1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/parser.h>
28 #include <linux/buffer_head.h>
29 #include <linux/exportfs.h>
30 #include <linux/vfs.h>
31 #include <linux/random.h>
32 #include <linux/mount.h>
33 #include <linux/namei.h>
34 #include <linux/quotaops.h>
35 #include <linux/seq_file.h>
36 #include <linux/proc_fs.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_extents.h"	/* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55 
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61 static int ext4_mballoc_ready;
62 
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 			     unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 					struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 				   struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 		       const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85 
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 	.owner		= THIS_MODULE,
89 	.name		= "ext2",
90 	.mount		= ext4_mount,
91 	.kill_sb	= kill_block_super,
92 	.fs_flags	= FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100 
101 
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 	.owner		= THIS_MODULE,
105 	.name		= "ext3",
106 	.mount		= ext4_mount,
107 	.kill_sb	= kill_block_super,
108 	.fs_flags	= FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)117 static int ext4_verify_csum_type(struct super_block *sb,
118 				 struct ext4_super_block *es)
119 {
120 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 					EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 		return 1;
123 
124 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 				   struct ext4_super_block *es)
129 {
130 	struct ext4_sb_info *sbi = EXT4_SB(sb);
131 	int offset = offsetof(struct ext4_super_block, s_checksum);
132 	__u32 csum;
133 
134 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135 
136 	return cpu_to_le32(csum);
137 }
138 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)139 static int ext4_superblock_csum_verify(struct super_block *sb,
140 				       struct ext4_super_block *es)
141 {
142 	if (!ext4_has_metadata_csum(sb))
143 		return 1;
144 
145 	return es->s_checksum == ext4_superblock_csum(sb, es);
146 }
147 
ext4_superblock_csum_set(struct super_block * sb)148 void ext4_superblock_csum_set(struct super_block *sb)
149 {
150 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
151 
152 	if (!ext4_has_metadata_csum(sb))
153 		return;
154 
155 	es->s_checksum = ext4_superblock_csum(sb, es);
156 }
157 
ext4_kvmalloc(size_t size,gfp_t flags)158 void *ext4_kvmalloc(size_t size, gfp_t flags)
159 {
160 	void *ret;
161 
162 	ret = kmalloc(size, flags | __GFP_NOWARN);
163 	if (!ret)
164 		ret = __vmalloc(size, flags, PAGE_KERNEL);
165 	return ret;
166 }
167 
ext4_kvzalloc(size_t size,gfp_t flags)168 void *ext4_kvzalloc(size_t size, gfp_t flags)
169 {
170 	void *ret;
171 
172 	ret = kzalloc(size, flags | __GFP_NOWARN);
173 	if (!ret)
174 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
175 	return ret;
176 }
177 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)178 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
179 			       struct ext4_group_desc *bg)
180 {
181 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
182 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
184 }
185 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)186 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
187 			       struct ext4_group_desc *bg)
188 {
189 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
190 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
192 }
193 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)194 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
195 			      struct ext4_group_desc *bg)
196 {
197 	return le32_to_cpu(bg->bg_inode_table_lo) |
198 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
200 }
201 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)202 __u32 ext4_free_group_clusters(struct super_block *sb,
203 			       struct ext4_group_desc *bg)
204 {
205 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
206 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
208 }
209 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)210 __u32 ext4_free_inodes_count(struct super_block *sb,
211 			      struct ext4_group_desc *bg)
212 {
213 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
214 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
216 }
217 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)218 __u32 ext4_used_dirs_count(struct super_block *sb,
219 			      struct ext4_group_desc *bg)
220 {
221 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
222 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
224 }
225 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)226 __u32 ext4_itable_unused_count(struct super_block *sb,
227 			      struct ext4_group_desc *bg)
228 {
229 	return le16_to_cpu(bg->bg_itable_unused_lo) |
230 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
232 }
233 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)234 void ext4_block_bitmap_set(struct super_block *sb,
235 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
236 {
237 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
238 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
240 }
241 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)242 void ext4_inode_bitmap_set(struct super_block *sb,
243 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
246 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)250 void ext4_inode_table_set(struct super_block *sb,
251 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
254 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
256 }
257 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)258 void ext4_free_group_clusters_set(struct super_block *sb,
259 				  struct ext4_group_desc *bg, __u32 count)
260 {
261 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
262 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
264 }
265 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)266 void ext4_free_inodes_set(struct super_block *sb,
267 			  struct ext4_group_desc *bg, __u32 count)
268 {
269 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
270 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
272 }
273 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)274 void ext4_used_dirs_set(struct super_block *sb,
275 			  struct ext4_group_desc *bg, __u32 count)
276 {
277 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
278 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
280 }
281 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)282 void ext4_itable_unused_set(struct super_block *sb,
283 			  struct ext4_group_desc *bg, __u32 count)
284 {
285 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
286 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
288 }
289 
290 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)291 static void __save_error_info(struct super_block *sb, const char *func,
292 			    unsigned int line)
293 {
294 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
295 
296 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
297 	if (bdev_read_only(sb->s_bdev))
298 		return;
299 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
300 	es->s_last_error_time = cpu_to_le32(get_seconds());
301 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
302 	es->s_last_error_line = cpu_to_le32(line);
303 	if (!es->s_first_error_time) {
304 		es->s_first_error_time = es->s_last_error_time;
305 		strncpy(es->s_first_error_func, func,
306 			sizeof(es->s_first_error_func));
307 		es->s_first_error_line = cpu_to_le32(line);
308 		es->s_first_error_ino = es->s_last_error_ino;
309 		es->s_first_error_block = es->s_last_error_block;
310 	}
311 	/*
312 	 * Start the daily error reporting function if it hasn't been
313 	 * started already
314 	 */
315 	if (!es->s_error_count)
316 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
317 	le32_add_cpu(&es->s_error_count, 1);
318 }
319 
save_error_info(struct super_block * sb,const char * func,unsigned int line)320 static void save_error_info(struct super_block *sb, const char *func,
321 			    unsigned int line)
322 {
323 	__save_error_info(sb, func, line);
324 	ext4_commit_super(sb, 1);
325 }
326 
327 /*
328  * The del_gendisk() function uninitializes the disk-specific data
329  * structures, including the bdi structure, without telling anyone
330  * else.  Once this happens, any attempt to call mark_buffer_dirty()
331  * (for example, by ext4_commit_super), will cause a kernel OOPS.
332  * This is a kludge to prevent these oops until we can put in a proper
333  * hook in del_gendisk() to inform the VFS and file system layers.
334  */
block_device_ejected(struct super_block * sb)335 static int block_device_ejected(struct super_block *sb)
336 {
337 	struct inode *bd_inode = sb->s_bdev->bd_inode;
338 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
339 
340 	return bdi->dev == NULL;
341 }
342 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)343 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
344 {
345 	struct super_block		*sb = journal->j_private;
346 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
347 	int				error = is_journal_aborted(journal);
348 	struct ext4_journal_cb_entry	*jce;
349 
350 	BUG_ON(txn->t_state == T_FINISHED);
351 	spin_lock(&sbi->s_md_lock);
352 	while (!list_empty(&txn->t_private_list)) {
353 		jce = list_entry(txn->t_private_list.next,
354 				 struct ext4_journal_cb_entry, jce_list);
355 		list_del_init(&jce->jce_list);
356 		spin_unlock(&sbi->s_md_lock);
357 		jce->jce_func(sb, jce, error);
358 		spin_lock(&sbi->s_md_lock);
359 	}
360 	spin_unlock(&sbi->s_md_lock);
361 }
362 
363 /* Deal with the reporting of failure conditions on a filesystem such as
364  * inconsistencies detected or read IO failures.
365  *
366  * On ext2, we can store the error state of the filesystem in the
367  * superblock.  That is not possible on ext4, because we may have other
368  * write ordering constraints on the superblock which prevent us from
369  * writing it out straight away; and given that the journal is about to
370  * be aborted, we can't rely on the current, or future, transactions to
371  * write out the superblock safely.
372  *
373  * We'll just use the jbd2_journal_abort() error code to record an error in
374  * the journal instead.  On recovery, the journal will complain about
375  * that error until we've noted it down and cleared it.
376  */
377 
ext4_handle_error(struct super_block * sb)378 static void ext4_handle_error(struct super_block *sb)
379 {
380 	if (sb->s_flags & MS_RDONLY)
381 		return;
382 
383 	if (!test_opt(sb, ERRORS_CONT)) {
384 		journal_t *journal = EXT4_SB(sb)->s_journal;
385 
386 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
387 		if (journal)
388 			jbd2_journal_abort(journal, -EIO);
389 	}
390 	if (test_opt(sb, ERRORS_RO)) {
391 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
392 		/*
393 		 * Make sure updated value of ->s_mount_flags will be visible
394 		 * before ->s_flags update
395 		 */
396 		smp_wmb();
397 		sb->s_flags |= MS_RDONLY;
398 	}
399 	if (test_opt(sb, ERRORS_PANIC)) {
400 		if (EXT4_SB(sb)->s_journal &&
401 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
402 			return;
403 		panic("EXT4-fs (device %s): panic forced after error\n",
404 			sb->s_id);
405 	}
406 }
407 
408 #define ext4_error_ratelimit(sb)					\
409 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
410 			     "EXT4-fs error")
411 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)412 void __ext4_error(struct super_block *sb, const char *function,
413 		  unsigned int line, const char *fmt, ...)
414 {
415 	struct va_format vaf;
416 	va_list args;
417 
418 	if (ext4_error_ratelimit(sb)) {
419 		va_start(args, fmt);
420 		vaf.fmt = fmt;
421 		vaf.va = &args;
422 		printk(KERN_CRIT
423 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
424 		       sb->s_id, function, line, current->comm, &vaf);
425 		va_end(args);
426 	}
427 	save_error_info(sb, function, line);
428 	ext4_handle_error(sb);
429 }
430 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)431 void __ext4_error_inode(struct inode *inode, const char *function,
432 			unsigned int line, ext4_fsblk_t block,
433 			const char *fmt, ...)
434 {
435 	va_list args;
436 	struct va_format vaf;
437 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
438 
439 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
440 	es->s_last_error_block = cpu_to_le64(block);
441 	if (ext4_error_ratelimit(inode->i_sb)) {
442 		va_start(args, fmt);
443 		vaf.fmt = fmt;
444 		vaf.va = &args;
445 		if (block)
446 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
447 			       "inode #%lu: block %llu: comm %s: %pV\n",
448 			       inode->i_sb->s_id, function, line, inode->i_ino,
449 			       block, current->comm, &vaf);
450 		else
451 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
452 			       "inode #%lu: comm %s: %pV\n",
453 			       inode->i_sb->s_id, function, line, inode->i_ino,
454 			       current->comm, &vaf);
455 		va_end(args);
456 	}
457 	save_error_info(inode->i_sb, function, line);
458 	ext4_handle_error(inode->i_sb);
459 }
460 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)461 void __ext4_error_file(struct file *file, const char *function,
462 		       unsigned int line, ext4_fsblk_t block,
463 		       const char *fmt, ...)
464 {
465 	va_list args;
466 	struct va_format vaf;
467 	struct ext4_super_block *es;
468 	struct inode *inode = file_inode(file);
469 	char pathname[80], *path;
470 
471 	es = EXT4_SB(inode->i_sb)->s_es;
472 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
473 	if (ext4_error_ratelimit(inode->i_sb)) {
474 		path = d_path(&(file->f_path), pathname, sizeof(pathname));
475 		if (IS_ERR(path))
476 			path = "(unknown)";
477 		va_start(args, fmt);
478 		vaf.fmt = fmt;
479 		vaf.va = &args;
480 		if (block)
481 			printk(KERN_CRIT
482 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
483 			       "block %llu: comm %s: path %s: %pV\n",
484 			       inode->i_sb->s_id, function, line, inode->i_ino,
485 			       block, current->comm, path, &vaf);
486 		else
487 			printk(KERN_CRIT
488 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
489 			       "comm %s: path %s: %pV\n",
490 			       inode->i_sb->s_id, function, line, inode->i_ino,
491 			       current->comm, path, &vaf);
492 		va_end(args);
493 	}
494 	save_error_info(inode->i_sb, function, line);
495 	ext4_handle_error(inode->i_sb);
496 }
497 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])498 const char *ext4_decode_error(struct super_block *sb, int errno,
499 			      char nbuf[16])
500 {
501 	char *errstr = NULL;
502 
503 	switch (errno) {
504 	case -EIO:
505 		errstr = "IO failure";
506 		break;
507 	case -ENOMEM:
508 		errstr = "Out of memory";
509 		break;
510 	case -EROFS:
511 		if (!sb || (EXT4_SB(sb)->s_journal &&
512 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
513 			errstr = "Journal has aborted";
514 		else
515 			errstr = "Readonly filesystem";
516 		break;
517 	default:
518 		/* If the caller passed in an extra buffer for unknown
519 		 * errors, textualise them now.  Else we just return
520 		 * NULL. */
521 		if (nbuf) {
522 			/* Check for truncated error codes... */
523 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
524 				errstr = nbuf;
525 		}
526 		break;
527 	}
528 
529 	return errstr;
530 }
531 
532 /* __ext4_std_error decodes expected errors from journaling functions
533  * automatically and invokes the appropriate error response.  */
534 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)535 void __ext4_std_error(struct super_block *sb, const char *function,
536 		      unsigned int line, int errno)
537 {
538 	char nbuf[16];
539 	const char *errstr;
540 
541 	/* Special case: if the error is EROFS, and we're not already
542 	 * inside a transaction, then there's really no point in logging
543 	 * an error. */
544 	if (errno == -EROFS && journal_current_handle() == NULL &&
545 	    (sb->s_flags & MS_RDONLY))
546 		return;
547 
548 	if (ext4_error_ratelimit(sb)) {
549 		errstr = ext4_decode_error(sb, errno, nbuf);
550 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
551 		       sb->s_id, function, line, errstr);
552 	}
553 
554 	save_error_info(sb, function, line);
555 	ext4_handle_error(sb);
556 }
557 
558 /*
559  * ext4_abort is a much stronger failure handler than ext4_error.  The
560  * abort function may be used to deal with unrecoverable failures such
561  * as journal IO errors or ENOMEM at a critical moment in log management.
562  *
563  * We unconditionally force the filesystem into an ABORT|READONLY state,
564  * unless the error response on the fs has been set to panic in which
565  * case we take the easy way out and panic immediately.
566  */
567 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)568 void __ext4_abort(struct super_block *sb, const char *function,
569 		unsigned int line, const char *fmt, ...)
570 {
571 	va_list args;
572 
573 	save_error_info(sb, function, line);
574 	va_start(args, fmt);
575 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
576 	       function, line);
577 	vprintk(fmt, args);
578 	printk("\n");
579 	va_end(args);
580 
581 	if ((sb->s_flags & MS_RDONLY) == 0) {
582 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
583 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
584 		/*
585 		 * Make sure updated value of ->s_mount_flags will be visible
586 		 * before ->s_flags update
587 		 */
588 		smp_wmb();
589 		sb->s_flags |= MS_RDONLY;
590 		if (EXT4_SB(sb)->s_journal)
591 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
592 		save_error_info(sb, function, line);
593 	}
594 	if (test_opt(sb, ERRORS_PANIC)) {
595 		if (EXT4_SB(sb)->s_journal &&
596 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
597 			return;
598 		panic("EXT4-fs panic from previous error\n");
599 	}
600 }
601 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)602 void __ext4_msg(struct super_block *sb,
603 		const char *prefix, const char *fmt, ...)
604 {
605 	struct va_format vaf;
606 	va_list args;
607 
608 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
609 		return;
610 
611 	va_start(args, fmt);
612 	vaf.fmt = fmt;
613 	vaf.va = &args;
614 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
615 	va_end(args);
616 }
617 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)618 void __ext4_warning(struct super_block *sb, const char *function,
619 		    unsigned int line, const char *fmt, ...)
620 {
621 	struct va_format vaf;
622 	va_list args;
623 
624 	if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
625 			  "EXT4-fs warning"))
626 		return;
627 
628 	va_start(args, fmt);
629 	vaf.fmt = fmt;
630 	vaf.va = &args;
631 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
632 	       sb->s_id, function, line, &vaf);
633 	va_end(args);
634 }
635 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)636 void __ext4_grp_locked_error(const char *function, unsigned int line,
637 			     struct super_block *sb, ext4_group_t grp,
638 			     unsigned long ino, ext4_fsblk_t block,
639 			     const char *fmt, ...)
640 __releases(bitlock)
641 __acquires(bitlock)
642 {
643 	struct va_format vaf;
644 	va_list args;
645 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
646 
647 	es->s_last_error_ino = cpu_to_le32(ino);
648 	es->s_last_error_block = cpu_to_le64(block);
649 	__save_error_info(sb, function, line);
650 
651 	if (ext4_error_ratelimit(sb)) {
652 		va_start(args, fmt);
653 		vaf.fmt = fmt;
654 		vaf.va = &args;
655 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
656 		       sb->s_id, function, line, grp);
657 		if (ino)
658 			printk(KERN_CONT "inode %lu: ", ino);
659 		if (block)
660 			printk(KERN_CONT "block %llu:",
661 			       (unsigned long long) block);
662 		printk(KERN_CONT "%pV\n", &vaf);
663 		va_end(args);
664 	}
665 
666 	if (test_opt(sb, ERRORS_CONT)) {
667 		ext4_commit_super(sb, 0);
668 		return;
669 	}
670 
671 	ext4_unlock_group(sb, grp);
672 	ext4_handle_error(sb);
673 	/*
674 	 * We only get here in the ERRORS_RO case; relocking the group
675 	 * may be dangerous, but nothing bad will happen since the
676 	 * filesystem will have already been marked read/only and the
677 	 * journal has been aborted.  We return 1 as a hint to callers
678 	 * who might what to use the return value from
679 	 * ext4_grp_locked_error() to distinguish between the
680 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
681 	 * aggressively from the ext4 function in question, with a
682 	 * more appropriate error code.
683 	 */
684 	ext4_lock_group(sb, grp);
685 	return;
686 }
687 
ext4_update_dynamic_rev(struct super_block * sb)688 void ext4_update_dynamic_rev(struct super_block *sb)
689 {
690 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
691 
692 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
693 		return;
694 
695 	ext4_warning(sb,
696 		     "updating to rev %d because of new feature flag, "
697 		     "running e2fsck is recommended",
698 		     EXT4_DYNAMIC_REV);
699 
700 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
701 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
702 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
703 	/* leave es->s_feature_*compat flags alone */
704 	/* es->s_uuid will be set by e2fsck if empty */
705 
706 	/*
707 	 * The rest of the superblock fields should be zero, and if not it
708 	 * means they are likely already in use, so leave them alone.  We
709 	 * can leave it up to e2fsck to clean up any inconsistencies there.
710 	 */
711 }
712 
713 /*
714  * Open the external journal device
715  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)716 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
717 {
718 	struct block_device *bdev;
719 	char b[BDEVNAME_SIZE];
720 
721 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
722 	if (IS_ERR(bdev))
723 		goto fail;
724 	return bdev;
725 
726 fail:
727 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
728 			__bdevname(dev, b), PTR_ERR(bdev));
729 	return NULL;
730 }
731 
732 /*
733  * Release the journal device
734  */
ext4_blkdev_put(struct block_device * bdev)735 static void ext4_blkdev_put(struct block_device *bdev)
736 {
737 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
738 }
739 
ext4_blkdev_remove(struct ext4_sb_info * sbi)740 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
741 {
742 	struct block_device *bdev;
743 	bdev = sbi->journal_bdev;
744 	if (bdev) {
745 		ext4_blkdev_put(bdev);
746 		sbi->journal_bdev = NULL;
747 	}
748 }
749 
orphan_list_entry(struct list_head * l)750 static inline struct inode *orphan_list_entry(struct list_head *l)
751 {
752 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
753 }
754 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)755 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
756 {
757 	struct list_head *l;
758 
759 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
760 		 le32_to_cpu(sbi->s_es->s_last_orphan));
761 
762 	printk(KERN_ERR "sb_info orphan list:\n");
763 	list_for_each(l, &sbi->s_orphan) {
764 		struct inode *inode = orphan_list_entry(l);
765 		printk(KERN_ERR "  "
766 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
767 		       inode->i_sb->s_id, inode->i_ino, inode,
768 		       inode->i_mode, inode->i_nlink,
769 		       NEXT_ORPHAN(inode));
770 	}
771 }
772 
ext4_put_super(struct super_block * sb)773 static void ext4_put_super(struct super_block *sb)
774 {
775 	struct ext4_sb_info *sbi = EXT4_SB(sb);
776 	struct ext4_super_block *es = sbi->s_es;
777 	int i, err;
778 
779 	ext4_unregister_li_request(sb);
780 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
781 
782 	flush_workqueue(sbi->rsv_conversion_wq);
783 	destroy_workqueue(sbi->rsv_conversion_wq);
784 
785 	if (sbi->s_journal) {
786 		err = jbd2_journal_destroy(sbi->s_journal);
787 		sbi->s_journal = NULL;
788 		if (err < 0)
789 			ext4_abort(sb, "Couldn't clean up the journal");
790 	}
791 
792 	ext4_es_unregister_shrinker(sbi);
793 	del_timer_sync(&sbi->s_err_report);
794 	ext4_release_system_zone(sb);
795 	ext4_mb_release(sb);
796 	ext4_ext_release(sb);
797 	ext4_xattr_put_super(sb);
798 
799 	if (!(sb->s_flags & MS_RDONLY)) {
800 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
801 		es->s_state = cpu_to_le16(sbi->s_mount_state);
802 	}
803 	if (!(sb->s_flags & MS_RDONLY))
804 		ext4_commit_super(sb, 1);
805 
806 	if (sbi->s_proc) {
807 		remove_proc_entry("options", sbi->s_proc);
808 		remove_proc_entry(sb->s_id, ext4_proc_root);
809 	}
810 	kobject_del(&sbi->s_kobj);
811 
812 	for (i = 0; i < sbi->s_gdb_count; i++)
813 		brelse(sbi->s_group_desc[i]);
814 	kvfree(sbi->s_group_desc);
815 	kvfree(sbi->s_flex_groups);
816 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
817 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
818 	percpu_counter_destroy(&sbi->s_dirs_counter);
819 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
820 	brelse(sbi->s_sbh);
821 #ifdef CONFIG_QUOTA
822 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
823 		kfree(sbi->s_qf_names[i]);
824 #endif
825 
826 	/* Debugging code just in case the in-memory inode orphan list
827 	 * isn't empty.  The on-disk one can be non-empty if we've
828 	 * detected an error and taken the fs readonly, but the
829 	 * in-memory list had better be clean by this point. */
830 	if (!list_empty(&sbi->s_orphan))
831 		dump_orphan_list(sb, sbi);
832 	J_ASSERT(list_empty(&sbi->s_orphan));
833 
834 	sync_blockdev(sb->s_bdev);
835 	invalidate_bdev(sb->s_bdev);
836 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
837 		/*
838 		 * Invalidate the journal device's buffers.  We don't want them
839 		 * floating about in memory - the physical journal device may
840 		 * hotswapped, and it breaks the `ro-after' testing code.
841 		 */
842 		sync_blockdev(sbi->journal_bdev);
843 		invalidate_bdev(sbi->journal_bdev);
844 		ext4_blkdev_remove(sbi);
845 	}
846 	if (sbi->s_mb_cache) {
847 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
848 		sbi->s_mb_cache = NULL;
849 	}
850 	if (sbi->s_mmp_tsk)
851 		kthread_stop(sbi->s_mmp_tsk);
852 	sb->s_fs_info = NULL;
853 	/*
854 	 * Now that we are completely done shutting down the
855 	 * superblock, we need to actually destroy the kobject.
856 	 */
857 	kobject_put(&sbi->s_kobj);
858 	wait_for_completion(&sbi->s_kobj_unregister);
859 	if (sbi->s_chksum_driver)
860 		crypto_free_shash(sbi->s_chksum_driver);
861 	kfree(sbi->s_blockgroup_lock);
862 	kfree(sbi);
863 }
864 
865 static struct kmem_cache *ext4_inode_cachep;
866 
867 /*
868  * Called inside transaction, so use GFP_NOFS
869  */
ext4_alloc_inode(struct super_block * sb)870 static struct inode *ext4_alloc_inode(struct super_block *sb)
871 {
872 	struct ext4_inode_info *ei;
873 
874 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
875 	if (!ei)
876 		return NULL;
877 
878 	ei->vfs_inode.i_version = 1;
879 	spin_lock_init(&ei->i_raw_lock);
880 	INIT_LIST_HEAD(&ei->i_prealloc_list);
881 	spin_lock_init(&ei->i_prealloc_lock);
882 	ext4_es_init_tree(&ei->i_es_tree);
883 	rwlock_init(&ei->i_es_lock);
884 	INIT_LIST_HEAD(&ei->i_es_list);
885 	ei->i_es_all_nr = 0;
886 	ei->i_es_shk_nr = 0;
887 	ei->i_es_shrink_lblk = 0;
888 	ei->i_reserved_data_blocks = 0;
889 	ei->i_reserved_meta_blocks = 0;
890 	ei->i_allocated_meta_blocks = 0;
891 	ei->i_da_metadata_calc_len = 0;
892 	ei->i_da_metadata_calc_last_lblock = 0;
893 	spin_lock_init(&(ei->i_block_reservation_lock));
894 #ifdef CONFIG_QUOTA
895 	ei->i_reserved_quota = 0;
896 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
897 #endif
898 	ei->jinode = NULL;
899 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
900 	spin_lock_init(&ei->i_completed_io_lock);
901 	ei->i_sync_tid = 0;
902 	ei->i_datasync_tid = 0;
903 	atomic_set(&ei->i_ioend_count, 0);
904 	atomic_set(&ei->i_unwritten, 0);
905 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
906 #ifdef CONFIG_EXT4_FS_ENCRYPTION
907 	ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
908 #endif
909 
910 	return &ei->vfs_inode;
911 }
912 
ext4_drop_inode(struct inode * inode)913 static int ext4_drop_inode(struct inode *inode)
914 {
915 	int drop = generic_drop_inode(inode);
916 
917 	trace_ext4_drop_inode(inode, drop);
918 	return drop;
919 }
920 
ext4_i_callback(struct rcu_head * head)921 static void ext4_i_callback(struct rcu_head *head)
922 {
923 	struct inode *inode = container_of(head, struct inode, i_rcu);
924 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
925 }
926 
ext4_destroy_inode(struct inode * inode)927 static void ext4_destroy_inode(struct inode *inode)
928 {
929 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
930 		ext4_msg(inode->i_sb, KERN_ERR,
931 			 "Inode %lu (%p): orphan list check failed!",
932 			 inode->i_ino, EXT4_I(inode));
933 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
934 				EXT4_I(inode), sizeof(struct ext4_inode_info),
935 				true);
936 		dump_stack();
937 	}
938 	call_rcu(&inode->i_rcu, ext4_i_callback);
939 }
940 
init_once(void * foo)941 static void init_once(void *foo)
942 {
943 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
944 
945 	INIT_LIST_HEAD(&ei->i_orphan);
946 	init_rwsem(&ei->xattr_sem);
947 	init_rwsem(&ei->i_data_sem);
948 	init_rwsem(&ei->i_mmap_sem);
949 	inode_init_once(&ei->vfs_inode);
950 }
951 
init_inodecache(void)952 static int __init init_inodecache(void)
953 {
954 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
955 					     sizeof(struct ext4_inode_info),
956 					     0, (SLAB_RECLAIM_ACCOUNT|
957 						SLAB_MEM_SPREAD),
958 					     init_once);
959 	if (ext4_inode_cachep == NULL)
960 		return -ENOMEM;
961 	return 0;
962 }
963 
destroy_inodecache(void)964 static void destroy_inodecache(void)
965 {
966 	/*
967 	 * Make sure all delayed rcu free inodes are flushed before we
968 	 * destroy cache.
969 	 */
970 	rcu_barrier();
971 	kmem_cache_destroy(ext4_inode_cachep);
972 }
973 
ext4_clear_inode(struct inode * inode)974 void ext4_clear_inode(struct inode *inode)
975 {
976 	invalidate_inode_buffers(inode);
977 	clear_inode(inode);
978 	dquot_drop(inode);
979 	ext4_discard_preallocations(inode);
980 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
981 	if (EXT4_I(inode)->jinode) {
982 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
983 					       EXT4_I(inode)->jinode);
984 		jbd2_free_inode(EXT4_I(inode)->jinode);
985 		EXT4_I(inode)->jinode = NULL;
986 	}
987 }
988 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)989 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
990 					u64 ino, u32 generation)
991 {
992 	struct inode *inode;
993 
994 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
995 		return ERR_PTR(-ESTALE);
996 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
997 		return ERR_PTR(-ESTALE);
998 
999 	/* iget isn't really right if the inode is currently unallocated!!
1000 	 *
1001 	 * ext4_read_inode will return a bad_inode if the inode had been
1002 	 * deleted, so we should be safe.
1003 	 *
1004 	 * Currently we don't know the generation for parent directory, so
1005 	 * a generation of 0 means "accept any"
1006 	 */
1007 	inode = ext4_iget_normal(sb, ino);
1008 	if (IS_ERR(inode))
1009 		return ERR_CAST(inode);
1010 	if (generation && inode->i_generation != generation) {
1011 		iput(inode);
1012 		return ERR_PTR(-ESTALE);
1013 	}
1014 
1015 	return inode;
1016 }
1017 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1018 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1019 					int fh_len, int fh_type)
1020 {
1021 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1022 				    ext4_nfs_get_inode);
1023 }
1024 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1025 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1026 					int fh_len, int fh_type)
1027 {
1028 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1029 				    ext4_nfs_get_inode);
1030 }
1031 
1032 /*
1033  * Try to release metadata pages (indirect blocks, directories) which are
1034  * mapped via the block device.  Since these pages could have journal heads
1035  * which would prevent try_to_free_buffers() from freeing them, we must use
1036  * jbd2 layer's try_to_free_buffers() function to release them.
1037  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1038 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1039 				 gfp_t wait)
1040 {
1041 	journal_t *journal = EXT4_SB(sb)->s_journal;
1042 
1043 	WARN_ON(PageChecked(page));
1044 	if (!page_has_buffers(page))
1045 		return 0;
1046 	if (journal)
1047 		return jbd2_journal_try_to_free_buffers(journal, page,
1048 							wait & ~__GFP_WAIT);
1049 	return try_to_free_buffers(page);
1050 }
1051 
1052 #ifdef CONFIG_QUOTA
1053 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1054 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1055 
1056 static int ext4_write_dquot(struct dquot *dquot);
1057 static int ext4_acquire_dquot(struct dquot *dquot);
1058 static int ext4_release_dquot(struct dquot *dquot);
1059 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1060 static int ext4_write_info(struct super_block *sb, int type);
1061 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1062 			 struct path *path);
1063 static int ext4_quota_off(struct super_block *sb, int type);
1064 static int ext4_quota_on_mount(struct super_block *sb, int type);
1065 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1066 			       size_t len, loff_t off);
1067 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1068 				const char *data, size_t len, loff_t off);
1069 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1070 			     unsigned int flags);
1071 static int ext4_enable_quotas(struct super_block *sb);
1072 
ext4_get_dquots(struct inode * inode)1073 static struct dquot **ext4_get_dquots(struct inode *inode)
1074 {
1075 	return EXT4_I(inode)->i_dquot;
1076 }
1077 
1078 static const struct dquot_operations ext4_quota_operations = {
1079 	.get_reserved_space = ext4_get_reserved_space,
1080 	.write_dquot	= ext4_write_dquot,
1081 	.acquire_dquot	= ext4_acquire_dquot,
1082 	.release_dquot	= ext4_release_dquot,
1083 	.mark_dirty	= ext4_mark_dquot_dirty,
1084 	.write_info	= ext4_write_info,
1085 	.alloc_dquot	= dquot_alloc,
1086 	.destroy_dquot	= dquot_destroy,
1087 };
1088 
1089 static const struct quotactl_ops ext4_qctl_operations = {
1090 	.quota_on	= ext4_quota_on,
1091 	.quota_off	= ext4_quota_off,
1092 	.quota_sync	= dquot_quota_sync,
1093 	.get_state	= dquot_get_state,
1094 	.set_info	= dquot_set_dqinfo,
1095 	.get_dqblk	= dquot_get_dqblk,
1096 	.set_dqblk	= dquot_set_dqblk
1097 };
1098 #endif
1099 
1100 static const struct super_operations ext4_sops = {
1101 	.alloc_inode	= ext4_alloc_inode,
1102 	.destroy_inode	= ext4_destroy_inode,
1103 	.write_inode	= ext4_write_inode,
1104 	.dirty_inode	= ext4_dirty_inode,
1105 	.drop_inode	= ext4_drop_inode,
1106 	.evict_inode	= ext4_evict_inode,
1107 	.put_super	= ext4_put_super,
1108 	.sync_fs	= ext4_sync_fs,
1109 	.freeze_fs	= ext4_freeze,
1110 	.unfreeze_fs	= ext4_unfreeze,
1111 	.statfs		= ext4_statfs,
1112 	.remount_fs	= ext4_remount,
1113 	.show_options	= ext4_show_options,
1114 #ifdef CONFIG_QUOTA
1115 	.quota_read	= ext4_quota_read,
1116 	.quota_write	= ext4_quota_write,
1117 	.get_dquots	= ext4_get_dquots,
1118 #endif
1119 	.bdev_try_to_free_page = bdev_try_to_free_page,
1120 };
1121 
1122 static const struct export_operations ext4_export_ops = {
1123 	.fh_to_dentry = ext4_fh_to_dentry,
1124 	.fh_to_parent = ext4_fh_to_parent,
1125 	.get_parent = ext4_get_parent,
1126 };
1127 
1128 enum {
1129 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1130 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1131 	Opt_nouid32, Opt_debug, Opt_removed,
1132 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1133 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1134 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1135 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1136 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1137 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1138 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1139 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1140 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1141 	Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1142 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1143 	Opt_lazytime, Opt_nolazytime,
1144 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1145 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1146 	Opt_dioread_nolock, Opt_dioread_lock,
1147 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1148 	Opt_max_dir_size_kb, Opt_nojournal_checksum,
1149 };
1150 
1151 static const match_table_t tokens = {
1152 	{Opt_bsd_df, "bsddf"},
1153 	{Opt_minix_df, "minixdf"},
1154 	{Opt_grpid, "grpid"},
1155 	{Opt_grpid, "bsdgroups"},
1156 	{Opt_nogrpid, "nogrpid"},
1157 	{Opt_nogrpid, "sysvgroups"},
1158 	{Opt_resgid, "resgid=%u"},
1159 	{Opt_resuid, "resuid=%u"},
1160 	{Opt_sb, "sb=%u"},
1161 	{Opt_err_cont, "errors=continue"},
1162 	{Opt_err_panic, "errors=panic"},
1163 	{Opt_err_ro, "errors=remount-ro"},
1164 	{Opt_nouid32, "nouid32"},
1165 	{Opt_debug, "debug"},
1166 	{Opt_removed, "oldalloc"},
1167 	{Opt_removed, "orlov"},
1168 	{Opt_user_xattr, "user_xattr"},
1169 	{Opt_nouser_xattr, "nouser_xattr"},
1170 	{Opt_acl, "acl"},
1171 	{Opt_noacl, "noacl"},
1172 	{Opt_noload, "norecovery"},
1173 	{Opt_noload, "noload"},
1174 	{Opt_removed, "nobh"},
1175 	{Opt_removed, "bh"},
1176 	{Opt_commit, "commit=%u"},
1177 	{Opt_min_batch_time, "min_batch_time=%u"},
1178 	{Opt_max_batch_time, "max_batch_time=%u"},
1179 	{Opt_journal_dev, "journal_dev=%u"},
1180 	{Opt_journal_path, "journal_path=%s"},
1181 	{Opt_journal_checksum, "journal_checksum"},
1182 	{Opt_nojournal_checksum, "nojournal_checksum"},
1183 	{Opt_journal_async_commit, "journal_async_commit"},
1184 	{Opt_abort, "abort"},
1185 	{Opt_data_journal, "data=journal"},
1186 	{Opt_data_ordered, "data=ordered"},
1187 	{Opt_data_writeback, "data=writeback"},
1188 	{Opt_data_err_abort, "data_err=abort"},
1189 	{Opt_data_err_ignore, "data_err=ignore"},
1190 	{Opt_offusrjquota, "usrjquota="},
1191 	{Opt_usrjquota, "usrjquota=%s"},
1192 	{Opt_offgrpjquota, "grpjquota="},
1193 	{Opt_grpjquota, "grpjquota=%s"},
1194 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1195 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1196 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1197 	{Opt_grpquota, "grpquota"},
1198 	{Opt_noquota, "noquota"},
1199 	{Opt_quota, "quota"},
1200 	{Opt_usrquota, "usrquota"},
1201 	{Opt_barrier, "barrier=%u"},
1202 	{Opt_barrier, "barrier"},
1203 	{Opt_nobarrier, "nobarrier"},
1204 	{Opt_i_version, "i_version"},
1205 	{Opt_dax, "dax"},
1206 	{Opt_stripe, "stripe=%u"},
1207 	{Opt_delalloc, "delalloc"},
1208 	{Opt_lazytime, "lazytime"},
1209 	{Opt_nolazytime, "nolazytime"},
1210 	{Opt_nodelalloc, "nodelalloc"},
1211 	{Opt_removed, "mblk_io_submit"},
1212 	{Opt_removed, "nomblk_io_submit"},
1213 	{Opt_block_validity, "block_validity"},
1214 	{Opt_noblock_validity, "noblock_validity"},
1215 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1216 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1217 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1218 	{Opt_auto_da_alloc, "auto_da_alloc"},
1219 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1220 	{Opt_dioread_nolock, "dioread_nolock"},
1221 	{Opt_dioread_lock, "dioread_lock"},
1222 	{Opt_discard, "discard"},
1223 	{Opt_nodiscard, "nodiscard"},
1224 	{Opt_init_itable, "init_itable=%u"},
1225 	{Opt_init_itable, "init_itable"},
1226 	{Opt_noinit_itable, "noinit_itable"},
1227 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1228 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1229 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1230 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1231 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1232 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1233 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1234 	{Opt_err, NULL},
1235 };
1236 
get_sb_block(void ** data)1237 static ext4_fsblk_t get_sb_block(void **data)
1238 {
1239 	ext4_fsblk_t	sb_block;
1240 	char		*options = (char *) *data;
1241 
1242 	if (!options || strncmp(options, "sb=", 3) != 0)
1243 		return 1;	/* Default location */
1244 
1245 	options += 3;
1246 	/* TODO: use simple_strtoll with >32bit ext4 */
1247 	sb_block = simple_strtoul(options, &options, 0);
1248 	if (*options && *options != ',') {
1249 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1250 		       (char *) *data);
1251 		return 1;
1252 	}
1253 	if (*options == ',')
1254 		options++;
1255 	*data = (void *) options;
1256 
1257 	return sb_block;
1258 }
1259 
1260 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1261 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1262 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1263 
1264 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1265 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1266 {
1267 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1268 	char *qname;
1269 	int ret = -1;
1270 
1271 	if (sb_any_quota_loaded(sb) &&
1272 		!sbi->s_qf_names[qtype]) {
1273 		ext4_msg(sb, KERN_ERR,
1274 			"Cannot change journaled "
1275 			"quota options when quota turned on");
1276 		return -1;
1277 	}
1278 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1279 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1280 			 "ignored when QUOTA feature is enabled");
1281 		return 1;
1282 	}
1283 	qname = match_strdup(args);
1284 	if (!qname) {
1285 		ext4_msg(sb, KERN_ERR,
1286 			"Not enough memory for storing quotafile name");
1287 		return -1;
1288 	}
1289 	if (sbi->s_qf_names[qtype]) {
1290 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1291 			ret = 1;
1292 		else
1293 			ext4_msg(sb, KERN_ERR,
1294 				 "%s quota file already specified",
1295 				 QTYPE2NAME(qtype));
1296 		goto errout;
1297 	}
1298 	if (strchr(qname, '/')) {
1299 		ext4_msg(sb, KERN_ERR,
1300 			"quotafile must be on filesystem root");
1301 		goto errout;
1302 	}
1303 	sbi->s_qf_names[qtype] = qname;
1304 	set_opt(sb, QUOTA);
1305 	return 1;
1306 errout:
1307 	kfree(qname);
1308 	return ret;
1309 }
1310 
clear_qf_name(struct super_block * sb,int qtype)1311 static int clear_qf_name(struct super_block *sb, int qtype)
1312 {
1313 
1314 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1315 
1316 	if (sb_any_quota_loaded(sb) &&
1317 		sbi->s_qf_names[qtype]) {
1318 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1319 			" when quota turned on");
1320 		return -1;
1321 	}
1322 	kfree(sbi->s_qf_names[qtype]);
1323 	sbi->s_qf_names[qtype] = NULL;
1324 	return 1;
1325 }
1326 #endif
1327 
1328 #define MOPT_SET	0x0001
1329 #define MOPT_CLEAR	0x0002
1330 #define MOPT_NOSUPPORT	0x0004
1331 #define MOPT_EXPLICIT	0x0008
1332 #define MOPT_CLEAR_ERR	0x0010
1333 #define MOPT_GTE0	0x0020
1334 #ifdef CONFIG_QUOTA
1335 #define MOPT_Q		0
1336 #define MOPT_QFMT	0x0040
1337 #else
1338 #define MOPT_Q		MOPT_NOSUPPORT
1339 #define MOPT_QFMT	MOPT_NOSUPPORT
1340 #endif
1341 #define MOPT_DATAJ	0x0080
1342 #define MOPT_NO_EXT2	0x0100
1343 #define MOPT_NO_EXT3	0x0200
1344 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1345 #define MOPT_STRING	0x0400
1346 
1347 static const struct mount_opts {
1348 	int	token;
1349 	int	mount_opt;
1350 	int	flags;
1351 } ext4_mount_opts[] = {
1352 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1353 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1354 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1355 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1356 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1357 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1358 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1359 	 MOPT_EXT4_ONLY | MOPT_SET},
1360 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1361 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1362 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1363 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1364 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1365 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1366 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1367 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1368 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1369 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1370 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1371 	 MOPT_EXT4_ONLY | MOPT_SET},
1372 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1373 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1374 	 MOPT_EXT4_ONLY | MOPT_SET},
1375 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1376 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1377 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1378 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1379 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1380 	 MOPT_NO_EXT2 | MOPT_SET},
1381 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1382 	 MOPT_NO_EXT2 | MOPT_CLEAR},
1383 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1384 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1385 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1386 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1387 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1388 	{Opt_commit, 0, MOPT_GTE0},
1389 	{Opt_max_batch_time, 0, MOPT_GTE0},
1390 	{Opt_min_batch_time, 0, MOPT_GTE0},
1391 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1392 	{Opt_init_itable, 0, MOPT_GTE0},
1393 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1394 	{Opt_stripe, 0, MOPT_GTE0},
1395 	{Opt_resuid, 0, MOPT_GTE0},
1396 	{Opt_resgid, 0, MOPT_GTE0},
1397 	{Opt_journal_dev, 0, MOPT_GTE0},
1398 	{Opt_journal_path, 0, MOPT_STRING},
1399 	{Opt_journal_ioprio, 0, MOPT_GTE0},
1400 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1401 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1402 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1403 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1404 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1405 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1406 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1407 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1408 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1409 #else
1410 	{Opt_acl, 0, MOPT_NOSUPPORT},
1411 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1412 #endif
1413 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1414 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1415 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1416 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1417 							MOPT_SET | MOPT_Q},
1418 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1419 							MOPT_SET | MOPT_Q},
1420 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1421 		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1422 	{Opt_usrjquota, 0, MOPT_Q},
1423 	{Opt_grpjquota, 0, MOPT_Q},
1424 	{Opt_offusrjquota, 0, MOPT_Q},
1425 	{Opt_offgrpjquota, 0, MOPT_Q},
1426 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1427 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1428 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1429 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1430 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1431 	{Opt_err, 0, 0}
1432 };
1433 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1434 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1435 			    substring_t *args, unsigned long *journal_devnum,
1436 			    unsigned int *journal_ioprio, int is_remount)
1437 {
1438 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1439 	const struct mount_opts *m;
1440 	kuid_t uid;
1441 	kgid_t gid;
1442 	int arg = 0;
1443 
1444 #ifdef CONFIG_QUOTA
1445 	if (token == Opt_usrjquota)
1446 		return set_qf_name(sb, USRQUOTA, &args[0]);
1447 	else if (token == Opt_grpjquota)
1448 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1449 	else if (token == Opt_offusrjquota)
1450 		return clear_qf_name(sb, USRQUOTA);
1451 	else if (token == Opt_offgrpjquota)
1452 		return clear_qf_name(sb, GRPQUOTA);
1453 #endif
1454 	switch (token) {
1455 	case Opt_noacl:
1456 	case Opt_nouser_xattr:
1457 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1458 		break;
1459 	case Opt_sb:
1460 		return 1;	/* handled by get_sb_block() */
1461 	case Opt_removed:
1462 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1463 		return 1;
1464 	case Opt_abort:
1465 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1466 		return 1;
1467 	case Opt_i_version:
1468 		sb->s_flags |= MS_I_VERSION;
1469 		return 1;
1470 	case Opt_lazytime:
1471 		sb->s_flags |= MS_LAZYTIME;
1472 		return 1;
1473 	case Opt_nolazytime:
1474 		sb->s_flags &= ~MS_LAZYTIME;
1475 		return 1;
1476 	}
1477 
1478 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1479 		if (token == m->token)
1480 			break;
1481 
1482 	if (m->token == Opt_err) {
1483 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1484 			 "or missing value", opt);
1485 		return -1;
1486 	}
1487 
1488 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1489 		ext4_msg(sb, KERN_ERR,
1490 			 "Mount option \"%s\" incompatible with ext2", opt);
1491 		return -1;
1492 	}
1493 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1494 		ext4_msg(sb, KERN_ERR,
1495 			 "Mount option \"%s\" incompatible with ext3", opt);
1496 		return -1;
1497 	}
1498 
1499 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1500 		return -1;
1501 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1502 		return -1;
1503 	if (m->flags & MOPT_EXPLICIT)
1504 		set_opt2(sb, EXPLICIT_DELALLOC);
1505 	if (m->flags & MOPT_CLEAR_ERR)
1506 		clear_opt(sb, ERRORS_MASK);
1507 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1508 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1509 			 "options when quota turned on");
1510 		return -1;
1511 	}
1512 
1513 	if (m->flags & MOPT_NOSUPPORT) {
1514 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1515 	} else if (token == Opt_commit) {
1516 		if (arg == 0)
1517 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1518 		sbi->s_commit_interval = HZ * arg;
1519 	} else if (token == Opt_max_batch_time) {
1520 		sbi->s_max_batch_time = arg;
1521 	} else if (token == Opt_min_batch_time) {
1522 		sbi->s_min_batch_time = arg;
1523 	} else if (token == Opt_inode_readahead_blks) {
1524 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1525 			ext4_msg(sb, KERN_ERR,
1526 				 "EXT4-fs: inode_readahead_blks must be "
1527 				 "0 or a power of 2 smaller than 2^31");
1528 			return -1;
1529 		}
1530 		sbi->s_inode_readahead_blks = arg;
1531 	} else if (token == Opt_init_itable) {
1532 		set_opt(sb, INIT_INODE_TABLE);
1533 		if (!args->from)
1534 			arg = EXT4_DEF_LI_WAIT_MULT;
1535 		sbi->s_li_wait_mult = arg;
1536 	} else if (token == Opt_max_dir_size_kb) {
1537 		sbi->s_max_dir_size_kb = arg;
1538 	} else if (token == Opt_stripe) {
1539 		sbi->s_stripe = arg;
1540 	} else if (token == Opt_resuid) {
1541 		uid = make_kuid(current_user_ns(), arg);
1542 		if (!uid_valid(uid)) {
1543 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1544 			return -1;
1545 		}
1546 		sbi->s_resuid = uid;
1547 	} else if (token == Opt_resgid) {
1548 		gid = make_kgid(current_user_ns(), arg);
1549 		if (!gid_valid(gid)) {
1550 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1551 			return -1;
1552 		}
1553 		sbi->s_resgid = gid;
1554 	} else if (token == Opt_journal_dev) {
1555 		if (is_remount) {
1556 			ext4_msg(sb, KERN_ERR,
1557 				 "Cannot specify journal on remount");
1558 			return -1;
1559 		}
1560 		*journal_devnum = arg;
1561 	} else if (token == Opt_journal_path) {
1562 		char *journal_path;
1563 		struct inode *journal_inode;
1564 		struct path path;
1565 		int error;
1566 
1567 		if (is_remount) {
1568 			ext4_msg(sb, KERN_ERR,
1569 				 "Cannot specify journal on remount");
1570 			return -1;
1571 		}
1572 		journal_path = match_strdup(&args[0]);
1573 		if (!journal_path) {
1574 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1575 				"journal device string");
1576 			return -1;
1577 		}
1578 
1579 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1580 		if (error) {
1581 			ext4_msg(sb, KERN_ERR, "error: could not find "
1582 				"journal device path: error %d", error);
1583 			kfree(journal_path);
1584 			return -1;
1585 		}
1586 
1587 		journal_inode = d_inode(path.dentry);
1588 		if (!S_ISBLK(journal_inode->i_mode)) {
1589 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1590 				"is not a block device", journal_path);
1591 			path_put(&path);
1592 			kfree(journal_path);
1593 			return -1;
1594 		}
1595 
1596 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1597 		path_put(&path);
1598 		kfree(journal_path);
1599 	} else if (token == Opt_journal_ioprio) {
1600 		if (arg > 7) {
1601 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1602 				 " (must be 0-7)");
1603 			return -1;
1604 		}
1605 		*journal_ioprio =
1606 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1607 	} else if (token == Opt_test_dummy_encryption) {
1608 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1609 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1610 		ext4_msg(sb, KERN_WARNING,
1611 			 "Test dummy encryption mode enabled");
1612 #else
1613 		ext4_msg(sb, KERN_WARNING,
1614 			 "Test dummy encryption mount option ignored");
1615 #endif
1616 	} else if (m->flags & MOPT_DATAJ) {
1617 		if (is_remount) {
1618 			if (!sbi->s_journal)
1619 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1620 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1621 				ext4_msg(sb, KERN_ERR,
1622 					 "Cannot change data mode on remount");
1623 				return -1;
1624 			}
1625 		} else {
1626 			clear_opt(sb, DATA_FLAGS);
1627 			sbi->s_mount_opt |= m->mount_opt;
1628 		}
1629 #ifdef CONFIG_QUOTA
1630 	} else if (m->flags & MOPT_QFMT) {
1631 		if (sb_any_quota_loaded(sb) &&
1632 		    sbi->s_jquota_fmt != m->mount_opt) {
1633 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1634 				 "quota options when quota turned on");
1635 			return -1;
1636 		}
1637 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1638 					       EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1639 			ext4_msg(sb, KERN_INFO,
1640 				 "Quota format mount options ignored "
1641 				 "when QUOTA feature is enabled");
1642 			return 1;
1643 		}
1644 		sbi->s_jquota_fmt = m->mount_opt;
1645 #endif
1646 #ifndef CONFIG_FS_DAX
1647 	} else if (token == Opt_dax) {
1648 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1649 		return -1;
1650 #endif
1651 	} else {
1652 		if (!args->from)
1653 			arg = 1;
1654 		if (m->flags & MOPT_CLEAR)
1655 			arg = !arg;
1656 		else if (unlikely(!(m->flags & MOPT_SET))) {
1657 			ext4_msg(sb, KERN_WARNING,
1658 				 "buggy handling of option %s", opt);
1659 			WARN_ON(1);
1660 			return -1;
1661 		}
1662 		if (arg != 0)
1663 			sbi->s_mount_opt |= m->mount_opt;
1664 		else
1665 			sbi->s_mount_opt &= ~m->mount_opt;
1666 	}
1667 	return 1;
1668 }
1669 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1670 static int parse_options(char *options, struct super_block *sb,
1671 			 unsigned long *journal_devnum,
1672 			 unsigned int *journal_ioprio,
1673 			 int is_remount)
1674 {
1675 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1676 	char *p;
1677 	substring_t args[MAX_OPT_ARGS];
1678 	int token;
1679 
1680 	if (!options)
1681 		return 1;
1682 
1683 	while ((p = strsep(&options, ",")) != NULL) {
1684 		if (!*p)
1685 			continue;
1686 		/*
1687 		 * Initialize args struct so we know whether arg was
1688 		 * found; some options take optional arguments.
1689 		 */
1690 		args[0].to = args[0].from = NULL;
1691 		token = match_token(p, tokens, args);
1692 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1693 				     journal_ioprio, is_remount) < 0)
1694 			return 0;
1695 	}
1696 #ifdef CONFIG_QUOTA
1697 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1698 	    (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1699 		ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1700 			 "mount options ignored.");
1701 		clear_opt(sb, USRQUOTA);
1702 		clear_opt(sb, GRPQUOTA);
1703 	} else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1704 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1705 			clear_opt(sb, USRQUOTA);
1706 
1707 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1708 			clear_opt(sb, GRPQUOTA);
1709 
1710 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1711 			ext4_msg(sb, KERN_ERR, "old and new quota "
1712 					"format mixing");
1713 			return 0;
1714 		}
1715 
1716 		if (!sbi->s_jquota_fmt) {
1717 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1718 					"not specified");
1719 			return 0;
1720 		}
1721 	}
1722 #endif
1723 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1724 		int blocksize =
1725 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1726 
1727 		if (blocksize < PAGE_CACHE_SIZE) {
1728 			ext4_msg(sb, KERN_ERR, "can't mount with "
1729 				 "dioread_nolock if block size != PAGE_SIZE");
1730 			return 0;
1731 		}
1732 	}
1733 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1734 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1735 		ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1736 			 "in data=ordered mode");
1737 		return 0;
1738 	}
1739 	return 1;
1740 }
1741 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1742 static inline void ext4_show_quota_options(struct seq_file *seq,
1743 					   struct super_block *sb)
1744 {
1745 #if defined(CONFIG_QUOTA)
1746 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1747 
1748 	if (sbi->s_jquota_fmt) {
1749 		char *fmtname = "";
1750 
1751 		switch (sbi->s_jquota_fmt) {
1752 		case QFMT_VFS_OLD:
1753 			fmtname = "vfsold";
1754 			break;
1755 		case QFMT_VFS_V0:
1756 			fmtname = "vfsv0";
1757 			break;
1758 		case QFMT_VFS_V1:
1759 			fmtname = "vfsv1";
1760 			break;
1761 		}
1762 		seq_printf(seq, ",jqfmt=%s", fmtname);
1763 	}
1764 
1765 	if (sbi->s_qf_names[USRQUOTA])
1766 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1767 
1768 	if (sbi->s_qf_names[GRPQUOTA])
1769 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1770 #endif
1771 }
1772 
token2str(int token)1773 static const char *token2str(int token)
1774 {
1775 	const struct match_token *t;
1776 
1777 	for (t = tokens; t->token != Opt_err; t++)
1778 		if (t->token == token && !strchr(t->pattern, '='))
1779 			break;
1780 	return t->pattern;
1781 }
1782 
1783 /*
1784  * Show an option if
1785  *  - it's set to a non-default value OR
1786  *  - if the per-sb default is different from the global default
1787  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1788 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1789 			      int nodefs)
1790 {
1791 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1792 	struct ext4_super_block *es = sbi->s_es;
1793 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1794 	const struct mount_opts *m;
1795 	char sep = nodefs ? '\n' : ',';
1796 
1797 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1798 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1799 
1800 	if (sbi->s_sb_block != 1)
1801 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1802 
1803 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1804 		int want_set = m->flags & MOPT_SET;
1805 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1806 		    (m->flags & MOPT_CLEAR_ERR))
1807 			continue;
1808 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1809 			continue; /* skip if same as the default */
1810 		if ((want_set &&
1811 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1812 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1813 			continue; /* select Opt_noFoo vs Opt_Foo */
1814 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1815 	}
1816 
1817 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1818 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1819 		SEQ_OPTS_PRINT("resuid=%u",
1820 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1821 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1822 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1823 		SEQ_OPTS_PRINT("resgid=%u",
1824 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1825 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1826 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1827 		SEQ_OPTS_PUTS("errors=remount-ro");
1828 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1829 		SEQ_OPTS_PUTS("errors=continue");
1830 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1831 		SEQ_OPTS_PUTS("errors=panic");
1832 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1833 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1834 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1835 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1836 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1837 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1838 	if (sb->s_flags & MS_I_VERSION)
1839 		SEQ_OPTS_PUTS("i_version");
1840 	if (nodefs || sbi->s_stripe)
1841 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1842 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1843 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1844 			SEQ_OPTS_PUTS("data=journal");
1845 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1846 			SEQ_OPTS_PUTS("data=ordered");
1847 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1848 			SEQ_OPTS_PUTS("data=writeback");
1849 	}
1850 	if (nodefs ||
1851 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1852 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1853 			       sbi->s_inode_readahead_blks);
1854 
1855 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1856 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1857 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1858 	if (nodefs || sbi->s_max_dir_size_kb)
1859 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1860 
1861 	ext4_show_quota_options(seq, sb);
1862 	return 0;
1863 }
1864 
ext4_show_options(struct seq_file * seq,struct dentry * root)1865 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1866 {
1867 	return _ext4_show_options(seq, root->d_sb, 0);
1868 }
1869 
options_seq_show(struct seq_file * seq,void * offset)1870 static int options_seq_show(struct seq_file *seq, void *offset)
1871 {
1872 	struct super_block *sb = seq->private;
1873 	int rc;
1874 
1875 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1876 	rc = _ext4_show_options(seq, sb, 1);
1877 	seq_puts(seq, "\n");
1878 	return rc;
1879 }
1880 
options_open_fs(struct inode * inode,struct file * file)1881 static int options_open_fs(struct inode *inode, struct file *file)
1882 {
1883 	return single_open(file, options_seq_show, PDE_DATA(inode));
1884 }
1885 
1886 static const struct file_operations ext4_seq_options_fops = {
1887 	.owner = THIS_MODULE,
1888 	.open = options_open_fs,
1889 	.read = seq_read,
1890 	.llseek = seq_lseek,
1891 	.release = single_release,
1892 };
1893 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1894 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1895 			    int read_only)
1896 {
1897 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1898 	int res = 0;
1899 
1900 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1901 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1902 			 "forcing read-only mode");
1903 		res = MS_RDONLY;
1904 	}
1905 	if (read_only)
1906 		goto done;
1907 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1908 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1909 			 "running e2fsck is recommended");
1910 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
1911 		ext4_msg(sb, KERN_WARNING,
1912 			 "warning: mounting fs with errors, "
1913 			 "running e2fsck is recommended");
1914 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1915 		 le16_to_cpu(es->s_mnt_count) >=
1916 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1917 		ext4_msg(sb, KERN_WARNING,
1918 			 "warning: maximal mount count reached, "
1919 			 "running e2fsck is recommended");
1920 	else if (le32_to_cpu(es->s_checkinterval) &&
1921 		(le32_to_cpu(es->s_lastcheck) +
1922 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1923 		ext4_msg(sb, KERN_WARNING,
1924 			 "warning: checktime reached, "
1925 			 "running e2fsck is recommended");
1926 	if (!sbi->s_journal)
1927 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1928 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1929 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1930 	le16_add_cpu(&es->s_mnt_count, 1);
1931 	es->s_mtime = cpu_to_le32(get_seconds());
1932 	ext4_update_dynamic_rev(sb);
1933 	if (sbi->s_journal)
1934 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1935 
1936 	ext4_commit_super(sb, 1);
1937 done:
1938 	if (test_opt(sb, DEBUG))
1939 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1940 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1941 			sb->s_blocksize,
1942 			sbi->s_groups_count,
1943 			EXT4_BLOCKS_PER_GROUP(sb),
1944 			EXT4_INODES_PER_GROUP(sb),
1945 			sbi->s_mount_opt, sbi->s_mount_opt2);
1946 
1947 	cleancache_init_fs(sb);
1948 	return res;
1949 }
1950 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)1951 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1952 {
1953 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1954 	struct flex_groups *new_groups;
1955 	int size;
1956 
1957 	if (!sbi->s_log_groups_per_flex)
1958 		return 0;
1959 
1960 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
1961 	if (size <= sbi->s_flex_groups_allocated)
1962 		return 0;
1963 
1964 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1965 	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1966 	if (!new_groups) {
1967 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1968 			 size / (int) sizeof(struct flex_groups));
1969 		return -ENOMEM;
1970 	}
1971 
1972 	if (sbi->s_flex_groups) {
1973 		memcpy(new_groups, sbi->s_flex_groups,
1974 		       (sbi->s_flex_groups_allocated *
1975 			sizeof(struct flex_groups)));
1976 		kvfree(sbi->s_flex_groups);
1977 	}
1978 	sbi->s_flex_groups = new_groups;
1979 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1980 	return 0;
1981 }
1982 
ext4_fill_flex_info(struct super_block * sb)1983 static int ext4_fill_flex_info(struct super_block *sb)
1984 {
1985 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1986 	struct ext4_group_desc *gdp = NULL;
1987 	ext4_group_t flex_group;
1988 	int i, err;
1989 
1990 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1991 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1992 		sbi->s_log_groups_per_flex = 0;
1993 		return 1;
1994 	}
1995 
1996 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1997 	if (err)
1998 		goto failed;
1999 
2000 	for (i = 0; i < sbi->s_groups_count; i++) {
2001 		gdp = ext4_get_group_desc(sb, i, NULL);
2002 
2003 		flex_group = ext4_flex_group(sbi, i);
2004 		atomic_add(ext4_free_inodes_count(sb, gdp),
2005 			   &sbi->s_flex_groups[flex_group].free_inodes);
2006 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2007 			     &sbi->s_flex_groups[flex_group].free_clusters);
2008 		atomic_add(ext4_used_dirs_count(sb, gdp),
2009 			   &sbi->s_flex_groups[flex_group].used_dirs);
2010 	}
2011 
2012 	return 1;
2013 failed:
2014 	return 0;
2015 }
2016 
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)2017 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2018 				   struct ext4_group_desc *gdp)
2019 {
2020 	int offset;
2021 	__u16 crc = 0;
2022 	__le32 le_group = cpu_to_le32(block_group);
2023 
2024 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2025 		/* Use new metadata_csum algorithm */
2026 		__le16 save_csum;
2027 		__u32 csum32;
2028 
2029 		save_csum = gdp->bg_checksum;
2030 		gdp->bg_checksum = 0;
2031 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2032 				     sizeof(le_group));
2033 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2034 				     sbi->s_desc_size);
2035 		gdp->bg_checksum = save_csum;
2036 
2037 		crc = csum32 & 0xFFFF;
2038 		goto out;
2039 	}
2040 
2041 	/* old crc16 code */
2042 	if (!(sbi->s_es->s_feature_ro_compat &
2043 	      cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2044 		return 0;
2045 
2046 	offset = offsetof(struct ext4_group_desc, bg_checksum);
2047 
2048 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2049 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2050 	crc = crc16(crc, (__u8 *)gdp, offset);
2051 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2052 	/* for checksum of struct ext4_group_desc do the rest...*/
2053 	if ((sbi->s_es->s_feature_incompat &
2054 	     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2055 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2056 		crc = crc16(crc, (__u8 *)gdp + offset,
2057 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2058 				offset);
2059 
2060 out:
2061 	return cpu_to_le16(crc);
2062 }
2063 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2064 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2065 				struct ext4_group_desc *gdp)
2066 {
2067 	if (ext4_has_group_desc_csum(sb) &&
2068 	    (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2069 						      block_group, gdp)))
2070 		return 0;
2071 
2072 	return 1;
2073 }
2074 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2075 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2076 			      struct ext4_group_desc *gdp)
2077 {
2078 	if (!ext4_has_group_desc_csum(sb))
2079 		return;
2080 	gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2081 }
2082 
2083 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)2084 static int ext4_check_descriptors(struct super_block *sb,
2085 				  ext4_group_t *first_not_zeroed)
2086 {
2087 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2088 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2089 	ext4_fsblk_t last_block;
2090 	ext4_fsblk_t block_bitmap;
2091 	ext4_fsblk_t inode_bitmap;
2092 	ext4_fsblk_t inode_table;
2093 	int flexbg_flag = 0;
2094 	ext4_group_t i, grp = sbi->s_groups_count;
2095 
2096 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2097 		flexbg_flag = 1;
2098 
2099 	ext4_debug("Checking group descriptors");
2100 
2101 	for (i = 0; i < sbi->s_groups_count; i++) {
2102 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2103 
2104 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2105 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2106 		else
2107 			last_block = first_block +
2108 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2109 
2110 		if ((grp == sbi->s_groups_count) &&
2111 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2112 			grp = i;
2113 
2114 		block_bitmap = ext4_block_bitmap(sb, gdp);
2115 		if (block_bitmap < first_block || block_bitmap > last_block) {
2116 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 			       "Block bitmap for group %u not in group "
2118 			       "(block %llu)!", i, block_bitmap);
2119 			return 0;
2120 		}
2121 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2122 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2123 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2124 			       "Inode bitmap for group %u not in group "
2125 			       "(block %llu)!", i, inode_bitmap);
2126 			return 0;
2127 		}
2128 		inode_table = ext4_inode_table(sb, gdp);
2129 		if (inode_table < first_block ||
2130 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2131 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2132 			       "Inode table for group %u not in group "
2133 			       "(block %llu)!", i, inode_table);
2134 			return 0;
2135 		}
2136 		ext4_lock_group(sb, i);
2137 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2138 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2139 				 "Checksum for group %u failed (%u!=%u)",
2140 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2141 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2142 			if (!(sb->s_flags & MS_RDONLY)) {
2143 				ext4_unlock_group(sb, i);
2144 				return 0;
2145 			}
2146 		}
2147 		ext4_unlock_group(sb, i);
2148 		if (!flexbg_flag)
2149 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2150 	}
2151 	if (NULL != first_not_zeroed)
2152 		*first_not_zeroed = grp;
2153 	return 1;
2154 }
2155 
2156 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2157  * the superblock) which were deleted from all directories, but held open by
2158  * a process at the time of a crash.  We walk the list and try to delete these
2159  * inodes at recovery time (only with a read-write filesystem).
2160  *
2161  * In order to keep the orphan inode chain consistent during traversal (in
2162  * case of crash during recovery), we link each inode into the superblock
2163  * orphan list_head and handle it the same way as an inode deletion during
2164  * normal operation (which journals the operations for us).
2165  *
2166  * We only do an iget() and an iput() on each inode, which is very safe if we
2167  * accidentally point at an in-use or already deleted inode.  The worst that
2168  * can happen in this case is that we get a "bit already cleared" message from
2169  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2170  * e2fsck was run on this filesystem, and it must have already done the orphan
2171  * inode cleanup for us, so we can safely abort without any further action.
2172  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2173 static void ext4_orphan_cleanup(struct super_block *sb,
2174 				struct ext4_super_block *es)
2175 {
2176 	unsigned int s_flags = sb->s_flags;
2177 	int nr_orphans = 0, nr_truncates = 0;
2178 #ifdef CONFIG_QUOTA
2179 	int i;
2180 #endif
2181 	if (!es->s_last_orphan) {
2182 		jbd_debug(4, "no orphan inodes to clean up\n");
2183 		return;
2184 	}
2185 
2186 	if (bdev_read_only(sb->s_bdev)) {
2187 		ext4_msg(sb, KERN_ERR, "write access "
2188 			"unavailable, skipping orphan cleanup");
2189 		return;
2190 	}
2191 
2192 	/* Check if feature set would not allow a r/w mount */
2193 	if (!ext4_feature_set_ok(sb, 0)) {
2194 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2195 			 "unknown ROCOMPAT features");
2196 		return;
2197 	}
2198 
2199 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2200 		/* don't clear list on RO mount w/ errors */
2201 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2202 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2203 				  "clearing orphan list.\n");
2204 			es->s_last_orphan = 0;
2205 		}
2206 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2207 		return;
2208 	}
2209 
2210 	if (s_flags & MS_RDONLY) {
2211 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2212 		sb->s_flags &= ~MS_RDONLY;
2213 	}
2214 #ifdef CONFIG_QUOTA
2215 	/* Needed for iput() to work correctly and not trash data */
2216 	sb->s_flags |= MS_ACTIVE;
2217 	/* Turn on quotas so that they are updated correctly */
2218 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2219 		if (EXT4_SB(sb)->s_qf_names[i]) {
2220 			int ret = ext4_quota_on_mount(sb, i);
2221 			if (ret < 0)
2222 				ext4_msg(sb, KERN_ERR,
2223 					"Cannot turn on journaled "
2224 					"quota: error %d", ret);
2225 		}
2226 	}
2227 #endif
2228 
2229 	while (es->s_last_orphan) {
2230 		struct inode *inode;
2231 
2232 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2233 		if (IS_ERR(inode)) {
2234 			es->s_last_orphan = 0;
2235 			break;
2236 		}
2237 
2238 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2239 		dquot_initialize(inode);
2240 		if (inode->i_nlink) {
2241 			if (test_opt(sb, DEBUG))
2242 				ext4_msg(sb, KERN_DEBUG,
2243 					"%s: truncating inode %lu to %lld bytes",
2244 					__func__, inode->i_ino, inode->i_size);
2245 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2246 				  inode->i_ino, inode->i_size);
2247 			mutex_lock(&inode->i_mutex);
2248 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2249 			ext4_truncate(inode);
2250 			mutex_unlock(&inode->i_mutex);
2251 			nr_truncates++;
2252 		} else {
2253 			if (test_opt(sb, DEBUG))
2254 				ext4_msg(sb, KERN_DEBUG,
2255 					"%s: deleting unreferenced inode %lu",
2256 					__func__, inode->i_ino);
2257 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2258 				  inode->i_ino);
2259 			nr_orphans++;
2260 		}
2261 		iput(inode);  /* The delete magic happens here! */
2262 	}
2263 
2264 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2265 
2266 	if (nr_orphans)
2267 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2268 		       PLURAL(nr_orphans));
2269 	if (nr_truncates)
2270 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2271 		       PLURAL(nr_truncates));
2272 #ifdef CONFIG_QUOTA
2273 	/* Turn quotas off */
2274 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2275 		if (sb_dqopt(sb)->files[i])
2276 			dquot_quota_off(sb, i);
2277 	}
2278 #endif
2279 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2280 }
2281 
2282 /*
2283  * Maximal extent format file size.
2284  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2285  * extent format containers, within a sector_t, and within i_blocks
2286  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2287  * so that won't be a limiting factor.
2288  *
2289  * However there is other limiting factor. We do store extents in the form
2290  * of starting block and length, hence the resulting length of the extent
2291  * covering maximum file size must fit into on-disk format containers as
2292  * well. Given that length is always by 1 unit bigger than max unit (because
2293  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2294  *
2295  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2296  */
ext4_max_size(int blkbits,int has_huge_files)2297 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2298 {
2299 	loff_t res;
2300 	loff_t upper_limit = MAX_LFS_FILESIZE;
2301 
2302 	/* small i_blocks in vfs inode? */
2303 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2304 		/*
2305 		 * CONFIG_LBDAF is not enabled implies the inode
2306 		 * i_block represent total blocks in 512 bytes
2307 		 * 32 == size of vfs inode i_blocks * 8
2308 		 */
2309 		upper_limit = (1LL << 32) - 1;
2310 
2311 		/* total blocks in file system block size */
2312 		upper_limit >>= (blkbits - 9);
2313 		upper_limit <<= blkbits;
2314 	}
2315 
2316 	/*
2317 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2318 	 * by one fs block, so ee_len can cover the extent of maximum file
2319 	 * size
2320 	 */
2321 	res = (1LL << 32) - 1;
2322 	res <<= blkbits;
2323 
2324 	/* Sanity check against vm- & vfs- imposed limits */
2325 	if (res > upper_limit)
2326 		res = upper_limit;
2327 
2328 	return res;
2329 }
2330 
2331 /*
2332  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2333  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2334  * We need to be 1 filesystem block less than the 2^48 sector limit.
2335  */
ext4_max_bitmap_size(int bits,int has_huge_files)2336 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2337 {
2338 	loff_t res = EXT4_NDIR_BLOCKS;
2339 	int meta_blocks;
2340 	loff_t upper_limit;
2341 	/* This is calculated to be the largest file size for a dense, block
2342 	 * mapped file such that the file's total number of 512-byte sectors,
2343 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2344 	 *
2345 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2346 	 * number of 512-byte sectors of the file.
2347 	 */
2348 
2349 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2350 		/*
2351 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2352 		 * the inode i_block field represents total file blocks in
2353 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2354 		 */
2355 		upper_limit = (1LL << 32) - 1;
2356 
2357 		/* total blocks in file system block size */
2358 		upper_limit >>= (bits - 9);
2359 
2360 	} else {
2361 		/*
2362 		 * We use 48 bit ext4_inode i_blocks
2363 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2364 		 * represent total number of blocks in
2365 		 * file system block size
2366 		 */
2367 		upper_limit = (1LL << 48) - 1;
2368 
2369 	}
2370 
2371 	/* indirect blocks */
2372 	meta_blocks = 1;
2373 	/* double indirect blocks */
2374 	meta_blocks += 1 + (1LL << (bits-2));
2375 	/* tripple indirect blocks */
2376 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2377 
2378 	upper_limit -= meta_blocks;
2379 	upper_limit <<= bits;
2380 
2381 	res += 1LL << (bits-2);
2382 	res += 1LL << (2*(bits-2));
2383 	res += 1LL << (3*(bits-2));
2384 	res <<= bits;
2385 	if (res > upper_limit)
2386 		res = upper_limit;
2387 
2388 	if (res > MAX_LFS_FILESIZE)
2389 		res = MAX_LFS_FILESIZE;
2390 
2391 	return res;
2392 }
2393 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2394 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2395 				   ext4_fsblk_t logical_sb_block, int nr)
2396 {
2397 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2398 	ext4_group_t bg, first_meta_bg;
2399 	int has_super = 0;
2400 
2401 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2402 
2403 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2404 	    nr < first_meta_bg)
2405 		return logical_sb_block + nr + 1;
2406 	bg = sbi->s_desc_per_block * nr;
2407 	if (ext4_bg_has_super(sb, bg))
2408 		has_super = 1;
2409 
2410 	/*
2411 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2412 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2413 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2414 	 * compensate.
2415 	 */
2416 	if (sb->s_blocksize == 1024 && nr == 0 &&
2417 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2418 		has_super++;
2419 
2420 	return (has_super + ext4_group_first_block_no(sb, bg));
2421 }
2422 
2423 /**
2424  * ext4_get_stripe_size: Get the stripe size.
2425  * @sbi: In memory super block info
2426  *
2427  * If we have specified it via mount option, then
2428  * use the mount option value. If the value specified at mount time is
2429  * greater than the blocks per group use the super block value.
2430  * If the super block value is greater than blocks per group return 0.
2431  * Allocator needs it be less than blocks per group.
2432  *
2433  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2434 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2435 {
2436 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2437 	unsigned long stripe_width =
2438 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2439 	int ret;
2440 
2441 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2442 		ret = sbi->s_stripe;
2443 	else if (stripe_width <= sbi->s_blocks_per_group)
2444 		ret = stripe_width;
2445 	else if (stride <= sbi->s_blocks_per_group)
2446 		ret = stride;
2447 	else
2448 		ret = 0;
2449 
2450 	/*
2451 	 * If the stripe width is 1, this makes no sense and
2452 	 * we set it to 0 to turn off stripe handling code.
2453 	 */
2454 	if (ret <= 1)
2455 		ret = 0;
2456 
2457 	return ret;
2458 }
2459 
2460 /* sysfs supprt */
2461 
2462 struct ext4_attr {
2463 	struct attribute attr;
2464 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2465 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2466 			 const char *, size_t);
2467 	union {
2468 		int offset;
2469 		int deprecated_val;
2470 	} u;
2471 };
2472 
parse_strtoull(const char * buf,unsigned long long max,unsigned long long * value)2473 static int parse_strtoull(const char *buf,
2474 		unsigned long long max, unsigned long long *value)
2475 {
2476 	int ret;
2477 
2478 	ret = kstrtoull(skip_spaces(buf), 0, value);
2479 	if (!ret && *value > max)
2480 		ret = -EINVAL;
2481 	return ret;
2482 }
2483 
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2484 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2485 					      struct ext4_sb_info *sbi,
2486 					      char *buf)
2487 {
2488 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2489 		(s64) EXT4_C2B(sbi,
2490 			percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2491 }
2492 
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2493 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2494 					 struct ext4_sb_info *sbi, char *buf)
2495 {
2496 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2497 
2498 	if (!sb->s_bdev->bd_part)
2499 		return snprintf(buf, PAGE_SIZE, "0\n");
2500 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2501 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2502 			 sbi->s_sectors_written_start) >> 1);
2503 }
2504 
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2505 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2506 					  struct ext4_sb_info *sbi, char *buf)
2507 {
2508 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2509 
2510 	if (!sb->s_bdev->bd_part)
2511 		return snprintf(buf, PAGE_SIZE, "0\n");
2512 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2513 			(unsigned long long)(sbi->s_kbytes_written +
2514 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2515 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2516 }
2517 
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2518 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2519 					  struct ext4_sb_info *sbi,
2520 					  const char *buf, size_t count)
2521 {
2522 	unsigned long t;
2523 	int ret;
2524 
2525 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2526 	if (ret)
2527 		return ret;
2528 
2529 	if (t && (!is_power_of_2(t) || t > 0x40000000))
2530 		return -EINVAL;
2531 
2532 	sbi->s_inode_readahead_blks = t;
2533 	return count;
2534 }
2535 
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2536 static ssize_t sbi_ui_show(struct ext4_attr *a,
2537 			   struct ext4_sb_info *sbi, char *buf)
2538 {
2539 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2540 
2541 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2542 }
2543 
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2544 static ssize_t sbi_ui_store(struct ext4_attr *a,
2545 			    struct ext4_sb_info *sbi,
2546 			    const char *buf, size_t count)
2547 {
2548 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2549 	unsigned long t;
2550 	int ret;
2551 
2552 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2553 	if (ret)
2554 		return ret;
2555 	*ui = t;
2556 	return count;
2557 }
2558 
es_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2559 static ssize_t es_ui_show(struct ext4_attr *a,
2560 			   struct ext4_sb_info *sbi, char *buf)
2561 {
2562 
2563 	unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2564 			   a->u.offset);
2565 
2566 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2567 }
2568 
reserved_clusters_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2569 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2570 				  struct ext4_sb_info *sbi, char *buf)
2571 {
2572 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2573 		(unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2574 }
2575 
reserved_clusters_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2576 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2577 				   struct ext4_sb_info *sbi,
2578 				   const char *buf, size_t count)
2579 {
2580 	unsigned long long val;
2581 	int ret;
2582 
2583 	if (parse_strtoull(buf, -1ULL, &val))
2584 		return -EINVAL;
2585 	ret = ext4_reserve_clusters(sbi, val);
2586 
2587 	return ret ? ret : count;
2588 }
2589 
trigger_test_error(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2590 static ssize_t trigger_test_error(struct ext4_attr *a,
2591 				  struct ext4_sb_info *sbi,
2592 				  const char *buf, size_t count)
2593 {
2594 	int len = count;
2595 
2596 	if (!capable(CAP_SYS_ADMIN))
2597 		return -EPERM;
2598 
2599 	if (len && buf[len-1] == '\n')
2600 		len--;
2601 
2602 	if (len)
2603 		ext4_error(sbi->s_sb, "%.*s", len, buf);
2604 	return count;
2605 }
2606 
sbi_deprecated_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2607 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2608 				   struct ext4_sb_info *sbi, char *buf)
2609 {
2610 	return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2611 }
2612 
2613 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2614 static struct ext4_attr ext4_attr_##_name = {			\
2615 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2616 	.show	= _show,					\
2617 	.store	= _store,					\
2618 	.u = {							\
2619 		.offset = offsetof(struct ext4_sb_info, _elname),\
2620 	},							\
2621 }
2622 
2623 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname)		\
2624 static struct ext4_attr ext4_attr_##_name = {				\
2625 	.attr = {.name = __stringify(_name), .mode = _mode },		\
2626 	.show	= _show,						\
2627 	.store	= _store,						\
2628 	.u = {								\
2629 		.offset = offsetof(struct ext4_super_block, _elname),	\
2630 	},								\
2631 }
2632 
2633 #define EXT4_ATTR(name, mode, show, store) \
2634 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2635 
2636 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2637 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2638 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2639 
2640 #define EXT4_RO_ATTR_ES_UI(name, elname)	\
2641 	EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2642 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2643 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2644 
2645 #define ATTR_LIST(name) &ext4_attr_##name.attr
2646 #define EXT4_DEPRECATED_ATTR(_name, _val)	\
2647 static struct ext4_attr ext4_attr_##_name = {			\
2648 	.attr = {.name = __stringify(_name), .mode = 0444 },	\
2649 	.show	= sbi_deprecated_show,				\
2650 	.u = {							\
2651 		.deprecated_val = _val,				\
2652 	},							\
2653 }
2654 
2655 EXT4_RO_ATTR(delayed_allocation_blocks);
2656 EXT4_RO_ATTR(session_write_kbytes);
2657 EXT4_RO_ATTR(lifetime_write_kbytes);
2658 EXT4_RW_ATTR(reserved_clusters);
2659 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2660 		 inode_readahead_blks_store, s_inode_readahead_blks);
2661 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2662 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2663 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2664 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2665 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2666 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2667 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2668 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2669 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2670 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2671 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2672 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2673 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2674 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2675 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2676 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2677 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2678 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2679 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2680 
2681 static struct attribute *ext4_attrs[] = {
2682 	ATTR_LIST(delayed_allocation_blocks),
2683 	ATTR_LIST(session_write_kbytes),
2684 	ATTR_LIST(lifetime_write_kbytes),
2685 	ATTR_LIST(reserved_clusters),
2686 	ATTR_LIST(inode_readahead_blks),
2687 	ATTR_LIST(inode_goal),
2688 	ATTR_LIST(mb_stats),
2689 	ATTR_LIST(mb_max_to_scan),
2690 	ATTR_LIST(mb_min_to_scan),
2691 	ATTR_LIST(mb_order2_req),
2692 	ATTR_LIST(mb_stream_req),
2693 	ATTR_LIST(mb_group_prealloc),
2694 	ATTR_LIST(max_writeback_mb_bump),
2695 	ATTR_LIST(extent_max_zeroout_kb),
2696 	ATTR_LIST(trigger_fs_error),
2697 	ATTR_LIST(err_ratelimit_interval_ms),
2698 	ATTR_LIST(err_ratelimit_burst),
2699 	ATTR_LIST(warning_ratelimit_interval_ms),
2700 	ATTR_LIST(warning_ratelimit_burst),
2701 	ATTR_LIST(msg_ratelimit_interval_ms),
2702 	ATTR_LIST(msg_ratelimit_burst),
2703 	ATTR_LIST(errors_count),
2704 	ATTR_LIST(first_error_time),
2705 	ATTR_LIST(last_error_time),
2706 	NULL,
2707 };
2708 
2709 /* Features this copy of ext4 supports */
2710 EXT4_INFO_ATTR(lazy_itable_init);
2711 EXT4_INFO_ATTR(batched_discard);
2712 EXT4_INFO_ATTR(meta_bg_resize);
2713 EXT4_INFO_ATTR(encryption);
2714 
2715 static struct attribute *ext4_feat_attrs[] = {
2716 	ATTR_LIST(lazy_itable_init),
2717 	ATTR_LIST(batched_discard),
2718 	ATTR_LIST(meta_bg_resize),
2719 	ATTR_LIST(encryption),
2720 	NULL,
2721 };
2722 
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2723 static ssize_t ext4_attr_show(struct kobject *kobj,
2724 			      struct attribute *attr, char *buf)
2725 {
2726 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2727 						s_kobj);
2728 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2729 
2730 	return a->show ? a->show(a, sbi, buf) : 0;
2731 }
2732 
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2733 static ssize_t ext4_attr_store(struct kobject *kobj,
2734 			       struct attribute *attr,
2735 			       const char *buf, size_t len)
2736 {
2737 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2738 						s_kobj);
2739 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2740 
2741 	return a->store ? a->store(a, sbi, buf, len) : 0;
2742 }
2743 
ext4_sb_release(struct kobject * kobj)2744 static void ext4_sb_release(struct kobject *kobj)
2745 {
2746 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2747 						s_kobj);
2748 	complete(&sbi->s_kobj_unregister);
2749 }
2750 
2751 static const struct sysfs_ops ext4_attr_ops = {
2752 	.show	= ext4_attr_show,
2753 	.store	= ext4_attr_store,
2754 };
2755 
2756 static struct kobj_type ext4_ktype = {
2757 	.default_attrs	= ext4_attrs,
2758 	.sysfs_ops	= &ext4_attr_ops,
2759 	.release	= ext4_sb_release,
2760 };
2761 
ext4_feat_release(struct kobject * kobj)2762 static void ext4_feat_release(struct kobject *kobj)
2763 {
2764 	complete(&ext4_feat->f_kobj_unregister);
2765 }
2766 
ext4_feat_show(struct kobject * kobj,struct attribute * attr,char * buf)2767 static ssize_t ext4_feat_show(struct kobject *kobj,
2768 			      struct attribute *attr, char *buf)
2769 {
2770 	return snprintf(buf, PAGE_SIZE, "supported\n");
2771 }
2772 
2773 /*
2774  * We can not use ext4_attr_show/store because it relies on the kobject
2775  * being embedded in the ext4_sb_info structure which is definitely not
2776  * true in this case.
2777  */
2778 static const struct sysfs_ops ext4_feat_ops = {
2779 	.show	= ext4_feat_show,
2780 	.store	= NULL,
2781 };
2782 
2783 static struct kobj_type ext4_feat_ktype = {
2784 	.default_attrs	= ext4_feat_attrs,
2785 	.sysfs_ops	= &ext4_feat_ops,
2786 	.release	= ext4_feat_release,
2787 };
2788 
2789 /*
2790  * Check whether this filesystem can be mounted based on
2791  * the features present and the RDONLY/RDWR mount requested.
2792  * Returns 1 if this filesystem can be mounted as requested,
2793  * 0 if it cannot be.
2794  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2795 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2796 {
2797 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2798 		ext4_msg(sb, KERN_ERR,
2799 			"Couldn't mount because of "
2800 			"unsupported optional features (%x)",
2801 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2802 			~EXT4_FEATURE_INCOMPAT_SUPP));
2803 		return 0;
2804 	}
2805 
2806 	if (readonly)
2807 		return 1;
2808 
2809 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2810 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2811 		sb->s_flags |= MS_RDONLY;
2812 		return 1;
2813 	}
2814 
2815 	/* Check that feature set is OK for a read-write mount */
2816 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2817 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2818 			 "unsupported optional features (%x)",
2819 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2820 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2821 		return 0;
2822 	}
2823 	/*
2824 	 * Large file size enabled file system can only be mounted
2825 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2826 	 */
2827 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2828 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2829 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2830 				 "cannot be mounted RDWR without "
2831 				 "CONFIG_LBDAF");
2832 			return 0;
2833 		}
2834 	}
2835 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2836 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2837 		ext4_msg(sb, KERN_ERR,
2838 			 "Can't support bigalloc feature without "
2839 			 "extents feature\n");
2840 		return 0;
2841 	}
2842 
2843 #ifndef CONFIG_QUOTA
2844 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2845 	    !readonly) {
2846 		ext4_msg(sb, KERN_ERR,
2847 			 "Filesystem with quota feature cannot be mounted RDWR "
2848 			 "without CONFIG_QUOTA");
2849 		return 0;
2850 	}
2851 #endif  /* CONFIG_QUOTA */
2852 	return 1;
2853 }
2854 
2855 /*
2856  * This function is called once a day if we have errors logged
2857  * on the file system
2858  */
print_daily_error_info(unsigned long arg)2859 static void print_daily_error_info(unsigned long arg)
2860 {
2861 	struct super_block *sb = (struct super_block *) arg;
2862 	struct ext4_sb_info *sbi;
2863 	struct ext4_super_block *es;
2864 
2865 	sbi = EXT4_SB(sb);
2866 	es = sbi->s_es;
2867 
2868 	if (es->s_error_count)
2869 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2870 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2871 			 le32_to_cpu(es->s_error_count));
2872 	if (es->s_first_error_time) {
2873 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2874 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2875 		       (int) sizeof(es->s_first_error_func),
2876 		       es->s_first_error_func,
2877 		       le32_to_cpu(es->s_first_error_line));
2878 		if (es->s_first_error_ino)
2879 			printk(": inode %u",
2880 			       le32_to_cpu(es->s_first_error_ino));
2881 		if (es->s_first_error_block)
2882 			printk(": block %llu", (unsigned long long)
2883 			       le64_to_cpu(es->s_first_error_block));
2884 		printk("\n");
2885 	}
2886 	if (es->s_last_error_time) {
2887 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2888 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2889 		       (int) sizeof(es->s_last_error_func),
2890 		       es->s_last_error_func,
2891 		       le32_to_cpu(es->s_last_error_line));
2892 		if (es->s_last_error_ino)
2893 			printk(": inode %u",
2894 			       le32_to_cpu(es->s_last_error_ino));
2895 		if (es->s_last_error_block)
2896 			printk(": block %llu", (unsigned long long)
2897 			       le64_to_cpu(es->s_last_error_block));
2898 		printk("\n");
2899 	}
2900 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2901 }
2902 
2903 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2904 static int ext4_run_li_request(struct ext4_li_request *elr)
2905 {
2906 	struct ext4_group_desc *gdp = NULL;
2907 	ext4_group_t group, ngroups;
2908 	struct super_block *sb;
2909 	unsigned long timeout = 0;
2910 	int ret = 0;
2911 
2912 	sb = elr->lr_super;
2913 	ngroups = EXT4_SB(sb)->s_groups_count;
2914 
2915 	sb_start_write(sb);
2916 	for (group = elr->lr_next_group; group < ngroups; group++) {
2917 		gdp = ext4_get_group_desc(sb, group, NULL);
2918 		if (!gdp) {
2919 			ret = 1;
2920 			break;
2921 		}
2922 
2923 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2924 			break;
2925 	}
2926 
2927 	if (group >= ngroups)
2928 		ret = 1;
2929 
2930 	if (!ret) {
2931 		timeout = jiffies;
2932 		ret = ext4_init_inode_table(sb, group,
2933 					    elr->lr_timeout ? 0 : 1);
2934 		if (elr->lr_timeout == 0) {
2935 			timeout = (jiffies - timeout) *
2936 				  elr->lr_sbi->s_li_wait_mult;
2937 			elr->lr_timeout = timeout;
2938 		}
2939 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2940 		elr->lr_next_group = group + 1;
2941 	}
2942 	sb_end_write(sb);
2943 
2944 	return ret;
2945 }
2946 
2947 /*
2948  * Remove lr_request from the list_request and free the
2949  * request structure. Should be called with li_list_mtx held
2950  */
ext4_remove_li_request(struct ext4_li_request * elr)2951 static void ext4_remove_li_request(struct ext4_li_request *elr)
2952 {
2953 	struct ext4_sb_info *sbi;
2954 
2955 	if (!elr)
2956 		return;
2957 
2958 	sbi = elr->lr_sbi;
2959 
2960 	list_del(&elr->lr_request);
2961 	sbi->s_li_request = NULL;
2962 	kfree(elr);
2963 }
2964 
ext4_unregister_li_request(struct super_block * sb)2965 static void ext4_unregister_li_request(struct super_block *sb)
2966 {
2967 	mutex_lock(&ext4_li_mtx);
2968 	if (!ext4_li_info) {
2969 		mutex_unlock(&ext4_li_mtx);
2970 		return;
2971 	}
2972 
2973 	mutex_lock(&ext4_li_info->li_list_mtx);
2974 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2975 	mutex_unlock(&ext4_li_info->li_list_mtx);
2976 	mutex_unlock(&ext4_li_mtx);
2977 }
2978 
2979 static struct task_struct *ext4_lazyinit_task;
2980 
2981 /*
2982  * This is the function where ext4lazyinit thread lives. It walks
2983  * through the request list searching for next scheduled filesystem.
2984  * When such a fs is found, run the lazy initialization request
2985  * (ext4_rn_li_request) and keep track of the time spend in this
2986  * function. Based on that time we compute next schedule time of
2987  * the request. When walking through the list is complete, compute
2988  * next waking time and put itself into sleep.
2989  */
ext4_lazyinit_thread(void * arg)2990 static int ext4_lazyinit_thread(void *arg)
2991 {
2992 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2993 	struct list_head *pos, *n;
2994 	struct ext4_li_request *elr;
2995 	unsigned long next_wakeup, cur;
2996 
2997 	BUG_ON(NULL == eli);
2998 
2999 cont_thread:
3000 	while (true) {
3001 		next_wakeup = MAX_JIFFY_OFFSET;
3002 
3003 		mutex_lock(&eli->li_list_mtx);
3004 		if (list_empty(&eli->li_request_list)) {
3005 			mutex_unlock(&eli->li_list_mtx);
3006 			goto exit_thread;
3007 		}
3008 
3009 		list_for_each_safe(pos, n, &eli->li_request_list) {
3010 			elr = list_entry(pos, struct ext4_li_request,
3011 					 lr_request);
3012 
3013 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
3014 				if (ext4_run_li_request(elr) != 0) {
3015 					/* error, remove the lazy_init job */
3016 					ext4_remove_li_request(elr);
3017 					continue;
3018 				}
3019 			}
3020 
3021 			if (time_before(elr->lr_next_sched, next_wakeup))
3022 				next_wakeup = elr->lr_next_sched;
3023 		}
3024 		mutex_unlock(&eli->li_list_mtx);
3025 
3026 		try_to_freeze();
3027 
3028 		cur = jiffies;
3029 		if ((time_after_eq(cur, next_wakeup)) ||
3030 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3031 			cond_resched();
3032 			continue;
3033 		}
3034 
3035 		schedule_timeout_interruptible(next_wakeup - cur);
3036 
3037 		if (kthread_should_stop()) {
3038 			ext4_clear_request_list();
3039 			goto exit_thread;
3040 		}
3041 	}
3042 
3043 exit_thread:
3044 	/*
3045 	 * It looks like the request list is empty, but we need
3046 	 * to check it under the li_list_mtx lock, to prevent any
3047 	 * additions into it, and of course we should lock ext4_li_mtx
3048 	 * to atomically free the list and ext4_li_info, because at
3049 	 * this point another ext4 filesystem could be registering
3050 	 * new one.
3051 	 */
3052 	mutex_lock(&ext4_li_mtx);
3053 	mutex_lock(&eli->li_list_mtx);
3054 	if (!list_empty(&eli->li_request_list)) {
3055 		mutex_unlock(&eli->li_list_mtx);
3056 		mutex_unlock(&ext4_li_mtx);
3057 		goto cont_thread;
3058 	}
3059 	mutex_unlock(&eli->li_list_mtx);
3060 	kfree(ext4_li_info);
3061 	ext4_li_info = NULL;
3062 	mutex_unlock(&ext4_li_mtx);
3063 
3064 	return 0;
3065 }
3066 
ext4_clear_request_list(void)3067 static void ext4_clear_request_list(void)
3068 {
3069 	struct list_head *pos, *n;
3070 	struct ext4_li_request *elr;
3071 
3072 	mutex_lock(&ext4_li_info->li_list_mtx);
3073 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3074 		elr = list_entry(pos, struct ext4_li_request,
3075 				 lr_request);
3076 		ext4_remove_li_request(elr);
3077 	}
3078 	mutex_unlock(&ext4_li_info->li_list_mtx);
3079 }
3080 
ext4_run_lazyinit_thread(void)3081 static int ext4_run_lazyinit_thread(void)
3082 {
3083 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3084 					 ext4_li_info, "ext4lazyinit");
3085 	if (IS_ERR(ext4_lazyinit_task)) {
3086 		int err = PTR_ERR(ext4_lazyinit_task);
3087 		ext4_clear_request_list();
3088 		kfree(ext4_li_info);
3089 		ext4_li_info = NULL;
3090 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3091 				 "initialization thread\n",
3092 				 err);
3093 		return err;
3094 	}
3095 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3096 	return 0;
3097 }
3098 
3099 /*
3100  * Check whether it make sense to run itable init. thread or not.
3101  * If there is at least one uninitialized inode table, return
3102  * corresponding group number, else the loop goes through all
3103  * groups and return total number of groups.
3104  */
ext4_has_uninit_itable(struct super_block * sb)3105 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3106 {
3107 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3108 	struct ext4_group_desc *gdp = NULL;
3109 
3110 	for (group = 0; group < ngroups; group++) {
3111 		gdp = ext4_get_group_desc(sb, group, NULL);
3112 		if (!gdp)
3113 			continue;
3114 
3115 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3116 			break;
3117 	}
3118 
3119 	return group;
3120 }
3121 
ext4_li_info_new(void)3122 static int ext4_li_info_new(void)
3123 {
3124 	struct ext4_lazy_init *eli = NULL;
3125 
3126 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3127 	if (!eli)
3128 		return -ENOMEM;
3129 
3130 	INIT_LIST_HEAD(&eli->li_request_list);
3131 	mutex_init(&eli->li_list_mtx);
3132 
3133 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3134 
3135 	ext4_li_info = eli;
3136 
3137 	return 0;
3138 }
3139 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3140 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3141 					    ext4_group_t start)
3142 {
3143 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3144 	struct ext4_li_request *elr;
3145 
3146 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3147 	if (!elr)
3148 		return NULL;
3149 
3150 	elr->lr_super = sb;
3151 	elr->lr_sbi = sbi;
3152 	elr->lr_next_group = start;
3153 
3154 	/*
3155 	 * Randomize first schedule time of the request to
3156 	 * spread the inode table initialization requests
3157 	 * better.
3158 	 */
3159 	elr->lr_next_sched = jiffies + (prandom_u32() %
3160 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3161 	return elr;
3162 }
3163 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3164 int ext4_register_li_request(struct super_block *sb,
3165 			     ext4_group_t first_not_zeroed)
3166 {
3167 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3168 	struct ext4_li_request *elr = NULL;
3169 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3170 	int ret = 0;
3171 
3172 	mutex_lock(&ext4_li_mtx);
3173 	if (sbi->s_li_request != NULL) {
3174 		/*
3175 		 * Reset timeout so it can be computed again, because
3176 		 * s_li_wait_mult might have changed.
3177 		 */
3178 		sbi->s_li_request->lr_timeout = 0;
3179 		goto out;
3180 	}
3181 
3182 	if (first_not_zeroed == ngroups ||
3183 	    (sb->s_flags & MS_RDONLY) ||
3184 	    !test_opt(sb, INIT_INODE_TABLE))
3185 		goto out;
3186 
3187 	elr = ext4_li_request_new(sb, first_not_zeroed);
3188 	if (!elr) {
3189 		ret = -ENOMEM;
3190 		goto out;
3191 	}
3192 
3193 	if (NULL == ext4_li_info) {
3194 		ret = ext4_li_info_new();
3195 		if (ret)
3196 			goto out;
3197 	}
3198 
3199 	mutex_lock(&ext4_li_info->li_list_mtx);
3200 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3201 	mutex_unlock(&ext4_li_info->li_list_mtx);
3202 
3203 	sbi->s_li_request = elr;
3204 	/*
3205 	 * set elr to NULL here since it has been inserted to
3206 	 * the request_list and the removal and free of it is
3207 	 * handled by ext4_clear_request_list from now on.
3208 	 */
3209 	elr = NULL;
3210 
3211 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3212 		ret = ext4_run_lazyinit_thread();
3213 		if (ret)
3214 			goto out;
3215 	}
3216 out:
3217 	mutex_unlock(&ext4_li_mtx);
3218 	if (ret)
3219 		kfree(elr);
3220 	return ret;
3221 }
3222 
3223 /*
3224  * We do not need to lock anything since this is called on
3225  * module unload.
3226  */
ext4_destroy_lazyinit_thread(void)3227 static void ext4_destroy_lazyinit_thread(void)
3228 {
3229 	/*
3230 	 * If thread exited earlier
3231 	 * there's nothing to be done.
3232 	 */
3233 	if (!ext4_li_info || !ext4_lazyinit_task)
3234 		return;
3235 
3236 	kthread_stop(ext4_lazyinit_task);
3237 }
3238 
set_journal_csum_feature_set(struct super_block * sb)3239 static int set_journal_csum_feature_set(struct super_block *sb)
3240 {
3241 	int ret = 1;
3242 	int compat, incompat;
3243 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3244 
3245 	if (ext4_has_metadata_csum(sb)) {
3246 		/* journal checksum v3 */
3247 		compat = 0;
3248 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3249 	} else {
3250 		/* journal checksum v1 */
3251 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3252 		incompat = 0;
3253 	}
3254 
3255 	jbd2_journal_clear_features(sbi->s_journal,
3256 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3257 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3258 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3259 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3260 		ret = jbd2_journal_set_features(sbi->s_journal,
3261 				compat, 0,
3262 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3263 				incompat);
3264 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3265 		ret = jbd2_journal_set_features(sbi->s_journal,
3266 				compat, 0,
3267 				incompat);
3268 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3269 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3270 	} else {
3271 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3272 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3273 	}
3274 
3275 	return ret;
3276 }
3277 
3278 /*
3279  * Note: calculating the overhead so we can be compatible with
3280  * historical BSD practice is quite difficult in the face of
3281  * clusters/bigalloc.  This is because multiple metadata blocks from
3282  * different block group can end up in the same allocation cluster.
3283  * Calculating the exact overhead in the face of clustered allocation
3284  * requires either O(all block bitmaps) in memory or O(number of block
3285  * groups**2) in time.  We will still calculate the superblock for
3286  * older file systems --- and if we come across with a bigalloc file
3287  * system with zero in s_overhead_clusters the estimate will be close to
3288  * correct especially for very large cluster sizes --- but for newer
3289  * file systems, it's better to calculate this figure once at mkfs
3290  * time, and store it in the superblock.  If the superblock value is
3291  * present (even for non-bigalloc file systems), we will use it.
3292  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3293 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3294 			  char *buf)
3295 {
3296 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3297 	struct ext4_group_desc	*gdp;
3298 	ext4_fsblk_t		first_block, last_block, b;
3299 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3300 	int			s, j, count = 0;
3301 
3302 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3303 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3304 			sbi->s_itb_per_group + 2);
3305 
3306 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3307 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3308 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3309 	for (i = 0; i < ngroups; i++) {
3310 		gdp = ext4_get_group_desc(sb, i, NULL);
3311 		b = ext4_block_bitmap(sb, gdp);
3312 		if (b >= first_block && b <= last_block) {
3313 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3314 			count++;
3315 		}
3316 		b = ext4_inode_bitmap(sb, gdp);
3317 		if (b >= first_block && b <= last_block) {
3318 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3319 			count++;
3320 		}
3321 		b = ext4_inode_table(sb, gdp);
3322 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3323 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3324 				int c = EXT4_B2C(sbi, b - first_block);
3325 				ext4_set_bit(c, buf);
3326 				count++;
3327 			}
3328 		if (i != grp)
3329 			continue;
3330 		s = 0;
3331 		if (ext4_bg_has_super(sb, grp)) {
3332 			ext4_set_bit(s++, buf);
3333 			count++;
3334 		}
3335 		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3336 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3337 			count++;
3338 		}
3339 	}
3340 	if (!count)
3341 		return 0;
3342 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3343 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3344 }
3345 
3346 /*
3347  * Compute the overhead and stash it in sbi->s_overhead
3348  */
ext4_calculate_overhead(struct super_block * sb)3349 int ext4_calculate_overhead(struct super_block *sb)
3350 {
3351 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3352 	struct ext4_super_block *es = sbi->s_es;
3353 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3354 	ext4_fsblk_t overhead = 0;
3355 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3356 
3357 	if (!buf)
3358 		return -ENOMEM;
3359 
3360 	/*
3361 	 * Compute the overhead (FS structures).  This is constant
3362 	 * for a given filesystem unless the number of block groups
3363 	 * changes so we cache the previous value until it does.
3364 	 */
3365 
3366 	/*
3367 	 * All of the blocks before first_data_block are overhead
3368 	 */
3369 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3370 
3371 	/*
3372 	 * Add the overhead found in each block group
3373 	 */
3374 	for (i = 0; i < ngroups; i++) {
3375 		int blks;
3376 
3377 		blks = count_overhead(sb, i, buf);
3378 		overhead += blks;
3379 		if (blks)
3380 			memset(buf, 0, PAGE_SIZE);
3381 		cond_resched();
3382 	}
3383 	/* Add the internal journal blocks as well */
3384 	if (sbi->s_journal && !sbi->journal_bdev)
3385 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3386 
3387 	sbi->s_overhead = overhead;
3388 	smp_wmb();
3389 	free_page((unsigned long) buf);
3390 	return 0;
3391 }
3392 
3393 
ext4_calculate_resv_clusters(struct super_block * sb)3394 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3395 {
3396 	ext4_fsblk_t resv_clusters;
3397 
3398 	/*
3399 	 * There's no need to reserve anything when we aren't using extents.
3400 	 * The space estimates are exact, there are no unwritten extents,
3401 	 * hole punching doesn't need new metadata... This is needed especially
3402 	 * to keep ext2/3 backward compatibility.
3403 	 */
3404 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3405 		return 0;
3406 	/*
3407 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3408 	 * This should cover the situations where we can not afford to run
3409 	 * out of space like for example punch hole, or converting
3410 	 * unwritten extents in delalloc path. In most cases such
3411 	 * allocation would require 1, or 2 blocks, higher numbers are
3412 	 * very rare.
3413 	 */
3414 	resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3415 			EXT4_SB(sb)->s_cluster_bits;
3416 
3417 	do_div(resv_clusters, 50);
3418 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3419 
3420 	return resv_clusters;
3421 }
3422 
3423 
ext4_reserve_clusters(struct ext4_sb_info * sbi,ext4_fsblk_t count)3424 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3425 {
3426 	ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3427 				sbi->s_cluster_bits;
3428 
3429 	if (count >= clusters)
3430 		return -EINVAL;
3431 
3432 	atomic64_set(&sbi->s_resv_clusters, count);
3433 	return 0;
3434 }
3435 
ext4_fill_super(struct super_block * sb,void * data,int silent)3436 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3437 {
3438 	char *orig_data = kstrdup(data, GFP_KERNEL);
3439 	struct buffer_head *bh;
3440 	struct ext4_super_block *es = NULL;
3441 	struct ext4_sb_info *sbi;
3442 	ext4_fsblk_t block;
3443 	ext4_fsblk_t sb_block = get_sb_block(&data);
3444 	ext4_fsblk_t logical_sb_block;
3445 	unsigned long offset = 0;
3446 	unsigned long journal_devnum = 0;
3447 	unsigned long def_mount_opts;
3448 	struct inode *root;
3449 	char *cp;
3450 	const char *descr;
3451 	int ret = -ENOMEM;
3452 	int blocksize, clustersize;
3453 	unsigned int db_count;
3454 	unsigned int i;
3455 	int needs_recovery, has_huge_files, has_bigalloc;
3456 	__u64 blocks_count;
3457 	int err = 0;
3458 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3459 	ext4_group_t first_not_zeroed;
3460 
3461 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3462 	if (!sbi)
3463 		goto out_free_orig;
3464 
3465 	sbi->s_blockgroup_lock =
3466 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3467 	if (!sbi->s_blockgroup_lock) {
3468 		kfree(sbi);
3469 		goto out_free_orig;
3470 	}
3471 	sb->s_fs_info = sbi;
3472 	sbi->s_sb = sb;
3473 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3474 	sbi->s_sb_block = sb_block;
3475 	if (sb->s_bdev->bd_part)
3476 		sbi->s_sectors_written_start =
3477 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3478 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3479 	/* Modes of operations for file and directory encryption. */
3480 	sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
3481 	sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID;
3482 #endif
3483 
3484 	/* Cleanup superblock name */
3485 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3486 		*cp = '!';
3487 
3488 	/* -EINVAL is default */
3489 	ret = -EINVAL;
3490 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3491 	if (!blocksize) {
3492 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3493 		goto out_fail;
3494 	}
3495 
3496 	/*
3497 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3498 	 * block sizes.  We need to calculate the offset from buffer start.
3499 	 */
3500 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3501 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3502 		offset = do_div(logical_sb_block, blocksize);
3503 	} else {
3504 		logical_sb_block = sb_block;
3505 	}
3506 
3507 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3508 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3509 		goto out_fail;
3510 	}
3511 	/*
3512 	 * Note: s_es must be initialized as soon as possible because
3513 	 *       some ext4 macro-instructions depend on its value
3514 	 */
3515 	es = (struct ext4_super_block *) (bh->b_data + offset);
3516 	sbi->s_es = es;
3517 	sb->s_magic = le16_to_cpu(es->s_magic);
3518 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3519 		goto cantfind_ext4;
3520 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3521 
3522 	/* Warn if metadata_csum and gdt_csum are both set. */
3523 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3524 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3525 	    EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3526 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3527 			     "redundant flags; please run fsck.");
3528 
3529 	/* Check for a known checksum algorithm */
3530 	if (!ext4_verify_csum_type(sb, es)) {
3531 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3532 			 "unknown checksum algorithm.");
3533 		silent = 1;
3534 		goto cantfind_ext4;
3535 	}
3536 
3537 	/* Load the checksum driver */
3538 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3539 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3540 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3541 		if (IS_ERR(sbi->s_chksum_driver)) {
3542 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3543 			ret = PTR_ERR(sbi->s_chksum_driver);
3544 			sbi->s_chksum_driver = NULL;
3545 			goto failed_mount;
3546 		}
3547 	}
3548 
3549 	/* Check superblock checksum */
3550 	if (!ext4_superblock_csum_verify(sb, es)) {
3551 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3552 			 "invalid superblock checksum.  Run e2fsck?");
3553 		silent = 1;
3554 		goto cantfind_ext4;
3555 	}
3556 
3557 	/* Precompute checksum seed for all metadata */
3558 	if (ext4_has_metadata_csum(sb))
3559 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3560 					       sizeof(es->s_uuid));
3561 
3562 	/* Set defaults before we parse the mount options */
3563 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3564 	set_opt(sb, INIT_INODE_TABLE);
3565 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3566 		set_opt(sb, DEBUG);
3567 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3568 		set_opt(sb, GRPID);
3569 	if (def_mount_opts & EXT4_DEFM_UID16)
3570 		set_opt(sb, NO_UID32);
3571 	/* xattr user namespace & acls are now defaulted on */
3572 	set_opt(sb, XATTR_USER);
3573 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3574 	set_opt(sb, POSIX_ACL);
3575 #endif
3576 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3577 	if (ext4_has_metadata_csum(sb))
3578 		set_opt(sb, JOURNAL_CHECKSUM);
3579 
3580 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3581 		set_opt(sb, JOURNAL_DATA);
3582 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3583 		set_opt(sb, ORDERED_DATA);
3584 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3585 		set_opt(sb, WRITEBACK_DATA);
3586 
3587 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3588 		set_opt(sb, ERRORS_PANIC);
3589 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3590 		set_opt(sb, ERRORS_CONT);
3591 	else
3592 		set_opt(sb, ERRORS_RO);
3593 	/* block_validity enabled by default; disable with noblock_validity */
3594 	set_opt(sb, BLOCK_VALIDITY);
3595 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3596 		set_opt(sb, DISCARD);
3597 
3598 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3599 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3600 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3601 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3602 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3603 
3604 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3605 		set_opt(sb, BARRIER);
3606 
3607 	/*
3608 	 * enable delayed allocation by default
3609 	 * Use -o nodelalloc to turn it off
3610 	 */
3611 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3612 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3613 		set_opt(sb, DELALLOC);
3614 
3615 	/*
3616 	 * set default s_li_wait_mult for lazyinit, for the case there is
3617 	 * no mount option specified.
3618 	 */
3619 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3620 
3621 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3622 			   &journal_devnum, &journal_ioprio, 0)) {
3623 		ext4_msg(sb, KERN_WARNING,
3624 			 "failed to parse options in superblock: %s",
3625 			 sbi->s_es->s_mount_opts);
3626 	}
3627 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3628 	if (!parse_options((char *) data, sb, &journal_devnum,
3629 			   &journal_ioprio, 0))
3630 		goto failed_mount;
3631 
3632 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3633 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3634 			    "with data=journal disables delayed "
3635 			    "allocation and O_DIRECT support!\n");
3636 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3637 			ext4_msg(sb, KERN_ERR, "can't mount with "
3638 				 "both data=journal and delalloc");
3639 			goto failed_mount;
3640 		}
3641 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3642 			ext4_msg(sb, KERN_ERR, "can't mount with "
3643 				 "both data=journal and dioread_nolock");
3644 			goto failed_mount;
3645 		}
3646 		if (test_opt(sb, DAX)) {
3647 			ext4_msg(sb, KERN_ERR, "can't mount with "
3648 				 "both data=journal and dax");
3649 			goto failed_mount;
3650 		}
3651 		if (test_opt(sb, DELALLOC))
3652 			clear_opt(sb, DELALLOC);
3653 	}
3654 
3655 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3656 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3657 
3658 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3659 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3660 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3661 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3662 		ext4_msg(sb, KERN_WARNING,
3663 		       "feature flags set on rev 0 fs, "
3664 		       "running e2fsck is recommended");
3665 
3666 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3667 		set_opt2(sb, HURD_COMPAT);
3668 		if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3669 					      EXT4_FEATURE_INCOMPAT_64BIT)) {
3670 			ext4_msg(sb, KERN_ERR,
3671 				 "The Hurd can't support 64-bit file systems");
3672 			goto failed_mount;
3673 		}
3674 	}
3675 
3676 	if (IS_EXT2_SB(sb)) {
3677 		if (ext2_feature_set_ok(sb))
3678 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3679 				 "using the ext4 subsystem");
3680 		else {
3681 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3682 				 "to feature incompatibilities");
3683 			goto failed_mount;
3684 		}
3685 	}
3686 
3687 	if (IS_EXT3_SB(sb)) {
3688 		if (ext3_feature_set_ok(sb))
3689 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3690 				 "using the ext4 subsystem");
3691 		else {
3692 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3693 				 "to feature incompatibilities");
3694 			goto failed_mount;
3695 		}
3696 	}
3697 
3698 	/*
3699 	 * Check feature flags regardless of the revision level, since we
3700 	 * previously didn't change the revision level when setting the flags,
3701 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3702 	 */
3703 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3704 		goto failed_mount;
3705 
3706 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3707 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3708 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3709 		ext4_msg(sb, KERN_ERR,
3710 		       "Unsupported filesystem blocksize %d", blocksize);
3711 		goto failed_mount;
3712 	}
3713 
3714 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3715 		if (blocksize != PAGE_SIZE) {
3716 			ext4_msg(sb, KERN_ERR,
3717 					"error: unsupported blocksize for dax");
3718 			goto failed_mount;
3719 		}
3720 		if (!sb->s_bdev->bd_disk->fops->direct_access) {
3721 			ext4_msg(sb, KERN_ERR,
3722 					"error: device does not support dax");
3723 			goto failed_mount;
3724 		}
3725 	}
3726 
3727 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3728 	    es->s_encryption_level) {
3729 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3730 			 es->s_encryption_level);
3731 		goto failed_mount;
3732 	}
3733 
3734 	if (sb->s_blocksize != blocksize) {
3735 		/* Validate the filesystem blocksize */
3736 		if (!sb_set_blocksize(sb, blocksize)) {
3737 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3738 					blocksize);
3739 			goto failed_mount;
3740 		}
3741 
3742 		brelse(bh);
3743 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3744 		offset = do_div(logical_sb_block, blocksize);
3745 		bh = sb_bread_unmovable(sb, logical_sb_block);
3746 		if (!bh) {
3747 			ext4_msg(sb, KERN_ERR,
3748 			       "Can't read superblock on 2nd try");
3749 			goto failed_mount;
3750 		}
3751 		es = (struct ext4_super_block *)(bh->b_data + offset);
3752 		sbi->s_es = es;
3753 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3754 			ext4_msg(sb, KERN_ERR,
3755 			       "Magic mismatch, very weird!");
3756 			goto failed_mount;
3757 		}
3758 	}
3759 
3760 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3761 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3762 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3763 						      has_huge_files);
3764 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3765 
3766 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3767 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3768 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3769 	} else {
3770 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3771 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3772 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3773 		    (!is_power_of_2(sbi->s_inode_size)) ||
3774 		    (sbi->s_inode_size > blocksize)) {
3775 			ext4_msg(sb, KERN_ERR,
3776 			       "unsupported inode size: %d",
3777 			       sbi->s_inode_size);
3778 			goto failed_mount;
3779 		}
3780 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3781 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3782 	}
3783 
3784 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3785 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3786 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3787 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3788 		    !is_power_of_2(sbi->s_desc_size)) {
3789 			ext4_msg(sb, KERN_ERR,
3790 			       "unsupported descriptor size %lu",
3791 			       sbi->s_desc_size);
3792 			goto failed_mount;
3793 		}
3794 	} else
3795 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3796 
3797 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3798 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3799 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3800 		goto cantfind_ext4;
3801 
3802 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3803 	if (sbi->s_inodes_per_block == 0)
3804 		goto cantfind_ext4;
3805 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3806 					sbi->s_inodes_per_block;
3807 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3808 	sbi->s_sbh = bh;
3809 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3810 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3811 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3812 
3813 	for (i = 0; i < 4; i++)
3814 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3815 	sbi->s_def_hash_version = es->s_def_hash_version;
3816 	if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3817 		i = le32_to_cpu(es->s_flags);
3818 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3819 			sbi->s_hash_unsigned = 3;
3820 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3821 #ifdef __CHAR_UNSIGNED__
3822 			if (!(sb->s_flags & MS_RDONLY))
3823 				es->s_flags |=
3824 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3825 			sbi->s_hash_unsigned = 3;
3826 #else
3827 			if (!(sb->s_flags & MS_RDONLY))
3828 				es->s_flags |=
3829 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3830 #endif
3831 		}
3832 	}
3833 
3834 	/* Handle clustersize */
3835 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3836 	has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3837 				EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3838 	if (has_bigalloc) {
3839 		if (clustersize < blocksize) {
3840 			ext4_msg(sb, KERN_ERR,
3841 				 "cluster size (%d) smaller than "
3842 				 "block size (%d)", clustersize, blocksize);
3843 			goto failed_mount;
3844 		}
3845 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3846 			le32_to_cpu(es->s_log_block_size);
3847 		sbi->s_clusters_per_group =
3848 			le32_to_cpu(es->s_clusters_per_group);
3849 		if (sbi->s_clusters_per_group > blocksize * 8) {
3850 			ext4_msg(sb, KERN_ERR,
3851 				 "#clusters per group too big: %lu",
3852 				 sbi->s_clusters_per_group);
3853 			goto failed_mount;
3854 		}
3855 		if (sbi->s_blocks_per_group !=
3856 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3857 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3858 				 "clusters per group (%lu) inconsistent",
3859 				 sbi->s_blocks_per_group,
3860 				 sbi->s_clusters_per_group);
3861 			goto failed_mount;
3862 		}
3863 	} else {
3864 		if (clustersize != blocksize) {
3865 			ext4_warning(sb, "fragment/cluster size (%d) != "
3866 				     "block size (%d)", clustersize,
3867 				     blocksize);
3868 			clustersize = blocksize;
3869 		}
3870 		if (sbi->s_blocks_per_group > blocksize * 8) {
3871 			ext4_msg(sb, KERN_ERR,
3872 				 "#blocks per group too big: %lu",
3873 				 sbi->s_blocks_per_group);
3874 			goto failed_mount;
3875 		}
3876 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3877 		sbi->s_cluster_bits = 0;
3878 	}
3879 	sbi->s_cluster_ratio = clustersize / blocksize;
3880 
3881 	if (sbi->s_inodes_per_group > blocksize * 8) {
3882 		ext4_msg(sb, KERN_ERR,
3883 		       "#inodes per group too big: %lu",
3884 		       sbi->s_inodes_per_group);
3885 		goto failed_mount;
3886 	}
3887 
3888 	/* Do we have standard group size of clustersize * 8 blocks ? */
3889 	if (sbi->s_blocks_per_group == clustersize << 3)
3890 		set_opt2(sb, STD_GROUP_SIZE);
3891 
3892 	/*
3893 	 * Test whether we have more sectors than will fit in sector_t,
3894 	 * and whether the max offset is addressable by the page cache.
3895 	 */
3896 	err = generic_check_addressable(sb->s_blocksize_bits,
3897 					ext4_blocks_count(es));
3898 	if (err) {
3899 		ext4_msg(sb, KERN_ERR, "filesystem"
3900 			 " too large to mount safely on this system");
3901 		if (sizeof(sector_t) < 8)
3902 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3903 		goto failed_mount;
3904 	}
3905 
3906 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3907 		goto cantfind_ext4;
3908 
3909 	/* check blocks count against device size */
3910 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3911 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3912 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3913 		       "exceeds size of device (%llu blocks)",
3914 		       ext4_blocks_count(es), blocks_count);
3915 		goto failed_mount;
3916 	}
3917 
3918 	/*
3919 	 * It makes no sense for the first data block to be beyond the end
3920 	 * of the filesystem.
3921 	 */
3922 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3923 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3924 			 "block %u is beyond end of filesystem (%llu)",
3925 			 le32_to_cpu(es->s_first_data_block),
3926 			 ext4_blocks_count(es));
3927 		goto failed_mount;
3928 	}
3929 	blocks_count = (ext4_blocks_count(es) -
3930 			le32_to_cpu(es->s_first_data_block) +
3931 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3932 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3933 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3934 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3935 		       "(block count %llu, first data block %u, "
3936 		       "blocks per group %lu)", sbi->s_groups_count,
3937 		       ext4_blocks_count(es),
3938 		       le32_to_cpu(es->s_first_data_block),
3939 		       EXT4_BLOCKS_PER_GROUP(sb));
3940 		goto failed_mount;
3941 	}
3942 	sbi->s_groups_count = blocks_count;
3943 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3944 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3945 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3946 		   EXT4_DESC_PER_BLOCK(sb);
3947 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3948 					  sizeof(struct buffer_head *),
3949 					  GFP_KERNEL);
3950 	if (sbi->s_group_desc == NULL) {
3951 		ext4_msg(sb, KERN_ERR, "not enough memory");
3952 		ret = -ENOMEM;
3953 		goto failed_mount;
3954 	}
3955 
3956 	if (ext4_proc_root)
3957 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3958 
3959 	if (sbi->s_proc)
3960 		proc_create_data("options", S_IRUGO, sbi->s_proc,
3961 				 &ext4_seq_options_fops, sb);
3962 
3963 	bgl_lock_init(sbi->s_blockgroup_lock);
3964 
3965 	for (i = 0; i < db_count; i++) {
3966 		block = descriptor_loc(sb, logical_sb_block, i);
3967 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3968 		if (!sbi->s_group_desc[i]) {
3969 			ext4_msg(sb, KERN_ERR,
3970 			       "can't read group descriptor %d", i);
3971 			db_count = i;
3972 			goto failed_mount2;
3973 		}
3974 	}
3975 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3976 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3977 		goto failed_mount2;
3978 	}
3979 
3980 	sbi->s_gdb_count = db_count;
3981 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3982 	spin_lock_init(&sbi->s_next_gen_lock);
3983 
3984 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3985 		(unsigned long) sb);
3986 
3987 	/* Register extent status tree shrinker */
3988 	if (ext4_es_register_shrinker(sbi))
3989 		goto failed_mount3;
3990 
3991 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3992 	sbi->s_extent_max_zeroout_kb = 32;
3993 
3994 	/*
3995 	 * set up enough so that it can read an inode
3996 	 */
3997 	sb->s_op = &ext4_sops;
3998 	sb->s_export_op = &ext4_export_ops;
3999 	sb->s_xattr = ext4_xattr_handlers;
4000 #ifdef CONFIG_QUOTA
4001 	sb->dq_op = &ext4_quota_operations;
4002 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
4003 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4004 	else
4005 		sb->s_qcop = &ext4_qctl_operations;
4006 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4007 #endif
4008 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4009 
4010 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4011 	mutex_init(&sbi->s_orphan_lock);
4012 
4013 	sb->s_root = NULL;
4014 
4015 	needs_recovery = (es->s_last_orphan != 0 ||
4016 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
4017 				    EXT4_FEATURE_INCOMPAT_RECOVER));
4018 
4019 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
4020 	    !(sb->s_flags & MS_RDONLY))
4021 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4022 			goto failed_mount3a;
4023 
4024 	/*
4025 	 * The first inode we look at is the journal inode.  Don't try
4026 	 * root first: it may be modified in the journal!
4027 	 */
4028 	if (!test_opt(sb, NOLOAD) &&
4029 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4030 		if (ext4_load_journal(sb, es, journal_devnum))
4031 			goto failed_mount3a;
4032 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4033 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4034 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4035 		       "suppressed and not mounted read-only");
4036 		goto failed_mount_wq;
4037 	} else {
4038 		clear_opt(sb, DATA_FLAGS);
4039 		sbi->s_journal = NULL;
4040 		needs_recovery = 0;
4041 		goto no_journal;
4042 	}
4043 
4044 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4045 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4046 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4047 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4048 		goto failed_mount_wq;
4049 	}
4050 
4051 	if (!set_journal_csum_feature_set(sb)) {
4052 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4053 			 "feature set");
4054 		goto failed_mount_wq;
4055 	}
4056 
4057 	/* We have now updated the journal if required, so we can
4058 	 * validate the data journaling mode. */
4059 	switch (test_opt(sb, DATA_FLAGS)) {
4060 	case 0:
4061 		/* No mode set, assume a default based on the journal
4062 		 * capabilities: ORDERED_DATA if the journal can
4063 		 * cope, else JOURNAL_DATA
4064 		 */
4065 		if (jbd2_journal_check_available_features
4066 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4067 			set_opt(sb, ORDERED_DATA);
4068 		else
4069 			set_opt(sb, JOURNAL_DATA);
4070 		break;
4071 
4072 	case EXT4_MOUNT_ORDERED_DATA:
4073 	case EXT4_MOUNT_WRITEBACK_DATA:
4074 		if (!jbd2_journal_check_available_features
4075 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4076 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4077 			       "requested data journaling mode");
4078 			goto failed_mount_wq;
4079 		}
4080 	default:
4081 		break;
4082 	}
4083 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4084 
4085 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4086 
4087 no_journal:
4088 	if (ext4_mballoc_ready) {
4089 		sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4090 		if (!sbi->s_mb_cache) {
4091 			ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4092 			goto failed_mount_wq;
4093 		}
4094 	}
4095 
4096 	if (unlikely(sbi->s_mount_flags & EXT4_MF_TEST_DUMMY_ENCRYPTION) &&
4097 	    !(sb->s_flags & MS_RDONLY) &&
4098 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4099 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4100 		ext4_commit_super(sb, 1);
4101 	}
4102 
4103 	/*
4104 	 * Get the # of file system overhead blocks from the
4105 	 * superblock if present.
4106 	 */
4107 	if (es->s_overhead_clusters)
4108 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4109 	else {
4110 		err = ext4_calculate_overhead(sb);
4111 		if (err)
4112 			goto failed_mount_wq;
4113 	}
4114 
4115 	/*
4116 	 * The maximum number of concurrent works can be high and
4117 	 * concurrency isn't really necessary.  Limit it to 1.
4118 	 */
4119 	EXT4_SB(sb)->rsv_conversion_wq =
4120 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4121 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4122 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4123 		ret = -ENOMEM;
4124 		goto failed_mount4;
4125 	}
4126 
4127 	/*
4128 	 * The jbd2_journal_load will have done any necessary log recovery,
4129 	 * so we can safely mount the rest of the filesystem now.
4130 	 */
4131 
4132 	root = ext4_iget(sb, EXT4_ROOT_INO);
4133 	if (IS_ERR(root)) {
4134 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4135 		ret = PTR_ERR(root);
4136 		root = NULL;
4137 		goto failed_mount4;
4138 	}
4139 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4140 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4141 		iput(root);
4142 		goto failed_mount4;
4143 	}
4144 	sb->s_root = d_make_root(root);
4145 	if (!sb->s_root) {
4146 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4147 		ret = -ENOMEM;
4148 		goto failed_mount4;
4149 	}
4150 
4151 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4152 		sb->s_flags |= MS_RDONLY;
4153 
4154 	/* determine the minimum size of new large inodes, if present */
4155 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4156 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4157 						     EXT4_GOOD_OLD_INODE_SIZE;
4158 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4159 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4160 			if (sbi->s_want_extra_isize <
4161 			    le16_to_cpu(es->s_want_extra_isize))
4162 				sbi->s_want_extra_isize =
4163 					le16_to_cpu(es->s_want_extra_isize);
4164 			if (sbi->s_want_extra_isize <
4165 			    le16_to_cpu(es->s_min_extra_isize))
4166 				sbi->s_want_extra_isize =
4167 					le16_to_cpu(es->s_min_extra_isize);
4168 		}
4169 	}
4170 	/* Check if enough inode space is available */
4171 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4172 							sbi->s_inode_size) {
4173 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4174 						       EXT4_GOOD_OLD_INODE_SIZE;
4175 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4176 			 "available");
4177 	}
4178 
4179 	err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4180 	if (err) {
4181 		ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4182 			 "reserved pool", ext4_calculate_resv_clusters(sb));
4183 		goto failed_mount4a;
4184 	}
4185 
4186 	err = ext4_setup_system_zone(sb);
4187 	if (err) {
4188 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4189 			 "zone (%d)", err);
4190 		goto failed_mount4a;
4191 	}
4192 
4193 	ext4_ext_init(sb);
4194 	err = ext4_mb_init(sb);
4195 	if (err) {
4196 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4197 			 err);
4198 		goto failed_mount5;
4199 	}
4200 
4201 	block = ext4_count_free_clusters(sb);
4202 	ext4_free_blocks_count_set(sbi->s_es,
4203 				   EXT4_C2B(sbi, block));
4204 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4205 				  GFP_KERNEL);
4206 	if (!err) {
4207 		unsigned long freei = ext4_count_free_inodes(sb);
4208 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4209 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4210 					  GFP_KERNEL);
4211 	}
4212 	if (!err)
4213 		err = percpu_counter_init(&sbi->s_dirs_counter,
4214 					  ext4_count_dirs(sb), GFP_KERNEL);
4215 	if (!err)
4216 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4217 					  GFP_KERNEL);
4218 	if (err) {
4219 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4220 		goto failed_mount6;
4221 	}
4222 
4223 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4224 		if (!ext4_fill_flex_info(sb)) {
4225 			ext4_msg(sb, KERN_ERR,
4226 			       "unable to initialize "
4227 			       "flex_bg meta info!");
4228 			goto failed_mount6;
4229 		}
4230 
4231 	err = ext4_register_li_request(sb, first_not_zeroed);
4232 	if (err)
4233 		goto failed_mount6;
4234 
4235 	sbi->s_kobj.kset = ext4_kset;
4236 	init_completion(&sbi->s_kobj_unregister);
4237 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4238 				   "%s", sb->s_id);
4239 	if (err)
4240 		goto failed_mount7;
4241 
4242 #ifdef CONFIG_QUOTA
4243 	/* Enable quota usage during mount. */
4244 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4245 	    !(sb->s_flags & MS_RDONLY)) {
4246 		err = ext4_enable_quotas(sb);
4247 		if (err)
4248 			goto failed_mount8;
4249 	}
4250 #endif  /* CONFIG_QUOTA */
4251 
4252 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4253 	ext4_orphan_cleanup(sb, es);
4254 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4255 	if (needs_recovery) {
4256 		ext4_msg(sb, KERN_INFO, "recovery complete");
4257 		ext4_mark_recovery_complete(sb, es);
4258 	}
4259 	if (EXT4_SB(sb)->s_journal) {
4260 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4261 			descr = " journalled data mode";
4262 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4263 			descr = " ordered data mode";
4264 		else
4265 			descr = " writeback data mode";
4266 	} else
4267 		descr = "out journal";
4268 
4269 	if (test_opt(sb, DISCARD)) {
4270 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4271 		if (!blk_queue_discard(q))
4272 			ext4_msg(sb, KERN_WARNING,
4273 				 "mounting with \"discard\" option, but "
4274 				 "the device does not support discard");
4275 	}
4276 
4277 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4278 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4279 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4280 
4281 	if (es->s_error_count)
4282 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4283 
4284 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4285 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4286 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4287 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4288 
4289 	kfree(orig_data);
4290 	return 0;
4291 
4292 cantfind_ext4:
4293 	if (!silent)
4294 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4295 	goto failed_mount;
4296 
4297 #ifdef CONFIG_QUOTA
4298 failed_mount8:
4299 	kobject_del(&sbi->s_kobj);
4300 #endif
4301 failed_mount7:
4302 	ext4_unregister_li_request(sb);
4303 failed_mount6:
4304 	ext4_mb_release(sb);
4305 	if (sbi->s_flex_groups)
4306 		kvfree(sbi->s_flex_groups);
4307 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4308 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4309 	percpu_counter_destroy(&sbi->s_dirs_counter);
4310 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4311 failed_mount5:
4312 	ext4_ext_release(sb);
4313 	ext4_release_system_zone(sb);
4314 failed_mount4a:
4315 	dput(sb->s_root);
4316 	sb->s_root = NULL;
4317 failed_mount4:
4318 	ext4_msg(sb, KERN_ERR, "mount failed");
4319 	if (EXT4_SB(sb)->rsv_conversion_wq)
4320 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4321 failed_mount_wq:
4322 	if (sbi->s_journal) {
4323 		jbd2_journal_destroy(sbi->s_journal);
4324 		sbi->s_journal = NULL;
4325 	}
4326 failed_mount3a:
4327 	ext4_es_unregister_shrinker(sbi);
4328 failed_mount3:
4329 	del_timer_sync(&sbi->s_err_report);
4330 	if (sbi->s_mmp_tsk)
4331 		kthread_stop(sbi->s_mmp_tsk);
4332 failed_mount2:
4333 	for (i = 0; i < db_count; i++)
4334 		brelse(sbi->s_group_desc[i]);
4335 	kvfree(sbi->s_group_desc);
4336 failed_mount:
4337 	if (sbi->s_chksum_driver)
4338 		crypto_free_shash(sbi->s_chksum_driver);
4339 	if (sbi->s_proc) {
4340 		remove_proc_entry("options", sbi->s_proc);
4341 		remove_proc_entry(sb->s_id, ext4_proc_root);
4342 	}
4343 #ifdef CONFIG_QUOTA
4344 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4345 		kfree(sbi->s_qf_names[i]);
4346 #endif
4347 	ext4_blkdev_remove(sbi);
4348 	brelse(bh);
4349 out_fail:
4350 	sb->s_fs_info = NULL;
4351 	kfree(sbi->s_blockgroup_lock);
4352 	kfree(sbi);
4353 out_free_orig:
4354 	kfree(orig_data);
4355 	return err ? err : ret;
4356 }
4357 
4358 /*
4359  * Setup any per-fs journal parameters now.  We'll do this both on
4360  * initial mount, once the journal has been initialised but before we've
4361  * done any recovery; and again on any subsequent remount.
4362  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4363 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4364 {
4365 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4366 
4367 	journal->j_commit_interval = sbi->s_commit_interval;
4368 	journal->j_min_batch_time = sbi->s_min_batch_time;
4369 	journal->j_max_batch_time = sbi->s_max_batch_time;
4370 
4371 	write_lock(&journal->j_state_lock);
4372 	if (test_opt(sb, BARRIER))
4373 		journal->j_flags |= JBD2_BARRIER;
4374 	else
4375 		journal->j_flags &= ~JBD2_BARRIER;
4376 	if (test_opt(sb, DATA_ERR_ABORT))
4377 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4378 	else
4379 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4380 	write_unlock(&journal->j_state_lock);
4381 }
4382 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4383 static journal_t *ext4_get_journal(struct super_block *sb,
4384 				   unsigned int journal_inum)
4385 {
4386 	struct inode *journal_inode;
4387 	journal_t *journal;
4388 
4389 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4390 
4391 	/* First, test for the existence of a valid inode on disk.  Bad
4392 	 * things happen if we iget() an unused inode, as the subsequent
4393 	 * iput() will try to delete it. */
4394 
4395 	journal_inode = ext4_iget(sb, journal_inum);
4396 	if (IS_ERR(journal_inode)) {
4397 		ext4_msg(sb, KERN_ERR, "no journal found");
4398 		return NULL;
4399 	}
4400 	if (!journal_inode->i_nlink) {
4401 		make_bad_inode(journal_inode);
4402 		iput(journal_inode);
4403 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4404 		return NULL;
4405 	}
4406 
4407 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4408 		  journal_inode, journal_inode->i_size);
4409 	if (!S_ISREG(journal_inode->i_mode)) {
4410 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4411 		iput(journal_inode);
4412 		return NULL;
4413 	}
4414 
4415 	journal = jbd2_journal_init_inode(journal_inode);
4416 	if (!journal) {
4417 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4418 		iput(journal_inode);
4419 		return NULL;
4420 	}
4421 	journal->j_private = sb;
4422 	ext4_init_journal_params(sb, journal);
4423 	return journal;
4424 }
4425 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4426 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4427 				       dev_t j_dev)
4428 {
4429 	struct buffer_head *bh;
4430 	journal_t *journal;
4431 	ext4_fsblk_t start;
4432 	ext4_fsblk_t len;
4433 	int hblock, blocksize;
4434 	ext4_fsblk_t sb_block;
4435 	unsigned long offset;
4436 	struct ext4_super_block *es;
4437 	struct block_device *bdev;
4438 
4439 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4440 
4441 	bdev = ext4_blkdev_get(j_dev, sb);
4442 	if (bdev == NULL)
4443 		return NULL;
4444 
4445 	blocksize = sb->s_blocksize;
4446 	hblock = bdev_logical_block_size(bdev);
4447 	if (blocksize < hblock) {
4448 		ext4_msg(sb, KERN_ERR,
4449 			"blocksize too small for journal device");
4450 		goto out_bdev;
4451 	}
4452 
4453 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4454 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4455 	set_blocksize(bdev, blocksize);
4456 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4457 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4458 		       "external journal");
4459 		goto out_bdev;
4460 	}
4461 
4462 	es = (struct ext4_super_block *) (bh->b_data + offset);
4463 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4464 	    !(le32_to_cpu(es->s_feature_incompat) &
4465 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4466 		ext4_msg(sb, KERN_ERR, "external journal has "
4467 					"bad superblock");
4468 		brelse(bh);
4469 		goto out_bdev;
4470 	}
4471 
4472 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4473 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4474 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4475 		ext4_msg(sb, KERN_ERR, "external journal has "
4476 				       "corrupt superblock");
4477 		brelse(bh);
4478 		goto out_bdev;
4479 	}
4480 
4481 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4482 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4483 		brelse(bh);
4484 		goto out_bdev;
4485 	}
4486 
4487 	len = ext4_blocks_count(es);
4488 	start = sb_block + 1;
4489 	brelse(bh);	/* we're done with the superblock */
4490 
4491 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4492 					start, len, blocksize);
4493 	if (!journal) {
4494 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4495 		goto out_bdev;
4496 	}
4497 	journal->j_private = sb;
4498 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4499 	wait_on_buffer(journal->j_sb_buffer);
4500 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4501 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4502 		goto out_journal;
4503 	}
4504 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4505 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4506 					"user (unsupported) - %d",
4507 			be32_to_cpu(journal->j_superblock->s_nr_users));
4508 		goto out_journal;
4509 	}
4510 	EXT4_SB(sb)->journal_bdev = bdev;
4511 	ext4_init_journal_params(sb, journal);
4512 	return journal;
4513 
4514 out_journal:
4515 	jbd2_journal_destroy(journal);
4516 out_bdev:
4517 	ext4_blkdev_put(bdev);
4518 	return NULL;
4519 }
4520 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4521 static int ext4_load_journal(struct super_block *sb,
4522 			     struct ext4_super_block *es,
4523 			     unsigned long journal_devnum)
4524 {
4525 	journal_t *journal;
4526 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4527 	dev_t journal_dev;
4528 	int err = 0;
4529 	int really_read_only;
4530 
4531 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4532 
4533 	if (journal_devnum &&
4534 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4535 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4536 			"numbers have changed");
4537 		journal_dev = new_decode_dev(journal_devnum);
4538 	} else
4539 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4540 
4541 	really_read_only = bdev_read_only(sb->s_bdev);
4542 
4543 	/*
4544 	 * Are we loading a blank journal or performing recovery after a
4545 	 * crash?  For recovery, we need to check in advance whether we
4546 	 * can get read-write access to the device.
4547 	 */
4548 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4549 		if (sb->s_flags & MS_RDONLY) {
4550 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4551 					"required on readonly filesystem");
4552 			if (really_read_only) {
4553 				ext4_msg(sb, KERN_ERR, "write access "
4554 					"unavailable, cannot proceed");
4555 				return -EROFS;
4556 			}
4557 			ext4_msg(sb, KERN_INFO, "write access will "
4558 			       "be enabled during recovery");
4559 		}
4560 	}
4561 
4562 	if (journal_inum && journal_dev) {
4563 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4564 		       "and inode journals!");
4565 		return -EINVAL;
4566 	}
4567 
4568 	if (journal_inum) {
4569 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4570 			return -EINVAL;
4571 	} else {
4572 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4573 			return -EINVAL;
4574 	}
4575 
4576 	if (!(journal->j_flags & JBD2_BARRIER))
4577 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4578 
4579 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4580 		err = jbd2_journal_wipe(journal, !really_read_only);
4581 	if (!err) {
4582 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4583 		if (save)
4584 			memcpy(save, ((char *) es) +
4585 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4586 		err = jbd2_journal_load(journal);
4587 		if (save)
4588 			memcpy(((char *) es) + EXT4_S_ERR_START,
4589 			       save, EXT4_S_ERR_LEN);
4590 		kfree(save);
4591 	}
4592 
4593 	if (err) {
4594 		ext4_msg(sb, KERN_ERR, "error loading journal");
4595 		jbd2_journal_destroy(journal);
4596 		return err;
4597 	}
4598 
4599 	EXT4_SB(sb)->s_journal = journal;
4600 	ext4_clear_journal_err(sb, es);
4601 
4602 	if (!really_read_only && journal_devnum &&
4603 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4604 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4605 
4606 		/* Make sure we flush the recovery flag to disk. */
4607 		ext4_commit_super(sb, 1);
4608 	}
4609 
4610 	return 0;
4611 }
4612 
ext4_commit_super(struct super_block * sb,int sync)4613 static int ext4_commit_super(struct super_block *sb, int sync)
4614 {
4615 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4616 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4617 	int error = 0;
4618 
4619 	if (!sbh || block_device_ejected(sb))
4620 		return error;
4621 	if (buffer_write_io_error(sbh)) {
4622 		/*
4623 		 * Oh, dear.  A previous attempt to write the
4624 		 * superblock failed.  This could happen because the
4625 		 * USB device was yanked out.  Or it could happen to
4626 		 * be a transient write error and maybe the block will
4627 		 * be remapped.  Nothing we can do but to retry the
4628 		 * write and hope for the best.
4629 		 */
4630 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4631 		       "superblock detected");
4632 		clear_buffer_write_io_error(sbh);
4633 		set_buffer_uptodate(sbh);
4634 	}
4635 	/*
4636 	 * If the file system is mounted read-only, don't update the
4637 	 * superblock write time.  This avoids updating the superblock
4638 	 * write time when we are mounting the root file system
4639 	 * read/only but we need to replay the journal; at that point,
4640 	 * for people who are east of GMT and who make their clock
4641 	 * tick in localtime for Windows bug-for-bug compatibility,
4642 	 * the clock is set in the future, and this will cause e2fsck
4643 	 * to complain and force a full file system check.
4644 	 */
4645 	if (!(sb->s_flags & MS_RDONLY))
4646 		es->s_wtime = cpu_to_le32(get_seconds());
4647 	if (sb->s_bdev->bd_part)
4648 		es->s_kbytes_written =
4649 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4650 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4651 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4652 	else
4653 		es->s_kbytes_written =
4654 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4655 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4656 		ext4_free_blocks_count_set(es,
4657 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4658 				&EXT4_SB(sb)->s_freeclusters_counter)));
4659 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4660 		es->s_free_inodes_count =
4661 			cpu_to_le32(percpu_counter_sum_positive(
4662 				&EXT4_SB(sb)->s_freeinodes_counter));
4663 	BUFFER_TRACE(sbh, "marking dirty");
4664 	ext4_superblock_csum_set(sb);
4665 	mark_buffer_dirty(sbh);
4666 	if (sync) {
4667 		error = sync_dirty_buffer(sbh);
4668 		if (error)
4669 			return error;
4670 
4671 		error = buffer_write_io_error(sbh);
4672 		if (error) {
4673 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4674 			       "superblock");
4675 			clear_buffer_write_io_error(sbh);
4676 			set_buffer_uptodate(sbh);
4677 		}
4678 	}
4679 	return error;
4680 }
4681 
4682 /*
4683  * Have we just finished recovery?  If so, and if we are mounting (or
4684  * remounting) the filesystem readonly, then we will end up with a
4685  * consistent fs on disk.  Record that fact.
4686  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4687 static void ext4_mark_recovery_complete(struct super_block *sb,
4688 					struct ext4_super_block *es)
4689 {
4690 	journal_t *journal = EXT4_SB(sb)->s_journal;
4691 
4692 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4693 		BUG_ON(journal != NULL);
4694 		return;
4695 	}
4696 	jbd2_journal_lock_updates(journal);
4697 	if (jbd2_journal_flush(journal) < 0)
4698 		goto out;
4699 
4700 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4701 	    sb->s_flags & MS_RDONLY) {
4702 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4703 		ext4_commit_super(sb, 1);
4704 	}
4705 
4706 out:
4707 	jbd2_journal_unlock_updates(journal);
4708 }
4709 
4710 /*
4711  * If we are mounting (or read-write remounting) a filesystem whose journal
4712  * has recorded an error from a previous lifetime, move that error to the
4713  * main filesystem now.
4714  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4715 static void ext4_clear_journal_err(struct super_block *sb,
4716 				   struct ext4_super_block *es)
4717 {
4718 	journal_t *journal;
4719 	int j_errno;
4720 	const char *errstr;
4721 
4722 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4723 
4724 	journal = EXT4_SB(sb)->s_journal;
4725 
4726 	/*
4727 	 * Now check for any error status which may have been recorded in the
4728 	 * journal by a prior ext4_error() or ext4_abort()
4729 	 */
4730 
4731 	j_errno = jbd2_journal_errno(journal);
4732 	if (j_errno) {
4733 		char nbuf[16];
4734 
4735 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4736 		ext4_warning(sb, "Filesystem error recorded "
4737 			     "from previous mount: %s", errstr);
4738 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4739 
4740 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4741 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4742 		ext4_commit_super(sb, 1);
4743 
4744 		jbd2_journal_clear_err(journal);
4745 		jbd2_journal_update_sb_errno(journal);
4746 	}
4747 }
4748 
4749 /*
4750  * Force the running and committing transactions to commit,
4751  * and wait on the commit.
4752  */
ext4_force_commit(struct super_block * sb)4753 int ext4_force_commit(struct super_block *sb)
4754 {
4755 	journal_t *journal;
4756 
4757 	if (sb->s_flags & MS_RDONLY)
4758 		return 0;
4759 
4760 	journal = EXT4_SB(sb)->s_journal;
4761 	return ext4_journal_force_commit(journal);
4762 }
4763 
ext4_sync_fs(struct super_block * sb,int wait)4764 static int ext4_sync_fs(struct super_block *sb, int wait)
4765 {
4766 	int ret = 0;
4767 	tid_t target;
4768 	bool needs_barrier = false;
4769 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4770 
4771 	trace_ext4_sync_fs(sb, wait);
4772 	flush_workqueue(sbi->rsv_conversion_wq);
4773 	/*
4774 	 * Writeback quota in non-journalled quota case - journalled quota has
4775 	 * no dirty dquots
4776 	 */
4777 	dquot_writeback_dquots(sb, -1);
4778 	/*
4779 	 * Data writeback is possible w/o journal transaction, so barrier must
4780 	 * being sent at the end of the function. But we can skip it if
4781 	 * transaction_commit will do it for us.
4782 	 */
4783 	if (sbi->s_journal) {
4784 		target = jbd2_get_latest_transaction(sbi->s_journal);
4785 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4786 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4787 			needs_barrier = true;
4788 
4789 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4790 			if (wait)
4791 				ret = jbd2_log_wait_commit(sbi->s_journal,
4792 							   target);
4793 		}
4794 	} else if (wait && test_opt(sb, BARRIER))
4795 		needs_barrier = true;
4796 	if (needs_barrier) {
4797 		int err;
4798 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4799 		if (!ret)
4800 			ret = err;
4801 	}
4802 
4803 	return ret;
4804 }
4805 
4806 /*
4807  * LVM calls this function before a (read-only) snapshot is created.  This
4808  * gives us a chance to flush the journal completely and mark the fs clean.
4809  *
4810  * Note that only this function cannot bring a filesystem to be in a clean
4811  * state independently. It relies on upper layer to stop all data & metadata
4812  * modifications.
4813  */
ext4_freeze(struct super_block * sb)4814 static int ext4_freeze(struct super_block *sb)
4815 {
4816 	int error = 0;
4817 	journal_t *journal;
4818 
4819 	if (sb->s_flags & MS_RDONLY)
4820 		return 0;
4821 
4822 	journal = EXT4_SB(sb)->s_journal;
4823 
4824 	if (journal) {
4825 		/* Now we set up the journal barrier. */
4826 		jbd2_journal_lock_updates(journal);
4827 
4828 		/*
4829 		 * Don't clear the needs_recovery flag if we failed to
4830 		 * flush the journal.
4831 		 */
4832 		error = jbd2_journal_flush(journal);
4833 		if (error < 0)
4834 			goto out;
4835 
4836 		/* Journal blocked and flushed, clear needs_recovery flag. */
4837 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4838 	}
4839 
4840 	error = ext4_commit_super(sb, 1);
4841 out:
4842 	if (journal)
4843 		/* we rely on upper layer to stop further updates */
4844 		jbd2_journal_unlock_updates(journal);
4845 	return error;
4846 }
4847 
4848 /*
4849  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4850  * flag here, even though the filesystem is not technically dirty yet.
4851  */
ext4_unfreeze(struct super_block * sb)4852 static int ext4_unfreeze(struct super_block *sb)
4853 {
4854 	if (sb->s_flags & MS_RDONLY)
4855 		return 0;
4856 
4857 	if (EXT4_SB(sb)->s_journal) {
4858 		/* Reset the needs_recovery flag before the fs is unlocked. */
4859 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4860 	}
4861 
4862 	ext4_commit_super(sb, 1);
4863 	return 0;
4864 }
4865 
4866 /*
4867  * Structure to save mount options for ext4_remount's benefit
4868  */
4869 struct ext4_mount_options {
4870 	unsigned long s_mount_opt;
4871 	unsigned long s_mount_opt2;
4872 	kuid_t s_resuid;
4873 	kgid_t s_resgid;
4874 	unsigned long s_commit_interval;
4875 	u32 s_min_batch_time, s_max_batch_time;
4876 #ifdef CONFIG_QUOTA
4877 	int s_jquota_fmt;
4878 	char *s_qf_names[EXT4_MAXQUOTAS];
4879 #endif
4880 };
4881 
ext4_remount(struct super_block * sb,int * flags,char * data)4882 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4883 {
4884 	struct ext4_super_block *es;
4885 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4886 	unsigned long old_sb_flags;
4887 	struct ext4_mount_options old_opts;
4888 	int enable_quota = 0;
4889 	ext4_group_t g;
4890 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4891 	int err = 0;
4892 #ifdef CONFIG_QUOTA
4893 	int i, j;
4894 #endif
4895 	char *orig_data = kstrdup(data, GFP_KERNEL);
4896 
4897 	/* Store the original options */
4898 	old_sb_flags = sb->s_flags;
4899 	old_opts.s_mount_opt = sbi->s_mount_opt;
4900 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4901 	old_opts.s_resuid = sbi->s_resuid;
4902 	old_opts.s_resgid = sbi->s_resgid;
4903 	old_opts.s_commit_interval = sbi->s_commit_interval;
4904 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4905 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4906 #ifdef CONFIG_QUOTA
4907 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4908 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4909 		if (sbi->s_qf_names[i]) {
4910 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4911 							 GFP_KERNEL);
4912 			if (!old_opts.s_qf_names[i]) {
4913 				for (j = 0; j < i; j++)
4914 					kfree(old_opts.s_qf_names[j]);
4915 				kfree(orig_data);
4916 				return -ENOMEM;
4917 			}
4918 		} else
4919 			old_opts.s_qf_names[i] = NULL;
4920 #endif
4921 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4922 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4923 
4924 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4925 		err = -EINVAL;
4926 		goto restore_opts;
4927 	}
4928 
4929 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4930 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4931 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4932 			 "during remount not supported; ignoring");
4933 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4934 	}
4935 
4936 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4937 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4938 			ext4_msg(sb, KERN_ERR, "can't mount with "
4939 				 "both data=journal and delalloc");
4940 			err = -EINVAL;
4941 			goto restore_opts;
4942 		}
4943 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4944 			ext4_msg(sb, KERN_ERR, "can't mount with "
4945 				 "both data=journal and dioread_nolock");
4946 			err = -EINVAL;
4947 			goto restore_opts;
4948 		}
4949 		if (test_opt(sb, DAX)) {
4950 			ext4_msg(sb, KERN_ERR, "can't mount with "
4951 				 "both data=journal and dax");
4952 			err = -EINVAL;
4953 			goto restore_opts;
4954 		}
4955 	}
4956 
4957 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4958 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4959 			"dax flag with busy inodes while remounting");
4960 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4961 	}
4962 
4963 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4964 		ext4_abort(sb, "Abort forced by user");
4965 
4966 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4967 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4968 
4969 	es = sbi->s_es;
4970 
4971 	if (sbi->s_journal) {
4972 		ext4_init_journal_params(sb, sbi->s_journal);
4973 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4974 	}
4975 
4976 	if (*flags & MS_LAZYTIME)
4977 		sb->s_flags |= MS_LAZYTIME;
4978 
4979 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4980 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4981 			err = -EROFS;
4982 			goto restore_opts;
4983 		}
4984 
4985 		if (*flags & MS_RDONLY) {
4986 			err = sync_filesystem(sb);
4987 			if (err < 0)
4988 				goto restore_opts;
4989 			err = dquot_suspend(sb, -1);
4990 			if (err < 0)
4991 				goto restore_opts;
4992 
4993 			/*
4994 			 * First of all, the unconditional stuff we have to do
4995 			 * to disable replay of the journal when we next remount
4996 			 */
4997 			sb->s_flags |= MS_RDONLY;
4998 
4999 			/*
5000 			 * OK, test if we are remounting a valid rw partition
5001 			 * readonly, and if so set the rdonly flag and then
5002 			 * mark the partition as valid again.
5003 			 */
5004 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5005 			    (sbi->s_mount_state & EXT4_VALID_FS))
5006 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5007 
5008 			if (sbi->s_journal)
5009 				ext4_mark_recovery_complete(sb, es);
5010 		} else {
5011 			/* Make sure we can mount this feature set readwrite */
5012 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5013 					EXT4_FEATURE_RO_COMPAT_READONLY) ||
5014 			    !ext4_feature_set_ok(sb, 0)) {
5015 				err = -EROFS;
5016 				goto restore_opts;
5017 			}
5018 			/*
5019 			 * Make sure the group descriptor checksums
5020 			 * are sane.  If they aren't, refuse to remount r/w.
5021 			 */
5022 			for (g = 0; g < sbi->s_groups_count; g++) {
5023 				struct ext4_group_desc *gdp =
5024 					ext4_get_group_desc(sb, g, NULL);
5025 
5026 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5027 					ext4_msg(sb, KERN_ERR,
5028 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5029 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
5030 					       le16_to_cpu(gdp->bg_checksum));
5031 					err = -EINVAL;
5032 					goto restore_opts;
5033 				}
5034 			}
5035 
5036 			/*
5037 			 * If we have an unprocessed orphan list hanging
5038 			 * around from a previously readonly bdev mount,
5039 			 * require a full umount/remount for now.
5040 			 */
5041 			if (es->s_last_orphan) {
5042 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5043 				       "remount RDWR because of unprocessed "
5044 				       "orphan inode list.  Please "
5045 				       "umount/remount instead");
5046 				err = -EINVAL;
5047 				goto restore_opts;
5048 			}
5049 
5050 			/*
5051 			 * Mounting a RDONLY partition read-write, so reread
5052 			 * and store the current valid flag.  (It may have
5053 			 * been changed by e2fsck since we originally mounted
5054 			 * the partition.)
5055 			 */
5056 			if (sbi->s_journal)
5057 				ext4_clear_journal_err(sb, es);
5058 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5059 			if (!ext4_setup_super(sb, es, 0))
5060 				sb->s_flags &= ~MS_RDONLY;
5061 			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5062 						     EXT4_FEATURE_INCOMPAT_MMP))
5063 				if (ext4_multi_mount_protect(sb,
5064 						le64_to_cpu(es->s_mmp_block))) {
5065 					err = -EROFS;
5066 					goto restore_opts;
5067 				}
5068 			enable_quota = 1;
5069 		}
5070 	}
5071 
5072 	/*
5073 	 * Reinitialize lazy itable initialization thread based on
5074 	 * current settings
5075 	 */
5076 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5077 		ext4_unregister_li_request(sb);
5078 	else {
5079 		ext4_group_t first_not_zeroed;
5080 		first_not_zeroed = ext4_has_uninit_itable(sb);
5081 		ext4_register_li_request(sb, first_not_zeroed);
5082 	}
5083 
5084 	ext4_setup_system_zone(sb);
5085 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5086 		ext4_commit_super(sb, 1);
5087 
5088 #ifdef CONFIG_QUOTA
5089 	/* Release old quota file names */
5090 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5091 		kfree(old_opts.s_qf_names[i]);
5092 	if (enable_quota) {
5093 		if (sb_any_quota_suspended(sb))
5094 			dquot_resume(sb, -1);
5095 		else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5096 					EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5097 			err = ext4_enable_quotas(sb);
5098 			if (err)
5099 				goto restore_opts;
5100 		}
5101 	}
5102 #endif
5103 
5104 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5105 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5106 	kfree(orig_data);
5107 	return 0;
5108 
5109 restore_opts:
5110 	sb->s_flags = old_sb_flags;
5111 	sbi->s_mount_opt = old_opts.s_mount_opt;
5112 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5113 	sbi->s_resuid = old_opts.s_resuid;
5114 	sbi->s_resgid = old_opts.s_resgid;
5115 	sbi->s_commit_interval = old_opts.s_commit_interval;
5116 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5117 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5118 #ifdef CONFIG_QUOTA
5119 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5120 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5121 		kfree(sbi->s_qf_names[i]);
5122 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5123 	}
5124 #endif
5125 	kfree(orig_data);
5126 	return err;
5127 }
5128 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5129 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5130 {
5131 	struct super_block *sb = dentry->d_sb;
5132 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5133 	struct ext4_super_block *es = sbi->s_es;
5134 	ext4_fsblk_t overhead = 0, resv_blocks;
5135 	u64 fsid;
5136 	s64 bfree;
5137 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5138 
5139 	if (!test_opt(sb, MINIX_DF))
5140 		overhead = sbi->s_overhead;
5141 
5142 	buf->f_type = EXT4_SUPER_MAGIC;
5143 	buf->f_bsize = sb->s_blocksize;
5144 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5145 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5146 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5147 	/* prevent underflow in case that few free space is available */
5148 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5149 	buf->f_bavail = buf->f_bfree -
5150 			(ext4_r_blocks_count(es) + resv_blocks);
5151 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5152 		buf->f_bavail = 0;
5153 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5154 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5155 	buf->f_namelen = EXT4_NAME_LEN;
5156 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5157 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5158 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5159 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5160 
5161 	return 0;
5162 }
5163 
5164 /* Helper function for writing quotas on sync - we need to start transaction
5165  * before quota file is locked for write. Otherwise the are possible deadlocks:
5166  * Process 1                         Process 2
5167  * ext4_create()                     quota_sync()
5168  *   jbd2_journal_start()                  write_dquot()
5169  *   dquot_initialize()                         down(dqio_mutex)
5170  *     down(dqio_mutex)                    jbd2_journal_start()
5171  *
5172  */
5173 
5174 #ifdef CONFIG_QUOTA
5175 
dquot_to_inode(struct dquot * dquot)5176 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5177 {
5178 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5179 }
5180 
ext4_write_dquot(struct dquot * dquot)5181 static int ext4_write_dquot(struct dquot *dquot)
5182 {
5183 	int ret, err;
5184 	handle_t *handle;
5185 	struct inode *inode;
5186 
5187 	inode = dquot_to_inode(dquot);
5188 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5189 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5190 	if (IS_ERR(handle))
5191 		return PTR_ERR(handle);
5192 	ret = dquot_commit(dquot);
5193 	err = ext4_journal_stop(handle);
5194 	if (!ret)
5195 		ret = err;
5196 	return ret;
5197 }
5198 
ext4_acquire_dquot(struct dquot * dquot)5199 static int ext4_acquire_dquot(struct dquot *dquot)
5200 {
5201 	int ret, err;
5202 	handle_t *handle;
5203 
5204 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5205 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5206 	if (IS_ERR(handle))
5207 		return PTR_ERR(handle);
5208 	ret = dquot_acquire(dquot);
5209 	err = ext4_journal_stop(handle);
5210 	if (!ret)
5211 		ret = err;
5212 	return ret;
5213 }
5214 
ext4_release_dquot(struct dquot * dquot)5215 static int ext4_release_dquot(struct dquot *dquot)
5216 {
5217 	int ret, err;
5218 	handle_t *handle;
5219 
5220 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5221 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5222 	if (IS_ERR(handle)) {
5223 		/* Release dquot anyway to avoid endless cycle in dqput() */
5224 		dquot_release(dquot);
5225 		return PTR_ERR(handle);
5226 	}
5227 	ret = dquot_release(dquot);
5228 	err = ext4_journal_stop(handle);
5229 	if (!ret)
5230 		ret = err;
5231 	return ret;
5232 }
5233 
ext4_mark_dquot_dirty(struct dquot * dquot)5234 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5235 {
5236 	struct super_block *sb = dquot->dq_sb;
5237 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5238 
5239 	/* Are we journaling quotas? */
5240 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5241 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5242 		dquot_mark_dquot_dirty(dquot);
5243 		return ext4_write_dquot(dquot);
5244 	} else {
5245 		return dquot_mark_dquot_dirty(dquot);
5246 	}
5247 }
5248 
ext4_write_info(struct super_block * sb,int type)5249 static int ext4_write_info(struct super_block *sb, int type)
5250 {
5251 	int ret, err;
5252 	handle_t *handle;
5253 
5254 	/* Data block + inode block */
5255 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5256 	if (IS_ERR(handle))
5257 		return PTR_ERR(handle);
5258 	ret = dquot_commit_info(sb, type);
5259 	err = ext4_journal_stop(handle);
5260 	if (!ret)
5261 		ret = err;
5262 	return ret;
5263 }
5264 
5265 /*
5266  * Turn on quotas during mount time - we need to find
5267  * the quota file and such...
5268  */
ext4_quota_on_mount(struct super_block * sb,int type)5269 static int ext4_quota_on_mount(struct super_block *sb, int type)
5270 {
5271 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5272 					EXT4_SB(sb)->s_jquota_fmt, type);
5273 }
5274 
lockdep_set_quota_inode(struct inode * inode,int subclass)5275 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5276 {
5277 	struct ext4_inode_info *ei = EXT4_I(inode);
5278 
5279 	/* The first argument of lockdep_set_subclass has to be
5280 	 * *exactly* the same as the argument to init_rwsem() --- in
5281 	 * this case, in init_once() --- or lockdep gets unhappy
5282 	 * because the name of the lock is set using the
5283 	 * stringification of the argument to init_rwsem().
5284 	 */
5285 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5286 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5287 }
5288 
5289 /*
5290  * Standard function to be called on quota_on
5291  */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)5292 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5293 			 struct path *path)
5294 {
5295 	int err;
5296 
5297 	if (!test_opt(sb, QUOTA))
5298 		return -EINVAL;
5299 
5300 	/* Quotafile not on the same filesystem? */
5301 	if (path->dentry->d_sb != sb)
5302 		return -EXDEV;
5303 	/* Journaling quota? */
5304 	if (EXT4_SB(sb)->s_qf_names[type]) {
5305 		/* Quotafile not in fs root? */
5306 		if (path->dentry->d_parent != sb->s_root)
5307 			ext4_msg(sb, KERN_WARNING,
5308 				"Quota file not on filesystem root. "
5309 				"Journaled quota will not work");
5310 	}
5311 
5312 	/*
5313 	 * When we journal data on quota file, we have to flush journal to see
5314 	 * all updates to the file when we bypass pagecache...
5315 	 */
5316 	if (EXT4_SB(sb)->s_journal &&
5317 	    ext4_should_journal_data(d_inode(path->dentry))) {
5318 		/*
5319 		 * We don't need to lock updates but journal_flush() could
5320 		 * otherwise be livelocked...
5321 		 */
5322 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5323 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5324 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5325 		if (err)
5326 			return err;
5327 	}
5328 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5329 	err = dquot_quota_on(sb, type, format_id, path);
5330 	if (err)
5331 		lockdep_set_quota_inode(path->dentry->d_inode,
5332 					     I_DATA_SEM_NORMAL);
5333 	return err;
5334 }
5335 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5336 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5337 			     unsigned int flags)
5338 {
5339 	int err;
5340 	struct inode *qf_inode;
5341 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5342 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5343 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5344 	};
5345 
5346 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5347 
5348 	if (!qf_inums[type])
5349 		return -EPERM;
5350 
5351 	qf_inode = ext4_iget(sb, qf_inums[type]);
5352 	if (IS_ERR(qf_inode)) {
5353 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5354 		return PTR_ERR(qf_inode);
5355 	}
5356 
5357 	/* Don't account quota for quota files to avoid recursion */
5358 	qf_inode->i_flags |= S_NOQUOTA;
5359 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5360 	err = dquot_enable(qf_inode, type, format_id, flags);
5361 	iput(qf_inode);
5362 	if (err)
5363 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5364 
5365 	return err;
5366 }
5367 
5368 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5369 static int ext4_enable_quotas(struct super_block *sb)
5370 {
5371 	int type, err = 0;
5372 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5373 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5374 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5375 	};
5376 
5377 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5378 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5379 		if (qf_inums[type]) {
5380 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5381 						DQUOT_USAGE_ENABLED);
5382 			if (err) {
5383 				ext4_warning(sb,
5384 					"Failed to enable quota tracking "
5385 					"(type=%d, err=%d). Please run "
5386 					"e2fsck to fix.", type, err);
5387 				return err;
5388 			}
5389 		}
5390 	}
5391 	return 0;
5392 }
5393 
ext4_quota_off(struct super_block * sb,int type)5394 static int ext4_quota_off(struct super_block *sb, int type)
5395 {
5396 	struct inode *inode = sb_dqopt(sb)->files[type];
5397 	handle_t *handle;
5398 
5399 	/* Force all delayed allocation blocks to be allocated.
5400 	 * Caller already holds s_umount sem */
5401 	if (test_opt(sb, DELALLOC))
5402 		sync_filesystem(sb);
5403 
5404 	if (!inode)
5405 		goto out;
5406 
5407 	/* Update modification times of quota files when userspace can
5408 	 * start looking at them */
5409 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5410 	if (IS_ERR(handle))
5411 		goto out;
5412 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5413 	ext4_mark_inode_dirty(handle, inode);
5414 	ext4_journal_stop(handle);
5415 
5416 out:
5417 	return dquot_quota_off(sb, type);
5418 }
5419 
5420 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5421  * acquiring the locks... As quota files are never truncated and quota code
5422  * itself serializes the operations (and no one else should touch the files)
5423  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5424 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5425 			       size_t len, loff_t off)
5426 {
5427 	struct inode *inode = sb_dqopt(sb)->files[type];
5428 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5429 	int offset = off & (sb->s_blocksize - 1);
5430 	int tocopy;
5431 	size_t toread;
5432 	struct buffer_head *bh;
5433 	loff_t i_size = i_size_read(inode);
5434 
5435 	if (off > i_size)
5436 		return 0;
5437 	if (off+len > i_size)
5438 		len = i_size-off;
5439 	toread = len;
5440 	while (toread > 0) {
5441 		tocopy = sb->s_blocksize - offset < toread ?
5442 				sb->s_blocksize - offset : toread;
5443 		bh = ext4_bread(NULL, inode, blk, 0);
5444 		if (IS_ERR(bh))
5445 			return PTR_ERR(bh);
5446 		if (!bh)	/* A hole? */
5447 			memset(data, 0, tocopy);
5448 		else
5449 			memcpy(data, bh->b_data+offset, tocopy);
5450 		brelse(bh);
5451 		offset = 0;
5452 		toread -= tocopy;
5453 		data += tocopy;
5454 		blk++;
5455 	}
5456 	return len;
5457 }
5458 
5459 /* Write to quotafile (we know the transaction is already started and has
5460  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5461 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5462 				const char *data, size_t len, loff_t off)
5463 {
5464 	struct inode *inode = sb_dqopt(sb)->files[type];
5465 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5466 	int err, offset = off & (sb->s_blocksize - 1);
5467 	struct buffer_head *bh;
5468 	handle_t *handle = journal_current_handle();
5469 
5470 	if (EXT4_SB(sb)->s_journal && !handle) {
5471 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5472 			" cancelled because transaction is not started",
5473 			(unsigned long long)off, (unsigned long long)len);
5474 		return -EIO;
5475 	}
5476 	/*
5477 	 * Since we account only one data block in transaction credits,
5478 	 * then it is impossible to cross a block boundary.
5479 	 */
5480 	if (sb->s_blocksize - offset < len) {
5481 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5482 			" cancelled because not block aligned",
5483 			(unsigned long long)off, (unsigned long long)len);
5484 		return -EIO;
5485 	}
5486 
5487 	bh = ext4_bread(handle, inode, blk, 1);
5488 	if (IS_ERR(bh))
5489 		return PTR_ERR(bh);
5490 	if (!bh)
5491 		goto out;
5492 	BUFFER_TRACE(bh, "get write access");
5493 	err = ext4_journal_get_write_access(handle, bh);
5494 	if (err) {
5495 		brelse(bh);
5496 		return err;
5497 	}
5498 	lock_buffer(bh);
5499 	memcpy(bh->b_data+offset, data, len);
5500 	flush_dcache_page(bh->b_page);
5501 	unlock_buffer(bh);
5502 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5503 	brelse(bh);
5504 out:
5505 	if (inode->i_size < off + len) {
5506 		i_size_write(inode, off + len);
5507 		EXT4_I(inode)->i_disksize = inode->i_size;
5508 		ext4_mark_inode_dirty(handle, inode);
5509 	}
5510 	return len;
5511 }
5512 
5513 #endif
5514 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5515 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5516 		       const char *dev_name, void *data)
5517 {
5518 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5519 }
5520 
5521 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext2(void)5522 static inline void register_as_ext2(void)
5523 {
5524 	int err = register_filesystem(&ext2_fs_type);
5525 	if (err)
5526 		printk(KERN_WARNING
5527 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5528 }
5529 
unregister_as_ext2(void)5530 static inline void unregister_as_ext2(void)
5531 {
5532 	unregister_filesystem(&ext2_fs_type);
5533 }
5534 
ext2_feature_set_ok(struct super_block * sb)5535 static inline int ext2_feature_set_ok(struct super_block *sb)
5536 {
5537 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5538 		return 0;
5539 	if (sb->s_flags & MS_RDONLY)
5540 		return 1;
5541 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5542 		return 0;
5543 	return 1;
5544 }
5545 #else
register_as_ext2(void)5546 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5547 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5548 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5549 #endif
5550 
5551 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)5552 static inline void register_as_ext3(void)
5553 {
5554 	int err = register_filesystem(&ext3_fs_type);
5555 	if (err)
5556 		printk(KERN_WARNING
5557 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5558 }
5559 
unregister_as_ext3(void)5560 static inline void unregister_as_ext3(void)
5561 {
5562 	unregister_filesystem(&ext3_fs_type);
5563 }
5564 
ext3_feature_set_ok(struct super_block * sb)5565 static inline int ext3_feature_set_ok(struct super_block *sb)
5566 {
5567 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5568 		return 0;
5569 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5570 		return 0;
5571 	if (sb->s_flags & MS_RDONLY)
5572 		return 1;
5573 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5574 		return 0;
5575 	return 1;
5576 }
5577 #else
register_as_ext3(void)5578 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)5579 static inline void unregister_as_ext3(void) { }
ext3_feature_set_ok(struct super_block * sb)5580 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5581 #endif
5582 
5583 static struct file_system_type ext4_fs_type = {
5584 	.owner		= THIS_MODULE,
5585 	.name		= "ext4",
5586 	.mount		= ext4_mount,
5587 	.kill_sb	= kill_block_super,
5588 	.fs_flags	= FS_REQUIRES_DEV,
5589 };
5590 MODULE_ALIAS_FS("ext4");
5591 
ext4_init_feat_adverts(void)5592 static int __init ext4_init_feat_adverts(void)
5593 {
5594 	struct ext4_features *ef;
5595 	int ret = -ENOMEM;
5596 
5597 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5598 	if (!ef)
5599 		goto out;
5600 
5601 	ef->f_kobj.kset = ext4_kset;
5602 	init_completion(&ef->f_kobj_unregister);
5603 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5604 				   "features");
5605 	if (ret) {
5606 		kfree(ef);
5607 		goto out;
5608 	}
5609 
5610 	ext4_feat = ef;
5611 	ret = 0;
5612 out:
5613 	return ret;
5614 }
5615 
ext4_exit_feat_adverts(void)5616 static void ext4_exit_feat_adverts(void)
5617 {
5618 	kobject_put(&ext4_feat->f_kobj);
5619 	wait_for_completion(&ext4_feat->f_kobj_unregister);
5620 	kfree(ext4_feat);
5621 }
5622 
5623 /* Shared across all ext4 file systems */
5624 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5625 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5626 
ext4_init_fs(void)5627 static int __init ext4_init_fs(void)
5628 {
5629 	int i, err;
5630 
5631 	ext4_li_info = NULL;
5632 	mutex_init(&ext4_li_mtx);
5633 
5634 	/* Build-time check for flags consistency */
5635 	ext4_check_flag_values();
5636 
5637 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5638 		mutex_init(&ext4__aio_mutex[i]);
5639 		init_waitqueue_head(&ext4__ioend_wq[i]);
5640 	}
5641 
5642 	err = ext4_init_es();
5643 	if (err)
5644 		return err;
5645 
5646 	err = ext4_init_pageio();
5647 	if (err)
5648 		goto out7;
5649 
5650 	err = ext4_init_system_zone();
5651 	if (err)
5652 		goto out6;
5653 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5654 	if (!ext4_kset) {
5655 		err = -ENOMEM;
5656 		goto out5;
5657 	}
5658 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5659 
5660 	err = ext4_init_feat_adverts();
5661 	if (err)
5662 		goto out4;
5663 
5664 	err = ext4_init_mballoc();
5665 	if (err)
5666 		goto out2;
5667 	else
5668 		ext4_mballoc_ready = 1;
5669 	err = init_inodecache();
5670 	if (err)
5671 		goto out1;
5672 	register_as_ext3();
5673 	register_as_ext2();
5674 	err = register_filesystem(&ext4_fs_type);
5675 	if (err)
5676 		goto out;
5677 
5678 	return 0;
5679 out:
5680 	unregister_as_ext2();
5681 	unregister_as_ext3();
5682 	destroy_inodecache();
5683 out1:
5684 	ext4_mballoc_ready = 0;
5685 	ext4_exit_mballoc();
5686 out2:
5687 	ext4_exit_feat_adverts();
5688 out4:
5689 	if (ext4_proc_root)
5690 		remove_proc_entry("fs/ext4", NULL);
5691 	kset_unregister(ext4_kset);
5692 out5:
5693 	ext4_exit_system_zone();
5694 out6:
5695 	ext4_exit_pageio();
5696 out7:
5697 	ext4_exit_es();
5698 
5699 	return err;
5700 }
5701 
ext4_exit_fs(void)5702 static void __exit ext4_exit_fs(void)
5703 {
5704 	ext4_destroy_lazyinit_thread();
5705 	unregister_as_ext2();
5706 	unregister_as_ext3();
5707 	unregister_filesystem(&ext4_fs_type);
5708 	destroy_inodecache();
5709 	ext4_exit_mballoc();
5710 	ext4_exit_feat_adverts();
5711 	remove_proc_entry("fs/ext4", NULL);
5712 	kset_unregister(ext4_kset);
5713 	ext4_exit_system_zone();
5714 	ext4_exit_pageio();
5715 	ext4_exit_es();
5716 }
5717 
5718 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5719 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5720 MODULE_LICENSE("GPL");
5721 module_init(ext4_init_fs)
5722 module_exit(ext4_exit_fs)
5723