1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/parser.h>
28 #include <linux/buffer_head.h>
29 #include <linux/exportfs.h>
30 #include <linux/vfs.h>
31 #include <linux/random.h>
32 #include <linux/mount.h>
33 #include <linux/namei.h>
34 #include <linux/quotaops.h>
35 #include <linux/seq_file.h>
36 #include <linux/proc_fs.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61 static int ext4_mballoc_ready;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)139 static int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!ext4_has_metadata_csum(sb))
143 return 1;
144
145 return es->s_checksum == ext4_superblock_csum(sb, es);
146 }
147
ext4_superblock_csum_set(struct super_block * sb)148 void ext4_superblock_csum_set(struct super_block *sb)
149 {
150 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
151
152 if (!ext4_has_metadata_csum(sb))
153 return;
154
155 es->s_checksum = ext4_superblock_csum(sb, es);
156 }
157
ext4_kvmalloc(size_t size,gfp_t flags)158 void *ext4_kvmalloc(size_t size, gfp_t flags)
159 {
160 void *ret;
161
162 ret = kmalloc(size, flags | __GFP_NOWARN);
163 if (!ret)
164 ret = __vmalloc(size, flags, PAGE_KERNEL);
165 return ret;
166 }
167
ext4_kvzalloc(size_t size,gfp_t flags)168 void *ext4_kvzalloc(size_t size, gfp_t flags)
169 {
170 void *ret;
171
172 ret = kzalloc(size, flags | __GFP_NOWARN);
173 if (!ret)
174 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
175 return ret;
176 }
177
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)178 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
179 struct ext4_group_desc *bg)
180 {
181 return le32_to_cpu(bg->bg_block_bitmap_lo) |
182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
184 }
185
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)186 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
188 {
189 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
192 }
193
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)194 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
195 struct ext4_group_desc *bg)
196 {
197 return le32_to_cpu(bg->bg_inode_table_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
200 }
201
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)202 __u32 ext4_free_group_clusters(struct super_block *sb,
203 struct ext4_group_desc *bg)
204 {
205 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
208 }
209
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)210 __u32 ext4_free_inodes_count(struct super_block *sb,
211 struct ext4_group_desc *bg)
212 {
213 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
216 }
217
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)218 __u32 ext4_used_dirs_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
220 {
221 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
224 }
225
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)226 __u32 ext4_itable_unused_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le16_to_cpu(bg->bg_itable_unused_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
232 }
233
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)234 void ext4_block_bitmap_set(struct super_block *sb,
235 struct ext4_group_desc *bg, ext4_fsblk_t blk)
236 {
237 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
240 }
241
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)242 void ext4_inode_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)250 void ext4_inode_table_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
256 }
257
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)258 void ext4_free_group_clusters_set(struct super_block *sb,
259 struct ext4_group_desc *bg, __u32 count)
260 {
261 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
264 }
265
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)266 void ext4_free_inodes_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
268 {
269 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
272 }
273
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)274 void ext4_used_dirs_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
276 {
277 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
280 }
281
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)282 void ext4_itable_unused_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
284 {
285 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
288 }
289
290
__save_error_info(struct super_block * sb,const char * func,unsigned int line)291 static void __save_error_info(struct super_block *sb, const char *func,
292 unsigned int line)
293 {
294 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
295
296 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
297 if (bdev_read_only(sb->s_bdev))
298 return;
299 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
300 es->s_last_error_time = cpu_to_le32(get_seconds());
301 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
302 es->s_last_error_line = cpu_to_le32(line);
303 if (!es->s_first_error_time) {
304 es->s_first_error_time = es->s_last_error_time;
305 strncpy(es->s_first_error_func, func,
306 sizeof(es->s_first_error_func));
307 es->s_first_error_line = cpu_to_le32(line);
308 es->s_first_error_ino = es->s_last_error_ino;
309 es->s_first_error_block = es->s_last_error_block;
310 }
311 /*
312 * Start the daily error reporting function if it hasn't been
313 * started already
314 */
315 if (!es->s_error_count)
316 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
317 le32_add_cpu(&es->s_error_count, 1);
318 }
319
save_error_info(struct super_block * sb,const char * func,unsigned int line)320 static void save_error_info(struct super_block *sb, const char *func,
321 unsigned int line)
322 {
323 __save_error_info(sb, func, line);
324 ext4_commit_super(sb, 1);
325 }
326
327 /*
328 * The del_gendisk() function uninitializes the disk-specific data
329 * structures, including the bdi structure, without telling anyone
330 * else. Once this happens, any attempt to call mark_buffer_dirty()
331 * (for example, by ext4_commit_super), will cause a kernel OOPS.
332 * This is a kludge to prevent these oops until we can put in a proper
333 * hook in del_gendisk() to inform the VFS and file system layers.
334 */
block_device_ejected(struct super_block * sb)335 static int block_device_ejected(struct super_block *sb)
336 {
337 struct inode *bd_inode = sb->s_bdev->bd_inode;
338 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
339
340 return bdi->dev == NULL;
341 }
342
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)343 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
344 {
345 struct super_block *sb = journal->j_private;
346 struct ext4_sb_info *sbi = EXT4_SB(sb);
347 int error = is_journal_aborted(journal);
348 struct ext4_journal_cb_entry *jce;
349
350 BUG_ON(txn->t_state == T_FINISHED);
351 spin_lock(&sbi->s_md_lock);
352 while (!list_empty(&txn->t_private_list)) {
353 jce = list_entry(txn->t_private_list.next,
354 struct ext4_journal_cb_entry, jce_list);
355 list_del_init(&jce->jce_list);
356 spin_unlock(&sbi->s_md_lock);
357 jce->jce_func(sb, jce, error);
358 spin_lock(&sbi->s_md_lock);
359 }
360 spin_unlock(&sbi->s_md_lock);
361 }
362
363 /* Deal with the reporting of failure conditions on a filesystem such as
364 * inconsistencies detected or read IO failures.
365 *
366 * On ext2, we can store the error state of the filesystem in the
367 * superblock. That is not possible on ext4, because we may have other
368 * write ordering constraints on the superblock which prevent us from
369 * writing it out straight away; and given that the journal is about to
370 * be aborted, we can't rely on the current, or future, transactions to
371 * write out the superblock safely.
372 *
373 * We'll just use the jbd2_journal_abort() error code to record an error in
374 * the journal instead. On recovery, the journal will complain about
375 * that error until we've noted it down and cleared it.
376 */
377
ext4_handle_error(struct super_block * sb)378 static void ext4_handle_error(struct super_block *sb)
379 {
380 if (sb->s_flags & MS_RDONLY)
381 return;
382
383 if (!test_opt(sb, ERRORS_CONT)) {
384 journal_t *journal = EXT4_SB(sb)->s_journal;
385
386 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
387 if (journal)
388 jbd2_journal_abort(journal, -EIO);
389 }
390 if (test_opt(sb, ERRORS_RO)) {
391 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
392 /*
393 * Make sure updated value of ->s_mount_flags will be visible
394 * before ->s_flags update
395 */
396 smp_wmb();
397 sb->s_flags |= MS_RDONLY;
398 }
399 if (test_opt(sb, ERRORS_PANIC)) {
400 if (EXT4_SB(sb)->s_journal &&
401 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
402 return;
403 panic("EXT4-fs (device %s): panic forced after error\n",
404 sb->s_id);
405 }
406 }
407
408 #define ext4_error_ratelimit(sb) \
409 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
410 "EXT4-fs error")
411
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)412 void __ext4_error(struct super_block *sb, const char *function,
413 unsigned int line, const char *fmt, ...)
414 {
415 struct va_format vaf;
416 va_list args;
417
418 if (ext4_error_ratelimit(sb)) {
419 va_start(args, fmt);
420 vaf.fmt = fmt;
421 vaf.va = &args;
422 printk(KERN_CRIT
423 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
424 sb->s_id, function, line, current->comm, &vaf);
425 va_end(args);
426 }
427 save_error_info(sb, function, line);
428 ext4_handle_error(sb);
429 }
430
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)431 void __ext4_error_inode(struct inode *inode, const char *function,
432 unsigned int line, ext4_fsblk_t block,
433 const char *fmt, ...)
434 {
435 va_list args;
436 struct va_format vaf;
437 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
438
439 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
440 es->s_last_error_block = cpu_to_le64(block);
441 if (ext4_error_ratelimit(inode->i_sb)) {
442 va_start(args, fmt);
443 vaf.fmt = fmt;
444 vaf.va = &args;
445 if (block)
446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
447 "inode #%lu: block %llu: comm %s: %pV\n",
448 inode->i_sb->s_id, function, line, inode->i_ino,
449 block, current->comm, &vaf);
450 else
451 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
452 "inode #%lu: comm %s: %pV\n",
453 inode->i_sb->s_id, function, line, inode->i_ino,
454 current->comm, &vaf);
455 va_end(args);
456 }
457 save_error_info(inode->i_sb, function, line);
458 ext4_handle_error(inode->i_sb);
459 }
460
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)461 void __ext4_error_file(struct file *file, const char *function,
462 unsigned int line, ext4_fsblk_t block,
463 const char *fmt, ...)
464 {
465 va_list args;
466 struct va_format vaf;
467 struct ext4_super_block *es;
468 struct inode *inode = file_inode(file);
469 char pathname[80], *path;
470
471 es = EXT4_SB(inode->i_sb)->s_es;
472 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
473 if (ext4_error_ratelimit(inode->i_sb)) {
474 path = d_path(&(file->f_path), pathname, sizeof(pathname));
475 if (IS_ERR(path))
476 path = "(unknown)";
477 va_start(args, fmt);
478 vaf.fmt = fmt;
479 vaf.va = &args;
480 if (block)
481 printk(KERN_CRIT
482 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
483 "block %llu: comm %s: path %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 block, current->comm, path, &vaf);
486 else
487 printk(KERN_CRIT
488 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
489 "comm %s: path %s: %pV\n",
490 inode->i_sb->s_id, function, line, inode->i_ino,
491 current->comm, path, &vaf);
492 va_end(args);
493 }
494 save_error_info(inode->i_sb, function, line);
495 ext4_handle_error(inode->i_sb);
496 }
497
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])498 const char *ext4_decode_error(struct super_block *sb, int errno,
499 char nbuf[16])
500 {
501 char *errstr = NULL;
502
503 switch (errno) {
504 case -EIO:
505 errstr = "IO failure";
506 break;
507 case -ENOMEM:
508 errstr = "Out of memory";
509 break;
510 case -EROFS:
511 if (!sb || (EXT4_SB(sb)->s_journal &&
512 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
513 errstr = "Journal has aborted";
514 else
515 errstr = "Readonly filesystem";
516 break;
517 default:
518 /* If the caller passed in an extra buffer for unknown
519 * errors, textualise them now. Else we just return
520 * NULL. */
521 if (nbuf) {
522 /* Check for truncated error codes... */
523 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
524 errstr = nbuf;
525 }
526 break;
527 }
528
529 return errstr;
530 }
531
532 /* __ext4_std_error decodes expected errors from journaling functions
533 * automatically and invokes the appropriate error response. */
534
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)535 void __ext4_std_error(struct super_block *sb, const char *function,
536 unsigned int line, int errno)
537 {
538 char nbuf[16];
539 const char *errstr;
540
541 /* Special case: if the error is EROFS, and we're not already
542 * inside a transaction, then there's really no point in logging
543 * an error. */
544 if (errno == -EROFS && journal_current_handle() == NULL &&
545 (sb->s_flags & MS_RDONLY))
546 return;
547
548 if (ext4_error_ratelimit(sb)) {
549 errstr = ext4_decode_error(sb, errno, nbuf);
550 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
551 sb->s_id, function, line, errstr);
552 }
553
554 save_error_info(sb, function, line);
555 ext4_handle_error(sb);
556 }
557
558 /*
559 * ext4_abort is a much stronger failure handler than ext4_error. The
560 * abort function may be used to deal with unrecoverable failures such
561 * as journal IO errors or ENOMEM at a critical moment in log management.
562 *
563 * We unconditionally force the filesystem into an ABORT|READONLY state,
564 * unless the error response on the fs has been set to panic in which
565 * case we take the easy way out and panic immediately.
566 */
567
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)568 void __ext4_abort(struct super_block *sb, const char *function,
569 unsigned int line, const char *fmt, ...)
570 {
571 va_list args;
572
573 save_error_info(sb, function, line);
574 va_start(args, fmt);
575 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
576 function, line);
577 vprintk(fmt, args);
578 printk("\n");
579 va_end(args);
580
581 if ((sb->s_flags & MS_RDONLY) == 0) {
582 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
583 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
584 /*
585 * Make sure updated value of ->s_mount_flags will be visible
586 * before ->s_flags update
587 */
588 smp_wmb();
589 sb->s_flags |= MS_RDONLY;
590 if (EXT4_SB(sb)->s_journal)
591 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
592 save_error_info(sb, function, line);
593 }
594 if (test_opt(sb, ERRORS_PANIC)) {
595 if (EXT4_SB(sb)->s_journal &&
596 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
597 return;
598 panic("EXT4-fs panic from previous error\n");
599 }
600 }
601
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)602 void __ext4_msg(struct super_block *sb,
603 const char *prefix, const char *fmt, ...)
604 {
605 struct va_format vaf;
606 va_list args;
607
608 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
609 return;
610
611 va_start(args, fmt);
612 vaf.fmt = fmt;
613 vaf.va = &args;
614 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
615 va_end(args);
616 }
617
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)618 void __ext4_warning(struct super_block *sb, const char *function,
619 unsigned int line, const char *fmt, ...)
620 {
621 struct va_format vaf;
622 va_list args;
623
624 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
625 "EXT4-fs warning"))
626 return;
627
628 va_start(args, fmt);
629 vaf.fmt = fmt;
630 vaf.va = &args;
631 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
632 sb->s_id, function, line, &vaf);
633 va_end(args);
634 }
635
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)636 void __ext4_grp_locked_error(const char *function, unsigned int line,
637 struct super_block *sb, ext4_group_t grp,
638 unsigned long ino, ext4_fsblk_t block,
639 const char *fmt, ...)
640 __releases(bitlock)
641 __acquires(bitlock)
642 {
643 struct va_format vaf;
644 va_list args;
645 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
646
647 es->s_last_error_ino = cpu_to_le32(ino);
648 es->s_last_error_block = cpu_to_le64(block);
649 __save_error_info(sb, function, line);
650
651 if (ext4_error_ratelimit(sb)) {
652 va_start(args, fmt);
653 vaf.fmt = fmt;
654 vaf.va = &args;
655 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
656 sb->s_id, function, line, grp);
657 if (ino)
658 printk(KERN_CONT "inode %lu: ", ino);
659 if (block)
660 printk(KERN_CONT "block %llu:",
661 (unsigned long long) block);
662 printk(KERN_CONT "%pV\n", &vaf);
663 va_end(args);
664 }
665
666 if (test_opt(sb, ERRORS_CONT)) {
667 ext4_commit_super(sb, 0);
668 return;
669 }
670
671 ext4_unlock_group(sb, grp);
672 ext4_handle_error(sb);
673 /*
674 * We only get here in the ERRORS_RO case; relocking the group
675 * may be dangerous, but nothing bad will happen since the
676 * filesystem will have already been marked read/only and the
677 * journal has been aborted. We return 1 as a hint to callers
678 * who might what to use the return value from
679 * ext4_grp_locked_error() to distinguish between the
680 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
681 * aggressively from the ext4 function in question, with a
682 * more appropriate error code.
683 */
684 ext4_lock_group(sb, grp);
685 return;
686 }
687
ext4_update_dynamic_rev(struct super_block * sb)688 void ext4_update_dynamic_rev(struct super_block *sb)
689 {
690 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
691
692 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
693 return;
694
695 ext4_warning(sb,
696 "updating to rev %d because of new feature flag, "
697 "running e2fsck is recommended",
698 EXT4_DYNAMIC_REV);
699
700 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
701 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
702 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
703 /* leave es->s_feature_*compat flags alone */
704 /* es->s_uuid will be set by e2fsck if empty */
705
706 /*
707 * The rest of the superblock fields should be zero, and if not it
708 * means they are likely already in use, so leave them alone. We
709 * can leave it up to e2fsck to clean up any inconsistencies there.
710 */
711 }
712
713 /*
714 * Open the external journal device
715 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)716 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
717 {
718 struct block_device *bdev;
719 char b[BDEVNAME_SIZE];
720
721 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
722 if (IS_ERR(bdev))
723 goto fail;
724 return bdev;
725
726 fail:
727 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
728 __bdevname(dev, b), PTR_ERR(bdev));
729 return NULL;
730 }
731
732 /*
733 * Release the journal device
734 */
ext4_blkdev_put(struct block_device * bdev)735 static void ext4_blkdev_put(struct block_device *bdev)
736 {
737 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
738 }
739
ext4_blkdev_remove(struct ext4_sb_info * sbi)740 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
741 {
742 struct block_device *bdev;
743 bdev = sbi->journal_bdev;
744 if (bdev) {
745 ext4_blkdev_put(bdev);
746 sbi->journal_bdev = NULL;
747 }
748 }
749
orphan_list_entry(struct list_head * l)750 static inline struct inode *orphan_list_entry(struct list_head *l)
751 {
752 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
753 }
754
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)755 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
756 {
757 struct list_head *l;
758
759 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
760 le32_to_cpu(sbi->s_es->s_last_orphan));
761
762 printk(KERN_ERR "sb_info orphan list:\n");
763 list_for_each(l, &sbi->s_orphan) {
764 struct inode *inode = orphan_list_entry(l);
765 printk(KERN_ERR " "
766 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
767 inode->i_sb->s_id, inode->i_ino, inode,
768 inode->i_mode, inode->i_nlink,
769 NEXT_ORPHAN(inode));
770 }
771 }
772
ext4_put_super(struct super_block * sb)773 static void ext4_put_super(struct super_block *sb)
774 {
775 struct ext4_sb_info *sbi = EXT4_SB(sb);
776 struct ext4_super_block *es = sbi->s_es;
777 int i, err;
778
779 ext4_unregister_li_request(sb);
780 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
781
782 flush_workqueue(sbi->rsv_conversion_wq);
783 destroy_workqueue(sbi->rsv_conversion_wq);
784
785 if (sbi->s_journal) {
786 err = jbd2_journal_destroy(sbi->s_journal);
787 sbi->s_journal = NULL;
788 if (err < 0)
789 ext4_abort(sb, "Couldn't clean up the journal");
790 }
791
792 ext4_es_unregister_shrinker(sbi);
793 del_timer_sync(&sbi->s_err_report);
794 ext4_release_system_zone(sb);
795 ext4_mb_release(sb);
796 ext4_ext_release(sb);
797 ext4_xattr_put_super(sb);
798
799 if (!(sb->s_flags & MS_RDONLY)) {
800 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
801 es->s_state = cpu_to_le16(sbi->s_mount_state);
802 }
803 if (!(sb->s_flags & MS_RDONLY))
804 ext4_commit_super(sb, 1);
805
806 if (sbi->s_proc) {
807 remove_proc_entry("options", sbi->s_proc);
808 remove_proc_entry(sb->s_id, ext4_proc_root);
809 }
810 kobject_del(&sbi->s_kobj);
811
812 for (i = 0; i < sbi->s_gdb_count; i++)
813 brelse(sbi->s_group_desc[i]);
814 kvfree(sbi->s_group_desc);
815 kvfree(sbi->s_flex_groups);
816 percpu_counter_destroy(&sbi->s_freeclusters_counter);
817 percpu_counter_destroy(&sbi->s_freeinodes_counter);
818 percpu_counter_destroy(&sbi->s_dirs_counter);
819 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
820 brelse(sbi->s_sbh);
821 #ifdef CONFIG_QUOTA
822 for (i = 0; i < EXT4_MAXQUOTAS; i++)
823 kfree(sbi->s_qf_names[i]);
824 #endif
825
826 /* Debugging code just in case the in-memory inode orphan list
827 * isn't empty. The on-disk one can be non-empty if we've
828 * detected an error and taken the fs readonly, but the
829 * in-memory list had better be clean by this point. */
830 if (!list_empty(&sbi->s_orphan))
831 dump_orphan_list(sb, sbi);
832 J_ASSERT(list_empty(&sbi->s_orphan));
833
834 sync_blockdev(sb->s_bdev);
835 invalidate_bdev(sb->s_bdev);
836 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
837 /*
838 * Invalidate the journal device's buffers. We don't want them
839 * floating about in memory - the physical journal device may
840 * hotswapped, and it breaks the `ro-after' testing code.
841 */
842 sync_blockdev(sbi->journal_bdev);
843 invalidate_bdev(sbi->journal_bdev);
844 ext4_blkdev_remove(sbi);
845 }
846 if (sbi->s_mb_cache) {
847 ext4_xattr_destroy_cache(sbi->s_mb_cache);
848 sbi->s_mb_cache = NULL;
849 }
850 if (sbi->s_mmp_tsk)
851 kthread_stop(sbi->s_mmp_tsk);
852 sb->s_fs_info = NULL;
853 /*
854 * Now that we are completely done shutting down the
855 * superblock, we need to actually destroy the kobject.
856 */
857 kobject_put(&sbi->s_kobj);
858 wait_for_completion(&sbi->s_kobj_unregister);
859 if (sbi->s_chksum_driver)
860 crypto_free_shash(sbi->s_chksum_driver);
861 kfree(sbi->s_blockgroup_lock);
862 kfree(sbi);
863 }
864
865 static struct kmem_cache *ext4_inode_cachep;
866
867 /*
868 * Called inside transaction, so use GFP_NOFS
869 */
ext4_alloc_inode(struct super_block * sb)870 static struct inode *ext4_alloc_inode(struct super_block *sb)
871 {
872 struct ext4_inode_info *ei;
873
874 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
875 if (!ei)
876 return NULL;
877
878 ei->vfs_inode.i_version = 1;
879 spin_lock_init(&ei->i_raw_lock);
880 INIT_LIST_HEAD(&ei->i_prealloc_list);
881 spin_lock_init(&ei->i_prealloc_lock);
882 ext4_es_init_tree(&ei->i_es_tree);
883 rwlock_init(&ei->i_es_lock);
884 INIT_LIST_HEAD(&ei->i_es_list);
885 ei->i_es_all_nr = 0;
886 ei->i_es_shk_nr = 0;
887 ei->i_es_shrink_lblk = 0;
888 ei->i_reserved_data_blocks = 0;
889 ei->i_reserved_meta_blocks = 0;
890 ei->i_allocated_meta_blocks = 0;
891 ei->i_da_metadata_calc_len = 0;
892 ei->i_da_metadata_calc_last_lblock = 0;
893 spin_lock_init(&(ei->i_block_reservation_lock));
894 #ifdef CONFIG_QUOTA
895 ei->i_reserved_quota = 0;
896 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
897 #endif
898 ei->jinode = NULL;
899 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
900 spin_lock_init(&ei->i_completed_io_lock);
901 ei->i_sync_tid = 0;
902 ei->i_datasync_tid = 0;
903 atomic_set(&ei->i_ioend_count, 0);
904 atomic_set(&ei->i_unwritten, 0);
905 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
906 #ifdef CONFIG_EXT4_FS_ENCRYPTION
907 ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
908 #endif
909
910 return &ei->vfs_inode;
911 }
912
ext4_drop_inode(struct inode * inode)913 static int ext4_drop_inode(struct inode *inode)
914 {
915 int drop = generic_drop_inode(inode);
916
917 trace_ext4_drop_inode(inode, drop);
918 return drop;
919 }
920
ext4_i_callback(struct rcu_head * head)921 static void ext4_i_callback(struct rcu_head *head)
922 {
923 struct inode *inode = container_of(head, struct inode, i_rcu);
924 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
925 }
926
ext4_destroy_inode(struct inode * inode)927 static void ext4_destroy_inode(struct inode *inode)
928 {
929 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
930 ext4_msg(inode->i_sb, KERN_ERR,
931 "Inode %lu (%p): orphan list check failed!",
932 inode->i_ino, EXT4_I(inode));
933 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
934 EXT4_I(inode), sizeof(struct ext4_inode_info),
935 true);
936 dump_stack();
937 }
938 call_rcu(&inode->i_rcu, ext4_i_callback);
939 }
940
init_once(void * foo)941 static void init_once(void *foo)
942 {
943 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
944
945 INIT_LIST_HEAD(&ei->i_orphan);
946 init_rwsem(&ei->xattr_sem);
947 init_rwsem(&ei->i_data_sem);
948 init_rwsem(&ei->i_mmap_sem);
949 inode_init_once(&ei->vfs_inode);
950 }
951
init_inodecache(void)952 static int __init init_inodecache(void)
953 {
954 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
955 sizeof(struct ext4_inode_info),
956 0, (SLAB_RECLAIM_ACCOUNT|
957 SLAB_MEM_SPREAD),
958 init_once);
959 if (ext4_inode_cachep == NULL)
960 return -ENOMEM;
961 return 0;
962 }
963
destroy_inodecache(void)964 static void destroy_inodecache(void)
965 {
966 /*
967 * Make sure all delayed rcu free inodes are flushed before we
968 * destroy cache.
969 */
970 rcu_barrier();
971 kmem_cache_destroy(ext4_inode_cachep);
972 }
973
ext4_clear_inode(struct inode * inode)974 void ext4_clear_inode(struct inode *inode)
975 {
976 invalidate_inode_buffers(inode);
977 clear_inode(inode);
978 dquot_drop(inode);
979 ext4_discard_preallocations(inode);
980 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
981 if (EXT4_I(inode)->jinode) {
982 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
983 EXT4_I(inode)->jinode);
984 jbd2_free_inode(EXT4_I(inode)->jinode);
985 EXT4_I(inode)->jinode = NULL;
986 }
987 }
988
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)989 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
990 u64 ino, u32 generation)
991 {
992 struct inode *inode;
993
994 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
995 return ERR_PTR(-ESTALE);
996 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
997 return ERR_PTR(-ESTALE);
998
999 /* iget isn't really right if the inode is currently unallocated!!
1000 *
1001 * ext4_read_inode will return a bad_inode if the inode had been
1002 * deleted, so we should be safe.
1003 *
1004 * Currently we don't know the generation for parent directory, so
1005 * a generation of 0 means "accept any"
1006 */
1007 inode = ext4_iget_normal(sb, ino);
1008 if (IS_ERR(inode))
1009 return ERR_CAST(inode);
1010 if (generation && inode->i_generation != generation) {
1011 iput(inode);
1012 return ERR_PTR(-ESTALE);
1013 }
1014
1015 return inode;
1016 }
1017
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1018 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1019 int fh_len, int fh_type)
1020 {
1021 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1022 ext4_nfs_get_inode);
1023 }
1024
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1025 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1026 int fh_len, int fh_type)
1027 {
1028 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1029 ext4_nfs_get_inode);
1030 }
1031
1032 /*
1033 * Try to release metadata pages (indirect blocks, directories) which are
1034 * mapped via the block device. Since these pages could have journal heads
1035 * which would prevent try_to_free_buffers() from freeing them, we must use
1036 * jbd2 layer's try_to_free_buffers() function to release them.
1037 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1038 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1039 gfp_t wait)
1040 {
1041 journal_t *journal = EXT4_SB(sb)->s_journal;
1042
1043 WARN_ON(PageChecked(page));
1044 if (!page_has_buffers(page))
1045 return 0;
1046 if (journal)
1047 return jbd2_journal_try_to_free_buffers(journal, page,
1048 wait & ~__GFP_WAIT);
1049 return try_to_free_buffers(page);
1050 }
1051
1052 #ifdef CONFIG_QUOTA
1053 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1054 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1055
1056 static int ext4_write_dquot(struct dquot *dquot);
1057 static int ext4_acquire_dquot(struct dquot *dquot);
1058 static int ext4_release_dquot(struct dquot *dquot);
1059 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1060 static int ext4_write_info(struct super_block *sb, int type);
1061 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1062 struct path *path);
1063 static int ext4_quota_off(struct super_block *sb, int type);
1064 static int ext4_quota_on_mount(struct super_block *sb, int type);
1065 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1066 size_t len, loff_t off);
1067 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1068 const char *data, size_t len, loff_t off);
1069 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1070 unsigned int flags);
1071 static int ext4_enable_quotas(struct super_block *sb);
1072
ext4_get_dquots(struct inode * inode)1073 static struct dquot **ext4_get_dquots(struct inode *inode)
1074 {
1075 return EXT4_I(inode)->i_dquot;
1076 }
1077
1078 static const struct dquot_operations ext4_quota_operations = {
1079 .get_reserved_space = ext4_get_reserved_space,
1080 .write_dquot = ext4_write_dquot,
1081 .acquire_dquot = ext4_acquire_dquot,
1082 .release_dquot = ext4_release_dquot,
1083 .mark_dirty = ext4_mark_dquot_dirty,
1084 .write_info = ext4_write_info,
1085 .alloc_dquot = dquot_alloc,
1086 .destroy_dquot = dquot_destroy,
1087 };
1088
1089 static const struct quotactl_ops ext4_qctl_operations = {
1090 .quota_on = ext4_quota_on,
1091 .quota_off = ext4_quota_off,
1092 .quota_sync = dquot_quota_sync,
1093 .get_state = dquot_get_state,
1094 .set_info = dquot_set_dqinfo,
1095 .get_dqblk = dquot_get_dqblk,
1096 .set_dqblk = dquot_set_dqblk
1097 };
1098 #endif
1099
1100 static const struct super_operations ext4_sops = {
1101 .alloc_inode = ext4_alloc_inode,
1102 .destroy_inode = ext4_destroy_inode,
1103 .write_inode = ext4_write_inode,
1104 .dirty_inode = ext4_dirty_inode,
1105 .drop_inode = ext4_drop_inode,
1106 .evict_inode = ext4_evict_inode,
1107 .put_super = ext4_put_super,
1108 .sync_fs = ext4_sync_fs,
1109 .freeze_fs = ext4_freeze,
1110 .unfreeze_fs = ext4_unfreeze,
1111 .statfs = ext4_statfs,
1112 .remount_fs = ext4_remount,
1113 .show_options = ext4_show_options,
1114 #ifdef CONFIG_QUOTA
1115 .quota_read = ext4_quota_read,
1116 .quota_write = ext4_quota_write,
1117 .get_dquots = ext4_get_dquots,
1118 #endif
1119 .bdev_try_to_free_page = bdev_try_to_free_page,
1120 };
1121
1122 static const struct export_operations ext4_export_ops = {
1123 .fh_to_dentry = ext4_fh_to_dentry,
1124 .fh_to_parent = ext4_fh_to_parent,
1125 .get_parent = ext4_get_parent,
1126 };
1127
1128 enum {
1129 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1130 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1131 Opt_nouid32, Opt_debug, Opt_removed,
1132 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1133 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1134 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1135 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1136 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1137 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1138 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1139 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1140 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1141 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1142 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1143 Opt_lazytime, Opt_nolazytime,
1144 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1145 Opt_inode_readahead_blks, Opt_journal_ioprio,
1146 Opt_dioread_nolock, Opt_dioread_lock,
1147 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1148 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1149 };
1150
1151 static const match_table_t tokens = {
1152 {Opt_bsd_df, "bsddf"},
1153 {Opt_minix_df, "minixdf"},
1154 {Opt_grpid, "grpid"},
1155 {Opt_grpid, "bsdgroups"},
1156 {Opt_nogrpid, "nogrpid"},
1157 {Opt_nogrpid, "sysvgroups"},
1158 {Opt_resgid, "resgid=%u"},
1159 {Opt_resuid, "resuid=%u"},
1160 {Opt_sb, "sb=%u"},
1161 {Opt_err_cont, "errors=continue"},
1162 {Opt_err_panic, "errors=panic"},
1163 {Opt_err_ro, "errors=remount-ro"},
1164 {Opt_nouid32, "nouid32"},
1165 {Opt_debug, "debug"},
1166 {Opt_removed, "oldalloc"},
1167 {Opt_removed, "orlov"},
1168 {Opt_user_xattr, "user_xattr"},
1169 {Opt_nouser_xattr, "nouser_xattr"},
1170 {Opt_acl, "acl"},
1171 {Opt_noacl, "noacl"},
1172 {Opt_noload, "norecovery"},
1173 {Opt_noload, "noload"},
1174 {Opt_removed, "nobh"},
1175 {Opt_removed, "bh"},
1176 {Opt_commit, "commit=%u"},
1177 {Opt_min_batch_time, "min_batch_time=%u"},
1178 {Opt_max_batch_time, "max_batch_time=%u"},
1179 {Opt_journal_dev, "journal_dev=%u"},
1180 {Opt_journal_path, "journal_path=%s"},
1181 {Opt_journal_checksum, "journal_checksum"},
1182 {Opt_nojournal_checksum, "nojournal_checksum"},
1183 {Opt_journal_async_commit, "journal_async_commit"},
1184 {Opt_abort, "abort"},
1185 {Opt_data_journal, "data=journal"},
1186 {Opt_data_ordered, "data=ordered"},
1187 {Opt_data_writeback, "data=writeback"},
1188 {Opt_data_err_abort, "data_err=abort"},
1189 {Opt_data_err_ignore, "data_err=ignore"},
1190 {Opt_offusrjquota, "usrjquota="},
1191 {Opt_usrjquota, "usrjquota=%s"},
1192 {Opt_offgrpjquota, "grpjquota="},
1193 {Opt_grpjquota, "grpjquota=%s"},
1194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1197 {Opt_grpquota, "grpquota"},
1198 {Opt_noquota, "noquota"},
1199 {Opt_quota, "quota"},
1200 {Opt_usrquota, "usrquota"},
1201 {Opt_barrier, "barrier=%u"},
1202 {Opt_barrier, "barrier"},
1203 {Opt_nobarrier, "nobarrier"},
1204 {Opt_i_version, "i_version"},
1205 {Opt_dax, "dax"},
1206 {Opt_stripe, "stripe=%u"},
1207 {Opt_delalloc, "delalloc"},
1208 {Opt_lazytime, "lazytime"},
1209 {Opt_nolazytime, "nolazytime"},
1210 {Opt_nodelalloc, "nodelalloc"},
1211 {Opt_removed, "mblk_io_submit"},
1212 {Opt_removed, "nomblk_io_submit"},
1213 {Opt_block_validity, "block_validity"},
1214 {Opt_noblock_validity, "noblock_validity"},
1215 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1216 {Opt_journal_ioprio, "journal_ioprio=%u"},
1217 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1218 {Opt_auto_da_alloc, "auto_da_alloc"},
1219 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1220 {Opt_dioread_nolock, "dioread_nolock"},
1221 {Opt_dioread_lock, "dioread_lock"},
1222 {Opt_discard, "discard"},
1223 {Opt_nodiscard, "nodiscard"},
1224 {Opt_init_itable, "init_itable=%u"},
1225 {Opt_init_itable, "init_itable"},
1226 {Opt_noinit_itable, "noinit_itable"},
1227 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1228 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1229 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1230 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1231 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1232 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1233 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1234 {Opt_err, NULL},
1235 };
1236
get_sb_block(void ** data)1237 static ext4_fsblk_t get_sb_block(void **data)
1238 {
1239 ext4_fsblk_t sb_block;
1240 char *options = (char *) *data;
1241
1242 if (!options || strncmp(options, "sb=", 3) != 0)
1243 return 1; /* Default location */
1244
1245 options += 3;
1246 /* TODO: use simple_strtoll with >32bit ext4 */
1247 sb_block = simple_strtoul(options, &options, 0);
1248 if (*options && *options != ',') {
1249 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1250 (char *) *data);
1251 return 1;
1252 }
1253 if (*options == ',')
1254 options++;
1255 *data = (void *) options;
1256
1257 return sb_block;
1258 }
1259
1260 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1261 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1262 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1263
1264 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1265 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1266 {
1267 struct ext4_sb_info *sbi = EXT4_SB(sb);
1268 char *qname;
1269 int ret = -1;
1270
1271 if (sb_any_quota_loaded(sb) &&
1272 !sbi->s_qf_names[qtype]) {
1273 ext4_msg(sb, KERN_ERR,
1274 "Cannot change journaled "
1275 "quota options when quota turned on");
1276 return -1;
1277 }
1278 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1279 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1280 "ignored when QUOTA feature is enabled");
1281 return 1;
1282 }
1283 qname = match_strdup(args);
1284 if (!qname) {
1285 ext4_msg(sb, KERN_ERR,
1286 "Not enough memory for storing quotafile name");
1287 return -1;
1288 }
1289 if (sbi->s_qf_names[qtype]) {
1290 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1291 ret = 1;
1292 else
1293 ext4_msg(sb, KERN_ERR,
1294 "%s quota file already specified",
1295 QTYPE2NAME(qtype));
1296 goto errout;
1297 }
1298 if (strchr(qname, '/')) {
1299 ext4_msg(sb, KERN_ERR,
1300 "quotafile must be on filesystem root");
1301 goto errout;
1302 }
1303 sbi->s_qf_names[qtype] = qname;
1304 set_opt(sb, QUOTA);
1305 return 1;
1306 errout:
1307 kfree(qname);
1308 return ret;
1309 }
1310
clear_qf_name(struct super_block * sb,int qtype)1311 static int clear_qf_name(struct super_block *sb, int qtype)
1312 {
1313
1314 struct ext4_sb_info *sbi = EXT4_SB(sb);
1315
1316 if (sb_any_quota_loaded(sb) &&
1317 sbi->s_qf_names[qtype]) {
1318 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1319 " when quota turned on");
1320 return -1;
1321 }
1322 kfree(sbi->s_qf_names[qtype]);
1323 sbi->s_qf_names[qtype] = NULL;
1324 return 1;
1325 }
1326 #endif
1327
1328 #define MOPT_SET 0x0001
1329 #define MOPT_CLEAR 0x0002
1330 #define MOPT_NOSUPPORT 0x0004
1331 #define MOPT_EXPLICIT 0x0008
1332 #define MOPT_CLEAR_ERR 0x0010
1333 #define MOPT_GTE0 0x0020
1334 #ifdef CONFIG_QUOTA
1335 #define MOPT_Q 0
1336 #define MOPT_QFMT 0x0040
1337 #else
1338 #define MOPT_Q MOPT_NOSUPPORT
1339 #define MOPT_QFMT MOPT_NOSUPPORT
1340 #endif
1341 #define MOPT_DATAJ 0x0080
1342 #define MOPT_NO_EXT2 0x0100
1343 #define MOPT_NO_EXT3 0x0200
1344 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1345 #define MOPT_STRING 0x0400
1346
1347 static const struct mount_opts {
1348 int token;
1349 int mount_opt;
1350 int flags;
1351 } ext4_mount_opts[] = {
1352 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1353 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1354 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1355 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1356 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1357 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1358 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1359 MOPT_EXT4_ONLY | MOPT_SET},
1360 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1361 MOPT_EXT4_ONLY | MOPT_CLEAR},
1362 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1363 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1364 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1365 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1366 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1367 MOPT_EXT4_ONLY | MOPT_CLEAR},
1368 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1369 MOPT_EXT4_ONLY | MOPT_CLEAR},
1370 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1371 MOPT_EXT4_ONLY | MOPT_SET},
1372 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1373 EXT4_MOUNT_JOURNAL_CHECKSUM),
1374 MOPT_EXT4_ONLY | MOPT_SET},
1375 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1376 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1377 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1378 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1379 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1380 MOPT_NO_EXT2 | MOPT_SET},
1381 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1382 MOPT_NO_EXT2 | MOPT_CLEAR},
1383 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1384 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1385 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1386 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1387 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1388 {Opt_commit, 0, MOPT_GTE0},
1389 {Opt_max_batch_time, 0, MOPT_GTE0},
1390 {Opt_min_batch_time, 0, MOPT_GTE0},
1391 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1392 {Opt_init_itable, 0, MOPT_GTE0},
1393 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1394 {Opt_stripe, 0, MOPT_GTE0},
1395 {Opt_resuid, 0, MOPT_GTE0},
1396 {Opt_resgid, 0, MOPT_GTE0},
1397 {Opt_journal_dev, 0, MOPT_GTE0},
1398 {Opt_journal_path, 0, MOPT_STRING},
1399 {Opt_journal_ioprio, 0, MOPT_GTE0},
1400 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1401 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1402 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1403 MOPT_NO_EXT2 | MOPT_DATAJ},
1404 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1405 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1406 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1407 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1408 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1409 #else
1410 {Opt_acl, 0, MOPT_NOSUPPORT},
1411 {Opt_noacl, 0, MOPT_NOSUPPORT},
1412 #endif
1413 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1414 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1415 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1416 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1417 MOPT_SET | MOPT_Q},
1418 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1419 MOPT_SET | MOPT_Q},
1420 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1421 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1422 {Opt_usrjquota, 0, MOPT_Q},
1423 {Opt_grpjquota, 0, MOPT_Q},
1424 {Opt_offusrjquota, 0, MOPT_Q},
1425 {Opt_offgrpjquota, 0, MOPT_Q},
1426 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1427 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1428 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1429 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1430 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1431 {Opt_err, 0, 0}
1432 };
1433
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1434 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1435 substring_t *args, unsigned long *journal_devnum,
1436 unsigned int *journal_ioprio, int is_remount)
1437 {
1438 struct ext4_sb_info *sbi = EXT4_SB(sb);
1439 const struct mount_opts *m;
1440 kuid_t uid;
1441 kgid_t gid;
1442 int arg = 0;
1443
1444 #ifdef CONFIG_QUOTA
1445 if (token == Opt_usrjquota)
1446 return set_qf_name(sb, USRQUOTA, &args[0]);
1447 else if (token == Opt_grpjquota)
1448 return set_qf_name(sb, GRPQUOTA, &args[0]);
1449 else if (token == Opt_offusrjquota)
1450 return clear_qf_name(sb, USRQUOTA);
1451 else if (token == Opt_offgrpjquota)
1452 return clear_qf_name(sb, GRPQUOTA);
1453 #endif
1454 switch (token) {
1455 case Opt_noacl:
1456 case Opt_nouser_xattr:
1457 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1458 break;
1459 case Opt_sb:
1460 return 1; /* handled by get_sb_block() */
1461 case Opt_removed:
1462 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1463 return 1;
1464 case Opt_abort:
1465 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1466 return 1;
1467 case Opt_i_version:
1468 sb->s_flags |= MS_I_VERSION;
1469 return 1;
1470 case Opt_lazytime:
1471 sb->s_flags |= MS_LAZYTIME;
1472 return 1;
1473 case Opt_nolazytime:
1474 sb->s_flags &= ~MS_LAZYTIME;
1475 return 1;
1476 }
1477
1478 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1479 if (token == m->token)
1480 break;
1481
1482 if (m->token == Opt_err) {
1483 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1484 "or missing value", opt);
1485 return -1;
1486 }
1487
1488 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1489 ext4_msg(sb, KERN_ERR,
1490 "Mount option \"%s\" incompatible with ext2", opt);
1491 return -1;
1492 }
1493 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1494 ext4_msg(sb, KERN_ERR,
1495 "Mount option \"%s\" incompatible with ext3", opt);
1496 return -1;
1497 }
1498
1499 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1500 return -1;
1501 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1502 return -1;
1503 if (m->flags & MOPT_EXPLICIT)
1504 set_opt2(sb, EXPLICIT_DELALLOC);
1505 if (m->flags & MOPT_CLEAR_ERR)
1506 clear_opt(sb, ERRORS_MASK);
1507 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1508 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1509 "options when quota turned on");
1510 return -1;
1511 }
1512
1513 if (m->flags & MOPT_NOSUPPORT) {
1514 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1515 } else if (token == Opt_commit) {
1516 if (arg == 0)
1517 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1518 sbi->s_commit_interval = HZ * arg;
1519 } else if (token == Opt_max_batch_time) {
1520 sbi->s_max_batch_time = arg;
1521 } else if (token == Opt_min_batch_time) {
1522 sbi->s_min_batch_time = arg;
1523 } else if (token == Opt_inode_readahead_blks) {
1524 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1525 ext4_msg(sb, KERN_ERR,
1526 "EXT4-fs: inode_readahead_blks must be "
1527 "0 or a power of 2 smaller than 2^31");
1528 return -1;
1529 }
1530 sbi->s_inode_readahead_blks = arg;
1531 } else if (token == Opt_init_itable) {
1532 set_opt(sb, INIT_INODE_TABLE);
1533 if (!args->from)
1534 arg = EXT4_DEF_LI_WAIT_MULT;
1535 sbi->s_li_wait_mult = arg;
1536 } else if (token == Opt_max_dir_size_kb) {
1537 sbi->s_max_dir_size_kb = arg;
1538 } else if (token == Opt_stripe) {
1539 sbi->s_stripe = arg;
1540 } else if (token == Opt_resuid) {
1541 uid = make_kuid(current_user_ns(), arg);
1542 if (!uid_valid(uid)) {
1543 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1544 return -1;
1545 }
1546 sbi->s_resuid = uid;
1547 } else if (token == Opt_resgid) {
1548 gid = make_kgid(current_user_ns(), arg);
1549 if (!gid_valid(gid)) {
1550 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1551 return -1;
1552 }
1553 sbi->s_resgid = gid;
1554 } else if (token == Opt_journal_dev) {
1555 if (is_remount) {
1556 ext4_msg(sb, KERN_ERR,
1557 "Cannot specify journal on remount");
1558 return -1;
1559 }
1560 *journal_devnum = arg;
1561 } else if (token == Opt_journal_path) {
1562 char *journal_path;
1563 struct inode *journal_inode;
1564 struct path path;
1565 int error;
1566
1567 if (is_remount) {
1568 ext4_msg(sb, KERN_ERR,
1569 "Cannot specify journal on remount");
1570 return -1;
1571 }
1572 journal_path = match_strdup(&args[0]);
1573 if (!journal_path) {
1574 ext4_msg(sb, KERN_ERR, "error: could not dup "
1575 "journal device string");
1576 return -1;
1577 }
1578
1579 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1580 if (error) {
1581 ext4_msg(sb, KERN_ERR, "error: could not find "
1582 "journal device path: error %d", error);
1583 kfree(journal_path);
1584 return -1;
1585 }
1586
1587 journal_inode = d_inode(path.dentry);
1588 if (!S_ISBLK(journal_inode->i_mode)) {
1589 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1590 "is not a block device", journal_path);
1591 path_put(&path);
1592 kfree(journal_path);
1593 return -1;
1594 }
1595
1596 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1597 path_put(&path);
1598 kfree(journal_path);
1599 } else if (token == Opt_journal_ioprio) {
1600 if (arg > 7) {
1601 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1602 " (must be 0-7)");
1603 return -1;
1604 }
1605 *journal_ioprio =
1606 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1607 } else if (token == Opt_test_dummy_encryption) {
1608 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1609 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1610 ext4_msg(sb, KERN_WARNING,
1611 "Test dummy encryption mode enabled");
1612 #else
1613 ext4_msg(sb, KERN_WARNING,
1614 "Test dummy encryption mount option ignored");
1615 #endif
1616 } else if (m->flags & MOPT_DATAJ) {
1617 if (is_remount) {
1618 if (!sbi->s_journal)
1619 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1620 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1621 ext4_msg(sb, KERN_ERR,
1622 "Cannot change data mode on remount");
1623 return -1;
1624 }
1625 } else {
1626 clear_opt(sb, DATA_FLAGS);
1627 sbi->s_mount_opt |= m->mount_opt;
1628 }
1629 #ifdef CONFIG_QUOTA
1630 } else if (m->flags & MOPT_QFMT) {
1631 if (sb_any_quota_loaded(sb) &&
1632 sbi->s_jquota_fmt != m->mount_opt) {
1633 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1634 "quota options when quota turned on");
1635 return -1;
1636 }
1637 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1638 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1639 ext4_msg(sb, KERN_INFO,
1640 "Quota format mount options ignored "
1641 "when QUOTA feature is enabled");
1642 return 1;
1643 }
1644 sbi->s_jquota_fmt = m->mount_opt;
1645 #endif
1646 #ifndef CONFIG_FS_DAX
1647 } else if (token == Opt_dax) {
1648 ext4_msg(sb, KERN_INFO, "dax option not supported");
1649 return -1;
1650 #endif
1651 } else {
1652 if (!args->from)
1653 arg = 1;
1654 if (m->flags & MOPT_CLEAR)
1655 arg = !arg;
1656 else if (unlikely(!(m->flags & MOPT_SET))) {
1657 ext4_msg(sb, KERN_WARNING,
1658 "buggy handling of option %s", opt);
1659 WARN_ON(1);
1660 return -1;
1661 }
1662 if (arg != 0)
1663 sbi->s_mount_opt |= m->mount_opt;
1664 else
1665 sbi->s_mount_opt &= ~m->mount_opt;
1666 }
1667 return 1;
1668 }
1669
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1670 static int parse_options(char *options, struct super_block *sb,
1671 unsigned long *journal_devnum,
1672 unsigned int *journal_ioprio,
1673 int is_remount)
1674 {
1675 struct ext4_sb_info *sbi = EXT4_SB(sb);
1676 char *p;
1677 substring_t args[MAX_OPT_ARGS];
1678 int token;
1679
1680 if (!options)
1681 return 1;
1682
1683 while ((p = strsep(&options, ",")) != NULL) {
1684 if (!*p)
1685 continue;
1686 /*
1687 * Initialize args struct so we know whether arg was
1688 * found; some options take optional arguments.
1689 */
1690 args[0].to = args[0].from = NULL;
1691 token = match_token(p, tokens, args);
1692 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1693 journal_ioprio, is_remount) < 0)
1694 return 0;
1695 }
1696 #ifdef CONFIG_QUOTA
1697 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1698 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1699 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1700 "mount options ignored.");
1701 clear_opt(sb, USRQUOTA);
1702 clear_opt(sb, GRPQUOTA);
1703 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1704 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1705 clear_opt(sb, USRQUOTA);
1706
1707 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1708 clear_opt(sb, GRPQUOTA);
1709
1710 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1711 ext4_msg(sb, KERN_ERR, "old and new quota "
1712 "format mixing");
1713 return 0;
1714 }
1715
1716 if (!sbi->s_jquota_fmt) {
1717 ext4_msg(sb, KERN_ERR, "journaled quota format "
1718 "not specified");
1719 return 0;
1720 }
1721 }
1722 #endif
1723 if (test_opt(sb, DIOREAD_NOLOCK)) {
1724 int blocksize =
1725 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1726
1727 if (blocksize < PAGE_CACHE_SIZE) {
1728 ext4_msg(sb, KERN_ERR, "can't mount with "
1729 "dioread_nolock if block size != PAGE_SIZE");
1730 return 0;
1731 }
1732 }
1733 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1734 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1735 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1736 "in data=ordered mode");
1737 return 0;
1738 }
1739 return 1;
1740 }
1741
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1742 static inline void ext4_show_quota_options(struct seq_file *seq,
1743 struct super_block *sb)
1744 {
1745 #if defined(CONFIG_QUOTA)
1746 struct ext4_sb_info *sbi = EXT4_SB(sb);
1747
1748 if (sbi->s_jquota_fmt) {
1749 char *fmtname = "";
1750
1751 switch (sbi->s_jquota_fmt) {
1752 case QFMT_VFS_OLD:
1753 fmtname = "vfsold";
1754 break;
1755 case QFMT_VFS_V0:
1756 fmtname = "vfsv0";
1757 break;
1758 case QFMT_VFS_V1:
1759 fmtname = "vfsv1";
1760 break;
1761 }
1762 seq_printf(seq, ",jqfmt=%s", fmtname);
1763 }
1764
1765 if (sbi->s_qf_names[USRQUOTA])
1766 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1767
1768 if (sbi->s_qf_names[GRPQUOTA])
1769 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1770 #endif
1771 }
1772
token2str(int token)1773 static const char *token2str(int token)
1774 {
1775 const struct match_token *t;
1776
1777 for (t = tokens; t->token != Opt_err; t++)
1778 if (t->token == token && !strchr(t->pattern, '='))
1779 break;
1780 return t->pattern;
1781 }
1782
1783 /*
1784 * Show an option if
1785 * - it's set to a non-default value OR
1786 * - if the per-sb default is different from the global default
1787 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1788 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1789 int nodefs)
1790 {
1791 struct ext4_sb_info *sbi = EXT4_SB(sb);
1792 struct ext4_super_block *es = sbi->s_es;
1793 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1794 const struct mount_opts *m;
1795 char sep = nodefs ? '\n' : ',';
1796
1797 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1798 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1799
1800 if (sbi->s_sb_block != 1)
1801 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1802
1803 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1804 int want_set = m->flags & MOPT_SET;
1805 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1806 (m->flags & MOPT_CLEAR_ERR))
1807 continue;
1808 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1809 continue; /* skip if same as the default */
1810 if ((want_set &&
1811 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1812 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1813 continue; /* select Opt_noFoo vs Opt_Foo */
1814 SEQ_OPTS_PRINT("%s", token2str(m->token));
1815 }
1816
1817 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1818 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1819 SEQ_OPTS_PRINT("resuid=%u",
1820 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1821 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1822 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1823 SEQ_OPTS_PRINT("resgid=%u",
1824 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1825 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1826 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1827 SEQ_OPTS_PUTS("errors=remount-ro");
1828 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1829 SEQ_OPTS_PUTS("errors=continue");
1830 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1831 SEQ_OPTS_PUTS("errors=panic");
1832 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1833 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1834 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1835 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1836 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1837 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1838 if (sb->s_flags & MS_I_VERSION)
1839 SEQ_OPTS_PUTS("i_version");
1840 if (nodefs || sbi->s_stripe)
1841 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1842 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1843 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1844 SEQ_OPTS_PUTS("data=journal");
1845 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1846 SEQ_OPTS_PUTS("data=ordered");
1847 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1848 SEQ_OPTS_PUTS("data=writeback");
1849 }
1850 if (nodefs ||
1851 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1852 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1853 sbi->s_inode_readahead_blks);
1854
1855 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1856 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1857 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1858 if (nodefs || sbi->s_max_dir_size_kb)
1859 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1860
1861 ext4_show_quota_options(seq, sb);
1862 return 0;
1863 }
1864
ext4_show_options(struct seq_file * seq,struct dentry * root)1865 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1866 {
1867 return _ext4_show_options(seq, root->d_sb, 0);
1868 }
1869
options_seq_show(struct seq_file * seq,void * offset)1870 static int options_seq_show(struct seq_file *seq, void *offset)
1871 {
1872 struct super_block *sb = seq->private;
1873 int rc;
1874
1875 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1876 rc = _ext4_show_options(seq, sb, 1);
1877 seq_puts(seq, "\n");
1878 return rc;
1879 }
1880
options_open_fs(struct inode * inode,struct file * file)1881 static int options_open_fs(struct inode *inode, struct file *file)
1882 {
1883 return single_open(file, options_seq_show, PDE_DATA(inode));
1884 }
1885
1886 static const struct file_operations ext4_seq_options_fops = {
1887 .owner = THIS_MODULE,
1888 .open = options_open_fs,
1889 .read = seq_read,
1890 .llseek = seq_lseek,
1891 .release = single_release,
1892 };
1893
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1894 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1895 int read_only)
1896 {
1897 struct ext4_sb_info *sbi = EXT4_SB(sb);
1898 int res = 0;
1899
1900 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1901 ext4_msg(sb, KERN_ERR, "revision level too high, "
1902 "forcing read-only mode");
1903 res = MS_RDONLY;
1904 }
1905 if (read_only)
1906 goto done;
1907 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1908 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1909 "running e2fsck is recommended");
1910 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1911 ext4_msg(sb, KERN_WARNING,
1912 "warning: mounting fs with errors, "
1913 "running e2fsck is recommended");
1914 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1915 le16_to_cpu(es->s_mnt_count) >=
1916 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1917 ext4_msg(sb, KERN_WARNING,
1918 "warning: maximal mount count reached, "
1919 "running e2fsck is recommended");
1920 else if (le32_to_cpu(es->s_checkinterval) &&
1921 (le32_to_cpu(es->s_lastcheck) +
1922 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1923 ext4_msg(sb, KERN_WARNING,
1924 "warning: checktime reached, "
1925 "running e2fsck is recommended");
1926 if (!sbi->s_journal)
1927 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1928 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1929 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1930 le16_add_cpu(&es->s_mnt_count, 1);
1931 es->s_mtime = cpu_to_le32(get_seconds());
1932 ext4_update_dynamic_rev(sb);
1933 if (sbi->s_journal)
1934 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1935
1936 ext4_commit_super(sb, 1);
1937 done:
1938 if (test_opt(sb, DEBUG))
1939 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1940 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1941 sb->s_blocksize,
1942 sbi->s_groups_count,
1943 EXT4_BLOCKS_PER_GROUP(sb),
1944 EXT4_INODES_PER_GROUP(sb),
1945 sbi->s_mount_opt, sbi->s_mount_opt2);
1946
1947 cleancache_init_fs(sb);
1948 return res;
1949 }
1950
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)1951 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1952 {
1953 struct ext4_sb_info *sbi = EXT4_SB(sb);
1954 struct flex_groups *new_groups;
1955 int size;
1956
1957 if (!sbi->s_log_groups_per_flex)
1958 return 0;
1959
1960 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1961 if (size <= sbi->s_flex_groups_allocated)
1962 return 0;
1963
1964 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1965 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1966 if (!new_groups) {
1967 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1968 size / (int) sizeof(struct flex_groups));
1969 return -ENOMEM;
1970 }
1971
1972 if (sbi->s_flex_groups) {
1973 memcpy(new_groups, sbi->s_flex_groups,
1974 (sbi->s_flex_groups_allocated *
1975 sizeof(struct flex_groups)));
1976 kvfree(sbi->s_flex_groups);
1977 }
1978 sbi->s_flex_groups = new_groups;
1979 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1980 return 0;
1981 }
1982
ext4_fill_flex_info(struct super_block * sb)1983 static int ext4_fill_flex_info(struct super_block *sb)
1984 {
1985 struct ext4_sb_info *sbi = EXT4_SB(sb);
1986 struct ext4_group_desc *gdp = NULL;
1987 ext4_group_t flex_group;
1988 int i, err;
1989
1990 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1991 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1992 sbi->s_log_groups_per_flex = 0;
1993 return 1;
1994 }
1995
1996 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1997 if (err)
1998 goto failed;
1999
2000 for (i = 0; i < sbi->s_groups_count; i++) {
2001 gdp = ext4_get_group_desc(sb, i, NULL);
2002
2003 flex_group = ext4_flex_group(sbi, i);
2004 atomic_add(ext4_free_inodes_count(sb, gdp),
2005 &sbi->s_flex_groups[flex_group].free_inodes);
2006 atomic64_add(ext4_free_group_clusters(sb, gdp),
2007 &sbi->s_flex_groups[flex_group].free_clusters);
2008 atomic_add(ext4_used_dirs_count(sb, gdp),
2009 &sbi->s_flex_groups[flex_group].used_dirs);
2010 }
2011
2012 return 1;
2013 failed:
2014 return 0;
2015 }
2016
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)2017 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2018 struct ext4_group_desc *gdp)
2019 {
2020 int offset;
2021 __u16 crc = 0;
2022 __le32 le_group = cpu_to_le32(block_group);
2023
2024 if (ext4_has_metadata_csum(sbi->s_sb)) {
2025 /* Use new metadata_csum algorithm */
2026 __le16 save_csum;
2027 __u32 csum32;
2028
2029 save_csum = gdp->bg_checksum;
2030 gdp->bg_checksum = 0;
2031 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2032 sizeof(le_group));
2033 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2034 sbi->s_desc_size);
2035 gdp->bg_checksum = save_csum;
2036
2037 crc = csum32 & 0xFFFF;
2038 goto out;
2039 }
2040
2041 /* old crc16 code */
2042 if (!(sbi->s_es->s_feature_ro_compat &
2043 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2044 return 0;
2045
2046 offset = offsetof(struct ext4_group_desc, bg_checksum);
2047
2048 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2049 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2050 crc = crc16(crc, (__u8 *)gdp, offset);
2051 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2052 /* for checksum of struct ext4_group_desc do the rest...*/
2053 if ((sbi->s_es->s_feature_incompat &
2054 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2055 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2056 crc = crc16(crc, (__u8 *)gdp + offset,
2057 le16_to_cpu(sbi->s_es->s_desc_size) -
2058 offset);
2059
2060 out:
2061 return cpu_to_le16(crc);
2062 }
2063
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2064 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2065 struct ext4_group_desc *gdp)
2066 {
2067 if (ext4_has_group_desc_csum(sb) &&
2068 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2069 block_group, gdp)))
2070 return 0;
2071
2072 return 1;
2073 }
2074
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2075 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2076 struct ext4_group_desc *gdp)
2077 {
2078 if (!ext4_has_group_desc_csum(sb))
2079 return;
2080 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2081 }
2082
2083 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)2084 static int ext4_check_descriptors(struct super_block *sb,
2085 ext4_group_t *first_not_zeroed)
2086 {
2087 struct ext4_sb_info *sbi = EXT4_SB(sb);
2088 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2089 ext4_fsblk_t last_block;
2090 ext4_fsblk_t block_bitmap;
2091 ext4_fsblk_t inode_bitmap;
2092 ext4_fsblk_t inode_table;
2093 int flexbg_flag = 0;
2094 ext4_group_t i, grp = sbi->s_groups_count;
2095
2096 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2097 flexbg_flag = 1;
2098
2099 ext4_debug("Checking group descriptors");
2100
2101 for (i = 0; i < sbi->s_groups_count; i++) {
2102 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2103
2104 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2105 last_block = ext4_blocks_count(sbi->s_es) - 1;
2106 else
2107 last_block = first_block +
2108 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2109
2110 if ((grp == sbi->s_groups_count) &&
2111 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2112 grp = i;
2113
2114 block_bitmap = ext4_block_bitmap(sb, gdp);
2115 if (block_bitmap < first_block || block_bitmap > last_block) {
2116 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 "Block bitmap for group %u not in group "
2118 "(block %llu)!", i, block_bitmap);
2119 return 0;
2120 }
2121 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2122 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2123 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2124 "Inode bitmap for group %u not in group "
2125 "(block %llu)!", i, inode_bitmap);
2126 return 0;
2127 }
2128 inode_table = ext4_inode_table(sb, gdp);
2129 if (inode_table < first_block ||
2130 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2131 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2132 "Inode table for group %u not in group "
2133 "(block %llu)!", i, inode_table);
2134 return 0;
2135 }
2136 ext4_lock_group(sb, i);
2137 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2138 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2139 "Checksum for group %u failed (%u!=%u)",
2140 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2141 gdp)), le16_to_cpu(gdp->bg_checksum));
2142 if (!(sb->s_flags & MS_RDONLY)) {
2143 ext4_unlock_group(sb, i);
2144 return 0;
2145 }
2146 }
2147 ext4_unlock_group(sb, i);
2148 if (!flexbg_flag)
2149 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2150 }
2151 if (NULL != first_not_zeroed)
2152 *first_not_zeroed = grp;
2153 return 1;
2154 }
2155
2156 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2157 * the superblock) which were deleted from all directories, but held open by
2158 * a process at the time of a crash. We walk the list and try to delete these
2159 * inodes at recovery time (only with a read-write filesystem).
2160 *
2161 * In order to keep the orphan inode chain consistent during traversal (in
2162 * case of crash during recovery), we link each inode into the superblock
2163 * orphan list_head and handle it the same way as an inode deletion during
2164 * normal operation (which journals the operations for us).
2165 *
2166 * We only do an iget() and an iput() on each inode, which is very safe if we
2167 * accidentally point at an in-use or already deleted inode. The worst that
2168 * can happen in this case is that we get a "bit already cleared" message from
2169 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2170 * e2fsck was run on this filesystem, and it must have already done the orphan
2171 * inode cleanup for us, so we can safely abort without any further action.
2172 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2173 static void ext4_orphan_cleanup(struct super_block *sb,
2174 struct ext4_super_block *es)
2175 {
2176 unsigned int s_flags = sb->s_flags;
2177 int nr_orphans = 0, nr_truncates = 0;
2178 #ifdef CONFIG_QUOTA
2179 int i;
2180 #endif
2181 if (!es->s_last_orphan) {
2182 jbd_debug(4, "no orphan inodes to clean up\n");
2183 return;
2184 }
2185
2186 if (bdev_read_only(sb->s_bdev)) {
2187 ext4_msg(sb, KERN_ERR, "write access "
2188 "unavailable, skipping orphan cleanup");
2189 return;
2190 }
2191
2192 /* Check if feature set would not allow a r/w mount */
2193 if (!ext4_feature_set_ok(sb, 0)) {
2194 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2195 "unknown ROCOMPAT features");
2196 return;
2197 }
2198
2199 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2200 /* don't clear list on RO mount w/ errors */
2201 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2202 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2203 "clearing orphan list.\n");
2204 es->s_last_orphan = 0;
2205 }
2206 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2207 return;
2208 }
2209
2210 if (s_flags & MS_RDONLY) {
2211 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2212 sb->s_flags &= ~MS_RDONLY;
2213 }
2214 #ifdef CONFIG_QUOTA
2215 /* Needed for iput() to work correctly and not trash data */
2216 sb->s_flags |= MS_ACTIVE;
2217 /* Turn on quotas so that they are updated correctly */
2218 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2219 if (EXT4_SB(sb)->s_qf_names[i]) {
2220 int ret = ext4_quota_on_mount(sb, i);
2221 if (ret < 0)
2222 ext4_msg(sb, KERN_ERR,
2223 "Cannot turn on journaled "
2224 "quota: error %d", ret);
2225 }
2226 }
2227 #endif
2228
2229 while (es->s_last_orphan) {
2230 struct inode *inode;
2231
2232 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2233 if (IS_ERR(inode)) {
2234 es->s_last_orphan = 0;
2235 break;
2236 }
2237
2238 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2239 dquot_initialize(inode);
2240 if (inode->i_nlink) {
2241 if (test_opt(sb, DEBUG))
2242 ext4_msg(sb, KERN_DEBUG,
2243 "%s: truncating inode %lu to %lld bytes",
2244 __func__, inode->i_ino, inode->i_size);
2245 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2246 inode->i_ino, inode->i_size);
2247 mutex_lock(&inode->i_mutex);
2248 truncate_inode_pages(inode->i_mapping, inode->i_size);
2249 ext4_truncate(inode);
2250 mutex_unlock(&inode->i_mutex);
2251 nr_truncates++;
2252 } else {
2253 if (test_opt(sb, DEBUG))
2254 ext4_msg(sb, KERN_DEBUG,
2255 "%s: deleting unreferenced inode %lu",
2256 __func__, inode->i_ino);
2257 jbd_debug(2, "deleting unreferenced inode %lu\n",
2258 inode->i_ino);
2259 nr_orphans++;
2260 }
2261 iput(inode); /* The delete magic happens here! */
2262 }
2263
2264 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2265
2266 if (nr_orphans)
2267 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2268 PLURAL(nr_orphans));
2269 if (nr_truncates)
2270 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2271 PLURAL(nr_truncates));
2272 #ifdef CONFIG_QUOTA
2273 /* Turn quotas off */
2274 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2275 if (sb_dqopt(sb)->files[i])
2276 dquot_quota_off(sb, i);
2277 }
2278 #endif
2279 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2280 }
2281
2282 /*
2283 * Maximal extent format file size.
2284 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2285 * extent format containers, within a sector_t, and within i_blocks
2286 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2287 * so that won't be a limiting factor.
2288 *
2289 * However there is other limiting factor. We do store extents in the form
2290 * of starting block and length, hence the resulting length of the extent
2291 * covering maximum file size must fit into on-disk format containers as
2292 * well. Given that length is always by 1 unit bigger than max unit (because
2293 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2294 *
2295 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2296 */
ext4_max_size(int blkbits,int has_huge_files)2297 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2298 {
2299 loff_t res;
2300 loff_t upper_limit = MAX_LFS_FILESIZE;
2301
2302 /* small i_blocks in vfs inode? */
2303 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2304 /*
2305 * CONFIG_LBDAF is not enabled implies the inode
2306 * i_block represent total blocks in 512 bytes
2307 * 32 == size of vfs inode i_blocks * 8
2308 */
2309 upper_limit = (1LL << 32) - 1;
2310
2311 /* total blocks in file system block size */
2312 upper_limit >>= (blkbits - 9);
2313 upper_limit <<= blkbits;
2314 }
2315
2316 /*
2317 * 32-bit extent-start container, ee_block. We lower the maxbytes
2318 * by one fs block, so ee_len can cover the extent of maximum file
2319 * size
2320 */
2321 res = (1LL << 32) - 1;
2322 res <<= blkbits;
2323
2324 /* Sanity check against vm- & vfs- imposed limits */
2325 if (res > upper_limit)
2326 res = upper_limit;
2327
2328 return res;
2329 }
2330
2331 /*
2332 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2333 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2334 * We need to be 1 filesystem block less than the 2^48 sector limit.
2335 */
ext4_max_bitmap_size(int bits,int has_huge_files)2336 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2337 {
2338 loff_t res = EXT4_NDIR_BLOCKS;
2339 int meta_blocks;
2340 loff_t upper_limit;
2341 /* This is calculated to be the largest file size for a dense, block
2342 * mapped file such that the file's total number of 512-byte sectors,
2343 * including data and all indirect blocks, does not exceed (2^48 - 1).
2344 *
2345 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2346 * number of 512-byte sectors of the file.
2347 */
2348
2349 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2350 /*
2351 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2352 * the inode i_block field represents total file blocks in
2353 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2354 */
2355 upper_limit = (1LL << 32) - 1;
2356
2357 /* total blocks in file system block size */
2358 upper_limit >>= (bits - 9);
2359
2360 } else {
2361 /*
2362 * We use 48 bit ext4_inode i_blocks
2363 * With EXT4_HUGE_FILE_FL set the i_blocks
2364 * represent total number of blocks in
2365 * file system block size
2366 */
2367 upper_limit = (1LL << 48) - 1;
2368
2369 }
2370
2371 /* indirect blocks */
2372 meta_blocks = 1;
2373 /* double indirect blocks */
2374 meta_blocks += 1 + (1LL << (bits-2));
2375 /* tripple indirect blocks */
2376 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2377
2378 upper_limit -= meta_blocks;
2379 upper_limit <<= bits;
2380
2381 res += 1LL << (bits-2);
2382 res += 1LL << (2*(bits-2));
2383 res += 1LL << (3*(bits-2));
2384 res <<= bits;
2385 if (res > upper_limit)
2386 res = upper_limit;
2387
2388 if (res > MAX_LFS_FILESIZE)
2389 res = MAX_LFS_FILESIZE;
2390
2391 return res;
2392 }
2393
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2394 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2395 ext4_fsblk_t logical_sb_block, int nr)
2396 {
2397 struct ext4_sb_info *sbi = EXT4_SB(sb);
2398 ext4_group_t bg, first_meta_bg;
2399 int has_super = 0;
2400
2401 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2402
2403 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2404 nr < first_meta_bg)
2405 return logical_sb_block + nr + 1;
2406 bg = sbi->s_desc_per_block * nr;
2407 if (ext4_bg_has_super(sb, bg))
2408 has_super = 1;
2409
2410 /*
2411 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2412 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2413 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2414 * compensate.
2415 */
2416 if (sb->s_blocksize == 1024 && nr == 0 &&
2417 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2418 has_super++;
2419
2420 return (has_super + ext4_group_first_block_no(sb, bg));
2421 }
2422
2423 /**
2424 * ext4_get_stripe_size: Get the stripe size.
2425 * @sbi: In memory super block info
2426 *
2427 * If we have specified it via mount option, then
2428 * use the mount option value. If the value specified at mount time is
2429 * greater than the blocks per group use the super block value.
2430 * If the super block value is greater than blocks per group return 0.
2431 * Allocator needs it be less than blocks per group.
2432 *
2433 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2434 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2435 {
2436 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2437 unsigned long stripe_width =
2438 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2439 int ret;
2440
2441 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2442 ret = sbi->s_stripe;
2443 else if (stripe_width <= sbi->s_blocks_per_group)
2444 ret = stripe_width;
2445 else if (stride <= sbi->s_blocks_per_group)
2446 ret = stride;
2447 else
2448 ret = 0;
2449
2450 /*
2451 * If the stripe width is 1, this makes no sense and
2452 * we set it to 0 to turn off stripe handling code.
2453 */
2454 if (ret <= 1)
2455 ret = 0;
2456
2457 return ret;
2458 }
2459
2460 /* sysfs supprt */
2461
2462 struct ext4_attr {
2463 struct attribute attr;
2464 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2465 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2466 const char *, size_t);
2467 union {
2468 int offset;
2469 int deprecated_val;
2470 } u;
2471 };
2472
parse_strtoull(const char * buf,unsigned long long max,unsigned long long * value)2473 static int parse_strtoull(const char *buf,
2474 unsigned long long max, unsigned long long *value)
2475 {
2476 int ret;
2477
2478 ret = kstrtoull(skip_spaces(buf), 0, value);
2479 if (!ret && *value > max)
2480 ret = -EINVAL;
2481 return ret;
2482 }
2483
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2484 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2485 struct ext4_sb_info *sbi,
2486 char *buf)
2487 {
2488 return snprintf(buf, PAGE_SIZE, "%llu\n",
2489 (s64) EXT4_C2B(sbi,
2490 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2491 }
2492
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2493 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2494 struct ext4_sb_info *sbi, char *buf)
2495 {
2496 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2497
2498 if (!sb->s_bdev->bd_part)
2499 return snprintf(buf, PAGE_SIZE, "0\n");
2500 return snprintf(buf, PAGE_SIZE, "%lu\n",
2501 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2502 sbi->s_sectors_written_start) >> 1);
2503 }
2504
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2505 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2506 struct ext4_sb_info *sbi, char *buf)
2507 {
2508 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2509
2510 if (!sb->s_bdev->bd_part)
2511 return snprintf(buf, PAGE_SIZE, "0\n");
2512 return snprintf(buf, PAGE_SIZE, "%llu\n",
2513 (unsigned long long)(sbi->s_kbytes_written +
2514 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2515 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2516 }
2517
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2518 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2519 struct ext4_sb_info *sbi,
2520 const char *buf, size_t count)
2521 {
2522 unsigned long t;
2523 int ret;
2524
2525 ret = kstrtoul(skip_spaces(buf), 0, &t);
2526 if (ret)
2527 return ret;
2528
2529 if (t && (!is_power_of_2(t) || t > 0x40000000))
2530 return -EINVAL;
2531
2532 sbi->s_inode_readahead_blks = t;
2533 return count;
2534 }
2535
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2536 static ssize_t sbi_ui_show(struct ext4_attr *a,
2537 struct ext4_sb_info *sbi, char *buf)
2538 {
2539 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2540
2541 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2542 }
2543
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2544 static ssize_t sbi_ui_store(struct ext4_attr *a,
2545 struct ext4_sb_info *sbi,
2546 const char *buf, size_t count)
2547 {
2548 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2549 unsigned long t;
2550 int ret;
2551
2552 ret = kstrtoul(skip_spaces(buf), 0, &t);
2553 if (ret)
2554 return ret;
2555 *ui = t;
2556 return count;
2557 }
2558
es_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2559 static ssize_t es_ui_show(struct ext4_attr *a,
2560 struct ext4_sb_info *sbi, char *buf)
2561 {
2562
2563 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2564 a->u.offset);
2565
2566 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2567 }
2568
reserved_clusters_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2569 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2570 struct ext4_sb_info *sbi, char *buf)
2571 {
2572 return snprintf(buf, PAGE_SIZE, "%llu\n",
2573 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2574 }
2575
reserved_clusters_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2576 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2577 struct ext4_sb_info *sbi,
2578 const char *buf, size_t count)
2579 {
2580 unsigned long long val;
2581 int ret;
2582
2583 if (parse_strtoull(buf, -1ULL, &val))
2584 return -EINVAL;
2585 ret = ext4_reserve_clusters(sbi, val);
2586
2587 return ret ? ret : count;
2588 }
2589
trigger_test_error(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2590 static ssize_t trigger_test_error(struct ext4_attr *a,
2591 struct ext4_sb_info *sbi,
2592 const char *buf, size_t count)
2593 {
2594 int len = count;
2595
2596 if (!capable(CAP_SYS_ADMIN))
2597 return -EPERM;
2598
2599 if (len && buf[len-1] == '\n')
2600 len--;
2601
2602 if (len)
2603 ext4_error(sbi->s_sb, "%.*s", len, buf);
2604 return count;
2605 }
2606
sbi_deprecated_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2607 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2608 struct ext4_sb_info *sbi, char *buf)
2609 {
2610 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2611 }
2612
2613 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2614 static struct ext4_attr ext4_attr_##_name = { \
2615 .attr = {.name = __stringify(_name), .mode = _mode }, \
2616 .show = _show, \
2617 .store = _store, \
2618 .u = { \
2619 .offset = offsetof(struct ext4_sb_info, _elname),\
2620 }, \
2621 }
2622
2623 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2624 static struct ext4_attr ext4_attr_##_name = { \
2625 .attr = {.name = __stringify(_name), .mode = _mode }, \
2626 .show = _show, \
2627 .store = _store, \
2628 .u = { \
2629 .offset = offsetof(struct ext4_super_block, _elname), \
2630 }, \
2631 }
2632
2633 #define EXT4_ATTR(name, mode, show, store) \
2634 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2635
2636 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2637 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2638 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2639
2640 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2641 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2642 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2643 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2644
2645 #define ATTR_LIST(name) &ext4_attr_##name.attr
2646 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2647 static struct ext4_attr ext4_attr_##_name = { \
2648 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2649 .show = sbi_deprecated_show, \
2650 .u = { \
2651 .deprecated_val = _val, \
2652 }, \
2653 }
2654
2655 EXT4_RO_ATTR(delayed_allocation_blocks);
2656 EXT4_RO_ATTR(session_write_kbytes);
2657 EXT4_RO_ATTR(lifetime_write_kbytes);
2658 EXT4_RW_ATTR(reserved_clusters);
2659 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2660 inode_readahead_blks_store, s_inode_readahead_blks);
2661 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2662 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2663 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2664 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2665 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2666 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2667 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2668 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2669 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2670 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2671 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2672 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2673 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2674 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2675 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2676 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2677 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2678 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2679 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2680
2681 static struct attribute *ext4_attrs[] = {
2682 ATTR_LIST(delayed_allocation_blocks),
2683 ATTR_LIST(session_write_kbytes),
2684 ATTR_LIST(lifetime_write_kbytes),
2685 ATTR_LIST(reserved_clusters),
2686 ATTR_LIST(inode_readahead_blks),
2687 ATTR_LIST(inode_goal),
2688 ATTR_LIST(mb_stats),
2689 ATTR_LIST(mb_max_to_scan),
2690 ATTR_LIST(mb_min_to_scan),
2691 ATTR_LIST(mb_order2_req),
2692 ATTR_LIST(mb_stream_req),
2693 ATTR_LIST(mb_group_prealloc),
2694 ATTR_LIST(max_writeback_mb_bump),
2695 ATTR_LIST(extent_max_zeroout_kb),
2696 ATTR_LIST(trigger_fs_error),
2697 ATTR_LIST(err_ratelimit_interval_ms),
2698 ATTR_LIST(err_ratelimit_burst),
2699 ATTR_LIST(warning_ratelimit_interval_ms),
2700 ATTR_LIST(warning_ratelimit_burst),
2701 ATTR_LIST(msg_ratelimit_interval_ms),
2702 ATTR_LIST(msg_ratelimit_burst),
2703 ATTR_LIST(errors_count),
2704 ATTR_LIST(first_error_time),
2705 ATTR_LIST(last_error_time),
2706 NULL,
2707 };
2708
2709 /* Features this copy of ext4 supports */
2710 EXT4_INFO_ATTR(lazy_itable_init);
2711 EXT4_INFO_ATTR(batched_discard);
2712 EXT4_INFO_ATTR(meta_bg_resize);
2713 EXT4_INFO_ATTR(encryption);
2714
2715 static struct attribute *ext4_feat_attrs[] = {
2716 ATTR_LIST(lazy_itable_init),
2717 ATTR_LIST(batched_discard),
2718 ATTR_LIST(meta_bg_resize),
2719 ATTR_LIST(encryption),
2720 NULL,
2721 };
2722
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2723 static ssize_t ext4_attr_show(struct kobject *kobj,
2724 struct attribute *attr, char *buf)
2725 {
2726 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2727 s_kobj);
2728 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2729
2730 return a->show ? a->show(a, sbi, buf) : 0;
2731 }
2732
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2733 static ssize_t ext4_attr_store(struct kobject *kobj,
2734 struct attribute *attr,
2735 const char *buf, size_t len)
2736 {
2737 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2738 s_kobj);
2739 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2740
2741 return a->store ? a->store(a, sbi, buf, len) : 0;
2742 }
2743
ext4_sb_release(struct kobject * kobj)2744 static void ext4_sb_release(struct kobject *kobj)
2745 {
2746 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2747 s_kobj);
2748 complete(&sbi->s_kobj_unregister);
2749 }
2750
2751 static const struct sysfs_ops ext4_attr_ops = {
2752 .show = ext4_attr_show,
2753 .store = ext4_attr_store,
2754 };
2755
2756 static struct kobj_type ext4_ktype = {
2757 .default_attrs = ext4_attrs,
2758 .sysfs_ops = &ext4_attr_ops,
2759 .release = ext4_sb_release,
2760 };
2761
ext4_feat_release(struct kobject * kobj)2762 static void ext4_feat_release(struct kobject *kobj)
2763 {
2764 complete(&ext4_feat->f_kobj_unregister);
2765 }
2766
ext4_feat_show(struct kobject * kobj,struct attribute * attr,char * buf)2767 static ssize_t ext4_feat_show(struct kobject *kobj,
2768 struct attribute *attr, char *buf)
2769 {
2770 return snprintf(buf, PAGE_SIZE, "supported\n");
2771 }
2772
2773 /*
2774 * We can not use ext4_attr_show/store because it relies on the kobject
2775 * being embedded in the ext4_sb_info structure which is definitely not
2776 * true in this case.
2777 */
2778 static const struct sysfs_ops ext4_feat_ops = {
2779 .show = ext4_feat_show,
2780 .store = NULL,
2781 };
2782
2783 static struct kobj_type ext4_feat_ktype = {
2784 .default_attrs = ext4_feat_attrs,
2785 .sysfs_ops = &ext4_feat_ops,
2786 .release = ext4_feat_release,
2787 };
2788
2789 /*
2790 * Check whether this filesystem can be mounted based on
2791 * the features present and the RDONLY/RDWR mount requested.
2792 * Returns 1 if this filesystem can be mounted as requested,
2793 * 0 if it cannot be.
2794 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2795 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2796 {
2797 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2798 ext4_msg(sb, KERN_ERR,
2799 "Couldn't mount because of "
2800 "unsupported optional features (%x)",
2801 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2802 ~EXT4_FEATURE_INCOMPAT_SUPP));
2803 return 0;
2804 }
2805
2806 if (readonly)
2807 return 1;
2808
2809 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2810 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2811 sb->s_flags |= MS_RDONLY;
2812 return 1;
2813 }
2814
2815 /* Check that feature set is OK for a read-write mount */
2816 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2817 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2818 "unsupported optional features (%x)",
2819 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2820 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2821 return 0;
2822 }
2823 /*
2824 * Large file size enabled file system can only be mounted
2825 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2826 */
2827 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2828 if (sizeof(blkcnt_t) < sizeof(u64)) {
2829 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2830 "cannot be mounted RDWR without "
2831 "CONFIG_LBDAF");
2832 return 0;
2833 }
2834 }
2835 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2836 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2837 ext4_msg(sb, KERN_ERR,
2838 "Can't support bigalloc feature without "
2839 "extents feature\n");
2840 return 0;
2841 }
2842
2843 #ifndef CONFIG_QUOTA
2844 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2845 !readonly) {
2846 ext4_msg(sb, KERN_ERR,
2847 "Filesystem with quota feature cannot be mounted RDWR "
2848 "without CONFIG_QUOTA");
2849 return 0;
2850 }
2851 #endif /* CONFIG_QUOTA */
2852 return 1;
2853 }
2854
2855 /*
2856 * This function is called once a day if we have errors logged
2857 * on the file system
2858 */
print_daily_error_info(unsigned long arg)2859 static void print_daily_error_info(unsigned long arg)
2860 {
2861 struct super_block *sb = (struct super_block *) arg;
2862 struct ext4_sb_info *sbi;
2863 struct ext4_super_block *es;
2864
2865 sbi = EXT4_SB(sb);
2866 es = sbi->s_es;
2867
2868 if (es->s_error_count)
2869 /* fsck newer than v1.41.13 is needed to clean this condition. */
2870 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2871 le32_to_cpu(es->s_error_count));
2872 if (es->s_first_error_time) {
2873 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2874 sb->s_id, le32_to_cpu(es->s_first_error_time),
2875 (int) sizeof(es->s_first_error_func),
2876 es->s_first_error_func,
2877 le32_to_cpu(es->s_first_error_line));
2878 if (es->s_first_error_ino)
2879 printk(": inode %u",
2880 le32_to_cpu(es->s_first_error_ino));
2881 if (es->s_first_error_block)
2882 printk(": block %llu", (unsigned long long)
2883 le64_to_cpu(es->s_first_error_block));
2884 printk("\n");
2885 }
2886 if (es->s_last_error_time) {
2887 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2888 sb->s_id, le32_to_cpu(es->s_last_error_time),
2889 (int) sizeof(es->s_last_error_func),
2890 es->s_last_error_func,
2891 le32_to_cpu(es->s_last_error_line));
2892 if (es->s_last_error_ino)
2893 printk(": inode %u",
2894 le32_to_cpu(es->s_last_error_ino));
2895 if (es->s_last_error_block)
2896 printk(": block %llu", (unsigned long long)
2897 le64_to_cpu(es->s_last_error_block));
2898 printk("\n");
2899 }
2900 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2901 }
2902
2903 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2904 static int ext4_run_li_request(struct ext4_li_request *elr)
2905 {
2906 struct ext4_group_desc *gdp = NULL;
2907 ext4_group_t group, ngroups;
2908 struct super_block *sb;
2909 unsigned long timeout = 0;
2910 int ret = 0;
2911
2912 sb = elr->lr_super;
2913 ngroups = EXT4_SB(sb)->s_groups_count;
2914
2915 sb_start_write(sb);
2916 for (group = elr->lr_next_group; group < ngroups; group++) {
2917 gdp = ext4_get_group_desc(sb, group, NULL);
2918 if (!gdp) {
2919 ret = 1;
2920 break;
2921 }
2922
2923 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2924 break;
2925 }
2926
2927 if (group >= ngroups)
2928 ret = 1;
2929
2930 if (!ret) {
2931 timeout = jiffies;
2932 ret = ext4_init_inode_table(sb, group,
2933 elr->lr_timeout ? 0 : 1);
2934 if (elr->lr_timeout == 0) {
2935 timeout = (jiffies - timeout) *
2936 elr->lr_sbi->s_li_wait_mult;
2937 elr->lr_timeout = timeout;
2938 }
2939 elr->lr_next_sched = jiffies + elr->lr_timeout;
2940 elr->lr_next_group = group + 1;
2941 }
2942 sb_end_write(sb);
2943
2944 return ret;
2945 }
2946
2947 /*
2948 * Remove lr_request from the list_request and free the
2949 * request structure. Should be called with li_list_mtx held
2950 */
ext4_remove_li_request(struct ext4_li_request * elr)2951 static void ext4_remove_li_request(struct ext4_li_request *elr)
2952 {
2953 struct ext4_sb_info *sbi;
2954
2955 if (!elr)
2956 return;
2957
2958 sbi = elr->lr_sbi;
2959
2960 list_del(&elr->lr_request);
2961 sbi->s_li_request = NULL;
2962 kfree(elr);
2963 }
2964
ext4_unregister_li_request(struct super_block * sb)2965 static void ext4_unregister_li_request(struct super_block *sb)
2966 {
2967 mutex_lock(&ext4_li_mtx);
2968 if (!ext4_li_info) {
2969 mutex_unlock(&ext4_li_mtx);
2970 return;
2971 }
2972
2973 mutex_lock(&ext4_li_info->li_list_mtx);
2974 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2975 mutex_unlock(&ext4_li_info->li_list_mtx);
2976 mutex_unlock(&ext4_li_mtx);
2977 }
2978
2979 static struct task_struct *ext4_lazyinit_task;
2980
2981 /*
2982 * This is the function where ext4lazyinit thread lives. It walks
2983 * through the request list searching for next scheduled filesystem.
2984 * When such a fs is found, run the lazy initialization request
2985 * (ext4_rn_li_request) and keep track of the time spend in this
2986 * function. Based on that time we compute next schedule time of
2987 * the request. When walking through the list is complete, compute
2988 * next waking time and put itself into sleep.
2989 */
ext4_lazyinit_thread(void * arg)2990 static int ext4_lazyinit_thread(void *arg)
2991 {
2992 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2993 struct list_head *pos, *n;
2994 struct ext4_li_request *elr;
2995 unsigned long next_wakeup, cur;
2996
2997 BUG_ON(NULL == eli);
2998
2999 cont_thread:
3000 while (true) {
3001 next_wakeup = MAX_JIFFY_OFFSET;
3002
3003 mutex_lock(&eli->li_list_mtx);
3004 if (list_empty(&eli->li_request_list)) {
3005 mutex_unlock(&eli->li_list_mtx);
3006 goto exit_thread;
3007 }
3008
3009 list_for_each_safe(pos, n, &eli->li_request_list) {
3010 elr = list_entry(pos, struct ext4_li_request,
3011 lr_request);
3012
3013 if (time_after_eq(jiffies, elr->lr_next_sched)) {
3014 if (ext4_run_li_request(elr) != 0) {
3015 /* error, remove the lazy_init job */
3016 ext4_remove_li_request(elr);
3017 continue;
3018 }
3019 }
3020
3021 if (time_before(elr->lr_next_sched, next_wakeup))
3022 next_wakeup = elr->lr_next_sched;
3023 }
3024 mutex_unlock(&eli->li_list_mtx);
3025
3026 try_to_freeze();
3027
3028 cur = jiffies;
3029 if ((time_after_eq(cur, next_wakeup)) ||
3030 (MAX_JIFFY_OFFSET == next_wakeup)) {
3031 cond_resched();
3032 continue;
3033 }
3034
3035 schedule_timeout_interruptible(next_wakeup - cur);
3036
3037 if (kthread_should_stop()) {
3038 ext4_clear_request_list();
3039 goto exit_thread;
3040 }
3041 }
3042
3043 exit_thread:
3044 /*
3045 * It looks like the request list is empty, but we need
3046 * to check it under the li_list_mtx lock, to prevent any
3047 * additions into it, and of course we should lock ext4_li_mtx
3048 * to atomically free the list and ext4_li_info, because at
3049 * this point another ext4 filesystem could be registering
3050 * new one.
3051 */
3052 mutex_lock(&ext4_li_mtx);
3053 mutex_lock(&eli->li_list_mtx);
3054 if (!list_empty(&eli->li_request_list)) {
3055 mutex_unlock(&eli->li_list_mtx);
3056 mutex_unlock(&ext4_li_mtx);
3057 goto cont_thread;
3058 }
3059 mutex_unlock(&eli->li_list_mtx);
3060 kfree(ext4_li_info);
3061 ext4_li_info = NULL;
3062 mutex_unlock(&ext4_li_mtx);
3063
3064 return 0;
3065 }
3066
ext4_clear_request_list(void)3067 static void ext4_clear_request_list(void)
3068 {
3069 struct list_head *pos, *n;
3070 struct ext4_li_request *elr;
3071
3072 mutex_lock(&ext4_li_info->li_list_mtx);
3073 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3074 elr = list_entry(pos, struct ext4_li_request,
3075 lr_request);
3076 ext4_remove_li_request(elr);
3077 }
3078 mutex_unlock(&ext4_li_info->li_list_mtx);
3079 }
3080
ext4_run_lazyinit_thread(void)3081 static int ext4_run_lazyinit_thread(void)
3082 {
3083 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3084 ext4_li_info, "ext4lazyinit");
3085 if (IS_ERR(ext4_lazyinit_task)) {
3086 int err = PTR_ERR(ext4_lazyinit_task);
3087 ext4_clear_request_list();
3088 kfree(ext4_li_info);
3089 ext4_li_info = NULL;
3090 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3091 "initialization thread\n",
3092 err);
3093 return err;
3094 }
3095 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3096 return 0;
3097 }
3098
3099 /*
3100 * Check whether it make sense to run itable init. thread or not.
3101 * If there is at least one uninitialized inode table, return
3102 * corresponding group number, else the loop goes through all
3103 * groups and return total number of groups.
3104 */
ext4_has_uninit_itable(struct super_block * sb)3105 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3106 {
3107 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3108 struct ext4_group_desc *gdp = NULL;
3109
3110 for (group = 0; group < ngroups; group++) {
3111 gdp = ext4_get_group_desc(sb, group, NULL);
3112 if (!gdp)
3113 continue;
3114
3115 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3116 break;
3117 }
3118
3119 return group;
3120 }
3121
ext4_li_info_new(void)3122 static int ext4_li_info_new(void)
3123 {
3124 struct ext4_lazy_init *eli = NULL;
3125
3126 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3127 if (!eli)
3128 return -ENOMEM;
3129
3130 INIT_LIST_HEAD(&eli->li_request_list);
3131 mutex_init(&eli->li_list_mtx);
3132
3133 eli->li_state |= EXT4_LAZYINIT_QUIT;
3134
3135 ext4_li_info = eli;
3136
3137 return 0;
3138 }
3139
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3140 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3141 ext4_group_t start)
3142 {
3143 struct ext4_sb_info *sbi = EXT4_SB(sb);
3144 struct ext4_li_request *elr;
3145
3146 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3147 if (!elr)
3148 return NULL;
3149
3150 elr->lr_super = sb;
3151 elr->lr_sbi = sbi;
3152 elr->lr_next_group = start;
3153
3154 /*
3155 * Randomize first schedule time of the request to
3156 * spread the inode table initialization requests
3157 * better.
3158 */
3159 elr->lr_next_sched = jiffies + (prandom_u32() %
3160 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3161 return elr;
3162 }
3163
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3164 int ext4_register_li_request(struct super_block *sb,
3165 ext4_group_t first_not_zeroed)
3166 {
3167 struct ext4_sb_info *sbi = EXT4_SB(sb);
3168 struct ext4_li_request *elr = NULL;
3169 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3170 int ret = 0;
3171
3172 mutex_lock(&ext4_li_mtx);
3173 if (sbi->s_li_request != NULL) {
3174 /*
3175 * Reset timeout so it can be computed again, because
3176 * s_li_wait_mult might have changed.
3177 */
3178 sbi->s_li_request->lr_timeout = 0;
3179 goto out;
3180 }
3181
3182 if (first_not_zeroed == ngroups ||
3183 (sb->s_flags & MS_RDONLY) ||
3184 !test_opt(sb, INIT_INODE_TABLE))
3185 goto out;
3186
3187 elr = ext4_li_request_new(sb, first_not_zeroed);
3188 if (!elr) {
3189 ret = -ENOMEM;
3190 goto out;
3191 }
3192
3193 if (NULL == ext4_li_info) {
3194 ret = ext4_li_info_new();
3195 if (ret)
3196 goto out;
3197 }
3198
3199 mutex_lock(&ext4_li_info->li_list_mtx);
3200 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3201 mutex_unlock(&ext4_li_info->li_list_mtx);
3202
3203 sbi->s_li_request = elr;
3204 /*
3205 * set elr to NULL here since it has been inserted to
3206 * the request_list and the removal and free of it is
3207 * handled by ext4_clear_request_list from now on.
3208 */
3209 elr = NULL;
3210
3211 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3212 ret = ext4_run_lazyinit_thread();
3213 if (ret)
3214 goto out;
3215 }
3216 out:
3217 mutex_unlock(&ext4_li_mtx);
3218 if (ret)
3219 kfree(elr);
3220 return ret;
3221 }
3222
3223 /*
3224 * We do not need to lock anything since this is called on
3225 * module unload.
3226 */
ext4_destroy_lazyinit_thread(void)3227 static void ext4_destroy_lazyinit_thread(void)
3228 {
3229 /*
3230 * If thread exited earlier
3231 * there's nothing to be done.
3232 */
3233 if (!ext4_li_info || !ext4_lazyinit_task)
3234 return;
3235
3236 kthread_stop(ext4_lazyinit_task);
3237 }
3238
set_journal_csum_feature_set(struct super_block * sb)3239 static int set_journal_csum_feature_set(struct super_block *sb)
3240 {
3241 int ret = 1;
3242 int compat, incompat;
3243 struct ext4_sb_info *sbi = EXT4_SB(sb);
3244
3245 if (ext4_has_metadata_csum(sb)) {
3246 /* journal checksum v3 */
3247 compat = 0;
3248 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3249 } else {
3250 /* journal checksum v1 */
3251 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3252 incompat = 0;
3253 }
3254
3255 jbd2_journal_clear_features(sbi->s_journal,
3256 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3257 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3258 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3259 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3260 ret = jbd2_journal_set_features(sbi->s_journal,
3261 compat, 0,
3262 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3263 incompat);
3264 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3265 ret = jbd2_journal_set_features(sbi->s_journal,
3266 compat, 0,
3267 incompat);
3268 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3269 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3270 } else {
3271 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3272 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3273 }
3274
3275 return ret;
3276 }
3277
3278 /*
3279 * Note: calculating the overhead so we can be compatible with
3280 * historical BSD practice is quite difficult in the face of
3281 * clusters/bigalloc. This is because multiple metadata blocks from
3282 * different block group can end up in the same allocation cluster.
3283 * Calculating the exact overhead in the face of clustered allocation
3284 * requires either O(all block bitmaps) in memory or O(number of block
3285 * groups**2) in time. We will still calculate the superblock for
3286 * older file systems --- and if we come across with a bigalloc file
3287 * system with zero in s_overhead_clusters the estimate will be close to
3288 * correct especially for very large cluster sizes --- but for newer
3289 * file systems, it's better to calculate this figure once at mkfs
3290 * time, and store it in the superblock. If the superblock value is
3291 * present (even for non-bigalloc file systems), we will use it.
3292 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3293 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3294 char *buf)
3295 {
3296 struct ext4_sb_info *sbi = EXT4_SB(sb);
3297 struct ext4_group_desc *gdp;
3298 ext4_fsblk_t first_block, last_block, b;
3299 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3300 int s, j, count = 0;
3301
3302 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3303 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3304 sbi->s_itb_per_group + 2);
3305
3306 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3307 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3308 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3309 for (i = 0; i < ngroups; i++) {
3310 gdp = ext4_get_group_desc(sb, i, NULL);
3311 b = ext4_block_bitmap(sb, gdp);
3312 if (b >= first_block && b <= last_block) {
3313 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3314 count++;
3315 }
3316 b = ext4_inode_bitmap(sb, gdp);
3317 if (b >= first_block && b <= last_block) {
3318 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3319 count++;
3320 }
3321 b = ext4_inode_table(sb, gdp);
3322 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3323 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3324 int c = EXT4_B2C(sbi, b - first_block);
3325 ext4_set_bit(c, buf);
3326 count++;
3327 }
3328 if (i != grp)
3329 continue;
3330 s = 0;
3331 if (ext4_bg_has_super(sb, grp)) {
3332 ext4_set_bit(s++, buf);
3333 count++;
3334 }
3335 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3336 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3337 count++;
3338 }
3339 }
3340 if (!count)
3341 return 0;
3342 return EXT4_CLUSTERS_PER_GROUP(sb) -
3343 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3344 }
3345
3346 /*
3347 * Compute the overhead and stash it in sbi->s_overhead
3348 */
ext4_calculate_overhead(struct super_block * sb)3349 int ext4_calculate_overhead(struct super_block *sb)
3350 {
3351 struct ext4_sb_info *sbi = EXT4_SB(sb);
3352 struct ext4_super_block *es = sbi->s_es;
3353 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3354 ext4_fsblk_t overhead = 0;
3355 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3356
3357 if (!buf)
3358 return -ENOMEM;
3359
3360 /*
3361 * Compute the overhead (FS structures). This is constant
3362 * for a given filesystem unless the number of block groups
3363 * changes so we cache the previous value until it does.
3364 */
3365
3366 /*
3367 * All of the blocks before first_data_block are overhead
3368 */
3369 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3370
3371 /*
3372 * Add the overhead found in each block group
3373 */
3374 for (i = 0; i < ngroups; i++) {
3375 int blks;
3376
3377 blks = count_overhead(sb, i, buf);
3378 overhead += blks;
3379 if (blks)
3380 memset(buf, 0, PAGE_SIZE);
3381 cond_resched();
3382 }
3383 /* Add the internal journal blocks as well */
3384 if (sbi->s_journal && !sbi->journal_bdev)
3385 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3386
3387 sbi->s_overhead = overhead;
3388 smp_wmb();
3389 free_page((unsigned long) buf);
3390 return 0;
3391 }
3392
3393
ext4_calculate_resv_clusters(struct super_block * sb)3394 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3395 {
3396 ext4_fsblk_t resv_clusters;
3397
3398 /*
3399 * There's no need to reserve anything when we aren't using extents.
3400 * The space estimates are exact, there are no unwritten extents,
3401 * hole punching doesn't need new metadata... This is needed especially
3402 * to keep ext2/3 backward compatibility.
3403 */
3404 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3405 return 0;
3406 /*
3407 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3408 * This should cover the situations where we can not afford to run
3409 * out of space like for example punch hole, or converting
3410 * unwritten extents in delalloc path. In most cases such
3411 * allocation would require 1, or 2 blocks, higher numbers are
3412 * very rare.
3413 */
3414 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3415 EXT4_SB(sb)->s_cluster_bits;
3416
3417 do_div(resv_clusters, 50);
3418 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3419
3420 return resv_clusters;
3421 }
3422
3423
ext4_reserve_clusters(struct ext4_sb_info * sbi,ext4_fsblk_t count)3424 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3425 {
3426 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3427 sbi->s_cluster_bits;
3428
3429 if (count >= clusters)
3430 return -EINVAL;
3431
3432 atomic64_set(&sbi->s_resv_clusters, count);
3433 return 0;
3434 }
3435
ext4_fill_super(struct super_block * sb,void * data,int silent)3436 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3437 {
3438 char *orig_data = kstrdup(data, GFP_KERNEL);
3439 struct buffer_head *bh;
3440 struct ext4_super_block *es = NULL;
3441 struct ext4_sb_info *sbi;
3442 ext4_fsblk_t block;
3443 ext4_fsblk_t sb_block = get_sb_block(&data);
3444 ext4_fsblk_t logical_sb_block;
3445 unsigned long offset = 0;
3446 unsigned long journal_devnum = 0;
3447 unsigned long def_mount_opts;
3448 struct inode *root;
3449 char *cp;
3450 const char *descr;
3451 int ret = -ENOMEM;
3452 int blocksize, clustersize;
3453 unsigned int db_count;
3454 unsigned int i;
3455 int needs_recovery, has_huge_files, has_bigalloc;
3456 __u64 blocks_count;
3457 int err = 0;
3458 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3459 ext4_group_t first_not_zeroed;
3460
3461 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3462 if (!sbi)
3463 goto out_free_orig;
3464
3465 sbi->s_blockgroup_lock =
3466 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3467 if (!sbi->s_blockgroup_lock) {
3468 kfree(sbi);
3469 goto out_free_orig;
3470 }
3471 sb->s_fs_info = sbi;
3472 sbi->s_sb = sb;
3473 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3474 sbi->s_sb_block = sb_block;
3475 if (sb->s_bdev->bd_part)
3476 sbi->s_sectors_written_start =
3477 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3478 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3479 /* Modes of operations for file and directory encryption. */
3480 sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
3481 sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID;
3482 #endif
3483
3484 /* Cleanup superblock name */
3485 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3486 *cp = '!';
3487
3488 /* -EINVAL is default */
3489 ret = -EINVAL;
3490 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3491 if (!blocksize) {
3492 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3493 goto out_fail;
3494 }
3495
3496 /*
3497 * The ext4 superblock will not be buffer aligned for other than 1kB
3498 * block sizes. We need to calculate the offset from buffer start.
3499 */
3500 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3501 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3502 offset = do_div(logical_sb_block, blocksize);
3503 } else {
3504 logical_sb_block = sb_block;
3505 }
3506
3507 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3508 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3509 goto out_fail;
3510 }
3511 /*
3512 * Note: s_es must be initialized as soon as possible because
3513 * some ext4 macro-instructions depend on its value
3514 */
3515 es = (struct ext4_super_block *) (bh->b_data + offset);
3516 sbi->s_es = es;
3517 sb->s_magic = le16_to_cpu(es->s_magic);
3518 if (sb->s_magic != EXT4_SUPER_MAGIC)
3519 goto cantfind_ext4;
3520 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3521
3522 /* Warn if metadata_csum and gdt_csum are both set. */
3523 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3524 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3525 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3526 ext4_warning(sb, "metadata_csum and uninit_bg are "
3527 "redundant flags; please run fsck.");
3528
3529 /* Check for a known checksum algorithm */
3530 if (!ext4_verify_csum_type(sb, es)) {
3531 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3532 "unknown checksum algorithm.");
3533 silent = 1;
3534 goto cantfind_ext4;
3535 }
3536
3537 /* Load the checksum driver */
3538 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3539 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3540 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3541 if (IS_ERR(sbi->s_chksum_driver)) {
3542 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3543 ret = PTR_ERR(sbi->s_chksum_driver);
3544 sbi->s_chksum_driver = NULL;
3545 goto failed_mount;
3546 }
3547 }
3548
3549 /* Check superblock checksum */
3550 if (!ext4_superblock_csum_verify(sb, es)) {
3551 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3552 "invalid superblock checksum. Run e2fsck?");
3553 silent = 1;
3554 goto cantfind_ext4;
3555 }
3556
3557 /* Precompute checksum seed for all metadata */
3558 if (ext4_has_metadata_csum(sb))
3559 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3560 sizeof(es->s_uuid));
3561
3562 /* Set defaults before we parse the mount options */
3563 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3564 set_opt(sb, INIT_INODE_TABLE);
3565 if (def_mount_opts & EXT4_DEFM_DEBUG)
3566 set_opt(sb, DEBUG);
3567 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3568 set_opt(sb, GRPID);
3569 if (def_mount_opts & EXT4_DEFM_UID16)
3570 set_opt(sb, NO_UID32);
3571 /* xattr user namespace & acls are now defaulted on */
3572 set_opt(sb, XATTR_USER);
3573 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3574 set_opt(sb, POSIX_ACL);
3575 #endif
3576 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3577 if (ext4_has_metadata_csum(sb))
3578 set_opt(sb, JOURNAL_CHECKSUM);
3579
3580 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3581 set_opt(sb, JOURNAL_DATA);
3582 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3583 set_opt(sb, ORDERED_DATA);
3584 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3585 set_opt(sb, WRITEBACK_DATA);
3586
3587 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3588 set_opt(sb, ERRORS_PANIC);
3589 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3590 set_opt(sb, ERRORS_CONT);
3591 else
3592 set_opt(sb, ERRORS_RO);
3593 /* block_validity enabled by default; disable with noblock_validity */
3594 set_opt(sb, BLOCK_VALIDITY);
3595 if (def_mount_opts & EXT4_DEFM_DISCARD)
3596 set_opt(sb, DISCARD);
3597
3598 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3599 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3600 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3601 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3602 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3603
3604 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3605 set_opt(sb, BARRIER);
3606
3607 /*
3608 * enable delayed allocation by default
3609 * Use -o nodelalloc to turn it off
3610 */
3611 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3612 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3613 set_opt(sb, DELALLOC);
3614
3615 /*
3616 * set default s_li_wait_mult for lazyinit, for the case there is
3617 * no mount option specified.
3618 */
3619 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3620
3621 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3622 &journal_devnum, &journal_ioprio, 0)) {
3623 ext4_msg(sb, KERN_WARNING,
3624 "failed to parse options in superblock: %s",
3625 sbi->s_es->s_mount_opts);
3626 }
3627 sbi->s_def_mount_opt = sbi->s_mount_opt;
3628 if (!parse_options((char *) data, sb, &journal_devnum,
3629 &journal_ioprio, 0))
3630 goto failed_mount;
3631
3632 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3633 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3634 "with data=journal disables delayed "
3635 "allocation and O_DIRECT support!\n");
3636 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3637 ext4_msg(sb, KERN_ERR, "can't mount with "
3638 "both data=journal and delalloc");
3639 goto failed_mount;
3640 }
3641 if (test_opt(sb, DIOREAD_NOLOCK)) {
3642 ext4_msg(sb, KERN_ERR, "can't mount with "
3643 "both data=journal and dioread_nolock");
3644 goto failed_mount;
3645 }
3646 if (test_opt(sb, DAX)) {
3647 ext4_msg(sb, KERN_ERR, "can't mount with "
3648 "both data=journal and dax");
3649 goto failed_mount;
3650 }
3651 if (test_opt(sb, DELALLOC))
3652 clear_opt(sb, DELALLOC);
3653 }
3654
3655 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3656 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3657
3658 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3659 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3660 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3661 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3662 ext4_msg(sb, KERN_WARNING,
3663 "feature flags set on rev 0 fs, "
3664 "running e2fsck is recommended");
3665
3666 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3667 set_opt2(sb, HURD_COMPAT);
3668 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3669 EXT4_FEATURE_INCOMPAT_64BIT)) {
3670 ext4_msg(sb, KERN_ERR,
3671 "The Hurd can't support 64-bit file systems");
3672 goto failed_mount;
3673 }
3674 }
3675
3676 if (IS_EXT2_SB(sb)) {
3677 if (ext2_feature_set_ok(sb))
3678 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3679 "using the ext4 subsystem");
3680 else {
3681 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3682 "to feature incompatibilities");
3683 goto failed_mount;
3684 }
3685 }
3686
3687 if (IS_EXT3_SB(sb)) {
3688 if (ext3_feature_set_ok(sb))
3689 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3690 "using the ext4 subsystem");
3691 else {
3692 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3693 "to feature incompatibilities");
3694 goto failed_mount;
3695 }
3696 }
3697
3698 /*
3699 * Check feature flags regardless of the revision level, since we
3700 * previously didn't change the revision level when setting the flags,
3701 * so there is a chance incompat flags are set on a rev 0 filesystem.
3702 */
3703 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3704 goto failed_mount;
3705
3706 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3707 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3708 blocksize > EXT4_MAX_BLOCK_SIZE) {
3709 ext4_msg(sb, KERN_ERR,
3710 "Unsupported filesystem blocksize %d", blocksize);
3711 goto failed_mount;
3712 }
3713
3714 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3715 if (blocksize != PAGE_SIZE) {
3716 ext4_msg(sb, KERN_ERR,
3717 "error: unsupported blocksize for dax");
3718 goto failed_mount;
3719 }
3720 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3721 ext4_msg(sb, KERN_ERR,
3722 "error: device does not support dax");
3723 goto failed_mount;
3724 }
3725 }
3726
3727 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3728 es->s_encryption_level) {
3729 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3730 es->s_encryption_level);
3731 goto failed_mount;
3732 }
3733
3734 if (sb->s_blocksize != blocksize) {
3735 /* Validate the filesystem blocksize */
3736 if (!sb_set_blocksize(sb, blocksize)) {
3737 ext4_msg(sb, KERN_ERR, "bad block size %d",
3738 blocksize);
3739 goto failed_mount;
3740 }
3741
3742 brelse(bh);
3743 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3744 offset = do_div(logical_sb_block, blocksize);
3745 bh = sb_bread_unmovable(sb, logical_sb_block);
3746 if (!bh) {
3747 ext4_msg(sb, KERN_ERR,
3748 "Can't read superblock on 2nd try");
3749 goto failed_mount;
3750 }
3751 es = (struct ext4_super_block *)(bh->b_data + offset);
3752 sbi->s_es = es;
3753 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3754 ext4_msg(sb, KERN_ERR,
3755 "Magic mismatch, very weird!");
3756 goto failed_mount;
3757 }
3758 }
3759
3760 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3761 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3762 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3763 has_huge_files);
3764 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3765
3766 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3767 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3768 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3769 } else {
3770 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3771 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3772 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3773 (!is_power_of_2(sbi->s_inode_size)) ||
3774 (sbi->s_inode_size > blocksize)) {
3775 ext4_msg(sb, KERN_ERR,
3776 "unsupported inode size: %d",
3777 sbi->s_inode_size);
3778 goto failed_mount;
3779 }
3780 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3781 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3782 }
3783
3784 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3785 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3786 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3787 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3788 !is_power_of_2(sbi->s_desc_size)) {
3789 ext4_msg(sb, KERN_ERR,
3790 "unsupported descriptor size %lu",
3791 sbi->s_desc_size);
3792 goto failed_mount;
3793 }
3794 } else
3795 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3796
3797 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3798 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3799 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3800 goto cantfind_ext4;
3801
3802 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3803 if (sbi->s_inodes_per_block == 0)
3804 goto cantfind_ext4;
3805 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3806 sbi->s_inodes_per_block;
3807 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3808 sbi->s_sbh = bh;
3809 sbi->s_mount_state = le16_to_cpu(es->s_state);
3810 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3811 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3812
3813 for (i = 0; i < 4; i++)
3814 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3815 sbi->s_def_hash_version = es->s_def_hash_version;
3816 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3817 i = le32_to_cpu(es->s_flags);
3818 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3819 sbi->s_hash_unsigned = 3;
3820 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3821 #ifdef __CHAR_UNSIGNED__
3822 if (!(sb->s_flags & MS_RDONLY))
3823 es->s_flags |=
3824 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3825 sbi->s_hash_unsigned = 3;
3826 #else
3827 if (!(sb->s_flags & MS_RDONLY))
3828 es->s_flags |=
3829 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3830 #endif
3831 }
3832 }
3833
3834 /* Handle clustersize */
3835 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3836 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3837 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3838 if (has_bigalloc) {
3839 if (clustersize < blocksize) {
3840 ext4_msg(sb, KERN_ERR,
3841 "cluster size (%d) smaller than "
3842 "block size (%d)", clustersize, blocksize);
3843 goto failed_mount;
3844 }
3845 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3846 le32_to_cpu(es->s_log_block_size);
3847 sbi->s_clusters_per_group =
3848 le32_to_cpu(es->s_clusters_per_group);
3849 if (sbi->s_clusters_per_group > blocksize * 8) {
3850 ext4_msg(sb, KERN_ERR,
3851 "#clusters per group too big: %lu",
3852 sbi->s_clusters_per_group);
3853 goto failed_mount;
3854 }
3855 if (sbi->s_blocks_per_group !=
3856 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3857 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3858 "clusters per group (%lu) inconsistent",
3859 sbi->s_blocks_per_group,
3860 sbi->s_clusters_per_group);
3861 goto failed_mount;
3862 }
3863 } else {
3864 if (clustersize != blocksize) {
3865 ext4_warning(sb, "fragment/cluster size (%d) != "
3866 "block size (%d)", clustersize,
3867 blocksize);
3868 clustersize = blocksize;
3869 }
3870 if (sbi->s_blocks_per_group > blocksize * 8) {
3871 ext4_msg(sb, KERN_ERR,
3872 "#blocks per group too big: %lu",
3873 sbi->s_blocks_per_group);
3874 goto failed_mount;
3875 }
3876 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3877 sbi->s_cluster_bits = 0;
3878 }
3879 sbi->s_cluster_ratio = clustersize / blocksize;
3880
3881 if (sbi->s_inodes_per_group > blocksize * 8) {
3882 ext4_msg(sb, KERN_ERR,
3883 "#inodes per group too big: %lu",
3884 sbi->s_inodes_per_group);
3885 goto failed_mount;
3886 }
3887
3888 /* Do we have standard group size of clustersize * 8 blocks ? */
3889 if (sbi->s_blocks_per_group == clustersize << 3)
3890 set_opt2(sb, STD_GROUP_SIZE);
3891
3892 /*
3893 * Test whether we have more sectors than will fit in sector_t,
3894 * and whether the max offset is addressable by the page cache.
3895 */
3896 err = generic_check_addressable(sb->s_blocksize_bits,
3897 ext4_blocks_count(es));
3898 if (err) {
3899 ext4_msg(sb, KERN_ERR, "filesystem"
3900 " too large to mount safely on this system");
3901 if (sizeof(sector_t) < 8)
3902 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3903 goto failed_mount;
3904 }
3905
3906 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3907 goto cantfind_ext4;
3908
3909 /* check blocks count against device size */
3910 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3911 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3912 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3913 "exceeds size of device (%llu blocks)",
3914 ext4_blocks_count(es), blocks_count);
3915 goto failed_mount;
3916 }
3917
3918 /*
3919 * It makes no sense for the first data block to be beyond the end
3920 * of the filesystem.
3921 */
3922 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3923 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3924 "block %u is beyond end of filesystem (%llu)",
3925 le32_to_cpu(es->s_first_data_block),
3926 ext4_blocks_count(es));
3927 goto failed_mount;
3928 }
3929 blocks_count = (ext4_blocks_count(es) -
3930 le32_to_cpu(es->s_first_data_block) +
3931 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3932 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3933 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3934 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3935 "(block count %llu, first data block %u, "
3936 "blocks per group %lu)", sbi->s_groups_count,
3937 ext4_blocks_count(es),
3938 le32_to_cpu(es->s_first_data_block),
3939 EXT4_BLOCKS_PER_GROUP(sb));
3940 goto failed_mount;
3941 }
3942 sbi->s_groups_count = blocks_count;
3943 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3944 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3945 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3946 EXT4_DESC_PER_BLOCK(sb);
3947 sbi->s_group_desc = ext4_kvmalloc(db_count *
3948 sizeof(struct buffer_head *),
3949 GFP_KERNEL);
3950 if (sbi->s_group_desc == NULL) {
3951 ext4_msg(sb, KERN_ERR, "not enough memory");
3952 ret = -ENOMEM;
3953 goto failed_mount;
3954 }
3955
3956 if (ext4_proc_root)
3957 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3958
3959 if (sbi->s_proc)
3960 proc_create_data("options", S_IRUGO, sbi->s_proc,
3961 &ext4_seq_options_fops, sb);
3962
3963 bgl_lock_init(sbi->s_blockgroup_lock);
3964
3965 for (i = 0; i < db_count; i++) {
3966 block = descriptor_loc(sb, logical_sb_block, i);
3967 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3968 if (!sbi->s_group_desc[i]) {
3969 ext4_msg(sb, KERN_ERR,
3970 "can't read group descriptor %d", i);
3971 db_count = i;
3972 goto failed_mount2;
3973 }
3974 }
3975 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3976 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3977 goto failed_mount2;
3978 }
3979
3980 sbi->s_gdb_count = db_count;
3981 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3982 spin_lock_init(&sbi->s_next_gen_lock);
3983
3984 setup_timer(&sbi->s_err_report, print_daily_error_info,
3985 (unsigned long) sb);
3986
3987 /* Register extent status tree shrinker */
3988 if (ext4_es_register_shrinker(sbi))
3989 goto failed_mount3;
3990
3991 sbi->s_stripe = ext4_get_stripe_size(sbi);
3992 sbi->s_extent_max_zeroout_kb = 32;
3993
3994 /*
3995 * set up enough so that it can read an inode
3996 */
3997 sb->s_op = &ext4_sops;
3998 sb->s_export_op = &ext4_export_ops;
3999 sb->s_xattr = ext4_xattr_handlers;
4000 #ifdef CONFIG_QUOTA
4001 sb->dq_op = &ext4_quota_operations;
4002 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
4003 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4004 else
4005 sb->s_qcop = &ext4_qctl_operations;
4006 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4007 #endif
4008 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4009
4010 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4011 mutex_init(&sbi->s_orphan_lock);
4012
4013 sb->s_root = NULL;
4014
4015 needs_recovery = (es->s_last_orphan != 0 ||
4016 EXT4_HAS_INCOMPAT_FEATURE(sb,
4017 EXT4_FEATURE_INCOMPAT_RECOVER));
4018
4019 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
4020 !(sb->s_flags & MS_RDONLY))
4021 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4022 goto failed_mount3a;
4023
4024 /*
4025 * The first inode we look at is the journal inode. Don't try
4026 * root first: it may be modified in the journal!
4027 */
4028 if (!test_opt(sb, NOLOAD) &&
4029 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4030 if (ext4_load_journal(sb, es, journal_devnum))
4031 goto failed_mount3a;
4032 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4033 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4034 ext4_msg(sb, KERN_ERR, "required journal recovery "
4035 "suppressed and not mounted read-only");
4036 goto failed_mount_wq;
4037 } else {
4038 clear_opt(sb, DATA_FLAGS);
4039 sbi->s_journal = NULL;
4040 needs_recovery = 0;
4041 goto no_journal;
4042 }
4043
4044 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4045 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4046 JBD2_FEATURE_INCOMPAT_64BIT)) {
4047 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4048 goto failed_mount_wq;
4049 }
4050
4051 if (!set_journal_csum_feature_set(sb)) {
4052 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4053 "feature set");
4054 goto failed_mount_wq;
4055 }
4056
4057 /* We have now updated the journal if required, so we can
4058 * validate the data journaling mode. */
4059 switch (test_opt(sb, DATA_FLAGS)) {
4060 case 0:
4061 /* No mode set, assume a default based on the journal
4062 * capabilities: ORDERED_DATA if the journal can
4063 * cope, else JOURNAL_DATA
4064 */
4065 if (jbd2_journal_check_available_features
4066 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4067 set_opt(sb, ORDERED_DATA);
4068 else
4069 set_opt(sb, JOURNAL_DATA);
4070 break;
4071
4072 case EXT4_MOUNT_ORDERED_DATA:
4073 case EXT4_MOUNT_WRITEBACK_DATA:
4074 if (!jbd2_journal_check_available_features
4075 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4076 ext4_msg(sb, KERN_ERR, "Journal does not support "
4077 "requested data journaling mode");
4078 goto failed_mount_wq;
4079 }
4080 default:
4081 break;
4082 }
4083 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4084
4085 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4086
4087 no_journal:
4088 if (ext4_mballoc_ready) {
4089 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4090 if (!sbi->s_mb_cache) {
4091 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4092 goto failed_mount_wq;
4093 }
4094 }
4095
4096 if (unlikely(sbi->s_mount_flags & EXT4_MF_TEST_DUMMY_ENCRYPTION) &&
4097 !(sb->s_flags & MS_RDONLY) &&
4098 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4099 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4100 ext4_commit_super(sb, 1);
4101 }
4102
4103 /*
4104 * Get the # of file system overhead blocks from the
4105 * superblock if present.
4106 */
4107 if (es->s_overhead_clusters)
4108 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4109 else {
4110 err = ext4_calculate_overhead(sb);
4111 if (err)
4112 goto failed_mount_wq;
4113 }
4114
4115 /*
4116 * The maximum number of concurrent works can be high and
4117 * concurrency isn't really necessary. Limit it to 1.
4118 */
4119 EXT4_SB(sb)->rsv_conversion_wq =
4120 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4121 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4122 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4123 ret = -ENOMEM;
4124 goto failed_mount4;
4125 }
4126
4127 /*
4128 * The jbd2_journal_load will have done any necessary log recovery,
4129 * so we can safely mount the rest of the filesystem now.
4130 */
4131
4132 root = ext4_iget(sb, EXT4_ROOT_INO);
4133 if (IS_ERR(root)) {
4134 ext4_msg(sb, KERN_ERR, "get root inode failed");
4135 ret = PTR_ERR(root);
4136 root = NULL;
4137 goto failed_mount4;
4138 }
4139 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4140 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4141 iput(root);
4142 goto failed_mount4;
4143 }
4144 sb->s_root = d_make_root(root);
4145 if (!sb->s_root) {
4146 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4147 ret = -ENOMEM;
4148 goto failed_mount4;
4149 }
4150
4151 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4152 sb->s_flags |= MS_RDONLY;
4153
4154 /* determine the minimum size of new large inodes, if present */
4155 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4156 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4157 EXT4_GOOD_OLD_INODE_SIZE;
4158 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4159 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4160 if (sbi->s_want_extra_isize <
4161 le16_to_cpu(es->s_want_extra_isize))
4162 sbi->s_want_extra_isize =
4163 le16_to_cpu(es->s_want_extra_isize);
4164 if (sbi->s_want_extra_isize <
4165 le16_to_cpu(es->s_min_extra_isize))
4166 sbi->s_want_extra_isize =
4167 le16_to_cpu(es->s_min_extra_isize);
4168 }
4169 }
4170 /* Check if enough inode space is available */
4171 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4172 sbi->s_inode_size) {
4173 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4174 EXT4_GOOD_OLD_INODE_SIZE;
4175 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4176 "available");
4177 }
4178
4179 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4180 if (err) {
4181 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4182 "reserved pool", ext4_calculate_resv_clusters(sb));
4183 goto failed_mount4a;
4184 }
4185
4186 err = ext4_setup_system_zone(sb);
4187 if (err) {
4188 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4189 "zone (%d)", err);
4190 goto failed_mount4a;
4191 }
4192
4193 ext4_ext_init(sb);
4194 err = ext4_mb_init(sb);
4195 if (err) {
4196 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4197 err);
4198 goto failed_mount5;
4199 }
4200
4201 block = ext4_count_free_clusters(sb);
4202 ext4_free_blocks_count_set(sbi->s_es,
4203 EXT4_C2B(sbi, block));
4204 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4205 GFP_KERNEL);
4206 if (!err) {
4207 unsigned long freei = ext4_count_free_inodes(sb);
4208 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4209 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4210 GFP_KERNEL);
4211 }
4212 if (!err)
4213 err = percpu_counter_init(&sbi->s_dirs_counter,
4214 ext4_count_dirs(sb), GFP_KERNEL);
4215 if (!err)
4216 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4217 GFP_KERNEL);
4218 if (err) {
4219 ext4_msg(sb, KERN_ERR, "insufficient memory");
4220 goto failed_mount6;
4221 }
4222
4223 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4224 if (!ext4_fill_flex_info(sb)) {
4225 ext4_msg(sb, KERN_ERR,
4226 "unable to initialize "
4227 "flex_bg meta info!");
4228 goto failed_mount6;
4229 }
4230
4231 err = ext4_register_li_request(sb, first_not_zeroed);
4232 if (err)
4233 goto failed_mount6;
4234
4235 sbi->s_kobj.kset = ext4_kset;
4236 init_completion(&sbi->s_kobj_unregister);
4237 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4238 "%s", sb->s_id);
4239 if (err)
4240 goto failed_mount7;
4241
4242 #ifdef CONFIG_QUOTA
4243 /* Enable quota usage during mount. */
4244 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4245 !(sb->s_flags & MS_RDONLY)) {
4246 err = ext4_enable_quotas(sb);
4247 if (err)
4248 goto failed_mount8;
4249 }
4250 #endif /* CONFIG_QUOTA */
4251
4252 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4253 ext4_orphan_cleanup(sb, es);
4254 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4255 if (needs_recovery) {
4256 ext4_msg(sb, KERN_INFO, "recovery complete");
4257 ext4_mark_recovery_complete(sb, es);
4258 }
4259 if (EXT4_SB(sb)->s_journal) {
4260 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4261 descr = " journalled data mode";
4262 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4263 descr = " ordered data mode";
4264 else
4265 descr = " writeback data mode";
4266 } else
4267 descr = "out journal";
4268
4269 if (test_opt(sb, DISCARD)) {
4270 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4271 if (!blk_queue_discard(q))
4272 ext4_msg(sb, KERN_WARNING,
4273 "mounting with \"discard\" option, but "
4274 "the device does not support discard");
4275 }
4276
4277 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4278 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4279 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4280
4281 if (es->s_error_count)
4282 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4283
4284 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4285 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4286 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4287 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4288
4289 kfree(orig_data);
4290 return 0;
4291
4292 cantfind_ext4:
4293 if (!silent)
4294 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4295 goto failed_mount;
4296
4297 #ifdef CONFIG_QUOTA
4298 failed_mount8:
4299 kobject_del(&sbi->s_kobj);
4300 #endif
4301 failed_mount7:
4302 ext4_unregister_li_request(sb);
4303 failed_mount6:
4304 ext4_mb_release(sb);
4305 if (sbi->s_flex_groups)
4306 kvfree(sbi->s_flex_groups);
4307 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4308 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4309 percpu_counter_destroy(&sbi->s_dirs_counter);
4310 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4311 failed_mount5:
4312 ext4_ext_release(sb);
4313 ext4_release_system_zone(sb);
4314 failed_mount4a:
4315 dput(sb->s_root);
4316 sb->s_root = NULL;
4317 failed_mount4:
4318 ext4_msg(sb, KERN_ERR, "mount failed");
4319 if (EXT4_SB(sb)->rsv_conversion_wq)
4320 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4321 failed_mount_wq:
4322 if (sbi->s_journal) {
4323 jbd2_journal_destroy(sbi->s_journal);
4324 sbi->s_journal = NULL;
4325 }
4326 failed_mount3a:
4327 ext4_es_unregister_shrinker(sbi);
4328 failed_mount3:
4329 del_timer_sync(&sbi->s_err_report);
4330 if (sbi->s_mmp_tsk)
4331 kthread_stop(sbi->s_mmp_tsk);
4332 failed_mount2:
4333 for (i = 0; i < db_count; i++)
4334 brelse(sbi->s_group_desc[i]);
4335 kvfree(sbi->s_group_desc);
4336 failed_mount:
4337 if (sbi->s_chksum_driver)
4338 crypto_free_shash(sbi->s_chksum_driver);
4339 if (sbi->s_proc) {
4340 remove_proc_entry("options", sbi->s_proc);
4341 remove_proc_entry(sb->s_id, ext4_proc_root);
4342 }
4343 #ifdef CONFIG_QUOTA
4344 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4345 kfree(sbi->s_qf_names[i]);
4346 #endif
4347 ext4_blkdev_remove(sbi);
4348 brelse(bh);
4349 out_fail:
4350 sb->s_fs_info = NULL;
4351 kfree(sbi->s_blockgroup_lock);
4352 kfree(sbi);
4353 out_free_orig:
4354 kfree(orig_data);
4355 return err ? err : ret;
4356 }
4357
4358 /*
4359 * Setup any per-fs journal parameters now. We'll do this both on
4360 * initial mount, once the journal has been initialised but before we've
4361 * done any recovery; and again on any subsequent remount.
4362 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4363 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4364 {
4365 struct ext4_sb_info *sbi = EXT4_SB(sb);
4366
4367 journal->j_commit_interval = sbi->s_commit_interval;
4368 journal->j_min_batch_time = sbi->s_min_batch_time;
4369 journal->j_max_batch_time = sbi->s_max_batch_time;
4370
4371 write_lock(&journal->j_state_lock);
4372 if (test_opt(sb, BARRIER))
4373 journal->j_flags |= JBD2_BARRIER;
4374 else
4375 journal->j_flags &= ~JBD2_BARRIER;
4376 if (test_opt(sb, DATA_ERR_ABORT))
4377 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4378 else
4379 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4380 write_unlock(&journal->j_state_lock);
4381 }
4382
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4383 static journal_t *ext4_get_journal(struct super_block *sb,
4384 unsigned int journal_inum)
4385 {
4386 struct inode *journal_inode;
4387 journal_t *journal;
4388
4389 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4390
4391 /* First, test for the existence of a valid inode on disk. Bad
4392 * things happen if we iget() an unused inode, as the subsequent
4393 * iput() will try to delete it. */
4394
4395 journal_inode = ext4_iget(sb, journal_inum);
4396 if (IS_ERR(journal_inode)) {
4397 ext4_msg(sb, KERN_ERR, "no journal found");
4398 return NULL;
4399 }
4400 if (!journal_inode->i_nlink) {
4401 make_bad_inode(journal_inode);
4402 iput(journal_inode);
4403 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4404 return NULL;
4405 }
4406
4407 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4408 journal_inode, journal_inode->i_size);
4409 if (!S_ISREG(journal_inode->i_mode)) {
4410 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4411 iput(journal_inode);
4412 return NULL;
4413 }
4414
4415 journal = jbd2_journal_init_inode(journal_inode);
4416 if (!journal) {
4417 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4418 iput(journal_inode);
4419 return NULL;
4420 }
4421 journal->j_private = sb;
4422 ext4_init_journal_params(sb, journal);
4423 return journal;
4424 }
4425
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4426 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4427 dev_t j_dev)
4428 {
4429 struct buffer_head *bh;
4430 journal_t *journal;
4431 ext4_fsblk_t start;
4432 ext4_fsblk_t len;
4433 int hblock, blocksize;
4434 ext4_fsblk_t sb_block;
4435 unsigned long offset;
4436 struct ext4_super_block *es;
4437 struct block_device *bdev;
4438
4439 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4440
4441 bdev = ext4_blkdev_get(j_dev, sb);
4442 if (bdev == NULL)
4443 return NULL;
4444
4445 blocksize = sb->s_blocksize;
4446 hblock = bdev_logical_block_size(bdev);
4447 if (blocksize < hblock) {
4448 ext4_msg(sb, KERN_ERR,
4449 "blocksize too small for journal device");
4450 goto out_bdev;
4451 }
4452
4453 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4454 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4455 set_blocksize(bdev, blocksize);
4456 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4457 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4458 "external journal");
4459 goto out_bdev;
4460 }
4461
4462 es = (struct ext4_super_block *) (bh->b_data + offset);
4463 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4464 !(le32_to_cpu(es->s_feature_incompat) &
4465 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4466 ext4_msg(sb, KERN_ERR, "external journal has "
4467 "bad superblock");
4468 brelse(bh);
4469 goto out_bdev;
4470 }
4471
4472 if ((le32_to_cpu(es->s_feature_ro_compat) &
4473 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4474 es->s_checksum != ext4_superblock_csum(sb, es)) {
4475 ext4_msg(sb, KERN_ERR, "external journal has "
4476 "corrupt superblock");
4477 brelse(bh);
4478 goto out_bdev;
4479 }
4480
4481 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4482 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4483 brelse(bh);
4484 goto out_bdev;
4485 }
4486
4487 len = ext4_blocks_count(es);
4488 start = sb_block + 1;
4489 brelse(bh); /* we're done with the superblock */
4490
4491 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4492 start, len, blocksize);
4493 if (!journal) {
4494 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4495 goto out_bdev;
4496 }
4497 journal->j_private = sb;
4498 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4499 wait_on_buffer(journal->j_sb_buffer);
4500 if (!buffer_uptodate(journal->j_sb_buffer)) {
4501 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4502 goto out_journal;
4503 }
4504 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4505 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4506 "user (unsupported) - %d",
4507 be32_to_cpu(journal->j_superblock->s_nr_users));
4508 goto out_journal;
4509 }
4510 EXT4_SB(sb)->journal_bdev = bdev;
4511 ext4_init_journal_params(sb, journal);
4512 return journal;
4513
4514 out_journal:
4515 jbd2_journal_destroy(journal);
4516 out_bdev:
4517 ext4_blkdev_put(bdev);
4518 return NULL;
4519 }
4520
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4521 static int ext4_load_journal(struct super_block *sb,
4522 struct ext4_super_block *es,
4523 unsigned long journal_devnum)
4524 {
4525 journal_t *journal;
4526 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4527 dev_t journal_dev;
4528 int err = 0;
4529 int really_read_only;
4530
4531 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4532
4533 if (journal_devnum &&
4534 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4535 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4536 "numbers have changed");
4537 journal_dev = new_decode_dev(journal_devnum);
4538 } else
4539 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4540
4541 really_read_only = bdev_read_only(sb->s_bdev);
4542
4543 /*
4544 * Are we loading a blank journal or performing recovery after a
4545 * crash? For recovery, we need to check in advance whether we
4546 * can get read-write access to the device.
4547 */
4548 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4549 if (sb->s_flags & MS_RDONLY) {
4550 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4551 "required on readonly filesystem");
4552 if (really_read_only) {
4553 ext4_msg(sb, KERN_ERR, "write access "
4554 "unavailable, cannot proceed");
4555 return -EROFS;
4556 }
4557 ext4_msg(sb, KERN_INFO, "write access will "
4558 "be enabled during recovery");
4559 }
4560 }
4561
4562 if (journal_inum && journal_dev) {
4563 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4564 "and inode journals!");
4565 return -EINVAL;
4566 }
4567
4568 if (journal_inum) {
4569 if (!(journal = ext4_get_journal(sb, journal_inum)))
4570 return -EINVAL;
4571 } else {
4572 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4573 return -EINVAL;
4574 }
4575
4576 if (!(journal->j_flags & JBD2_BARRIER))
4577 ext4_msg(sb, KERN_INFO, "barriers disabled");
4578
4579 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4580 err = jbd2_journal_wipe(journal, !really_read_only);
4581 if (!err) {
4582 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4583 if (save)
4584 memcpy(save, ((char *) es) +
4585 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4586 err = jbd2_journal_load(journal);
4587 if (save)
4588 memcpy(((char *) es) + EXT4_S_ERR_START,
4589 save, EXT4_S_ERR_LEN);
4590 kfree(save);
4591 }
4592
4593 if (err) {
4594 ext4_msg(sb, KERN_ERR, "error loading journal");
4595 jbd2_journal_destroy(journal);
4596 return err;
4597 }
4598
4599 EXT4_SB(sb)->s_journal = journal;
4600 ext4_clear_journal_err(sb, es);
4601
4602 if (!really_read_only && journal_devnum &&
4603 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4604 es->s_journal_dev = cpu_to_le32(journal_devnum);
4605
4606 /* Make sure we flush the recovery flag to disk. */
4607 ext4_commit_super(sb, 1);
4608 }
4609
4610 return 0;
4611 }
4612
ext4_commit_super(struct super_block * sb,int sync)4613 static int ext4_commit_super(struct super_block *sb, int sync)
4614 {
4615 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4616 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4617 int error = 0;
4618
4619 if (!sbh || block_device_ejected(sb))
4620 return error;
4621 if (buffer_write_io_error(sbh)) {
4622 /*
4623 * Oh, dear. A previous attempt to write the
4624 * superblock failed. This could happen because the
4625 * USB device was yanked out. Or it could happen to
4626 * be a transient write error and maybe the block will
4627 * be remapped. Nothing we can do but to retry the
4628 * write and hope for the best.
4629 */
4630 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4631 "superblock detected");
4632 clear_buffer_write_io_error(sbh);
4633 set_buffer_uptodate(sbh);
4634 }
4635 /*
4636 * If the file system is mounted read-only, don't update the
4637 * superblock write time. This avoids updating the superblock
4638 * write time when we are mounting the root file system
4639 * read/only but we need to replay the journal; at that point,
4640 * for people who are east of GMT and who make their clock
4641 * tick in localtime for Windows bug-for-bug compatibility,
4642 * the clock is set in the future, and this will cause e2fsck
4643 * to complain and force a full file system check.
4644 */
4645 if (!(sb->s_flags & MS_RDONLY))
4646 es->s_wtime = cpu_to_le32(get_seconds());
4647 if (sb->s_bdev->bd_part)
4648 es->s_kbytes_written =
4649 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4650 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4651 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4652 else
4653 es->s_kbytes_written =
4654 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4655 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4656 ext4_free_blocks_count_set(es,
4657 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4658 &EXT4_SB(sb)->s_freeclusters_counter)));
4659 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4660 es->s_free_inodes_count =
4661 cpu_to_le32(percpu_counter_sum_positive(
4662 &EXT4_SB(sb)->s_freeinodes_counter));
4663 BUFFER_TRACE(sbh, "marking dirty");
4664 ext4_superblock_csum_set(sb);
4665 mark_buffer_dirty(sbh);
4666 if (sync) {
4667 error = sync_dirty_buffer(sbh);
4668 if (error)
4669 return error;
4670
4671 error = buffer_write_io_error(sbh);
4672 if (error) {
4673 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4674 "superblock");
4675 clear_buffer_write_io_error(sbh);
4676 set_buffer_uptodate(sbh);
4677 }
4678 }
4679 return error;
4680 }
4681
4682 /*
4683 * Have we just finished recovery? If so, and if we are mounting (or
4684 * remounting) the filesystem readonly, then we will end up with a
4685 * consistent fs on disk. Record that fact.
4686 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4687 static void ext4_mark_recovery_complete(struct super_block *sb,
4688 struct ext4_super_block *es)
4689 {
4690 journal_t *journal = EXT4_SB(sb)->s_journal;
4691
4692 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4693 BUG_ON(journal != NULL);
4694 return;
4695 }
4696 jbd2_journal_lock_updates(journal);
4697 if (jbd2_journal_flush(journal) < 0)
4698 goto out;
4699
4700 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4701 sb->s_flags & MS_RDONLY) {
4702 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4703 ext4_commit_super(sb, 1);
4704 }
4705
4706 out:
4707 jbd2_journal_unlock_updates(journal);
4708 }
4709
4710 /*
4711 * If we are mounting (or read-write remounting) a filesystem whose journal
4712 * has recorded an error from a previous lifetime, move that error to the
4713 * main filesystem now.
4714 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4715 static void ext4_clear_journal_err(struct super_block *sb,
4716 struct ext4_super_block *es)
4717 {
4718 journal_t *journal;
4719 int j_errno;
4720 const char *errstr;
4721
4722 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4723
4724 journal = EXT4_SB(sb)->s_journal;
4725
4726 /*
4727 * Now check for any error status which may have been recorded in the
4728 * journal by a prior ext4_error() or ext4_abort()
4729 */
4730
4731 j_errno = jbd2_journal_errno(journal);
4732 if (j_errno) {
4733 char nbuf[16];
4734
4735 errstr = ext4_decode_error(sb, j_errno, nbuf);
4736 ext4_warning(sb, "Filesystem error recorded "
4737 "from previous mount: %s", errstr);
4738 ext4_warning(sb, "Marking fs in need of filesystem check.");
4739
4740 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4741 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4742 ext4_commit_super(sb, 1);
4743
4744 jbd2_journal_clear_err(journal);
4745 jbd2_journal_update_sb_errno(journal);
4746 }
4747 }
4748
4749 /*
4750 * Force the running and committing transactions to commit,
4751 * and wait on the commit.
4752 */
ext4_force_commit(struct super_block * sb)4753 int ext4_force_commit(struct super_block *sb)
4754 {
4755 journal_t *journal;
4756
4757 if (sb->s_flags & MS_RDONLY)
4758 return 0;
4759
4760 journal = EXT4_SB(sb)->s_journal;
4761 return ext4_journal_force_commit(journal);
4762 }
4763
ext4_sync_fs(struct super_block * sb,int wait)4764 static int ext4_sync_fs(struct super_block *sb, int wait)
4765 {
4766 int ret = 0;
4767 tid_t target;
4768 bool needs_barrier = false;
4769 struct ext4_sb_info *sbi = EXT4_SB(sb);
4770
4771 trace_ext4_sync_fs(sb, wait);
4772 flush_workqueue(sbi->rsv_conversion_wq);
4773 /*
4774 * Writeback quota in non-journalled quota case - journalled quota has
4775 * no dirty dquots
4776 */
4777 dquot_writeback_dquots(sb, -1);
4778 /*
4779 * Data writeback is possible w/o journal transaction, so barrier must
4780 * being sent at the end of the function. But we can skip it if
4781 * transaction_commit will do it for us.
4782 */
4783 if (sbi->s_journal) {
4784 target = jbd2_get_latest_transaction(sbi->s_journal);
4785 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4786 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4787 needs_barrier = true;
4788
4789 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4790 if (wait)
4791 ret = jbd2_log_wait_commit(sbi->s_journal,
4792 target);
4793 }
4794 } else if (wait && test_opt(sb, BARRIER))
4795 needs_barrier = true;
4796 if (needs_barrier) {
4797 int err;
4798 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4799 if (!ret)
4800 ret = err;
4801 }
4802
4803 return ret;
4804 }
4805
4806 /*
4807 * LVM calls this function before a (read-only) snapshot is created. This
4808 * gives us a chance to flush the journal completely and mark the fs clean.
4809 *
4810 * Note that only this function cannot bring a filesystem to be in a clean
4811 * state independently. It relies on upper layer to stop all data & metadata
4812 * modifications.
4813 */
ext4_freeze(struct super_block * sb)4814 static int ext4_freeze(struct super_block *sb)
4815 {
4816 int error = 0;
4817 journal_t *journal;
4818
4819 if (sb->s_flags & MS_RDONLY)
4820 return 0;
4821
4822 journal = EXT4_SB(sb)->s_journal;
4823
4824 if (journal) {
4825 /* Now we set up the journal barrier. */
4826 jbd2_journal_lock_updates(journal);
4827
4828 /*
4829 * Don't clear the needs_recovery flag if we failed to
4830 * flush the journal.
4831 */
4832 error = jbd2_journal_flush(journal);
4833 if (error < 0)
4834 goto out;
4835
4836 /* Journal blocked and flushed, clear needs_recovery flag. */
4837 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4838 }
4839
4840 error = ext4_commit_super(sb, 1);
4841 out:
4842 if (journal)
4843 /* we rely on upper layer to stop further updates */
4844 jbd2_journal_unlock_updates(journal);
4845 return error;
4846 }
4847
4848 /*
4849 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4850 * flag here, even though the filesystem is not technically dirty yet.
4851 */
ext4_unfreeze(struct super_block * sb)4852 static int ext4_unfreeze(struct super_block *sb)
4853 {
4854 if (sb->s_flags & MS_RDONLY)
4855 return 0;
4856
4857 if (EXT4_SB(sb)->s_journal) {
4858 /* Reset the needs_recovery flag before the fs is unlocked. */
4859 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4860 }
4861
4862 ext4_commit_super(sb, 1);
4863 return 0;
4864 }
4865
4866 /*
4867 * Structure to save mount options for ext4_remount's benefit
4868 */
4869 struct ext4_mount_options {
4870 unsigned long s_mount_opt;
4871 unsigned long s_mount_opt2;
4872 kuid_t s_resuid;
4873 kgid_t s_resgid;
4874 unsigned long s_commit_interval;
4875 u32 s_min_batch_time, s_max_batch_time;
4876 #ifdef CONFIG_QUOTA
4877 int s_jquota_fmt;
4878 char *s_qf_names[EXT4_MAXQUOTAS];
4879 #endif
4880 };
4881
ext4_remount(struct super_block * sb,int * flags,char * data)4882 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4883 {
4884 struct ext4_super_block *es;
4885 struct ext4_sb_info *sbi = EXT4_SB(sb);
4886 unsigned long old_sb_flags;
4887 struct ext4_mount_options old_opts;
4888 int enable_quota = 0;
4889 ext4_group_t g;
4890 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4891 int err = 0;
4892 #ifdef CONFIG_QUOTA
4893 int i, j;
4894 #endif
4895 char *orig_data = kstrdup(data, GFP_KERNEL);
4896
4897 /* Store the original options */
4898 old_sb_flags = sb->s_flags;
4899 old_opts.s_mount_opt = sbi->s_mount_opt;
4900 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4901 old_opts.s_resuid = sbi->s_resuid;
4902 old_opts.s_resgid = sbi->s_resgid;
4903 old_opts.s_commit_interval = sbi->s_commit_interval;
4904 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4905 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4906 #ifdef CONFIG_QUOTA
4907 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4908 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4909 if (sbi->s_qf_names[i]) {
4910 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4911 GFP_KERNEL);
4912 if (!old_opts.s_qf_names[i]) {
4913 for (j = 0; j < i; j++)
4914 kfree(old_opts.s_qf_names[j]);
4915 kfree(orig_data);
4916 return -ENOMEM;
4917 }
4918 } else
4919 old_opts.s_qf_names[i] = NULL;
4920 #endif
4921 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4922 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4923
4924 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4925 err = -EINVAL;
4926 goto restore_opts;
4927 }
4928
4929 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4930 test_opt(sb, JOURNAL_CHECKSUM)) {
4931 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4932 "during remount not supported; ignoring");
4933 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4934 }
4935
4936 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4937 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4938 ext4_msg(sb, KERN_ERR, "can't mount with "
4939 "both data=journal and delalloc");
4940 err = -EINVAL;
4941 goto restore_opts;
4942 }
4943 if (test_opt(sb, DIOREAD_NOLOCK)) {
4944 ext4_msg(sb, KERN_ERR, "can't mount with "
4945 "both data=journal and dioread_nolock");
4946 err = -EINVAL;
4947 goto restore_opts;
4948 }
4949 if (test_opt(sb, DAX)) {
4950 ext4_msg(sb, KERN_ERR, "can't mount with "
4951 "both data=journal and dax");
4952 err = -EINVAL;
4953 goto restore_opts;
4954 }
4955 }
4956
4957 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4958 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4959 "dax flag with busy inodes while remounting");
4960 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4961 }
4962
4963 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4964 ext4_abort(sb, "Abort forced by user");
4965
4966 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4967 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4968
4969 es = sbi->s_es;
4970
4971 if (sbi->s_journal) {
4972 ext4_init_journal_params(sb, sbi->s_journal);
4973 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4974 }
4975
4976 if (*flags & MS_LAZYTIME)
4977 sb->s_flags |= MS_LAZYTIME;
4978
4979 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4980 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4981 err = -EROFS;
4982 goto restore_opts;
4983 }
4984
4985 if (*flags & MS_RDONLY) {
4986 err = sync_filesystem(sb);
4987 if (err < 0)
4988 goto restore_opts;
4989 err = dquot_suspend(sb, -1);
4990 if (err < 0)
4991 goto restore_opts;
4992
4993 /*
4994 * First of all, the unconditional stuff we have to do
4995 * to disable replay of the journal when we next remount
4996 */
4997 sb->s_flags |= MS_RDONLY;
4998
4999 /*
5000 * OK, test if we are remounting a valid rw partition
5001 * readonly, and if so set the rdonly flag and then
5002 * mark the partition as valid again.
5003 */
5004 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5005 (sbi->s_mount_state & EXT4_VALID_FS))
5006 es->s_state = cpu_to_le16(sbi->s_mount_state);
5007
5008 if (sbi->s_journal)
5009 ext4_mark_recovery_complete(sb, es);
5010 } else {
5011 /* Make sure we can mount this feature set readwrite */
5012 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5013 EXT4_FEATURE_RO_COMPAT_READONLY) ||
5014 !ext4_feature_set_ok(sb, 0)) {
5015 err = -EROFS;
5016 goto restore_opts;
5017 }
5018 /*
5019 * Make sure the group descriptor checksums
5020 * are sane. If they aren't, refuse to remount r/w.
5021 */
5022 for (g = 0; g < sbi->s_groups_count; g++) {
5023 struct ext4_group_desc *gdp =
5024 ext4_get_group_desc(sb, g, NULL);
5025
5026 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5027 ext4_msg(sb, KERN_ERR,
5028 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5029 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
5030 le16_to_cpu(gdp->bg_checksum));
5031 err = -EINVAL;
5032 goto restore_opts;
5033 }
5034 }
5035
5036 /*
5037 * If we have an unprocessed orphan list hanging
5038 * around from a previously readonly bdev mount,
5039 * require a full umount/remount for now.
5040 */
5041 if (es->s_last_orphan) {
5042 ext4_msg(sb, KERN_WARNING, "Couldn't "
5043 "remount RDWR because of unprocessed "
5044 "orphan inode list. Please "
5045 "umount/remount instead");
5046 err = -EINVAL;
5047 goto restore_opts;
5048 }
5049
5050 /*
5051 * Mounting a RDONLY partition read-write, so reread
5052 * and store the current valid flag. (It may have
5053 * been changed by e2fsck since we originally mounted
5054 * the partition.)
5055 */
5056 if (sbi->s_journal)
5057 ext4_clear_journal_err(sb, es);
5058 sbi->s_mount_state = le16_to_cpu(es->s_state);
5059 if (!ext4_setup_super(sb, es, 0))
5060 sb->s_flags &= ~MS_RDONLY;
5061 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5062 EXT4_FEATURE_INCOMPAT_MMP))
5063 if (ext4_multi_mount_protect(sb,
5064 le64_to_cpu(es->s_mmp_block))) {
5065 err = -EROFS;
5066 goto restore_opts;
5067 }
5068 enable_quota = 1;
5069 }
5070 }
5071
5072 /*
5073 * Reinitialize lazy itable initialization thread based on
5074 * current settings
5075 */
5076 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5077 ext4_unregister_li_request(sb);
5078 else {
5079 ext4_group_t first_not_zeroed;
5080 first_not_zeroed = ext4_has_uninit_itable(sb);
5081 ext4_register_li_request(sb, first_not_zeroed);
5082 }
5083
5084 ext4_setup_system_zone(sb);
5085 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5086 ext4_commit_super(sb, 1);
5087
5088 #ifdef CONFIG_QUOTA
5089 /* Release old quota file names */
5090 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5091 kfree(old_opts.s_qf_names[i]);
5092 if (enable_quota) {
5093 if (sb_any_quota_suspended(sb))
5094 dquot_resume(sb, -1);
5095 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5096 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5097 err = ext4_enable_quotas(sb);
5098 if (err)
5099 goto restore_opts;
5100 }
5101 }
5102 #endif
5103
5104 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5105 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5106 kfree(orig_data);
5107 return 0;
5108
5109 restore_opts:
5110 sb->s_flags = old_sb_flags;
5111 sbi->s_mount_opt = old_opts.s_mount_opt;
5112 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5113 sbi->s_resuid = old_opts.s_resuid;
5114 sbi->s_resgid = old_opts.s_resgid;
5115 sbi->s_commit_interval = old_opts.s_commit_interval;
5116 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5117 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5118 #ifdef CONFIG_QUOTA
5119 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5120 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5121 kfree(sbi->s_qf_names[i]);
5122 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5123 }
5124 #endif
5125 kfree(orig_data);
5126 return err;
5127 }
5128
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5129 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5130 {
5131 struct super_block *sb = dentry->d_sb;
5132 struct ext4_sb_info *sbi = EXT4_SB(sb);
5133 struct ext4_super_block *es = sbi->s_es;
5134 ext4_fsblk_t overhead = 0, resv_blocks;
5135 u64 fsid;
5136 s64 bfree;
5137 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5138
5139 if (!test_opt(sb, MINIX_DF))
5140 overhead = sbi->s_overhead;
5141
5142 buf->f_type = EXT4_SUPER_MAGIC;
5143 buf->f_bsize = sb->s_blocksize;
5144 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5145 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5146 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5147 /* prevent underflow in case that few free space is available */
5148 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5149 buf->f_bavail = buf->f_bfree -
5150 (ext4_r_blocks_count(es) + resv_blocks);
5151 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5152 buf->f_bavail = 0;
5153 buf->f_files = le32_to_cpu(es->s_inodes_count);
5154 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5155 buf->f_namelen = EXT4_NAME_LEN;
5156 fsid = le64_to_cpup((void *)es->s_uuid) ^
5157 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5158 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5159 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5160
5161 return 0;
5162 }
5163
5164 /* Helper function for writing quotas on sync - we need to start transaction
5165 * before quota file is locked for write. Otherwise the are possible deadlocks:
5166 * Process 1 Process 2
5167 * ext4_create() quota_sync()
5168 * jbd2_journal_start() write_dquot()
5169 * dquot_initialize() down(dqio_mutex)
5170 * down(dqio_mutex) jbd2_journal_start()
5171 *
5172 */
5173
5174 #ifdef CONFIG_QUOTA
5175
dquot_to_inode(struct dquot * dquot)5176 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5177 {
5178 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5179 }
5180
ext4_write_dquot(struct dquot * dquot)5181 static int ext4_write_dquot(struct dquot *dquot)
5182 {
5183 int ret, err;
5184 handle_t *handle;
5185 struct inode *inode;
5186
5187 inode = dquot_to_inode(dquot);
5188 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5189 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5190 if (IS_ERR(handle))
5191 return PTR_ERR(handle);
5192 ret = dquot_commit(dquot);
5193 err = ext4_journal_stop(handle);
5194 if (!ret)
5195 ret = err;
5196 return ret;
5197 }
5198
ext4_acquire_dquot(struct dquot * dquot)5199 static int ext4_acquire_dquot(struct dquot *dquot)
5200 {
5201 int ret, err;
5202 handle_t *handle;
5203
5204 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5205 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5206 if (IS_ERR(handle))
5207 return PTR_ERR(handle);
5208 ret = dquot_acquire(dquot);
5209 err = ext4_journal_stop(handle);
5210 if (!ret)
5211 ret = err;
5212 return ret;
5213 }
5214
ext4_release_dquot(struct dquot * dquot)5215 static int ext4_release_dquot(struct dquot *dquot)
5216 {
5217 int ret, err;
5218 handle_t *handle;
5219
5220 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5221 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5222 if (IS_ERR(handle)) {
5223 /* Release dquot anyway to avoid endless cycle in dqput() */
5224 dquot_release(dquot);
5225 return PTR_ERR(handle);
5226 }
5227 ret = dquot_release(dquot);
5228 err = ext4_journal_stop(handle);
5229 if (!ret)
5230 ret = err;
5231 return ret;
5232 }
5233
ext4_mark_dquot_dirty(struct dquot * dquot)5234 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5235 {
5236 struct super_block *sb = dquot->dq_sb;
5237 struct ext4_sb_info *sbi = EXT4_SB(sb);
5238
5239 /* Are we journaling quotas? */
5240 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5241 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5242 dquot_mark_dquot_dirty(dquot);
5243 return ext4_write_dquot(dquot);
5244 } else {
5245 return dquot_mark_dquot_dirty(dquot);
5246 }
5247 }
5248
ext4_write_info(struct super_block * sb,int type)5249 static int ext4_write_info(struct super_block *sb, int type)
5250 {
5251 int ret, err;
5252 handle_t *handle;
5253
5254 /* Data block + inode block */
5255 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5256 if (IS_ERR(handle))
5257 return PTR_ERR(handle);
5258 ret = dquot_commit_info(sb, type);
5259 err = ext4_journal_stop(handle);
5260 if (!ret)
5261 ret = err;
5262 return ret;
5263 }
5264
5265 /*
5266 * Turn on quotas during mount time - we need to find
5267 * the quota file and such...
5268 */
ext4_quota_on_mount(struct super_block * sb,int type)5269 static int ext4_quota_on_mount(struct super_block *sb, int type)
5270 {
5271 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5272 EXT4_SB(sb)->s_jquota_fmt, type);
5273 }
5274
lockdep_set_quota_inode(struct inode * inode,int subclass)5275 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5276 {
5277 struct ext4_inode_info *ei = EXT4_I(inode);
5278
5279 /* The first argument of lockdep_set_subclass has to be
5280 * *exactly* the same as the argument to init_rwsem() --- in
5281 * this case, in init_once() --- or lockdep gets unhappy
5282 * because the name of the lock is set using the
5283 * stringification of the argument to init_rwsem().
5284 */
5285 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5286 lockdep_set_subclass(&ei->i_data_sem, subclass);
5287 }
5288
5289 /*
5290 * Standard function to be called on quota_on
5291 */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)5292 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5293 struct path *path)
5294 {
5295 int err;
5296
5297 if (!test_opt(sb, QUOTA))
5298 return -EINVAL;
5299
5300 /* Quotafile not on the same filesystem? */
5301 if (path->dentry->d_sb != sb)
5302 return -EXDEV;
5303 /* Journaling quota? */
5304 if (EXT4_SB(sb)->s_qf_names[type]) {
5305 /* Quotafile not in fs root? */
5306 if (path->dentry->d_parent != sb->s_root)
5307 ext4_msg(sb, KERN_WARNING,
5308 "Quota file not on filesystem root. "
5309 "Journaled quota will not work");
5310 }
5311
5312 /*
5313 * When we journal data on quota file, we have to flush journal to see
5314 * all updates to the file when we bypass pagecache...
5315 */
5316 if (EXT4_SB(sb)->s_journal &&
5317 ext4_should_journal_data(d_inode(path->dentry))) {
5318 /*
5319 * We don't need to lock updates but journal_flush() could
5320 * otherwise be livelocked...
5321 */
5322 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5323 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5324 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5325 if (err)
5326 return err;
5327 }
5328 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5329 err = dquot_quota_on(sb, type, format_id, path);
5330 if (err)
5331 lockdep_set_quota_inode(path->dentry->d_inode,
5332 I_DATA_SEM_NORMAL);
5333 return err;
5334 }
5335
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5336 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5337 unsigned int flags)
5338 {
5339 int err;
5340 struct inode *qf_inode;
5341 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5342 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5343 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5344 };
5345
5346 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5347
5348 if (!qf_inums[type])
5349 return -EPERM;
5350
5351 qf_inode = ext4_iget(sb, qf_inums[type]);
5352 if (IS_ERR(qf_inode)) {
5353 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5354 return PTR_ERR(qf_inode);
5355 }
5356
5357 /* Don't account quota for quota files to avoid recursion */
5358 qf_inode->i_flags |= S_NOQUOTA;
5359 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5360 err = dquot_enable(qf_inode, type, format_id, flags);
5361 iput(qf_inode);
5362 if (err)
5363 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5364
5365 return err;
5366 }
5367
5368 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5369 static int ext4_enable_quotas(struct super_block *sb)
5370 {
5371 int type, err = 0;
5372 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5373 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5374 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5375 };
5376
5377 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5378 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5379 if (qf_inums[type]) {
5380 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5381 DQUOT_USAGE_ENABLED);
5382 if (err) {
5383 ext4_warning(sb,
5384 "Failed to enable quota tracking "
5385 "(type=%d, err=%d). Please run "
5386 "e2fsck to fix.", type, err);
5387 return err;
5388 }
5389 }
5390 }
5391 return 0;
5392 }
5393
ext4_quota_off(struct super_block * sb,int type)5394 static int ext4_quota_off(struct super_block *sb, int type)
5395 {
5396 struct inode *inode = sb_dqopt(sb)->files[type];
5397 handle_t *handle;
5398
5399 /* Force all delayed allocation blocks to be allocated.
5400 * Caller already holds s_umount sem */
5401 if (test_opt(sb, DELALLOC))
5402 sync_filesystem(sb);
5403
5404 if (!inode)
5405 goto out;
5406
5407 /* Update modification times of quota files when userspace can
5408 * start looking at them */
5409 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5410 if (IS_ERR(handle))
5411 goto out;
5412 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5413 ext4_mark_inode_dirty(handle, inode);
5414 ext4_journal_stop(handle);
5415
5416 out:
5417 return dquot_quota_off(sb, type);
5418 }
5419
5420 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5421 * acquiring the locks... As quota files are never truncated and quota code
5422 * itself serializes the operations (and no one else should touch the files)
5423 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5424 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5425 size_t len, loff_t off)
5426 {
5427 struct inode *inode = sb_dqopt(sb)->files[type];
5428 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5429 int offset = off & (sb->s_blocksize - 1);
5430 int tocopy;
5431 size_t toread;
5432 struct buffer_head *bh;
5433 loff_t i_size = i_size_read(inode);
5434
5435 if (off > i_size)
5436 return 0;
5437 if (off+len > i_size)
5438 len = i_size-off;
5439 toread = len;
5440 while (toread > 0) {
5441 tocopy = sb->s_blocksize - offset < toread ?
5442 sb->s_blocksize - offset : toread;
5443 bh = ext4_bread(NULL, inode, blk, 0);
5444 if (IS_ERR(bh))
5445 return PTR_ERR(bh);
5446 if (!bh) /* A hole? */
5447 memset(data, 0, tocopy);
5448 else
5449 memcpy(data, bh->b_data+offset, tocopy);
5450 brelse(bh);
5451 offset = 0;
5452 toread -= tocopy;
5453 data += tocopy;
5454 blk++;
5455 }
5456 return len;
5457 }
5458
5459 /* Write to quotafile (we know the transaction is already started and has
5460 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5461 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5462 const char *data, size_t len, loff_t off)
5463 {
5464 struct inode *inode = sb_dqopt(sb)->files[type];
5465 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5466 int err, offset = off & (sb->s_blocksize - 1);
5467 struct buffer_head *bh;
5468 handle_t *handle = journal_current_handle();
5469
5470 if (EXT4_SB(sb)->s_journal && !handle) {
5471 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5472 " cancelled because transaction is not started",
5473 (unsigned long long)off, (unsigned long long)len);
5474 return -EIO;
5475 }
5476 /*
5477 * Since we account only one data block in transaction credits,
5478 * then it is impossible to cross a block boundary.
5479 */
5480 if (sb->s_blocksize - offset < len) {
5481 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5482 " cancelled because not block aligned",
5483 (unsigned long long)off, (unsigned long long)len);
5484 return -EIO;
5485 }
5486
5487 bh = ext4_bread(handle, inode, blk, 1);
5488 if (IS_ERR(bh))
5489 return PTR_ERR(bh);
5490 if (!bh)
5491 goto out;
5492 BUFFER_TRACE(bh, "get write access");
5493 err = ext4_journal_get_write_access(handle, bh);
5494 if (err) {
5495 brelse(bh);
5496 return err;
5497 }
5498 lock_buffer(bh);
5499 memcpy(bh->b_data+offset, data, len);
5500 flush_dcache_page(bh->b_page);
5501 unlock_buffer(bh);
5502 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5503 brelse(bh);
5504 out:
5505 if (inode->i_size < off + len) {
5506 i_size_write(inode, off + len);
5507 EXT4_I(inode)->i_disksize = inode->i_size;
5508 ext4_mark_inode_dirty(handle, inode);
5509 }
5510 return len;
5511 }
5512
5513 #endif
5514
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5515 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5516 const char *dev_name, void *data)
5517 {
5518 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5519 }
5520
5521 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext2(void)5522 static inline void register_as_ext2(void)
5523 {
5524 int err = register_filesystem(&ext2_fs_type);
5525 if (err)
5526 printk(KERN_WARNING
5527 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5528 }
5529
unregister_as_ext2(void)5530 static inline void unregister_as_ext2(void)
5531 {
5532 unregister_filesystem(&ext2_fs_type);
5533 }
5534
ext2_feature_set_ok(struct super_block * sb)5535 static inline int ext2_feature_set_ok(struct super_block *sb)
5536 {
5537 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5538 return 0;
5539 if (sb->s_flags & MS_RDONLY)
5540 return 1;
5541 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5542 return 0;
5543 return 1;
5544 }
5545 #else
register_as_ext2(void)5546 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5547 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5548 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5549 #endif
5550
5551 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)5552 static inline void register_as_ext3(void)
5553 {
5554 int err = register_filesystem(&ext3_fs_type);
5555 if (err)
5556 printk(KERN_WARNING
5557 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5558 }
5559
unregister_as_ext3(void)5560 static inline void unregister_as_ext3(void)
5561 {
5562 unregister_filesystem(&ext3_fs_type);
5563 }
5564
ext3_feature_set_ok(struct super_block * sb)5565 static inline int ext3_feature_set_ok(struct super_block *sb)
5566 {
5567 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5568 return 0;
5569 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5570 return 0;
5571 if (sb->s_flags & MS_RDONLY)
5572 return 1;
5573 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5574 return 0;
5575 return 1;
5576 }
5577 #else
register_as_ext3(void)5578 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)5579 static inline void unregister_as_ext3(void) { }
ext3_feature_set_ok(struct super_block * sb)5580 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5581 #endif
5582
5583 static struct file_system_type ext4_fs_type = {
5584 .owner = THIS_MODULE,
5585 .name = "ext4",
5586 .mount = ext4_mount,
5587 .kill_sb = kill_block_super,
5588 .fs_flags = FS_REQUIRES_DEV,
5589 };
5590 MODULE_ALIAS_FS("ext4");
5591
ext4_init_feat_adverts(void)5592 static int __init ext4_init_feat_adverts(void)
5593 {
5594 struct ext4_features *ef;
5595 int ret = -ENOMEM;
5596
5597 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5598 if (!ef)
5599 goto out;
5600
5601 ef->f_kobj.kset = ext4_kset;
5602 init_completion(&ef->f_kobj_unregister);
5603 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5604 "features");
5605 if (ret) {
5606 kfree(ef);
5607 goto out;
5608 }
5609
5610 ext4_feat = ef;
5611 ret = 0;
5612 out:
5613 return ret;
5614 }
5615
ext4_exit_feat_adverts(void)5616 static void ext4_exit_feat_adverts(void)
5617 {
5618 kobject_put(&ext4_feat->f_kobj);
5619 wait_for_completion(&ext4_feat->f_kobj_unregister);
5620 kfree(ext4_feat);
5621 }
5622
5623 /* Shared across all ext4 file systems */
5624 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5625 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5626
ext4_init_fs(void)5627 static int __init ext4_init_fs(void)
5628 {
5629 int i, err;
5630
5631 ext4_li_info = NULL;
5632 mutex_init(&ext4_li_mtx);
5633
5634 /* Build-time check for flags consistency */
5635 ext4_check_flag_values();
5636
5637 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5638 mutex_init(&ext4__aio_mutex[i]);
5639 init_waitqueue_head(&ext4__ioend_wq[i]);
5640 }
5641
5642 err = ext4_init_es();
5643 if (err)
5644 return err;
5645
5646 err = ext4_init_pageio();
5647 if (err)
5648 goto out7;
5649
5650 err = ext4_init_system_zone();
5651 if (err)
5652 goto out6;
5653 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5654 if (!ext4_kset) {
5655 err = -ENOMEM;
5656 goto out5;
5657 }
5658 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5659
5660 err = ext4_init_feat_adverts();
5661 if (err)
5662 goto out4;
5663
5664 err = ext4_init_mballoc();
5665 if (err)
5666 goto out2;
5667 else
5668 ext4_mballoc_ready = 1;
5669 err = init_inodecache();
5670 if (err)
5671 goto out1;
5672 register_as_ext3();
5673 register_as_ext2();
5674 err = register_filesystem(&ext4_fs_type);
5675 if (err)
5676 goto out;
5677
5678 return 0;
5679 out:
5680 unregister_as_ext2();
5681 unregister_as_ext3();
5682 destroy_inodecache();
5683 out1:
5684 ext4_mballoc_ready = 0;
5685 ext4_exit_mballoc();
5686 out2:
5687 ext4_exit_feat_adverts();
5688 out4:
5689 if (ext4_proc_root)
5690 remove_proc_entry("fs/ext4", NULL);
5691 kset_unregister(ext4_kset);
5692 out5:
5693 ext4_exit_system_zone();
5694 out6:
5695 ext4_exit_pageio();
5696 out7:
5697 ext4_exit_es();
5698
5699 return err;
5700 }
5701
ext4_exit_fs(void)5702 static void __exit ext4_exit_fs(void)
5703 {
5704 ext4_destroy_lazyinit_thread();
5705 unregister_as_ext2();
5706 unregister_as_ext3();
5707 unregister_filesystem(&ext4_fs_type);
5708 destroy_inodecache();
5709 ext4_exit_mballoc();
5710 ext4_exit_feat_adverts();
5711 remove_proc_entry("fs/ext4", NULL);
5712 kset_unregister(ext4_kset);
5713 ext4_exit_system_zone();
5714 ext4_exit_pageio();
5715 ext4_exit_es();
5716 }
5717
5718 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5719 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5720 MODULE_LICENSE("GPL");
5721 module_init(ext4_init_fs)
5722 module_exit(ext4_exit_fs)
5723