145 	*hb = queue_lock(q);
2146 
2147 	ret = get_futex_value_locked(&uval, uaddr);
2148 
2149 	if (ret) {
2150 		queue_unlock(*hb);
2151 
2152 		ret = get_user(uval, uaddr);
2153 		if (ret)
2154 			goto out;
2155 
2156 		if (!(flags & FLAGS_SHARED))
2157 			goto retry_private;
2158 
2159 		put_futex_key(&q->key);
2160 		goto retry;
2161 	}
2162 
2163 	if (uval != val) {
2164 		queue_unlock(*hb);
2165 		ret = -EWOULDBLOCK;
2166 	}
2167 
2168 out:
2169 	if (ret)
2170 		put_futex_key(&q->key);
2171 	return ret;
2172 }
2173 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2174 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2175 		      ktime_t *abs_time, u32 bitset)
2176 {
2177 	struct hrtimer_sleeper timeout, *to = NULL;
2178 	struct restart_block *restart;
2179 	struct futex_hash_bucket *hb;
2180 	struct futex_q q = futex_q_init;
2181 	int ret;
2182 
2183 	if (!bitset)
2184 		return -EINVAL;
2185 	q.bitset = bitset;
2186 
2187 	if (abs_time) {
2188 		to = &timeout;
2189 
2190 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2191 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2192 				      HRTIMER_MODE_ABS);
2193 		hrtimer_init_sleeper(to, current);
2194 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2195 					     current->timer_slack_ns);
2196 	}
2197 
2198 retry:
2199 	/*
2200 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2201 	 * q.key refs.
2202 	 */
2203 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2204 	if (ret)
2205 		goto out;
2206 
2207 	/* queue_me and wait for wakeup, timeout, or a signal. */
2208 	futex_wait_queue_me(hb, &q, to);
2209 
2210 	/* If we were woken (and unqueued), we succeeded, whatever. */
2211 	ret = 0;
2212 	/* unqueue_me() drops q.key ref */
2213 	if (!unqueue_me(&q))
2214 		goto out;
2215 	ret = -ETIMEDOUT;
2216 	if (to && !to->task)
2217 		goto out;
2218 
2219 	/*
2220 	 * We expect signal_pending(current), but we might be the
2221 	 * victim of a spurious wakeup as well.
2222 	 */
2223 	if (!signal_pending(current))
2224 		goto retry;
2225 
2226 	ret = -ERESTARTSYS;
2227 	if (!abs_time)
2228 		goto out;
2229 
2230 	restart = &current->restart_block;
2231 	restart->fn = futex_wait_restart;
2232 	restart->futex.uaddr = uaddr;
2233 	restart->futex.val = val;
2234 	restart->futex.time = abs_time->tv64;
2235 	restart->futex.bitset = bitset;
2236 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2237 
2238 	ret = -ERESTART_RESTARTBLOCK;
2239 
2240 out:
2241 	if (to) {
2242 		hrtimer_cancel(&to->timer);
2243 		destroy_hrtimer_on_stack(&to->timer);
2244 	}
2245 	return ret;
2246 }
2247 
2248 
futex_wait_restart(struct restart_block * restart)2249 static long futex_wait_restart(struct restart_block *restart)
2250 {
2251 	u32 __user *uaddr = restart->futex.uaddr;
2252 	ktime_t t, *tp = NULL;
2253 
2254 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2255 		t.tv64 = restart->futex.time;
2256 		tp = &t;
2257 	}
2258 	restart->fn = do_no_restart_syscall;
2259 
2260 	return (long)futex_wait(uaddr, restart->futex.flags,
2261 				restart->futex.val, tp, restart->futex.bitset);
2262 }
2263 
2264 
2265 /*
2266  * Userspace tried a 0 -> TID atomic transition of the futex value
2267  * and failed. The kernel side here does the whole locking operation:
2268  * if there are waiters then it will block, it does PI, etc. (Due to
2269  * races the kernel might see a 0 value of the futex too.)
2270  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2271 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2272 			 ktime_t *time, int trylock)
2273 {
2274 	struct hrtimer_sleeper timeout, *to = NULL;
2275 	struct futex_hash_bucket *hb;
2276 	struct futex_q q = futex_q_init;
2277 	int res, ret;
2278 
2279 	if (refill_pi_state_cache())
2280 		return -ENOMEM;
2281 
2282 	if (time) {
2283 		to = &timeout;
2284 		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2285 				      HRTIMER_MODE_ABS);
2286 		hrtimer_init_sleeper(to, current);
2287 		hrtimer_set_expires(&to->timer, *time);
2288 	}
2289 
2290 retry:
2291 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2292 	if (unlikely(ret != 0))
2293 		goto out;
2294 
2295 retry_private:
2296 	hb = queue_lock(&q);
2297 
2298 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2299 	if (unlikely(ret)) {
2300 		switch (ret) {
2301 		case 1:
2302 			/* We got the lock. */
2303 			ret = 0;
2304 			goto out_unlock_put_key;
2305 		case -EFAULT:
2306 			goto uaddr_faulted;
2307 		case -EAGAIN:
2308 			/*
2309 			 * Two reasons for this:
2310 			 * - Task is exiting and we just wait for the
2311 			 *   exit to complete.
2312 			 * - The user space value changed.
2313 			 */
2314 			queue_unlock(hb);
2315 			put_futex_key(&q.key);
2316 			cond_resched();
2317 			goto retry;
2318 		default:
2319 			goto out_unlock_put_key;
2320 		}
2321 	}
2322 
2323 	/*
2324 	 * Only actually queue now that the atomic ops are done:
2325 	 */
2326 	queue_me(&q, hb);
2327 
2328 	WARN_ON(!q.pi_state);
2329 	/*
2330 	 * Block on the PI mutex:
2331 	 */
2332 	if (!trylock) {
2333 		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2334 	} else {
2335 		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2336 		/* Fixup the trylock return value: */
2337 		ret = ret ? 0 : -EWOULDBLOCK;
2338 	}
2339 
2340 	spin_lock(q.lock_ptr);
2341 	/*
2342 	 * Fixup the pi_state owner and possibly acquire the lock if we
2343 	 * haven't already.
2344 	 */
2345 	res = fixup_owner(uaddr, &q, !ret);
2346 	/*
2347 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2348 	 * the lock, clear our -ETIMEDOUT or -EINTR.
2349 	 */
2350 	if (res)
2351 		ret = (res < 0) ? res : 0;
2352 
2353 	/*
2354 	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2355 	 * it and return the fault to userspace.
2356 	 */
2357 	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2358 		rt_mutex_unlock(&q.pi_state->pi_mutex);
2359 
2360 	/* Unqueue and drop the lock */
2361 	unqueue_me_pi(&q);
2362 
2363 	goto out_put_key;
2364 
2365 out_unlock_put_key:
2366 	queue_unlock(hb);
2367 
2368 out_put_key:
2369 	put_futex_key(&q.key);
2370 out:
2371 	if (to)
2372 		destroy_hrtimer_on_stack(&to->timer);
2373 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2374 
2375 uaddr_faulted:
2376 	queue_unlock(hb);
2377 
2378 	ret = fault_in_user_writeable(uaddr);
2379 	if (ret)
2380 		goto out_put_key;
2381 
2382 	if (!(flags & FLAGS_SHARED))
2383 		goto retry_private;
2384 
2385 	put_futex_key(&q.key);
2386 	goto retry;
2387 }
2388 
2389 /*
2390  * Userspace attempted a TID -> 0 atomic transition, and failed.
2391  * This is the in-kernel slowpath: we look up the PI state (if any),
2392  * and do the rt-mutex unlock.
2393  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2394 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2395 {
2396 	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2397 	union futex_key key = FUTEX_KEY_INIT;
2398 	struct futex_hash_bucket *hb;
2399 	struct futex_q *match;
2400 	int ret;
2401 
2402 retry:
2403 	if (get_user(uval, uaddr))
2404 		return -EFAULT;
2405 	/*
2406 	 * We release only a lock we actually own:
2407 	 */
2408 	if ((uval & FUTEX_TID_MASK) != vpid)
2409 		return -EPERM;
2410 
2411 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2412 	if (ret)
2413 		return ret;
2414 
2415 	hb = hash_futex(&key);
2416 	spin_lock(&hb->lock);
2417 
2418 	/*
2419 	 * Check waiters first. We do not trust user space values at
2420 	 * all and we at least want to know if user space fiddled
2421 	 * with the futex value instead of blindly unlocking.
2422 	 */
2423 	match = futex_top_waiter(hb, &key);
2424 	if (match) {
2425 		ret = wake_futex_pi(uaddr, uval, match);
2426 		/*
2427 		 * The atomic access to the futex value generated a
2428 		 * pagefault, so retry the user-access and the wakeup:
2429 		 */
2430 		if (ret == -EFAULT)
2431 			goto pi_faulted;
2432 		/*
2433 		 * A unconditional UNLOCK_PI op raced against a waiter
2434 		 * setting the FUTEX_WAITERS bit. Try again.
2435 		 */
2436 		if (ret == -EAGAIN) {
2437 			spin_unlock(&hb->lock);
2438 			put_futex_key(&key);
2439 			goto retry;
2440 		}
2441 		goto out_unlock;
2442 	}
2443 
2444 	/*
2445 	 * We have no kernel internal state, i.e. no waiters in the
2446 	 * kernel. Waiters which are about to queue themselves are stuck
2447 	 * on hb->lock. So we can safely ignore them. We do neither
2448 	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2449 	 * owner.
2450 	 */
2451 	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2452 		goto pi_faulted;
2453 
2454 	/*
2455 	 * If uval has changed, let user space handle it.
2456 	 */
2457 	ret = (curval == uval) ? 0 : -EAGAIN;
2458 
2459 out_unlock:
2460 	spin_unlock(&hb->lock);
2461 	put_futex_key(&key);
2462 	return ret;
2463 
2464 pi_faulted:
2465 	spin_unlock(&hb->lock);
2466 	put_futex_key(&key);
2467 
2468 	ret = fault_in_user_writeable(uaddr);
2469 	if (!ret)
2470 		goto retry;
2471 
2472 	return ret;
2473 }
2474 
2475 /**
2476  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2477  * @hb:		the hash_bucket futex_q was original enqueued on
2478  * @q:		the futex_q woken while waiting to be requeued
2479  * @key2:	the futex_key of the requeue target futex
2480  * @timeout:	the timeout associated with the wait (NULL if none)
2481  *
2482  * Detect if the task was woken on the initial futex as opposed to the requeue
2483  * target futex.  If so, determine if it was a timeout or a signal that caused
2484  * the wakeup and return the appropriate error code to the caller.  Must be
2485  * called with the hb lock held.
2486  *
2487  * Return:
2488  *  0 = no early wakeup detected;
2489  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2490  */
2491 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)2492 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2493 				   struct futex_q *q, union futex_key *key2,
2494 				   struct hrtimer_sleeper *timeout)
2495 {
2496 	int ret = 0;
2497 
2498 	/*
2499 	 * With the hb lock held, we avoid races while we process the wakeup.
2500 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2501 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2502 	 * It can't be requeued from uaddr2 to something else since we don't
2503 	 * support a PI aware source futex for requeue.
2504 	 */
2505 	if (!match_futex(&q->key, key2)) {
2506 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2507 		/*
2508 		 * We were woken prior to requeue by a timeout or a signal.
2509 		 * Unqueue the futex_q and determine which it was.
2510 		 */
2511 		plist_del(&q->list, &hb->chain);
2512 		hb_waiters_dec(hb);
2513 
2514 		/* Handle spurious wakeups gracefully */
2515 		ret = -EWOULDBLOCK;
2516 		if (timeout && !timeout->task)
2517 			ret = -ETIMEDOUT;
2518 		else if (signal_pending(current))
2519 			ret = -ERESTARTNOINTR;
2520 	}
2521 	return ret;
2522 }
2523 
2524 /**
2525  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2526  * @uaddr:	the futex we initially wait on (non-pi)
2527  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2528  * 		the same type, no requeueing from private to shared, etc.
2529  * @val:	the expected value of uaddr
2530  * @abs_time:	absolute timeout
2531  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2532  * @uaddr2:	the pi futex we will take prior to returning to user-space
2533  *
2534  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2535  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2536  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2537  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2538  * without one, the pi logic would not know which task to boost/deboost, if
2539  * there was a need to.
2540  *
2541  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2542  * via the following--
2543  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2544  * 2) wakeup on uaddr2 after a requeue
2545  * 3) signal
2546  * 4) timeout
2547  *
2548  * If 3, cleanup and return -ERESTARTNOINTR.
2549  *
2550  * If 2, we may then block on trying to take the rt_mutex and return via:
2551  * 5) successful lock
2552  * 6) signal
2553  * 7) timeout
2554  * 8) other lock acquisition failure
2555  *
2556  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2557  *
2558  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2559  *
2560  * Return:
2561  *  0 - On success;
2562  * <0 - On error
2563  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)2564 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2565 				 u32 val, ktime_t *abs_time, u32 bitset,
2566 				 u32 __user *uaddr2)
2567 {
2568 	struct hrtimer_sleeper timeout, *to = NULL;
2569 	struct rt_mutex_waiter rt_waiter;
2570 	struct rt_mutex *pi_mutex = NULL;
2571 	struct futex_hash_bucket *hb;
2572 	union futex_key key2 = FUTEX_KEY_INIT;
2573 	struct futex_q q = futex_q_init;
2574 	int res, ret;
2575 
2576 	if (uaddr == uaddr2)
2577 		return -EINVAL;
2578 
2579 	if (!bitset)
2580 		return -EINVAL;
2581 
2582 	if (abs_time) {
2583 		to = &timeout;
2584 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2585 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2586 				      HRTIMER_MODE_ABS);
2587 		hrtimer_init_sleeper(to, current);
2588 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2589 					     current->timer_slack_ns);
2590 	}
2591 
2592 	/*
2593 	 * The waiter is allocated on our stack, manipulated by the requeue
2594 	 * code while we sleep on uaddr.
2595 	 */
2596 	debug_rt_mutex_init_waiter(&rt_waiter);
2597 	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2598 	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2599 	rt_waiter.task = NULL;
2600 
2601 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2602 	if (unlikely(ret != 0))
2603 		goto out;
2604 
2605 	q.bitset = bitset;
2606 	q.rt_waiter = &rt_waiter;
2607 	q.requeue_pi_key = &key2;
2608 
2609 	/*
2610 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2611 	 * count.
2612 	 */
2613 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2614 	if (ret)
2615 		goto out_key2;
2616 
2617 	/*
2618 	 * The check above which compares uaddrs is not sufficient for
2619 	 * shared futexes. We need to compare the keys:
2620 	 */
2621 	if (match_futex(&q.key, &key2)) {
2622 		queue_unlock(hb);
2623 		ret = -EINVAL;
2624 		goto out_put_keys;
2625 	}
2626 
2627 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2628 	futex_wait_queue_me(hb, &q, to);
2629 
2630 	spin_lock(&hb->lock);
2631 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2632 	spin_unlock(&hb->lock);
2633 	if (ret)
2634 		goto out_put_keys;
2635 
2636 	/*
2637 	 * In order for us to be here, we know our q.key == key2, and since
2638 	 * we took the hb->lock above, we also know that futex_requeue() has
2639 	 * completed and we no longer have to concern ourselves with a wakeup
2640 	 * race with the atomic proxy lock acquisition by the requeue code. The
2641 	 * futex_requeue dropped our key1 reference and incremented our key2
2642 	 * reference count.
2643 	 */
2644 
2645 	/* Check if the requeue code acquired the second futex for us. */
2646 	if (!q.rt_waiter) {
2647 		/*
2648 		 * Got the lock. We might not be the anticipated owner if we
2649 		 * did a lock-steal - fix up the PI-state in that case.
2650 		 */
2651 		if (q.pi_state && (q.pi_state->owner != current)) {
2652 			spin_lock(q.lock_ptr);
2653 			ret = fixup_pi_state_owner(uaddr2, &q, current);
2654 			/*
2655 			 * Drop the reference to the pi state which
2656 			 * the requeue_pi() code acquired for us.
2657 			 */
2658 			free_pi_state(q.pi_state);
2659 			spin_unlock(q.lock_ptr);
2660 		}
2661 	} else {
2662 		/*
2663 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2664 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2665 		 * the pi_state.
2666 		 */
2667 		WARN_ON(!q.pi_state);
2668 		pi_mutex = &q.pi_state->pi_mutex;
2669 		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2670 		debug_rt_mutex_free_waiter(&rt_waiter);
2671 
2672 		spin_lock(q.lock_ptr);
2673 		/*
2674 		 * Fixup the pi_state owner and possibly acquire the lock if we
2675 		 * haven't already.
2676 		 */
2677 		res = fixup_owner(uaddr2, &q, !ret);
2678 		/*
2679 		 * If fixup_owner() returned an error, proprogate that.  If it
2680 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2681 		 */
2682 		if (res)
2683 			ret = (res < 0) ? res : 0;
2684 
2685 		/* Unqueue and drop the lock. */
2686 		unqueue_me_pi(&q);
2687 	}
2688 
2689 	/*
2690 	 * If fixup_pi_state_owner() faulted and was unable to handle the
2691 	 * fault, unlock the rt_mutex and return the fault to userspace.
2692 	 */
2693 	if (ret == -EFAULT) {
2694 		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2695 			rt_mutex_unlock(pi_mutex);
2696 	} else if (ret == -EINTR) {
2697 		/*
2698 		 * We've already been requeued, but cannot restart by calling
2699 		 * futex_lock_pi() directly. We could restart this syscall, but
2700 		 * it would detect that the user space "val" changed and return
2701 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2702 		 * -EWOULDBLOCK directly.
2703 		 */
2704 		ret = -EWOULDBLOCK;
2705 	}
2706 
2707 out_put_keys:
2708 	put_futex_key(&q.key);
2709 out_key2:
2710 	put_futex_key(&key2);
2711 
2712 out:
2713 	if (to) {
2714 		hrtimer_cancel(&to->timer);
2715 		destroy_hrtimer_on_stack(&to->timer);
2716 	}
2717 	return ret;
2718 }
2719 
2720 /*
2721  * Support for robust futexes: the kernel cleans up held futexes at
2722  * thread exit time.
2723  *
2724  * Implementation: user-space maintains a per-thread list of locks it
2725  * is holding. Upon do_exit(), the kernel carefully walks this list,
2726  * and marks all locks that are owned by this thread with the
2727  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2728  * always manipulated with the lock held, so the list is private and
2729  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2730  * field, to allow the kernel to clean up if the thread dies after
2731  * acquiring the lock, but just before it could have added itself to
2732  * the list. There can only be one such pending lock.
2733  */
2734 
2735 /**
2736  * sys_set_robust_list() - Set the robust-futex list head of a task
2737  * @head:	pointer to the list-head
2738  * @len:	length of the list-head, as userspace expects
2739  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)2740 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2741 		size_t, len)
2742 {
2743 	if (!futex_cmpxchg_enabled)
2744 		return -ENOSYS;
2745 	/*
2746 	 * The kernel knows only one size for now:
2747 	 */
2748 	if (unlikely(len != sizeof(*head)))
2749 		return -EINVAL;
2750 
2751 	current->robust_list = head;
2752 
2753 	return 0;
2754 }
2755 
2756 /**
2757  * sys_get_robust_list() - Get the robust-futex list head of a task
2758  * @pid:	pid of the process [zero for current task]
2759  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2760  * @len_ptr:	pointer to a length field, the kernel fills in the header size
2761  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)2762 SYSCALL_DEFINE3(get_robust_list, int, pid,
2763 		struct robust_list_head __user * __user *, head_ptr,
2764 		size_t __user *, len_ptr)
2765 {
2766 	struct robust_list_head __user *head;
2767 	unsigned long ret;
2768 	struct task_struct *p;
2769 
2770 	if (!futex_cmpxchg_enabled)
2771 		return -ENOSYS;
2772 
2773 	rcu_read_lock();
2774 
2775 	ret = -ESRCH;
2776 	if (!pid)
2777 		p = current;
2778 	else {
2779 		p = find_task_by_vpid(pid);
2780 		if (!p)
2781 			goto err_unlock;
2782 	}
2783 
2784 	ret = -EPERM;
2785 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2786 		goto err_unlock;
2787 
2788 	head = p->robust_list;
2789 	rcu_read_unlock();
2790 
2791 	if (put_user(sizeof(*head), len_ptr))
2792 		return -EFAULT;
2793 	return put_user(head, head_ptr);
2794 
2795 err_unlock:
2796 	rcu_read_unlock();
2797 
2798 	return ret;
2799 }
2800 
2801 /*
2802  * Process a futex-list entry, check whether it's owned by the
2803  * dying task, and do notification if so:
2804  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,int pi)2805 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2806 {
2807 	u32 uval, uninitialized_var(nval), mval;
2808 
2809 retry:
2810 	if (get_user(uval, uaddr))
2811 		return -1;
2812 
2813 	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2814 		/*
2815 		 * Ok, this dying thread is truly holding a futex
2816 		 * of interest. Set the OWNER_DIED bit atomically
2817 		 * via cmpxchg, and if the value had FUTEX_WAITERS
2818 		 * set, wake up a waiter (if any). (We have to do a
2819 		 * futex_wake() even if OWNER_DIED is already set -
2820 		 * to handle the rare but possible case of recursive
2821 		 * thread-death.) The rest of the cleanup is done in
2822 		 * userspace.
2823 		 */
2824 		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2825 		/*
2826 		 * We are not holding a lock here, but we want to have
2827 		 * the pagefault_disable/enable() protection because
2828 		 * we want to handle the fault gracefully. If the
2829 		 * access fails we try to fault in the futex with R/W
2830 		 * verification via get_user_pages. get_user() above
2831 		 * does not guarantee R/W access. If that fails we
2832 		 * give up and leave the futex locked.
2833 		 */
2834 		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2835 			if (fault_in_user_writeable(uaddr))
2836 				return -1;
2837 			goto retry;
2838 		}
2839 		if (nval != uval)
2840 			goto retry;
2841 
2842 		/*
2843 		 * Wake robust non-PI futexes here. The wakeup of
2844 		 * PI futexes happens in exit_pi_state():
2845 		 */
2846 		if (!pi && (uval & FUTEX_WAITERS))
2847 			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2848 	}
2849 	return 0;
2850 }
2851 
2852 /*
2853  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2854  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)2855 static inline int fetch_robust_entry(struct robust_list __user **entry,
2856 				     struct robust_list __user * __user *head,
2857 				     unsigned int *pi)
2858 {
2859 	unsigned long uentry;
2860 
2861 	if (get_user(uentry, (unsigned long __user *)head))
2862 		return -EFAULT;
2863 
2864 	*entry = (void __user *)(uentry & ~1UL);
2865 	*pi = uentry & 1;
2866 
2867 	return 0;
2868 }
2869 
2870 /*
2871  * Walk curr->robust_list (very carefully, it's a userspace list!)
2872  * and mark any locks found there dead, and notify any waiters.
2873  *
2874  * We silently return on any sign of list-walking problem.
2875  */
exit_robust_list(struct task_struct * curr)2876 void exit_robust_list(struct task_struct *curr)
2877 {
2878 	struct robust_list_head __user *head = curr->robust_list;
2879 	struct robust_list __user *entry, *next_entry, *pending;
2880 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2881 	unsigned int uninitialized_var(next_pi);
2882 	unsigned long futex_offset;
2883 	int rc;
2884 
2885 	if (!futex_cmpxchg_enabled)
2886 		return;
2887 
2888 	/*
2889 	 * Fetch the list head (which was registered earlier, via
2890 	 * sys_set_robust_list()):
2891 	 */
2892 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2893 		return;
2894 	/*
2895 	 * Fetch the relative futex offset:
2896 	 */
2897 	if (get_user(futex_offset, &head->futex_offset))
2898 		return;
2899 	/*
2900 	 * Fetch any possibly pending lock-add first, and handle it
2901 	 * if it exists:
2902 	 */
2903 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2904 		return;
2905 
2906 	next_entry = NULL;	/* avoid warning with gcc */
2907 	while (entry != &head->list) {
2908 		/*
2909 		 * Fetch the next entry in the list before calling
2910 		 * handle_futex_death:
2911 		 */
2912 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2913 		/*
2914 		 * A pending lock might already be on the list, so
2915 		 * don't process it twice:
2916 		 */
2917 		if (entry != pending)
2918 			if (handle_futex_death((void __user *)entry + futex_offset,
2919 						curr, pi))
2920 				return;
2921 		if (rc)
2922 			return;
2923 		entry = next_entry;
2924 		pi = next_pi;
2925 		/*
2926 		 * Avoid excessively long or circular lists:
2927 		 */
2928 		if (!--limit)
2929 			break;
2930 
2931 		cond_resched();
2932 	}
2933 
2934 	if (pending)
2935 		handle_futex_death((void __user *)pending + futex_offset,
2936 				   curr, pip);
2937 }
2938 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)2939 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2940 		u32 __user *uaddr2, u32 val2, u32 val3)
2941 {
2942 	int cmd = op & FUTEX_CMD_MASK;
2943 	unsigned int flags = 0;
2944 
2945 	if (!(op & FUTEX_PRIVATE_FLAG))
2946 		flags |= FLAGS_SHARED;
2947 
2948 	if (op & FUTEX_CLOCK_REALTIME) {
2949 		flags |= FLAGS_CLOCKRT;
2950 		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2951 			return -ENOSYS;
2952 	}
2953 
2954 	switch (cmd) {
2955 	case FUTEX_LOCK_PI:
2956 	case FUTEX_UNLOCK_PI:
2957 	case FUTEX_TRYLOCK_PI:
2958 	case FUTEX_WAIT_REQUEUE_PI:
2959 	case FUTEX_CMP_REQUEUE_PI:
2960 		if (!futex_cmpxchg_enabled)
2961 			return -ENOSYS;
2962 	}
2963 
2964 	switch (cmd) {
2965 	case FUTEX_WAIT:
2966 		val3 = FUTEX_BITSET_MATCH_ANY;
2967 	case FUTEX_WAIT_BITSET:
2968 		return futex_wait(uaddr, flags, val, timeout, val3);
2969 	case FUTEX_WAKE:
2970 		val3 = FUTEX_BITSET_MATCH_ANY;
2971 	case FUTEX_WAKE_BITSET:
2972 		return futex_wake(uaddr, flags, val, val3);
2973 	case FUTEX_REQUEUE:
2974 		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2975 	case FUTEX_CMP_REQUEUE:
2976 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2977 	case FUTEX_WAKE_OP:
2978 		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2979 	case FUTEX_LOCK_PI:
2980 		return futex_lock_pi(uaddr, flags, timeout, 0);
2981 	case FUTEX_UNLOCK_PI:
2982 		return futex_unlock_pi(uaddr, flags);
2983 	case FUTEX_TRYLOCK_PI:
2984 		return futex_lock_pi(uaddr, flags, NULL, 1);
2985 	case FUTEX_WAIT_REQUEUE_PI:
2986 		val3 = FUTEX_BITSET_MATCH_ANY;
2987 		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2988 					     uaddr2);
2989 	case FUTEX_CMP_REQUEUE_PI:
2990 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2991 	}
2992 	return -ENOSYS;
2993 }
2994 
2995 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct timespec __user *,utime,u32 __user *,uaddr2,u32,val3)2996 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2997 		struct timespec __user *, utime, u32 __user *, uaddr2,
2998 		u32, val3)
2999 {
3000 	struct timespec ts;
3001 	ktime_t t, *tp = NULL;
3002 	u32 val2 = 0;
3003 	int cmd = op & FUTEX_CMD_MASK;
3004 
3005 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3006 		      cmd == FUTEX_WAIT_BITSET ||
3007 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3008 		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3009 			return -EFAULT;
3010 		if (!timespec_valid(&ts))
3011 			return -EINVAL;
3012 
3013 		t = timespec_to_ktime(ts);
3014 		if (cmd == FUTEX_WAIT)
3015 			t = ktime_add_safe(ktime_get(), t);
3016 		tp = &t;
3017 	}
3018 	/*
3019 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3020 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3021 	 */
3022 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3023 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3024 		val2 = (u32) (unsigned long) utime;
3025 
3026 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3027 }
3028 
futex_detect_cmpxchg(void)3029 static void __init futex_detect_cmpxchg(void)
3030 {
3031 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3032 	u32 curval;
3033 
3034 	/*
3035 	 * This will fail and we want it. Some arch implementations do
3036 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3037 	 * functionality. We want to know that before we call in any
3038 	 * of the complex code paths. Also we want to prevent
3039 	 * registration of robust lists in that case. NULL is
3040 	 * guaranteed to fault and we get -EFAULT on functional
3041 	 * implementation, the non-functional ones will return
3042 	 * -ENOSYS.
3043 	 */
3044 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3045 		futex_cmpxchg_enabled = 1;
3046 #endif
3047 }
3048 
futex_init(void)3049 static int __init futex_init(void)
3050 {
3051 	unsigned int futex_shift;
3052 	unsigned long i;
3053 
3054 #if CONFIG_BASE_SMALL
3055 	futex_hashsize = 16;
3056 #else
3057 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3058 #endif
3059 
3060 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3061 					       futex_hashsize, 0,
3062 					       futex_hashsize < 256 ? HASH_SMALL : 0,
3063 					       &futex_shift, NULL,
3064 					       futex_hashsize, futex_hashsize);
3065 	futex_hashsize = 1UL << futex_shift;
3066 
3067 	futex_detect_cmpxchg();
3068 
3069 	for (i = 0; i < futex_hashsize; i++) {
3070 		atomic_set(&futex_queues[i].waiters, 0);
3071 		plist_head_init(&futex_queues[i].chain);
3072 		spin_lock_init(&futex_queues[i].lock);
3073 	}
3074 
3075 	return 0;
3076 }
3077 __initcall(futex_init);
3078