1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23 
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25 
26 #define EFX_EF10_DRVGEN_EV		7
27 enum {
28 	EFX_EF10_TEST = 1,
29 	EFX_EF10_REFILL,
30 };
31 
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37 
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51 
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53 struct efx_ef10_dev_addr {
54 	u8 addr[ETH_ALEN];
55 	u16 id;
56 };
57 
58 struct efx_ef10_filter_table {
59 /* The RX match field masks supported by this fw & hw, in order of priority */
60 	enum efx_filter_match_flags rx_match_flags[
61 		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
62 	unsigned int rx_match_count;
63 
64 	struct {
65 		unsigned long spec;	/* pointer to spec plus flag bits */
66 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
67  * used to mark and sweep MAC filters for the device address lists.
68  */
69 #define EFX_EF10_FILTER_FLAG_BUSY	1UL
70 #define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
71 #define EFX_EF10_FILTER_FLAGS		3UL
72 		u64 handle;		/* firmware handle */
73 	} *entry;
74 	wait_queue_head_t waitq;
75 /* Shadow of net_device address lists, guarded by mac_lock */
76 #define EFX_EF10_FILTER_DEV_UC_MAX	32
77 #define EFX_EF10_FILTER_DEV_MC_MAX	256
78 	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
79 	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
80 	int dev_uc_count;
81 	int dev_mc_count;
82 /* Indices (like efx_ef10_dev_addr.id) for promisc/allmulti filters */
83 	u16 ucdef_id;
84 	u16 bcast_id;
85 	u16 mcdef_id;
86 };
87 
88 /* An arbitrary search limit for the software hash table */
89 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
90 
91 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
92 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
93 
efx_ef10_get_warm_boot_count(struct efx_nic * efx)94 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
95 {
96 	efx_dword_t reg;
97 
98 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
99 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
100 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
101 }
102 
efx_ef10_mem_map_size(struct efx_nic * efx)103 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
104 {
105 	int bar;
106 
107 	bar = efx->type->mem_bar;
108 	return resource_size(&efx->pci_dev->resource[bar]);
109 }
110 
efx_ef10_is_vf(struct efx_nic * efx)111 static bool efx_ef10_is_vf(struct efx_nic *efx)
112 {
113 	return efx->type->is_vf;
114 }
115 
efx_ef10_get_pf_index(struct efx_nic * efx)116 static int efx_ef10_get_pf_index(struct efx_nic *efx)
117 {
118 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
119 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
120 	size_t outlen;
121 	int rc;
122 
123 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
124 			  sizeof(outbuf), &outlen);
125 	if (rc)
126 		return rc;
127 	if (outlen < sizeof(outbuf))
128 		return -EIO;
129 
130 	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
131 	return 0;
132 }
133 
134 #ifdef CONFIG_SFC_SRIOV
efx_ef10_get_vf_index(struct efx_nic * efx)135 static int efx_ef10_get_vf_index(struct efx_nic *efx)
136 {
137 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
138 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
139 	size_t outlen;
140 	int rc;
141 
142 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
143 			  sizeof(outbuf), &outlen);
144 	if (rc)
145 		return rc;
146 	if (outlen < sizeof(outbuf))
147 		return -EIO;
148 
149 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
150 	return 0;
151 }
152 #endif
153 
efx_ef10_init_datapath_caps(struct efx_nic * efx)154 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
155 {
156 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
157 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
158 	size_t outlen;
159 	int rc;
160 
161 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
162 
163 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
164 			  outbuf, sizeof(outbuf), &outlen);
165 	if (rc)
166 		return rc;
167 	if (outlen < sizeof(outbuf)) {
168 		netif_err(efx, drv, efx->net_dev,
169 			  "unable to read datapath firmware capabilities\n");
170 		return -EIO;
171 	}
172 
173 	nic_data->datapath_caps =
174 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
175 
176 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
177 	 */
178 	nic_data->rx_dpcpu_fw_id =
179 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
180 	nic_data->tx_dpcpu_fw_id =
181 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
182 
183 	if (!(nic_data->datapath_caps &
184 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
185 		netif_err(efx, drv, efx->net_dev,
186 			  "current firmware does not support TSO\n");
187 		return -ENODEV;
188 	}
189 
190 	if (!(nic_data->datapath_caps &
191 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
192 		netif_err(efx, probe, efx->net_dev,
193 			  "current firmware does not support an RX prefix\n");
194 		return -ENODEV;
195 	}
196 
197 	return 0;
198 }
199 
efx_ef10_get_sysclk_freq(struct efx_nic * efx)200 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
201 {
202 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
203 	int rc;
204 
205 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
206 			  outbuf, sizeof(outbuf), NULL);
207 	if (rc)
208 		return rc;
209 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
210 	return rc > 0 ? rc : -ERANGE;
211 }
212 
efx_ef10_get_mac_address_pf(struct efx_nic * efx,u8 * mac_address)213 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
214 {
215 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
216 	size_t outlen;
217 	int rc;
218 
219 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
220 
221 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
222 			  outbuf, sizeof(outbuf), &outlen);
223 	if (rc)
224 		return rc;
225 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
226 		return -EIO;
227 
228 	ether_addr_copy(mac_address,
229 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
230 	return 0;
231 }
232 
efx_ef10_get_mac_address_vf(struct efx_nic * efx,u8 * mac_address)233 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
234 {
235 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
236 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
237 	size_t outlen;
238 	int num_addrs, rc;
239 
240 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
241 		       EVB_PORT_ID_ASSIGNED);
242 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
243 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
244 
245 	if (rc)
246 		return rc;
247 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
248 		return -EIO;
249 
250 	num_addrs = MCDI_DWORD(outbuf,
251 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
252 
253 	WARN_ON(num_addrs != 1);
254 
255 	ether_addr_copy(mac_address,
256 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
257 
258 	return 0;
259 }
260 
efx_ef10_show_link_control_flag(struct device * dev,struct device_attribute * attr,char * buf)261 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
262 					       struct device_attribute *attr,
263 					       char *buf)
264 {
265 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
266 
267 	return sprintf(buf, "%d\n",
268 		       ((efx->mcdi->fn_flags) &
269 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
270 		       ? 1 : 0);
271 }
272 
efx_ef10_show_primary_flag(struct device * dev,struct device_attribute * attr,char * buf)273 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
274 					  struct device_attribute *attr,
275 					  char *buf)
276 {
277 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
278 
279 	return sprintf(buf, "%d\n",
280 		       ((efx->mcdi->fn_flags) &
281 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
282 		       ? 1 : 0);
283 }
284 
285 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
286 		   NULL);
287 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
288 
efx_ef10_probe(struct efx_nic * efx)289 static int efx_ef10_probe(struct efx_nic *efx)
290 {
291 	struct efx_ef10_nic_data *nic_data;
292 	struct net_device *net_dev = efx->net_dev;
293 	int i, rc;
294 
295 	/* We can have one VI for each 8K region.  However, until we
296 	 * use TX option descriptors we need two TX queues per channel.
297 	 */
298 	efx->max_channels = min_t(unsigned int,
299 				  EFX_MAX_CHANNELS,
300 				  efx_ef10_mem_map_size(efx) /
301 				  (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
302 	efx->max_tx_channels = efx->max_channels;
303 	if (WARN_ON(efx->max_channels == 0))
304 		return -EIO;
305 
306 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
307 	if (!nic_data)
308 		return -ENOMEM;
309 	efx->nic_data = nic_data;
310 
311 	/* we assume later that we can copy from this buffer in dwords */
312 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
313 
314 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
315 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
316 	if (rc)
317 		goto fail1;
318 
319 	/* Get the MC's warm boot count.  In case it's rebooting right
320 	 * now, be prepared to retry.
321 	 */
322 	i = 0;
323 	for (;;) {
324 		rc = efx_ef10_get_warm_boot_count(efx);
325 		if (rc >= 0)
326 			break;
327 		if (++i == 5)
328 			goto fail2;
329 		ssleep(1);
330 	}
331 	nic_data->warm_boot_count = rc;
332 
333 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
334 
335 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
336 
337 	/* In case we're recovering from a crash (kexec), we want to
338 	 * cancel any outstanding request by the previous user of this
339 	 * function.  We send a special message using the least
340 	 * significant bits of the 'high' (doorbell) register.
341 	 */
342 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
343 
344 	rc = efx_mcdi_init(efx);
345 	if (rc)
346 		goto fail2;
347 
348 	/* Reset (most) configuration for this function */
349 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
350 	if (rc)
351 		goto fail3;
352 
353 	/* Enable event logging */
354 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
355 	if (rc)
356 		goto fail3;
357 
358 	rc = device_create_file(&efx->pci_dev->dev,
359 				&dev_attr_link_control_flag);
360 	if (rc)
361 		goto fail3;
362 
363 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
364 	if (rc)
365 		goto fail4;
366 
367 	rc = efx_ef10_get_pf_index(efx);
368 	if (rc)
369 		goto fail5;
370 
371 	rc = efx_ef10_init_datapath_caps(efx);
372 	if (rc < 0)
373 		goto fail5;
374 
375 	efx->rx_packet_len_offset =
376 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
377 
378 	rc = efx_mcdi_port_get_number(efx);
379 	if (rc < 0)
380 		goto fail5;
381 	efx->port_num = rc;
382 	net_dev->dev_port = rc;
383 
384 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
385 	if (rc)
386 		goto fail5;
387 
388 	rc = efx_ef10_get_sysclk_freq(efx);
389 	if (rc < 0)
390 		goto fail5;
391 	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
392 
393 	/* Check whether firmware supports bug 35388 workaround.
394 	 * First try to enable it, then if we get EPERM, just
395 	 * ask if it's already enabled
396 	 */
397 	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL);
398 	if (rc == 0) {
399 		nic_data->workaround_35388 = true;
400 	} else if (rc == -EPERM) {
401 		unsigned int enabled;
402 
403 		rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
404 		if (rc)
405 			goto fail3;
406 		nic_data->workaround_35388 = enabled &
407 			MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
408 	} else if (rc != -ENOSYS && rc != -ENOENT) {
409 		goto fail5;
410 	}
411 	netif_dbg(efx, probe, efx->net_dev,
412 		  "workaround for bug 35388 is %sabled\n",
413 		  nic_data->workaround_35388 ? "en" : "dis");
414 
415 	rc = efx_mcdi_mon_probe(efx);
416 	if (rc && rc != -EPERM)
417 		goto fail5;
418 
419 	efx_ptp_probe(efx, NULL);
420 
421 #ifdef CONFIG_SFC_SRIOV
422 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
423 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
424 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
425 
426 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
427 	} else
428 #endif
429 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
430 
431 	return 0;
432 
433 fail5:
434 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
435 fail4:
436 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
437 fail3:
438 	efx_mcdi_fini(efx);
439 fail2:
440 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
441 fail1:
442 	kfree(nic_data);
443 	efx->nic_data = NULL;
444 	return rc;
445 }
446 
efx_ef10_free_vis(struct efx_nic * efx)447 static int efx_ef10_free_vis(struct efx_nic *efx)
448 {
449 	MCDI_DECLARE_BUF_ERR(outbuf);
450 	size_t outlen;
451 	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
452 				    outbuf, sizeof(outbuf), &outlen);
453 
454 	/* -EALREADY means nothing to free, so ignore */
455 	if (rc == -EALREADY)
456 		rc = 0;
457 	if (rc)
458 		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
459 				       rc);
460 	return rc;
461 }
462 
463 #ifdef EFX_USE_PIO
464 
efx_ef10_free_piobufs(struct efx_nic * efx)465 static void efx_ef10_free_piobufs(struct efx_nic *efx)
466 {
467 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
468 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
469 	unsigned int i;
470 	int rc;
471 
472 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
473 
474 	for (i = 0; i < nic_data->n_piobufs; i++) {
475 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
476 			       nic_data->piobuf_handle[i]);
477 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
478 				  NULL, 0, NULL);
479 		WARN_ON(rc);
480 	}
481 
482 	nic_data->n_piobufs = 0;
483 }
484 
efx_ef10_alloc_piobufs(struct efx_nic * efx,unsigned int n)485 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
486 {
487 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
488 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
489 	unsigned int i;
490 	size_t outlen;
491 	int rc = 0;
492 
493 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
494 
495 	for (i = 0; i < n; i++) {
496 		rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
497 				  outbuf, sizeof(outbuf), &outlen);
498 		if (rc)
499 			break;
500 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
501 			rc = -EIO;
502 			break;
503 		}
504 		nic_data->piobuf_handle[i] =
505 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
506 		netif_dbg(efx, probe, efx->net_dev,
507 			  "allocated PIO buffer %u handle %x\n", i,
508 			  nic_data->piobuf_handle[i]);
509 	}
510 
511 	nic_data->n_piobufs = i;
512 	if (rc)
513 		efx_ef10_free_piobufs(efx);
514 	return rc;
515 }
516 
efx_ef10_link_piobufs(struct efx_nic * efx)517 static int efx_ef10_link_piobufs(struct efx_nic *efx)
518 {
519 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
520 	_MCDI_DECLARE_BUF(inbuf,
521 			  max(MC_CMD_LINK_PIOBUF_IN_LEN,
522 			      MC_CMD_UNLINK_PIOBUF_IN_LEN));
523 	struct efx_channel *channel;
524 	struct efx_tx_queue *tx_queue;
525 	unsigned int offset, index;
526 	int rc;
527 
528 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
529 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
530 
531 	memset(inbuf, 0, sizeof(inbuf));
532 
533 	/* Link a buffer to each VI in the write-combining mapping */
534 	for (index = 0; index < nic_data->n_piobufs; ++index) {
535 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
536 			       nic_data->piobuf_handle[index]);
537 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
538 			       nic_data->pio_write_vi_base + index);
539 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
540 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
541 				  NULL, 0, NULL);
542 		if (rc) {
543 			netif_err(efx, drv, efx->net_dev,
544 				  "failed to link VI %u to PIO buffer %u (%d)\n",
545 				  nic_data->pio_write_vi_base + index, index,
546 				  rc);
547 			goto fail;
548 		}
549 		netif_dbg(efx, probe, efx->net_dev,
550 			  "linked VI %u to PIO buffer %u\n",
551 			  nic_data->pio_write_vi_base + index, index);
552 	}
553 
554 	/* Link a buffer to each TX queue */
555 	efx_for_each_channel(channel, efx) {
556 		efx_for_each_channel_tx_queue(tx_queue, channel) {
557 			/* We assign the PIO buffers to queues in
558 			 * reverse order to allow for the following
559 			 * special case.
560 			 */
561 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
562 				   tx_queue->channel->channel - 1) *
563 				  efx_piobuf_size);
564 			index = offset / ER_DZ_TX_PIOBUF_SIZE;
565 			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
566 
567 			/* When the host page size is 4K, the first
568 			 * host page in the WC mapping may be within
569 			 * the same VI page as the last TX queue.  We
570 			 * can only link one buffer to each VI.
571 			 */
572 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
573 				BUG_ON(index != 0);
574 				rc = 0;
575 			} else {
576 				MCDI_SET_DWORD(inbuf,
577 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
578 					       nic_data->piobuf_handle[index]);
579 				MCDI_SET_DWORD(inbuf,
580 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
581 					       tx_queue->queue);
582 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
583 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
584 						  NULL, 0, NULL);
585 			}
586 
587 			if (rc) {
588 				/* This is non-fatal; the TX path just
589 				 * won't use PIO for this queue
590 				 */
591 				netif_err(efx, drv, efx->net_dev,
592 					  "failed to link VI %u to PIO buffer %u (%d)\n",
593 					  tx_queue->queue, index, rc);
594 				tx_queue->piobuf = NULL;
595 			} else {
596 				tx_queue->piobuf =
597 					nic_data->pio_write_base +
598 					index * EFX_VI_PAGE_SIZE + offset;
599 				tx_queue->piobuf_offset = offset;
600 				netif_dbg(efx, probe, efx->net_dev,
601 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
602 					  tx_queue->queue, index,
603 					  tx_queue->piobuf_offset,
604 					  tx_queue->piobuf);
605 			}
606 		}
607 	}
608 
609 	return 0;
610 
611 fail:
612 	while (index--) {
613 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
614 			       nic_data->pio_write_vi_base + index);
615 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
616 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
617 			     NULL, 0, NULL);
618 	}
619 	return rc;
620 }
621 
efx_ef10_forget_old_piobufs(struct efx_nic * efx)622 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
623 {
624 	struct efx_channel *channel;
625 	struct efx_tx_queue *tx_queue;
626 
627 	/* All our existing PIO buffers went away */
628 	efx_for_each_channel(channel, efx)
629 		efx_for_each_channel_tx_queue(tx_queue, channel)
630 			tx_queue->piobuf = NULL;
631 }
632 
633 #else /* !EFX_USE_PIO */
634 
efx_ef10_alloc_piobufs(struct efx_nic * efx,unsigned int n)635 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
636 {
637 	return n == 0 ? 0 : -ENOBUFS;
638 }
639 
efx_ef10_link_piobufs(struct efx_nic * efx)640 static int efx_ef10_link_piobufs(struct efx_nic *efx)
641 {
642 	return 0;
643 }
644 
efx_ef10_free_piobufs(struct efx_nic * efx)645 static void efx_ef10_free_piobufs(struct efx_nic *efx)
646 {
647 }
648 
efx_ef10_forget_old_piobufs(struct efx_nic * efx)649 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
650 {
651 }
652 
653 #endif /* EFX_USE_PIO */
654 
efx_ef10_remove(struct efx_nic * efx)655 static void efx_ef10_remove(struct efx_nic *efx)
656 {
657 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
658 	int rc;
659 
660 #ifdef CONFIG_SFC_SRIOV
661 	struct efx_ef10_nic_data *nic_data_pf;
662 	struct pci_dev *pci_dev_pf;
663 	struct efx_nic *efx_pf;
664 	struct ef10_vf *vf;
665 
666 	if (efx->pci_dev->is_virtfn) {
667 		pci_dev_pf = efx->pci_dev->physfn;
668 		if (pci_dev_pf) {
669 			efx_pf = pci_get_drvdata(pci_dev_pf);
670 			nic_data_pf = efx_pf->nic_data;
671 			vf = nic_data_pf->vf + nic_data->vf_index;
672 			vf->efx = NULL;
673 		} else
674 			netif_info(efx, drv, efx->net_dev,
675 				   "Could not get the PF id from VF\n");
676 	}
677 #endif
678 
679 	efx_ptp_remove(efx);
680 
681 	efx_mcdi_mon_remove(efx);
682 
683 	efx_ef10_rx_free_indir_table(efx);
684 
685 	if (nic_data->wc_membase)
686 		iounmap(nic_data->wc_membase);
687 
688 	rc = efx_ef10_free_vis(efx);
689 	WARN_ON(rc != 0);
690 
691 	if (!nic_data->must_restore_piobufs)
692 		efx_ef10_free_piobufs(efx);
693 
694 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
695 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
696 
697 	efx_mcdi_fini(efx);
698 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
699 	kfree(nic_data);
700 }
701 
efx_ef10_probe_pf(struct efx_nic * efx)702 static int efx_ef10_probe_pf(struct efx_nic *efx)
703 {
704 	return efx_ef10_probe(efx);
705 }
706 
efx_ef10_vadaptor_alloc(struct efx_nic * efx,unsigned int port_id)707 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
708 {
709 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
710 
711 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
712 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
713 			    NULL, 0, NULL);
714 }
715 
efx_ef10_vadaptor_free(struct efx_nic * efx,unsigned int port_id)716 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
717 {
718 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
719 
720 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
721 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
722 			    NULL, 0, NULL);
723 }
724 
efx_ef10_vport_add_mac(struct efx_nic * efx,unsigned int port_id,u8 * mac)725 int efx_ef10_vport_add_mac(struct efx_nic *efx,
726 			   unsigned int port_id, u8 *mac)
727 {
728 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
729 
730 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
731 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
732 
733 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
734 			    sizeof(inbuf), NULL, 0, NULL);
735 }
736 
efx_ef10_vport_del_mac(struct efx_nic * efx,unsigned int port_id,u8 * mac)737 int efx_ef10_vport_del_mac(struct efx_nic *efx,
738 			   unsigned int port_id, u8 *mac)
739 {
740 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
741 
742 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
743 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
744 
745 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
746 			    sizeof(inbuf), NULL, 0, NULL);
747 }
748 
749 #ifdef CONFIG_SFC_SRIOV
efx_ef10_probe_vf(struct efx_nic * efx)750 static int efx_ef10_probe_vf(struct efx_nic *efx)
751 {
752 	int rc;
753 	struct pci_dev *pci_dev_pf;
754 
755 	/* If the parent PF has no VF data structure, it doesn't know about this
756 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
757 	 * if the PF driver is unloaded while the VF is assigned to a guest.
758 	 */
759 	pci_dev_pf = efx->pci_dev->physfn;
760 	if (pci_dev_pf) {
761 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
762 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
763 
764 		if (!nic_data_pf->vf) {
765 			netif_info(efx, drv, efx->net_dev,
766 				   "The VF cannot link to its parent PF; "
767 				   "please destroy and re-create the VF\n");
768 			return -EBUSY;
769 		}
770 	}
771 
772 	rc = efx_ef10_probe(efx);
773 	if (rc)
774 		return rc;
775 
776 	rc = efx_ef10_get_vf_index(efx);
777 	if (rc)
778 		goto fail;
779 
780 	if (efx->pci_dev->is_virtfn) {
781 		if (efx->pci_dev->physfn) {
782 			struct efx_nic *efx_pf =
783 				pci_get_drvdata(efx->pci_dev->physfn);
784 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
785 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
786 
787 			nic_data_p->vf[nic_data->vf_index].efx = efx;
788 			nic_data_p->vf[nic_data->vf_index].pci_dev =
789 				efx->pci_dev;
790 		} else
791 			netif_info(efx, drv, efx->net_dev,
792 				   "Could not get the PF id from VF\n");
793 	}
794 
795 	return 0;
796 
797 fail:
798 	efx_ef10_remove(efx);
799 	return rc;
800 }
801 #else
efx_ef10_probe_vf(struct efx_nic * efx)802 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
803 {
804 	return 0;
805 }
806 #endif
807 
efx_ef10_alloc_vis(struct efx_nic * efx,unsigned int min_vis,unsigned int max_vis)808 static int efx_ef10_alloc_vis(struct efx_nic *efx,
809 			      unsigned int min_vis, unsigned int max_vis)
810 {
811 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
812 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
813 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
814 	size_t outlen;
815 	int rc;
816 
817 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
818 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
819 	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
820 			  outbuf, sizeof(outbuf), &outlen);
821 	if (rc != 0)
822 		return rc;
823 
824 	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
825 		return -EIO;
826 
827 	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
828 		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
829 
830 	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
831 	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
832 	return 0;
833 }
834 
835 /* Note that the failure path of this function does not free
836  * resources, as this will be done by efx_ef10_remove().
837  */
efx_ef10_dimension_resources(struct efx_nic * efx)838 static int efx_ef10_dimension_resources(struct efx_nic *efx)
839 {
840 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
841 	unsigned int uc_mem_map_size, wc_mem_map_size;
842 	unsigned int min_vis = max(EFX_TXQ_TYPES,
843 				   efx_separate_tx_channels ? 2 : 1);
844 	unsigned int channel_vis, pio_write_vi_base, max_vis;
845 	void __iomem *membase;
846 	int rc;
847 
848 	channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
849 
850 #ifdef EFX_USE_PIO
851 	/* Try to allocate PIO buffers if wanted and if the full
852 	 * number of PIO buffers would be sufficient to allocate one
853 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
854 	 * are only a small number of PIO buffers shared between all
855 	 * functions of the controller.
856 	 */
857 	if (efx_piobuf_size != 0 &&
858 	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
859 	    efx->n_tx_channels) {
860 		unsigned int n_piobufs =
861 			DIV_ROUND_UP(efx->n_tx_channels,
862 				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
863 
864 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
865 		if (rc)
866 			netif_err(efx, probe, efx->net_dev,
867 				  "failed to allocate PIO buffers (%d)\n", rc);
868 		else
869 			netif_dbg(efx, probe, efx->net_dev,
870 				  "allocated %u PIO buffers\n", n_piobufs);
871 	}
872 #else
873 	nic_data->n_piobufs = 0;
874 #endif
875 
876 	/* PIO buffers should be mapped with write-combining enabled,
877 	 * and we want to make single UC and WC mappings rather than
878 	 * several of each (in fact that's the only option if host
879 	 * page size is >4K).  So we may allocate some extra VIs just
880 	 * for writing PIO buffers through.
881 	 *
882 	 * The UC mapping contains (channel_vis - 1) complete VIs and the
883 	 * first half of the next VI.  Then the WC mapping begins with
884 	 * the second half of this last VI.
885 	 */
886 	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
887 				     ER_DZ_TX_PIOBUF);
888 	if (nic_data->n_piobufs) {
889 		/* pio_write_vi_base rounds down to give the number of complete
890 		 * VIs inside the UC mapping.
891 		 */
892 		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
893 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
894 					       nic_data->n_piobufs) *
895 					      EFX_VI_PAGE_SIZE) -
896 				   uc_mem_map_size);
897 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
898 	} else {
899 		pio_write_vi_base = 0;
900 		wc_mem_map_size = 0;
901 		max_vis = channel_vis;
902 	}
903 
904 	/* In case the last attached driver failed to free VIs, do it now */
905 	rc = efx_ef10_free_vis(efx);
906 	if (rc != 0)
907 		return rc;
908 
909 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
910 	if (rc != 0)
911 		return rc;
912 
913 	if (nic_data->n_allocated_vis < channel_vis) {
914 		netif_info(efx, drv, efx->net_dev,
915 			   "Could not allocate enough VIs to satisfy RSS"
916 			   " requirements. Performance may not be optimal.\n");
917 		/* We didn't get the VIs to populate our channels.
918 		 * We could keep what we got but then we'd have more
919 		 * interrupts than we need.
920 		 * Instead calculate new max_channels and restart
921 		 */
922 		efx->max_channels = nic_data->n_allocated_vis;
923 		efx->max_tx_channels =
924 			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
925 
926 		efx_ef10_free_vis(efx);
927 		return -EAGAIN;
928 	}
929 
930 	/* If we didn't get enough VIs to map all the PIO buffers, free the
931 	 * PIO buffers
932 	 */
933 	if (nic_data->n_piobufs &&
934 	    nic_data->n_allocated_vis <
935 	    pio_write_vi_base + nic_data->n_piobufs) {
936 		netif_dbg(efx, probe, efx->net_dev,
937 			  "%u VIs are not sufficient to map %u PIO buffers\n",
938 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
939 		efx_ef10_free_piobufs(efx);
940 	}
941 
942 	/* Shrink the original UC mapping of the memory BAR */
943 	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
944 	if (!membase) {
945 		netif_err(efx, probe, efx->net_dev,
946 			  "could not shrink memory BAR to %x\n",
947 			  uc_mem_map_size);
948 		return -ENOMEM;
949 	}
950 	iounmap(efx->membase);
951 	efx->membase = membase;
952 
953 	/* Set up the WC mapping if needed */
954 	if (wc_mem_map_size) {
955 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
956 						  uc_mem_map_size,
957 						  wc_mem_map_size);
958 		if (!nic_data->wc_membase) {
959 			netif_err(efx, probe, efx->net_dev,
960 				  "could not allocate WC mapping of size %x\n",
961 				  wc_mem_map_size);
962 			return -ENOMEM;
963 		}
964 		nic_data->pio_write_vi_base = pio_write_vi_base;
965 		nic_data->pio_write_base =
966 			nic_data->wc_membase +
967 			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
968 			 uc_mem_map_size);
969 
970 		rc = efx_ef10_link_piobufs(efx);
971 		if (rc)
972 			efx_ef10_free_piobufs(efx);
973 	}
974 
975 	netif_dbg(efx, probe, efx->net_dev,
976 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
977 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
978 		  nic_data->wc_membase, wc_mem_map_size);
979 
980 	return 0;
981 }
982 
efx_ef10_init_nic(struct efx_nic * efx)983 static int efx_ef10_init_nic(struct efx_nic *efx)
984 {
985 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
986 	int rc;
987 
988 	if (nic_data->must_check_datapath_caps) {
989 		rc = efx_ef10_init_datapath_caps(efx);
990 		if (rc)
991 			return rc;
992 		nic_data->must_check_datapath_caps = false;
993 	}
994 
995 	if (nic_data->must_realloc_vis) {
996 		/* We cannot let the number of VIs change now */
997 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
998 					nic_data->n_allocated_vis);
999 		if (rc)
1000 			return rc;
1001 		nic_data->must_realloc_vis = false;
1002 	}
1003 
1004 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1005 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1006 		if (rc == 0) {
1007 			rc = efx_ef10_link_piobufs(efx);
1008 			if (rc)
1009 				efx_ef10_free_piobufs(efx);
1010 		}
1011 
1012 		/* Log an error on failure, but this is non-fatal */
1013 		if (rc)
1014 			netif_err(efx, drv, efx->net_dev,
1015 				  "failed to restore PIO buffers (%d)\n", rc);
1016 		nic_data->must_restore_piobufs = false;
1017 	}
1018 
1019 	/* don't fail init if RSS setup doesn't work */
1020 	efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
1021 
1022 	return 0;
1023 }
1024 
efx_ef10_reset_mc_allocations(struct efx_nic * efx)1025 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1026 {
1027 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1028 #ifdef CONFIG_SFC_SRIOV
1029 	unsigned int i;
1030 #endif
1031 
1032 	/* All our allocations have been reset */
1033 	nic_data->must_realloc_vis = true;
1034 	nic_data->must_restore_filters = true;
1035 	nic_data->must_restore_piobufs = true;
1036 	efx_ef10_forget_old_piobufs(efx);
1037 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1038 
1039 	/* Driver-created vswitches and vports must be re-created */
1040 	nic_data->must_probe_vswitching = true;
1041 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1042 #ifdef CONFIG_SFC_SRIOV
1043 	if (nic_data->vf)
1044 		for (i = 0; i < efx->vf_count; i++)
1045 			nic_data->vf[i].vport_id = 0;
1046 #endif
1047 }
1048 
efx_ef10_map_reset_reason(enum reset_type reason)1049 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1050 {
1051 	if (reason == RESET_TYPE_MC_FAILURE)
1052 		return RESET_TYPE_DATAPATH;
1053 
1054 	return efx_mcdi_map_reset_reason(reason);
1055 }
1056 
efx_ef10_map_reset_flags(u32 * flags)1057 static int efx_ef10_map_reset_flags(u32 *flags)
1058 {
1059 	enum {
1060 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1061 				   ETH_RESET_SHARED_SHIFT),
1062 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1063 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1064 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1065 				 ETH_RESET_SHARED_SHIFT)
1066 	};
1067 
1068 	/* We assume for now that our PCI function is permitted to
1069 	 * reset everything.
1070 	 */
1071 
1072 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1073 		*flags &= ~EF10_RESET_MC;
1074 		return RESET_TYPE_WORLD;
1075 	}
1076 
1077 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1078 		*flags &= ~EF10_RESET_PORT;
1079 		return RESET_TYPE_ALL;
1080 	}
1081 
1082 	/* no invisible reset implemented */
1083 
1084 	return -EINVAL;
1085 }
1086 
efx_ef10_reset(struct efx_nic * efx,enum reset_type reset_type)1087 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1088 {
1089 	int rc = efx_mcdi_reset(efx, reset_type);
1090 
1091 	/* Unprivileged functions return -EPERM, but need to return success
1092 	 * here so that the datapath is brought back up.
1093 	 */
1094 	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1095 		rc = 0;
1096 
1097 	/* If it was a port reset, trigger reallocation of MC resources.
1098 	 * Note that on an MC reset nothing needs to be done now because we'll
1099 	 * detect the MC reset later and handle it then.
1100 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1101 	 * resources assigned to us, so we have to trigger reallocation now.
1102 	 */
1103 	if ((reset_type == RESET_TYPE_ALL ||
1104 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1105 		efx_ef10_reset_mc_allocations(efx);
1106 	return rc;
1107 }
1108 
1109 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1110 	[EF10_STAT_ ## ext_name] =				\
1111 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1112 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1113 	[EF10_STAT_ ## int_name] =				\
1114 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1115 #define EF10_OTHER_STAT(ext_name)				\
1116 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1117 #define GENERIC_SW_STAT(ext_name)				\
1118 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1119 
1120 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1121 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1122 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1123 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1124 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1125 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1126 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1127 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1128 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1129 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1130 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1131 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1132 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1133 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1134 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1135 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1136 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1137 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1138 	EF10_OTHER_STAT(port_rx_good_bytes),
1139 	EF10_OTHER_STAT(port_rx_bad_bytes),
1140 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1141 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1142 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1143 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1144 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1145 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1146 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1147 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1148 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1149 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1150 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1151 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1152 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1153 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1154 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1155 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1156 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1157 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1158 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1159 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1160 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1161 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1162 	GENERIC_SW_STAT(rx_nodesc_trunc),
1163 	GENERIC_SW_STAT(rx_noskb_drops),
1164 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1165 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1166 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1167 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1168 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1169 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1170 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1171 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1172 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1173 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1174 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1175 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1176 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1177 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1178 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1179 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1180 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1181 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1182 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1183 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1184 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1185 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1186 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1187 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1188 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1189 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1190 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1191 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1192 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1193 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1194 };
1195 
1196 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1197 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1198 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1199 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1200 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1201 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1202 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1203 			       (1ULL <<                                 \
1204 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1205 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1206 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1207 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1208 			       (1ULL << EF10_STAT_port_rx_good) |	\
1209 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1210 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1211 			       (1ULL << EF10_STAT_port_rx_control) |	\
1212 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1213 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1214 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1215 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1216 			       (1ULL << EF10_STAT_port_rx_64) |		\
1217 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1218 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1219 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1220 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1221 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1222 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1223 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1224 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1225 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1226 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1227 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1228 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1229 
1230 /* These statistics are only provided by the 10G MAC.  For a 10G/40G
1231  * switchable port we do not expose these because they might not
1232  * include all the packets they should.
1233  */
1234 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1235 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1236 				 (1ULL << EF10_STAT_port_tx_64) |	\
1237 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1238 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1239 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1240 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1241 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1242 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1243 
1244 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1245  * switchable port we do expose these because the errors will otherwise
1246  * be silent.
1247  */
1248 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1249 				  (1ULL << EF10_STAT_port_rx_length_error))
1250 
1251 /* These statistics are only provided if the firmware supports the
1252  * capability PM_AND_RXDP_COUNTERS.
1253  */
1254 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1255 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1256 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1257 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1258 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1259 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1260 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1261 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1262 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1263 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1264 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1265 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1266 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1267 
efx_ef10_raw_stat_mask(struct efx_nic * efx)1268 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1269 {
1270 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1271 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1272 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1273 
1274 	if (!(efx->mcdi->fn_flags &
1275 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1276 		return 0;
1277 
1278 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
1279 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1280 	else
1281 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1282 
1283 	if (nic_data->datapath_caps &
1284 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1285 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1286 
1287 	return raw_mask;
1288 }
1289 
efx_ef10_get_stat_mask(struct efx_nic * efx,unsigned long * mask)1290 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1291 {
1292 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1293 	u64 raw_mask[2];
1294 
1295 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1296 
1297 	/* Only show vadaptor stats when EVB capability is present */
1298 	if (nic_data->datapath_caps &
1299 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1300 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1301 		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1302 	} else {
1303 		raw_mask[1] = 0;
1304 	}
1305 
1306 #if BITS_PER_LONG == 64
1307 	mask[0] = raw_mask[0];
1308 	mask[1] = raw_mask[1];
1309 #else
1310 	mask[0] = raw_mask[0] & 0xffffffff;
1311 	mask[1] = raw_mask[0] >> 32;
1312 	mask[2] = raw_mask[1] & 0xffffffff;
1313 	mask[3] = raw_mask[1] >> 32;
1314 #endif
1315 }
1316 
efx_ef10_describe_stats(struct efx_nic * efx,u8 * names)1317 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1318 {
1319 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1320 
1321 	efx_ef10_get_stat_mask(efx, mask);
1322 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1323 				      mask, names);
1324 }
1325 
efx_ef10_update_stats_common(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)1326 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1327 					   struct rtnl_link_stats64 *core_stats)
1328 {
1329 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1330 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1331 	u64 *stats = nic_data->stats;
1332 	size_t stats_count = 0, index;
1333 
1334 	efx_ef10_get_stat_mask(efx, mask);
1335 
1336 	if (full_stats) {
1337 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1338 			if (efx_ef10_stat_desc[index].name) {
1339 				*full_stats++ = stats[index];
1340 				++stats_count;
1341 			}
1342 		}
1343 	}
1344 
1345 	if (!core_stats)
1346 		return stats_count;
1347 
1348 	if (nic_data->datapath_caps &
1349 			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1350 		/* Use vadaptor stats. */
1351 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1352 					 stats[EF10_STAT_rx_multicast] +
1353 					 stats[EF10_STAT_rx_broadcast];
1354 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1355 					 stats[EF10_STAT_tx_multicast] +
1356 					 stats[EF10_STAT_tx_broadcast];
1357 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1358 				       stats[EF10_STAT_rx_multicast_bytes] +
1359 				       stats[EF10_STAT_rx_broadcast_bytes];
1360 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1361 				       stats[EF10_STAT_tx_multicast_bytes] +
1362 				       stats[EF10_STAT_tx_broadcast_bytes];
1363 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1364 					 stats[GENERIC_STAT_rx_noskb_drops];
1365 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1366 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1367 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1368 		core_stats->rx_errors = core_stats->rx_crc_errors;
1369 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1370 	} else {
1371 		/* Use port stats. */
1372 		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1373 		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1374 		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1375 		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1376 		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1377 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1378 					 stats[GENERIC_STAT_rx_noskb_drops];
1379 		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1380 		core_stats->rx_length_errors =
1381 				stats[EF10_STAT_port_rx_gtjumbo] +
1382 				stats[EF10_STAT_port_rx_length_error];
1383 		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1384 		core_stats->rx_frame_errors =
1385 				stats[EF10_STAT_port_rx_align_error];
1386 		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1387 		core_stats->rx_errors = (core_stats->rx_length_errors +
1388 					 core_stats->rx_crc_errors +
1389 					 core_stats->rx_frame_errors);
1390 	}
1391 
1392 	return stats_count;
1393 }
1394 
efx_ef10_try_update_nic_stats_pf(struct efx_nic * efx)1395 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1396 {
1397 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1398 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1399 	__le64 generation_start, generation_end;
1400 	u64 *stats = nic_data->stats;
1401 	__le64 *dma_stats;
1402 
1403 	efx_ef10_get_stat_mask(efx, mask);
1404 
1405 	dma_stats = efx->stats_buffer.addr;
1406 	nic_data = efx->nic_data;
1407 
1408 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1409 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1410 		return 0;
1411 	rmb();
1412 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1413 			     stats, efx->stats_buffer.addr, false);
1414 	rmb();
1415 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1416 	if (generation_end != generation_start)
1417 		return -EAGAIN;
1418 
1419 	/* Update derived statistics */
1420 	efx_nic_fix_nodesc_drop_stat(efx,
1421 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1422 	stats[EF10_STAT_port_rx_good_bytes] =
1423 		stats[EF10_STAT_port_rx_bytes] -
1424 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1425 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1426 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1427 	efx_update_sw_stats(efx, stats);
1428 	return 0;
1429 }
1430 
1431 
efx_ef10_update_stats_pf(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)1432 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1433 				       struct rtnl_link_stats64 *core_stats)
1434 {
1435 	int retry;
1436 
1437 	/* If we're unlucky enough to read statistics during the DMA, wait
1438 	 * up to 10ms for it to finish (typically takes <500us)
1439 	 */
1440 	for (retry = 0; retry < 100; ++retry) {
1441 		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1442 			break;
1443 		udelay(100);
1444 	}
1445 
1446 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1447 }
1448 
efx_ef10_try_update_nic_stats_vf(struct efx_nic * efx)1449 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1450 {
1451 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1452 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1453 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1454 	__le64 generation_start, generation_end;
1455 	u64 *stats = nic_data->stats;
1456 	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1457 	struct efx_buffer stats_buf;
1458 	__le64 *dma_stats;
1459 	int rc;
1460 
1461 	spin_unlock_bh(&efx->stats_lock);
1462 
1463 	if (in_interrupt()) {
1464 		/* If in atomic context, cannot update stats.  Just update the
1465 		 * software stats and return so the caller can continue.
1466 		 */
1467 		spin_lock_bh(&efx->stats_lock);
1468 		efx_update_sw_stats(efx, stats);
1469 		return 0;
1470 	}
1471 
1472 	efx_ef10_get_stat_mask(efx, mask);
1473 
1474 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1475 	if (rc) {
1476 		spin_lock_bh(&efx->stats_lock);
1477 		return rc;
1478 	}
1479 
1480 	dma_stats = stats_buf.addr;
1481 	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1482 
1483 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1484 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1485 			      MAC_STATS_IN_DMA, 1);
1486 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1487 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1488 
1489 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1490 				NULL, 0, NULL);
1491 	spin_lock_bh(&efx->stats_lock);
1492 	if (rc) {
1493 		/* Expect ENOENT if DMA queues have not been set up */
1494 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1495 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1496 					       sizeof(inbuf), NULL, 0, rc);
1497 		goto out;
1498 	}
1499 
1500 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1501 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1502 		WARN_ON_ONCE(1);
1503 		goto out;
1504 	}
1505 	rmb();
1506 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1507 			     stats, stats_buf.addr, false);
1508 	rmb();
1509 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1510 	if (generation_end != generation_start) {
1511 		rc = -EAGAIN;
1512 		goto out;
1513 	}
1514 
1515 	efx_update_sw_stats(efx, stats);
1516 out:
1517 	efx_nic_free_buffer(efx, &stats_buf);
1518 	return rc;
1519 }
1520 
efx_ef10_update_stats_vf(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)1521 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1522 				       struct rtnl_link_stats64 *core_stats)
1523 {
1524 	if (efx_ef10_try_update_nic_stats_vf(efx))
1525 		return 0;
1526 
1527 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1528 }
1529 
efx_ef10_push_irq_moderation(struct efx_channel * channel)1530 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1531 {
1532 	struct efx_nic *efx = channel->efx;
1533 	unsigned int mode, value;
1534 	efx_dword_t timer_cmd;
1535 
1536 	if (channel->irq_moderation) {
1537 		mode = 3;
1538 		value = channel->irq_moderation - 1;
1539 	} else {
1540 		mode = 0;
1541 		value = 0;
1542 	}
1543 
1544 	if (EFX_EF10_WORKAROUND_35388(efx)) {
1545 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1546 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1547 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1548 				     ERF_DD_EVQ_IND_TIMER_VAL, value);
1549 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1550 				channel->channel);
1551 	} else {
1552 		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1553 				     ERF_DZ_TC_TIMER_VAL, value);
1554 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1555 				channel->channel);
1556 	}
1557 }
1558 
efx_ef10_get_wol_vf(struct efx_nic * efx,struct ethtool_wolinfo * wol)1559 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1560 				struct ethtool_wolinfo *wol) {}
1561 
efx_ef10_set_wol_vf(struct efx_nic * efx,u32 type)1562 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1563 {
1564 	return -EOPNOTSUPP;
1565 }
1566 
efx_ef10_get_wol(struct efx_nic * efx,struct ethtool_wolinfo * wol)1567 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1568 {
1569 	wol->supported = 0;
1570 	wol->wolopts = 0;
1571 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1572 }
1573 
efx_ef10_set_wol(struct efx_nic * efx,u32 type)1574 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1575 {
1576 	if (type != 0)
1577 		return -EINVAL;
1578 	return 0;
1579 }
1580 
efx_ef10_mcdi_request(struct efx_nic * efx,const efx_dword_t * hdr,size_t hdr_len,const efx_dword_t * sdu,size_t sdu_len)1581 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1582 				  const efx_dword_t *hdr, size_t hdr_len,
1583 				  const efx_dword_t *sdu, size_t sdu_len)
1584 {
1585 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1586 	u8 *pdu = nic_data->mcdi_buf.addr;
1587 
1588 	memcpy(pdu, hdr, hdr_len);
1589 	memcpy(pdu + hdr_len, sdu, sdu_len);
1590 	wmb();
1591 
1592 	/* The hardware provides 'low' and 'high' (doorbell) registers
1593 	 * for passing the 64-bit address of an MCDI request to
1594 	 * firmware.  However the dwords are swapped by firmware.  The
1595 	 * least significant bits of the doorbell are then 0 for all
1596 	 * MCDI requests due to alignment.
1597 	 */
1598 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1599 		    ER_DZ_MC_DB_LWRD);
1600 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1601 		    ER_DZ_MC_DB_HWRD);
1602 }
1603 
efx_ef10_mcdi_poll_response(struct efx_nic * efx)1604 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1605 {
1606 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1607 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1608 
1609 	rmb();
1610 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1611 }
1612 
1613 static void
efx_ef10_mcdi_read_response(struct efx_nic * efx,efx_dword_t * outbuf,size_t offset,size_t outlen)1614 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1615 			    size_t offset, size_t outlen)
1616 {
1617 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1618 	const u8 *pdu = nic_data->mcdi_buf.addr;
1619 
1620 	memcpy(outbuf, pdu + offset, outlen);
1621 }
1622 
efx_ef10_mcdi_reboot_detected(struct efx_nic * efx)1623 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
1624 {
1625 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1626 
1627 	/* All our allocations have been reset */
1628 	efx_ef10_reset_mc_allocations(efx);
1629 
1630 	/* The datapath firmware might have been changed */
1631 	nic_data->must_check_datapath_caps = true;
1632 
1633 	/* MAC statistics have been cleared on the NIC; clear the local
1634 	 * statistic that we update with efx_update_diff_stat().
1635 	 */
1636 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1637 }
1638 
efx_ef10_mcdi_poll_reboot(struct efx_nic * efx)1639 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1640 {
1641 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1642 	int rc;
1643 
1644 	rc = efx_ef10_get_warm_boot_count(efx);
1645 	if (rc < 0) {
1646 		/* The firmware is presumably in the process of
1647 		 * rebooting.  However, we are supposed to report each
1648 		 * reboot just once, so we must only do that once we
1649 		 * can read and store the updated warm boot count.
1650 		 */
1651 		return 0;
1652 	}
1653 
1654 	if (rc == nic_data->warm_boot_count)
1655 		return 0;
1656 
1657 	nic_data->warm_boot_count = rc;
1658 	efx_ef10_mcdi_reboot_detected(efx);
1659 
1660 	return -EIO;
1661 }
1662 
1663 /* Handle an MSI interrupt
1664  *
1665  * Handle an MSI hardware interrupt.  This routine schedules event
1666  * queue processing.  No interrupt acknowledgement cycle is necessary.
1667  * Also, we never need to check that the interrupt is for us, since
1668  * MSI interrupts cannot be shared.
1669  */
efx_ef10_msi_interrupt(int irq,void * dev_id)1670 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1671 {
1672 	struct efx_msi_context *context = dev_id;
1673 	struct efx_nic *efx = context->efx;
1674 
1675 	netif_vdbg(efx, intr, efx->net_dev,
1676 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1677 
1678 	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1679 		/* Note test interrupts */
1680 		if (context->index == efx->irq_level)
1681 			efx->last_irq_cpu = raw_smp_processor_id();
1682 
1683 		/* Schedule processing of the channel */
1684 		efx_schedule_channel_irq(efx->channel[context->index]);
1685 	}
1686 
1687 	return IRQ_HANDLED;
1688 }
1689 
efx_ef10_legacy_interrupt(int irq,void * dev_id)1690 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1691 {
1692 	struct efx_nic *efx = dev_id;
1693 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1694 	struct efx_channel *channel;
1695 	efx_dword_t reg;
1696 	u32 queues;
1697 
1698 	/* Read the ISR which also ACKs the interrupts */
1699 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1700 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1701 
1702 	if (queues == 0)
1703 		return IRQ_NONE;
1704 
1705 	if (likely(soft_enabled)) {
1706 		/* Note test interrupts */
1707 		if (queues & (1U << efx->irq_level))
1708 			efx->last_irq_cpu = raw_smp_processor_id();
1709 
1710 		efx_for_each_channel(channel, efx) {
1711 			if (queues & 1)
1712 				efx_schedule_channel_irq(channel);
1713 			queues >>= 1;
1714 		}
1715 	}
1716 
1717 	netif_vdbg(efx, intr, efx->net_dev,
1718 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1719 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1720 
1721 	return IRQ_HANDLED;
1722 }
1723 
efx_ef10_irq_test_generate(struct efx_nic * efx)1724 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1725 {
1726 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1727 
1728 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1729 
1730 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1731 	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1732 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
1733 }
1734 
efx_ef10_tx_probe(struct efx_tx_queue * tx_queue)1735 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1736 {
1737 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1738 				    (tx_queue->ptr_mask + 1) *
1739 				    sizeof(efx_qword_t),
1740 				    GFP_KERNEL);
1741 }
1742 
1743 /* This writes to the TX_DESC_WPTR and also pushes data */
efx_ef10_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)1744 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1745 					 const efx_qword_t *txd)
1746 {
1747 	unsigned int write_ptr;
1748 	efx_oword_t reg;
1749 
1750 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1751 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1752 	reg.qword[0] = *txd;
1753 	efx_writeo_page(tx_queue->efx, &reg,
1754 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
1755 }
1756 
efx_ef10_tx_init(struct efx_tx_queue * tx_queue)1757 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1758 {
1759 	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1760 						       EFX_BUF_SIZE));
1761 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1762 	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1763 	struct efx_channel *channel = tx_queue->channel;
1764 	struct efx_nic *efx = tx_queue->efx;
1765 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1766 	size_t inlen;
1767 	dma_addr_t dma_addr;
1768 	efx_qword_t *txd;
1769 	int rc;
1770 	int i;
1771 	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
1772 
1773 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1774 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1775 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1776 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1777 	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1778 			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1779 			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1780 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1781 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
1782 
1783 	dma_addr = tx_queue->txd.buf.dma_addr;
1784 
1785 	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1786 		  tx_queue->queue, entries, (u64)dma_addr);
1787 
1788 	for (i = 0; i < entries; ++i) {
1789 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1790 		dma_addr += EFX_BUF_SIZE;
1791 	}
1792 
1793 	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1794 
1795 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1796 			  NULL, 0, NULL);
1797 	if (rc)
1798 		goto fail;
1799 
1800 	/* A previous user of this TX queue might have set us up the
1801 	 * bomb by writing a descriptor to the TX push collector but
1802 	 * not the doorbell.  (Each collector belongs to a port, not a
1803 	 * queue or function, so cannot easily be reset.)  We must
1804 	 * attempt to push a no-op descriptor in its place.
1805 	 */
1806 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1807 	tx_queue->insert_count = 1;
1808 	txd = efx_tx_desc(tx_queue, 0);
1809 	EFX_POPULATE_QWORD_4(*txd,
1810 			     ESF_DZ_TX_DESC_IS_OPT, true,
1811 			     ESF_DZ_TX_OPTION_TYPE,
1812 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1813 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1814 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1815 	tx_queue->write_count = 1;
1816 	wmb();
1817 	efx_ef10_push_tx_desc(tx_queue, txd);
1818 
1819 	return;
1820 
1821 fail:
1822 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1823 		    tx_queue->queue);
1824 }
1825 
efx_ef10_tx_fini(struct efx_tx_queue * tx_queue)1826 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1827 {
1828 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1829 	MCDI_DECLARE_BUF_ERR(outbuf);
1830 	struct efx_nic *efx = tx_queue->efx;
1831 	size_t outlen;
1832 	int rc;
1833 
1834 	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1835 		       tx_queue->queue);
1836 
1837 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1838 			  outbuf, sizeof(outbuf), &outlen);
1839 
1840 	if (rc && rc != -EALREADY)
1841 		goto fail;
1842 
1843 	return;
1844 
1845 fail:
1846 	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1847 			       outbuf, outlen, rc);
1848 }
1849 
efx_ef10_tx_remove(struct efx_tx_queue * tx_queue)1850 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1851 {
1852 	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1853 }
1854 
1855 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_ef10_notify_tx_desc(struct efx_tx_queue * tx_queue)1856 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1857 {
1858 	unsigned int write_ptr;
1859 	efx_dword_t reg;
1860 
1861 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1862 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1863 	efx_writed_page(tx_queue->efx, &reg,
1864 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1865 }
1866 
efx_ef10_tx_write(struct efx_tx_queue * tx_queue)1867 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1868 {
1869 	unsigned int old_write_count = tx_queue->write_count;
1870 	struct efx_tx_buffer *buffer;
1871 	unsigned int write_ptr;
1872 	efx_qword_t *txd;
1873 
1874 	tx_queue->xmit_more_available = false;
1875 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
1876 		return;
1877 
1878 	do {
1879 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1880 		buffer = &tx_queue->buffer[write_ptr];
1881 		txd = efx_tx_desc(tx_queue, write_ptr);
1882 		++tx_queue->write_count;
1883 
1884 		/* Create TX descriptor ring entry */
1885 		if (buffer->flags & EFX_TX_BUF_OPTION) {
1886 			*txd = buffer->option;
1887 		} else {
1888 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1889 			EFX_POPULATE_QWORD_3(
1890 				*txd,
1891 				ESF_DZ_TX_KER_CONT,
1892 				buffer->flags & EFX_TX_BUF_CONT,
1893 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1894 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1895 		}
1896 	} while (tx_queue->write_count != tx_queue->insert_count);
1897 
1898 	wmb(); /* Ensure descriptors are written before they are fetched */
1899 
1900 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1901 		txd = efx_tx_desc(tx_queue,
1902 				  old_write_count & tx_queue->ptr_mask);
1903 		efx_ef10_push_tx_desc(tx_queue, txd);
1904 		++tx_queue->pushes;
1905 	} else {
1906 		efx_ef10_notify_tx_desc(tx_queue);
1907 	}
1908 }
1909 
efx_ef10_alloc_rss_context(struct efx_nic * efx,u32 * context,bool exclusive,unsigned * context_size)1910 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
1911 				      bool exclusive, unsigned *context_size)
1912 {
1913 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1914 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1915 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1916 	size_t outlen;
1917 	int rc;
1918 	u32 alloc_type = exclusive ?
1919 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
1920 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
1921 	unsigned rss_spread = exclusive ?
1922 				efx->rss_spread :
1923 				min(rounddown_pow_of_two(efx->rss_spread),
1924 				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
1925 
1926 	if (!exclusive && rss_spread == 1) {
1927 		*context = EFX_EF10_RSS_CONTEXT_INVALID;
1928 		if (context_size)
1929 			*context_size = 1;
1930 		return 0;
1931 	}
1932 
1933 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1934 		       nic_data->vport_id);
1935 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
1936 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
1937 
1938 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1939 		outbuf, sizeof(outbuf), &outlen);
1940 	if (rc != 0)
1941 		return rc;
1942 
1943 	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1944 		return -EIO;
1945 
1946 	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1947 
1948 	if (context_size)
1949 		*context_size = rss_spread;
1950 
1951 	return 0;
1952 }
1953 
efx_ef10_free_rss_context(struct efx_nic * efx,u32 context)1954 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1955 {
1956 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1957 	int rc;
1958 
1959 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1960 		       context);
1961 
1962 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1963 			    NULL, 0, NULL);
1964 	WARN_ON(rc != 0);
1965 }
1966 
efx_ef10_populate_rss_table(struct efx_nic * efx,u32 context,const u32 * rx_indir_table)1967 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
1968 				       const u32 *rx_indir_table)
1969 {
1970 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1971 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1972 	int i, rc;
1973 
1974 	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1975 		       context);
1976 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1977 		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1978 
1979 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1980 		MCDI_PTR(tablebuf,
1981 			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1982 				(u8) rx_indir_table[i];
1983 
1984 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1985 			  sizeof(tablebuf), NULL, 0, NULL);
1986 	if (rc != 0)
1987 		return rc;
1988 
1989 	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1990 		       context);
1991 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1992 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1993 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1994 		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1995 			efx->rx_hash_key[i];
1996 
1997 	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1998 			    sizeof(keybuf), NULL, 0, NULL);
1999 }
2000 
efx_ef10_rx_free_indir_table(struct efx_nic * efx)2001 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2002 {
2003 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2004 
2005 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2006 		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2007 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2008 }
2009 
efx_ef10_rx_push_shared_rss_config(struct efx_nic * efx,unsigned * context_size)2010 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2011 					      unsigned *context_size)
2012 {
2013 	u32 new_rx_rss_context;
2014 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2015 	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2016 					    false, context_size);
2017 
2018 	if (rc != 0)
2019 		return rc;
2020 
2021 	nic_data->rx_rss_context = new_rx_rss_context;
2022 	nic_data->rx_rss_context_exclusive = false;
2023 	efx_set_default_rx_indir_table(efx);
2024 	return 0;
2025 }
2026 
efx_ef10_rx_push_exclusive_rss_config(struct efx_nic * efx,const u32 * rx_indir_table)2027 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2028 						 const u32 *rx_indir_table)
2029 {
2030 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2031 	int rc;
2032 	u32 new_rx_rss_context;
2033 
2034 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2035 	    !nic_data->rx_rss_context_exclusive) {
2036 		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2037 						true, NULL);
2038 		if (rc == -EOPNOTSUPP)
2039 			return rc;
2040 		else if (rc != 0)
2041 			goto fail1;
2042 	} else {
2043 		new_rx_rss_context = nic_data->rx_rss_context;
2044 	}
2045 
2046 	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2047 					 rx_indir_table);
2048 	if (rc != 0)
2049 		goto fail2;
2050 
2051 	if (nic_data->rx_rss_context != new_rx_rss_context)
2052 		efx_ef10_rx_free_indir_table(efx);
2053 	nic_data->rx_rss_context = new_rx_rss_context;
2054 	nic_data->rx_rss_context_exclusive = true;
2055 	if (rx_indir_table != efx->rx_indir_table)
2056 		memcpy(efx->rx_indir_table, rx_indir_table,
2057 		       sizeof(efx->rx_indir_table));
2058 	return 0;
2059 
2060 fail2:
2061 	if (new_rx_rss_context != nic_data->rx_rss_context)
2062 		efx_ef10_free_rss_context(efx, new_rx_rss_context);
2063 fail1:
2064 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2065 	return rc;
2066 }
2067 
efx_ef10_pf_rx_push_rss_config(struct efx_nic * efx,bool user,const u32 * rx_indir_table)2068 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2069 					  const u32 *rx_indir_table)
2070 {
2071 	int rc;
2072 
2073 	if (efx->rss_spread == 1)
2074 		return 0;
2075 
2076 	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
2077 
2078 	if (rc == -ENOBUFS && !user) {
2079 		unsigned context_size;
2080 		bool mismatch = false;
2081 		size_t i;
2082 
2083 		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2084 		     i++)
2085 			mismatch = rx_indir_table[i] !=
2086 				ethtool_rxfh_indir_default(i, efx->rss_spread);
2087 
2088 		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2089 		if (rc == 0) {
2090 			if (context_size != efx->rss_spread)
2091 				netif_warn(efx, probe, efx->net_dev,
2092 					   "Could not allocate an exclusive RSS"
2093 					   " context; allocated a shared one of"
2094 					   " different size."
2095 					   " Wanted %u, got %u.\n",
2096 					   efx->rss_spread, context_size);
2097 			else if (mismatch)
2098 				netif_warn(efx, probe, efx->net_dev,
2099 					   "Could not allocate an exclusive RSS"
2100 					   " context; allocated a shared one but"
2101 					   " could not apply custom"
2102 					   " indirection.\n");
2103 			else
2104 				netif_info(efx, probe, efx->net_dev,
2105 					   "Could not allocate an exclusive RSS"
2106 					   " context; allocated a shared one.\n");
2107 		}
2108 	}
2109 	return rc;
2110 }
2111 
efx_ef10_vf_rx_push_rss_config(struct efx_nic * efx,bool user,const u32 * rx_indir_table)2112 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2113 					  const u32 *rx_indir_table
2114 					  __attribute__ ((unused)))
2115 {
2116 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2117 
2118 	if (user)
2119 		return -EOPNOTSUPP;
2120 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2121 		return 0;
2122 	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2123 }
2124 
efx_ef10_rx_probe(struct efx_rx_queue * rx_queue)2125 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2126 {
2127 	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2128 				    (rx_queue->ptr_mask + 1) *
2129 				    sizeof(efx_qword_t),
2130 				    GFP_KERNEL);
2131 }
2132 
efx_ef10_rx_init(struct efx_rx_queue * rx_queue)2133 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2134 {
2135 	MCDI_DECLARE_BUF(inbuf,
2136 			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2137 						EFX_BUF_SIZE));
2138 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2139 	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2140 	struct efx_nic *efx = rx_queue->efx;
2141 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2142 	size_t inlen;
2143 	dma_addr_t dma_addr;
2144 	int rc;
2145 	int i;
2146 	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2147 
2148 	rx_queue->scatter_n = 0;
2149 	rx_queue->scatter_len = 0;
2150 
2151 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2152 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2153 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2154 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2155 		       efx_rx_queue_index(rx_queue));
2156 	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2157 			      INIT_RXQ_IN_FLAG_PREFIX, 1,
2158 			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2159 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2160 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2161 
2162 	dma_addr = rx_queue->rxd.buf.dma_addr;
2163 
2164 	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2165 		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2166 
2167 	for (i = 0; i < entries; ++i) {
2168 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2169 		dma_addr += EFX_BUF_SIZE;
2170 	}
2171 
2172 	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2173 
2174 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2175 			  NULL, 0, NULL);
2176 	if (rc)
2177 		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2178 			    efx_rx_queue_index(rx_queue));
2179 }
2180 
efx_ef10_rx_fini(struct efx_rx_queue * rx_queue)2181 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2182 {
2183 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2184 	MCDI_DECLARE_BUF_ERR(outbuf);
2185 	struct efx_nic *efx = rx_queue->efx;
2186 	size_t outlen;
2187 	int rc;
2188 
2189 	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2190 		       efx_rx_queue_index(rx_queue));
2191 
2192 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2193 			  outbuf, sizeof(outbuf), &outlen);
2194 
2195 	if (rc && rc != -EALREADY)
2196 		goto fail;
2197 
2198 	return;
2199 
2200 fail:
2201 	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2202 			       outbuf, outlen, rc);
2203 }
2204 
efx_ef10_rx_remove(struct efx_rx_queue * rx_queue)2205 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2206 {
2207 	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2208 }
2209 
2210 /* This creates an entry in the RX descriptor queue */
2211 static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned int index)2212 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2213 {
2214 	struct efx_rx_buffer *rx_buf;
2215 	efx_qword_t *rxd;
2216 
2217 	rxd = efx_rx_desc(rx_queue, index);
2218 	rx_buf = efx_rx_buffer(rx_queue, index);
2219 	EFX_POPULATE_QWORD_2(*rxd,
2220 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2221 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2222 }
2223 
efx_ef10_rx_write(struct efx_rx_queue * rx_queue)2224 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2225 {
2226 	struct efx_nic *efx = rx_queue->efx;
2227 	unsigned int write_count;
2228 	efx_dword_t reg;
2229 
2230 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2231 	write_count = rx_queue->added_count & ~7;
2232 	if (rx_queue->notified_count == write_count)
2233 		return;
2234 
2235 	do
2236 		efx_ef10_build_rx_desc(
2237 			rx_queue,
2238 			rx_queue->notified_count & rx_queue->ptr_mask);
2239 	while (++rx_queue->notified_count != write_count);
2240 
2241 	wmb();
2242 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2243 			     write_count & rx_queue->ptr_mask);
2244 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2245 			efx_rx_queue_index(rx_queue));
2246 }
2247 
2248 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2249 
efx_ef10_rx_defer_refill(struct efx_rx_queue * rx_queue)2250 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2251 {
2252 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2253 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2254 	efx_qword_t event;
2255 
2256 	EFX_POPULATE_QWORD_2(event,
2257 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2258 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2259 
2260 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2261 
2262 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2263 	 * already swapped the data to little-endian order.
2264 	 */
2265 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2266 	       sizeof(efx_qword_t));
2267 
2268 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2269 			   inbuf, sizeof(inbuf), 0,
2270 			   efx_ef10_rx_defer_refill_complete, 0);
2271 }
2272 
2273 static void
efx_ef10_rx_defer_refill_complete(struct efx_nic * efx,unsigned long cookie,int rc,efx_dword_t * outbuf,size_t outlen_actual)2274 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2275 				  int rc, efx_dword_t *outbuf,
2276 				  size_t outlen_actual)
2277 {
2278 	/* nothing to do */
2279 }
2280 
efx_ef10_ev_probe(struct efx_channel * channel)2281 static int efx_ef10_ev_probe(struct efx_channel *channel)
2282 {
2283 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2284 				    (channel->eventq_mask + 1) *
2285 				    sizeof(efx_qword_t),
2286 				    GFP_KERNEL);
2287 }
2288 
efx_ef10_ev_fini(struct efx_channel * channel)2289 static void efx_ef10_ev_fini(struct efx_channel *channel)
2290 {
2291 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2292 	MCDI_DECLARE_BUF_ERR(outbuf);
2293 	struct efx_nic *efx = channel->efx;
2294 	size_t outlen;
2295 	int rc;
2296 
2297 	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2298 
2299 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2300 			  outbuf, sizeof(outbuf), &outlen);
2301 
2302 	if (rc && rc != -EALREADY)
2303 		goto fail;
2304 
2305 	return;
2306 
2307 fail:
2308 	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2309 			       outbuf, outlen, rc);
2310 }
2311 
efx_ef10_ev_init(struct efx_channel * channel)2312 static int efx_ef10_ev_init(struct efx_channel *channel)
2313 {
2314 	MCDI_DECLARE_BUF(inbuf,
2315 			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2316 						EFX_BUF_SIZE));
2317 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
2318 	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2319 	struct efx_nic *efx = channel->efx;
2320 	struct efx_ef10_nic_data *nic_data;
2321 	bool supports_rx_merge;
2322 	size_t inlen, outlen;
2323 	unsigned int enabled, implemented;
2324 	dma_addr_t dma_addr;
2325 	int rc;
2326 	int i;
2327 
2328 	nic_data = efx->nic_data;
2329 	supports_rx_merge =
2330 		!!(nic_data->datapath_caps &
2331 		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2332 
2333 	/* Fill event queue with all ones (i.e. empty events) */
2334 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2335 
2336 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2337 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2338 	/* INIT_EVQ expects index in vector table, not absolute */
2339 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2340 	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2341 			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2342 			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2343 			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2344 			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
2345 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2346 		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2347 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2348 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2349 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2350 		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2351 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2352 
2353 	dma_addr = channel->eventq.buf.dma_addr;
2354 	for (i = 0; i < entries; ++i) {
2355 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2356 		dma_addr += EFX_BUF_SIZE;
2357 	}
2358 
2359 	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2360 
2361 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2362 			  outbuf, sizeof(outbuf), &outlen);
2363 	/* IRQ return is ignored */
2364 	if (channel->channel || rc)
2365 		return rc;
2366 
2367 	/* Successfully created event queue on channel 0 */
2368 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2369 	if (rc == -ENOSYS) {
2370 		/* GET_WORKAROUNDS was implemented before the bug26807
2371 		 * workaround, thus the latter must be unavailable in this fw
2372 		 */
2373 		nic_data->workaround_26807 = false;
2374 		rc = 0;
2375 	} else if (rc) {
2376 		goto fail;
2377 	} else {
2378 		nic_data->workaround_26807 =
2379 			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2380 
2381 		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2382 		    !nic_data->workaround_26807) {
2383 			unsigned int flags;
2384 
2385 			rc = efx_mcdi_set_workaround(efx,
2386 						     MC_CMD_WORKAROUND_BUG26807,
2387 						     true, &flags);
2388 
2389 			if (!rc) {
2390 				if (flags &
2391 				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2392 					netif_info(efx, drv, efx->net_dev,
2393 						   "other functions on NIC have been reset\n");
2394 					/* MC's boot count has incremented */
2395 					++nic_data->warm_boot_count;
2396 				}
2397 				nic_data->workaround_26807 = true;
2398 			} else if (rc == -EPERM) {
2399 				rc = 0;
2400 			}
2401 		}
2402 	}
2403 
2404 	if (!rc)
2405 		return 0;
2406 
2407 fail:
2408 	efx_ef10_ev_fini(channel);
2409 	return rc;
2410 }
2411 
efx_ef10_ev_remove(struct efx_channel * channel)2412 static void efx_ef10_ev_remove(struct efx_channel *channel)
2413 {
2414 	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2415 }
2416 
efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue * rx_queue,unsigned int rx_queue_label)2417 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2418 					   unsigned int rx_queue_label)
2419 {
2420 	struct efx_nic *efx = rx_queue->efx;
2421 
2422 	netif_info(efx, hw, efx->net_dev,
2423 		   "rx event arrived on queue %d labeled as queue %u\n",
2424 		   efx_rx_queue_index(rx_queue), rx_queue_label);
2425 
2426 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2427 }
2428 
2429 static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue * rx_queue,unsigned int actual,unsigned int expected)2430 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2431 			     unsigned int actual, unsigned int expected)
2432 {
2433 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2434 	struct efx_nic *efx = rx_queue->efx;
2435 
2436 	netif_info(efx, hw, efx->net_dev,
2437 		   "dropped %d events (index=%d expected=%d)\n",
2438 		   dropped, actual, expected);
2439 
2440 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2441 }
2442 
2443 /* partially received RX was aborted. clean up. */
efx_ef10_handle_rx_abort(struct efx_rx_queue * rx_queue)2444 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2445 {
2446 	unsigned int rx_desc_ptr;
2447 
2448 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2449 		  "scattered RX aborted (dropping %u buffers)\n",
2450 		  rx_queue->scatter_n);
2451 
2452 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2453 
2454 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2455 		      0, EFX_RX_PKT_DISCARD);
2456 
2457 	rx_queue->removed_count += rx_queue->scatter_n;
2458 	rx_queue->scatter_n = 0;
2459 	rx_queue->scatter_len = 0;
2460 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2461 }
2462 
efx_ef10_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)2463 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2464 				    const efx_qword_t *event)
2465 {
2466 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2467 	unsigned int n_descs, n_packets, i;
2468 	struct efx_nic *efx = channel->efx;
2469 	struct efx_rx_queue *rx_queue;
2470 	bool rx_cont;
2471 	u16 flags = 0;
2472 
2473 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2474 		return 0;
2475 
2476 	/* Basic packet information */
2477 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2478 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2479 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2480 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2481 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2482 
2483 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2484 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2485 			    EFX_QWORD_FMT "\n",
2486 			    EFX_QWORD_VAL(*event));
2487 
2488 	rx_queue = efx_channel_get_rx_queue(channel);
2489 
2490 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2491 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2492 
2493 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2494 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2495 
2496 	if (n_descs != rx_queue->scatter_n + 1) {
2497 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2498 
2499 		/* detect rx abort */
2500 		if (unlikely(n_descs == rx_queue->scatter_n)) {
2501 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2502 				netdev_WARN(efx->net_dev,
2503 					    "invalid RX abort: scatter_n=%u event="
2504 					    EFX_QWORD_FMT "\n",
2505 					    rx_queue->scatter_n,
2506 					    EFX_QWORD_VAL(*event));
2507 			efx_ef10_handle_rx_abort(rx_queue);
2508 			return 0;
2509 		}
2510 
2511 		/* Check that RX completion merging is valid, i.e.
2512 		 * the current firmware supports it and this is a
2513 		 * non-scattered packet.
2514 		 */
2515 		if (!(nic_data->datapath_caps &
2516 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2517 		    rx_queue->scatter_n != 0 || rx_cont) {
2518 			efx_ef10_handle_rx_bad_lbits(
2519 				rx_queue, next_ptr_lbits,
2520 				(rx_queue->removed_count +
2521 				 rx_queue->scatter_n + 1) &
2522 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2523 			return 0;
2524 		}
2525 
2526 		/* Merged completion for multiple non-scattered packets */
2527 		rx_queue->scatter_n = 1;
2528 		rx_queue->scatter_len = 0;
2529 		n_packets = n_descs;
2530 		++channel->n_rx_merge_events;
2531 		channel->n_rx_merge_packets += n_packets;
2532 		flags |= EFX_RX_PKT_PREFIX_LEN;
2533 	} else {
2534 		++rx_queue->scatter_n;
2535 		rx_queue->scatter_len += rx_bytes;
2536 		if (rx_cont)
2537 			return 0;
2538 		n_packets = 1;
2539 	}
2540 
2541 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2542 		flags |= EFX_RX_PKT_DISCARD;
2543 
2544 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2545 		channel->n_rx_ip_hdr_chksum_err += n_packets;
2546 	} else if (unlikely(EFX_QWORD_FIELD(*event,
2547 					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2548 		channel->n_rx_tcp_udp_chksum_err += n_packets;
2549 	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2550 		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2551 		flags |= EFX_RX_PKT_CSUMMED;
2552 	}
2553 
2554 	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2555 		flags |= EFX_RX_PKT_TCP;
2556 
2557 	channel->irq_mod_score += 2 * n_packets;
2558 
2559 	/* Handle received packet(s) */
2560 	for (i = 0; i < n_packets; i++) {
2561 		efx_rx_packet(rx_queue,
2562 			      rx_queue->removed_count & rx_queue->ptr_mask,
2563 			      rx_queue->scatter_n, rx_queue->scatter_len,
2564 			      flags);
2565 		rx_queue->removed_count += rx_queue->scatter_n;
2566 	}
2567 
2568 	rx_queue->scatter_n = 0;
2569 	rx_queue->scatter_len = 0;
2570 
2571 	return n_packets;
2572 }
2573 
2574 static int
efx_ef10_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)2575 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2576 {
2577 	struct efx_nic *efx = channel->efx;
2578 	struct efx_tx_queue *tx_queue;
2579 	unsigned int tx_ev_desc_ptr;
2580 	unsigned int tx_ev_q_label;
2581 	int tx_descs = 0;
2582 
2583 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2584 		return 0;
2585 
2586 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2587 		return 0;
2588 
2589 	/* Transmit completion */
2590 	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2591 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2592 	tx_queue = efx_channel_get_tx_queue(channel,
2593 					    tx_ev_q_label % EFX_TXQ_TYPES);
2594 	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2595 		    tx_queue->ptr_mask);
2596 	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2597 
2598 	return tx_descs;
2599 }
2600 
2601 static void
efx_ef10_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)2602 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2603 {
2604 	struct efx_nic *efx = channel->efx;
2605 	int subcode;
2606 
2607 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2608 
2609 	switch (subcode) {
2610 	case ESE_DZ_DRV_TIMER_EV:
2611 	case ESE_DZ_DRV_WAKE_UP_EV:
2612 		break;
2613 	case ESE_DZ_DRV_START_UP_EV:
2614 		/* event queue init complete. ok. */
2615 		break;
2616 	default:
2617 		netif_err(efx, hw, efx->net_dev,
2618 			  "channel %d unknown driver event type %d"
2619 			  " (data " EFX_QWORD_FMT ")\n",
2620 			  channel->channel, subcode,
2621 			  EFX_QWORD_VAL(*event));
2622 
2623 	}
2624 }
2625 
efx_ef10_handle_driver_generated_event(struct efx_channel * channel,efx_qword_t * event)2626 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2627 						   efx_qword_t *event)
2628 {
2629 	struct efx_nic *efx = channel->efx;
2630 	u32 subcode;
2631 
2632 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2633 
2634 	switch (subcode) {
2635 	case EFX_EF10_TEST:
2636 		channel->event_test_cpu = raw_smp_processor_id();
2637 		break;
2638 	case EFX_EF10_REFILL:
2639 		/* The queue must be empty, so we won't receive any rx
2640 		 * events, so efx_process_channel() won't refill the
2641 		 * queue. Refill it here
2642 		 */
2643 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2644 		break;
2645 	default:
2646 		netif_err(efx, hw, efx->net_dev,
2647 			  "channel %d unknown driver event type %u"
2648 			  " (data " EFX_QWORD_FMT ")\n",
2649 			  channel->channel, (unsigned) subcode,
2650 			  EFX_QWORD_VAL(*event));
2651 	}
2652 }
2653 
efx_ef10_ev_process(struct efx_channel * channel,int quota)2654 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2655 {
2656 	struct efx_nic *efx = channel->efx;
2657 	efx_qword_t event, *p_event;
2658 	unsigned int read_ptr;
2659 	int ev_code;
2660 	int tx_descs = 0;
2661 	int spent = 0;
2662 
2663 	if (quota <= 0)
2664 		return spent;
2665 
2666 	read_ptr = channel->eventq_read_ptr;
2667 
2668 	for (;;) {
2669 		p_event = efx_event(channel, read_ptr);
2670 		event = *p_event;
2671 
2672 		if (!efx_event_present(&event))
2673 			break;
2674 
2675 		EFX_SET_QWORD(*p_event);
2676 
2677 		++read_ptr;
2678 
2679 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2680 
2681 		netif_vdbg(efx, drv, efx->net_dev,
2682 			   "processing event on %d " EFX_QWORD_FMT "\n",
2683 			   channel->channel, EFX_QWORD_VAL(event));
2684 
2685 		switch (ev_code) {
2686 		case ESE_DZ_EV_CODE_MCDI_EV:
2687 			efx_mcdi_process_event(channel, &event);
2688 			break;
2689 		case ESE_DZ_EV_CODE_RX_EV:
2690 			spent += efx_ef10_handle_rx_event(channel, &event);
2691 			if (spent >= quota) {
2692 				/* XXX can we split a merged event to
2693 				 * avoid going over-quota?
2694 				 */
2695 				spent = quota;
2696 				goto out;
2697 			}
2698 			break;
2699 		case ESE_DZ_EV_CODE_TX_EV:
2700 			tx_descs += efx_ef10_handle_tx_event(channel, &event);
2701 			if (tx_descs > efx->txq_entries) {
2702 				spent = quota;
2703 				goto out;
2704 			} else if (++spent == quota) {
2705 				goto out;
2706 			}
2707 			break;
2708 		case ESE_DZ_EV_CODE_DRIVER_EV:
2709 			efx_ef10_handle_driver_event(channel, &event);
2710 			if (++spent == quota)
2711 				goto out;
2712 			break;
2713 		case EFX_EF10_DRVGEN_EV:
2714 			efx_ef10_handle_driver_generated_event(channel, &event);
2715 			break;
2716 		default:
2717 			netif_err(efx, hw, efx->net_dev,
2718 				  "channel %d unknown event type %d"
2719 				  " (data " EFX_QWORD_FMT ")\n",
2720 				  channel->channel, ev_code,
2721 				  EFX_QWORD_VAL(event));
2722 		}
2723 	}
2724 
2725 out:
2726 	channel->eventq_read_ptr = read_ptr;
2727 	return spent;
2728 }
2729 
efx_ef10_ev_read_ack(struct efx_channel * channel)2730 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2731 {
2732 	struct efx_nic *efx = channel->efx;
2733 	efx_dword_t rptr;
2734 
2735 	if (EFX_EF10_WORKAROUND_35388(efx)) {
2736 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2737 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2738 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2739 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2740 
2741 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2742 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2743 				     ERF_DD_EVQ_IND_RPTR,
2744 				     (channel->eventq_read_ptr &
2745 				      channel->eventq_mask) >>
2746 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
2747 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2748 				channel->channel);
2749 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2750 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2751 				     ERF_DD_EVQ_IND_RPTR,
2752 				     channel->eventq_read_ptr &
2753 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2754 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2755 				channel->channel);
2756 	} else {
2757 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2758 				     channel->eventq_read_ptr &
2759 				     channel->eventq_mask);
2760 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2761 	}
2762 }
2763 
efx_ef10_ev_test_generate(struct efx_channel * channel)2764 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2765 {
2766 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2767 	struct efx_nic *efx = channel->efx;
2768 	efx_qword_t event;
2769 	int rc;
2770 
2771 	EFX_POPULATE_QWORD_2(event,
2772 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2773 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
2774 
2775 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2776 
2777 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2778 	 * already swapped the data to little-endian order.
2779 	 */
2780 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2781 	       sizeof(efx_qword_t));
2782 
2783 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2784 			  NULL, 0, NULL);
2785 	if (rc != 0)
2786 		goto fail;
2787 
2788 	return;
2789 
2790 fail:
2791 	WARN_ON(true);
2792 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2793 }
2794 
efx_ef10_handle_drain_event(struct efx_nic * efx)2795 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2796 {
2797 	if (atomic_dec_and_test(&efx->active_queues))
2798 		wake_up(&efx->flush_wq);
2799 
2800 	WARN_ON(atomic_read(&efx->active_queues) < 0);
2801 }
2802 
efx_ef10_fini_dmaq(struct efx_nic * efx)2803 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2804 {
2805 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2806 	struct efx_channel *channel;
2807 	struct efx_tx_queue *tx_queue;
2808 	struct efx_rx_queue *rx_queue;
2809 	int pending;
2810 
2811 	/* If the MC has just rebooted, the TX/RX queues will have already been
2812 	 * torn down, but efx->active_queues needs to be set to zero.
2813 	 */
2814 	if (nic_data->must_realloc_vis) {
2815 		atomic_set(&efx->active_queues, 0);
2816 		return 0;
2817 	}
2818 
2819 	/* Do not attempt to write to the NIC during EEH recovery */
2820 	if (efx->state != STATE_RECOVERY) {
2821 		efx_for_each_channel(channel, efx) {
2822 			efx_for_each_channel_rx_queue(rx_queue, channel)
2823 				efx_ef10_rx_fini(rx_queue);
2824 			efx_for_each_channel_tx_queue(tx_queue, channel)
2825 				efx_ef10_tx_fini(tx_queue);
2826 		}
2827 
2828 		wait_event_timeout(efx->flush_wq,
2829 				   atomic_read(&efx->active_queues) == 0,
2830 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2831 		pending = atomic_read(&efx->active_queues);
2832 		if (pending) {
2833 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2834 				  pending);
2835 			return -ETIMEDOUT;
2836 		}
2837 	}
2838 
2839 	return 0;
2840 }
2841 
efx_ef10_prepare_flr(struct efx_nic * efx)2842 static void efx_ef10_prepare_flr(struct efx_nic *efx)
2843 {
2844 	atomic_set(&efx->active_queues, 0);
2845 }
2846 
efx_ef10_filter_equal(const struct efx_filter_spec * left,const struct efx_filter_spec * right)2847 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2848 				  const struct efx_filter_spec *right)
2849 {
2850 	if ((left->match_flags ^ right->match_flags) |
2851 	    ((left->flags ^ right->flags) &
2852 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2853 		return false;
2854 
2855 	return memcmp(&left->outer_vid, &right->outer_vid,
2856 		      sizeof(struct efx_filter_spec) -
2857 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
2858 }
2859 
efx_ef10_filter_hash(const struct efx_filter_spec * spec)2860 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2861 {
2862 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2863 	return jhash2((const u32 *)&spec->outer_vid,
2864 		      (sizeof(struct efx_filter_spec) -
2865 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
2866 		      0);
2867 	/* XXX should we randomise the initval? */
2868 }
2869 
2870 /* Decide whether a filter should be exclusive or else should allow
2871  * delivery to additional recipients.  Currently we decide that
2872  * filters for specific local unicast MAC and IP addresses are
2873  * exclusive.
2874  */
efx_ef10_filter_is_exclusive(const struct efx_filter_spec * spec)2875 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2876 {
2877 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2878 	    !is_multicast_ether_addr(spec->loc_mac))
2879 		return true;
2880 
2881 	if ((spec->match_flags &
2882 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2883 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2884 		if (spec->ether_type == htons(ETH_P_IP) &&
2885 		    !ipv4_is_multicast(spec->loc_host[0]))
2886 			return true;
2887 		if (spec->ether_type == htons(ETH_P_IPV6) &&
2888 		    ((const u8 *)spec->loc_host)[0] != 0xff)
2889 			return true;
2890 	}
2891 
2892 	return false;
2893 }
2894 
2895 static struct efx_filter_spec *
efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table * table,unsigned int filter_idx)2896 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2897 			   unsigned int filter_idx)
2898 {
2899 	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2900 					  ~EFX_EF10_FILTER_FLAGS);
2901 }
2902 
2903 static unsigned int
efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table * table,unsigned int filter_idx)2904 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2905 			   unsigned int filter_idx)
2906 {
2907 	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2908 }
2909 
2910 static void
efx_ef10_filter_set_entry(struct efx_ef10_filter_table * table,unsigned int filter_idx,const struct efx_filter_spec * spec,unsigned int flags)2911 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2912 			  unsigned int filter_idx,
2913 			  const struct efx_filter_spec *spec,
2914 			  unsigned int flags)
2915 {
2916 	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
2917 }
2918 
efx_ef10_filter_push_prep(struct efx_nic * efx,const struct efx_filter_spec * spec,efx_dword_t * inbuf,u64 handle,bool replacing)2919 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2920 				      const struct efx_filter_spec *spec,
2921 				      efx_dword_t *inbuf, u64 handle,
2922 				      bool replacing)
2923 {
2924 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2925 
2926 	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2927 
2928 	if (replacing) {
2929 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2930 			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
2931 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2932 	} else {
2933 		u32 match_fields = 0;
2934 
2935 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2936 			       efx_ef10_filter_is_exclusive(spec) ?
2937 			       MC_CMD_FILTER_OP_IN_OP_INSERT :
2938 			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2939 
2940 		/* Convert match flags and values.  Unlike almost
2941 		 * everything else in MCDI, these fields are in
2942 		 * network byte order.
2943 		 */
2944 		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2945 			match_fields |=
2946 				is_multicast_ether_addr(spec->loc_mac) ?
2947 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2948 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2949 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
2950 		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2951 			match_fields |=					     \
2952 				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
2953 				mcdi_field ## _LBN;			     \
2954 			BUILD_BUG_ON(					     \
2955 				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2956 				sizeof(spec->gen_field));		     \
2957 			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
2958 			       &spec->gen_field, sizeof(spec->gen_field));   \
2959 		}
2960 		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2961 		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2962 		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2963 		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2964 		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2965 		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2966 		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2967 		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2968 		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2969 		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2970 #undef COPY_FIELD
2971 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2972 			       match_fields);
2973 	}
2974 
2975 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
2976 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2977 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2978 		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2979 		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2980 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
2981 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2982 		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2983 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2984 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2985 		       0 : spec->dmaq_id);
2986 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2987 		       (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2988 		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2989 		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2990 	if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2991 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2992 			       spec->rss_context !=
2993 			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2994 			       spec->rss_context : nic_data->rx_rss_context);
2995 }
2996 
efx_ef10_filter_push(struct efx_nic * efx,const struct efx_filter_spec * spec,u64 * handle,bool replacing)2997 static int efx_ef10_filter_push(struct efx_nic *efx,
2998 				const struct efx_filter_spec *spec,
2999 				u64 *handle, bool replacing)
3000 {
3001 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3002 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
3003 	int rc;
3004 
3005 	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3006 	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3007 			  outbuf, sizeof(outbuf), NULL);
3008 	if (rc == 0)
3009 		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3010 	if (rc == -ENOSPC)
3011 		rc = -EBUSY; /* to match efx_farch_filter_insert() */
3012 	return rc;
3013 }
3014 
efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table * table,enum efx_filter_match_flags match_flags)3015 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
3016 					enum efx_filter_match_flags match_flags)
3017 {
3018 	unsigned int match_pri;
3019 
3020 	for (match_pri = 0;
3021 	     match_pri < table->rx_match_count;
3022 	     match_pri++)
3023 		if (table->rx_match_flags[match_pri] == match_flags)
3024 			return match_pri;
3025 
3026 	return -EPROTONOSUPPORT;
3027 }
3028 
efx_ef10_filter_insert(struct efx_nic * efx,struct efx_filter_spec * spec,bool replace_equal)3029 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
3030 				  struct efx_filter_spec *spec,
3031 				  bool replace_equal)
3032 {
3033 	struct efx_ef10_filter_table *table = efx->filter_state;
3034 	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3035 	struct efx_filter_spec *saved_spec;
3036 	unsigned int match_pri, hash;
3037 	unsigned int priv_flags;
3038 	bool replacing = false;
3039 	int ins_index = -1;
3040 	DEFINE_WAIT(wait);
3041 	bool is_mc_recip;
3042 	s32 rc;
3043 
3044 	/* For now, only support RX filters */
3045 	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
3046 	    EFX_FILTER_FLAG_RX)
3047 		return -EINVAL;
3048 
3049 	rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
3050 	if (rc < 0)
3051 		return rc;
3052 	match_pri = rc;
3053 
3054 	hash = efx_ef10_filter_hash(spec);
3055 	is_mc_recip = efx_filter_is_mc_recipient(spec);
3056 	if (is_mc_recip)
3057 		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3058 
3059 	/* Find any existing filters with the same match tuple or
3060 	 * else a free slot to insert at.  If any of them are busy,
3061 	 * we have to wait and retry.
3062 	 */
3063 	for (;;) {
3064 		unsigned int depth = 1;
3065 		unsigned int i;
3066 
3067 		spin_lock_bh(&efx->filter_lock);
3068 
3069 		for (;;) {
3070 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3071 			saved_spec = efx_ef10_filter_entry_spec(table, i);
3072 
3073 			if (!saved_spec) {
3074 				if (ins_index < 0)
3075 					ins_index = i;
3076 			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
3077 				if (table->entry[i].spec &
3078 				    EFX_EF10_FILTER_FLAG_BUSY)
3079 					break;
3080 				if (spec->priority < saved_spec->priority &&
3081 				    spec->priority != EFX_FILTER_PRI_AUTO) {
3082 					rc = -EPERM;
3083 					goto out_unlock;
3084 				}
3085 				if (!is_mc_recip) {
3086 					/* This is the only one */
3087 					if (spec->priority ==
3088 					    saved_spec->priority &&
3089 					    !replace_equal) {
3090 						rc = -EEXIST;
3091 						goto out_unlock;
3092 					}
3093 					ins_index = i;
3094 					goto found;
3095 				} else if (spec->priority >
3096 					   saved_spec->priority ||
3097 					   (spec->priority ==
3098 					    saved_spec->priority &&
3099 					    replace_equal)) {
3100 					if (ins_index < 0)
3101 						ins_index = i;
3102 					else
3103 						__set_bit(depth, mc_rem_map);
3104 				}
3105 			}
3106 
3107 			/* Once we reach the maximum search depth, use
3108 			 * the first suitable slot or return -EBUSY if
3109 			 * there was none
3110 			 */
3111 			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3112 				if (ins_index < 0) {
3113 					rc = -EBUSY;
3114 					goto out_unlock;
3115 				}
3116 				goto found;
3117 			}
3118 
3119 			++depth;
3120 		}
3121 
3122 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3123 		spin_unlock_bh(&efx->filter_lock);
3124 		schedule();
3125 	}
3126 
3127 found:
3128 	/* Create a software table entry if necessary, and mark it
3129 	 * busy.  We might yet fail to insert, but any attempt to
3130 	 * insert a conflicting filter while we're waiting for the
3131 	 * firmware must find the busy entry.
3132 	 */
3133 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3134 	if (saved_spec) {
3135 		if (spec->priority == EFX_FILTER_PRI_AUTO &&
3136 		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3137 			/* Just make sure it won't be removed */
3138 			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3139 				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3140 			table->entry[ins_index].spec &=
3141 				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3142 			rc = ins_index;
3143 			goto out_unlock;
3144 		}
3145 		replacing = true;
3146 		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3147 	} else {
3148 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3149 		if (!saved_spec) {
3150 			rc = -ENOMEM;
3151 			goto out_unlock;
3152 		}
3153 		*saved_spec = *spec;
3154 		priv_flags = 0;
3155 	}
3156 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3157 				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3158 
3159 	/* Mark lower-priority multicast recipients busy prior to removal */
3160 	if (is_mc_recip) {
3161 		unsigned int depth, i;
3162 
3163 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3164 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3165 			if (test_bit(depth, mc_rem_map))
3166 				table->entry[i].spec |=
3167 					EFX_EF10_FILTER_FLAG_BUSY;
3168 		}
3169 	}
3170 
3171 	spin_unlock_bh(&efx->filter_lock);
3172 
3173 	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3174 				  replacing);
3175 
3176 	/* Finalise the software table entry */
3177 	spin_lock_bh(&efx->filter_lock);
3178 	if (rc == 0) {
3179 		if (replacing) {
3180 			/* Update the fields that may differ */
3181 			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3182 				saved_spec->flags |=
3183 					EFX_FILTER_FLAG_RX_OVER_AUTO;
3184 			saved_spec->priority = spec->priority;
3185 			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3186 			saved_spec->flags |= spec->flags;
3187 			saved_spec->rss_context = spec->rss_context;
3188 			saved_spec->dmaq_id = spec->dmaq_id;
3189 		}
3190 	} else if (!replacing) {
3191 		kfree(saved_spec);
3192 		saved_spec = NULL;
3193 	}
3194 	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3195 
3196 	/* Remove and finalise entries for lower-priority multicast
3197 	 * recipients
3198 	 */
3199 	if (is_mc_recip) {
3200 		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3201 		unsigned int depth, i;
3202 
3203 		memset(inbuf, 0, sizeof(inbuf));
3204 
3205 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3206 			if (!test_bit(depth, mc_rem_map))
3207 				continue;
3208 
3209 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3210 			saved_spec = efx_ef10_filter_entry_spec(table, i);
3211 			priv_flags = efx_ef10_filter_entry_flags(table, i);
3212 
3213 			if (rc == 0) {
3214 				spin_unlock_bh(&efx->filter_lock);
3215 				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3216 					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3217 				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3218 					       table->entry[i].handle);
3219 				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3220 						  inbuf, sizeof(inbuf),
3221 						  NULL, 0, NULL);
3222 				spin_lock_bh(&efx->filter_lock);
3223 			}
3224 
3225 			if (rc == 0) {
3226 				kfree(saved_spec);
3227 				saved_spec = NULL;
3228 				priv_flags = 0;
3229 			} else {
3230 				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3231 			}
3232 			efx_ef10_filter_set_entry(table, i, saved_spec,
3233 						  priv_flags);
3234 		}
3235 	}
3236 
3237 	/* If successful, return the inserted filter ID */
3238 	if (rc == 0)
3239 		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3240 
3241 	wake_up_all(&table->waitq);
3242 out_unlock:
3243 	spin_unlock_bh(&efx->filter_lock);
3244 	finish_wait(&table->waitq, &wait);
3245 	return rc;
3246 }
3247 
efx_ef10_filter_update_rx_scatter(struct efx_nic * efx)3248 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3249 {
3250 	/* no need to do anything here on EF10 */
3251 }
3252 
3253 /* Remove a filter.
3254  * If !by_index, remove by ID
3255  * If by_index, remove by index
3256  * Filter ID may come from userland and must be range-checked.
3257  */
efx_ef10_filter_remove_internal(struct efx_nic * efx,unsigned int priority_mask,u32 filter_id,bool by_index)3258 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3259 					   unsigned int priority_mask,
3260 					   u32 filter_id, bool by_index)
3261 {
3262 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3263 	struct efx_ef10_filter_table *table = efx->filter_state;
3264 	MCDI_DECLARE_BUF(inbuf,
3265 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3266 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3267 	struct efx_filter_spec *spec;
3268 	DEFINE_WAIT(wait);
3269 	int rc;
3270 
3271 	/* Find the software table entry and mark it busy.  Don't
3272 	 * remove it yet; any attempt to update while we're waiting
3273 	 * for the firmware must find the busy entry.
3274 	 */
3275 	for (;;) {
3276 		spin_lock_bh(&efx->filter_lock);
3277 		if (!(table->entry[filter_idx].spec &
3278 		      EFX_EF10_FILTER_FLAG_BUSY))
3279 			break;
3280 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3281 		spin_unlock_bh(&efx->filter_lock);
3282 		schedule();
3283 	}
3284 
3285 	spec = efx_ef10_filter_entry_spec(table, filter_idx);
3286 	if (!spec ||
3287 	    (!by_index &&
3288 	     efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
3289 	     filter_id / HUNT_FILTER_TBL_ROWS)) {
3290 		rc = -ENOENT;
3291 		goto out_unlock;
3292 	}
3293 
3294 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3295 	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3296 		/* Just remove flags */
3297 		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3298 		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3299 		rc = 0;
3300 		goto out_unlock;
3301 	}
3302 
3303 	if (!(priority_mask & (1U << spec->priority))) {
3304 		rc = -ENOENT;
3305 		goto out_unlock;
3306 	}
3307 
3308 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3309 	spin_unlock_bh(&efx->filter_lock);
3310 
3311 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3312 		/* Reset to an automatic filter */
3313 
3314 		struct efx_filter_spec new_spec = *spec;
3315 
3316 		new_spec.priority = EFX_FILTER_PRI_AUTO;
3317 		new_spec.flags = (EFX_FILTER_FLAG_RX |
3318 				  (efx_rss_enabled(efx) ?
3319 				   EFX_FILTER_FLAG_RX_RSS : 0));
3320 		new_spec.dmaq_id = 0;
3321 		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3322 		rc = efx_ef10_filter_push(efx, &new_spec,
3323 					  &table->entry[filter_idx].handle,
3324 					  true);
3325 
3326 		spin_lock_bh(&efx->filter_lock);
3327 		if (rc == 0)
3328 			*spec = new_spec;
3329 	} else {
3330 		/* Really remove the filter */
3331 
3332 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3333 			       efx_ef10_filter_is_exclusive(spec) ?
3334 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3335 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3336 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3337 			       table->entry[filter_idx].handle);
3338 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3339 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
3340 
3341 		spin_lock_bh(&efx->filter_lock);
3342 		if (rc == 0) {
3343 			kfree(spec);
3344 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3345 		}
3346 	}
3347 
3348 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3349 	wake_up_all(&table->waitq);
3350 out_unlock:
3351 	spin_unlock_bh(&efx->filter_lock);
3352 	finish_wait(&table->waitq, &wait);
3353 	return rc;
3354 }
3355 
efx_ef10_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)3356 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3357 				       enum efx_filter_priority priority,
3358 				       u32 filter_id)
3359 {
3360 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
3361 					       filter_id, false);
3362 }
3363 
efx_ef10_filter_get_unsafe_id(struct efx_nic * efx,u32 filter_id)3364 static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
3365 {
3366 	return filter_id % HUNT_FILTER_TBL_ROWS;
3367 }
3368 
efx_ef10_filter_remove_unsafe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)3369 static int efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
3370 					 enum efx_filter_priority priority,
3371 					 u32 filter_id)
3372 {
3373 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
3374 					       filter_id, true);
3375 }
3376 
efx_ef10_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec)3377 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3378 				    enum efx_filter_priority priority,
3379 				    u32 filter_id, struct efx_filter_spec *spec)
3380 {
3381 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3382 	struct efx_ef10_filter_table *table = efx->filter_state;
3383 	const struct efx_filter_spec *saved_spec;
3384 	int rc;
3385 
3386 	spin_lock_bh(&efx->filter_lock);
3387 	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3388 	if (saved_spec && saved_spec->priority == priority &&
3389 	    efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
3390 	    filter_id / HUNT_FILTER_TBL_ROWS) {
3391 		*spec = *saved_spec;
3392 		rc = 0;
3393 	} else {
3394 		rc = -ENOENT;
3395 	}
3396 	spin_unlock_bh(&efx->filter_lock);
3397 	return rc;
3398 }
3399 
efx_ef10_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)3400 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3401 				     enum efx_filter_priority priority)
3402 {
3403 	unsigned int priority_mask;
3404 	unsigned int i;
3405 	int rc;
3406 
3407 	priority_mask = (((1U << (priority + 1)) - 1) &
3408 			 ~(1U << EFX_FILTER_PRI_AUTO));
3409 
3410 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3411 		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3412 						     i, true);
3413 		if (rc && rc != -ENOENT)
3414 			return rc;
3415 	}
3416 
3417 	return 0;
3418 }
3419 
efx_ef10_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)3420 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3421 					 enum efx_filter_priority priority)
3422 {
3423 	struct efx_ef10_filter_table *table = efx->filter_state;
3424 	unsigned int filter_idx;
3425 	s32 count = 0;
3426 
3427 	spin_lock_bh(&efx->filter_lock);
3428 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3429 		if (table->entry[filter_idx].spec &&
3430 		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3431 		    priority)
3432 			++count;
3433 	}
3434 	spin_unlock_bh(&efx->filter_lock);
3435 	return count;
3436 }
3437 
efx_ef10_filter_get_rx_id_limit(struct efx_nic * efx)3438 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3439 {
3440 	struct efx_ef10_filter_table *table = efx->filter_state;
3441 
3442 	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3443 }
3444 
efx_ef10_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)3445 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3446 				      enum efx_filter_priority priority,
3447 				      u32 *buf, u32 size)
3448 {
3449 	struct efx_ef10_filter_table *table = efx->filter_state;
3450 	struct efx_filter_spec *spec;
3451 	unsigned int filter_idx;
3452 	s32 count = 0;
3453 
3454 	spin_lock_bh(&efx->filter_lock);
3455 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3456 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3457 		if (spec && spec->priority == priority) {
3458 			if (count == size) {
3459 				count = -EMSGSIZE;
3460 				break;
3461 			}
3462 			buf[count++] = (efx_ef10_filter_rx_match_pri(
3463 						table, spec->match_flags) *
3464 					HUNT_FILTER_TBL_ROWS +
3465 					filter_idx);
3466 		}
3467 	}
3468 	spin_unlock_bh(&efx->filter_lock);
3469 	return count;
3470 }
3471 
3472 #ifdef CONFIG_RFS_ACCEL
3473 
3474 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3475 
efx_ef10_filter_rfs_insert(struct efx_nic * efx,struct efx_filter_spec * spec)3476 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3477 				      struct efx_filter_spec *spec)
3478 {
3479 	struct efx_ef10_filter_table *table = efx->filter_state;
3480 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3481 	struct efx_filter_spec *saved_spec;
3482 	unsigned int hash, i, depth = 1;
3483 	bool replacing = false;
3484 	int ins_index = -1;
3485 	u64 cookie;
3486 	s32 rc;
3487 
3488 	/* Must be an RX filter without RSS and not for a multicast
3489 	 * destination address (RFS only works for connected sockets).
3490 	 * These restrictions allow us to pass only a tiny amount of
3491 	 * data through to the completion function.
3492 	 */
3493 	EFX_WARN_ON_PARANOID(spec->flags !=
3494 			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3495 	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3496 	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3497 
3498 	hash = efx_ef10_filter_hash(spec);
3499 
3500 	spin_lock_bh(&efx->filter_lock);
3501 
3502 	/* Find any existing filter with the same match tuple or else
3503 	 * a free slot to insert at.  If an existing filter is busy,
3504 	 * we have to give up.
3505 	 */
3506 	for (;;) {
3507 		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3508 		saved_spec = efx_ef10_filter_entry_spec(table, i);
3509 
3510 		if (!saved_spec) {
3511 			if (ins_index < 0)
3512 				ins_index = i;
3513 		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
3514 			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3515 				rc = -EBUSY;
3516 				goto fail_unlock;
3517 			}
3518 			if (spec->priority < saved_spec->priority) {
3519 				rc = -EPERM;
3520 				goto fail_unlock;
3521 			}
3522 			ins_index = i;
3523 			break;
3524 		}
3525 
3526 		/* Once we reach the maximum search depth, use the
3527 		 * first suitable slot or return -EBUSY if there was
3528 		 * none
3529 		 */
3530 		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3531 			if (ins_index < 0) {
3532 				rc = -EBUSY;
3533 				goto fail_unlock;
3534 			}
3535 			break;
3536 		}
3537 
3538 		++depth;
3539 	}
3540 
3541 	/* Create a software table entry if necessary, and mark it
3542 	 * busy.  We might yet fail to insert, but any attempt to
3543 	 * insert a conflicting filter while we're waiting for the
3544 	 * firmware must find the busy entry.
3545 	 */
3546 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3547 	if (saved_spec) {
3548 		replacing = true;
3549 	} else {
3550 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3551 		if (!saved_spec) {
3552 			rc = -ENOMEM;
3553 			goto fail_unlock;
3554 		}
3555 		*saved_spec = *spec;
3556 	}
3557 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3558 				  EFX_EF10_FILTER_FLAG_BUSY);
3559 
3560 	spin_unlock_bh(&efx->filter_lock);
3561 
3562 	/* Pack up the variables needed on completion */
3563 	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3564 
3565 	efx_ef10_filter_push_prep(efx, spec, inbuf,
3566 				  table->entry[ins_index].handle, replacing);
3567 	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3568 			   MC_CMD_FILTER_OP_OUT_LEN,
3569 			   efx_ef10_filter_rfs_insert_complete, cookie);
3570 
3571 	return ins_index;
3572 
3573 fail_unlock:
3574 	spin_unlock_bh(&efx->filter_lock);
3575 	return rc;
3576 }
3577 
3578 static void
efx_ef10_filter_rfs_insert_complete(struct efx_nic * efx,unsigned long cookie,int rc,efx_dword_t * outbuf,size_t outlen_actual)3579 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
3580 				    int rc, efx_dword_t *outbuf,
3581 				    size_t outlen_actual)
3582 {
3583 	struct efx_ef10_filter_table *table = efx->filter_state;
3584 	unsigned int ins_index, dmaq_id;
3585 	struct efx_filter_spec *spec;
3586 	bool replacing;
3587 
3588 	/* Unpack the cookie */
3589 	replacing = cookie >> 31;
3590 	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
3591 	dmaq_id = cookie & 0xffff;
3592 
3593 	spin_lock_bh(&efx->filter_lock);
3594 	spec = efx_ef10_filter_entry_spec(table, ins_index);
3595 	if (rc == 0) {
3596 		table->entry[ins_index].handle =
3597 			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3598 		if (replacing)
3599 			spec->dmaq_id = dmaq_id;
3600 	} else if (!replacing) {
3601 		kfree(spec);
3602 		spec = NULL;
3603 	}
3604 	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
3605 	spin_unlock_bh(&efx->filter_lock);
3606 
3607 	wake_up_all(&table->waitq);
3608 }
3609 
3610 static void
3611 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3612 				    unsigned long filter_idx,
3613 				    int rc, efx_dword_t *outbuf,
3614 				    size_t outlen_actual);
3615 
efx_ef10_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int filter_idx)3616 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
3617 					   unsigned int filter_idx)
3618 {
3619 	struct efx_ef10_filter_table *table = efx->filter_state;
3620 	struct efx_filter_spec *spec =
3621 		efx_ef10_filter_entry_spec(table, filter_idx);
3622 	MCDI_DECLARE_BUF(inbuf,
3623 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3624 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3625 
3626 	if (!spec ||
3627 	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
3628 	    spec->priority != EFX_FILTER_PRI_HINT ||
3629 	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
3630 				 flow_id, filter_idx))
3631 		return false;
3632 
3633 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3634 		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
3635 	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3636 		       table->entry[filter_idx].handle);
3637 	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
3638 			       efx_ef10_filter_rfs_expire_complete, filter_idx))
3639 		return false;
3640 
3641 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3642 	return true;
3643 }
3644 
3645 static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic * efx,unsigned long filter_idx,int rc,efx_dword_t * outbuf,size_t outlen_actual)3646 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3647 				    unsigned long filter_idx,
3648 				    int rc, efx_dword_t *outbuf,
3649 				    size_t outlen_actual)
3650 {
3651 	struct efx_ef10_filter_table *table = efx->filter_state;
3652 	struct efx_filter_spec *spec =
3653 		efx_ef10_filter_entry_spec(table, filter_idx);
3654 
3655 	spin_lock_bh(&efx->filter_lock);
3656 	if (rc == 0) {
3657 		kfree(spec);
3658 		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3659 	}
3660 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3661 	wake_up_all(&table->waitq);
3662 	spin_unlock_bh(&efx->filter_lock);
3663 }
3664 
3665 #endif /* CONFIG_RFS_ACCEL */
3666 
efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)3667 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
3668 {
3669 	int match_flags = 0;
3670 
3671 #define MAP_FLAG(gen_flag, mcdi_field) {				\
3672 		u32 old_mcdi_flags = mcdi_flags;			\
3673 		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
3674 				mcdi_field ## _LBN);			\
3675 		if (mcdi_flags != old_mcdi_flags)			\
3676 			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
3677 	}
3678 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
3679 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
3680 	MAP_FLAG(REM_HOST, SRC_IP);
3681 	MAP_FLAG(LOC_HOST, DST_IP);
3682 	MAP_FLAG(REM_MAC, SRC_MAC);
3683 	MAP_FLAG(REM_PORT, SRC_PORT);
3684 	MAP_FLAG(LOC_MAC, DST_MAC);
3685 	MAP_FLAG(LOC_PORT, DST_PORT);
3686 	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
3687 	MAP_FLAG(INNER_VID, INNER_VLAN);
3688 	MAP_FLAG(OUTER_VID, OUTER_VLAN);
3689 	MAP_FLAG(IP_PROTO, IP_PROTO);
3690 #undef MAP_FLAG
3691 
3692 	/* Did we map them all? */
3693 	if (mcdi_flags)
3694 		return -EINVAL;
3695 
3696 	return match_flags;
3697 }
3698 
efx_ef10_filter_table_probe(struct efx_nic * efx)3699 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
3700 {
3701 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3702 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3703 	unsigned int pd_match_pri, pd_match_count;
3704 	struct efx_ef10_filter_table *table;
3705 	size_t outlen;
3706 	int rc;
3707 
3708 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3709 	if (!table)
3710 		return -ENOMEM;
3711 
3712 	/* Find out which RX filter types are supported, and their priorities */
3713 	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3714 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3715 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3716 			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3717 			  &outlen);
3718 	if (rc)
3719 		goto fail;
3720 	pd_match_count = MCDI_VAR_ARRAY_LEN(
3721 		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3722 	table->rx_match_count = 0;
3723 
3724 	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3725 		u32 mcdi_flags =
3726 			MCDI_ARRAY_DWORD(
3727 				outbuf,
3728 				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3729 				pd_match_pri);
3730 		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3731 		if (rc < 0) {
3732 			netif_dbg(efx, probe, efx->net_dev,
3733 				  "%s: fw flags %#x pri %u not supported in driver\n",
3734 				  __func__, mcdi_flags, pd_match_pri);
3735 		} else {
3736 			netif_dbg(efx, probe, efx->net_dev,
3737 				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3738 				  __func__, mcdi_flags, pd_match_pri,
3739 				  rc, table->rx_match_count);
3740 			table->rx_match_flags[table->rx_match_count++] = rc;
3741 		}
3742 	}
3743 
3744 	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3745 	if (!table->entry) {
3746 		rc = -ENOMEM;
3747 		goto fail;
3748 	}
3749 
3750 	table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3751 	table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3752 	table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3753 
3754 	efx->filter_state = table;
3755 	init_waitqueue_head(&table->waitq);
3756 	return 0;
3757 
3758 fail:
3759 	kfree(table);
3760 	return rc;
3761 }
3762 
3763 /* Caller must hold efx->filter_sem for read if race against
3764  * efx_ef10_filter_table_remove() is possible
3765  */
efx_ef10_filter_table_restore(struct efx_nic * efx)3766 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3767 {
3768 	struct efx_ef10_filter_table *table = efx->filter_state;
3769 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3770 	struct efx_filter_spec *spec;
3771 	unsigned int filter_idx;
3772 	bool failed = false;
3773 	int rc;
3774 
3775 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
3776 
3777 	if (!nic_data->must_restore_filters)
3778 		return;
3779 
3780 	if (!table)
3781 		return;
3782 
3783 	spin_lock_bh(&efx->filter_lock);
3784 
3785 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3786 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3787 		if (!spec)
3788 			continue;
3789 
3790 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3791 		spin_unlock_bh(&efx->filter_lock);
3792 
3793 		rc = efx_ef10_filter_push(efx, spec,
3794 					  &table->entry[filter_idx].handle,
3795 					  false);
3796 		if (rc)
3797 			failed = true;
3798 
3799 		spin_lock_bh(&efx->filter_lock);
3800 		if (rc) {
3801 			kfree(spec);
3802 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3803 		} else {
3804 			table->entry[filter_idx].spec &=
3805 				~EFX_EF10_FILTER_FLAG_BUSY;
3806 		}
3807 	}
3808 
3809 	spin_unlock_bh(&efx->filter_lock);
3810 
3811 	if (failed)
3812 		netif_err(efx, hw, efx->net_dev,
3813 			  "unable to restore all filters\n");
3814 	else
3815 		nic_data->must_restore_filters = false;
3816 }
3817 
3818 /* Caller must hold efx->filter_sem for write */
efx_ef10_filter_table_remove(struct efx_nic * efx)3819 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3820 {
3821 	struct efx_ef10_filter_table *table = efx->filter_state;
3822 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3823 	struct efx_filter_spec *spec;
3824 	unsigned int filter_idx;
3825 	int rc;
3826 
3827 	efx->filter_state = NULL;
3828 	if (!table)
3829 		return;
3830 
3831 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3832 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3833 		if (!spec)
3834 			continue;
3835 
3836 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3837 			       efx_ef10_filter_is_exclusive(spec) ?
3838 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3839 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3840 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3841 			       table->entry[filter_idx].handle);
3842 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3843 				  NULL, 0, NULL);
3844 		if (rc)
3845 			netdev_WARN(efx->net_dev,
3846 				    "filter_idx=%#x handle=%#llx\n",
3847 				    filter_idx,
3848 				    table->entry[filter_idx].handle);
3849 		kfree(spec);
3850 	}
3851 
3852 	vfree(table->entry);
3853 	kfree(table);
3854 }
3855 
3856 #define EFX_EF10_FILTER_DO_MARK_OLD(id) \
3857 		if (id != EFX_EF10_FILTER_ID_INVALID) { \
3858 			filter_idx = efx_ef10_filter_get_unsafe_id(efx, id); \
3859 			WARN_ON(!table->entry[filter_idx].spec); \
3860 			table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD; \
3861 		}
efx_ef10_filter_mark_old(struct efx_nic * efx)3862 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
3863 {
3864 	struct efx_ef10_filter_table *table = efx->filter_state;
3865 	unsigned int filter_idx, i;
3866 
3867 	if (!table)
3868 		return;
3869 
3870 	/* Mark old filters that may need to be removed */
3871 	spin_lock_bh(&efx->filter_lock);
3872 	for (i = 0; i < table->dev_uc_count; i++)
3873 		EFX_EF10_FILTER_DO_MARK_OLD(table->dev_uc_list[i].id);
3874 	for (i = 0; i < table->dev_mc_count; i++)
3875 		EFX_EF10_FILTER_DO_MARK_OLD(table->dev_mc_list[i].id);
3876 	EFX_EF10_FILTER_DO_MARK_OLD(table->ucdef_id);
3877 	EFX_EF10_FILTER_DO_MARK_OLD(table->bcast_id);
3878 	EFX_EF10_FILTER_DO_MARK_OLD(table->mcdef_id);
3879 	spin_unlock_bh(&efx->filter_lock);
3880 }
3881 #undef EFX_EF10_FILTER_DO_MARK_OLD
3882 
efx_ef10_filter_uc_addr_list(struct efx_nic * efx,bool * promisc)3883 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx, bool *promisc)
3884 {
3885 	struct efx_ef10_filter_table *table = efx->filter_state;
3886 	struct net_device *net_dev = efx->net_dev;
3887 	struct netdev_hw_addr *uc;
3888 	int addr_count;
3889 	unsigned int i;
3890 
3891 	table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3892 	addr_count = netdev_uc_count(net_dev);
3893 	if (net_dev->flags & IFF_PROMISC)
3894 		*promisc = true;
3895 	table->dev_uc_count = 1 + addr_count;
3896 	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3897 	i = 1;
3898 	netdev_for_each_uc_addr(uc, net_dev) {
3899 		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
3900 			*promisc = true;
3901 			break;
3902 		}
3903 		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3904 		table->dev_uc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3905 		i++;
3906 	}
3907 }
3908 
efx_ef10_filter_mc_addr_list(struct efx_nic * efx,bool * promisc)3909 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx, bool *promisc)
3910 {
3911 	struct efx_ef10_filter_table *table = efx->filter_state;
3912 	struct net_device *net_dev = efx->net_dev;
3913 	struct netdev_hw_addr *mc;
3914 	unsigned int i, addr_count;
3915 
3916 	table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3917 	table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3918 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI))
3919 		*promisc = true;
3920 
3921 	addr_count = netdev_mc_count(net_dev);
3922 	i = 0;
3923 	netdev_for_each_mc_addr(mc, net_dev) {
3924 		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
3925 			*promisc = true;
3926 			break;
3927 		}
3928 		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3929 		table->dev_mc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3930 		i++;
3931 	}
3932 
3933 	table->dev_mc_count = i;
3934 }
3935 
efx_ef10_filter_insert_addr_list(struct efx_nic * efx,bool multicast,bool rollback)3936 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
3937 					     bool multicast, bool rollback)
3938 {
3939 	struct efx_ef10_filter_table *table = efx->filter_state;
3940 	struct efx_ef10_dev_addr *addr_list;
3941 	enum efx_filter_flags filter_flags;
3942 	struct efx_filter_spec spec;
3943 	u8 baddr[ETH_ALEN];
3944 	unsigned int i, j;
3945 	int addr_count;
3946 	int rc;
3947 
3948 	if (multicast) {
3949 		addr_list = table->dev_mc_list;
3950 		addr_count = table->dev_mc_count;
3951 	} else {
3952 		addr_list = table->dev_uc_list;
3953 		addr_count = table->dev_uc_count;
3954 	}
3955 
3956 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
3957 
3958 	/* Insert/renew filters */
3959 	for (i = 0; i < addr_count; i++) {
3960 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
3961 		efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3962 					 addr_list[i].addr);
3963 		rc = efx_ef10_filter_insert(efx, &spec, true);
3964 		if (rc < 0) {
3965 			if (rollback) {
3966 				netif_info(efx, drv, efx->net_dev,
3967 					   "efx_ef10_filter_insert failed rc=%d\n",
3968 					   rc);
3969 				/* Fall back to promiscuous */
3970 				for (j = 0; j < i; j++) {
3971 					if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
3972 						continue;
3973 					efx_ef10_filter_remove_unsafe(
3974 						efx, EFX_FILTER_PRI_AUTO,
3975 						addr_list[j].id);
3976 					addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
3977 				}
3978 				return rc;
3979 			} else {
3980 				/* mark as not inserted, and carry on */
3981 				rc = EFX_EF10_FILTER_ID_INVALID;
3982 			}
3983 		}
3984 		addr_list[i].id = efx_ef10_filter_get_unsafe_id(efx, rc);
3985 	}
3986 
3987 	if (multicast && rollback) {
3988 		/* Also need an Ethernet broadcast filter */
3989 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
3990 		eth_broadcast_addr(baddr);
3991 		efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, baddr);
3992 		rc = efx_ef10_filter_insert(efx, &spec, true);
3993 		if (rc < 0) {
3994 			netif_warn(efx, drv, efx->net_dev,
3995 				   "Broadcast filter insert failed rc=%d\n", rc);
3996 			/* Fall back to promiscuous */
3997 			for (j = 0; j < i; j++) {
3998 				if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
3999 					continue;
4000 				efx_ef10_filter_remove_unsafe(
4001 					efx, EFX_FILTER_PRI_AUTO,
4002 					addr_list[j].id);
4003 				addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
4004 			}
4005 			return rc;
4006 		} else {
4007 			table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4008 		}
4009 	}
4010 
4011 	return 0;
4012 }
4013 
efx_ef10_filter_insert_def(struct efx_nic * efx,bool multicast,bool rollback)4014 static int efx_ef10_filter_insert_def(struct efx_nic *efx, bool multicast,
4015 				      bool rollback)
4016 {
4017 	struct efx_ef10_filter_table *table = efx->filter_state;
4018 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4019 	enum efx_filter_flags filter_flags;
4020 	struct efx_filter_spec spec;
4021 	u8 baddr[ETH_ALEN];
4022 	int rc;
4023 
4024 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4025 
4026 	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4027 
4028 	if (multicast)
4029 		efx_filter_set_mc_def(&spec);
4030 	else
4031 		efx_filter_set_uc_def(&spec);
4032 
4033 	rc = efx_ef10_filter_insert(efx, &spec, true);
4034 	if (rc < 0) {
4035 		netif_warn(efx, drv, efx->net_dev,
4036 			   "%scast mismatch filter insert failed rc=%d\n",
4037 			   multicast ? "Multi" : "Uni", rc);
4038 	} else if (multicast) {
4039 		table->mcdef_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4040 		if (!nic_data->workaround_26807) {
4041 			/* Also need an Ethernet broadcast filter */
4042 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4043 					   filter_flags, 0);
4044 			eth_broadcast_addr(baddr);
4045 			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
4046 						 baddr);
4047 			rc = efx_ef10_filter_insert(efx, &spec, true);
4048 			if (rc < 0) {
4049 				netif_warn(efx, drv, efx->net_dev,
4050 					   "Broadcast filter insert failed rc=%d\n",
4051 					   rc);
4052 				if (rollback) {
4053 					/* Roll back the mc_def filter */
4054 					efx_ef10_filter_remove_unsafe(
4055 							efx, EFX_FILTER_PRI_AUTO,
4056 							table->mcdef_id);
4057 					table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
4058 					return rc;
4059 				}
4060 			} else {
4061 				table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4062 			}
4063 		}
4064 		rc = 0;
4065 	} else {
4066 		table->ucdef_id = rc;
4067 		rc = 0;
4068 	}
4069 	return rc;
4070 }
4071 
4072 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
4073  * flag or removes these filters, we don't need to hold the filter_lock while
4074  * scanning for these filters.
4075  */
efx_ef10_filter_remove_old(struct efx_nic * efx)4076 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
4077 {
4078 	struct efx_ef10_filter_table *table = efx->filter_state;
4079 	bool remove_failed = false;
4080 	int i;
4081 
4082 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4083 		if (ACCESS_ONCE(table->entry[i].spec) &
4084 		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4085 			if (efx_ef10_filter_remove_internal(
4086 				    efx, 1U << EFX_FILTER_PRI_AUTO,
4087 				    i, true) < 0)
4088 				remove_failed = true;
4089 		}
4090 	}
4091 	WARN_ON(remove_failed);
4092 }
4093 
efx_ef10_vport_set_mac_address(struct efx_nic * efx)4094 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
4095 {
4096 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4097 	u8 mac_old[ETH_ALEN];
4098 	int rc, rc2;
4099 
4100 	/* Only reconfigure a PF-created vport */
4101 	if (is_zero_ether_addr(nic_data->vport_mac))
4102 		return 0;
4103 
4104 	efx_device_detach_sync(efx);
4105 	efx_net_stop(efx->net_dev);
4106 	down_write(&efx->filter_sem);
4107 	efx_ef10_filter_table_remove(efx);
4108 	up_write(&efx->filter_sem);
4109 
4110 	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
4111 	if (rc)
4112 		goto restore_filters;
4113 
4114 	ether_addr_copy(mac_old, nic_data->vport_mac);
4115 	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
4116 				    nic_data->vport_mac);
4117 	if (rc)
4118 		goto restore_vadaptor;
4119 
4120 	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
4121 				    efx->net_dev->dev_addr);
4122 	if (!rc) {
4123 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
4124 	} else {
4125 		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
4126 		if (rc2) {
4127 			/* Failed to add original MAC, so clear vport_mac */
4128 			eth_zero_addr(nic_data->vport_mac);
4129 			goto reset_nic;
4130 		}
4131 	}
4132 
4133 restore_vadaptor:
4134 	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
4135 	if (rc2)
4136 		goto reset_nic;
4137 restore_filters:
4138 	down_write(&efx->filter_sem);
4139 	rc2 = efx_ef10_filter_table_probe(efx);
4140 	up_write(&efx->filter_sem);
4141 	if (rc2)
4142 		goto reset_nic;
4143 
4144 	rc2 = efx_net_open(efx->net_dev);
4145 	if (rc2)
4146 		goto reset_nic;
4147 
4148 	netif_device_attach(efx->net_dev);
4149 
4150 	return rc;
4151 
4152 reset_nic:
4153 	netif_err(efx, drv, efx->net_dev,
4154 		  "Failed to restore when changing MAC address - scheduling reset\n");
4155 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
4156 
4157 	return rc ? rc : rc2;
4158 }
4159 
4160 /* Caller must hold efx->filter_sem for read if race against
4161  * efx_ef10_filter_table_remove() is possible
4162  */
efx_ef10_filter_sync_rx_mode(struct efx_nic * efx)4163 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
4164 {
4165 	struct efx_ef10_filter_table *table = efx->filter_state;
4166 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4167 	struct net_device *net_dev = efx->net_dev;
4168 	bool uc_promisc = false, mc_promisc = false;
4169 
4170 	if (!efx_dev_registered(efx))
4171 		return;
4172 
4173 	if (!table)
4174 		return;
4175 
4176 	efx_ef10_filter_mark_old(efx);
4177 
4178 	/* Copy/convert the address lists; add the primary station
4179 	 * address and broadcast address
4180 	 */
4181 	netif_addr_lock_bh(net_dev);
4182 	efx_ef10_filter_uc_addr_list(efx, &uc_promisc);
4183 	efx_ef10_filter_mc_addr_list(efx, &mc_promisc);
4184 	netif_addr_unlock_bh(net_dev);
4185 
4186 	/* Insert/renew unicast filters */
4187 	if (uc_promisc) {
4188 		efx_ef10_filter_insert_def(efx, false, false);
4189 		efx_ef10_filter_insert_addr_list(efx, false, false);
4190 	} else {
4191 		/* If any of the filters failed to insert, fall back to
4192 		 * promiscuous mode - add in the uc_def filter.  But keep
4193 		 * our individual unicast filters.
4194 		 */
4195 		if (efx_ef10_filter_insert_addr_list(efx, false, false))
4196 			efx_ef10_filter_insert_def(efx, false, false);
4197 	}
4198 
4199 	/* Insert/renew multicast filters */
4200 	/* If changing promiscuous state with cascaded multicast filters, remove
4201 	 * old filters first, so that packets are dropped rather than duplicated
4202 	 */
4203 	if (nic_data->workaround_26807 && efx->mc_promisc != mc_promisc)
4204 		efx_ef10_filter_remove_old(efx);
4205 	if (mc_promisc) {
4206 		if (nic_data->workaround_26807) {
4207 			/* If we failed to insert promiscuous filters, rollback
4208 			 * and fall back to individual multicast filters
4209 			 */
4210 			if (efx_ef10_filter_insert_def(efx, true, true)) {
4211 				/* Changing promisc state, so remove old filters */
4212 				efx_ef10_filter_remove_old(efx);
4213 				efx_ef10_filter_insert_addr_list(efx, true, false);
4214 			}
4215 		} else {
4216 			/* If we failed to insert promiscuous filters, don't
4217 			 * rollback.  Regardless, also insert the mc_list
4218 			 */
4219 			efx_ef10_filter_insert_def(efx, true, false);
4220 			efx_ef10_filter_insert_addr_list(efx, true, false);
4221 		}
4222 	} else {
4223 		/* If any filters failed to insert, rollback and fall back to
4224 		 * promiscuous mode - mc_def filter and maybe broadcast.  If
4225 		 * that fails, roll back again and insert as many of our
4226 		 * individual multicast filters as we can.
4227 		 */
4228 		if (efx_ef10_filter_insert_addr_list(efx, true, true)) {
4229 			/* Changing promisc state, so remove old filters */
4230 			if (nic_data->workaround_26807)
4231 				efx_ef10_filter_remove_old(efx);
4232 			if (efx_ef10_filter_insert_def(efx, true, true))
4233 				efx_ef10_filter_insert_addr_list(efx, true, false);
4234 		}
4235 	}
4236 
4237 	efx_ef10_filter_remove_old(efx);
4238 	efx->mc_promisc = mc_promisc;
4239 }
4240 
efx_ef10_set_mac_address(struct efx_nic * efx)4241 static int efx_ef10_set_mac_address(struct efx_nic *efx)
4242 {
4243 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
4244 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4245 	bool was_enabled = efx->port_enabled;
4246 	int rc;
4247 
4248 	efx_device_detach_sync(efx);
4249 	efx_net_stop(efx->net_dev);
4250 	down_write(&efx->filter_sem);
4251 	efx_ef10_filter_table_remove(efx);
4252 
4253 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
4254 			efx->net_dev->dev_addr);
4255 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
4256 		       nic_data->vport_id);
4257 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
4258 				sizeof(inbuf), NULL, 0, NULL);
4259 
4260 	efx_ef10_filter_table_probe(efx);
4261 	up_write(&efx->filter_sem);
4262 	if (was_enabled)
4263 		efx_net_open(efx->net_dev);
4264 	netif_device_attach(efx->net_dev);
4265 
4266 #ifdef CONFIG_SFC_SRIOV
4267 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
4268 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
4269 
4270 		if (rc == -EPERM) {
4271 			struct efx_nic *efx_pf;
4272 
4273 			/* Switch to PF and change MAC address on vport */
4274 			efx_pf = pci_get_drvdata(pci_dev_pf);
4275 
4276 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
4277 						       nic_data->vf_index,
4278 						       efx->net_dev->dev_addr);
4279 		} else if (!rc) {
4280 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
4281 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
4282 			unsigned int i;
4283 
4284 			/* MAC address successfully changed by VF (with MAC
4285 			 * spoofing) so update the parent PF if possible.
4286 			 */
4287 			for (i = 0; i < efx_pf->vf_count; ++i) {
4288 				struct ef10_vf *vf = nic_data->vf + i;
4289 
4290 				if (vf->efx == efx) {
4291 					ether_addr_copy(vf->mac,
4292 							efx->net_dev->dev_addr);
4293 					return 0;
4294 				}
4295 			}
4296 		}
4297 	} else
4298 #endif
4299 	if (rc == -EPERM) {
4300 		netif_err(efx, drv, efx->net_dev,
4301 			  "Cannot change MAC address; use sfboot to enable"
4302 			  " mac-spoofing on this interface\n");
4303 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
4304 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4305 		 * fall-back to the method of changing the MAC address on the
4306 		 * vport.  This only applies to PFs because such versions of
4307 		 * MCFW do not support VFs.
4308 		 */
4309 		rc = efx_ef10_vport_set_mac_address(efx);
4310 	} else {
4311 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
4312 				       sizeof(inbuf), NULL, 0, rc);
4313 	}
4314 
4315 	return rc;
4316 }
4317 
efx_ef10_mac_reconfigure(struct efx_nic * efx)4318 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
4319 {
4320 	efx_ef10_filter_sync_rx_mode(efx);
4321 
4322 	return efx_mcdi_set_mac(efx);
4323 }
4324 
efx_ef10_mac_reconfigure_vf(struct efx_nic * efx)4325 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4326 {
4327 	efx_ef10_filter_sync_rx_mode(efx);
4328 
4329 	return 0;
4330 }
4331 
efx_ef10_start_bist(struct efx_nic * efx,u32 bist_type)4332 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4333 {
4334 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4335 
4336 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4337 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4338 			    NULL, 0, NULL);
4339 }
4340 
4341 /* MC BISTs follow a different poll mechanism to phy BISTs.
4342  * The BIST is done in the poll handler on the MC, and the MCDI command
4343  * will block until the BIST is done.
4344  */
efx_ef10_poll_bist(struct efx_nic * efx)4345 static int efx_ef10_poll_bist(struct efx_nic *efx)
4346 {
4347 	int rc;
4348 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
4349 	size_t outlen;
4350 	u32 result;
4351 
4352 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
4353 			   outbuf, sizeof(outbuf), &outlen);
4354 	if (rc != 0)
4355 		return rc;
4356 
4357 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
4358 		return -EIO;
4359 
4360 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
4361 	switch (result) {
4362 	case MC_CMD_POLL_BIST_PASSED:
4363 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
4364 		return 0;
4365 	case MC_CMD_POLL_BIST_TIMEOUT:
4366 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
4367 		return -EIO;
4368 	case MC_CMD_POLL_BIST_FAILED:
4369 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
4370 		return -EIO;
4371 	default:
4372 		netif_err(efx, hw, efx->net_dev,
4373 			  "BIST returned unknown result %u", result);
4374 		return -EIO;
4375 	}
4376 }
4377 
efx_ef10_run_bist(struct efx_nic * efx,u32 bist_type)4378 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
4379 {
4380 	int rc;
4381 
4382 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
4383 
4384 	rc = efx_ef10_start_bist(efx, bist_type);
4385 	if (rc != 0)
4386 		return rc;
4387 
4388 	return efx_ef10_poll_bist(efx);
4389 }
4390 
4391 static int
efx_ef10_test_chip(struct efx_nic * efx,struct efx_self_tests * tests)4392 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
4393 {
4394 	int rc, rc2;
4395 
4396 	efx_reset_down(efx, RESET_TYPE_WORLD);
4397 
4398 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
4399 			  NULL, 0, NULL, 0, NULL);
4400 	if (rc != 0)
4401 		goto out;
4402 
4403 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
4404 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
4405 
4406 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
4407 
4408 out:
4409 	if (rc == -EPERM)
4410 		rc = 0;
4411 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
4412 	return rc ? rc : rc2;
4413 }
4414 
4415 #ifdef CONFIG_SFC_MTD
4416 
4417 struct efx_ef10_nvram_type_info {
4418 	u16 type, type_mask;
4419 	u8 port;
4420 	const char *name;
4421 };
4422 
4423 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
4424 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
4425 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
4426 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
4427 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
4428 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
4429 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
4430 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
4431 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
4432 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
4433 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
4434 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
4435 };
4436 
efx_ef10_mtd_probe_partition(struct efx_nic * efx,struct efx_mcdi_mtd_partition * part,unsigned int type)4437 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
4438 					struct efx_mcdi_mtd_partition *part,
4439 					unsigned int type)
4440 {
4441 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
4442 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
4443 	const struct efx_ef10_nvram_type_info *info;
4444 	size_t size, erase_size, outlen;
4445 	bool protected;
4446 	int rc;
4447 
4448 	for (info = efx_ef10_nvram_types; ; info++) {
4449 		if (info ==
4450 		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
4451 			return -ENODEV;
4452 		if ((type & ~info->type_mask) == info->type)
4453 			break;
4454 	}
4455 	if (info->port != efx_port_num(efx))
4456 		return -ENODEV;
4457 
4458 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
4459 	if (rc)
4460 		return rc;
4461 	if (protected)
4462 		return -ENODEV; /* hide it */
4463 
4464 	part->nvram_type = type;
4465 
4466 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
4467 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
4468 			  outbuf, sizeof(outbuf), &outlen);
4469 	if (rc)
4470 		return rc;
4471 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
4472 		return -EIO;
4473 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
4474 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
4475 		part->fw_subtype = MCDI_DWORD(outbuf,
4476 					      NVRAM_METADATA_OUT_SUBTYPE);
4477 
4478 	part->common.dev_type_name = "EF10 NVRAM manager";
4479 	part->common.type_name = info->name;
4480 
4481 	part->common.mtd.type = MTD_NORFLASH;
4482 	part->common.mtd.flags = MTD_CAP_NORFLASH;
4483 	part->common.mtd.size = size;
4484 	part->common.mtd.erasesize = erase_size;
4485 
4486 	return 0;
4487 }
4488 
efx_ef10_mtd_probe(struct efx_nic * efx)4489 static int efx_ef10_mtd_probe(struct efx_nic *efx)
4490 {
4491 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
4492 	struct efx_mcdi_mtd_partition *parts;
4493 	size_t outlen, n_parts_total, i, n_parts;
4494 	unsigned int type;
4495 	int rc;
4496 
4497 	ASSERT_RTNL();
4498 
4499 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
4500 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
4501 			  outbuf, sizeof(outbuf), &outlen);
4502 	if (rc)
4503 		return rc;
4504 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
4505 		return -EIO;
4506 
4507 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
4508 	if (n_parts_total >
4509 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
4510 		return -EIO;
4511 
4512 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
4513 	if (!parts)
4514 		return -ENOMEM;
4515 
4516 	n_parts = 0;
4517 	for (i = 0; i < n_parts_total; i++) {
4518 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
4519 					i);
4520 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
4521 		if (rc == 0)
4522 			n_parts++;
4523 		else if (rc != -ENODEV)
4524 			goto fail;
4525 	}
4526 
4527 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
4528 fail:
4529 	if (rc)
4530 		kfree(parts);
4531 	return rc;
4532 }
4533 
4534 #endif /* CONFIG_SFC_MTD */
4535 
efx_ef10_ptp_write_host_time(struct efx_nic * efx,u32 host_time)4536 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
4537 {
4538 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
4539 }
4540 
efx_ef10_ptp_write_host_time_vf(struct efx_nic * efx,u32 host_time)4541 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
4542 					    u32 host_time) {}
4543 
efx_ef10_rx_enable_timestamping(struct efx_channel * channel,bool temp)4544 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
4545 					   bool temp)
4546 {
4547 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
4548 	int rc;
4549 
4550 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
4551 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
4552 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
4553 		return 0;
4554 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
4555 
4556 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
4557 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4558 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
4559 		       channel->channel);
4560 
4561 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4562 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
4563 
4564 	if (rc != 0)
4565 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4566 						    SYNC_EVENTS_DISABLED;
4567 
4568 	return rc;
4569 }
4570 
efx_ef10_rx_disable_timestamping(struct efx_channel * channel,bool temp)4571 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
4572 					    bool temp)
4573 {
4574 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
4575 	int rc;
4576 
4577 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
4578 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
4579 		return 0;
4580 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
4581 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
4582 		return 0;
4583 	}
4584 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4585 					    SYNC_EVENTS_DISABLED;
4586 
4587 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
4588 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4589 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
4590 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
4591 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
4592 		       channel->channel);
4593 
4594 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4595 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
4596 
4597 	return rc;
4598 }
4599 
efx_ef10_ptp_set_ts_sync_events(struct efx_nic * efx,bool en,bool temp)4600 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
4601 					   bool temp)
4602 {
4603 	int (*set)(struct efx_channel *channel, bool temp);
4604 	struct efx_channel *channel;
4605 
4606 	set = en ?
4607 	      efx_ef10_rx_enable_timestamping :
4608 	      efx_ef10_rx_disable_timestamping;
4609 
4610 	efx_for_each_channel(channel, efx) {
4611 		int rc = set(channel, temp);
4612 		if (en && rc != 0) {
4613 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
4614 			return rc;
4615 		}
4616 	}
4617 
4618 	return 0;
4619 }
4620 
efx_ef10_ptp_set_ts_config_vf(struct efx_nic * efx,struct hwtstamp_config * init)4621 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
4622 					 struct hwtstamp_config *init)
4623 {
4624 	return -EOPNOTSUPP;
4625 }
4626 
efx_ef10_ptp_set_ts_config(struct efx_nic * efx,struct hwtstamp_config * init)4627 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
4628 				      struct hwtstamp_config *init)
4629 {
4630 	int rc;
4631 
4632 	switch (init->rx_filter) {
4633 	case HWTSTAMP_FILTER_NONE:
4634 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
4635 		/* if TX timestamping is still requested then leave PTP on */
4636 		return efx_ptp_change_mode(efx,
4637 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
4638 	case HWTSTAMP_FILTER_ALL:
4639 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4640 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4641 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4642 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4643 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4644 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4645 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4646 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4647 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4648 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
4649 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
4650 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4651 		init->rx_filter = HWTSTAMP_FILTER_ALL;
4652 		rc = efx_ptp_change_mode(efx, true, 0);
4653 		if (!rc)
4654 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
4655 		if (rc)
4656 			efx_ptp_change_mode(efx, false, 0);
4657 		return rc;
4658 	default:
4659 		return -ERANGE;
4660 	}
4661 }
4662 
4663 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4664 	.is_vf = true,
4665 	.mem_bar = EFX_MEM_VF_BAR,
4666 	.mem_map_size = efx_ef10_mem_map_size,
4667 	.probe = efx_ef10_probe_vf,
4668 	.remove = efx_ef10_remove,
4669 	.dimension_resources = efx_ef10_dimension_resources,
4670 	.init = efx_ef10_init_nic,
4671 	.fini = efx_port_dummy_op_void,
4672 	.map_reset_reason = efx_ef10_map_reset_reason,
4673 	.map_reset_flags = efx_ef10_map_reset_flags,
4674 	.reset = efx_ef10_reset,
4675 	.probe_port = efx_mcdi_port_probe,
4676 	.remove_port = efx_mcdi_port_remove,
4677 	.fini_dmaq = efx_ef10_fini_dmaq,
4678 	.prepare_flr = efx_ef10_prepare_flr,
4679 	.finish_flr = efx_port_dummy_op_void,
4680 	.describe_stats = efx_ef10_describe_stats,
4681 	.update_stats = efx_ef10_update_stats_vf,
4682 	.start_stats = efx_port_dummy_op_void,
4683 	.pull_stats = efx_port_dummy_op_void,
4684 	.stop_stats = efx_port_dummy_op_void,
4685 	.set_id_led = efx_mcdi_set_id_led,
4686 	.push_irq_moderation = efx_ef10_push_irq_moderation,
4687 	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
4688 	.check_mac_fault = efx_mcdi_mac_check_fault,
4689 	.reconfigure_port = efx_mcdi_port_reconfigure,
4690 	.get_wol = efx_ef10_get_wol_vf,
4691 	.set_wol = efx_ef10_set_wol_vf,
4692 	.resume_wol = efx_port_dummy_op_void,
4693 	.mcdi_request = efx_ef10_mcdi_request,
4694 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4695 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4696 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4697 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4698 	.irq_enable_master = efx_port_dummy_op_void,
4699 	.irq_test_generate = efx_ef10_irq_test_generate,
4700 	.irq_disable_non_ev = efx_port_dummy_op_void,
4701 	.irq_handle_msi = efx_ef10_msi_interrupt,
4702 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4703 	.tx_probe = efx_ef10_tx_probe,
4704 	.tx_init = efx_ef10_tx_init,
4705 	.tx_remove = efx_ef10_tx_remove,
4706 	.tx_write = efx_ef10_tx_write,
4707 	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
4708 	.rx_probe = efx_ef10_rx_probe,
4709 	.rx_init = efx_ef10_rx_init,
4710 	.rx_remove = efx_ef10_rx_remove,
4711 	.rx_write = efx_ef10_rx_write,
4712 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4713 	.ev_probe = efx_ef10_ev_probe,
4714 	.ev_init = efx_ef10_ev_init,
4715 	.ev_fini = efx_ef10_ev_fini,
4716 	.ev_remove = efx_ef10_ev_remove,
4717 	.ev_process = efx_ef10_ev_process,
4718 	.ev_read_ack = efx_ef10_ev_read_ack,
4719 	.ev_test_generate = efx_ef10_ev_test_generate,
4720 	.filter_table_probe = efx_ef10_filter_table_probe,
4721 	.filter_table_restore = efx_ef10_filter_table_restore,
4722 	.filter_table_remove = efx_ef10_filter_table_remove,
4723 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4724 	.filter_insert = efx_ef10_filter_insert,
4725 	.filter_remove_safe = efx_ef10_filter_remove_safe,
4726 	.filter_get_safe = efx_ef10_filter_get_safe,
4727 	.filter_clear_rx = efx_ef10_filter_clear_rx,
4728 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
4729 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4730 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4731 #ifdef CONFIG_RFS_ACCEL
4732 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
4733 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4734 #endif
4735 #ifdef CONFIG_SFC_MTD
4736 	.mtd_probe = efx_port_dummy_op_int,
4737 #endif
4738 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4739 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4740 #ifdef CONFIG_SFC_SRIOV
4741 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4742 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4743 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4744 	.sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
4745 #endif
4746 	.get_mac_address = efx_ef10_get_mac_address_vf,
4747 	.set_mac_address = efx_ef10_set_mac_address,
4748 
4749 	.revision = EFX_REV_HUNT_A0,
4750 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4751 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4752 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4753 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4754 	.can_rx_scatter = true,
4755 	.always_rx_scatter = true,
4756 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4757 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4758 	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4759 			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
4760 	.mcdi_max_ver = 2,
4761 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4762 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4763 			    1 << HWTSTAMP_FILTER_ALL,
4764 };
4765 
4766 const struct efx_nic_type efx_hunt_a0_nic_type = {
4767 	.is_vf = false,
4768 	.mem_bar = EFX_MEM_BAR,
4769 	.mem_map_size = efx_ef10_mem_map_size,
4770 	.probe = efx_ef10_probe_pf,
4771 	.remove = efx_ef10_remove,
4772 	.dimension_resources = efx_ef10_dimension_resources,
4773 	.init = efx_ef10_init_nic,
4774 	.fini = efx_port_dummy_op_void,
4775 	.map_reset_reason = efx_ef10_map_reset_reason,
4776 	.map_reset_flags = efx_ef10_map_reset_flags,
4777 	.reset = efx_ef10_reset,
4778 	.probe_port = efx_mcdi_port_probe,
4779 	.remove_port = efx_mcdi_port_remove,
4780 	.fini_dmaq = efx_ef10_fini_dmaq,
4781 	.prepare_flr = efx_ef10_prepare_flr,
4782 	.finish_flr = efx_port_dummy_op_void,
4783 	.describe_stats = efx_ef10_describe_stats,
4784 	.update_stats = efx_ef10_update_stats_pf,
4785 	.start_stats = efx_mcdi_mac_start_stats,
4786 	.pull_stats = efx_mcdi_mac_pull_stats,
4787 	.stop_stats = efx_mcdi_mac_stop_stats,
4788 	.set_id_led = efx_mcdi_set_id_led,
4789 	.push_irq_moderation = efx_ef10_push_irq_moderation,
4790 	.reconfigure_mac = efx_ef10_mac_reconfigure,
4791 	.check_mac_fault = efx_mcdi_mac_check_fault,
4792 	.reconfigure_port = efx_mcdi_port_reconfigure,
4793 	.get_wol = efx_ef10_get_wol,
4794 	.set_wol = efx_ef10_set_wol,
4795 	.resume_wol = efx_port_dummy_op_void,
4796 	.test_chip = efx_ef10_test_chip,
4797 	.test_nvram = efx_mcdi_nvram_test_all,
4798 	.mcdi_request = efx_ef10_mcdi_request,
4799 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4800 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4801 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4802 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4803 	.irq_enable_master = efx_port_dummy_op_void,
4804 	.irq_test_generate = efx_ef10_irq_test_generate,
4805 	.irq_disable_non_ev = efx_port_dummy_op_void,
4806 	.irq_handle_msi = efx_ef10_msi_interrupt,
4807 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4808 	.tx_probe = efx_ef10_tx_probe,
4809 	.tx_init = efx_ef10_tx_init,
4810 	.tx_remove = efx_ef10_tx_remove,
4811 	.tx_write = efx_ef10_tx_write,
4812 	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
4813 	.rx_probe = efx_ef10_rx_probe,
4814 	.rx_init = efx_ef10_rx_init,
4815 	.rx_remove = efx_ef10_rx_remove,
4816 	.rx_write = efx_ef10_rx_write,
4817 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4818 	.ev_probe = efx_ef10_ev_probe,
4819 	.ev_init = efx_ef10_ev_init,
4820 	.ev_fini = efx_ef10_ev_fini,
4821 	.ev_remove = efx_ef10_ev_remove,
4822 	.ev_process = efx_ef10_ev_process,
4823 	.ev_read_ack = efx_ef10_ev_read_ack,
4824 	.ev_test_generate = efx_ef10_ev_test_generate,
4825 	.filter_table_probe = efx_ef10_filter_table_probe,
4826 	.filter_table_restore = efx_ef10_filter_table_restore,
4827 	.filter_table_remove = efx_ef10_filter_table_remove,
4828 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4829 	.filter_insert = efx_ef10_filter_insert,
4830 	.filter_remove_safe = efx_ef10_filter_remove_safe,
4831 	.filter_get_safe = efx_ef10_filter_get_safe,
4832 	.filter_clear_rx = efx_ef10_filter_clear_rx,
4833 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
4834 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4835 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4836 #ifdef CONFIG_RFS_ACCEL
4837 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
4838 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4839 #endif
4840 #ifdef CONFIG_SFC_MTD
4841 	.mtd_probe = efx_ef10_mtd_probe,
4842 	.mtd_rename = efx_mcdi_mtd_rename,
4843 	.mtd_read = efx_mcdi_mtd_read,
4844 	.mtd_erase = efx_mcdi_mtd_erase,
4845 	.mtd_write = efx_mcdi_mtd_write,
4846 	.mtd_sync = efx_mcdi_mtd_sync,
4847 #endif
4848 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4849 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4850 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4851 #ifdef CONFIG_SFC_SRIOV
4852 	.sriov_configure = efx_ef10_sriov_configure,
4853 	.sriov_init = efx_ef10_sriov_init,
4854 	.sriov_fini = efx_ef10_sriov_fini,
4855 	.sriov_wanted = efx_ef10_sriov_wanted,
4856 	.sriov_reset = efx_ef10_sriov_reset,
4857 	.sriov_flr = efx_ef10_sriov_flr,
4858 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4859 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4860 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4861 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4862 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4863 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4864 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4865 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4866 #endif
4867 	.get_mac_address = efx_ef10_get_mac_address_pf,
4868 	.set_mac_address = efx_ef10_set_mac_address,
4869 
4870 	.revision = EFX_REV_HUNT_A0,
4871 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4872 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4873 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4874 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4875 	.can_rx_scatter = true,
4876 	.always_rx_scatter = true,
4877 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4878 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4879 	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4880 			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
4881 	.mcdi_max_ver = 2,
4882 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4883 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4884 			    1 << HWTSTAMP_FILTER_ALL,
4885 };
4886