1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
d_hash(const struct dentry * parent,unsigned int hash)107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113 
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 	.age_limit = 45,
117 };
118 
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 
124 /*
125  * Here we resort to our own counters instead of using generic per-cpu counters
126  * for consistency with what the vfs inode code does. We are expected to harvest
127  * better code and performance by having our own specialized counters.
128  *
129  * Please note that the loop is done over all possible CPUs, not over all online
130  * CPUs. The reason for this is that we don't want to play games with CPUs going
131  * on and off. If one of them goes off, we will just keep their counters.
132  *
133  * glommer: See cffbc8a for details, and if you ever intend to change this,
134  * please update all vfs counters to match.
135  */
get_nr_dentry(void)136 static long get_nr_dentry(void)
137 {
138 	int i;
139 	long sum = 0;
140 	for_each_possible_cpu(i)
141 		sum += per_cpu(nr_dentry, i);
142 	return sum < 0 ? 0 : sum;
143 }
144 
get_nr_dentry_unused(void)145 static long get_nr_dentry_unused(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry_unused, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 		   size_t *lenp, loff_t *ppos)
156 {
157 	dentry_stat.nr_dentry = get_nr_dentry();
158 	dentry_stat.nr_unused = get_nr_dentry_unused();
159 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162 
163 /*
164  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165  * The strings are both count bytes long, and count is non-zero.
166  */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 
169 #include <asm/word-at-a-time.h>
170 /*
171  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172  * aligned allocation for this particular component. We don't
173  * strictly need the load_unaligned_zeropad() safety, but it
174  * doesn't hurt either.
175  *
176  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177  * need the careful unaligned handling.
178  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	unsigned long a,b,mask;
182 
183 	for (;;) {
184 		a = *(unsigned long *)cs;
185 		b = load_unaligned_zeropad(ct);
186 		if (tcount < sizeof(unsigned long))
187 			break;
188 		if (unlikely(a != b))
189 			return 1;
190 		cs += sizeof(unsigned long);
191 		ct += sizeof(unsigned long);
192 		tcount -= sizeof(unsigned long);
193 		if (!tcount)
194 			return 0;
195 	}
196 	mask = bytemask_from_count(tcount);
197 	return unlikely(!!((a ^ b) & mask));
198 }
199 
200 #else
201 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 	do {
205 		if (*cs != *ct)
206 			return 1;
207 		cs++;
208 		ct++;
209 		tcount--;
210 	} while (tcount);
211 	return 0;
212 }
213 
214 #endif
215 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 	const unsigned char *cs;
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use ACCESS_ONCE to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	cs = ACCESS_ONCE(dentry->d_name.name);
236 	smp_read_barrier_depends();
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
external_name(struct dentry * dentry)248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
__d_free(struct rcu_head * head)253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
__d_free_external(struct rcu_head * head)260 static void __d_free_external(struct rcu_head *head)
261 {
262 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
dname_external(const struct dentry * dentry)267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)272 static inline void __d_set_inode_and_type(struct dentry *dentry,
273 					  struct inode *inode,
274 					  unsigned type_flags)
275 {
276 	unsigned flags;
277 
278 	dentry->d_inode = inode;
279 	flags = READ_ONCE(dentry->d_flags);
280 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
281 	flags |= type_flags;
282 	WRITE_ONCE(dentry->d_flags, flags);
283 }
284 
__d_clear_type_and_inode(struct dentry * dentry)285 static inline void __d_clear_type_and_inode(struct dentry *dentry)
286 {
287 	unsigned flags = READ_ONCE(dentry->d_flags);
288 
289 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
290 	WRITE_ONCE(dentry->d_flags, flags);
291 	dentry->d_inode = NULL;
292 }
293 
dentry_free(struct dentry * dentry)294 static void dentry_free(struct dentry *dentry)
295 {
296 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
297 	if (unlikely(dname_external(dentry))) {
298 		struct external_name *p = external_name(dentry);
299 		if (likely(atomic_dec_and_test(&p->u.count))) {
300 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
301 			return;
302 		}
303 	}
304 	/* if dentry was never visible to RCU, immediate free is OK */
305 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
306 		__d_free(&dentry->d_u.d_rcu);
307 	else
308 		call_rcu(&dentry->d_u.d_rcu, __d_free);
309 }
310 
311 /**
312  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
313  * @dentry: the target dentry
314  * After this call, in-progress rcu-walk path lookup will fail. This
315  * should be called after unhashing, and after changing d_inode (if
316  * the dentry has not already been unhashed).
317  */
dentry_rcuwalk_invalidate(struct dentry * dentry)318 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
319 {
320 	lockdep_assert_held(&dentry->d_lock);
321 	/* Go through am invalidation barrier */
322 	write_seqcount_invalidate(&dentry->d_seq);
323 }
324 
325 /*
326  * Release the dentry's inode, using the filesystem
327  * d_iput() operation if defined. Dentry has no refcount
328  * and is unhashed.
329  */
dentry_iput(struct dentry * dentry)330 static void dentry_iput(struct dentry * dentry)
331 	__releases(dentry->d_lock)
332 	__releases(dentry->d_inode->i_lock)
333 {
334 	struct inode *inode = dentry->d_inode;
335 	if (inode) {
336 		__d_clear_type_and_inode(dentry);
337 		hlist_del_init(&dentry->d_u.d_alias);
338 		spin_unlock(&dentry->d_lock);
339 		spin_unlock(&inode->i_lock);
340 		if (!inode->i_nlink)
341 			fsnotify_inoderemove(inode);
342 		if (dentry->d_op && dentry->d_op->d_iput)
343 			dentry->d_op->d_iput(dentry, inode);
344 		else
345 			iput(inode);
346 	} else {
347 		spin_unlock(&dentry->d_lock);
348 	}
349 }
350 
351 /*
352  * Release the dentry's inode, using the filesystem
353  * d_iput() operation if defined. dentry remains in-use.
354  */
dentry_unlink_inode(struct dentry * dentry)355 static void dentry_unlink_inode(struct dentry * dentry)
356 	__releases(dentry->d_lock)
357 	__releases(dentry->d_inode->i_lock)
358 {
359 	struct inode *inode = dentry->d_inode;
360 
361 	raw_write_seqcount_begin(&dentry->d_seq);
362 	__d_clear_type_and_inode(dentry);
363 	hlist_del_init(&dentry->d_u.d_alias);
364 	raw_write_seqcount_end(&dentry->d_seq);
365 	spin_unlock(&dentry->d_lock);
366 	spin_unlock(&inode->i_lock);
367 	if (!inode->i_nlink)
368 		fsnotify_inoderemove(inode);
369 	if (dentry->d_op && dentry->d_op->d_iput)
370 		dentry->d_op->d_iput(dentry, inode);
371 	else
372 		iput(inode);
373 }
374 
375 /*
376  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
377  * is in use - which includes both the "real" per-superblock
378  * LRU list _and_ the DCACHE_SHRINK_LIST use.
379  *
380  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
381  * on the shrink list (ie not on the superblock LRU list).
382  *
383  * The per-cpu "nr_dentry_unused" counters are updated with
384  * the DCACHE_LRU_LIST bit.
385  *
386  * These helper functions make sure we always follow the
387  * rules. d_lock must be held by the caller.
388  */
389 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)390 static void d_lru_add(struct dentry *dentry)
391 {
392 	D_FLAG_VERIFY(dentry, 0);
393 	dentry->d_flags |= DCACHE_LRU_LIST;
394 	this_cpu_inc(nr_dentry_unused);
395 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
396 }
397 
d_lru_del(struct dentry * dentry)398 static void d_lru_del(struct dentry *dentry)
399 {
400 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
401 	dentry->d_flags &= ~DCACHE_LRU_LIST;
402 	this_cpu_dec(nr_dentry_unused);
403 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404 }
405 
d_shrink_del(struct dentry * dentry)406 static void d_shrink_del(struct dentry *dentry)
407 {
408 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 	list_del_init(&dentry->d_lru);
410 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 	this_cpu_dec(nr_dentry_unused);
412 }
413 
d_shrink_add(struct dentry * dentry,struct list_head * list)414 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415 {
416 	D_FLAG_VERIFY(dentry, 0);
417 	list_add(&dentry->d_lru, list);
418 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
419 	this_cpu_inc(nr_dentry_unused);
420 }
421 
422 /*
423  * These can only be called under the global LRU lock, ie during the
424  * callback for freeing the LRU list. "isolate" removes it from the
425  * LRU lists entirely, while shrink_move moves it to the indicated
426  * private list.
427  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)428 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429 {
430 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
431 	dentry->d_flags &= ~DCACHE_LRU_LIST;
432 	this_cpu_dec(nr_dentry_unused);
433 	list_lru_isolate(lru, &dentry->d_lru);
434 }
435 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)436 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
437 			      struct list_head *list)
438 {
439 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
440 	dentry->d_flags |= DCACHE_SHRINK_LIST;
441 	list_lru_isolate_move(lru, &dentry->d_lru, list);
442 }
443 
444 /*
445  * dentry_lru_(add|del)_list) must be called with d_lock held.
446  */
dentry_lru_add(struct dentry * dentry)447 static void dentry_lru_add(struct dentry *dentry)
448 {
449 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450 		d_lru_add(dentry);
451 }
452 
453 /**
454  * d_drop - drop a dentry
455  * @dentry: dentry to drop
456  *
457  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458  * be found through a VFS lookup any more. Note that this is different from
459  * deleting the dentry - d_delete will try to mark the dentry negative if
460  * possible, giving a successful _negative_ lookup, while d_drop will
461  * just make the cache lookup fail.
462  *
463  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464  * reason (NFS timeouts or autofs deletes).
465  *
466  * __d_drop requires dentry->d_lock.
467  */
__d_drop(struct dentry * dentry)468 void __d_drop(struct dentry *dentry)
469 {
470 	if (!d_unhashed(dentry)) {
471 		struct hlist_bl_head *b;
472 		/*
473 		 * Hashed dentries are normally on the dentry hashtable,
474 		 * with the exception of those newly allocated by
475 		 * d_obtain_alias, which are always IS_ROOT:
476 		 */
477 		if (unlikely(IS_ROOT(dentry)))
478 			b = &dentry->d_sb->s_anon;
479 		else
480 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
481 
482 		hlist_bl_lock(b);
483 		__hlist_bl_del(&dentry->d_hash);
484 		dentry->d_hash.pprev = NULL;
485 		hlist_bl_unlock(b);
486 		dentry_rcuwalk_invalidate(dentry);
487 	}
488 }
489 EXPORT_SYMBOL(__d_drop);
490 
d_drop(struct dentry * dentry)491 void d_drop(struct dentry *dentry)
492 {
493 	spin_lock(&dentry->d_lock);
494 	__d_drop(dentry);
495 	spin_unlock(&dentry->d_lock);
496 }
497 EXPORT_SYMBOL(d_drop);
498 
__dentry_kill(struct dentry * dentry)499 static void __dentry_kill(struct dentry *dentry)
500 {
501 	struct dentry *parent = NULL;
502 	bool can_free = true;
503 	if (!IS_ROOT(dentry))
504 		parent = dentry->d_parent;
505 
506 	/*
507 	 * The dentry is now unrecoverably dead to the world.
508 	 */
509 	lockref_mark_dead(&dentry->d_lockref);
510 
511 	/*
512 	 * inform the fs via d_prune that this dentry is about to be
513 	 * unhashed and destroyed.
514 	 */
515 	if (dentry->d_flags & DCACHE_OP_PRUNE)
516 		dentry->d_op->d_prune(dentry);
517 
518 	if (dentry->d_flags & DCACHE_LRU_LIST) {
519 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
520 			d_lru_del(dentry);
521 	}
522 	/* if it was on the hash then remove it */
523 	__d_drop(dentry);
524 	__list_del_entry(&dentry->d_child);
525 	/*
526 	 * Inform d_walk() that we are no longer attached to the
527 	 * dentry tree
528 	 */
529 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
530 	if (parent)
531 		spin_unlock(&parent->d_lock);
532 	dentry_iput(dentry);
533 	/*
534 	 * dentry_iput drops the locks, at which point nobody (except
535 	 * transient RCU lookups) can reach this dentry.
536 	 */
537 	BUG_ON(dentry->d_lockref.count > 0);
538 	this_cpu_dec(nr_dentry);
539 	if (dentry->d_op && dentry->d_op->d_release)
540 		dentry->d_op->d_release(dentry);
541 
542 	spin_lock(&dentry->d_lock);
543 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
544 		dentry->d_flags |= DCACHE_MAY_FREE;
545 		can_free = false;
546 	}
547 	spin_unlock(&dentry->d_lock);
548 	if (likely(can_free))
549 		dentry_free(dentry);
550 }
551 
552 /*
553  * Finish off a dentry we've decided to kill.
554  * dentry->d_lock must be held, returns with it unlocked.
555  * If ref is non-zero, then decrement the refcount too.
556  * Returns dentry requiring refcount drop, or NULL if we're done.
557  */
dentry_kill(struct dentry * dentry)558 static struct dentry *dentry_kill(struct dentry *dentry)
559 	__releases(dentry->d_lock)
560 {
561 	struct inode *inode = dentry->d_inode;
562 	struct dentry *parent = NULL;
563 
564 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
565 		goto failed;
566 
567 	if (!IS_ROOT(dentry)) {
568 		parent = dentry->d_parent;
569 		if (unlikely(!spin_trylock(&parent->d_lock))) {
570 			if (inode)
571 				spin_unlock(&inode->i_lock);
572 			goto failed;
573 		}
574 	}
575 
576 	__dentry_kill(dentry);
577 	return parent;
578 
579 failed:
580 	spin_unlock(&dentry->d_lock);
581 	cpu_relax();
582 	return dentry; /* try again with same dentry */
583 }
584 
lock_parent(struct dentry * dentry)585 static inline struct dentry *lock_parent(struct dentry *dentry)
586 {
587 	struct dentry *parent = dentry->d_parent;
588 	if (IS_ROOT(dentry))
589 		return NULL;
590 	if (unlikely(dentry->d_lockref.count < 0))
591 		return NULL;
592 	if (likely(spin_trylock(&parent->d_lock)))
593 		return parent;
594 	rcu_read_lock();
595 	spin_unlock(&dentry->d_lock);
596 again:
597 	parent = ACCESS_ONCE(dentry->d_parent);
598 	spin_lock(&parent->d_lock);
599 	/*
600 	 * We can't blindly lock dentry until we are sure
601 	 * that we won't violate the locking order.
602 	 * Any changes of dentry->d_parent must have
603 	 * been done with parent->d_lock held, so
604 	 * spin_lock() above is enough of a barrier
605 	 * for checking if it's still our child.
606 	 */
607 	if (unlikely(parent != dentry->d_parent)) {
608 		spin_unlock(&parent->d_lock);
609 		goto again;
610 	}
611 	rcu_read_unlock();
612 	if (parent != dentry)
613 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
614 	else
615 		parent = NULL;
616 	return parent;
617 }
618 
619 /*
620  * Try to do a lockless dput(), and return whether that was successful.
621  *
622  * If unsuccessful, we return false, having already taken the dentry lock.
623  *
624  * The caller needs to hold the RCU read lock, so that the dentry is
625  * guaranteed to stay around even if the refcount goes down to zero!
626  */
fast_dput(struct dentry * dentry)627 static inline bool fast_dput(struct dentry *dentry)
628 {
629 	int ret;
630 	unsigned int d_flags;
631 
632 	/*
633 	 * If we have a d_op->d_delete() operation, we sould not
634 	 * let the dentry count go to zero, so use "put_or_lock".
635 	 */
636 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
637 		return lockref_put_or_lock(&dentry->d_lockref);
638 
639 	/*
640 	 * .. otherwise, we can try to just decrement the
641 	 * lockref optimistically.
642 	 */
643 	ret = lockref_put_return(&dentry->d_lockref);
644 
645 	/*
646 	 * If the lockref_put_return() failed due to the lock being held
647 	 * by somebody else, the fast path has failed. We will need to
648 	 * get the lock, and then check the count again.
649 	 */
650 	if (unlikely(ret < 0)) {
651 		spin_lock(&dentry->d_lock);
652 		if (dentry->d_lockref.count > 1) {
653 			dentry->d_lockref.count--;
654 			spin_unlock(&dentry->d_lock);
655 			return 1;
656 		}
657 		return 0;
658 	}
659 
660 	/*
661 	 * If we weren't the last ref, we're done.
662 	 */
663 	if (ret)
664 		return 1;
665 
666 	/*
667 	 * Careful, careful. The reference count went down
668 	 * to zero, but we don't hold the dentry lock, so
669 	 * somebody else could get it again, and do another
670 	 * dput(), and we need to not race with that.
671 	 *
672 	 * However, there is a very special and common case
673 	 * where we don't care, because there is nothing to
674 	 * do: the dentry is still hashed, it does not have
675 	 * a 'delete' op, and it's referenced and already on
676 	 * the LRU list.
677 	 *
678 	 * NOTE! Since we aren't locked, these values are
679 	 * not "stable". However, it is sufficient that at
680 	 * some point after we dropped the reference the
681 	 * dentry was hashed and the flags had the proper
682 	 * value. Other dentry users may have re-gotten
683 	 * a reference to the dentry and change that, but
684 	 * our work is done - we can leave the dentry
685 	 * around with a zero refcount.
686 	 */
687 	smp_rmb();
688 	d_flags = ACCESS_ONCE(dentry->d_flags);
689 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
690 
691 	/* Nothing to do? Dropping the reference was all we needed? */
692 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
693 		return 1;
694 
695 	/*
696 	 * Not the fast normal case? Get the lock. We've already decremented
697 	 * the refcount, but we'll need to re-check the situation after
698 	 * getting the lock.
699 	 */
700 	spin_lock(&dentry->d_lock);
701 
702 	/*
703 	 * Did somebody else grab a reference to it in the meantime, and
704 	 * we're no longer the last user after all? Alternatively, somebody
705 	 * else could have killed it and marked it dead. Either way, we
706 	 * don't need to do anything else.
707 	 */
708 	if (dentry->d_lockref.count) {
709 		spin_unlock(&dentry->d_lock);
710 		return 1;
711 	}
712 
713 	/*
714 	 * Re-get the reference we optimistically dropped. We hold the
715 	 * lock, and we just tested that it was zero, so we can just
716 	 * set it to 1.
717 	 */
718 	dentry->d_lockref.count = 1;
719 	return 0;
720 }
721 
722 
723 /*
724  * This is dput
725  *
726  * This is complicated by the fact that we do not want to put
727  * dentries that are no longer on any hash chain on the unused
728  * list: we'd much rather just get rid of them immediately.
729  *
730  * However, that implies that we have to traverse the dentry
731  * tree upwards to the parents which might _also_ now be
732  * scheduled for deletion (it may have been only waiting for
733  * its last child to go away).
734  *
735  * This tail recursion is done by hand as we don't want to depend
736  * on the compiler to always get this right (gcc generally doesn't).
737  * Real recursion would eat up our stack space.
738  */
739 
740 /*
741  * dput - release a dentry
742  * @dentry: dentry to release
743  *
744  * Release a dentry. This will drop the usage count and if appropriate
745  * call the dentry unlink method as well as removing it from the queues and
746  * releasing its resources. If the parent dentries were scheduled for release
747  * they too may now get deleted.
748  */
dput(struct dentry * dentry)749 void dput(struct dentry *dentry)
750 {
751 	if (unlikely(!dentry))
752 		return;
753 
754 repeat:
755 	rcu_read_lock();
756 	if (likely(fast_dput(dentry))) {
757 		rcu_read_unlock();
758 		return;
759 	}
760 
761 	/* Slow case: now with the dentry lock held */
762 	rcu_read_unlock();
763 
764 	/* Unreachable? Get rid of it */
765 	if (unlikely(d_unhashed(dentry)))
766 		goto kill_it;
767 
768 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
769 		goto kill_it;
770 
771 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
772 		if (dentry->d_op->d_delete(dentry))
773 			goto kill_it;
774 	}
775 
776 	if (!(dentry->d_flags & DCACHE_REFERENCED))
777 		dentry->d_flags |= DCACHE_REFERENCED;
778 	dentry_lru_add(dentry);
779 
780 	dentry->d_lockref.count--;
781 	spin_unlock(&dentry->d_lock);
782 	return;
783 
784 kill_it:
785 	dentry = dentry_kill(dentry);
786 	if (dentry)
787 		goto repeat;
788 }
789 EXPORT_SYMBOL(dput);
790 
791 
792 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)793 static inline void __dget_dlock(struct dentry *dentry)
794 {
795 	dentry->d_lockref.count++;
796 }
797 
__dget(struct dentry * dentry)798 static inline void __dget(struct dentry *dentry)
799 {
800 	lockref_get(&dentry->d_lockref);
801 }
802 
dget_parent(struct dentry * dentry)803 struct dentry *dget_parent(struct dentry *dentry)
804 {
805 	int gotref;
806 	struct dentry *ret;
807 
808 	/*
809 	 * Do optimistic parent lookup without any
810 	 * locking.
811 	 */
812 	rcu_read_lock();
813 	ret = ACCESS_ONCE(dentry->d_parent);
814 	gotref = lockref_get_not_zero(&ret->d_lockref);
815 	rcu_read_unlock();
816 	if (likely(gotref)) {
817 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
818 			return ret;
819 		dput(ret);
820 	}
821 
822 repeat:
823 	/*
824 	 * Don't need rcu_dereference because we re-check it was correct under
825 	 * the lock.
826 	 */
827 	rcu_read_lock();
828 	ret = dentry->d_parent;
829 	spin_lock(&ret->d_lock);
830 	if (unlikely(ret != dentry->d_parent)) {
831 		spin_unlock(&ret->d_lock);
832 		rcu_read_unlock();
833 		goto repeat;
834 	}
835 	rcu_read_unlock();
836 	BUG_ON(!ret->d_lockref.count);
837 	ret->d_lockref.count++;
838 	spin_unlock(&ret->d_lock);
839 	return ret;
840 }
841 EXPORT_SYMBOL(dget_parent);
842 
843 /**
844  * d_find_alias - grab a hashed alias of inode
845  * @inode: inode in question
846  *
847  * If inode has a hashed alias, or is a directory and has any alias,
848  * acquire the reference to alias and return it. Otherwise return NULL.
849  * Notice that if inode is a directory there can be only one alias and
850  * it can be unhashed only if it has no children, or if it is the root
851  * of a filesystem, or if the directory was renamed and d_revalidate
852  * was the first vfs operation to notice.
853  *
854  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
855  * any other hashed alias over that one.
856  */
__d_find_alias(struct inode * inode)857 static struct dentry *__d_find_alias(struct inode *inode)
858 {
859 	struct dentry *alias, *discon_alias;
860 
861 again:
862 	discon_alias = NULL;
863 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
864 		spin_lock(&alias->d_lock);
865  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
866 			if (IS_ROOT(alias) &&
867 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
868 				discon_alias = alias;
869 			} else {
870 				__dget_dlock(alias);
871 				spin_unlock(&alias->d_lock);
872 				return alias;
873 			}
874 		}
875 		spin_unlock(&alias->d_lock);
876 	}
877 	if (discon_alias) {
878 		alias = discon_alias;
879 		spin_lock(&alias->d_lock);
880 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
881 			__dget_dlock(alias);
882 			spin_unlock(&alias->d_lock);
883 			return alias;
884 		}
885 		spin_unlock(&alias->d_lock);
886 		goto again;
887 	}
888 	return NULL;
889 }
890 
d_find_alias(struct inode * inode)891 struct dentry *d_find_alias(struct inode *inode)
892 {
893 	struct dentry *de = NULL;
894 
895 	if (!hlist_empty(&inode->i_dentry)) {
896 		spin_lock(&inode->i_lock);
897 		de = __d_find_alias(inode);
898 		spin_unlock(&inode->i_lock);
899 	}
900 	return de;
901 }
902 EXPORT_SYMBOL(d_find_alias);
903 
904 /*
905  *	Try to kill dentries associated with this inode.
906  * WARNING: you must own a reference to inode.
907  */
d_prune_aliases(struct inode * inode)908 void d_prune_aliases(struct inode *inode)
909 {
910 	struct dentry *dentry;
911 restart:
912 	spin_lock(&inode->i_lock);
913 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
914 		spin_lock(&dentry->d_lock);
915 		if (!dentry->d_lockref.count) {
916 			struct dentry *parent = lock_parent(dentry);
917 			if (likely(!dentry->d_lockref.count)) {
918 				__dentry_kill(dentry);
919 				dput(parent);
920 				goto restart;
921 			}
922 			if (parent)
923 				spin_unlock(&parent->d_lock);
924 		}
925 		spin_unlock(&dentry->d_lock);
926 	}
927 	spin_unlock(&inode->i_lock);
928 }
929 EXPORT_SYMBOL(d_prune_aliases);
930 
shrink_dentry_list(struct list_head * list)931 static void shrink_dentry_list(struct list_head *list)
932 {
933 	struct dentry *dentry, *parent;
934 
935 	while (!list_empty(list)) {
936 		struct inode *inode;
937 		dentry = list_entry(list->prev, struct dentry, d_lru);
938 		spin_lock(&dentry->d_lock);
939 		parent = lock_parent(dentry);
940 
941 		/*
942 		 * The dispose list is isolated and dentries are not accounted
943 		 * to the LRU here, so we can simply remove it from the list
944 		 * here regardless of whether it is referenced or not.
945 		 */
946 		d_shrink_del(dentry);
947 
948 		/*
949 		 * We found an inuse dentry which was not removed from
950 		 * the LRU because of laziness during lookup. Do not free it.
951 		 */
952 		if (dentry->d_lockref.count > 0) {
953 			spin_unlock(&dentry->d_lock);
954 			if (parent)
955 				spin_unlock(&parent->d_lock);
956 			continue;
957 		}
958 
959 
960 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
961 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
962 			spin_unlock(&dentry->d_lock);
963 			if (parent)
964 				spin_unlock(&parent->d_lock);
965 			if (can_free)
966 				dentry_free(dentry);
967 			continue;
968 		}
969 
970 		inode = dentry->d_inode;
971 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
972 			d_shrink_add(dentry, list);
973 			spin_unlock(&dentry->d_lock);
974 			if (parent)
975 				spin_unlock(&parent->d_lock);
976 			continue;
977 		}
978 
979 		__dentry_kill(dentry);
980 
981 		/*
982 		 * We need to prune ancestors too. This is necessary to prevent
983 		 * quadratic behavior of shrink_dcache_parent(), but is also
984 		 * expected to be beneficial in reducing dentry cache
985 		 * fragmentation.
986 		 */
987 		dentry = parent;
988 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
989 			parent = lock_parent(dentry);
990 			if (dentry->d_lockref.count != 1) {
991 				dentry->d_lockref.count--;
992 				spin_unlock(&dentry->d_lock);
993 				if (parent)
994 					spin_unlock(&parent->d_lock);
995 				break;
996 			}
997 			inode = dentry->d_inode;	/* can't be NULL */
998 			if (unlikely(!spin_trylock(&inode->i_lock))) {
999 				spin_unlock(&dentry->d_lock);
1000 				if (parent)
1001 					spin_unlock(&parent->d_lock);
1002 				cpu_relax();
1003 				continue;
1004 			}
1005 			__dentry_kill(dentry);
1006 			dentry = parent;
1007 		}
1008 	}
1009 }
1010 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1011 static enum lru_status dentry_lru_isolate(struct list_head *item,
1012 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1013 {
1014 	struct list_head *freeable = arg;
1015 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1016 
1017 
1018 	/*
1019 	 * we are inverting the lru lock/dentry->d_lock here,
1020 	 * so use a trylock. If we fail to get the lock, just skip
1021 	 * it
1022 	 */
1023 	if (!spin_trylock(&dentry->d_lock))
1024 		return LRU_SKIP;
1025 
1026 	/*
1027 	 * Referenced dentries are still in use. If they have active
1028 	 * counts, just remove them from the LRU. Otherwise give them
1029 	 * another pass through the LRU.
1030 	 */
1031 	if (dentry->d_lockref.count) {
1032 		d_lru_isolate(lru, dentry);
1033 		spin_unlock(&dentry->d_lock);
1034 		return LRU_REMOVED;
1035 	}
1036 
1037 	if (dentry->d_flags & DCACHE_REFERENCED) {
1038 		dentry->d_flags &= ~DCACHE_REFERENCED;
1039 		spin_unlock(&dentry->d_lock);
1040 
1041 		/*
1042 		 * The list move itself will be made by the common LRU code. At
1043 		 * this point, we've dropped the dentry->d_lock but keep the
1044 		 * lru lock. This is safe to do, since every list movement is
1045 		 * protected by the lru lock even if both locks are held.
1046 		 *
1047 		 * This is guaranteed by the fact that all LRU management
1048 		 * functions are intermediated by the LRU API calls like
1049 		 * list_lru_add and list_lru_del. List movement in this file
1050 		 * only ever occur through this functions or through callbacks
1051 		 * like this one, that are called from the LRU API.
1052 		 *
1053 		 * The only exceptions to this are functions like
1054 		 * shrink_dentry_list, and code that first checks for the
1055 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1056 		 * operating only with stack provided lists after they are
1057 		 * properly isolated from the main list.  It is thus, always a
1058 		 * local access.
1059 		 */
1060 		return LRU_ROTATE;
1061 	}
1062 
1063 	d_lru_shrink_move(lru, dentry, freeable);
1064 	spin_unlock(&dentry->d_lock);
1065 
1066 	return LRU_REMOVED;
1067 }
1068 
1069 /**
1070  * prune_dcache_sb - shrink the dcache
1071  * @sb: superblock
1072  * @sc: shrink control, passed to list_lru_shrink_walk()
1073  *
1074  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1075  * is done when we need more memory and called from the superblock shrinker
1076  * function.
1077  *
1078  * This function may fail to free any resources if all the dentries are in
1079  * use.
1080  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1081 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1082 {
1083 	LIST_HEAD(dispose);
1084 	long freed;
1085 
1086 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1087 				     dentry_lru_isolate, &dispose);
1088 	shrink_dentry_list(&dispose);
1089 	return freed;
1090 }
1091 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1092 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1093 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1094 {
1095 	struct list_head *freeable = arg;
1096 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1097 
1098 	/*
1099 	 * we are inverting the lru lock/dentry->d_lock here,
1100 	 * so use a trylock. If we fail to get the lock, just skip
1101 	 * it
1102 	 */
1103 	if (!spin_trylock(&dentry->d_lock))
1104 		return LRU_SKIP;
1105 
1106 	d_lru_shrink_move(lru, dentry, freeable);
1107 	spin_unlock(&dentry->d_lock);
1108 
1109 	return LRU_REMOVED;
1110 }
1111 
1112 
1113 /**
1114  * shrink_dcache_sb - shrink dcache for a superblock
1115  * @sb: superblock
1116  *
1117  * Shrink the dcache for the specified super block. This is used to free
1118  * the dcache before unmounting a file system.
1119  */
shrink_dcache_sb(struct super_block * sb)1120 void shrink_dcache_sb(struct super_block *sb)
1121 {
1122 	long freed;
1123 
1124 	do {
1125 		LIST_HEAD(dispose);
1126 
1127 		freed = list_lru_walk(&sb->s_dentry_lru,
1128 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1129 
1130 		this_cpu_sub(nr_dentry_unused, freed);
1131 		shrink_dentry_list(&dispose);
1132 	} while (freed > 0);
1133 }
1134 EXPORT_SYMBOL(shrink_dcache_sb);
1135 
1136 /**
1137  * enum d_walk_ret - action to talke during tree walk
1138  * @D_WALK_CONTINUE:	contrinue walk
1139  * @D_WALK_QUIT:	quit walk
1140  * @D_WALK_NORETRY:	quit when retry is needed
1141  * @D_WALK_SKIP:	skip this dentry and its children
1142  */
1143 enum d_walk_ret {
1144 	D_WALK_CONTINUE,
1145 	D_WALK_QUIT,
1146 	D_WALK_NORETRY,
1147 	D_WALK_SKIP,
1148 };
1149 
1150 /**
1151  * d_walk - walk the dentry tree
1152  * @parent:	start of walk
1153  * @data:	data passed to @enter() and @finish()
1154  * @enter:	callback when first entering the dentry
1155  * @finish:	callback when successfully finished the walk
1156  *
1157  * The @enter() and @finish() callbacks are called with d_lock held.
1158  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *),void (* finish)(void *))1159 static void d_walk(struct dentry *parent, void *data,
1160 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1161 		   void (*finish)(void *))
1162 {
1163 	struct dentry *this_parent;
1164 	struct list_head *next;
1165 	unsigned seq = 0;
1166 	enum d_walk_ret ret;
1167 	bool retry = true;
1168 
1169 again:
1170 	read_seqbegin_or_lock(&rename_lock, &seq);
1171 	this_parent = parent;
1172 	spin_lock(&this_parent->d_lock);
1173 
1174 	ret = enter(data, this_parent);
1175 	switch (ret) {
1176 	case D_WALK_CONTINUE:
1177 		break;
1178 	case D_WALK_QUIT:
1179 	case D_WALK_SKIP:
1180 		goto out_unlock;
1181 	case D_WALK_NORETRY:
1182 		retry = false;
1183 		break;
1184 	}
1185 repeat:
1186 	next = this_parent->d_subdirs.next;
1187 resume:
1188 	while (next != &this_parent->d_subdirs) {
1189 		struct list_head *tmp = next;
1190 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1191 		next = tmp->next;
1192 
1193 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1194 
1195 		ret = enter(data, dentry);
1196 		switch (ret) {
1197 		case D_WALK_CONTINUE:
1198 			break;
1199 		case D_WALK_QUIT:
1200 			spin_unlock(&dentry->d_lock);
1201 			goto out_unlock;
1202 		case D_WALK_NORETRY:
1203 			retry = false;
1204 			break;
1205 		case D_WALK_SKIP:
1206 			spin_unlock(&dentry->d_lock);
1207 			continue;
1208 		}
1209 
1210 		if (!list_empty(&dentry->d_subdirs)) {
1211 			spin_unlock(&this_parent->d_lock);
1212 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1213 			this_parent = dentry;
1214 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1215 			goto repeat;
1216 		}
1217 		spin_unlock(&dentry->d_lock);
1218 	}
1219 	/*
1220 	 * All done at this level ... ascend and resume the search.
1221 	 */
1222 	rcu_read_lock();
1223 ascend:
1224 	if (this_parent != parent) {
1225 		struct dentry *child = this_parent;
1226 		this_parent = child->d_parent;
1227 
1228 		spin_unlock(&child->d_lock);
1229 		spin_lock(&this_parent->d_lock);
1230 
1231 		/* might go back up the wrong parent if we have had a rename. */
1232 		if (need_seqretry(&rename_lock, seq))
1233 			goto rename_retry;
1234 		/* go into the first sibling still alive */
1235 		do {
1236 			next = child->d_child.next;
1237 			if (next == &this_parent->d_subdirs)
1238 				goto ascend;
1239 			child = list_entry(next, struct dentry, d_child);
1240 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1241 		rcu_read_unlock();
1242 		goto resume;
1243 	}
1244 	if (need_seqretry(&rename_lock, seq))
1245 		goto rename_retry;
1246 	rcu_read_unlock();
1247 	if (finish)
1248 		finish(data);
1249 
1250 out_unlock:
1251 	spin_unlock(&this_parent->d_lock);
1252 	done_seqretry(&rename_lock, seq);
1253 	return;
1254 
1255 rename_retry:
1256 	spin_unlock(&this_parent->d_lock);
1257 	rcu_read_unlock();
1258 	BUG_ON(seq & 1);
1259 	if (!retry)
1260 		return;
1261 	seq = 1;
1262 	goto again;
1263 }
1264 
1265 /*
1266  * Search for at least 1 mount point in the dentry's subdirs.
1267  * We descend to the next level whenever the d_subdirs
1268  * list is non-empty and continue searching.
1269  */
1270 
check_mount(void * data,struct dentry * dentry)1271 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1272 {
1273 	int *ret = data;
1274 	if (d_mountpoint(dentry)) {
1275 		*ret = 1;
1276 		return D_WALK_QUIT;
1277 	}
1278 	return D_WALK_CONTINUE;
1279 }
1280 
1281 /**
1282  * have_submounts - check for mounts over a dentry
1283  * @parent: dentry to check.
1284  *
1285  * Return true if the parent or its subdirectories contain
1286  * a mount point
1287  */
have_submounts(struct dentry * parent)1288 int have_submounts(struct dentry *parent)
1289 {
1290 	int ret = 0;
1291 
1292 	d_walk(parent, &ret, check_mount, NULL);
1293 
1294 	return ret;
1295 }
1296 EXPORT_SYMBOL(have_submounts);
1297 
1298 /*
1299  * Called by mount code to set a mountpoint and check if the mountpoint is
1300  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1301  * subtree can become unreachable).
1302  *
1303  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1304  * this reason take rename_lock and d_lock on dentry and ancestors.
1305  */
d_set_mounted(struct dentry * dentry)1306 int d_set_mounted(struct dentry *dentry)
1307 {
1308 	struct dentry *p;
1309 	int ret = -ENOENT;
1310 	write_seqlock(&rename_lock);
1311 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1312 		/* Need exclusion wrt. d_invalidate() */
1313 		spin_lock(&p->d_lock);
1314 		if (unlikely(d_unhashed(p))) {
1315 			spin_unlock(&p->d_lock);
1316 			goto out;
1317 		}
1318 		spin_unlock(&p->d_lock);
1319 	}
1320 	spin_lock(&dentry->d_lock);
1321 	if (!d_unlinked(dentry)) {
1322 		dentry->d_flags |= DCACHE_MOUNTED;
1323 		ret = 0;
1324 	}
1325  	spin_unlock(&dentry->d_lock);
1326 out:
1327 	write_sequnlock(&rename_lock);
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Search the dentry child list of the specified parent,
1333  * and move any unused dentries to the end of the unused
1334  * list for prune_dcache(). We descend to the next level
1335  * whenever the d_subdirs list is non-empty and continue
1336  * searching.
1337  *
1338  * It returns zero iff there are no unused children,
1339  * otherwise  it returns the number of children moved to
1340  * the end of the unused list. This may not be the total
1341  * number of unused children, because select_parent can
1342  * drop the lock and return early due to latency
1343  * constraints.
1344  */
1345 
1346 struct select_data {
1347 	struct dentry *start;
1348 	struct list_head dispose;
1349 	int found;
1350 };
1351 
select_collect(void * _data,struct dentry * dentry)1352 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1353 {
1354 	struct select_data *data = _data;
1355 	enum d_walk_ret ret = D_WALK_CONTINUE;
1356 
1357 	if (data->start == dentry)
1358 		goto out;
1359 
1360 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1361 		data->found++;
1362 	} else {
1363 		if (dentry->d_flags & DCACHE_LRU_LIST)
1364 			d_lru_del(dentry);
1365 		if (!dentry->d_lockref.count) {
1366 			d_shrink_add(dentry, &data->dispose);
1367 			data->found++;
1368 		}
1369 	}
1370 	/*
1371 	 * We can return to the caller if we have found some (this
1372 	 * ensures forward progress). We'll be coming back to find
1373 	 * the rest.
1374 	 */
1375 	if (!list_empty(&data->dispose))
1376 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1377 out:
1378 	return ret;
1379 }
1380 
1381 /**
1382  * shrink_dcache_parent - prune dcache
1383  * @parent: parent of entries to prune
1384  *
1385  * Prune the dcache to remove unused children of the parent dentry.
1386  */
shrink_dcache_parent(struct dentry * parent)1387 void shrink_dcache_parent(struct dentry *parent)
1388 {
1389 	for (;;) {
1390 		struct select_data data;
1391 
1392 		INIT_LIST_HEAD(&data.dispose);
1393 		data.start = parent;
1394 		data.found = 0;
1395 
1396 		d_walk(parent, &data, select_collect, NULL);
1397 		if (!data.found)
1398 			break;
1399 
1400 		shrink_dentry_list(&data.dispose);
1401 		cond_resched();
1402 	}
1403 }
1404 EXPORT_SYMBOL(shrink_dcache_parent);
1405 
umount_check(void * _data,struct dentry * dentry)1406 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1407 {
1408 	/* it has busy descendents; complain about those instead */
1409 	if (!list_empty(&dentry->d_subdirs))
1410 		return D_WALK_CONTINUE;
1411 
1412 	/* root with refcount 1 is fine */
1413 	if (dentry == _data && dentry->d_lockref.count == 1)
1414 		return D_WALK_CONTINUE;
1415 
1416 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1417 			" still in use (%d) [unmount of %s %s]\n",
1418 		       dentry,
1419 		       dentry->d_inode ?
1420 		       dentry->d_inode->i_ino : 0UL,
1421 		       dentry,
1422 		       dentry->d_lockref.count,
1423 		       dentry->d_sb->s_type->name,
1424 		       dentry->d_sb->s_id);
1425 	WARN_ON(1);
1426 	return D_WALK_CONTINUE;
1427 }
1428 
do_one_tree(struct dentry * dentry)1429 static void do_one_tree(struct dentry *dentry)
1430 {
1431 	shrink_dcache_parent(dentry);
1432 	d_walk(dentry, dentry, umount_check, NULL);
1433 	d_drop(dentry);
1434 	dput(dentry);
1435 }
1436 
1437 /*
1438  * destroy the dentries attached to a superblock on unmounting
1439  */
shrink_dcache_for_umount(struct super_block * sb)1440 void shrink_dcache_for_umount(struct super_block *sb)
1441 {
1442 	struct dentry *dentry;
1443 
1444 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1445 
1446 	dentry = sb->s_root;
1447 	sb->s_root = NULL;
1448 	do_one_tree(dentry);
1449 
1450 	while (!hlist_bl_empty(&sb->s_anon)) {
1451 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1452 		do_one_tree(dentry);
1453 	}
1454 }
1455 
1456 struct detach_data {
1457 	struct select_data select;
1458 	struct dentry *mountpoint;
1459 };
detach_and_collect(void * _data,struct dentry * dentry)1460 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1461 {
1462 	struct detach_data *data = _data;
1463 
1464 	if (d_mountpoint(dentry)) {
1465 		__dget_dlock(dentry);
1466 		data->mountpoint = dentry;
1467 		return D_WALK_QUIT;
1468 	}
1469 
1470 	return select_collect(&data->select, dentry);
1471 }
1472 
check_and_drop(void * _data)1473 static void check_and_drop(void *_data)
1474 {
1475 	struct detach_data *data = _data;
1476 
1477 	if (!data->mountpoint && !data->select.found)
1478 		__d_drop(data->select.start);
1479 }
1480 
1481 /**
1482  * d_invalidate - detach submounts, prune dcache, and drop
1483  * @dentry: dentry to invalidate (aka detach, prune and drop)
1484  *
1485  * no dcache lock.
1486  *
1487  * The final d_drop is done as an atomic operation relative to
1488  * rename_lock ensuring there are no races with d_set_mounted.  This
1489  * ensures there are no unhashed dentries on the path to a mountpoint.
1490  */
d_invalidate(struct dentry * dentry)1491 void d_invalidate(struct dentry *dentry)
1492 {
1493 	/*
1494 	 * If it's already been dropped, return OK.
1495 	 */
1496 	spin_lock(&dentry->d_lock);
1497 	if (d_unhashed(dentry)) {
1498 		spin_unlock(&dentry->d_lock);
1499 		return;
1500 	}
1501 	spin_unlock(&dentry->d_lock);
1502 
1503 	/* Negative dentries can be dropped without further checks */
1504 	if (!dentry->d_inode) {
1505 		d_drop(dentry);
1506 		return;
1507 	}
1508 
1509 	for (;;) {
1510 		struct detach_data data;
1511 
1512 		data.mountpoint = NULL;
1513 		INIT_LIST_HEAD(&data.select.dispose);
1514 		data.select.start = dentry;
1515 		data.select.found = 0;
1516 
1517 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1518 
1519 		if (data.select.found)
1520 			shrink_dentry_list(&data.select.dispose);
1521 
1522 		if (data.mountpoint) {
1523 			detach_mounts(data.mountpoint);
1524 			dput(data.mountpoint);
1525 		}
1526 
1527 		if (!data.mountpoint && !data.select.found)
1528 			break;
1529 
1530 		cond_resched();
1531 	}
1532 }
1533 EXPORT_SYMBOL(d_invalidate);
1534 
1535 /**
1536  * __d_alloc	-	allocate a dcache entry
1537  * @sb: filesystem it will belong to
1538  * @name: qstr of the name
1539  *
1540  * Allocates a dentry. It returns %NULL if there is insufficient memory
1541  * available. On a success the dentry is returned. The name passed in is
1542  * copied and the copy passed in may be reused after this call.
1543  */
1544 
__d_alloc(struct super_block * sb,const struct qstr * name)1545 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1546 {
1547 	struct dentry *dentry;
1548 	char *dname;
1549 
1550 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1551 	if (!dentry)
1552 		return NULL;
1553 
1554 	/*
1555 	 * We guarantee that the inline name is always NUL-terminated.
1556 	 * This way the memcpy() done by the name switching in rename
1557 	 * will still always have a NUL at the end, even if we might
1558 	 * be overwriting an internal NUL character
1559 	 */
1560 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1561 	if (name->len > DNAME_INLINE_LEN-1) {
1562 		size_t size = offsetof(struct external_name, name[1]);
1563 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1564 		if (!p) {
1565 			kmem_cache_free(dentry_cache, dentry);
1566 			return NULL;
1567 		}
1568 		atomic_set(&p->u.count, 1);
1569 		dname = p->name;
1570 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1571 			kasan_unpoison_shadow(dname,
1572 				round_up(name->len + 1,	sizeof(unsigned long)));
1573 	} else  {
1574 		dname = dentry->d_iname;
1575 	}
1576 
1577 	dentry->d_name.len = name->len;
1578 	dentry->d_name.hash = name->hash;
1579 	memcpy(dname, name->name, name->len);
1580 	dname[name->len] = 0;
1581 
1582 	/* Make sure we always see the terminating NUL character */
1583 	smp_wmb();
1584 	dentry->d_name.name = dname;
1585 
1586 	dentry->d_lockref.count = 1;
1587 	dentry->d_flags = 0;
1588 	spin_lock_init(&dentry->d_lock);
1589 	seqcount_init(&dentry->d_seq);
1590 	dentry->d_inode = NULL;
1591 	dentry->d_parent = dentry;
1592 	dentry->d_sb = sb;
1593 	dentry->d_op = NULL;
1594 	dentry->d_fsdata = NULL;
1595 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1596 	INIT_LIST_HEAD(&dentry->d_lru);
1597 	INIT_LIST_HEAD(&dentry->d_subdirs);
1598 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1599 	INIT_LIST_HEAD(&dentry->d_child);
1600 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1601 
1602 	this_cpu_inc(nr_dentry);
1603 
1604 	return dentry;
1605 }
1606 
1607 /**
1608  * d_alloc	-	allocate a dcache entry
1609  * @parent: parent of entry to allocate
1610  * @name: qstr of the name
1611  *
1612  * Allocates a dentry. It returns %NULL if there is insufficient memory
1613  * available. On a success the dentry is returned. The name passed in is
1614  * copied and the copy passed in may be reused after this call.
1615  */
d_alloc(struct dentry * parent,const struct qstr * name)1616 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1617 {
1618 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1619 	if (!dentry)
1620 		return NULL;
1621 	dentry->d_flags |= DCACHE_RCUACCESS;
1622 	spin_lock(&parent->d_lock);
1623 	/*
1624 	 * don't need child lock because it is not subject
1625 	 * to concurrency here
1626 	 */
1627 	__dget_dlock(parent);
1628 	dentry->d_parent = parent;
1629 	list_add(&dentry->d_child, &parent->d_subdirs);
1630 	spin_unlock(&parent->d_lock);
1631 
1632 	return dentry;
1633 }
1634 EXPORT_SYMBOL(d_alloc);
1635 
1636 /**
1637  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1638  * @sb: the superblock
1639  * @name: qstr of the name
1640  *
1641  * For a filesystem that just pins its dentries in memory and never
1642  * performs lookups at all, return an unhashed IS_ROOT dentry.
1643  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1644 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1645 {
1646 	return __d_alloc(sb, name);
1647 }
1648 EXPORT_SYMBOL(d_alloc_pseudo);
1649 
d_alloc_name(struct dentry * parent,const char * name)1650 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1651 {
1652 	struct qstr q;
1653 
1654 	q.name = name;
1655 	q.len = strlen(name);
1656 	q.hash = full_name_hash(q.name, q.len);
1657 	return d_alloc(parent, &q);
1658 }
1659 EXPORT_SYMBOL(d_alloc_name);
1660 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1661 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1662 {
1663 	WARN_ON_ONCE(dentry->d_op);
1664 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1665 				DCACHE_OP_COMPARE	|
1666 				DCACHE_OP_REVALIDATE	|
1667 				DCACHE_OP_WEAK_REVALIDATE	|
1668 				DCACHE_OP_DELETE	|
1669 				DCACHE_OP_SELECT_INODE));
1670 	dentry->d_op = op;
1671 	if (!op)
1672 		return;
1673 	if (op->d_hash)
1674 		dentry->d_flags |= DCACHE_OP_HASH;
1675 	if (op->d_compare)
1676 		dentry->d_flags |= DCACHE_OP_COMPARE;
1677 	if (op->d_revalidate)
1678 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1679 	if (op->d_weak_revalidate)
1680 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1681 	if (op->d_delete)
1682 		dentry->d_flags |= DCACHE_OP_DELETE;
1683 	if (op->d_prune)
1684 		dentry->d_flags |= DCACHE_OP_PRUNE;
1685 	if (op->d_select_inode)
1686 		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1687 
1688 }
1689 EXPORT_SYMBOL(d_set_d_op);
1690 
1691 
1692 /*
1693  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1694  * @dentry - The dentry to mark
1695  *
1696  * Mark a dentry as falling through to the lower layer (as set with
1697  * d_pin_lower()).  This flag may be recorded on the medium.
1698  */
d_set_fallthru(struct dentry * dentry)1699 void d_set_fallthru(struct dentry *dentry)
1700 {
1701 	spin_lock(&dentry->d_lock);
1702 	dentry->d_flags |= DCACHE_FALLTHRU;
1703 	spin_unlock(&dentry->d_lock);
1704 }
1705 EXPORT_SYMBOL(d_set_fallthru);
1706 
d_flags_for_inode(struct inode * inode)1707 static unsigned d_flags_for_inode(struct inode *inode)
1708 {
1709 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1710 
1711 	if (!inode)
1712 		return DCACHE_MISS_TYPE;
1713 
1714 	if (S_ISDIR(inode->i_mode)) {
1715 		add_flags = DCACHE_DIRECTORY_TYPE;
1716 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1717 			if (unlikely(!inode->i_op->lookup))
1718 				add_flags = DCACHE_AUTODIR_TYPE;
1719 			else
1720 				inode->i_opflags |= IOP_LOOKUP;
1721 		}
1722 		goto type_determined;
1723 	}
1724 
1725 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1726 		if (unlikely(inode->i_op->follow_link)) {
1727 			add_flags = DCACHE_SYMLINK_TYPE;
1728 			goto type_determined;
1729 		}
1730 		inode->i_opflags |= IOP_NOFOLLOW;
1731 	}
1732 
1733 	if (unlikely(!S_ISREG(inode->i_mode)))
1734 		add_flags = DCACHE_SPECIAL_TYPE;
1735 
1736 type_determined:
1737 	if (unlikely(IS_AUTOMOUNT(inode)))
1738 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1739 	return add_flags;
1740 }
1741 
__d_instantiate(struct dentry * dentry,struct inode * inode)1742 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1743 {
1744 	unsigned add_flags = d_flags_for_inode(inode);
1745 
1746 	spin_lock(&dentry->d_lock);
1747 	if (inode)
1748 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1749 	raw_write_seqcount_begin(&dentry->d_seq);
1750 	__d_set_inode_and_type(dentry, inode, add_flags);
1751 	raw_write_seqcount_end(&dentry->d_seq);
1752 	spin_unlock(&dentry->d_lock);
1753 	fsnotify_d_instantiate(dentry, inode);
1754 }
1755 
1756 /**
1757  * d_instantiate - fill in inode information for a dentry
1758  * @entry: dentry to complete
1759  * @inode: inode to attach to this dentry
1760  *
1761  * Fill in inode information in the entry.
1762  *
1763  * This turns negative dentries into productive full members
1764  * of society.
1765  *
1766  * NOTE! This assumes that the inode count has been incremented
1767  * (or otherwise set) by the caller to indicate that it is now
1768  * in use by the dcache.
1769  */
1770 
d_instantiate(struct dentry * entry,struct inode * inode)1771 void d_instantiate(struct dentry *entry, struct inode * inode)
1772 {
1773 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1774 	if (inode)
1775 		spin_lock(&inode->i_lock);
1776 	__d_instantiate(entry, inode);
1777 	if (inode)
1778 		spin_unlock(&inode->i_lock);
1779 	security_d_instantiate(entry, inode);
1780 }
1781 EXPORT_SYMBOL(d_instantiate);
1782 
1783 /**
1784  * d_instantiate_unique - instantiate a non-aliased dentry
1785  * @entry: dentry to instantiate
1786  * @inode: inode to attach to this dentry
1787  *
1788  * Fill in inode information in the entry. On success, it returns NULL.
1789  * If an unhashed alias of "entry" already exists, then we return the
1790  * aliased dentry instead and drop one reference to inode.
1791  *
1792  * Note that in order to avoid conflicts with rename() etc, the caller
1793  * had better be holding the parent directory semaphore.
1794  *
1795  * This also assumes that the inode count has been incremented
1796  * (or otherwise set) by the caller to indicate that it is now
1797  * in use by the dcache.
1798  */
__d_instantiate_unique(struct dentry * entry,struct inode * inode)1799 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1800 					     struct inode *inode)
1801 {
1802 	struct dentry *alias;
1803 	int len = entry->d_name.len;
1804 	const char *name = entry->d_name.name;
1805 	unsigned int hash = entry->d_name.hash;
1806 
1807 	if (!inode) {
1808 		__d_instantiate(entry, NULL);
1809 		return NULL;
1810 	}
1811 
1812 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1813 		/*
1814 		 * Don't need alias->d_lock here, because aliases with
1815 		 * d_parent == entry->d_parent are not subject to name or
1816 		 * parent changes, because the parent inode i_mutex is held.
1817 		 */
1818 		if (alias->d_name.hash != hash)
1819 			continue;
1820 		if (alias->d_parent != entry->d_parent)
1821 			continue;
1822 		if (alias->d_name.len != len)
1823 			continue;
1824 		if (dentry_cmp(alias, name, len))
1825 			continue;
1826 		__dget(alias);
1827 		return alias;
1828 	}
1829 
1830 	__d_instantiate(entry, inode);
1831 	return NULL;
1832 }
1833 
d_instantiate_unique(struct dentry * entry,struct inode * inode)1834 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1835 {
1836 	struct dentry *result;
1837 
1838 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1839 
1840 	if (inode)
1841 		spin_lock(&inode->i_lock);
1842 	result = __d_instantiate_unique(entry, inode);
1843 	if (inode)
1844 		spin_unlock(&inode->i_lock);
1845 
1846 	if (!result) {
1847 		security_d_instantiate(entry, inode);
1848 		return NULL;
1849 	}
1850 
1851 	BUG_ON(!d_unhashed(result));
1852 	iput(inode);
1853 	return result;
1854 }
1855 
1856 EXPORT_SYMBOL(d_instantiate_unique);
1857 
1858 /**
1859  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1860  * @entry: dentry to complete
1861  * @inode: inode to attach to this dentry
1862  *
1863  * Fill in inode information in the entry.  If a directory alias is found, then
1864  * return an error (and drop inode).  Together with d_materialise_unique() this
1865  * guarantees that a directory inode may never have more than one alias.
1866  */
d_instantiate_no_diralias(struct dentry * entry,struct inode * inode)1867 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1868 {
1869 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1870 
1871 	spin_lock(&inode->i_lock);
1872 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1873 		spin_unlock(&inode->i_lock);
1874 		iput(inode);
1875 		return -EBUSY;
1876 	}
1877 	__d_instantiate(entry, inode);
1878 	spin_unlock(&inode->i_lock);
1879 	security_d_instantiate(entry, inode);
1880 
1881 	return 0;
1882 }
1883 EXPORT_SYMBOL(d_instantiate_no_diralias);
1884 
d_make_root(struct inode * root_inode)1885 struct dentry *d_make_root(struct inode *root_inode)
1886 {
1887 	struct dentry *res = NULL;
1888 
1889 	if (root_inode) {
1890 		static const struct qstr name = QSTR_INIT("/", 1);
1891 
1892 		res = __d_alloc(root_inode->i_sb, &name);
1893 		if (res)
1894 			d_instantiate(res, root_inode);
1895 		else
1896 			iput(root_inode);
1897 	}
1898 	return res;
1899 }
1900 EXPORT_SYMBOL(d_make_root);
1901 
__d_find_any_alias(struct inode * inode)1902 static struct dentry * __d_find_any_alias(struct inode *inode)
1903 {
1904 	struct dentry *alias;
1905 
1906 	if (hlist_empty(&inode->i_dentry))
1907 		return NULL;
1908 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1909 	__dget(alias);
1910 	return alias;
1911 }
1912 
1913 /**
1914  * d_find_any_alias - find any alias for a given inode
1915  * @inode: inode to find an alias for
1916  *
1917  * If any aliases exist for the given inode, take and return a
1918  * reference for one of them.  If no aliases exist, return %NULL.
1919  */
d_find_any_alias(struct inode * inode)1920 struct dentry *d_find_any_alias(struct inode *inode)
1921 {
1922 	struct dentry *de;
1923 
1924 	spin_lock(&inode->i_lock);
1925 	de = __d_find_any_alias(inode);
1926 	spin_unlock(&inode->i_lock);
1927 	return de;
1928 }
1929 EXPORT_SYMBOL(d_find_any_alias);
1930 
__d_obtain_alias(struct inode * inode,int disconnected)1931 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1932 {
1933 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1934 	struct dentry *tmp;
1935 	struct dentry *res;
1936 	unsigned add_flags;
1937 
1938 	if (!inode)
1939 		return ERR_PTR(-ESTALE);
1940 	if (IS_ERR(inode))
1941 		return ERR_CAST(inode);
1942 
1943 	res = d_find_any_alias(inode);
1944 	if (res)
1945 		goto out_iput;
1946 
1947 	tmp = __d_alloc(inode->i_sb, &anonstring);
1948 	if (!tmp) {
1949 		res = ERR_PTR(-ENOMEM);
1950 		goto out_iput;
1951 	}
1952 
1953 	spin_lock(&inode->i_lock);
1954 	res = __d_find_any_alias(inode);
1955 	if (res) {
1956 		spin_unlock(&inode->i_lock);
1957 		dput(tmp);
1958 		goto out_iput;
1959 	}
1960 
1961 	/* attach a disconnected dentry */
1962 	add_flags = d_flags_for_inode(inode);
1963 
1964 	if (disconnected)
1965 		add_flags |= DCACHE_DISCONNECTED;
1966 
1967 	spin_lock(&tmp->d_lock);
1968 	__d_set_inode_and_type(tmp, inode, add_flags);
1969 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1970 	hlist_bl_lock(&tmp->d_sb->s_anon);
1971 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1972 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1973 	spin_unlock(&tmp->d_lock);
1974 	spin_unlock(&inode->i_lock);
1975 	security_d_instantiate(tmp, inode);
1976 
1977 	return tmp;
1978 
1979  out_iput:
1980 	if (res && !IS_ERR(res))
1981 		security_d_instantiate(res, inode);
1982 	iput(inode);
1983 	return res;
1984 }
1985 
1986 /**
1987  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1988  * @inode: inode to allocate the dentry for
1989  *
1990  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1991  * similar open by handle operations.  The returned dentry may be anonymous,
1992  * or may have a full name (if the inode was already in the cache).
1993  *
1994  * When called on a directory inode, we must ensure that the inode only ever
1995  * has one dentry.  If a dentry is found, that is returned instead of
1996  * allocating a new one.
1997  *
1998  * On successful return, the reference to the inode has been transferred
1999  * to the dentry.  In case of an error the reference on the inode is released.
2000  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2001  * be passed in and the error will be propagated to the return value,
2002  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2003  */
d_obtain_alias(struct inode * inode)2004 struct dentry *d_obtain_alias(struct inode *inode)
2005 {
2006 	return __d_obtain_alias(inode, 1);
2007 }
2008 EXPORT_SYMBOL(d_obtain_alias);
2009 
2010 /**
2011  * d_obtain_root - find or allocate a dentry for a given inode
2012  * @inode: inode to allocate the dentry for
2013  *
2014  * Obtain an IS_ROOT dentry for the root of a filesystem.
2015  *
2016  * We must ensure that directory inodes only ever have one dentry.  If a
2017  * dentry is found, that is returned instead of allocating a new one.
2018  *
2019  * On successful return, the reference to the inode has been transferred
2020  * to the dentry.  In case of an error the reference on the inode is
2021  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2022  * error will be propagate to the return value, with a %NULL @inode
2023  * replaced by ERR_PTR(-ESTALE).
2024  */
d_obtain_root(struct inode * inode)2025 struct dentry *d_obtain_root(struct inode *inode)
2026 {
2027 	return __d_obtain_alias(inode, 0);
2028 }
2029 EXPORT_SYMBOL(d_obtain_root);
2030 
2031 /**
2032  * d_add_ci - lookup or allocate new dentry with case-exact name
2033  * @inode:  the inode case-insensitive lookup has found
2034  * @dentry: the negative dentry that was passed to the parent's lookup func
2035  * @name:   the case-exact name to be associated with the returned dentry
2036  *
2037  * This is to avoid filling the dcache with case-insensitive names to the
2038  * same inode, only the actual correct case is stored in the dcache for
2039  * case-insensitive filesystems.
2040  *
2041  * For a case-insensitive lookup match and if the the case-exact dentry
2042  * already exists in in the dcache, use it and return it.
2043  *
2044  * If no entry exists with the exact case name, allocate new dentry with
2045  * the exact case, and return the spliced entry.
2046  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2047 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2048 			struct qstr *name)
2049 {
2050 	struct dentry *found;
2051 	struct dentry *new;
2052 
2053 	/*
2054 	 * First check if a dentry matching the name already exists,
2055 	 * if not go ahead and create it now.
2056 	 */
2057 	found = d_hash_and_lookup(dentry->d_parent, name);
2058 	if (!found) {
2059 		new = d_alloc(dentry->d_parent, name);
2060 		if (!new) {
2061 			found = ERR_PTR(-ENOMEM);
2062 		} else {
2063 			found = d_splice_alias(inode, new);
2064 			if (found) {
2065 				dput(new);
2066 				return found;
2067 			}
2068 			return new;
2069 		}
2070 	}
2071 	iput(inode);
2072 	return found;
2073 }
2074 EXPORT_SYMBOL(d_add_ci);
2075 
2076 /*
2077  * Do the slow-case of the dentry name compare.
2078  *
2079  * Unlike the dentry_cmp() function, we need to atomically
2080  * load the name and length information, so that the
2081  * filesystem can rely on them, and can use the 'name' and
2082  * 'len' information without worrying about walking off the
2083  * end of memory etc.
2084  *
2085  * Thus the read_seqcount_retry() and the "duplicate" info
2086  * in arguments (the low-level filesystem should not look
2087  * at the dentry inode or name contents directly, since
2088  * rename can change them while we're in RCU mode).
2089  */
2090 enum slow_d_compare {
2091 	D_COMP_OK,
2092 	D_COMP_NOMATCH,
2093 	D_COMP_SEQRETRY,
2094 };
2095 
slow_dentry_cmp(const struct dentry * parent,struct dentry * dentry,unsigned int seq,const struct qstr * name)2096 static noinline enum slow_d_compare slow_dentry_cmp(
2097 		const struct dentry *parent,
2098 		struct dentry *dentry,
2099 		unsigned int seq,
2100 		const struct qstr *name)
2101 {
2102 	int tlen = dentry->d_name.len;
2103 	const char *tname = dentry->d_name.name;
2104 
2105 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2106 		cpu_relax();
2107 		return D_COMP_SEQRETRY;
2108 	}
2109 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2110 		return D_COMP_NOMATCH;
2111 	return D_COMP_OK;
2112 }
2113 
2114 /**
2115  * __d_lookup_rcu - search for a dentry (racy, store-free)
2116  * @parent: parent dentry
2117  * @name: qstr of name we wish to find
2118  * @seqp: returns d_seq value at the point where the dentry was found
2119  * Returns: dentry, or NULL
2120  *
2121  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2122  * resolution (store-free path walking) design described in
2123  * Documentation/filesystems/path-lookup.txt.
2124  *
2125  * This is not to be used outside core vfs.
2126  *
2127  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2128  * held, and rcu_read_lock held. The returned dentry must not be stored into
2129  * without taking d_lock and checking d_seq sequence count against @seq
2130  * returned here.
2131  *
2132  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2133  * function.
2134  *
2135  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2136  * the returned dentry, so long as its parent's seqlock is checked after the
2137  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2138  * is formed, giving integrity down the path walk.
2139  *
2140  * NOTE! The caller *has* to check the resulting dentry against the sequence
2141  * number we've returned before using any of the resulting dentry state!
2142  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2143 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2144 				const struct qstr *name,
2145 				unsigned *seqp)
2146 {
2147 	u64 hashlen = name->hash_len;
2148 	const unsigned char *str = name->name;
2149 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2150 	struct hlist_bl_node *node;
2151 	struct dentry *dentry;
2152 
2153 	/*
2154 	 * Note: There is significant duplication with __d_lookup_rcu which is
2155 	 * required to prevent single threaded performance regressions
2156 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2157 	 * Keep the two functions in sync.
2158 	 */
2159 
2160 	/*
2161 	 * The hash list is protected using RCU.
2162 	 *
2163 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2164 	 * races with d_move().
2165 	 *
2166 	 * It is possible that concurrent renames can mess up our list
2167 	 * walk here and result in missing our dentry, resulting in the
2168 	 * false-negative result. d_lookup() protects against concurrent
2169 	 * renames using rename_lock seqlock.
2170 	 *
2171 	 * See Documentation/filesystems/path-lookup.txt for more details.
2172 	 */
2173 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2174 		unsigned seq;
2175 
2176 seqretry:
2177 		/*
2178 		 * The dentry sequence count protects us from concurrent
2179 		 * renames, and thus protects parent and name fields.
2180 		 *
2181 		 * The caller must perform a seqcount check in order
2182 		 * to do anything useful with the returned dentry.
2183 		 *
2184 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2185 		 * we don't wait for the sequence count to stabilize if it
2186 		 * is in the middle of a sequence change. If we do the slow
2187 		 * dentry compare, we will do seqretries until it is stable,
2188 		 * and if we end up with a successful lookup, we actually
2189 		 * want to exit RCU lookup anyway.
2190 		 */
2191 		seq = raw_seqcount_begin(&dentry->d_seq);
2192 		if (dentry->d_parent != parent)
2193 			continue;
2194 		if (d_unhashed(dentry))
2195 			continue;
2196 
2197 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2198 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2199 				continue;
2200 			*seqp = seq;
2201 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2202 			case D_COMP_OK:
2203 				return dentry;
2204 			case D_COMP_NOMATCH:
2205 				continue;
2206 			default:
2207 				goto seqretry;
2208 			}
2209 		}
2210 
2211 		if (dentry->d_name.hash_len != hashlen)
2212 			continue;
2213 		*seqp = seq;
2214 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2215 			return dentry;
2216 	}
2217 	return NULL;
2218 }
2219 
2220 /**
2221  * d_lookup - search for a dentry
2222  * @parent: parent dentry
2223  * @name: qstr of name we wish to find
2224  * Returns: dentry, or NULL
2225  *
2226  * d_lookup searches the children of the parent dentry for the name in
2227  * question. If the dentry is found its reference count is incremented and the
2228  * dentry is returned. The caller must use dput to free the entry when it has
2229  * finished using it. %NULL is returned if the dentry does not exist.
2230  */
d_lookup(const struct dentry * parent,const struct qstr * name)2231 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2232 {
2233 	struct dentry *dentry;
2234 	unsigned seq;
2235 
2236 	do {
2237 		seq = read_seqbegin(&rename_lock);
2238 		dentry = __d_lookup(parent, name);
2239 		if (dentry)
2240 			break;
2241 	} while (read_seqretry(&rename_lock, seq));
2242 	return dentry;
2243 }
2244 EXPORT_SYMBOL(d_lookup);
2245 
2246 /**
2247  * __d_lookup - search for a dentry (racy)
2248  * @parent: parent dentry
2249  * @name: qstr of name we wish to find
2250  * Returns: dentry, or NULL
2251  *
2252  * __d_lookup is like d_lookup, however it may (rarely) return a
2253  * false-negative result due to unrelated rename activity.
2254  *
2255  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2256  * however it must be used carefully, eg. with a following d_lookup in
2257  * the case of failure.
2258  *
2259  * __d_lookup callers must be commented.
2260  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2261 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2262 {
2263 	unsigned int len = name->len;
2264 	unsigned int hash = name->hash;
2265 	const unsigned char *str = name->name;
2266 	struct hlist_bl_head *b = d_hash(parent, hash);
2267 	struct hlist_bl_node *node;
2268 	struct dentry *found = NULL;
2269 	struct dentry *dentry;
2270 
2271 	/*
2272 	 * Note: There is significant duplication with __d_lookup_rcu which is
2273 	 * required to prevent single threaded performance regressions
2274 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2275 	 * Keep the two functions in sync.
2276 	 */
2277 
2278 	/*
2279 	 * The hash list is protected using RCU.
2280 	 *
2281 	 * Take d_lock when comparing a candidate dentry, to avoid races
2282 	 * with d_move().
2283 	 *
2284 	 * It is possible that concurrent renames can mess up our list
2285 	 * walk here and result in missing our dentry, resulting in the
2286 	 * false-negative result. d_lookup() protects against concurrent
2287 	 * renames using rename_lock seqlock.
2288 	 *
2289 	 * See Documentation/filesystems/path-lookup.txt for more details.
2290 	 */
2291 	rcu_read_lock();
2292 
2293 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2294 
2295 		if (dentry->d_name.hash != hash)
2296 			continue;
2297 
2298 		spin_lock(&dentry->d_lock);
2299 		if (dentry->d_parent != parent)
2300 			goto next;
2301 		if (d_unhashed(dentry))
2302 			goto next;
2303 
2304 		/*
2305 		 * It is safe to compare names since d_move() cannot
2306 		 * change the qstr (protected by d_lock).
2307 		 */
2308 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2309 			int tlen = dentry->d_name.len;
2310 			const char *tname = dentry->d_name.name;
2311 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2312 				goto next;
2313 		} else {
2314 			if (dentry->d_name.len != len)
2315 				goto next;
2316 			if (dentry_cmp(dentry, str, len))
2317 				goto next;
2318 		}
2319 
2320 		dentry->d_lockref.count++;
2321 		found = dentry;
2322 		spin_unlock(&dentry->d_lock);
2323 		break;
2324 next:
2325 		spin_unlock(&dentry->d_lock);
2326  	}
2327  	rcu_read_unlock();
2328 
2329  	return found;
2330 }
2331 
2332 /**
2333  * d_hash_and_lookup - hash the qstr then search for a dentry
2334  * @dir: Directory to search in
2335  * @name: qstr of name we wish to find
2336  *
2337  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2338  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2339 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2340 {
2341 	/*
2342 	 * Check for a fs-specific hash function. Note that we must
2343 	 * calculate the standard hash first, as the d_op->d_hash()
2344 	 * routine may choose to leave the hash value unchanged.
2345 	 */
2346 	name->hash = full_name_hash(name->name, name->len);
2347 	if (dir->d_flags & DCACHE_OP_HASH) {
2348 		int err = dir->d_op->d_hash(dir, name);
2349 		if (unlikely(err < 0))
2350 			return ERR_PTR(err);
2351 	}
2352 	return d_lookup(dir, name);
2353 }
2354 EXPORT_SYMBOL(d_hash_and_lookup);
2355 
2356 /*
2357  * When a file is deleted, we have two options:
2358  * - turn this dentry into a negative dentry
2359  * - unhash this dentry and free it.
2360  *
2361  * Usually, we want to just turn this into
2362  * a negative dentry, but if anybody else is
2363  * currently using the dentry or the inode
2364  * we can't do that and we fall back on removing
2365  * it from the hash queues and waiting for
2366  * it to be deleted later when it has no users
2367  */
2368 
2369 /**
2370  * d_delete - delete a dentry
2371  * @dentry: The dentry to delete
2372  *
2373  * Turn the dentry into a negative dentry if possible, otherwise
2374  * remove it from the hash queues so it can be deleted later
2375  */
2376 
d_delete(struct dentry * dentry)2377 void d_delete(struct dentry * dentry)
2378 {
2379 	struct inode *inode;
2380 	int isdir = 0;
2381 	/*
2382 	 * Are we the only user?
2383 	 */
2384 again:
2385 	spin_lock(&dentry->d_lock);
2386 	inode = dentry->d_inode;
2387 	isdir = S_ISDIR(inode->i_mode);
2388 	if (dentry->d_lockref.count == 1) {
2389 		if (!spin_trylock(&inode->i_lock)) {
2390 			spin_unlock(&dentry->d_lock);
2391 			cpu_relax();
2392 			goto again;
2393 		}
2394 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2395 		dentry_unlink_inode(dentry);
2396 		fsnotify_nameremove(dentry, isdir);
2397 		return;
2398 	}
2399 
2400 	if (!d_unhashed(dentry))
2401 		__d_drop(dentry);
2402 
2403 	spin_unlock(&dentry->d_lock);
2404 
2405 	fsnotify_nameremove(dentry, isdir);
2406 }
2407 EXPORT_SYMBOL(d_delete);
2408 
__d_rehash(struct dentry * entry,struct hlist_bl_head * b)2409 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2410 {
2411 	BUG_ON(!d_unhashed(entry));
2412 	hlist_bl_lock(b);
2413 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2414 	hlist_bl_unlock(b);
2415 }
2416 
_d_rehash(struct dentry * entry)2417 static void _d_rehash(struct dentry * entry)
2418 {
2419 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2420 }
2421 
2422 /**
2423  * d_rehash	- add an entry back to the hash
2424  * @entry: dentry to add to the hash
2425  *
2426  * Adds a dentry to the hash according to its name.
2427  */
2428 
d_rehash(struct dentry * entry)2429 void d_rehash(struct dentry * entry)
2430 {
2431 	spin_lock(&entry->d_lock);
2432 	_d_rehash(entry);
2433 	spin_unlock(&entry->d_lock);
2434 }
2435 EXPORT_SYMBOL(d_rehash);
2436 
2437 /**
2438  * dentry_update_name_case - update case insensitive dentry with a new name
2439  * @dentry: dentry to be updated
2440  * @name: new name
2441  *
2442  * Update a case insensitive dentry with new case of name.
2443  *
2444  * dentry must have been returned by d_lookup with name @name. Old and new
2445  * name lengths must match (ie. no d_compare which allows mismatched name
2446  * lengths).
2447  *
2448  * Parent inode i_mutex must be held over d_lookup and into this call (to
2449  * keep renames and concurrent inserts, and readdir(2) away).
2450  */
dentry_update_name_case(struct dentry * dentry,struct qstr * name)2451 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2452 {
2453 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2454 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2455 
2456 	spin_lock(&dentry->d_lock);
2457 	write_seqcount_begin(&dentry->d_seq);
2458 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2459 	write_seqcount_end(&dentry->d_seq);
2460 	spin_unlock(&dentry->d_lock);
2461 }
2462 EXPORT_SYMBOL(dentry_update_name_case);
2463 
swap_names(struct dentry * dentry,struct dentry * target)2464 static void swap_names(struct dentry *dentry, struct dentry *target)
2465 {
2466 	if (unlikely(dname_external(target))) {
2467 		if (unlikely(dname_external(dentry))) {
2468 			/*
2469 			 * Both external: swap the pointers
2470 			 */
2471 			swap(target->d_name.name, dentry->d_name.name);
2472 		} else {
2473 			/*
2474 			 * dentry:internal, target:external.  Steal target's
2475 			 * storage and make target internal.
2476 			 */
2477 			memcpy(target->d_iname, dentry->d_name.name,
2478 					dentry->d_name.len + 1);
2479 			dentry->d_name.name = target->d_name.name;
2480 			target->d_name.name = target->d_iname;
2481 		}
2482 	} else {
2483 		if (unlikely(dname_external(dentry))) {
2484 			/*
2485 			 * dentry:external, target:internal.  Give dentry's
2486 			 * storage to target and make dentry internal
2487 			 */
2488 			memcpy(dentry->d_iname, target->d_name.name,
2489 					target->d_name.len + 1);
2490 			target->d_name.name = dentry->d_name.name;
2491 			dentry->d_name.name = dentry->d_iname;
2492 		} else {
2493 			/*
2494 			 * Both are internal.
2495 			 */
2496 			unsigned int i;
2497 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2498 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2499 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2500 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2501 				swap(((long *) &dentry->d_iname)[i],
2502 				     ((long *) &target->d_iname)[i]);
2503 			}
2504 		}
2505 	}
2506 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2507 }
2508 
copy_name(struct dentry * dentry,struct dentry * target)2509 static void copy_name(struct dentry *dentry, struct dentry *target)
2510 {
2511 	struct external_name *old_name = NULL;
2512 	if (unlikely(dname_external(dentry)))
2513 		old_name = external_name(dentry);
2514 	if (unlikely(dname_external(target))) {
2515 		atomic_inc(&external_name(target)->u.count);
2516 		dentry->d_name = target->d_name;
2517 	} else {
2518 		memcpy(dentry->d_iname, target->d_name.name,
2519 				target->d_name.len + 1);
2520 		dentry->d_name.name = dentry->d_iname;
2521 		dentry->d_name.hash_len = target->d_name.hash_len;
2522 	}
2523 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2524 		kfree_rcu(old_name, u.head);
2525 }
2526 
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2527 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2528 {
2529 	/*
2530 	 * XXXX: do we really need to take target->d_lock?
2531 	 */
2532 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2533 		spin_lock(&target->d_parent->d_lock);
2534 	else {
2535 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2536 			spin_lock(&dentry->d_parent->d_lock);
2537 			spin_lock_nested(&target->d_parent->d_lock,
2538 						DENTRY_D_LOCK_NESTED);
2539 		} else {
2540 			spin_lock(&target->d_parent->d_lock);
2541 			spin_lock_nested(&dentry->d_parent->d_lock,
2542 						DENTRY_D_LOCK_NESTED);
2543 		}
2544 	}
2545 	if (target < dentry) {
2546 		spin_lock_nested(&target->d_lock, 2);
2547 		spin_lock_nested(&dentry->d_lock, 3);
2548 	} else {
2549 		spin_lock_nested(&dentry->d_lock, 2);
2550 		spin_lock_nested(&target->d_lock, 3);
2551 	}
2552 }
2553 
dentry_unlock_for_move(struct dentry * dentry,struct dentry * target)2554 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2555 {
2556 	if (target->d_parent != dentry->d_parent)
2557 		spin_unlock(&dentry->d_parent->d_lock);
2558 	if (target->d_parent != target)
2559 		spin_unlock(&target->d_parent->d_lock);
2560 	spin_unlock(&target->d_lock);
2561 	spin_unlock(&dentry->d_lock);
2562 }
2563 
2564 /*
2565  * When switching names, the actual string doesn't strictly have to
2566  * be preserved in the target - because we're dropping the target
2567  * anyway. As such, we can just do a simple memcpy() to copy over
2568  * the new name before we switch, unless we are going to rehash
2569  * it.  Note that if we *do* unhash the target, we are not allowed
2570  * to rehash it without giving it a new name/hash key - whether
2571  * we swap or overwrite the names here, resulting name won't match
2572  * the reality in filesystem; it's only there for d_path() purposes.
2573  * Note that all of this is happening under rename_lock, so the
2574  * any hash lookup seeing it in the middle of manipulations will
2575  * be discarded anyway.  So we do not care what happens to the hash
2576  * key in that case.
2577  */
2578 /*
2579  * __d_move - move a dentry
2580  * @dentry: entry to move
2581  * @target: new dentry
2582  * @exchange: exchange the two dentries
2583  *
2584  * Update the dcache to reflect the move of a file name. Negative
2585  * dcache entries should not be moved in this way. Caller must hold
2586  * rename_lock, the i_mutex of the source and target directories,
2587  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2588  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2589 static void __d_move(struct dentry *dentry, struct dentry *target,
2590 		     bool exchange)
2591 {
2592 	if (!dentry->d_inode)
2593 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2594 
2595 	BUG_ON(d_ancestor(dentry, target));
2596 	BUG_ON(d_ancestor(target, dentry));
2597 
2598 	dentry_lock_for_move(dentry, target);
2599 
2600 	write_seqcount_begin(&dentry->d_seq);
2601 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2602 
2603 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2604 
2605 	/*
2606 	 * Move the dentry to the target hash queue. Don't bother checking
2607 	 * for the same hash queue because of how unlikely it is.
2608 	 */
2609 	__d_drop(dentry);
2610 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2611 
2612 	/*
2613 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2614 	 * the two dentries, then rehash onto the other's hash queue.
2615 	 */
2616 	__d_drop(target);
2617 	if (exchange) {
2618 		__d_rehash(target,
2619 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2620 	}
2621 
2622 	/* Switch the names.. */
2623 	if (exchange)
2624 		swap_names(dentry, target);
2625 	else
2626 		copy_name(dentry, target);
2627 
2628 	/* ... and switch them in the tree */
2629 	if (IS_ROOT(dentry)) {
2630 		/* splicing a tree */
2631 		dentry->d_flags |= DCACHE_RCUACCESS;
2632 		dentry->d_parent = target->d_parent;
2633 		target->d_parent = target;
2634 		list_del_init(&target->d_child);
2635 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2636 	} else {
2637 		/* swapping two dentries */
2638 		swap(dentry->d_parent, target->d_parent);
2639 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2640 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2641 		if (exchange)
2642 			fsnotify_d_move(target);
2643 		fsnotify_d_move(dentry);
2644 	}
2645 
2646 	write_seqcount_end(&target->d_seq);
2647 	write_seqcount_end(&dentry->d_seq);
2648 
2649 	dentry_unlock_for_move(dentry, target);
2650 }
2651 
2652 /*
2653  * d_move - move a dentry
2654  * @dentry: entry to move
2655  * @target: new dentry
2656  *
2657  * Update the dcache to reflect the move of a file name. Negative
2658  * dcache entries should not be moved in this way. See the locking
2659  * requirements for __d_move.
2660  */
d_move(struct dentry * dentry,struct dentry * target)2661 void d_move(struct dentry *dentry, struct dentry *target)
2662 {
2663 	write_seqlock(&rename_lock);
2664 	__d_move(dentry, target, false);
2665 	write_sequnlock(&rename_lock);
2666 }
2667 EXPORT_SYMBOL(d_move);
2668 
2669 /*
2670  * d_exchange - exchange two dentries
2671  * @dentry1: first dentry
2672  * @dentry2: second dentry
2673  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2674 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2675 {
2676 	write_seqlock(&rename_lock);
2677 
2678 	WARN_ON(!dentry1->d_inode);
2679 	WARN_ON(!dentry2->d_inode);
2680 	WARN_ON(IS_ROOT(dentry1));
2681 	WARN_ON(IS_ROOT(dentry2));
2682 
2683 	__d_move(dentry1, dentry2, true);
2684 
2685 	write_sequnlock(&rename_lock);
2686 }
2687 
2688 /**
2689  * d_ancestor - search for an ancestor
2690  * @p1: ancestor dentry
2691  * @p2: child dentry
2692  *
2693  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2694  * an ancestor of p2, else NULL.
2695  */
d_ancestor(struct dentry * p1,struct dentry * p2)2696 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2697 {
2698 	struct dentry *p;
2699 
2700 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2701 		if (p->d_parent == p1)
2702 			return p;
2703 	}
2704 	return NULL;
2705 }
2706 
2707 /*
2708  * This helper attempts to cope with remotely renamed directories
2709  *
2710  * It assumes that the caller is already holding
2711  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2712  *
2713  * Note: If ever the locking in lock_rename() changes, then please
2714  * remember to update this too...
2715  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2716 static int __d_unalias(struct inode *inode,
2717 		struct dentry *dentry, struct dentry *alias)
2718 {
2719 	struct mutex *m1 = NULL, *m2 = NULL;
2720 	int ret = -ESTALE;
2721 
2722 	/* If alias and dentry share a parent, then no extra locks required */
2723 	if (alias->d_parent == dentry->d_parent)
2724 		goto out_unalias;
2725 
2726 	/* See lock_rename() */
2727 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2728 		goto out_err;
2729 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2730 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2731 		goto out_err;
2732 	m2 = &alias->d_parent->d_inode->i_mutex;
2733 out_unalias:
2734 	__d_move(alias, dentry, false);
2735 	ret = 0;
2736 out_err:
2737 	spin_unlock(&inode->i_lock);
2738 	if (m2)
2739 		mutex_unlock(m2);
2740 	if (m1)
2741 		mutex_unlock(m1);
2742 	return ret;
2743 }
2744 
2745 /**
2746  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2747  * @inode:  the inode which may have a disconnected dentry
2748  * @dentry: a negative dentry which we want to point to the inode.
2749  *
2750  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2751  * place of the given dentry and return it, else simply d_add the inode
2752  * to the dentry and return NULL.
2753  *
2754  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2755  * we should error out: directories can't have multiple aliases.
2756  *
2757  * This is needed in the lookup routine of any filesystem that is exportable
2758  * (via knfsd) so that we can build dcache paths to directories effectively.
2759  *
2760  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2761  * is returned.  This matches the expected return value of ->lookup.
2762  *
2763  * Cluster filesystems may call this function with a negative, hashed dentry.
2764  * In that case, we know that the inode will be a regular file, and also this
2765  * will only occur during atomic_open. So we need to check for the dentry
2766  * being already hashed only in the final case.
2767  */
d_splice_alias(struct inode * inode,struct dentry * dentry)2768 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2769 {
2770 	if (IS_ERR(inode))
2771 		return ERR_CAST(inode);
2772 
2773 	BUG_ON(!d_unhashed(dentry));
2774 
2775 	if (!inode) {
2776 		__d_instantiate(dentry, NULL);
2777 		goto out;
2778 	}
2779 	spin_lock(&inode->i_lock);
2780 	if (S_ISDIR(inode->i_mode)) {
2781 		struct dentry *new = __d_find_any_alias(inode);
2782 		if (unlikely(new)) {
2783 			write_seqlock(&rename_lock);
2784 			if (unlikely(d_ancestor(new, dentry))) {
2785 				write_sequnlock(&rename_lock);
2786 				spin_unlock(&inode->i_lock);
2787 				dput(new);
2788 				new = ERR_PTR(-ELOOP);
2789 				pr_warn_ratelimited(
2790 					"VFS: Lookup of '%s' in %s %s"
2791 					" would have caused loop\n",
2792 					dentry->d_name.name,
2793 					inode->i_sb->s_type->name,
2794 					inode->i_sb->s_id);
2795 			} else if (!IS_ROOT(new)) {
2796 				int err = __d_unalias(inode, dentry, new);
2797 				write_sequnlock(&rename_lock);
2798 				if (err) {
2799 					dput(new);
2800 					new = ERR_PTR(err);
2801 				}
2802 			} else {
2803 				__d_move(new, dentry, false);
2804 				write_sequnlock(&rename_lock);
2805 				spin_unlock(&inode->i_lock);
2806 				security_d_instantiate(new, inode);
2807 			}
2808 			iput(inode);
2809 			return new;
2810 		}
2811 	}
2812 	/* already taking inode->i_lock, so d_add() by hand */
2813 	__d_instantiate(dentry, inode);
2814 	spin_unlock(&inode->i_lock);
2815 out:
2816 	security_d_instantiate(dentry, inode);
2817 	d_rehash(dentry);
2818 	return NULL;
2819 }
2820 EXPORT_SYMBOL(d_splice_alias);
2821 
prepend(char ** buffer,int * buflen,const char * str,int namelen)2822 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2823 {
2824 	*buflen -= namelen;
2825 	if (*buflen < 0)
2826 		return -ENAMETOOLONG;
2827 	*buffer -= namelen;
2828 	memcpy(*buffer, str, namelen);
2829 	return 0;
2830 }
2831 
2832 /**
2833  * prepend_name - prepend a pathname in front of current buffer pointer
2834  * @buffer: buffer pointer
2835  * @buflen: allocated length of the buffer
2836  * @name:   name string and length qstr structure
2837  *
2838  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2839  * make sure that either the old or the new name pointer and length are
2840  * fetched. However, there may be mismatch between length and pointer.
2841  * The length cannot be trusted, we need to copy it byte-by-byte until
2842  * the length is reached or a null byte is found. It also prepends "/" at
2843  * the beginning of the name. The sequence number check at the caller will
2844  * retry it again when a d_move() does happen. So any garbage in the buffer
2845  * due to mismatched pointer and length will be discarded.
2846  *
2847  * Data dependency barrier is needed to make sure that we see that terminating
2848  * NUL.  Alpha strikes again, film at 11...
2849  */
prepend_name(char ** buffer,int * buflen,struct qstr * name)2850 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2851 {
2852 	const char *dname = ACCESS_ONCE(name->name);
2853 	u32 dlen = ACCESS_ONCE(name->len);
2854 	char *p;
2855 
2856 	smp_read_barrier_depends();
2857 
2858 	*buflen -= dlen + 1;
2859 	if (*buflen < 0)
2860 		return -ENAMETOOLONG;
2861 	p = *buffer -= dlen + 1;
2862 	*p++ = '/';
2863 	while (dlen--) {
2864 		char c = *dname++;
2865 		if (!c)
2866 			break;
2867 		*p++ = c;
2868 	}
2869 	return 0;
2870 }
2871 
2872 /**
2873  * prepend_path - Prepend path string to a buffer
2874  * @path: the dentry/vfsmount to report
2875  * @root: root vfsmnt/dentry
2876  * @buffer: pointer to the end of the buffer
2877  * @buflen: pointer to buffer length
2878  *
2879  * The function will first try to write out the pathname without taking any
2880  * lock other than the RCU read lock to make sure that dentries won't go away.
2881  * It only checks the sequence number of the global rename_lock as any change
2882  * in the dentry's d_seq will be preceded by changes in the rename_lock
2883  * sequence number. If the sequence number had been changed, it will restart
2884  * the whole pathname back-tracing sequence again by taking the rename_lock.
2885  * In this case, there is no need to take the RCU read lock as the recursive
2886  * parent pointer references will keep the dentry chain alive as long as no
2887  * rename operation is performed.
2888  */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)2889 static int prepend_path(const struct path *path,
2890 			const struct path *root,
2891 			char **buffer, int *buflen)
2892 {
2893 	struct dentry *dentry;
2894 	struct vfsmount *vfsmnt;
2895 	struct mount *mnt;
2896 	int error = 0;
2897 	unsigned seq, m_seq = 0;
2898 	char *bptr;
2899 	int blen;
2900 
2901 	rcu_read_lock();
2902 restart_mnt:
2903 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2904 	seq = 0;
2905 	rcu_read_lock();
2906 restart:
2907 	bptr = *buffer;
2908 	blen = *buflen;
2909 	error = 0;
2910 	dentry = path->dentry;
2911 	vfsmnt = path->mnt;
2912 	mnt = real_mount(vfsmnt);
2913 	read_seqbegin_or_lock(&rename_lock, &seq);
2914 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2915 		struct dentry * parent;
2916 
2917 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2918 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2919 			/* Escaped? */
2920 			if (dentry != vfsmnt->mnt_root) {
2921 				bptr = *buffer;
2922 				blen = *buflen;
2923 				error = 3;
2924 				break;
2925 			}
2926 			/* Global root? */
2927 			if (mnt != parent) {
2928 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2929 				mnt = parent;
2930 				vfsmnt = &mnt->mnt;
2931 				continue;
2932 			}
2933 			if (!error)
2934 				error = is_mounted(vfsmnt) ? 1 : 2;
2935 			break;
2936 		}
2937 		parent = dentry->d_parent;
2938 		prefetch(parent);
2939 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2940 		if (error)
2941 			break;
2942 
2943 		dentry = parent;
2944 	}
2945 	if (!(seq & 1))
2946 		rcu_read_unlock();
2947 	if (need_seqretry(&rename_lock, seq)) {
2948 		seq = 1;
2949 		goto restart;
2950 	}
2951 	done_seqretry(&rename_lock, seq);
2952 
2953 	if (!(m_seq & 1))
2954 		rcu_read_unlock();
2955 	if (need_seqretry(&mount_lock, m_seq)) {
2956 		m_seq = 1;
2957 		goto restart_mnt;
2958 	}
2959 	done_seqretry(&mount_lock, m_seq);
2960 
2961 	if (error >= 0 && bptr == *buffer) {
2962 		if (--blen < 0)
2963 			error = -ENAMETOOLONG;
2964 		else
2965 			*--bptr = '/';
2966 	}
2967 	*buffer = bptr;
2968 	*buflen = blen;
2969 	return error;
2970 }
2971 
2972 /**
2973  * __d_path - return the path of a dentry
2974  * @path: the dentry/vfsmount to report
2975  * @root: root vfsmnt/dentry
2976  * @buf: buffer to return value in
2977  * @buflen: buffer length
2978  *
2979  * Convert a dentry into an ASCII path name.
2980  *
2981  * Returns a pointer into the buffer or an error code if the
2982  * path was too long.
2983  *
2984  * "buflen" should be positive.
2985  *
2986  * If the path is not reachable from the supplied root, return %NULL.
2987  */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)2988 char *__d_path(const struct path *path,
2989 	       const struct path *root,
2990 	       char *buf, int buflen)
2991 {
2992 	char *res = buf + buflen;
2993 	int error;
2994 
2995 	prepend(&res, &buflen, "\0", 1);
2996 	error = prepend_path(path, root, &res, &buflen);
2997 
2998 	if (error < 0)
2999 		return ERR_PTR(error);
3000 	if (error > 0)
3001 		return NULL;
3002 	return res;
3003 }
3004 
d_absolute_path(const struct path * path,char * buf,int buflen)3005 char *d_absolute_path(const struct path *path,
3006 	       char *buf, int buflen)
3007 {
3008 	struct path root = {};
3009 	char *res = buf + buflen;
3010 	int error;
3011 
3012 	prepend(&res, &buflen, "\0", 1);
3013 	error = prepend_path(path, &root, &res, &buflen);
3014 
3015 	if (error > 1)
3016 		error = -EINVAL;
3017 	if (error < 0)
3018 		return ERR_PTR(error);
3019 	return res;
3020 }
3021 
3022 /*
3023  * same as __d_path but appends "(deleted)" for unlinked files.
3024  */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)3025 static int path_with_deleted(const struct path *path,
3026 			     const struct path *root,
3027 			     char **buf, int *buflen)
3028 {
3029 	prepend(buf, buflen, "\0", 1);
3030 	if (d_unlinked(path->dentry)) {
3031 		int error = prepend(buf, buflen, " (deleted)", 10);
3032 		if (error)
3033 			return error;
3034 	}
3035 
3036 	return prepend_path(path, root, buf, buflen);
3037 }
3038 
prepend_unreachable(char ** buffer,int * buflen)3039 static int prepend_unreachable(char **buffer, int *buflen)
3040 {
3041 	return prepend(buffer, buflen, "(unreachable)", 13);
3042 }
3043 
get_fs_root_rcu(struct fs_struct * fs,struct path * root)3044 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3045 {
3046 	unsigned seq;
3047 
3048 	do {
3049 		seq = read_seqcount_begin(&fs->seq);
3050 		*root = fs->root;
3051 	} while (read_seqcount_retry(&fs->seq, seq));
3052 }
3053 
3054 /**
3055  * d_path - return the path of a dentry
3056  * @path: path to report
3057  * @buf: buffer to return value in
3058  * @buflen: buffer length
3059  *
3060  * Convert a dentry into an ASCII path name. If the entry has been deleted
3061  * the string " (deleted)" is appended. Note that this is ambiguous.
3062  *
3063  * Returns a pointer into the buffer or an error code if the path was
3064  * too long. Note: Callers should use the returned pointer, not the passed
3065  * in buffer, to use the name! The implementation often starts at an offset
3066  * into the buffer, and may leave 0 bytes at the start.
3067  *
3068  * "buflen" should be positive.
3069  */
d_path(const struct path * path,char * buf,int buflen)3070 char *d_path(const struct path *path, char *buf, int buflen)
3071 {
3072 	char *res = buf + buflen;
3073 	struct path root;
3074 	int error;
3075 
3076 	/*
3077 	 * We have various synthetic filesystems that never get mounted.  On
3078 	 * these filesystems dentries are never used for lookup purposes, and
3079 	 * thus don't need to be hashed.  They also don't need a name until a
3080 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3081 	 * below allows us to generate a name for these objects on demand:
3082 	 *
3083 	 * Some pseudo inodes are mountable.  When they are mounted
3084 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3085 	 * and instead have d_path return the mounted path.
3086 	 */
3087 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3088 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3089 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3090 
3091 	rcu_read_lock();
3092 	get_fs_root_rcu(current->fs, &root);
3093 	error = path_with_deleted(path, &root, &res, &buflen);
3094 	rcu_read_unlock();
3095 
3096 	if (error < 0)
3097 		res = ERR_PTR(error);
3098 	return res;
3099 }
3100 EXPORT_SYMBOL(d_path);
3101 
3102 /*
3103  * Helper function for dentry_operations.d_dname() members
3104  */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)3105 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3106 			const char *fmt, ...)
3107 {
3108 	va_list args;
3109 	char temp[64];
3110 	int sz;
3111 
3112 	va_start(args, fmt);
3113 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3114 	va_end(args);
3115 
3116 	if (sz > sizeof(temp) || sz > buflen)
3117 		return ERR_PTR(-ENAMETOOLONG);
3118 
3119 	buffer += buflen - sz;
3120 	return memcpy(buffer, temp, sz);
3121 }
3122 
simple_dname(struct dentry * dentry,char * buffer,int buflen)3123 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3124 {
3125 	char *end = buffer + buflen;
3126 	/* these dentries are never renamed, so d_lock is not needed */
3127 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3128 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3129 	    prepend(&end, &buflen, "/", 1))
3130 		end = ERR_PTR(-ENAMETOOLONG);
3131 	return end;
3132 }
3133 EXPORT_SYMBOL(simple_dname);
3134 
3135 /*
3136  * Write full pathname from the root of the filesystem into the buffer.
3137  */
__dentry_path(struct dentry * d,char * buf,int buflen)3138 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3139 {
3140 	struct dentry *dentry;
3141 	char *end, *retval;
3142 	int len, seq = 0;
3143 	int error = 0;
3144 
3145 	if (buflen < 2)
3146 		goto Elong;
3147 
3148 	rcu_read_lock();
3149 restart:
3150 	dentry = d;
3151 	end = buf + buflen;
3152 	len = buflen;
3153 	prepend(&end, &len, "\0", 1);
3154 	/* Get '/' right */
3155 	retval = end-1;
3156 	*retval = '/';
3157 	read_seqbegin_or_lock(&rename_lock, &seq);
3158 	while (!IS_ROOT(dentry)) {
3159 		struct dentry *parent = dentry->d_parent;
3160 
3161 		prefetch(parent);
3162 		error = prepend_name(&end, &len, &dentry->d_name);
3163 		if (error)
3164 			break;
3165 
3166 		retval = end;
3167 		dentry = parent;
3168 	}
3169 	if (!(seq & 1))
3170 		rcu_read_unlock();
3171 	if (need_seqretry(&rename_lock, seq)) {
3172 		seq = 1;
3173 		goto restart;
3174 	}
3175 	done_seqretry(&rename_lock, seq);
3176 	if (error)
3177 		goto Elong;
3178 	return retval;
3179 Elong:
3180 	return ERR_PTR(-ENAMETOOLONG);
3181 }
3182 
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)3183 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3184 {
3185 	return __dentry_path(dentry, buf, buflen);
3186 }
3187 EXPORT_SYMBOL(dentry_path_raw);
3188 
dentry_path(struct dentry * dentry,char * buf,int buflen)3189 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3190 {
3191 	char *p = NULL;
3192 	char *retval;
3193 
3194 	if (d_unlinked(dentry)) {
3195 		p = buf + buflen;
3196 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3197 			goto Elong;
3198 		buflen++;
3199 	}
3200 	retval = __dentry_path(dentry, buf, buflen);
3201 	if (!IS_ERR(retval) && p)
3202 		*p = '/';	/* restore '/' overriden with '\0' */
3203 	return retval;
3204 Elong:
3205 	return ERR_PTR(-ENAMETOOLONG);
3206 }
3207 
get_fs_root_and_pwd_rcu(struct fs_struct * fs,struct path * root,struct path * pwd)3208 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3209 				    struct path *pwd)
3210 {
3211 	unsigned seq;
3212 
3213 	do {
3214 		seq = read_seqcount_begin(&fs->seq);
3215 		*root = fs->root;
3216 		*pwd = fs->pwd;
3217 	} while (read_seqcount_retry(&fs->seq, seq));
3218 }
3219 
3220 /*
3221  * NOTE! The user-level library version returns a
3222  * character pointer. The kernel system call just
3223  * returns the length of the buffer filled (which
3224  * includes the ending '\0' character), or a negative
3225  * error value. So libc would do something like
3226  *
3227  *	char *getcwd(char * buf, size_t size)
3228  *	{
3229  *		int retval;
3230  *
3231  *		retval = sys_getcwd(buf, size);
3232  *		if (retval >= 0)
3233  *			return buf;
3234  *		errno = -retval;
3235  *		return NULL;
3236  *	}
3237  */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)3238 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3239 {
3240 	int error;
3241 	struct path pwd, root;
3242 	char *page = __getname();
3243 
3244 	if (!page)
3245 		return -ENOMEM;
3246 
3247 	rcu_read_lock();
3248 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3249 
3250 	error = -ENOENT;
3251 	if (!d_unlinked(pwd.dentry)) {
3252 		unsigned long len;
3253 		char *cwd = page + PATH_MAX;
3254 		int buflen = PATH_MAX;
3255 
3256 		prepend(&cwd, &buflen, "\0", 1);
3257 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3258 		rcu_read_unlock();
3259 
3260 		if (error < 0)
3261 			goto out;
3262 
3263 		/* Unreachable from current root */
3264 		if (error > 0) {
3265 			error = prepend_unreachable(&cwd, &buflen);
3266 			if (error)
3267 				goto out;
3268 		}
3269 
3270 		error = -ERANGE;
3271 		len = PATH_MAX + page - cwd;
3272 		if (len <= size) {
3273 			error = len;
3274 			if (copy_to_user(buf, cwd, len))
3275 				error = -EFAULT;
3276 		}
3277 	} else {
3278 		rcu_read_unlock();
3279 	}
3280 
3281 out:
3282 	__putname(page);
3283 	return error;
3284 }
3285 
3286 /*
3287  * Test whether new_dentry is a subdirectory of old_dentry.
3288  *
3289  * Trivially implemented using the dcache structure
3290  */
3291 
3292 /**
3293  * is_subdir - is new dentry a subdirectory of old_dentry
3294  * @new_dentry: new dentry
3295  * @old_dentry: old dentry
3296  *
3297  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3298  * Returns 0 otherwise.
3299  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3300  */
3301 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3302 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3303 {
3304 	int result;
3305 	unsigned seq;
3306 
3307 	if (new_dentry == old_dentry)
3308 		return 1;
3309 
3310 	do {
3311 		/* for restarting inner loop in case of seq retry */
3312 		seq = read_seqbegin(&rename_lock);
3313 		/*
3314 		 * Need rcu_readlock to protect against the d_parent trashing
3315 		 * due to d_move
3316 		 */
3317 		rcu_read_lock();
3318 		if (d_ancestor(old_dentry, new_dentry))
3319 			result = 1;
3320 		else
3321 			result = 0;
3322 		rcu_read_unlock();
3323 	} while (read_seqretry(&rename_lock, seq));
3324 
3325 	return result;
3326 }
3327 
d_genocide_kill(void * data,struct dentry * dentry)3328 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3329 {
3330 	struct dentry *root = data;
3331 	if (dentry != root) {
3332 		if (d_unhashed(dentry) || !dentry->d_inode)
3333 			return D_WALK_SKIP;
3334 
3335 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3336 			dentry->d_flags |= DCACHE_GENOCIDE;
3337 			dentry->d_lockref.count--;
3338 		}
3339 	}
3340 	return D_WALK_CONTINUE;
3341 }
3342 
d_genocide(struct dentry * parent)3343 void d_genocide(struct dentry *parent)
3344 {
3345 	d_walk(parent, parent, d_genocide_kill, NULL);
3346 }
3347 
d_tmpfile(struct dentry * dentry,struct inode * inode)3348 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3349 {
3350 	inode_dec_link_count(inode);
3351 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3352 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3353 		!d_unlinked(dentry));
3354 	spin_lock(&dentry->d_parent->d_lock);
3355 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3356 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3357 				(unsigned long long)inode->i_ino);
3358 	spin_unlock(&dentry->d_lock);
3359 	spin_unlock(&dentry->d_parent->d_lock);
3360 	d_instantiate(dentry, inode);
3361 }
3362 EXPORT_SYMBOL(d_tmpfile);
3363 
3364 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3365 static int __init set_dhash_entries(char *str)
3366 {
3367 	if (!str)
3368 		return 0;
3369 	dhash_entries = simple_strtoul(str, &str, 0);
3370 	return 1;
3371 }
3372 __setup("dhash_entries=", set_dhash_entries);
3373 
dcache_init_early(void)3374 static void __init dcache_init_early(void)
3375 {
3376 	unsigned int loop;
3377 
3378 	/* If hashes are distributed across NUMA nodes, defer
3379 	 * hash allocation until vmalloc space is available.
3380 	 */
3381 	if (hashdist)
3382 		return;
3383 
3384 	dentry_hashtable =
3385 		alloc_large_system_hash("Dentry cache",
3386 					sizeof(struct hlist_bl_head),
3387 					dhash_entries,
3388 					13,
3389 					HASH_EARLY,
3390 					&d_hash_shift,
3391 					&d_hash_mask,
3392 					0,
3393 					0);
3394 
3395 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3396 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3397 }
3398 
dcache_init(void)3399 static void __init dcache_init(void)
3400 {
3401 	unsigned int loop;
3402 
3403 	/*
3404 	 * A constructor could be added for stable state like the lists,
3405 	 * but it is probably not worth it because of the cache nature
3406 	 * of the dcache.
3407 	 */
3408 	dentry_cache = KMEM_CACHE(dentry,
3409 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3410 
3411 	/* Hash may have been set up in dcache_init_early */
3412 	if (!hashdist)
3413 		return;
3414 
3415 	dentry_hashtable =
3416 		alloc_large_system_hash("Dentry cache",
3417 					sizeof(struct hlist_bl_head),
3418 					dhash_entries,
3419 					13,
3420 					0,
3421 					&d_hash_shift,
3422 					&d_hash_mask,
3423 					0,
3424 					0);
3425 
3426 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3427 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3428 }
3429 
3430 /* SLAB cache for __getname() consumers */
3431 struct kmem_cache *names_cachep __read_mostly;
3432 EXPORT_SYMBOL(names_cachep);
3433 
3434 EXPORT_SYMBOL(d_genocide);
3435 
vfs_caches_init_early(void)3436 void __init vfs_caches_init_early(void)
3437 {
3438 	dcache_init_early();
3439 	inode_init_early();
3440 }
3441 
vfs_caches_init(unsigned long mempages)3442 void __init vfs_caches_init(unsigned long mempages)
3443 {
3444 	unsigned long reserve;
3445 
3446 	/* Base hash sizes on available memory, with a reserve equal to
3447            150% of current kernel size */
3448 
3449 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3450 	mempages -= reserve;
3451 
3452 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3453 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3454 
3455 	dcache_init();
3456 	inode_init();
3457 	files_init(mempages);
3458 	mnt_init();
3459 	bdev_cache_init();
3460 	chrdev_init();
3461 }
3462