1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;	/* Taps */
151 static struct list_head offload_base __read_mostly;
152 
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 					 struct net_device *dev,
156 					 struct netdev_notifier_info *info);
157 
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185 
186 static seqcount_t devnet_rename_seq;
187 
dev_base_seq_inc(struct net * net)188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 	while (++net->dev_base_seq == 0);
191 }
192 
dev_name_hash(struct net * net,const char * name)193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
dev_index_hash(struct net * net,int ifindex)200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
rps_lock(struct softnet_data * sd)205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 	spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211 
rps_unlock(struct softnet_data * sd)212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 /* Device list insertion */
list_netdevice(struct net_device * dev)220 static void list_netdevice(struct net_device *dev)
221 {
222 	struct net *net = dev_net(dev);
223 
224 	ASSERT_RTNL();
225 
226 	write_lock_bh(&dev_base_lock);
227 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 	hlist_add_head_rcu(&dev->index_hlist,
230 			   dev_index_hash(net, dev->ifindex));
231 	write_unlock_bh(&dev_base_lock);
232 
233 	dev_base_seq_inc(net);
234 }
235 
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
unlist_netdevice(struct net_device * dev)239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del_rcu(&dev->dev_list);
246 	hlist_del_rcu(&dev->name_hlist);
247 	hlist_del_rcu(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 
250 	dev_base_seq_inc(dev_net(dev));
251 }
252 
253 /*
254  *	Our notifier list
255  */
256 
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258 
259 /*
260  *	Device drivers call our routines to queue packets here. We empty the
261  *	queue in the local softnet handler.
262  */
263 
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266 
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288 
289 static const char *const netdev_lock_name[] =
290 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305 
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 
netdev_lock_pos(unsigned short dev_type)309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 	int i;
312 
313 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 		if (netdev_lock_type[i] == dev_type)
315 			return i;
316 	/* the last key is used by default */
317 	return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 						 unsigned short dev_type)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev_type);
326 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 				   netdev_lock_name[i]);
328 }
329 
netdev_set_addr_lockdep_class(struct net_device * dev)330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 	int i;
333 
334 	i = netdev_lock_pos(dev->type);
335 	lockdep_set_class_and_name(&dev->addr_list_lock,
336 				   &netdev_addr_lock_key[i],
337 				   netdev_lock_name[i]);
338 }
339 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 }
netdev_set_addr_lockdep_class(struct net_device * dev)344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348 
349 /*******************************************************************************
350 
351 		Protocol management and registration routines
352 
353 *******************************************************************************/
354 
355 /*
356  *	Add a protocol ID to the list. Now that the input handler is
357  *	smarter we can dispense with all the messy stuff that used to be
358  *	here.
359  *
360  *	BEWARE!!! Protocol handlers, mangling input packets,
361  *	MUST BE last in hash buckets and checking protocol handlers
362  *	MUST start from promiscuous ptype_all chain in net_bh.
363  *	It is true now, do not change it.
364  *	Explanation follows: if protocol handler, mangling packet, will
365  *	be the first on list, it is not able to sense, that packet
366  *	is cloned and should be copied-on-write, so that it will
367  *	change it and subsequent readers will get broken packet.
368  *							--ANK (980803)
369  */
370 
ptype_head(const struct packet_type * pt)371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 	if (pt->type == htons(ETH_P_ALL))
374 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 	else
376 		return pt->dev ? &pt->dev->ptype_specific :
377 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379 
380 /**
381  *	dev_add_pack - add packet handler
382  *	@pt: packet type declaration
383  *
384  *	Add a protocol handler to the networking stack. The passed &packet_type
385  *	is linked into kernel lists and may not be freed until it has been
386  *	removed from the kernel lists.
387  *
388  *	This call does not sleep therefore it can not
389  *	guarantee all CPU's that are in middle of receiving packets
390  *	will see the new packet type (until the next received packet).
391  */
392 
dev_add_pack(struct packet_type * pt)393 void dev_add_pack(struct packet_type *pt)
394 {
395 	struct list_head *head = ptype_head(pt);
396 
397 	spin_lock(&ptype_lock);
398 	list_add_rcu(&pt->list, head);
399 	spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402 
403 /**
404  *	__dev_remove_pack	 - remove packet handler
405  *	@pt: packet type declaration
406  *
407  *	Remove a protocol handler that was previously added to the kernel
408  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
409  *	from the kernel lists and can be freed or reused once this function
410  *	returns.
411  *
412  *      The packet type might still be in use by receivers
413  *	and must not be freed until after all the CPU's have gone
414  *	through a quiescent state.
415  */
__dev_remove_pack(struct packet_type * pt)416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 	struct list_head *head = ptype_head(pt);
419 	struct packet_type *pt1;
420 
421 	spin_lock(&ptype_lock);
422 
423 	list_for_each_entry(pt1, head, list) {
424 		if (pt == pt1) {
425 			list_del_rcu(&pt->list);
426 			goto out;
427 		}
428 	}
429 
430 	pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 	spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435 
436 /**
437  *	dev_remove_pack	 - remove packet handler
438  *	@pt: packet type declaration
439  *
440  *	Remove a protocol handler that was previously added to the kernel
441  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
442  *	from the kernel lists and can be freed or reused once this function
443  *	returns.
444  *
445  *	This call sleeps to guarantee that no CPU is looking at the packet
446  *	type after return.
447  */
dev_remove_pack(struct packet_type * pt)448 void dev_remove_pack(struct packet_type *pt)
449 {
450 	__dev_remove_pack(pt);
451 
452 	synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455 
456 
457 /**
458  *	dev_add_offload - register offload handlers
459  *	@po: protocol offload declaration
460  *
461  *	Add protocol offload handlers to the networking stack. The passed
462  *	&proto_offload is linked into kernel lists and may not be freed until
463  *	it has been removed from the kernel lists.
464  *
465  *	This call does not sleep therefore it can not
466  *	guarantee all CPU's that are in middle of receiving packets
467  *	will see the new offload handlers (until the next received packet).
468  */
dev_add_offload(struct packet_offload * po)469 void dev_add_offload(struct packet_offload *po)
470 {
471 	struct list_head *head = &offload_base;
472 
473 	spin_lock(&offload_lock);
474 	list_add_rcu(&po->list, head);
475 	spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478 
479 /**
480  *	__dev_remove_offload	 - remove offload handler
481  *	@po: packet offload declaration
482  *
483  *	Remove a protocol offload handler that was previously added to the
484  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
485  *	is removed from the kernel lists and can be freed or reused once this
486  *	function returns.
487  *
488  *      The packet type might still be in use by receivers
489  *	and must not be freed until after all the CPU's have gone
490  *	through a quiescent state.
491  */
__dev_remove_offload(struct packet_offload * po)492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 	struct list_head *head = &offload_base;
495 	struct packet_offload *po1;
496 
497 	spin_lock(&offload_lock);
498 
499 	list_for_each_entry(po1, head, list) {
500 		if (po == po1) {
501 			list_del_rcu(&po->list);
502 			goto out;
503 		}
504 	}
505 
506 	pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 	spin_unlock(&offload_lock);
509 }
510 
511 /**
512  *	dev_remove_offload	 - remove packet offload handler
513  *	@po: packet offload declaration
514  *
515  *	Remove a packet offload handler that was previously added to the kernel
516  *	offload handlers by dev_add_offload(). The passed &offload_type is
517  *	removed from the kernel lists and can be freed or reused once this
518  *	function returns.
519  *
520  *	This call sleeps to guarantee that no CPU is looking at the packet
521  *	type after return.
522  */
dev_remove_offload(struct packet_offload * po)523 void dev_remove_offload(struct packet_offload *po)
524 {
525 	__dev_remove_offload(po);
526 
527 	synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530 
531 /******************************************************************************
532 
533 		      Device Boot-time Settings Routines
534 
535 *******************************************************************************/
536 
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539 
540 /**
541  *	netdev_boot_setup_add	- add new setup entry
542  *	@name: name of the device
543  *	@map: configured settings for the device
544  *
545  *	Adds new setup entry to the dev_boot_setup list.  The function
546  *	returns 0 on error and 1 on success.  This is a generic routine to
547  *	all netdevices.
548  */
netdev_boot_setup_add(char * name,struct ifmap * map)549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 	struct netdev_boot_setup *s;
552 	int i;
553 
554 	s = dev_boot_setup;
555 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 			memset(s[i].name, 0, sizeof(s[i].name));
558 			strlcpy(s[i].name, name, IFNAMSIZ);
559 			memcpy(&s[i].map, map, sizeof(s[i].map));
560 			break;
561 		}
562 	}
563 
564 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566 
567 /**
568  *	netdev_boot_setup_check	- check boot time settings
569  *	@dev: the netdevice
570  *
571  * 	Check boot time settings for the device.
572  *	The found settings are set for the device to be used
573  *	later in the device probing.
574  *	Returns 0 if no settings found, 1 if they are.
575  */
netdev_boot_setup_check(struct net_device * dev)576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 	struct netdev_boot_setup *s = dev_boot_setup;
579 	int i;
580 
581 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 		    !strcmp(dev->name, s[i].name)) {
584 			dev->irq 	= s[i].map.irq;
585 			dev->base_addr 	= s[i].map.base_addr;
586 			dev->mem_start 	= s[i].map.mem_start;
587 			dev->mem_end 	= s[i].map.mem_end;
588 			return 1;
589 		}
590 	}
591 	return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594 
595 
596 /**
597  *	netdev_boot_base	- get address from boot time settings
598  *	@prefix: prefix for network device
599  *	@unit: id for network device
600  *
601  * 	Check boot time settings for the base address of device.
602  *	The found settings are set for the device to be used
603  *	later in the device probing.
604  *	Returns 0 if no settings found.
605  */
netdev_boot_base(const char * prefix,int unit)606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 	const struct netdev_boot_setup *s = dev_boot_setup;
609 	char name[IFNAMSIZ];
610 	int i;
611 
612 	sprintf(name, "%s%d", prefix, unit);
613 
614 	/*
615 	 * If device already registered then return base of 1
616 	 * to indicate not to probe for this interface
617 	 */
618 	if (__dev_get_by_name(&init_net, name))
619 		return 1;
620 
621 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 		if (!strcmp(name, s[i].name))
623 			return s[i].map.base_addr;
624 	return 0;
625 }
626 
627 /*
628  * Saves at boot time configured settings for any netdevice.
629  */
netdev_boot_setup(char * str)630 int __init netdev_boot_setup(char *str)
631 {
632 	int ints[5];
633 	struct ifmap map;
634 
635 	str = get_options(str, ARRAY_SIZE(ints), ints);
636 	if (!str || !*str)
637 		return 0;
638 
639 	/* Save settings */
640 	memset(&map, 0, sizeof(map));
641 	if (ints[0] > 0)
642 		map.irq = ints[1];
643 	if (ints[0] > 1)
644 		map.base_addr = ints[2];
645 	if (ints[0] > 2)
646 		map.mem_start = ints[3];
647 	if (ints[0] > 3)
648 		map.mem_end = ints[4];
649 
650 	/* Add new entry to the list */
651 	return netdev_boot_setup_add(str, &map);
652 }
653 
654 __setup("netdev=", netdev_boot_setup);
655 
656 /*******************************************************************************
657 
658 			    Device Interface Subroutines
659 
660 *******************************************************************************/
661 
662 /**
663  *	dev_get_iflink	- get 'iflink' value of a interface
664  *	@dev: targeted interface
665  *
666  *	Indicates the ifindex the interface is linked to.
667  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
668  */
669 
dev_get_iflink(const struct net_device * dev)670 int dev_get_iflink(const struct net_device *dev)
671 {
672 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 		return dev->netdev_ops->ndo_get_iflink(dev);
674 
675 	return dev->ifindex;
676 }
677 EXPORT_SYMBOL(dev_get_iflink);
678 
679 /**
680  *	__dev_get_by_name	- find a device by its name
681  *	@net: the applicable net namespace
682  *	@name: name to find
683  *
684  *	Find an interface by name. Must be called under RTNL semaphore
685  *	or @dev_base_lock. If the name is found a pointer to the device
686  *	is returned. If the name is not found then %NULL is returned. The
687  *	reference counters are not incremented so the caller must be
688  *	careful with locks.
689  */
690 
__dev_get_by_name(struct net * net,const char * name)691 struct net_device *__dev_get_by_name(struct net *net, const char *name)
692 {
693 	struct net_device *dev;
694 	struct hlist_head *head = dev_name_hash(net, name);
695 
696 	hlist_for_each_entry(dev, head, name_hlist)
697 		if (!strncmp(dev->name, name, IFNAMSIZ))
698 			return dev;
699 
700 	return NULL;
701 }
702 EXPORT_SYMBOL(__dev_get_by_name);
703 
704 /**
705  *	dev_get_by_name_rcu	- find a device by its name
706  *	@net: the applicable net namespace
707  *	@name: name to find
708  *
709  *	Find an interface by name.
710  *	If the name is found a pointer to the device is returned.
711  * 	If the name is not found then %NULL is returned.
712  *	The reference counters are not incremented so the caller must be
713  *	careful with locks. The caller must hold RCU lock.
714  */
715 
dev_get_by_name_rcu(struct net * net,const char * name)716 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
717 {
718 	struct net_device *dev;
719 	struct hlist_head *head = dev_name_hash(net, name);
720 
721 	hlist_for_each_entry_rcu(dev, head, name_hlist)
722 		if (!strncmp(dev->name, name, IFNAMSIZ))
723 			return dev;
724 
725 	return NULL;
726 }
727 EXPORT_SYMBOL(dev_get_by_name_rcu);
728 
729 /**
730  *	dev_get_by_name		- find a device by its name
731  *	@net: the applicable net namespace
732  *	@name: name to find
733  *
734  *	Find an interface by name. This can be called from any
735  *	context and does its own locking. The returned handle has
736  *	the usage count incremented and the caller must use dev_put() to
737  *	release it when it is no longer needed. %NULL is returned if no
738  *	matching device is found.
739  */
740 
dev_get_by_name(struct net * net,const char * name)741 struct net_device *dev_get_by_name(struct net *net, const char *name)
742 {
743 	struct net_device *dev;
744 
745 	rcu_read_lock();
746 	dev = dev_get_by_name_rcu(net, name);
747 	if (dev)
748 		dev_hold(dev);
749 	rcu_read_unlock();
750 	return dev;
751 }
752 EXPORT_SYMBOL(dev_get_by_name);
753 
754 /**
755  *	__dev_get_by_index - find a device by its ifindex
756  *	@net: the applicable net namespace
757  *	@ifindex: index of device
758  *
759  *	Search for an interface by index. Returns %NULL if the device
760  *	is not found or a pointer to the device. The device has not
761  *	had its reference counter increased so the caller must be careful
762  *	about locking. The caller must hold either the RTNL semaphore
763  *	or @dev_base_lock.
764  */
765 
__dev_get_by_index(struct net * net,int ifindex)766 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
767 {
768 	struct net_device *dev;
769 	struct hlist_head *head = dev_index_hash(net, ifindex);
770 
771 	hlist_for_each_entry(dev, head, index_hlist)
772 		if (dev->ifindex == ifindex)
773 			return dev;
774 
775 	return NULL;
776 }
777 EXPORT_SYMBOL(__dev_get_by_index);
778 
779 /**
780  *	dev_get_by_index_rcu - find a device by its ifindex
781  *	@net: the applicable net namespace
782  *	@ifindex: index of device
783  *
784  *	Search for an interface by index. Returns %NULL if the device
785  *	is not found or a pointer to the device. The device has not
786  *	had its reference counter increased so the caller must be careful
787  *	about locking. The caller must hold RCU lock.
788  */
789 
dev_get_by_index_rcu(struct net * net,int ifindex)790 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
791 {
792 	struct net_device *dev;
793 	struct hlist_head *head = dev_index_hash(net, ifindex);
794 
795 	hlist_for_each_entry_rcu(dev, head, index_hlist)
796 		if (dev->ifindex == ifindex)
797 			return dev;
798 
799 	return NULL;
800 }
801 EXPORT_SYMBOL(dev_get_by_index_rcu);
802 
803 
804 /**
805  *	dev_get_by_index - find a device by its ifindex
806  *	@net: the applicable net namespace
807  *	@ifindex: index of device
808  *
809  *	Search for an interface by index. Returns NULL if the device
810  *	is not found or a pointer to the device. The device returned has
811  *	had a reference added and the pointer is safe until the user calls
812  *	dev_put to indicate they have finished with it.
813  */
814 
dev_get_by_index(struct net * net,int ifindex)815 struct net_device *dev_get_by_index(struct net *net, int ifindex)
816 {
817 	struct net_device *dev;
818 
819 	rcu_read_lock();
820 	dev = dev_get_by_index_rcu(net, ifindex);
821 	if (dev)
822 		dev_hold(dev);
823 	rcu_read_unlock();
824 	return dev;
825 }
826 EXPORT_SYMBOL(dev_get_by_index);
827 
828 /**
829  *	netdev_get_name - get a netdevice name, knowing its ifindex.
830  *	@net: network namespace
831  *	@name: a pointer to the buffer where the name will be stored.
832  *	@ifindex: the ifindex of the interface to get the name from.
833  *
834  *	The use of raw_seqcount_begin() and cond_resched() before
835  *	retrying is required as we want to give the writers a chance
836  *	to complete when CONFIG_PREEMPT is not set.
837  */
netdev_get_name(struct net * net,char * name,int ifindex)838 int netdev_get_name(struct net *net, char *name, int ifindex)
839 {
840 	struct net_device *dev;
841 	unsigned int seq;
842 
843 retry:
844 	seq = raw_seqcount_begin(&devnet_rename_seq);
845 	rcu_read_lock();
846 	dev = dev_get_by_index_rcu(net, ifindex);
847 	if (!dev) {
848 		rcu_read_unlock();
849 		return -ENODEV;
850 	}
851 
852 	strcpy(name, dev->name);
853 	rcu_read_unlock();
854 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
855 		cond_resched();
856 		goto retry;
857 	}
858 
859 	return 0;
860 }
861 
862 /**
863  *	dev_getbyhwaddr_rcu - find a device by its hardware address
864  *	@net: the applicable net namespace
865  *	@type: media type of device
866  *	@ha: hardware address
867  *
868  *	Search for an interface by MAC address. Returns NULL if the device
869  *	is not found or a pointer to the device.
870  *	The caller must hold RCU or RTNL.
871  *	The returned device has not had its ref count increased
872  *	and the caller must therefore be careful about locking
873  *
874  */
875 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)876 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
877 				       const char *ha)
878 {
879 	struct net_device *dev;
880 
881 	for_each_netdev_rcu(net, dev)
882 		if (dev->type == type &&
883 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
884 			return dev;
885 
886 	return NULL;
887 }
888 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
889 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)890 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
891 {
892 	struct net_device *dev;
893 
894 	ASSERT_RTNL();
895 	for_each_netdev(net, dev)
896 		if (dev->type == type)
897 			return dev;
898 
899 	return NULL;
900 }
901 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
902 
dev_getfirstbyhwtype(struct net * net,unsigned short type)903 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
904 {
905 	struct net_device *dev, *ret = NULL;
906 
907 	rcu_read_lock();
908 	for_each_netdev_rcu(net, dev)
909 		if (dev->type == type) {
910 			dev_hold(dev);
911 			ret = dev;
912 			break;
913 		}
914 	rcu_read_unlock();
915 	return ret;
916 }
917 EXPORT_SYMBOL(dev_getfirstbyhwtype);
918 
919 /**
920  *	__dev_get_by_flags - find any device with given flags
921  *	@net: the applicable net namespace
922  *	@if_flags: IFF_* values
923  *	@mask: bitmask of bits in if_flags to check
924  *
925  *	Search for any interface with the given flags. Returns NULL if a device
926  *	is not found or a pointer to the device. Must be called inside
927  *	rtnl_lock(), and result refcount is unchanged.
928  */
929 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)930 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
931 				      unsigned short mask)
932 {
933 	struct net_device *dev, *ret;
934 
935 	ASSERT_RTNL();
936 
937 	ret = NULL;
938 	for_each_netdev(net, dev) {
939 		if (((dev->flags ^ if_flags) & mask) == 0) {
940 			ret = dev;
941 			break;
942 		}
943 	}
944 	return ret;
945 }
946 EXPORT_SYMBOL(__dev_get_by_flags);
947 
948 /**
949  *	dev_valid_name - check if name is okay for network device
950  *	@name: name string
951  *
952  *	Network device names need to be valid file names to
953  *	to allow sysfs to work.  We also disallow any kind of
954  *	whitespace.
955  */
dev_valid_name(const char * name)956 bool dev_valid_name(const char *name)
957 {
958 	if (*name == '\0')
959 		return false;
960 	if (strlen(name) >= IFNAMSIZ)
961 		return false;
962 	if (!strcmp(name, ".") || !strcmp(name, ".."))
963 		return false;
964 
965 	while (*name) {
966 		if (*name == '/' || *name == ':' || isspace(*name))
967 			return false;
968 		name++;
969 	}
970 	return true;
971 }
972 EXPORT_SYMBOL(dev_valid_name);
973 
974 /**
975  *	__dev_alloc_name - allocate a name for a device
976  *	@net: network namespace to allocate the device name in
977  *	@name: name format string
978  *	@buf:  scratch buffer and result name string
979  *
980  *	Passed a format string - eg "lt%d" it will try and find a suitable
981  *	id. It scans list of devices to build up a free map, then chooses
982  *	the first empty slot. The caller must hold the dev_base or rtnl lock
983  *	while allocating the name and adding the device in order to avoid
984  *	duplicates.
985  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
986  *	Returns the number of the unit assigned or a negative errno code.
987  */
988 
__dev_alloc_name(struct net * net,const char * name,char * buf)989 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
990 {
991 	int i = 0;
992 	const char *p;
993 	const int max_netdevices = 8*PAGE_SIZE;
994 	unsigned long *inuse;
995 	struct net_device *d;
996 
997 	p = strnchr(name, IFNAMSIZ-1, '%');
998 	if (p) {
999 		/*
1000 		 * Verify the string as this thing may have come from
1001 		 * the user.  There must be either one "%d" and no other "%"
1002 		 * characters.
1003 		 */
1004 		if (p[1] != 'd' || strchr(p + 2, '%'))
1005 			return -EINVAL;
1006 
1007 		/* Use one page as a bit array of possible slots */
1008 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1009 		if (!inuse)
1010 			return -ENOMEM;
1011 
1012 		for_each_netdev(net, d) {
1013 			if (!sscanf(d->name, name, &i))
1014 				continue;
1015 			if (i < 0 || i >= max_netdevices)
1016 				continue;
1017 
1018 			/*  avoid cases where sscanf is not exact inverse of printf */
1019 			snprintf(buf, IFNAMSIZ, name, i);
1020 			if (!strncmp(buf, d->name, IFNAMSIZ))
1021 				set_bit(i, inuse);
1022 		}
1023 
1024 		i = find_first_zero_bit(inuse, max_netdevices);
1025 		free_page((unsigned long) inuse);
1026 	}
1027 
1028 	if (buf != name)
1029 		snprintf(buf, IFNAMSIZ, name, i);
1030 	if (!__dev_get_by_name(net, buf))
1031 		return i;
1032 
1033 	/* It is possible to run out of possible slots
1034 	 * when the name is long and there isn't enough space left
1035 	 * for the digits, or if all bits are used.
1036 	 */
1037 	return -ENFILE;
1038 }
1039 
1040 /**
1041  *	dev_alloc_name - allocate a name for a device
1042  *	@dev: device
1043  *	@name: name format string
1044  *
1045  *	Passed a format string - eg "lt%d" it will try and find a suitable
1046  *	id. It scans list of devices to build up a free map, then chooses
1047  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1048  *	while allocating the name and adding the device in order to avoid
1049  *	duplicates.
1050  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051  *	Returns the number of the unit assigned or a negative errno code.
1052  */
1053 
dev_alloc_name(struct net_device * dev,const char * name)1054 int dev_alloc_name(struct net_device *dev, const char *name)
1055 {
1056 	char buf[IFNAMSIZ];
1057 	struct net *net;
1058 	int ret;
1059 
1060 	BUG_ON(!dev_net(dev));
1061 	net = dev_net(dev);
1062 	ret = __dev_alloc_name(net, name, buf);
1063 	if (ret >= 0)
1064 		strlcpy(dev->name, buf, IFNAMSIZ);
1065 	return ret;
1066 }
1067 EXPORT_SYMBOL(dev_alloc_name);
1068 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1069 static int dev_alloc_name_ns(struct net *net,
1070 			     struct net_device *dev,
1071 			     const char *name)
1072 {
1073 	char buf[IFNAMSIZ];
1074 	int ret;
1075 
1076 	ret = __dev_alloc_name(net, name, buf);
1077 	if (ret >= 0)
1078 		strlcpy(dev->name, buf, IFNAMSIZ);
1079 	return ret;
1080 }
1081 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1082 static int dev_get_valid_name(struct net *net,
1083 			      struct net_device *dev,
1084 			      const char *name)
1085 {
1086 	BUG_ON(!net);
1087 
1088 	if (!dev_valid_name(name))
1089 		return -EINVAL;
1090 
1091 	if (strchr(name, '%'))
1092 		return dev_alloc_name_ns(net, dev, name);
1093 	else if (__dev_get_by_name(net, name))
1094 		return -EEXIST;
1095 	else if (dev->name != name)
1096 		strlcpy(dev->name, name, IFNAMSIZ);
1097 
1098 	return 0;
1099 }
1100 
1101 /**
1102  *	dev_change_name - change name of a device
1103  *	@dev: device
1104  *	@newname: name (or format string) must be at least IFNAMSIZ
1105  *
1106  *	Change name of a device, can pass format strings "eth%d".
1107  *	for wildcarding.
1108  */
dev_change_name(struct net_device * dev,const char * newname)1109 int dev_change_name(struct net_device *dev, const char *newname)
1110 {
1111 	unsigned char old_assign_type;
1112 	char oldname[IFNAMSIZ];
1113 	int err = 0;
1114 	int ret;
1115 	struct net *net;
1116 
1117 	ASSERT_RTNL();
1118 	BUG_ON(!dev_net(dev));
1119 
1120 	net = dev_net(dev);
1121 	if (dev->flags & IFF_UP)
1122 		return -EBUSY;
1123 
1124 	write_seqcount_begin(&devnet_rename_seq);
1125 
1126 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1127 		write_seqcount_end(&devnet_rename_seq);
1128 		return 0;
1129 	}
1130 
1131 	memcpy(oldname, dev->name, IFNAMSIZ);
1132 
1133 	err = dev_get_valid_name(net, dev, newname);
1134 	if (err < 0) {
1135 		write_seqcount_end(&devnet_rename_seq);
1136 		return err;
1137 	}
1138 
1139 	if (oldname[0] && !strchr(oldname, '%'))
1140 		netdev_info(dev, "renamed from %s\n", oldname);
1141 
1142 	old_assign_type = dev->name_assign_type;
1143 	dev->name_assign_type = NET_NAME_RENAMED;
1144 
1145 rollback:
1146 	ret = device_rename(&dev->dev, dev->name);
1147 	if (ret) {
1148 		memcpy(dev->name, oldname, IFNAMSIZ);
1149 		dev->name_assign_type = old_assign_type;
1150 		write_seqcount_end(&devnet_rename_seq);
1151 		return ret;
1152 	}
1153 
1154 	write_seqcount_end(&devnet_rename_seq);
1155 
1156 	netdev_adjacent_rename_links(dev, oldname);
1157 
1158 	write_lock_bh(&dev_base_lock);
1159 	hlist_del_rcu(&dev->name_hlist);
1160 	write_unlock_bh(&dev_base_lock);
1161 
1162 	synchronize_rcu();
1163 
1164 	write_lock_bh(&dev_base_lock);
1165 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1166 	write_unlock_bh(&dev_base_lock);
1167 
1168 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1169 	ret = notifier_to_errno(ret);
1170 
1171 	if (ret) {
1172 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1173 		if (err >= 0) {
1174 			err = ret;
1175 			write_seqcount_begin(&devnet_rename_seq);
1176 			memcpy(dev->name, oldname, IFNAMSIZ);
1177 			memcpy(oldname, newname, IFNAMSIZ);
1178 			dev->name_assign_type = old_assign_type;
1179 			old_assign_type = NET_NAME_RENAMED;
1180 			goto rollback;
1181 		} else {
1182 			pr_err("%s: name change rollback failed: %d\n",
1183 			       dev->name, ret);
1184 		}
1185 	}
1186 
1187 	return err;
1188 }
1189 
1190 /**
1191  *	dev_set_alias - change ifalias of a device
1192  *	@dev: device
1193  *	@alias: name up to IFALIASZ
1194  *	@len: limit of bytes to copy from info
1195  *
1196  *	Set ifalias for a device,
1197  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1198 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1199 {
1200 	char *new_ifalias;
1201 
1202 	ASSERT_RTNL();
1203 
1204 	if (len >= IFALIASZ)
1205 		return -EINVAL;
1206 
1207 	if (!len) {
1208 		kfree(dev->ifalias);
1209 		dev->ifalias = NULL;
1210 		return 0;
1211 	}
1212 
1213 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1214 	if (!new_ifalias)
1215 		return -ENOMEM;
1216 	dev->ifalias = new_ifalias;
1217 
1218 	strlcpy(dev->ifalias, alias, len+1);
1219 	return len;
1220 }
1221 
1222 
1223 /**
1224  *	netdev_features_change - device changes features
1225  *	@dev: device to cause notification
1226  *
1227  *	Called to indicate a device has changed features.
1228  */
netdev_features_change(struct net_device * dev)1229 void netdev_features_change(struct net_device *dev)
1230 {
1231 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1232 }
1233 EXPORT_SYMBOL(netdev_features_change);
1234 
1235 /**
1236  *	netdev_state_change - device changes state
1237  *	@dev: device to cause notification
1238  *
1239  *	Called to indicate a device has changed state. This function calls
1240  *	the notifier chains for netdev_chain and sends a NEWLINK message
1241  *	to the routing socket.
1242  */
netdev_state_change(struct net_device * dev)1243 void netdev_state_change(struct net_device *dev)
1244 {
1245 	if (dev->flags & IFF_UP) {
1246 		struct netdev_notifier_change_info change_info;
1247 
1248 		change_info.flags_changed = 0;
1249 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1250 					      &change_info.info);
1251 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1252 	}
1253 }
1254 EXPORT_SYMBOL(netdev_state_change);
1255 
1256 /**
1257  * 	netdev_notify_peers - notify network peers about existence of @dev
1258  * 	@dev: network device
1259  *
1260  * Generate traffic such that interested network peers are aware of
1261  * @dev, such as by generating a gratuitous ARP. This may be used when
1262  * a device wants to inform the rest of the network about some sort of
1263  * reconfiguration such as a failover event or virtual machine
1264  * migration.
1265  */
netdev_notify_peers(struct net_device * dev)1266 void netdev_notify_peers(struct net_device *dev)
1267 {
1268 	rtnl_lock();
1269 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1270 	rtnl_unlock();
1271 }
1272 EXPORT_SYMBOL(netdev_notify_peers);
1273 
__dev_open(struct net_device * dev)1274 static int __dev_open(struct net_device *dev)
1275 {
1276 	const struct net_device_ops *ops = dev->netdev_ops;
1277 	int ret;
1278 
1279 	ASSERT_RTNL();
1280 
1281 	if (!netif_device_present(dev))
1282 		return -ENODEV;
1283 
1284 	/* Block netpoll from trying to do any rx path servicing.
1285 	 * If we don't do this there is a chance ndo_poll_controller
1286 	 * or ndo_poll may be running while we open the device
1287 	 */
1288 	netpoll_poll_disable(dev);
1289 
1290 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1291 	ret = notifier_to_errno(ret);
1292 	if (ret)
1293 		return ret;
1294 
1295 	set_bit(__LINK_STATE_START, &dev->state);
1296 
1297 	if (ops->ndo_validate_addr)
1298 		ret = ops->ndo_validate_addr(dev);
1299 
1300 	if (!ret && ops->ndo_open)
1301 		ret = ops->ndo_open(dev);
1302 
1303 	netpoll_poll_enable(dev);
1304 
1305 	if (ret)
1306 		clear_bit(__LINK_STATE_START, &dev->state);
1307 	else {
1308 		dev->flags |= IFF_UP;
1309 		dev_set_rx_mode(dev);
1310 		dev_activate(dev);
1311 		add_device_randomness(dev->dev_addr, dev->addr_len);
1312 	}
1313 
1314 	return ret;
1315 }
1316 
1317 /**
1318  *	dev_open	- prepare an interface for use.
1319  *	@dev:	device to open
1320  *
1321  *	Takes a device from down to up state. The device's private open
1322  *	function is invoked and then the multicast lists are loaded. Finally
1323  *	the device is moved into the up state and a %NETDEV_UP message is
1324  *	sent to the netdev notifier chain.
1325  *
1326  *	Calling this function on an active interface is a nop. On a failure
1327  *	a negative errno code is returned.
1328  */
dev_open(struct net_device * dev)1329 int dev_open(struct net_device *dev)
1330 {
1331 	int ret;
1332 
1333 	if (dev->flags & IFF_UP)
1334 		return 0;
1335 
1336 	ret = __dev_open(dev);
1337 	if (ret < 0)
1338 		return ret;
1339 
1340 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1341 	call_netdevice_notifiers(NETDEV_UP, dev);
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(dev_open);
1346 
__dev_close_many(struct list_head * head)1347 static int __dev_close_many(struct list_head *head)
1348 {
1349 	struct net_device *dev;
1350 
1351 	ASSERT_RTNL();
1352 	might_sleep();
1353 
1354 	list_for_each_entry(dev, head, close_list) {
1355 		/* Temporarily disable netpoll until the interface is down */
1356 		netpoll_poll_disable(dev);
1357 
1358 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1359 
1360 		clear_bit(__LINK_STATE_START, &dev->state);
1361 
1362 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1363 		 * can be even on different cpu. So just clear netif_running().
1364 		 *
1365 		 * dev->stop() will invoke napi_disable() on all of it's
1366 		 * napi_struct instances on this device.
1367 		 */
1368 		smp_mb__after_atomic(); /* Commit netif_running(). */
1369 	}
1370 
1371 	dev_deactivate_many(head);
1372 
1373 	list_for_each_entry(dev, head, close_list) {
1374 		const struct net_device_ops *ops = dev->netdev_ops;
1375 
1376 		/*
1377 		 *	Call the device specific close. This cannot fail.
1378 		 *	Only if device is UP
1379 		 *
1380 		 *	We allow it to be called even after a DETACH hot-plug
1381 		 *	event.
1382 		 */
1383 		if (ops->ndo_stop)
1384 			ops->ndo_stop(dev);
1385 
1386 		dev->flags &= ~IFF_UP;
1387 		netpoll_poll_enable(dev);
1388 	}
1389 
1390 	return 0;
1391 }
1392 
__dev_close(struct net_device * dev)1393 static int __dev_close(struct net_device *dev)
1394 {
1395 	int retval;
1396 	LIST_HEAD(single);
1397 
1398 	list_add(&dev->close_list, &single);
1399 	retval = __dev_close_many(&single);
1400 	list_del(&single);
1401 
1402 	return retval;
1403 }
1404 
dev_close_many(struct list_head * head,bool unlink)1405 int dev_close_many(struct list_head *head, bool unlink)
1406 {
1407 	struct net_device *dev, *tmp;
1408 
1409 	/* Remove the devices that don't need to be closed */
1410 	list_for_each_entry_safe(dev, tmp, head, close_list)
1411 		if (!(dev->flags & IFF_UP))
1412 			list_del_init(&dev->close_list);
1413 
1414 	__dev_close_many(head);
1415 
1416 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1417 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1418 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1419 		if (unlink)
1420 			list_del_init(&dev->close_list);
1421 	}
1422 
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close_many);
1426 
1427 /**
1428  *	dev_close - shutdown an interface.
1429  *	@dev: device to shutdown
1430  *
1431  *	This function moves an active device into down state. A
1432  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1433  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1434  *	chain.
1435  */
dev_close(struct net_device * dev)1436 int dev_close(struct net_device *dev)
1437 {
1438 	if (dev->flags & IFF_UP) {
1439 		LIST_HEAD(single);
1440 
1441 		list_add(&dev->close_list, &single);
1442 		dev_close_many(&single, true);
1443 		list_del(&single);
1444 	}
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL(dev_close);
1448 
1449 
1450 /**
1451  *	dev_disable_lro - disable Large Receive Offload on a device
1452  *	@dev: device
1453  *
1454  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1455  *	called under RTNL.  This is needed if received packets may be
1456  *	forwarded to another interface.
1457  */
dev_disable_lro(struct net_device * dev)1458 void dev_disable_lro(struct net_device *dev)
1459 {
1460 	struct net_device *lower_dev;
1461 	struct list_head *iter;
1462 
1463 	dev->wanted_features &= ~NETIF_F_LRO;
1464 	netdev_update_features(dev);
1465 
1466 	if (unlikely(dev->features & NETIF_F_LRO))
1467 		netdev_WARN(dev, "failed to disable LRO!\n");
1468 
1469 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1470 		dev_disable_lro(lower_dev);
1471 }
1472 EXPORT_SYMBOL(dev_disable_lro);
1473 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1474 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1475 				   struct net_device *dev)
1476 {
1477 	struct netdev_notifier_info info;
1478 
1479 	netdev_notifier_info_init(&info, dev);
1480 	return nb->notifier_call(nb, val, &info);
1481 }
1482 
1483 static int dev_boot_phase = 1;
1484 
1485 /**
1486  *	register_netdevice_notifier - register a network notifier block
1487  *	@nb: notifier
1488  *
1489  *	Register a notifier to be called when network device events occur.
1490  *	The notifier passed is linked into the kernel structures and must
1491  *	not be reused until it has been unregistered. A negative errno code
1492  *	is returned on a failure.
1493  *
1494  * 	When registered all registration and up events are replayed
1495  *	to the new notifier to allow device to have a race free
1496  *	view of the network device list.
1497  */
1498 
register_netdevice_notifier(struct notifier_block * nb)1499 int register_netdevice_notifier(struct notifier_block *nb)
1500 {
1501 	struct net_device *dev;
1502 	struct net_device *last;
1503 	struct net *net;
1504 	int err;
1505 
1506 	rtnl_lock();
1507 	err = raw_notifier_chain_register(&netdev_chain, nb);
1508 	if (err)
1509 		goto unlock;
1510 	if (dev_boot_phase)
1511 		goto unlock;
1512 	for_each_net(net) {
1513 		for_each_netdev(net, dev) {
1514 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1515 			err = notifier_to_errno(err);
1516 			if (err)
1517 				goto rollback;
1518 
1519 			if (!(dev->flags & IFF_UP))
1520 				continue;
1521 
1522 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1523 		}
1524 	}
1525 
1526 unlock:
1527 	rtnl_unlock();
1528 	return err;
1529 
1530 rollback:
1531 	last = dev;
1532 	for_each_net(net) {
1533 		for_each_netdev(net, dev) {
1534 			if (dev == last)
1535 				goto outroll;
1536 
1537 			if (dev->flags & IFF_UP) {
1538 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1539 							dev);
1540 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1541 			}
1542 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1543 		}
1544 	}
1545 
1546 outroll:
1547 	raw_notifier_chain_unregister(&netdev_chain, nb);
1548 	goto unlock;
1549 }
1550 EXPORT_SYMBOL(register_netdevice_notifier);
1551 
1552 /**
1553  *	unregister_netdevice_notifier - unregister a network notifier block
1554  *	@nb: notifier
1555  *
1556  *	Unregister a notifier previously registered by
1557  *	register_netdevice_notifier(). The notifier is unlinked into the
1558  *	kernel structures and may then be reused. A negative errno code
1559  *	is returned on a failure.
1560  *
1561  * 	After unregistering unregister and down device events are synthesized
1562  *	for all devices on the device list to the removed notifier to remove
1563  *	the need for special case cleanup code.
1564  */
1565 
unregister_netdevice_notifier(struct notifier_block * nb)1566 int unregister_netdevice_notifier(struct notifier_block *nb)
1567 {
1568 	struct net_device *dev;
1569 	struct net *net;
1570 	int err;
1571 
1572 	rtnl_lock();
1573 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1574 	if (err)
1575 		goto unlock;
1576 
1577 	for_each_net(net) {
1578 		for_each_netdev(net, dev) {
1579 			if (dev->flags & IFF_UP) {
1580 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1581 							dev);
1582 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1583 			}
1584 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1585 		}
1586 	}
1587 unlock:
1588 	rtnl_unlock();
1589 	return err;
1590 }
1591 EXPORT_SYMBOL(unregister_netdevice_notifier);
1592 
1593 /**
1594  *	call_netdevice_notifiers_info - call all network notifier blocks
1595  *	@val: value passed unmodified to notifier function
1596  *	@dev: net_device pointer passed unmodified to notifier function
1597  *	@info: notifier information data
1598  *
1599  *	Call all network notifier blocks.  Parameters and return value
1600  *	are as for raw_notifier_call_chain().
1601  */
1602 
call_netdevice_notifiers_info(unsigned long val,struct net_device * dev,struct netdev_notifier_info * info)1603 static int call_netdevice_notifiers_info(unsigned long val,
1604 					 struct net_device *dev,
1605 					 struct netdev_notifier_info *info)
1606 {
1607 	ASSERT_RTNL();
1608 	netdev_notifier_info_init(info, dev);
1609 	return raw_notifier_call_chain(&netdev_chain, val, info);
1610 }
1611 
1612 /**
1613  *	call_netdevice_notifiers - call all network notifier blocks
1614  *      @val: value passed unmodified to notifier function
1615  *      @dev: net_device pointer passed unmodified to notifier function
1616  *
1617  *	Call all network notifier blocks.  Parameters and return value
1618  *	are as for raw_notifier_call_chain().
1619  */
1620 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1621 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1622 {
1623 	struct netdev_notifier_info info;
1624 
1625 	return call_netdevice_notifiers_info(val, dev, &info);
1626 }
1627 EXPORT_SYMBOL(call_netdevice_notifiers);
1628 
1629 #ifdef CONFIG_NET_CLS_ACT
1630 static struct static_key ingress_needed __read_mostly;
1631 
net_inc_ingress_queue(void)1632 void net_inc_ingress_queue(void)
1633 {
1634 	static_key_slow_inc(&ingress_needed);
1635 }
1636 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1637 
net_dec_ingress_queue(void)1638 void net_dec_ingress_queue(void)
1639 {
1640 	static_key_slow_dec(&ingress_needed);
1641 }
1642 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1643 #endif
1644 
1645 static struct static_key netstamp_needed __read_mostly;
1646 #ifdef HAVE_JUMP_LABEL
1647 /* We are not allowed to call static_key_slow_dec() from irq context
1648  * If net_disable_timestamp() is called from irq context, defer the
1649  * static_key_slow_dec() calls.
1650  */
1651 static atomic_t netstamp_needed_deferred;
1652 #endif
1653 
net_enable_timestamp(void)1654 void net_enable_timestamp(void)
1655 {
1656 #ifdef HAVE_JUMP_LABEL
1657 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1658 
1659 	if (deferred) {
1660 		while (--deferred)
1661 			static_key_slow_dec(&netstamp_needed);
1662 		return;
1663 	}
1664 #endif
1665 	static_key_slow_inc(&netstamp_needed);
1666 }
1667 EXPORT_SYMBOL(net_enable_timestamp);
1668 
net_disable_timestamp(void)1669 void net_disable_timestamp(void)
1670 {
1671 #ifdef HAVE_JUMP_LABEL
1672 	if (in_interrupt()) {
1673 		atomic_inc(&netstamp_needed_deferred);
1674 		return;
1675 	}
1676 #endif
1677 	static_key_slow_dec(&netstamp_needed);
1678 }
1679 EXPORT_SYMBOL(net_disable_timestamp);
1680 
net_timestamp_set(struct sk_buff * skb)1681 static inline void net_timestamp_set(struct sk_buff *skb)
1682 {
1683 	skb->tstamp.tv64 = 0;
1684 	if (static_key_false(&netstamp_needed))
1685 		__net_timestamp(skb);
1686 }
1687 
1688 #define net_timestamp_check(COND, SKB)			\
1689 	if (static_key_false(&netstamp_needed)) {		\
1690 		if ((COND) && !(SKB)->tstamp.tv64)	\
1691 			__net_timestamp(SKB);		\
1692 	}						\
1693 
is_skb_forwardable(struct net_device * dev,struct sk_buff * skb)1694 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1695 {
1696 	unsigned int len;
1697 
1698 	if (!(dev->flags & IFF_UP))
1699 		return false;
1700 
1701 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1702 	if (skb->len <= len)
1703 		return true;
1704 
1705 	/* if TSO is enabled, we don't care about the length as the packet
1706 	 * could be forwarded without being segmented before
1707 	 */
1708 	if (skb_is_gso(skb))
1709 		return true;
1710 
1711 	return false;
1712 }
1713 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1714 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1715 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1716 {
1717 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1718 	    unlikely(!is_skb_forwardable(dev, skb))) {
1719 		atomic_long_inc(&dev->rx_dropped);
1720 		kfree_skb(skb);
1721 		return NET_RX_DROP;
1722 	}
1723 
1724 	skb_scrub_packet(skb, true);
1725 	skb->priority = 0;
1726 	skb->protocol = eth_type_trans(skb, dev);
1727 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1728 
1729 	return 0;
1730 }
1731 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1732 
1733 /**
1734  * dev_forward_skb - loopback an skb to another netif
1735  *
1736  * @dev: destination network device
1737  * @skb: buffer to forward
1738  *
1739  * return values:
1740  *	NET_RX_SUCCESS	(no congestion)
1741  *	NET_RX_DROP     (packet was dropped, but freed)
1742  *
1743  * dev_forward_skb can be used for injecting an skb from the
1744  * start_xmit function of one device into the receive queue
1745  * of another device.
1746  *
1747  * The receiving device may be in another namespace, so
1748  * we have to clear all information in the skb that could
1749  * impact namespace isolation.
1750  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1751 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1752 {
1753 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1754 }
1755 EXPORT_SYMBOL_GPL(dev_forward_skb);
1756 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1757 static inline int deliver_skb(struct sk_buff *skb,
1758 			      struct packet_type *pt_prev,
1759 			      struct net_device *orig_dev)
1760 {
1761 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1762 		return -ENOMEM;
1763 	atomic_inc(&skb->users);
1764 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1765 }
1766 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1767 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1768 					  struct packet_type **pt,
1769 					  struct net_device *orig_dev,
1770 					  __be16 type,
1771 					  struct list_head *ptype_list)
1772 {
1773 	struct packet_type *ptype, *pt_prev = *pt;
1774 
1775 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1776 		if (ptype->type != type)
1777 			continue;
1778 		if (pt_prev)
1779 			deliver_skb(skb, pt_prev, orig_dev);
1780 		pt_prev = ptype;
1781 	}
1782 	*pt = pt_prev;
1783 }
1784 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1785 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1786 {
1787 	if (!ptype->af_packet_priv || !skb->sk)
1788 		return false;
1789 
1790 	if (ptype->id_match)
1791 		return ptype->id_match(ptype, skb->sk);
1792 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1793 		return true;
1794 
1795 	return false;
1796 }
1797 
1798 /*
1799  *	Support routine. Sends outgoing frames to any network
1800  *	taps currently in use.
1801  */
1802 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1803 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1804 {
1805 	struct packet_type *ptype;
1806 	struct sk_buff *skb2 = NULL;
1807 	struct packet_type *pt_prev = NULL;
1808 	struct list_head *ptype_list = &ptype_all;
1809 
1810 	rcu_read_lock();
1811 again:
1812 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1813 		/* Never send packets back to the socket
1814 		 * they originated from - MvS (miquels@drinkel.ow.org)
1815 		 */
1816 		if (skb_loop_sk(ptype, skb))
1817 			continue;
1818 
1819 		if (pt_prev) {
1820 			deliver_skb(skb2, pt_prev, skb->dev);
1821 			pt_prev = ptype;
1822 			continue;
1823 		}
1824 
1825 		/* need to clone skb, done only once */
1826 		skb2 = skb_clone(skb, GFP_ATOMIC);
1827 		if (!skb2)
1828 			goto out_unlock;
1829 
1830 		net_timestamp_set(skb2);
1831 
1832 		/* skb->nh should be correctly
1833 		 * set by sender, so that the second statement is
1834 		 * just protection against buggy protocols.
1835 		 */
1836 		skb_reset_mac_header(skb2);
1837 
1838 		if (skb_network_header(skb2) < skb2->data ||
1839 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1840 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1841 					     ntohs(skb2->protocol),
1842 					     dev->name);
1843 			skb_reset_network_header(skb2);
1844 		}
1845 
1846 		skb2->transport_header = skb2->network_header;
1847 		skb2->pkt_type = PACKET_OUTGOING;
1848 		pt_prev = ptype;
1849 	}
1850 
1851 	if (ptype_list == &ptype_all) {
1852 		ptype_list = &dev->ptype_all;
1853 		goto again;
1854 	}
1855 out_unlock:
1856 	if (pt_prev)
1857 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1858 	rcu_read_unlock();
1859 }
1860 
1861 /**
1862  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1863  * @dev: Network device
1864  * @txq: number of queues available
1865  *
1866  * If real_num_tx_queues is changed the tc mappings may no longer be
1867  * valid. To resolve this verify the tc mapping remains valid and if
1868  * not NULL the mapping. With no priorities mapping to this
1869  * offset/count pair it will no longer be used. In the worst case TC0
1870  * is invalid nothing can be done so disable priority mappings. If is
1871  * expected that drivers will fix this mapping if they can before
1872  * calling netif_set_real_num_tx_queues.
1873  */
netif_setup_tc(struct net_device * dev,unsigned int txq)1874 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1875 {
1876 	int i;
1877 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1878 
1879 	/* If TC0 is invalidated disable TC mapping */
1880 	if (tc->offset + tc->count > txq) {
1881 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1882 		dev->num_tc = 0;
1883 		return;
1884 	}
1885 
1886 	/* Invalidated prio to tc mappings set to TC0 */
1887 	for (i = 1; i < TC_BITMASK + 1; i++) {
1888 		int q = netdev_get_prio_tc_map(dev, i);
1889 
1890 		tc = &dev->tc_to_txq[q];
1891 		if (tc->offset + tc->count > txq) {
1892 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1893 				i, q);
1894 			netdev_set_prio_tc_map(dev, i, 0);
1895 		}
1896 	}
1897 }
1898 
1899 #ifdef CONFIG_XPS
1900 static DEFINE_MUTEX(xps_map_mutex);
1901 #define xmap_dereference(P)		\
1902 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1903 
remove_xps_queue(struct xps_dev_maps * dev_maps,int cpu,u16 index)1904 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1905 					int cpu, u16 index)
1906 {
1907 	struct xps_map *map = NULL;
1908 	int pos;
1909 
1910 	if (dev_maps)
1911 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1912 
1913 	for (pos = 0; map && pos < map->len; pos++) {
1914 		if (map->queues[pos] == index) {
1915 			if (map->len > 1) {
1916 				map->queues[pos] = map->queues[--map->len];
1917 			} else {
1918 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1919 				kfree_rcu(map, rcu);
1920 				map = NULL;
1921 			}
1922 			break;
1923 		}
1924 	}
1925 
1926 	return map;
1927 }
1928 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)1929 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1930 {
1931 	struct xps_dev_maps *dev_maps;
1932 	int cpu, i;
1933 	bool active = false;
1934 
1935 	mutex_lock(&xps_map_mutex);
1936 	dev_maps = xmap_dereference(dev->xps_maps);
1937 
1938 	if (!dev_maps)
1939 		goto out_no_maps;
1940 
1941 	for_each_possible_cpu(cpu) {
1942 		for (i = index; i < dev->num_tx_queues; i++) {
1943 			if (!remove_xps_queue(dev_maps, cpu, i))
1944 				break;
1945 		}
1946 		if (i == dev->num_tx_queues)
1947 			active = true;
1948 	}
1949 
1950 	if (!active) {
1951 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1952 		kfree_rcu(dev_maps, rcu);
1953 	}
1954 
1955 	for (i = index; i < dev->num_tx_queues; i++)
1956 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1957 					     NUMA_NO_NODE);
1958 
1959 out_no_maps:
1960 	mutex_unlock(&xps_map_mutex);
1961 }
1962 
expand_xps_map(struct xps_map * map,int cpu,u16 index)1963 static struct xps_map *expand_xps_map(struct xps_map *map,
1964 				      int cpu, u16 index)
1965 {
1966 	struct xps_map *new_map;
1967 	int alloc_len = XPS_MIN_MAP_ALLOC;
1968 	int i, pos;
1969 
1970 	for (pos = 0; map && pos < map->len; pos++) {
1971 		if (map->queues[pos] != index)
1972 			continue;
1973 		return map;
1974 	}
1975 
1976 	/* Need to add queue to this CPU's existing map */
1977 	if (map) {
1978 		if (pos < map->alloc_len)
1979 			return map;
1980 
1981 		alloc_len = map->alloc_len * 2;
1982 	}
1983 
1984 	/* Need to allocate new map to store queue on this CPU's map */
1985 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1986 			       cpu_to_node(cpu));
1987 	if (!new_map)
1988 		return NULL;
1989 
1990 	for (i = 0; i < pos; i++)
1991 		new_map->queues[i] = map->queues[i];
1992 	new_map->alloc_len = alloc_len;
1993 	new_map->len = pos;
1994 
1995 	return new_map;
1996 }
1997 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)1998 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1999 			u16 index)
2000 {
2001 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2002 	struct xps_map *map, *new_map;
2003 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2004 	int cpu, numa_node_id = -2;
2005 	bool active = false;
2006 
2007 	mutex_lock(&xps_map_mutex);
2008 
2009 	dev_maps = xmap_dereference(dev->xps_maps);
2010 
2011 	/* allocate memory for queue storage */
2012 	for_each_online_cpu(cpu) {
2013 		if (!cpumask_test_cpu(cpu, mask))
2014 			continue;
2015 
2016 		if (!new_dev_maps)
2017 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2018 		if (!new_dev_maps) {
2019 			mutex_unlock(&xps_map_mutex);
2020 			return -ENOMEM;
2021 		}
2022 
2023 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2024 				 NULL;
2025 
2026 		map = expand_xps_map(map, cpu, index);
2027 		if (!map)
2028 			goto error;
2029 
2030 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2031 	}
2032 
2033 	if (!new_dev_maps)
2034 		goto out_no_new_maps;
2035 
2036 	for_each_possible_cpu(cpu) {
2037 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2038 			/* add queue to CPU maps */
2039 			int pos = 0;
2040 
2041 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2042 			while ((pos < map->len) && (map->queues[pos] != index))
2043 				pos++;
2044 
2045 			if (pos == map->len)
2046 				map->queues[map->len++] = index;
2047 #ifdef CONFIG_NUMA
2048 			if (numa_node_id == -2)
2049 				numa_node_id = cpu_to_node(cpu);
2050 			else if (numa_node_id != cpu_to_node(cpu))
2051 				numa_node_id = -1;
2052 #endif
2053 		} else if (dev_maps) {
2054 			/* fill in the new device map from the old device map */
2055 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2056 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2057 		}
2058 
2059 	}
2060 
2061 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2062 
2063 	/* Cleanup old maps */
2064 	if (dev_maps) {
2065 		for_each_possible_cpu(cpu) {
2066 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2067 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2068 			if (map && map != new_map)
2069 				kfree_rcu(map, rcu);
2070 		}
2071 
2072 		kfree_rcu(dev_maps, rcu);
2073 	}
2074 
2075 	dev_maps = new_dev_maps;
2076 	active = true;
2077 
2078 out_no_new_maps:
2079 	/* update Tx queue numa node */
2080 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2081 				     (numa_node_id >= 0) ? numa_node_id :
2082 				     NUMA_NO_NODE);
2083 
2084 	if (!dev_maps)
2085 		goto out_no_maps;
2086 
2087 	/* removes queue from unused CPUs */
2088 	for_each_possible_cpu(cpu) {
2089 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2090 			continue;
2091 
2092 		if (remove_xps_queue(dev_maps, cpu, index))
2093 			active = true;
2094 	}
2095 
2096 	/* free map if not active */
2097 	if (!active) {
2098 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2099 		kfree_rcu(dev_maps, rcu);
2100 	}
2101 
2102 out_no_maps:
2103 	mutex_unlock(&xps_map_mutex);
2104 
2105 	return 0;
2106 error:
2107 	/* remove any maps that we added */
2108 	for_each_possible_cpu(cpu) {
2109 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2110 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2111 				 NULL;
2112 		if (new_map && new_map != map)
2113 			kfree(new_map);
2114 	}
2115 
2116 	mutex_unlock(&xps_map_mutex);
2117 
2118 	kfree(new_dev_maps);
2119 	return -ENOMEM;
2120 }
2121 EXPORT_SYMBOL(netif_set_xps_queue);
2122 
2123 #endif
2124 /*
2125  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2126  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2127  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2128 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2129 {
2130 	int rc;
2131 
2132 	if (txq < 1 || txq > dev->num_tx_queues)
2133 		return -EINVAL;
2134 
2135 	if (dev->reg_state == NETREG_REGISTERED ||
2136 	    dev->reg_state == NETREG_UNREGISTERING) {
2137 		ASSERT_RTNL();
2138 
2139 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2140 						  txq);
2141 		if (rc)
2142 			return rc;
2143 
2144 		if (dev->num_tc)
2145 			netif_setup_tc(dev, txq);
2146 
2147 		if (txq < dev->real_num_tx_queues) {
2148 			qdisc_reset_all_tx_gt(dev, txq);
2149 #ifdef CONFIG_XPS
2150 			netif_reset_xps_queues_gt(dev, txq);
2151 #endif
2152 		}
2153 	}
2154 
2155 	dev->real_num_tx_queues = txq;
2156 	return 0;
2157 }
2158 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2159 
2160 #ifdef CONFIG_SYSFS
2161 /**
2162  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2163  *	@dev: Network device
2164  *	@rxq: Actual number of RX queues
2165  *
2166  *	This must be called either with the rtnl_lock held or before
2167  *	registration of the net device.  Returns 0 on success, or a
2168  *	negative error code.  If called before registration, it always
2169  *	succeeds.
2170  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2171 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2172 {
2173 	int rc;
2174 
2175 	if (rxq < 1 || rxq > dev->num_rx_queues)
2176 		return -EINVAL;
2177 
2178 	if (dev->reg_state == NETREG_REGISTERED) {
2179 		ASSERT_RTNL();
2180 
2181 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2182 						  rxq);
2183 		if (rc)
2184 			return rc;
2185 	}
2186 
2187 	dev->real_num_rx_queues = rxq;
2188 	return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2191 #endif
2192 
2193 /**
2194  * netif_get_num_default_rss_queues - default number of RSS queues
2195  *
2196  * This routine should set an upper limit on the number of RSS queues
2197  * used by default by multiqueue devices.
2198  */
netif_get_num_default_rss_queues(void)2199 int netif_get_num_default_rss_queues(void)
2200 {
2201 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2202 }
2203 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2204 
__netif_reschedule(struct Qdisc * q)2205 static inline void __netif_reschedule(struct Qdisc *q)
2206 {
2207 	struct softnet_data *sd;
2208 	unsigned long flags;
2209 
2210 	local_irq_save(flags);
2211 	sd = this_cpu_ptr(&softnet_data);
2212 	q->next_sched = NULL;
2213 	*sd->output_queue_tailp = q;
2214 	sd->output_queue_tailp = &q->next_sched;
2215 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2216 	local_irq_restore(flags);
2217 }
2218 
__netif_schedule(struct Qdisc * q)2219 void __netif_schedule(struct Qdisc *q)
2220 {
2221 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2222 		__netif_reschedule(q);
2223 }
2224 EXPORT_SYMBOL(__netif_schedule);
2225 
2226 struct dev_kfree_skb_cb {
2227 	enum skb_free_reason reason;
2228 };
2229 
get_kfree_skb_cb(const struct sk_buff * skb)2230 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2231 {
2232 	return (struct dev_kfree_skb_cb *)skb->cb;
2233 }
2234 
netif_schedule_queue(struct netdev_queue * txq)2235 void netif_schedule_queue(struct netdev_queue *txq)
2236 {
2237 	rcu_read_lock();
2238 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2239 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2240 
2241 		__netif_schedule(q);
2242 	}
2243 	rcu_read_unlock();
2244 }
2245 EXPORT_SYMBOL(netif_schedule_queue);
2246 
2247 /**
2248  *	netif_wake_subqueue - allow sending packets on subqueue
2249  *	@dev: network device
2250  *	@queue_index: sub queue index
2251  *
2252  * Resume individual transmit queue of a device with multiple transmit queues.
2253  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)2254 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2255 {
2256 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2257 
2258 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2259 		struct Qdisc *q;
2260 
2261 		rcu_read_lock();
2262 		q = rcu_dereference(txq->qdisc);
2263 		__netif_schedule(q);
2264 		rcu_read_unlock();
2265 	}
2266 }
2267 EXPORT_SYMBOL(netif_wake_subqueue);
2268 
netif_tx_wake_queue(struct netdev_queue * dev_queue)2269 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2270 {
2271 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2272 		struct Qdisc *q;
2273 
2274 		rcu_read_lock();
2275 		q = rcu_dereference(dev_queue->qdisc);
2276 		__netif_schedule(q);
2277 		rcu_read_unlock();
2278 	}
2279 }
2280 EXPORT_SYMBOL(netif_tx_wake_queue);
2281 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2282 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2283 {
2284 	unsigned long flags;
2285 
2286 	if (likely(atomic_read(&skb->users) == 1)) {
2287 		smp_rmb();
2288 		atomic_set(&skb->users, 0);
2289 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2290 		return;
2291 	}
2292 	get_kfree_skb_cb(skb)->reason = reason;
2293 	local_irq_save(flags);
2294 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2295 	__this_cpu_write(softnet_data.completion_queue, skb);
2296 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2297 	local_irq_restore(flags);
2298 }
2299 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2300 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2301 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2302 {
2303 	if (in_irq() || irqs_disabled())
2304 		__dev_kfree_skb_irq(skb, reason);
2305 	else
2306 		dev_kfree_skb(skb);
2307 }
2308 EXPORT_SYMBOL(__dev_kfree_skb_any);
2309 
2310 
2311 /**
2312  * netif_device_detach - mark device as removed
2313  * @dev: network device
2314  *
2315  * Mark device as removed from system and therefore no longer available.
2316  */
netif_device_detach(struct net_device * dev)2317 void netif_device_detach(struct net_device *dev)
2318 {
2319 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2320 	    netif_running(dev)) {
2321 		netif_tx_stop_all_queues(dev);
2322 	}
2323 }
2324 EXPORT_SYMBOL(netif_device_detach);
2325 
2326 /**
2327  * netif_device_attach - mark device as attached
2328  * @dev: network device
2329  *
2330  * Mark device as attached from system and restart if needed.
2331  */
netif_device_attach(struct net_device * dev)2332 void netif_device_attach(struct net_device *dev)
2333 {
2334 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2335 	    netif_running(dev)) {
2336 		netif_tx_wake_all_queues(dev);
2337 		__netdev_watchdog_up(dev);
2338 	}
2339 }
2340 EXPORT_SYMBOL(netif_device_attach);
2341 
skb_warn_bad_offload(const struct sk_buff * skb)2342 static void skb_warn_bad_offload(const struct sk_buff *skb)
2343 {
2344 	static const netdev_features_t null_features = 0;
2345 	struct net_device *dev = skb->dev;
2346 	const char *driver = "";
2347 
2348 	if (!net_ratelimit())
2349 		return;
2350 
2351 	if (dev && dev->dev.parent)
2352 		driver = dev_driver_string(dev->dev.parent);
2353 
2354 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2355 	     "gso_type=%d ip_summed=%d\n",
2356 	     driver, dev ? &dev->features : &null_features,
2357 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2358 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2359 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2360 }
2361 
2362 /*
2363  * Invalidate hardware checksum when packet is to be mangled, and
2364  * complete checksum manually on outgoing path.
2365  */
skb_checksum_help(struct sk_buff * skb)2366 int skb_checksum_help(struct sk_buff *skb)
2367 {
2368 	__wsum csum;
2369 	int ret = 0, offset;
2370 
2371 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2372 		goto out_set_summed;
2373 
2374 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2375 		skb_warn_bad_offload(skb);
2376 		return -EINVAL;
2377 	}
2378 
2379 	/* Before computing a checksum, we should make sure no frag could
2380 	 * be modified by an external entity : checksum could be wrong.
2381 	 */
2382 	if (skb_has_shared_frag(skb)) {
2383 		ret = __skb_linearize(skb);
2384 		if (ret)
2385 			goto out;
2386 	}
2387 
2388 	offset = skb_checksum_start_offset(skb);
2389 	BUG_ON(offset >= skb_headlen(skb));
2390 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2391 
2392 	offset += skb->csum_offset;
2393 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2394 
2395 	if (skb_cloned(skb) &&
2396 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2397 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2398 		if (ret)
2399 			goto out;
2400 	}
2401 
2402 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2403 out_set_summed:
2404 	skb->ip_summed = CHECKSUM_NONE;
2405 out:
2406 	return ret;
2407 }
2408 EXPORT_SYMBOL(skb_checksum_help);
2409 
skb_network_protocol(struct sk_buff * skb,int * depth)2410 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2411 {
2412 	__be16 type = skb->protocol;
2413 
2414 	/* Tunnel gso handlers can set protocol to ethernet. */
2415 	if (type == htons(ETH_P_TEB)) {
2416 		struct ethhdr *eth;
2417 
2418 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2419 			return 0;
2420 
2421 		eth = (struct ethhdr *)skb_mac_header(skb);
2422 		type = eth->h_proto;
2423 	}
2424 
2425 	return __vlan_get_protocol(skb, type, depth);
2426 }
2427 
2428 /**
2429  *	skb_mac_gso_segment - mac layer segmentation handler.
2430  *	@skb: buffer to segment
2431  *	@features: features for the output path (see dev->features)
2432  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2433 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2434 				    netdev_features_t features)
2435 {
2436 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2437 	struct packet_offload *ptype;
2438 	int vlan_depth = skb->mac_len;
2439 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2440 
2441 	if (unlikely(!type))
2442 		return ERR_PTR(-EINVAL);
2443 
2444 	__skb_pull(skb, vlan_depth);
2445 
2446 	rcu_read_lock();
2447 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2448 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2449 			segs = ptype->callbacks.gso_segment(skb, features);
2450 			break;
2451 		}
2452 	}
2453 	rcu_read_unlock();
2454 
2455 	__skb_push(skb, skb->data - skb_mac_header(skb));
2456 
2457 	return segs;
2458 }
2459 EXPORT_SYMBOL(skb_mac_gso_segment);
2460 
2461 
2462 /* openvswitch calls this on rx path, so we need a different check.
2463  */
skb_needs_check(struct sk_buff * skb,bool tx_path)2464 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2465 {
2466 	if (tx_path)
2467 		return skb->ip_summed != CHECKSUM_PARTIAL;
2468 	else
2469 		return skb->ip_summed == CHECKSUM_NONE;
2470 }
2471 
2472 /**
2473  *	__skb_gso_segment - Perform segmentation on skb.
2474  *	@skb: buffer to segment
2475  *	@features: features for the output path (see dev->features)
2476  *	@tx_path: whether it is called in TX path
2477  *
2478  *	This function segments the given skb and returns a list of segments.
2479  *
2480  *	It may return NULL if the skb requires no segmentation.  This is
2481  *	only possible when GSO is used for verifying header integrity.
2482  *
2483  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2484  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)2485 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2486 				  netdev_features_t features, bool tx_path)
2487 {
2488 	if (unlikely(skb_needs_check(skb, tx_path))) {
2489 		int err;
2490 
2491 		skb_warn_bad_offload(skb);
2492 
2493 		err = skb_cow_head(skb, 0);
2494 		if (err < 0)
2495 			return ERR_PTR(err);
2496 	}
2497 
2498 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2499 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2500 
2501 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2502 	SKB_GSO_CB(skb)->encap_level = 0;
2503 
2504 	skb_reset_mac_header(skb);
2505 	skb_reset_mac_len(skb);
2506 
2507 	return skb_mac_gso_segment(skb, features);
2508 }
2509 EXPORT_SYMBOL(__skb_gso_segment);
2510 
2511 /* Take action when hardware reception checksum errors are detected. */
2512 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)2513 void netdev_rx_csum_fault(struct net_device *dev)
2514 {
2515 	if (net_ratelimit()) {
2516 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2517 		dump_stack();
2518 	}
2519 }
2520 EXPORT_SYMBOL(netdev_rx_csum_fault);
2521 #endif
2522 
2523 /* Actually, we should eliminate this check as soon as we know, that:
2524  * 1. IOMMU is present and allows to map all the memory.
2525  * 2. No high memory really exists on this machine.
2526  */
2527 
illegal_highdma(struct net_device * dev,struct sk_buff * skb)2528 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2529 {
2530 #ifdef CONFIG_HIGHMEM
2531 	int i;
2532 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2533 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2534 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2535 			if (PageHighMem(skb_frag_page(frag)))
2536 				return 1;
2537 		}
2538 	}
2539 
2540 	if (PCI_DMA_BUS_IS_PHYS) {
2541 		struct device *pdev = dev->dev.parent;
2542 
2543 		if (!pdev)
2544 			return 0;
2545 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2546 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2547 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2548 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2549 				return 1;
2550 		}
2551 	}
2552 #endif
2553 	return 0;
2554 }
2555 
2556 /* If MPLS offload request, verify we are testing hardware MPLS features
2557  * instead of standard features for the netdev.
2558  */
2559 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2560 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2561 					   netdev_features_t features,
2562 					   __be16 type)
2563 {
2564 	if (eth_p_mpls(type))
2565 		features &= skb->dev->mpls_features;
2566 
2567 	return features;
2568 }
2569 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2570 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2571 					   netdev_features_t features,
2572 					   __be16 type)
2573 {
2574 	return features;
2575 }
2576 #endif
2577 
harmonize_features(struct sk_buff * skb,netdev_features_t features)2578 static netdev_features_t harmonize_features(struct sk_buff *skb,
2579 	netdev_features_t features)
2580 {
2581 	int tmp;
2582 	__be16 type;
2583 
2584 	type = skb_network_protocol(skb, &tmp);
2585 	features = net_mpls_features(skb, features, type);
2586 
2587 	if (skb->ip_summed != CHECKSUM_NONE &&
2588 	    !can_checksum_protocol(features, type)) {
2589 		features &= ~NETIF_F_ALL_CSUM;
2590 	} else if (illegal_highdma(skb->dev, skb)) {
2591 		features &= ~NETIF_F_SG;
2592 	}
2593 
2594 	return features;
2595 }
2596 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2597 netdev_features_t passthru_features_check(struct sk_buff *skb,
2598 					  struct net_device *dev,
2599 					  netdev_features_t features)
2600 {
2601 	return features;
2602 }
2603 EXPORT_SYMBOL(passthru_features_check);
2604 
dflt_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2605 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2606 					     struct net_device *dev,
2607 					     netdev_features_t features)
2608 {
2609 	return vlan_features_check(skb, features);
2610 }
2611 
netif_skb_features(struct sk_buff * skb)2612 netdev_features_t netif_skb_features(struct sk_buff *skb)
2613 {
2614 	struct net_device *dev = skb->dev;
2615 	netdev_features_t features = dev->features;
2616 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2617 
2618 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2619 		features &= ~NETIF_F_GSO_MASK;
2620 
2621 	/* If encapsulation offload request, verify we are testing
2622 	 * hardware encapsulation features instead of standard
2623 	 * features for the netdev
2624 	 */
2625 	if (skb->encapsulation)
2626 		features &= dev->hw_enc_features;
2627 
2628 	if (skb_vlan_tagged(skb))
2629 		features = netdev_intersect_features(features,
2630 						     dev->vlan_features |
2631 						     NETIF_F_HW_VLAN_CTAG_TX |
2632 						     NETIF_F_HW_VLAN_STAG_TX);
2633 
2634 	if (dev->netdev_ops->ndo_features_check)
2635 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2636 								features);
2637 	else
2638 		features &= dflt_features_check(skb, dev, features);
2639 
2640 	return harmonize_features(skb, features);
2641 }
2642 EXPORT_SYMBOL(netif_skb_features);
2643 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)2644 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2645 		    struct netdev_queue *txq, bool more)
2646 {
2647 	unsigned int len;
2648 	int rc;
2649 
2650 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2651 		dev_queue_xmit_nit(skb, dev);
2652 
2653 	len = skb->len;
2654 	trace_net_dev_start_xmit(skb, dev);
2655 	rc = netdev_start_xmit(skb, dev, txq, more);
2656 	trace_net_dev_xmit(skb, rc, dev, len);
2657 
2658 	return rc;
2659 }
2660 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)2661 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2662 				    struct netdev_queue *txq, int *ret)
2663 {
2664 	struct sk_buff *skb = first;
2665 	int rc = NETDEV_TX_OK;
2666 
2667 	while (skb) {
2668 		struct sk_buff *next = skb->next;
2669 
2670 		skb->next = NULL;
2671 		rc = xmit_one(skb, dev, txq, next != NULL);
2672 		if (unlikely(!dev_xmit_complete(rc))) {
2673 			skb->next = next;
2674 			goto out;
2675 		}
2676 
2677 		skb = next;
2678 		if (netif_xmit_stopped(txq) && skb) {
2679 			rc = NETDEV_TX_BUSY;
2680 			break;
2681 		}
2682 	}
2683 
2684 out:
2685 	*ret = rc;
2686 	return skb;
2687 }
2688 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)2689 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2690 					  netdev_features_t features)
2691 {
2692 	if (skb_vlan_tag_present(skb) &&
2693 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2694 		skb = __vlan_hwaccel_push_inside(skb);
2695 	return skb;
2696 }
2697 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2698 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2699 {
2700 	netdev_features_t features;
2701 
2702 	if (skb->next)
2703 		return skb;
2704 
2705 	features = netif_skb_features(skb);
2706 	skb = validate_xmit_vlan(skb, features);
2707 	if (unlikely(!skb))
2708 		goto out_null;
2709 
2710 	if (netif_needs_gso(skb, features)) {
2711 		struct sk_buff *segs;
2712 
2713 		segs = skb_gso_segment(skb, features);
2714 		if (IS_ERR(segs)) {
2715 			goto out_kfree_skb;
2716 		} else if (segs) {
2717 			consume_skb(skb);
2718 			skb = segs;
2719 		}
2720 	} else {
2721 		if (skb_needs_linearize(skb, features) &&
2722 		    __skb_linearize(skb))
2723 			goto out_kfree_skb;
2724 
2725 		/* If packet is not checksummed and device does not
2726 		 * support checksumming for this protocol, complete
2727 		 * checksumming here.
2728 		 */
2729 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2730 			if (skb->encapsulation)
2731 				skb_set_inner_transport_header(skb,
2732 							       skb_checksum_start_offset(skb));
2733 			else
2734 				skb_set_transport_header(skb,
2735 							 skb_checksum_start_offset(skb));
2736 			if (!(features & NETIF_F_ALL_CSUM) &&
2737 			    skb_checksum_help(skb))
2738 				goto out_kfree_skb;
2739 		}
2740 	}
2741 
2742 	return skb;
2743 
2744 out_kfree_skb:
2745 	kfree_skb(skb);
2746 out_null:
2747 	return NULL;
2748 }
2749 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev)2750 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2751 {
2752 	struct sk_buff *next, *head = NULL, *tail;
2753 
2754 	for (; skb != NULL; skb = next) {
2755 		next = skb->next;
2756 		skb->next = NULL;
2757 
2758 		/* in case skb wont be segmented, point to itself */
2759 		skb->prev = skb;
2760 
2761 		skb = validate_xmit_skb(skb, dev);
2762 		if (!skb)
2763 			continue;
2764 
2765 		if (!head)
2766 			head = skb;
2767 		else
2768 			tail->next = skb;
2769 		/* If skb was segmented, skb->prev points to
2770 		 * the last segment. If not, it still contains skb.
2771 		 */
2772 		tail = skb->prev;
2773 	}
2774 	return head;
2775 }
2776 
qdisc_pkt_len_init(struct sk_buff * skb)2777 static void qdisc_pkt_len_init(struct sk_buff *skb)
2778 {
2779 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2780 
2781 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2782 
2783 	/* To get more precise estimation of bytes sent on wire,
2784 	 * we add to pkt_len the headers size of all segments
2785 	 */
2786 	if (shinfo->gso_size)  {
2787 		unsigned int hdr_len;
2788 		u16 gso_segs = shinfo->gso_segs;
2789 
2790 		/* mac layer + network layer */
2791 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2792 
2793 		/* + transport layer */
2794 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2795 			hdr_len += tcp_hdrlen(skb);
2796 		else
2797 			hdr_len += sizeof(struct udphdr);
2798 
2799 		if (shinfo->gso_type & SKB_GSO_DODGY)
2800 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2801 						shinfo->gso_size);
2802 
2803 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2804 	}
2805 }
2806 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)2807 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2808 				 struct net_device *dev,
2809 				 struct netdev_queue *txq)
2810 {
2811 	spinlock_t *root_lock = qdisc_lock(q);
2812 	bool contended;
2813 	int rc;
2814 
2815 	qdisc_pkt_len_init(skb);
2816 	qdisc_calculate_pkt_len(skb, q);
2817 	/*
2818 	 * Heuristic to force contended enqueues to serialize on a
2819 	 * separate lock before trying to get qdisc main lock.
2820 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2821 	 * often and dequeue packets faster.
2822 	 */
2823 	contended = qdisc_is_running(q);
2824 	if (unlikely(contended))
2825 		spin_lock(&q->busylock);
2826 
2827 	spin_lock(root_lock);
2828 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2829 		kfree_skb(skb);
2830 		rc = NET_XMIT_DROP;
2831 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2832 		   qdisc_run_begin(q)) {
2833 		/*
2834 		 * This is a work-conserving queue; there are no old skbs
2835 		 * waiting to be sent out; and the qdisc is not running -
2836 		 * xmit the skb directly.
2837 		 */
2838 
2839 		qdisc_bstats_update(q, skb);
2840 
2841 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2842 			if (unlikely(contended)) {
2843 				spin_unlock(&q->busylock);
2844 				contended = false;
2845 			}
2846 			__qdisc_run(q);
2847 		} else
2848 			qdisc_run_end(q);
2849 
2850 		rc = NET_XMIT_SUCCESS;
2851 	} else {
2852 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2853 		if (qdisc_run_begin(q)) {
2854 			if (unlikely(contended)) {
2855 				spin_unlock(&q->busylock);
2856 				contended = false;
2857 			}
2858 			__qdisc_run(q);
2859 		}
2860 	}
2861 	spin_unlock(root_lock);
2862 	if (unlikely(contended))
2863 		spin_unlock(&q->busylock);
2864 	return rc;
2865 }
2866 
2867 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)2868 static void skb_update_prio(struct sk_buff *skb)
2869 {
2870 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2871 
2872 	if (!skb->priority && skb->sk && map) {
2873 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2874 
2875 		if (prioidx < map->priomap_len)
2876 			skb->priority = map->priomap[prioidx];
2877 	}
2878 }
2879 #else
2880 #define skb_update_prio(skb)
2881 #endif
2882 
2883 DEFINE_PER_CPU(int, xmit_recursion);
2884 EXPORT_SYMBOL(xmit_recursion);
2885 
2886 #define RECURSION_LIMIT 10
2887 
2888 /**
2889  *	dev_loopback_xmit - loop back @skb
2890  *	@skb: buffer to transmit
2891  */
dev_loopback_xmit(struct sock * sk,struct sk_buff * skb)2892 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2893 {
2894 	skb_reset_mac_header(skb);
2895 	__skb_pull(skb, skb_network_offset(skb));
2896 	skb->pkt_type = PACKET_LOOPBACK;
2897 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2898 	WARN_ON(!skb_dst(skb));
2899 	skb_dst_force(skb);
2900 	netif_rx_ni(skb);
2901 	return 0;
2902 }
2903 EXPORT_SYMBOL(dev_loopback_xmit);
2904 
2905 /**
2906  *	__dev_queue_xmit - transmit a buffer
2907  *	@skb: buffer to transmit
2908  *	@accel_priv: private data used for L2 forwarding offload
2909  *
2910  *	Queue a buffer for transmission to a network device. The caller must
2911  *	have set the device and priority and built the buffer before calling
2912  *	this function. The function can be called from an interrupt.
2913  *
2914  *	A negative errno code is returned on a failure. A success does not
2915  *	guarantee the frame will be transmitted as it may be dropped due
2916  *	to congestion or traffic shaping.
2917  *
2918  * -----------------------------------------------------------------------------------
2919  *      I notice this method can also return errors from the queue disciplines,
2920  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2921  *      be positive.
2922  *
2923  *      Regardless of the return value, the skb is consumed, so it is currently
2924  *      difficult to retry a send to this method.  (You can bump the ref count
2925  *      before sending to hold a reference for retry if you are careful.)
2926  *
2927  *      When calling this method, interrupts MUST be enabled.  This is because
2928  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2929  *          --BLG
2930  */
__dev_queue_xmit(struct sk_buff * skb,void * accel_priv)2931 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2932 {
2933 	struct net_device *dev = skb->dev;
2934 	struct netdev_queue *txq;
2935 	struct Qdisc *q;
2936 	int rc = -ENOMEM;
2937 
2938 	skb_reset_mac_header(skb);
2939 
2940 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2941 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2942 
2943 	/* Disable soft irqs for various locks below. Also
2944 	 * stops preemption for RCU.
2945 	 */
2946 	rcu_read_lock_bh();
2947 
2948 	skb_update_prio(skb);
2949 
2950 	/* If device/qdisc don't need skb->dst, release it right now while
2951 	 * its hot in this cpu cache.
2952 	 */
2953 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2954 		skb_dst_drop(skb);
2955 	else
2956 		skb_dst_force(skb);
2957 
2958 	txq = netdev_pick_tx(dev, skb, accel_priv);
2959 	q = rcu_dereference_bh(txq->qdisc);
2960 
2961 #ifdef CONFIG_NET_CLS_ACT
2962 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2963 #endif
2964 	trace_net_dev_queue(skb);
2965 	if (q->enqueue) {
2966 		rc = __dev_xmit_skb(skb, q, dev, txq);
2967 		goto out;
2968 	}
2969 
2970 	/* The device has no queue. Common case for software devices:
2971 	   loopback, all the sorts of tunnels...
2972 
2973 	   Really, it is unlikely that netif_tx_lock protection is necessary
2974 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2975 	   counters.)
2976 	   However, it is possible, that they rely on protection
2977 	   made by us here.
2978 
2979 	   Check this and shot the lock. It is not prone from deadlocks.
2980 	   Either shot noqueue qdisc, it is even simpler 8)
2981 	 */
2982 	if (dev->flags & IFF_UP) {
2983 		int cpu = smp_processor_id(); /* ok because BHs are off */
2984 
2985 		if (txq->xmit_lock_owner != cpu) {
2986 
2987 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2988 				goto recursion_alert;
2989 
2990 			skb = validate_xmit_skb(skb, dev);
2991 			if (!skb)
2992 				goto drop;
2993 
2994 			HARD_TX_LOCK(dev, txq, cpu);
2995 
2996 			if (!netif_xmit_stopped(txq)) {
2997 				__this_cpu_inc(xmit_recursion);
2998 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2999 				__this_cpu_dec(xmit_recursion);
3000 				if (dev_xmit_complete(rc)) {
3001 					HARD_TX_UNLOCK(dev, txq);
3002 					goto out;
3003 				}
3004 			}
3005 			HARD_TX_UNLOCK(dev, txq);
3006 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3007 					     dev->name);
3008 		} else {
3009 			/* Recursion is detected! It is possible,
3010 			 * unfortunately
3011 			 */
3012 recursion_alert:
3013 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3014 					     dev->name);
3015 		}
3016 	}
3017 
3018 	rc = -ENETDOWN;
3019 drop:
3020 	rcu_read_unlock_bh();
3021 
3022 	atomic_long_inc(&dev->tx_dropped);
3023 	kfree_skb_list(skb);
3024 	return rc;
3025 out:
3026 	rcu_read_unlock_bh();
3027 	return rc;
3028 }
3029 
dev_queue_xmit_sk(struct sock * sk,struct sk_buff * skb)3030 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3031 {
3032 	return __dev_queue_xmit(skb, NULL);
3033 }
3034 EXPORT_SYMBOL(dev_queue_xmit_sk);
3035 
dev_queue_xmit_accel(struct sk_buff * skb,void * accel_priv)3036 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3037 {
3038 	return __dev_queue_xmit(skb, accel_priv);
3039 }
3040 EXPORT_SYMBOL(dev_queue_xmit_accel);
3041 
3042 
3043 /*=======================================================================
3044 			Receiver routines
3045   =======================================================================*/
3046 
3047 int netdev_max_backlog __read_mostly = 1000;
3048 EXPORT_SYMBOL(netdev_max_backlog);
3049 
3050 int netdev_tstamp_prequeue __read_mostly = 1;
3051 int netdev_budget __read_mostly = 300;
3052 int weight_p __read_mostly = 64;            /* old backlog weight */
3053 
3054 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3055 static inline void ____napi_schedule(struct softnet_data *sd,
3056 				     struct napi_struct *napi)
3057 {
3058 	list_add_tail(&napi->poll_list, &sd->poll_list);
3059 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3060 }
3061 
3062 #ifdef CONFIG_RPS
3063 
3064 /* One global table that all flow-based protocols share. */
3065 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3066 EXPORT_SYMBOL(rps_sock_flow_table);
3067 u32 rps_cpu_mask __read_mostly;
3068 EXPORT_SYMBOL(rps_cpu_mask);
3069 
3070 struct static_key rps_needed __read_mostly;
3071 
3072 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3073 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3074 	    struct rps_dev_flow *rflow, u16 next_cpu)
3075 {
3076 	if (next_cpu < nr_cpu_ids) {
3077 #ifdef CONFIG_RFS_ACCEL
3078 		struct netdev_rx_queue *rxqueue;
3079 		struct rps_dev_flow_table *flow_table;
3080 		struct rps_dev_flow *old_rflow;
3081 		u32 flow_id;
3082 		u16 rxq_index;
3083 		int rc;
3084 
3085 		/* Should we steer this flow to a different hardware queue? */
3086 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3087 		    !(dev->features & NETIF_F_NTUPLE))
3088 			goto out;
3089 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3090 		if (rxq_index == skb_get_rx_queue(skb))
3091 			goto out;
3092 
3093 		rxqueue = dev->_rx + rxq_index;
3094 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3095 		if (!flow_table)
3096 			goto out;
3097 		flow_id = skb_get_hash(skb) & flow_table->mask;
3098 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3099 							rxq_index, flow_id);
3100 		if (rc < 0)
3101 			goto out;
3102 		old_rflow = rflow;
3103 		rflow = &flow_table->flows[flow_id];
3104 		rflow->filter = rc;
3105 		if (old_rflow->filter == rflow->filter)
3106 			old_rflow->filter = RPS_NO_FILTER;
3107 	out:
3108 #endif
3109 		rflow->last_qtail =
3110 			per_cpu(softnet_data, next_cpu).input_queue_head;
3111 	}
3112 
3113 	rflow->cpu = next_cpu;
3114 	return rflow;
3115 }
3116 
3117 /*
3118  * get_rps_cpu is called from netif_receive_skb and returns the target
3119  * CPU from the RPS map of the receiving queue for a given skb.
3120  * rcu_read_lock must be held on entry.
3121  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3122 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3123 		       struct rps_dev_flow **rflowp)
3124 {
3125 	const struct rps_sock_flow_table *sock_flow_table;
3126 	struct netdev_rx_queue *rxqueue = dev->_rx;
3127 	struct rps_dev_flow_table *flow_table;
3128 	struct rps_map *map;
3129 	int cpu = -1;
3130 	u32 tcpu;
3131 	u32 hash;
3132 
3133 	if (skb_rx_queue_recorded(skb)) {
3134 		u16 index = skb_get_rx_queue(skb);
3135 
3136 		if (unlikely(index >= dev->real_num_rx_queues)) {
3137 			WARN_ONCE(dev->real_num_rx_queues > 1,
3138 				  "%s received packet on queue %u, but number "
3139 				  "of RX queues is %u\n",
3140 				  dev->name, index, dev->real_num_rx_queues);
3141 			goto done;
3142 		}
3143 		rxqueue += index;
3144 	}
3145 
3146 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3147 
3148 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3149 	map = rcu_dereference(rxqueue->rps_map);
3150 	if (!flow_table && !map)
3151 		goto done;
3152 
3153 	skb_reset_network_header(skb);
3154 	hash = skb_get_hash(skb);
3155 	if (!hash)
3156 		goto done;
3157 
3158 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3159 	if (flow_table && sock_flow_table) {
3160 		struct rps_dev_flow *rflow;
3161 		u32 next_cpu;
3162 		u32 ident;
3163 
3164 		/* First check into global flow table if there is a match */
3165 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3166 		if ((ident ^ hash) & ~rps_cpu_mask)
3167 			goto try_rps;
3168 
3169 		next_cpu = ident & rps_cpu_mask;
3170 
3171 		/* OK, now we know there is a match,
3172 		 * we can look at the local (per receive queue) flow table
3173 		 */
3174 		rflow = &flow_table->flows[hash & flow_table->mask];
3175 		tcpu = rflow->cpu;
3176 
3177 		/*
3178 		 * If the desired CPU (where last recvmsg was done) is
3179 		 * different from current CPU (one in the rx-queue flow
3180 		 * table entry), switch if one of the following holds:
3181 		 *   - Current CPU is unset (>= nr_cpu_ids).
3182 		 *   - Current CPU is offline.
3183 		 *   - The current CPU's queue tail has advanced beyond the
3184 		 *     last packet that was enqueued using this table entry.
3185 		 *     This guarantees that all previous packets for the flow
3186 		 *     have been dequeued, thus preserving in order delivery.
3187 		 */
3188 		if (unlikely(tcpu != next_cpu) &&
3189 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3190 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3191 		      rflow->last_qtail)) >= 0)) {
3192 			tcpu = next_cpu;
3193 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3194 		}
3195 
3196 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3197 			*rflowp = rflow;
3198 			cpu = tcpu;
3199 			goto done;
3200 		}
3201 	}
3202 
3203 try_rps:
3204 
3205 	if (map) {
3206 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3207 		if (cpu_online(tcpu)) {
3208 			cpu = tcpu;
3209 			goto done;
3210 		}
3211 	}
3212 
3213 done:
3214 	return cpu;
3215 }
3216 
3217 #ifdef CONFIG_RFS_ACCEL
3218 
3219 /**
3220  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3221  * @dev: Device on which the filter was set
3222  * @rxq_index: RX queue index
3223  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3224  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3225  *
3226  * Drivers that implement ndo_rx_flow_steer() should periodically call
3227  * this function for each installed filter and remove the filters for
3228  * which it returns %true.
3229  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)3230 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3231 			 u32 flow_id, u16 filter_id)
3232 {
3233 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3234 	struct rps_dev_flow_table *flow_table;
3235 	struct rps_dev_flow *rflow;
3236 	bool expire = true;
3237 	unsigned int cpu;
3238 
3239 	rcu_read_lock();
3240 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3241 	if (flow_table && flow_id <= flow_table->mask) {
3242 		rflow = &flow_table->flows[flow_id];
3243 		cpu = ACCESS_ONCE(rflow->cpu);
3244 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3245 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3246 			   rflow->last_qtail) <
3247 		     (int)(10 * flow_table->mask)))
3248 			expire = false;
3249 	}
3250 	rcu_read_unlock();
3251 	return expire;
3252 }
3253 EXPORT_SYMBOL(rps_may_expire_flow);
3254 
3255 #endif /* CONFIG_RFS_ACCEL */
3256 
3257 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)3258 static void rps_trigger_softirq(void *data)
3259 {
3260 	struct softnet_data *sd = data;
3261 
3262 	____napi_schedule(sd, &sd->backlog);
3263 	sd->received_rps++;
3264 }
3265 
3266 #endif /* CONFIG_RPS */
3267 
3268 /*
3269  * Check if this softnet_data structure is another cpu one
3270  * If yes, queue it to our IPI list and return 1
3271  * If no, return 0
3272  */
rps_ipi_queued(struct softnet_data * sd)3273 static int rps_ipi_queued(struct softnet_data *sd)
3274 {
3275 #ifdef CONFIG_RPS
3276 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3277 
3278 	if (sd != mysd) {
3279 		sd->rps_ipi_next = mysd->rps_ipi_list;
3280 		mysd->rps_ipi_list = sd;
3281 
3282 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3283 		return 1;
3284 	}
3285 #endif /* CONFIG_RPS */
3286 	return 0;
3287 }
3288 
3289 #ifdef CONFIG_NET_FLOW_LIMIT
3290 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3291 #endif
3292 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)3293 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3294 {
3295 #ifdef CONFIG_NET_FLOW_LIMIT
3296 	struct sd_flow_limit *fl;
3297 	struct softnet_data *sd;
3298 	unsigned int old_flow, new_flow;
3299 
3300 	if (qlen < (netdev_max_backlog >> 1))
3301 		return false;
3302 
3303 	sd = this_cpu_ptr(&softnet_data);
3304 
3305 	rcu_read_lock();
3306 	fl = rcu_dereference(sd->flow_limit);
3307 	if (fl) {
3308 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3309 		old_flow = fl->history[fl->history_head];
3310 		fl->history[fl->history_head] = new_flow;
3311 
3312 		fl->history_head++;
3313 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3314 
3315 		if (likely(fl->buckets[old_flow]))
3316 			fl->buckets[old_flow]--;
3317 
3318 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3319 			fl->count++;
3320 			rcu_read_unlock();
3321 			return true;
3322 		}
3323 	}
3324 	rcu_read_unlock();
3325 #endif
3326 	return false;
3327 }
3328 
3329 /*
3330  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3331  * queue (may be a remote CPU queue).
3332  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)3333 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3334 			      unsigned int *qtail)
3335 {
3336 	struct softnet_data *sd;
3337 	unsigned long flags;
3338 	unsigned int qlen;
3339 
3340 	sd = &per_cpu(softnet_data, cpu);
3341 
3342 	local_irq_save(flags);
3343 
3344 	rps_lock(sd);
3345 	if (!netif_running(skb->dev))
3346 		goto drop;
3347 	qlen = skb_queue_len(&sd->input_pkt_queue);
3348 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3349 		if (qlen) {
3350 enqueue:
3351 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3352 			input_queue_tail_incr_save(sd, qtail);
3353 			rps_unlock(sd);
3354 			local_irq_restore(flags);
3355 			return NET_RX_SUCCESS;
3356 		}
3357 
3358 		/* Schedule NAPI for backlog device
3359 		 * We can use non atomic operation since we own the queue lock
3360 		 */
3361 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3362 			if (!rps_ipi_queued(sd))
3363 				____napi_schedule(sd, &sd->backlog);
3364 		}
3365 		goto enqueue;
3366 	}
3367 
3368 drop:
3369 	sd->dropped++;
3370 	rps_unlock(sd);
3371 
3372 	local_irq_restore(flags);
3373 
3374 	atomic_long_inc(&skb->dev->rx_dropped);
3375 	kfree_skb(skb);
3376 	return NET_RX_DROP;
3377 }
3378 
netif_rx_internal(struct sk_buff * skb)3379 static int netif_rx_internal(struct sk_buff *skb)
3380 {
3381 	int ret;
3382 
3383 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3384 
3385 	trace_netif_rx(skb);
3386 #ifdef CONFIG_RPS
3387 	if (static_key_false(&rps_needed)) {
3388 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3389 		int cpu;
3390 
3391 		preempt_disable();
3392 		rcu_read_lock();
3393 
3394 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3395 		if (cpu < 0)
3396 			cpu = smp_processor_id();
3397 
3398 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3399 
3400 		rcu_read_unlock();
3401 		preempt_enable();
3402 	} else
3403 #endif
3404 	{
3405 		unsigned int qtail;
3406 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3407 		put_cpu();
3408 	}
3409 	return ret;
3410 }
3411 
3412 /**
3413  *	netif_rx	-	post buffer to the network code
3414  *	@skb: buffer to post
3415  *
3416  *	This function receives a packet from a device driver and queues it for
3417  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3418  *	may be dropped during processing for congestion control or by the
3419  *	protocol layers.
3420  *
3421  *	return values:
3422  *	NET_RX_SUCCESS	(no congestion)
3423  *	NET_RX_DROP     (packet was dropped)
3424  *
3425  */
3426 
netif_rx(struct sk_buff * skb)3427 int netif_rx(struct sk_buff *skb)
3428 {
3429 	trace_netif_rx_entry(skb);
3430 
3431 	return netif_rx_internal(skb);
3432 }
3433 EXPORT_SYMBOL(netif_rx);
3434 
netif_rx_ni(struct sk_buff * skb)3435 int netif_rx_ni(struct sk_buff *skb)
3436 {
3437 	int err;
3438 
3439 	trace_netif_rx_ni_entry(skb);
3440 
3441 	preempt_disable();
3442 	err = netif_rx_internal(skb);
3443 	if (local_softirq_pending())
3444 		do_softirq();
3445 	preempt_enable();
3446 
3447 	return err;
3448 }
3449 EXPORT_SYMBOL(netif_rx_ni);
3450 
net_tx_action(struct softirq_action * h)3451 static void net_tx_action(struct softirq_action *h)
3452 {
3453 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3454 
3455 	if (sd->completion_queue) {
3456 		struct sk_buff *clist;
3457 
3458 		local_irq_disable();
3459 		clist = sd->completion_queue;
3460 		sd->completion_queue = NULL;
3461 		local_irq_enable();
3462 
3463 		while (clist) {
3464 			struct sk_buff *skb = clist;
3465 			clist = clist->next;
3466 
3467 			WARN_ON(atomic_read(&skb->users));
3468 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3469 				trace_consume_skb(skb);
3470 			else
3471 				trace_kfree_skb(skb, net_tx_action);
3472 			__kfree_skb(skb);
3473 		}
3474 	}
3475 
3476 	if (sd->output_queue) {
3477 		struct Qdisc *head;
3478 
3479 		local_irq_disable();
3480 		head = sd->output_queue;
3481 		sd->output_queue = NULL;
3482 		sd->output_queue_tailp = &sd->output_queue;
3483 		local_irq_enable();
3484 
3485 		while (head) {
3486 			struct Qdisc *q = head;
3487 			spinlock_t *root_lock;
3488 
3489 			head = head->next_sched;
3490 
3491 			root_lock = qdisc_lock(q);
3492 			if (spin_trylock(root_lock)) {
3493 				smp_mb__before_atomic();
3494 				clear_bit(__QDISC_STATE_SCHED,
3495 					  &q->state);
3496 				qdisc_run(q);
3497 				spin_unlock(root_lock);
3498 			} else {
3499 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3500 					      &q->state)) {
3501 					__netif_reschedule(q);
3502 				} else {
3503 					smp_mb__before_atomic();
3504 					clear_bit(__QDISC_STATE_SCHED,
3505 						  &q->state);
3506 				}
3507 			}
3508 		}
3509 	}
3510 }
3511 
3512 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3513     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3514 /* This hook is defined here for ATM LANE */
3515 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3516 			     unsigned char *addr) __read_mostly;
3517 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3518 #endif
3519 
3520 #ifdef CONFIG_NET_CLS_ACT
3521 /* TODO: Maybe we should just force sch_ingress to be compiled in
3522  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3523  * a compare and 2 stores extra right now if we dont have it on
3524  * but have CONFIG_NET_CLS_ACT
3525  * NOTE: This doesn't stop any functionality; if you dont have
3526  * the ingress scheduler, you just can't add policies on ingress.
3527  *
3528  */
ing_filter(struct sk_buff * skb,struct netdev_queue * rxq)3529 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3530 {
3531 	struct net_device *dev = skb->dev;
3532 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3533 	int result = TC_ACT_OK;
3534 	struct Qdisc *q;
3535 
3536 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3537 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3538 				     skb->skb_iif, dev->ifindex);
3539 		return TC_ACT_SHOT;
3540 	}
3541 
3542 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3543 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3544 
3545 	q = rcu_dereference(rxq->qdisc);
3546 	if (q != &noop_qdisc) {
3547 		spin_lock(qdisc_lock(q));
3548 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3549 			result = qdisc_enqueue_root(skb, q);
3550 		spin_unlock(qdisc_lock(q));
3551 	}
3552 
3553 	return result;
3554 }
3555 
handle_ing(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3556 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3557 					 struct packet_type **pt_prev,
3558 					 int *ret, struct net_device *orig_dev)
3559 {
3560 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3561 
3562 	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3563 		return skb;
3564 
3565 	if (*pt_prev) {
3566 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3567 		*pt_prev = NULL;
3568 	}
3569 
3570 	switch (ing_filter(skb, rxq)) {
3571 	case TC_ACT_SHOT:
3572 	case TC_ACT_STOLEN:
3573 		kfree_skb(skb);
3574 		return NULL;
3575 	}
3576 
3577 	return skb;
3578 }
3579 #endif
3580 
3581 /**
3582  *	netdev_rx_handler_register - register receive handler
3583  *	@dev: device to register a handler for
3584  *	@rx_handler: receive handler to register
3585  *	@rx_handler_data: data pointer that is used by rx handler
3586  *
3587  *	Register a receive handler for a device. This handler will then be
3588  *	called from __netif_receive_skb. A negative errno code is returned
3589  *	on a failure.
3590  *
3591  *	The caller must hold the rtnl_mutex.
3592  *
3593  *	For a general description of rx_handler, see enum rx_handler_result.
3594  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)3595 int netdev_rx_handler_register(struct net_device *dev,
3596 			       rx_handler_func_t *rx_handler,
3597 			       void *rx_handler_data)
3598 {
3599 	ASSERT_RTNL();
3600 
3601 	if (dev->rx_handler)
3602 		return -EBUSY;
3603 
3604 	/* Note: rx_handler_data must be set before rx_handler */
3605 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3606 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3607 
3608 	return 0;
3609 }
3610 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3611 
3612 /**
3613  *	netdev_rx_handler_unregister - unregister receive handler
3614  *	@dev: device to unregister a handler from
3615  *
3616  *	Unregister a receive handler from a device.
3617  *
3618  *	The caller must hold the rtnl_mutex.
3619  */
netdev_rx_handler_unregister(struct net_device * dev)3620 void netdev_rx_handler_unregister(struct net_device *dev)
3621 {
3622 
3623 	ASSERT_RTNL();
3624 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3625 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3626 	 * section has a guarantee to see a non NULL rx_handler_data
3627 	 * as well.
3628 	 */
3629 	synchronize_net();
3630 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3631 }
3632 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3633 
3634 /*
3635  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3636  * the special handling of PFMEMALLOC skbs.
3637  */
skb_pfmemalloc_protocol(struct sk_buff * skb)3638 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3639 {
3640 	switch (skb->protocol) {
3641 	case htons(ETH_P_ARP):
3642 	case htons(ETH_P_IP):
3643 	case htons(ETH_P_IPV6):
3644 	case htons(ETH_P_8021Q):
3645 	case htons(ETH_P_8021AD):
3646 		return true;
3647 	default:
3648 		return false;
3649 	}
3650 }
3651 
__netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc)3652 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3653 {
3654 	struct packet_type *ptype, *pt_prev;
3655 	rx_handler_func_t *rx_handler;
3656 	struct net_device *orig_dev;
3657 	bool deliver_exact = false;
3658 	int ret = NET_RX_DROP;
3659 	__be16 type;
3660 
3661 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3662 
3663 	trace_netif_receive_skb(skb);
3664 
3665 	orig_dev = skb->dev;
3666 
3667 	skb_reset_network_header(skb);
3668 	if (!skb_transport_header_was_set(skb))
3669 		skb_reset_transport_header(skb);
3670 	skb_reset_mac_len(skb);
3671 
3672 	pt_prev = NULL;
3673 
3674 another_round:
3675 	skb->skb_iif = skb->dev->ifindex;
3676 
3677 	__this_cpu_inc(softnet_data.processed);
3678 
3679 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3680 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3681 		skb = skb_vlan_untag(skb);
3682 		if (unlikely(!skb))
3683 			goto out;
3684 	}
3685 
3686 #ifdef CONFIG_NET_CLS_ACT
3687 	if (skb->tc_verd & TC_NCLS) {
3688 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3689 		goto ncls;
3690 	}
3691 #endif
3692 
3693 	if (pfmemalloc)
3694 		goto skip_taps;
3695 
3696 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3697 		if (pt_prev)
3698 			ret = deliver_skb(skb, pt_prev, orig_dev);
3699 		pt_prev = ptype;
3700 	}
3701 
3702 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3703 		if (pt_prev)
3704 			ret = deliver_skb(skb, pt_prev, orig_dev);
3705 		pt_prev = ptype;
3706 	}
3707 
3708 skip_taps:
3709 #ifdef CONFIG_NET_CLS_ACT
3710 	if (static_key_false(&ingress_needed)) {
3711 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3712 		if (!skb)
3713 			goto out;
3714 	}
3715 
3716 	skb->tc_verd = 0;
3717 ncls:
3718 #endif
3719 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3720 		goto drop;
3721 
3722 	if (skb_vlan_tag_present(skb)) {
3723 		if (pt_prev) {
3724 			ret = deliver_skb(skb, pt_prev, orig_dev);
3725 			pt_prev = NULL;
3726 		}
3727 		if (vlan_do_receive(&skb))
3728 			goto another_round;
3729 		else if (unlikely(!skb))
3730 			goto out;
3731 	}
3732 
3733 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3734 	if (rx_handler) {
3735 		if (pt_prev) {
3736 			ret = deliver_skb(skb, pt_prev, orig_dev);
3737 			pt_prev = NULL;
3738 		}
3739 		switch (rx_handler(&skb)) {
3740 		case RX_HANDLER_CONSUMED:
3741 			ret = NET_RX_SUCCESS;
3742 			goto out;
3743 		case RX_HANDLER_ANOTHER:
3744 			goto another_round;
3745 		case RX_HANDLER_EXACT:
3746 			deliver_exact = true;
3747 		case RX_HANDLER_PASS:
3748 			break;
3749 		default:
3750 			BUG();
3751 		}
3752 	}
3753 
3754 	if (unlikely(skb_vlan_tag_present(skb))) {
3755 		if (skb_vlan_tag_get_id(skb))
3756 			skb->pkt_type = PACKET_OTHERHOST;
3757 		/* Note: we might in the future use prio bits
3758 		 * and set skb->priority like in vlan_do_receive()
3759 		 * For the time being, just ignore Priority Code Point
3760 		 */
3761 		skb->vlan_tci = 0;
3762 	}
3763 
3764 	type = skb->protocol;
3765 
3766 	/* deliver only exact match when indicated */
3767 	if (likely(!deliver_exact)) {
3768 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3769 				       &ptype_base[ntohs(type) &
3770 						   PTYPE_HASH_MASK]);
3771 	}
3772 
3773 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3774 			       &orig_dev->ptype_specific);
3775 
3776 	if (unlikely(skb->dev != orig_dev)) {
3777 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3778 				       &skb->dev->ptype_specific);
3779 	}
3780 
3781 	if (pt_prev) {
3782 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3783 			goto drop;
3784 		else
3785 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3786 	} else {
3787 drop:
3788 		atomic_long_inc(&skb->dev->rx_dropped);
3789 		kfree_skb(skb);
3790 		/* Jamal, now you will not able to escape explaining
3791 		 * me how you were going to use this. :-)
3792 		 */
3793 		ret = NET_RX_DROP;
3794 	}
3795 
3796 out:
3797 	return ret;
3798 }
3799 
__netif_receive_skb(struct sk_buff * skb)3800 static int __netif_receive_skb(struct sk_buff *skb)
3801 {
3802 	int ret;
3803 
3804 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3805 		unsigned long pflags = current->flags;
3806 
3807 		/*
3808 		 * PFMEMALLOC skbs are special, they should
3809 		 * - be delivered to SOCK_MEMALLOC sockets only
3810 		 * - stay away from userspace
3811 		 * - have bounded memory usage
3812 		 *
3813 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3814 		 * context down to all allocation sites.
3815 		 */
3816 		current->flags |= PF_MEMALLOC;
3817 		ret = __netif_receive_skb_core(skb, true);
3818 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3819 	} else
3820 		ret = __netif_receive_skb_core(skb, false);
3821 
3822 	return ret;
3823 }
3824 
netif_receive_skb_internal(struct sk_buff * skb)3825 static int netif_receive_skb_internal(struct sk_buff *skb)
3826 {
3827 	int ret;
3828 
3829 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3830 
3831 	if (skb_defer_rx_timestamp(skb))
3832 		return NET_RX_SUCCESS;
3833 
3834 	rcu_read_lock();
3835 
3836 #ifdef CONFIG_RPS
3837 	if (static_key_false(&rps_needed)) {
3838 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3839 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3840 
3841 		if (cpu >= 0) {
3842 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3843 			rcu_read_unlock();
3844 			return ret;
3845 		}
3846 	}
3847 #endif
3848 	ret = __netif_receive_skb(skb);
3849 	rcu_read_unlock();
3850 	return ret;
3851 }
3852 
3853 /**
3854  *	netif_receive_skb - process receive buffer from network
3855  *	@skb: buffer to process
3856  *
3857  *	netif_receive_skb() is the main receive data processing function.
3858  *	It always succeeds. The buffer may be dropped during processing
3859  *	for congestion control or by the protocol layers.
3860  *
3861  *	This function may only be called from softirq context and interrupts
3862  *	should be enabled.
3863  *
3864  *	Return values (usually ignored):
3865  *	NET_RX_SUCCESS: no congestion
3866  *	NET_RX_DROP: packet was dropped
3867  */
netif_receive_skb_sk(struct sock * sk,struct sk_buff * skb)3868 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3869 {
3870 	trace_netif_receive_skb_entry(skb);
3871 
3872 	return netif_receive_skb_internal(skb);
3873 }
3874 EXPORT_SYMBOL(netif_receive_skb_sk);
3875 
3876 /* Network device is going away, flush any packets still pending
3877  * Called with irqs disabled.
3878  */
flush_backlog(void * arg)3879 static void flush_backlog(void *arg)
3880 {
3881 	struct net_device *dev = arg;
3882 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3883 	struct sk_buff *skb, *tmp;
3884 
3885 	rps_lock(sd);
3886 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3887 		if (skb->dev == dev) {
3888 			__skb_unlink(skb, &sd->input_pkt_queue);
3889 			kfree_skb(skb);
3890 			input_queue_head_incr(sd);
3891 		}
3892 	}
3893 	rps_unlock(sd);
3894 
3895 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3896 		if (skb->dev == dev) {
3897 			__skb_unlink(skb, &sd->process_queue);
3898 			kfree_skb(skb);
3899 			input_queue_head_incr(sd);
3900 		}
3901 	}
3902 }
3903 
napi_gro_complete(struct sk_buff * skb)3904 static int napi_gro_complete(struct sk_buff *skb)
3905 {
3906 	struct packet_offload *ptype;
3907 	__be16 type = skb->protocol;
3908 	struct list_head *head = &offload_base;
3909 	int err = -ENOENT;
3910 
3911 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3912 
3913 	if (NAPI_GRO_CB(skb)->count == 1) {
3914 		skb_shinfo(skb)->gso_size = 0;
3915 		goto out;
3916 	}
3917 
3918 	rcu_read_lock();
3919 	list_for_each_entry_rcu(ptype, head, list) {
3920 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3921 			continue;
3922 
3923 		err = ptype->callbacks.gro_complete(skb, 0);
3924 		break;
3925 	}
3926 	rcu_read_unlock();
3927 
3928 	if (err) {
3929 		WARN_ON(&ptype->list == head);
3930 		kfree_skb(skb);
3931 		return NET_RX_SUCCESS;
3932 	}
3933 
3934 out:
3935 	return netif_receive_skb_internal(skb);
3936 }
3937 
3938 /* napi->gro_list contains packets ordered by age.
3939  * youngest packets at the head of it.
3940  * Complete skbs in reverse order to reduce latencies.
3941  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)3942 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3943 {
3944 	struct sk_buff *skb, *prev = NULL;
3945 
3946 	/* scan list and build reverse chain */
3947 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3948 		skb->prev = prev;
3949 		prev = skb;
3950 	}
3951 
3952 	for (skb = prev; skb; skb = prev) {
3953 		skb->next = NULL;
3954 
3955 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3956 			return;
3957 
3958 		prev = skb->prev;
3959 		napi_gro_complete(skb);
3960 		napi->gro_count--;
3961 	}
3962 
3963 	napi->gro_list = NULL;
3964 }
3965 EXPORT_SYMBOL(napi_gro_flush);
3966 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)3967 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3968 {
3969 	struct sk_buff *p;
3970 	unsigned int maclen = skb->dev->hard_header_len;
3971 	u32 hash = skb_get_hash_raw(skb);
3972 
3973 	for (p = napi->gro_list; p; p = p->next) {
3974 		unsigned long diffs;
3975 
3976 		NAPI_GRO_CB(p)->flush = 0;
3977 
3978 		if (hash != skb_get_hash_raw(p)) {
3979 			NAPI_GRO_CB(p)->same_flow = 0;
3980 			continue;
3981 		}
3982 
3983 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3984 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3985 		if (maclen == ETH_HLEN)
3986 			diffs |= compare_ether_header(skb_mac_header(p),
3987 						      skb_mac_header(skb));
3988 		else if (!diffs)
3989 			diffs = memcmp(skb_mac_header(p),
3990 				       skb_mac_header(skb),
3991 				       maclen);
3992 		NAPI_GRO_CB(p)->same_flow = !diffs;
3993 	}
3994 }
3995 
skb_gro_reset_offset(struct sk_buff * skb)3996 static void skb_gro_reset_offset(struct sk_buff *skb)
3997 {
3998 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3999 	const skb_frag_t *frag0 = &pinfo->frags[0];
4000 
4001 	NAPI_GRO_CB(skb)->data_offset = 0;
4002 	NAPI_GRO_CB(skb)->frag0 = NULL;
4003 	NAPI_GRO_CB(skb)->frag0_len = 0;
4004 
4005 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4006 	    pinfo->nr_frags &&
4007 	    !PageHighMem(skb_frag_page(frag0))) {
4008 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4009 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4010 	}
4011 }
4012 
gro_pull_from_frag0(struct sk_buff * skb,int grow)4013 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4014 {
4015 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4016 
4017 	BUG_ON(skb->end - skb->tail < grow);
4018 
4019 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4020 
4021 	skb->data_len -= grow;
4022 	skb->tail += grow;
4023 
4024 	pinfo->frags[0].page_offset += grow;
4025 	skb_frag_size_sub(&pinfo->frags[0], grow);
4026 
4027 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4028 		skb_frag_unref(skb, 0);
4029 		memmove(pinfo->frags, pinfo->frags + 1,
4030 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4031 	}
4032 }
4033 
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4034 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4035 {
4036 	struct sk_buff **pp = NULL;
4037 	struct packet_offload *ptype;
4038 	__be16 type = skb->protocol;
4039 	struct list_head *head = &offload_base;
4040 	int same_flow;
4041 	enum gro_result ret;
4042 	int grow;
4043 
4044 	if (!(skb->dev->features & NETIF_F_GRO))
4045 		goto normal;
4046 
4047 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4048 		goto normal;
4049 
4050 	gro_list_prepare(napi, skb);
4051 
4052 	rcu_read_lock();
4053 	list_for_each_entry_rcu(ptype, head, list) {
4054 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4055 			continue;
4056 
4057 		skb_set_network_header(skb, skb_gro_offset(skb));
4058 		skb_reset_mac_len(skb);
4059 		NAPI_GRO_CB(skb)->same_flow = 0;
4060 		NAPI_GRO_CB(skb)->flush = 0;
4061 		NAPI_GRO_CB(skb)->free = 0;
4062 		NAPI_GRO_CB(skb)->udp_mark = 0;
4063 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4064 
4065 		/* Setup for GRO checksum validation */
4066 		switch (skb->ip_summed) {
4067 		case CHECKSUM_COMPLETE:
4068 			NAPI_GRO_CB(skb)->csum = skb->csum;
4069 			NAPI_GRO_CB(skb)->csum_valid = 1;
4070 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4071 			break;
4072 		case CHECKSUM_UNNECESSARY:
4073 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4074 			NAPI_GRO_CB(skb)->csum_valid = 0;
4075 			break;
4076 		default:
4077 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4078 			NAPI_GRO_CB(skb)->csum_valid = 0;
4079 		}
4080 
4081 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4082 		break;
4083 	}
4084 	rcu_read_unlock();
4085 
4086 	if (&ptype->list == head)
4087 		goto normal;
4088 
4089 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4090 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4091 
4092 	if (pp) {
4093 		struct sk_buff *nskb = *pp;
4094 
4095 		*pp = nskb->next;
4096 		nskb->next = NULL;
4097 		napi_gro_complete(nskb);
4098 		napi->gro_count--;
4099 	}
4100 
4101 	if (same_flow)
4102 		goto ok;
4103 
4104 	if (NAPI_GRO_CB(skb)->flush)
4105 		goto normal;
4106 
4107 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4108 		struct sk_buff *nskb = napi->gro_list;
4109 
4110 		/* locate the end of the list to select the 'oldest' flow */
4111 		while (nskb->next) {
4112 			pp = &nskb->next;
4113 			nskb = *pp;
4114 		}
4115 		*pp = NULL;
4116 		nskb->next = NULL;
4117 		napi_gro_complete(nskb);
4118 	} else {
4119 		napi->gro_count++;
4120 	}
4121 	NAPI_GRO_CB(skb)->count = 1;
4122 	NAPI_GRO_CB(skb)->age = jiffies;
4123 	NAPI_GRO_CB(skb)->last = skb;
4124 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4125 	skb->next = napi->gro_list;
4126 	napi->gro_list = skb;
4127 	ret = GRO_HELD;
4128 
4129 pull:
4130 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4131 	if (grow > 0)
4132 		gro_pull_from_frag0(skb, grow);
4133 ok:
4134 	return ret;
4135 
4136 normal:
4137 	ret = GRO_NORMAL;
4138 	goto pull;
4139 }
4140 
gro_find_receive_by_type(__be16 type)4141 struct packet_offload *gro_find_receive_by_type(__be16 type)
4142 {
4143 	struct list_head *offload_head = &offload_base;
4144 	struct packet_offload *ptype;
4145 
4146 	list_for_each_entry_rcu(ptype, offload_head, list) {
4147 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4148 			continue;
4149 		return ptype;
4150 	}
4151 	return NULL;
4152 }
4153 EXPORT_SYMBOL(gro_find_receive_by_type);
4154 
gro_find_complete_by_type(__be16 type)4155 struct packet_offload *gro_find_complete_by_type(__be16 type)
4156 {
4157 	struct list_head *offload_head = &offload_base;
4158 	struct packet_offload *ptype;
4159 
4160 	list_for_each_entry_rcu(ptype, offload_head, list) {
4161 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4162 			continue;
4163 		return ptype;
4164 	}
4165 	return NULL;
4166 }
4167 EXPORT_SYMBOL(gro_find_complete_by_type);
4168 
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)4169 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4170 {
4171 	switch (ret) {
4172 	case GRO_NORMAL:
4173 		if (netif_receive_skb_internal(skb))
4174 			ret = GRO_DROP;
4175 		break;
4176 
4177 	case GRO_DROP:
4178 		kfree_skb(skb);
4179 		break;
4180 
4181 	case GRO_MERGED_FREE:
4182 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4183 			kmem_cache_free(skbuff_head_cache, skb);
4184 		else
4185 			__kfree_skb(skb);
4186 		break;
4187 
4188 	case GRO_HELD:
4189 	case GRO_MERGED:
4190 		break;
4191 	}
4192 
4193 	return ret;
4194 }
4195 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4196 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4197 {
4198 	trace_napi_gro_receive_entry(skb);
4199 
4200 	skb_gro_reset_offset(skb);
4201 
4202 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4203 }
4204 EXPORT_SYMBOL(napi_gro_receive);
4205 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)4206 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4207 {
4208 	if (unlikely(skb->pfmemalloc)) {
4209 		consume_skb(skb);
4210 		return;
4211 	}
4212 	__skb_pull(skb, skb_headlen(skb));
4213 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4214 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4215 	skb->vlan_tci = 0;
4216 	skb->dev = napi->dev;
4217 	skb->skb_iif = 0;
4218 	skb->encapsulation = 0;
4219 	skb_shinfo(skb)->gso_type = 0;
4220 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4221 
4222 	napi->skb = skb;
4223 }
4224 
napi_get_frags(struct napi_struct * napi)4225 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4226 {
4227 	struct sk_buff *skb = napi->skb;
4228 
4229 	if (!skb) {
4230 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4231 		napi->skb = skb;
4232 	}
4233 	return skb;
4234 }
4235 EXPORT_SYMBOL(napi_get_frags);
4236 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)4237 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4238 				      struct sk_buff *skb,
4239 				      gro_result_t ret)
4240 {
4241 	switch (ret) {
4242 	case GRO_NORMAL:
4243 	case GRO_HELD:
4244 		__skb_push(skb, ETH_HLEN);
4245 		skb->protocol = eth_type_trans(skb, skb->dev);
4246 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4247 			ret = GRO_DROP;
4248 		break;
4249 
4250 	case GRO_DROP:
4251 	case GRO_MERGED_FREE:
4252 		napi_reuse_skb(napi, skb);
4253 		break;
4254 
4255 	case GRO_MERGED:
4256 		break;
4257 	}
4258 
4259 	return ret;
4260 }
4261 
4262 /* Upper GRO stack assumes network header starts at gro_offset=0
4263  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4264  * We copy ethernet header into skb->data to have a common layout.
4265  */
napi_frags_skb(struct napi_struct * napi)4266 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4267 {
4268 	struct sk_buff *skb = napi->skb;
4269 	const struct ethhdr *eth;
4270 	unsigned int hlen = sizeof(*eth);
4271 
4272 	napi->skb = NULL;
4273 
4274 	skb_reset_mac_header(skb);
4275 	skb_gro_reset_offset(skb);
4276 
4277 	eth = skb_gro_header_fast(skb, 0);
4278 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4279 		eth = skb_gro_header_slow(skb, hlen, 0);
4280 		if (unlikely(!eth)) {
4281 			napi_reuse_skb(napi, skb);
4282 			return NULL;
4283 		}
4284 	} else {
4285 		gro_pull_from_frag0(skb, hlen);
4286 		NAPI_GRO_CB(skb)->frag0 += hlen;
4287 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4288 	}
4289 	__skb_pull(skb, hlen);
4290 
4291 	/*
4292 	 * This works because the only protocols we care about don't require
4293 	 * special handling.
4294 	 * We'll fix it up properly in napi_frags_finish()
4295 	 */
4296 	skb->protocol = eth->h_proto;
4297 
4298 	return skb;
4299 }
4300 
napi_gro_frags(struct napi_struct * napi)4301 gro_result_t napi_gro_frags(struct napi_struct *napi)
4302 {
4303 	struct sk_buff *skb = napi_frags_skb(napi);
4304 
4305 	if (!skb)
4306 		return GRO_DROP;
4307 
4308 	trace_napi_gro_frags_entry(skb);
4309 
4310 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4311 }
4312 EXPORT_SYMBOL(napi_gro_frags);
4313 
4314 /* Compute the checksum from gro_offset and return the folded value
4315  * after adding in any pseudo checksum.
4316  */
__skb_gro_checksum_complete(struct sk_buff * skb)4317 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4318 {
4319 	__wsum wsum;
4320 	__sum16 sum;
4321 
4322 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4323 
4324 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4325 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4326 	if (likely(!sum)) {
4327 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4328 		    !skb->csum_complete_sw)
4329 			netdev_rx_csum_fault(skb->dev);
4330 	}
4331 
4332 	NAPI_GRO_CB(skb)->csum = wsum;
4333 	NAPI_GRO_CB(skb)->csum_valid = 1;
4334 
4335 	return sum;
4336 }
4337 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4338 
4339 /*
4340  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4341  * Note: called with local irq disabled, but exits with local irq enabled.
4342  */
net_rps_action_and_irq_enable(struct softnet_data * sd)4343 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4344 {
4345 #ifdef CONFIG_RPS
4346 	struct softnet_data *remsd = sd->rps_ipi_list;
4347 
4348 	if (remsd) {
4349 		sd->rps_ipi_list = NULL;
4350 
4351 		local_irq_enable();
4352 
4353 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4354 		while (remsd) {
4355 			struct softnet_data *next = remsd->rps_ipi_next;
4356 
4357 			if (cpu_online(remsd->cpu))
4358 				smp_call_function_single_async(remsd->cpu,
4359 							   &remsd->csd);
4360 			remsd = next;
4361 		}
4362 	} else
4363 #endif
4364 		local_irq_enable();
4365 }
4366 
sd_has_rps_ipi_waiting(struct softnet_data * sd)4367 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4368 {
4369 #ifdef CONFIG_RPS
4370 	return sd->rps_ipi_list != NULL;
4371 #else
4372 	return false;
4373 #endif
4374 }
4375 
process_backlog(struct napi_struct * napi,int quota)4376 static int process_backlog(struct napi_struct *napi, int quota)
4377 {
4378 	int work = 0;
4379 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4380 
4381 	/* Check if we have pending ipi, its better to send them now,
4382 	 * not waiting net_rx_action() end.
4383 	 */
4384 	if (sd_has_rps_ipi_waiting(sd)) {
4385 		local_irq_disable();
4386 		net_rps_action_and_irq_enable(sd);
4387 	}
4388 
4389 	napi->weight = weight_p;
4390 	local_irq_disable();
4391 	while (1) {
4392 		struct sk_buff *skb;
4393 
4394 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4395 			rcu_read_lock();
4396 			local_irq_enable();
4397 			__netif_receive_skb(skb);
4398 			rcu_read_unlock();
4399 			local_irq_disable();
4400 			input_queue_head_incr(sd);
4401 			if (++work >= quota) {
4402 				local_irq_enable();
4403 				return work;
4404 			}
4405 		}
4406 
4407 		rps_lock(sd);
4408 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4409 			/*
4410 			 * Inline a custom version of __napi_complete().
4411 			 * only current cpu owns and manipulates this napi,
4412 			 * and NAPI_STATE_SCHED is the only possible flag set
4413 			 * on backlog.
4414 			 * We can use a plain write instead of clear_bit(),
4415 			 * and we dont need an smp_mb() memory barrier.
4416 			 */
4417 			napi->state = 0;
4418 			rps_unlock(sd);
4419 
4420 			break;
4421 		}
4422 
4423 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4424 					   &sd->process_queue);
4425 		rps_unlock(sd);
4426 	}
4427 	local_irq_enable();
4428 
4429 	return work;
4430 }
4431 
4432 /**
4433  * __napi_schedule - schedule for receive
4434  * @n: entry to schedule
4435  *
4436  * The entry's receive function will be scheduled to run.
4437  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4438  */
__napi_schedule(struct napi_struct * n)4439 void __napi_schedule(struct napi_struct *n)
4440 {
4441 	unsigned long flags;
4442 
4443 	local_irq_save(flags);
4444 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4445 	local_irq_restore(flags);
4446 }
4447 EXPORT_SYMBOL(__napi_schedule);
4448 
4449 /**
4450  * __napi_schedule_irqoff - schedule for receive
4451  * @n: entry to schedule
4452  *
4453  * Variant of __napi_schedule() assuming hard irqs are masked
4454  */
__napi_schedule_irqoff(struct napi_struct * n)4455 void __napi_schedule_irqoff(struct napi_struct *n)
4456 {
4457 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4458 }
4459 EXPORT_SYMBOL(__napi_schedule_irqoff);
4460 
__napi_complete(struct napi_struct * n)4461 void __napi_complete(struct napi_struct *n)
4462 {
4463 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4464 
4465 	list_del_init(&n->poll_list);
4466 	smp_mb__before_atomic();
4467 	clear_bit(NAPI_STATE_SCHED, &n->state);
4468 }
4469 EXPORT_SYMBOL(__napi_complete);
4470 
napi_complete_done(struct napi_struct * n,int work_done)4471 void napi_complete_done(struct napi_struct *n, int work_done)
4472 {
4473 	unsigned long flags;
4474 
4475 	/*
4476 	 * don't let napi dequeue from the cpu poll list
4477 	 * just in case its running on a different cpu
4478 	 */
4479 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4480 		return;
4481 
4482 	if (n->gro_list) {
4483 		unsigned long timeout = 0;
4484 
4485 		if (work_done)
4486 			timeout = n->dev->gro_flush_timeout;
4487 
4488 		if (timeout)
4489 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4490 				      HRTIMER_MODE_REL_PINNED);
4491 		else
4492 			napi_gro_flush(n, false);
4493 	}
4494 	if (likely(list_empty(&n->poll_list))) {
4495 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4496 	} else {
4497 		/* If n->poll_list is not empty, we need to mask irqs */
4498 		local_irq_save(flags);
4499 		__napi_complete(n);
4500 		local_irq_restore(flags);
4501 	}
4502 }
4503 EXPORT_SYMBOL(napi_complete_done);
4504 
4505 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)4506 struct napi_struct *napi_by_id(unsigned int napi_id)
4507 {
4508 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4509 	struct napi_struct *napi;
4510 
4511 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4512 		if (napi->napi_id == napi_id)
4513 			return napi;
4514 
4515 	return NULL;
4516 }
4517 EXPORT_SYMBOL_GPL(napi_by_id);
4518 
napi_hash_add(struct napi_struct * napi)4519 void napi_hash_add(struct napi_struct *napi)
4520 {
4521 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4522 
4523 		spin_lock(&napi_hash_lock);
4524 
4525 		/* 0 is not a valid id, we also skip an id that is taken
4526 		 * we expect both events to be extremely rare
4527 		 */
4528 		napi->napi_id = 0;
4529 		while (!napi->napi_id) {
4530 			napi->napi_id = ++napi_gen_id;
4531 			if (napi_by_id(napi->napi_id))
4532 				napi->napi_id = 0;
4533 		}
4534 
4535 		hlist_add_head_rcu(&napi->napi_hash_node,
4536 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4537 
4538 		spin_unlock(&napi_hash_lock);
4539 	}
4540 }
4541 EXPORT_SYMBOL_GPL(napi_hash_add);
4542 
4543 /* Warning : caller is responsible to make sure rcu grace period
4544  * is respected before freeing memory containing @napi
4545  */
napi_hash_del(struct napi_struct * napi)4546 void napi_hash_del(struct napi_struct *napi)
4547 {
4548 	spin_lock(&napi_hash_lock);
4549 
4550 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4551 		hlist_del_rcu(&napi->napi_hash_node);
4552 
4553 	spin_unlock(&napi_hash_lock);
4554 }
4555 EXPORT_SYMBOL_GPL(napi_hash_del);
4556 
napi_watchdog(struct hrtimer * timer)4557 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4558 {
4559 	struct napi_struct *napi;
4560 
4561 	napi = container_of(timer, struct napi_struct, timer);
4562 	if (napi->gro_list)
4563 		napi_schedule(napi);
4564 
4565 	return HRTIMER_NORESTART;
4566 }
4567 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)4568 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4569 		    int (*poll)(struct napi_struct *, int), int weight)
4570 {
4571 	INIT_LIST_HEAD(&napi->poll_list);
4572 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4573 	napi->timer.function = napi_watchdog;
4574 	napi->gro_count = 0;
4575 	napi->gro_list = NULL;
4576 	napi->skb = NULL;
4577 	napi->poll = poll;
4578 	if (weight > NAPI_POLL_WEIGHT)
4579 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4580 			    weight, dev->name);
4581 	napi->weight = weight;
4582 	list_add(&napi->dev_list, &dev->napi_list);
4583 	napi->dev = dev;
4584 #ifdef CONFIG_NETPOLL
4585 	spin_lock_init(&napi->poll_lock);
4586 	napi->poll_owner = -1;
4587 #endif
4588 	set_bit(NAPI_STATE_SCHED, &napi->state);
4589 }
4590 EXPORT_SYMBOL(netif_napi_add);
4591 
napi_disable(struct napi_struct * n)4592 void napi_disable(struct napi_struct *n)
4593 {
4594 	might_sleep();
4595 	set_bit(NAPI_STATE_DISABLE, &n->state);
4596 
4597 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4598 		msleep(1);
4599 
4600 	hrtimer_cancel(&n->timer);
4601 
4602 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4603 }
4604 EXPORT_SYMBOL(napi_disable);
4605 
netif_napi_del(struct napi_struct * napi)4606 void netif_napi_del(struct napi_struct *napi)
4607 {
4608 	list_del_init(&napi->dev_list);
4609 	napi_free_frags(napi);
4610 
4611 	kfree_skb_list(napi->gro_list);
4612 	napi->gro_list = NULL;
4613 	napi->gro_count = 0;
4614 }
4615 EXPORT_SYMBOL(netif_napi_del);
4616 
napi_poll(struct napi_struct * n,struct list_head * repoll)4617 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4618 {
4619 	void *have;
4620 	int work, weight;
4621 
4622 	list_del_init(&n->poll_list);
4623 
4624 	have = netpoll_poll_lock(n);
4625 
4626 	weight = n->weight;
4627 
4628 	/* This NAPI_STATE_SCHED test is for avoiding a race
4629 	 * with netpoll's poll_napi().  Only the entity which
4630 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4631 	 * actually make the ->poll() call.  Therefore we avoid
4632 	 * accidentally calling ->poll() when NAPI is not scheduled.
4633 	 */
4634 	work = 0;
4635 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4636 		work = n->poll(n, weight);
4637 		trace_napi_poll(n);
4638 	}
4639 
4640 	WARN_ON_ONCE(work > weight);
4641 
4642 	if (likely(work < weight))
4643 		goto out_unlock;
4644 
4645 	/* Drivers must not modify the NAPI state if they
4646 	 * consume the entire weight.  In such cases this code
4647 	 * still "owns" the NAPI instance and therefore can
4648 	 * move the instance around on the list at-will.
4649 	 */
4650 	if (unlikely(napi_disable_pending(n))) {
4651 		napi_complete(n);
4652 		goto out_unlock;
4653 	}
4654 
4655 	if (n->gro_list) {
4656 		/* flush too old packets
4657 		 * If HZ < 1000, flush all packets.
4658 		 */
4659 		napi_gro_flush(n, HZ >= 1000);
4660 	}
4661 
4662 	/* Some drivers may have called napi_schedule
4663 	 * prior to exhausting their budget.
4664 	 */
4665 	if (unlikely(!list_empty(&n->poll_list))) {
4666 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4667 			     n->dev ? n->dev->name : "backlog");
4668 		goto out_unlock;
4669 	}
4670 
4671 	list_add_tail(&n->poll_list, repoll);
4672 
4673 out_unlock:
4674 	netpoll_poll_unlock(have);
4675 
4676 	return work;
4677 }
4678 
net_rx_action(struct softirq_action * h)4679 static void net_rx_action(struct softirq_action *h)
4680 {
4681 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4682 	unsigned long time_limit = jiffies + 2;
4683 	int budget = netdev_budget;
4684 	LIST_HEAD(list);
4685 	LIST_HEAD(repoll);
4686 
4687 	local_irq_disable();
4688 	list_splice_init(&sd->poll_list, &list);
4689 	local_irq_enable();
4690 
4691 	for (;;) {
4692 		struct napi_struct *n;
4693 
4694 		if (list_empty(&list)) {
4695 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4696 				return;
4697 			break;
4698 		}
4699 
4700 		n = list_first_entry(&list, struct napi_struct, poll_list);
4701 		budget -= napi_poll(n, &repoll);
4702 
4703 		/* If softirq window is exhausted then punt.
4704 		 * Allow this to run for 2 jiffies since which will allow
4705 		 * an average latency of 1.5/HZ.
4706 		 */
4707 		if (unlikely(budget <= 0 ||
4708 			     time_after_eq(jiffies, time_limit))) {
4709 			sd->time_squeeze++;
4710 			break;
4711 		}
4712 	}
4713 
4714 	local_irq_disable();
4715 
4716 	list_splice_tail_init(&sd->poll_list, &list);
4717 	list_splice_tail(&repoll, &list);
4718 	list_splice(&list, &sd->poll_list);
4719 	if (!list_empty(&sd->poll_list))
4720 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4721 
4722 	net_rps_action_and_irq_enable(sd);
4723 }
4724 
4725 struct netdev_adjacent {
4726 	struct net_device *dev;
4727 
4728 	/* upper master flag, there can only be one master device per list */
4729 	bool master;
4730 
4731 	/* counter for the number of times this device was added to us */
4732 	u16 ref_nr;
4733 
4734 	/* private field for the users */
4735 	void *private;
4736 
4737 	struct list_head list;
4738 	struct rcu_head rcu;
4739 };
4740 
__netdev_find_adj(struct net_device * dev,struct net_device * adj_dev,struct list_head * adj_list)4741 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4742 						 struct net_device *adj_dev,
4743 						 struct list_head *adj_list)
4744 {
4745 	struct netdev_adjacent *adj;
4746 
4747 	list_for_each_entry(adj, adj_list, list) {
4748 		if (adj->dev == adj_dev)
4749 			return adj;
4750 	}
4751 	return NULL;
4752 }
4753 
4754 /**
4755  * netdev_has_upper_dev - Check if device is linked to an upper device
4756  * @dev: device
4757  * @upper_dev: upper device to check
4758  *
4759  * Find out if a device is linked to specified upper device and return true
4760  * in case it is. Note that this checks only immediate upper device,
4761  * not through a complete stack of devices. The caller must hold the RTNL lock.
4762  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)4763 bool netdev_has_upper_dev(struct net_device *dev,
4764 			  struct net_device *upper_dev)
4765 {
4766 	ASSERT_RTNL();
4767 
4768 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4769 }
4770 EXPORT_SYMBOL(netdev_has_upper_dev);
4771 
4772 /**
4773  * netdev_has_any_upper_dev - Check if device is linked to some device
4774  * @dev: device
4775  *
4776  * Find out if a device is linked to an upper device and return true in case
4777  * it is. The caller must hold the RTNL lock.
4778  */
netdev_has_any_upper_dev(struct net_device * dev)4779 static bool netdev_has_any_upper_dev(struct net_device *dev)
4780 {
4781 	ASSERT_RTNL();
4782 
4783 	return !list_empty(&dev->all_adj_list.upper);
4784 }
4785 
4786 /**
4787  * netdev_master_upper_dev_get - Get master upper device
4788  * @dev: device
4789  *
4790  * Find a master upper device and return pointer to it or NULL in case
4791  * it's not there. The caller must hold the RTNL lock.
4792  */
netdev_master_upper_dev_get(struct net_device * dev)4793 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4794 {
4795 	struct netdev_adjacent *upper;
4796 
4797 	ASSERT_RTNL();
4798 
4799 	if (list_empty(&dev->adj_list.upper))
4800 		return NULL;
4801 
4802 	upper = list_first_entry(&dev->adj_list.upper,
4803 				 struct netdev_adjacent, list);
4804 	if (likely(upper->master))
4805 		return upper->dev;
4806 	return NULL;
4807 }
4808 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4809 
netdev_adjacent_get_private(struct list_head * adj_list)4810 void *netdev_adjacent_get_private(struct list_head *adj_list)
4811 {
4812 	struct netdev_adjacent *adj;
4813 
4814 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4815 
4816 	return adj->private;
4817 }
4818 EXPORT_SYMBOL(netdev_adjacent_get_private);
4819 
4820 /**
4821  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4822  * @dev: device
4823  * @iter: list_head ** of the current position
4824  *
4825  * Gets the next device from the dev's upper list, starting from iter
4826  * position. The caller must hold RCU read lock.
4827  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)4828 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4829 						 struct list_head **iter)
4830 {
4831 	struct netdev_adjacent *upper;
4832 
4833 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4834 
4835 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4836 
4837 	if (&upper->list == &dev->adj_list.upper)
4838 		return NULL;
4839 
4840 	*iter = &upper->list;
4841 
4842 	return upper->dev;
4843 }
4844 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4845 
4846 /**
4847  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4848  * @dev: device
4849  * @iter: list_head ** of the current position
4850  *
4851  * Gets the next device from the dev's upper list, starting from iter
4852  * position. The caller must hold RCU read lock.
4853  */
netdev_all_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)4854 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4855 						     struct list_head **iter)
4856 {
4857 	struct netdev_adjacent *upper;
4858 
4859 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4860 
4861 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4862 
4863 	if (&upper->list == &dev->all_adj_list.upper)
4864 		return NULL;
4865 
4866 	*iter = &upper->list;
4867 
4868 	return upper->dev;
4869 }
4870 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4871 
4872 /**
4873  * netdev_lower_get_next_private - Get the next ->private from the
4874  *				   lower neighbour list
4875  * @dev: device
4876  * @iter: list_head ** of the current position
4877  *
4878  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4879  * list, starting from iter position. The caller must hold either hold the
4880  * RTNL lock or its own locking that guarantees that the neighbour lower
4881  * list will remain unchainged.
4882  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)4883 void *netdev_lower_get_next_private(struct net_device *dev,
4884 				    struct list_head **iter)
4885 {
4886 	struct netdev_adjacent *lower;
4887 
4888 	lower = list_entry(*iter, struct netdev_adjacent, list);
4889 
4890 	if (&lower->list == &dev->adj_list.lower)
4891 		return NULL;
4892 
4893 	*iter = lower->list.next;
4894 
4895 	return lower->private;
4896 }
4897 EXPORT_SYMBOL(netdev_lower_get_next_private);
4898 
4899 /**
4900  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4901  *				       lower neighbour list, RCU
4902  *				       variant
4903  * @dev: device
4904  * @iter: list_head ** of the current position
4905  *
4906  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4907  * list, starting from iter position. The caller must hold RCU read lock.
4908  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)4909 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4910 					struct list_head **iter)
4911 {
4912 	struct netdev_adjacent *lower;
4913 
4914 	WARN_ON_ONCE(!rcu_read_lock_held());
4915 
4916 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4917 
4918 	if (&lower->list == &dev->adj_list.lower)
4919 		return NULL;
4920 
4921 	*iter = &lower->list;
4922 
4923 	return lower->private;
4924 }
4925 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4926 
4927 /**
4928  * netdev_lower_get_next - Get the next device from the lower neighbour
4929  *                         list
4930  * @dev: device
4931  * @iter: list_head ** of the current position
4932  *
4933  * Gets the next netdev_adjacent from the dev's lower neighbour
4934  * list, starting from iter position. The caller must hold RTNL lock or
4935  * its own locking that guarantees that the neighbour lower
4936  * list will remain unchainged.
4937  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)4938 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4939 {
4940 	struct netdev_adjacent *lower;
4941 
4942 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4943 
4944 	if (&lower->list == &dev->adj_list.lower)
4945 		return NULL;
4946 
4947 	*iter = &lower->list;
4948 
4949 	return lower->dev;
4950 }
4951 EXPORT_SYMBOL(netdev_lower_get_next);
4952 
4953 /**
4954  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4955  *				       lower neighbour list, RCU
4956  *				       variant
4957  * @dev: device
4958  *
4959  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4960  * list. The caller must hold RCU read lock.
4961  */
netdev_lower_get_first_private_rcu(struct net_device * dev)4962 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4963 {
4964 	struct netdev_adjacent *lower;
4965 
4966 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4967 			struct netdev_adjacent, list);
4968 	if (lower)
4969 		return lower->private;
4970 	return NULL;
4971 }
4972 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4973 
4974 /**
4975  * netdev_master_upper_dev_get_rcu - Get master upper device
4976  * @dev: device
4977  *
4978  * Find a master upper device and return pointer to it or NULL in case
4979  * it's not there. The caller must hold the RCU read lock.
4980  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)4981 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4982 {
4983 	struct netdev_adjacent *upper;
4984 
4985 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4986 				       struct netdev_adjacent, list);
4987 	if (upper && likely(upper->master))
4988 		return upper->dev;
4989 	return NULL;
4990 }
4991 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4992 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)4993 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4994 			      struct net_device *adj_dev,
4995 			      struct list_head *dev_list)
4996 {
4997 	char linkname[IFNAMSIZ+7];
4998 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4999 		"upper_%s" : "lower_%s", adj_dev->name);
5000 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5001 				 linkname);
5002 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)5003 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5004 			       char *name,
5005 			       struct list_head *dev_list)
5006 {
5007 	char linkname[IFNAMSIZ+7];
5008 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5009 		"upper_%s" : "lower_%s", name);
5010 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5011 }
5012 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5013 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5014 						 struct net_device *adj_dev,
5015 						 struct list_head *dev_list)
5016 {
5017 	return (dev_list == &dev->adj_list.upper ||
5018 		dev_list == &dev->adj_list.lower) &&
5019 		net_eq(dev_net(dev), dev_net(adj_dev));
5020 }
5021 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)5022 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5023 					struct net_device *adj_dev,
5024 					struct list_head *dev_list,
5025 					void *private, bool master)
5026 {
5027 	struct netdev_adjacent *adj;
5028 	int ret;
5029 
5030 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5031 
5032 	if (adj) {
5033 		adj->ref_nr++;
5034 		return 0;
5035 	}
5036 
5037 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5038 	if (!adj)
5039 		return -ENOMEM;
5040 
5041 	adj->dev = adj_dev;
5042 	adj->master = master;
5043 	adj->ref_nr = 1;
5044 	adj->private = private;
5045 	dev_hold(adj_dev);
5046 
5047 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5048 		 adj_dev->name, dev->name, adj_dev->name);
5049 
5050 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5051 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5052 		if (ret)
5053 			goto free_adj;
5054 	}
5055 
5056 	/* Ensure that master link is always the first item in list. */
5057 	if (master) {
5058 		ret = sysfs_create_link(&(dev->dev.kobj),
5059 					&(adj_dev->dev.kobj), "master");
5060 		if (ret)
5061 			goto remove_symlinks;
5062 
5063 		list_add_rcu(&adj->list, dev_list);
5064 	} else {
5065 		list_add_tail_rcu(&adj->list, dev_list);
5066 	}
5067 
5068 	return 0;
5069 
5070 remove_symlinks:
5071 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5072 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5073 free_adj:
5074 	kfree(adj);
5075 	dev_put(adj_dev);
5076 
5077 	return ret;
5078 }
5079 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5080 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5081 					 struct net_device *adj_dev,
5082 					 struct list_head *dev_list)
5083 {
5084 	struct netdev_adjacent *adj;
5085 
5086 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5087 
5088 	if (!adj) {
5089 		pr_err("tried to remove device %s from %s\n",
5090 		       dev->name, adj_dev->name);
5091 		BUG();
5092 	}
5093 
5094 	if (adj->ref_nr > 1) {
5095 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5096 			 adj->ref_nr-1);
5097 		adj->ref_nr--;
5098 		return;
5099 	}
5100 
5101 	if (adj->master)
5102 		sysfs_remove_link(&(dev->dev.kobj), "master");
5103 
5104 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5105 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5106 
5107 	list_del_rcu(&adj->list);
5108 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5109 		 adj_dev->name, dev->name, adj_dev->name);
5110 	dev_put(adj_dev);
5111 	kfree_rcu(adj, rcu);
5112 }
5113 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)5114 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5115 					    struct net_device *upper_dev,
5116 					    struct list_head *up_list,
5117 					    struct list_head *down_list,
5118 					    void *private, bool master)
5119 {
5120 	int ret;
5121 
5122 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5123 					   master);
5124 	if (ret)
5125 		return ret;
5126 
5127 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5128 					   false);
5129 	if (ret) {
5130 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5131 		return ret;
5132 	}
5133 
5134 	return 0;
5135 }
5136 
__netdev_adjacent_dev_link(struct net_device * dev,struct net_device * upper_dev)5137 static int __netdev_adjacent_dev_link(struct net_device *dev,
5138 				      struct net_device *upper_dev)
5139 {
5140 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5141 						&dev->all_adj_list.upper,
5142 						&upper_dev->all_adj_list.lower,
5143 						NULL, false);
5144 }
5145 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list)5146 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5147 					       struct net_device *upper_dev,
5148 					       struct list_head *up_list,
5149 					       struct list_head *down_list)
5150 {
5151 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5152 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5153 }
5154 
__netdev_adjacent_dev_unlink(struct net_device * dev,struct net_device * upper_dev)5155 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5156 					 struct net_device *upper_dev)
5157 {
5158 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5159 					   &dev->all_adj_list.upper,
5160 					   &upper_dev->all_adj_list.lower);
5161 }
5162 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)5163 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5164 						struct net_device *upper_dev,
5165 						void *private, bool master)
5166 {
5167 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5168 
5169 	if (ret)
5170 		return ret;
5171 
5172 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5173 					       &dev->adj_list.upper,
5174 					       &upper_dev->adj_list.lower,
5175 					       private, master);
5176 	if (ret) {
5177 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5178 		return ret;
5179 	}
5180 
5181 	return 0;
5182 }
5183 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)5184 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5185 						   struct net_device *upper_dev)
5186 {
5187 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5188 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5189 					   &dev->adj_list.upper,
5190 					   &upper_dev->adj_list.lower);
5191 }
5192 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * private)5193 static int __netdev_upper_dev_link(struct net_device *dev,
5194 				   struct net_device *upper_dev, bool master,
5195 				   void *private)
5196 {
5197 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5198 	int ret = 0;
5199 
5200 	ASSERT_RTNL();
5201 
5202 	if (dev == upper_dev)
5203 		return -EBUSY;
5204 
5205 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5206 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5207 		return -EBUSY;
5208 
5209 	if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5210 		return -EEXIST;
5211 
5212 	if (master && netdev_master_upper_dev_get(dev))
5213 		return -EBUSY;
5214 
5215 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5216 						   master);
5217 	if (ret)
5218 		return ret;
5219 
5220 	/* Now that we linked these devs, make all the upper_dev's
5221 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5222 	 * versa, and don't forget the devices itself. All of these
5223 	 * links are non-neighbours.
5224 	 */
5225 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5226 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5227 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5228 				 i->dev->name, j->dev->name);
5229 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5230 			if (ret)
5231 				goto rollback_mesh;
5232 		}
5233 	}
5234 
5235 	/* add dev to every upper_dev's upper device */
5236 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5237 		pr_debug("linking %s's upper device %s with %s\n",
5238 			 upper_dev->name, i->dev->name, dev->name);
5239 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5240 		if (ret)
5241 			goto rollback_upper_mesh;
5242 	}
5243 
5244 	/* add upper_dev to every dev's lower device */
5245 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5246 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5247 			 i->dev->name, upper_dev->name);
5248 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5249 		if (ret)
5250 			goto rollback_lower_mesh;
5251 	}
5252 
5253 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5254 	return 0;
5255 
5256 rollback_lower_mesh:
5257 	to_i = i;
5258 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5259 		if (i == to_i)
5260 			break;
5261 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5262 	}
5263 
5264 	i = NULL;
5265 
5266 rollback_upper_mesh:
5267 	to_i = i;
5268 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5269 		if (i == to_i)
5270 			break;
5271 		__netdev_adjacent_dev_unlink(dev, i->dev);
5272 	}
5273 
5274 	i = j = NULL;
5275 
5276 rollback_mesh:
5277 	to_i = i;
5278 	to_j = j;
5279 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5280 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5281 			if (i == to_i && j == to_j)
5282 				break;
5283 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5284 		}
5285 		if (i == to_i)
5286 			break;
5287 	}
5288 
5289 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5290 
5291 	return ret;
5292 }
5293 
5294 /**
5295  * netdev_upper_dev_link - Add a link to the upper device
5296  * @dev: device
5297  * @upper_dev: new upper device
5298  *
5299  * Adds a link to device which is upper to this one. The caller must hold
5300  * the RTNL lock. On a failure a negative errno code is returned.
5301  * On success the reference counts are adjusted and the function
5302  * returns zero.
5303  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5304 int netdev_upper_dev_link(struct net_device *dev,
5305 			  struct net_device *upper_dev)
5306 {
5307 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5308 }
5309 EXPORT_SYMBOL(netdev_upper_dev_link);
5310 
5311 /**
5312  * netdev_master_upper_dev_link - Add a master link to the upper device
5313  * @dev: device
5314  * @upper_dev: new upper device
5315  *
5316  * Adds a link to device which is upper to this one. In this case, only
5317  * one master upper device can be linked, although other non-master devices
5318  * might be linked as well. The caller must hold the RTNL lock.
5319  * On a failure a negative errno code is returned. On success the reference
5320  * counts are adjusted and the function returns zero.
5321  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5322 int netdev_master_upper_dev_link(struct net_device *dev,
5323 				 struct net_device *upper_dev)
5324 {
5325 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5326 }
5327 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5328 
netdev_master_upper_dev_link_private(struct net_device * dev,struct net_device * upper_dev,void * private)5329 int netdev_master_upper_dev_link_private(struct net_device *dev,
5330 					 struct net_device *upper_dev,
5331 					 void *private)
5332 {
5333 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5334 }
5335 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5336 
5337 /**
5338  * netdev_upper_dev_unlink - Removes a link to upper device
5339  * @dev: device
5340  * @upper_dev: new upper device
5341  *
5342  * Removes a link to device which is upper to this one. The caller must hold
5343  * the RTNL lock.
5344  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)5345 void netdev_upper_dev_unlink(struct net_device *dev,
5346 			     struct net_device *upper_dev)
5347 {
5348 	struct netdev_adjacent *i, *j;
5349 	ASSERT_RTNL();
5350 
5351 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5352 
5353 	/* Here is the tricky part. We must remove all dev's lower
5354 	 * devices from all upper_dev's upper devices and vice
5355 	 * versa, to maintain the graph relationship.
5356 	 */
5357 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5358 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5359 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5360 
5361 	/* remove also the devices itself from lower/upper device
5362 	 * list
5363 	 */
5364 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5365 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5366 
5367 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5368 		__netdev_adjacent_dev_unlink(dev, i->dev);
5369 
5370 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5371 }
5372 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5373 
5374 /**
5375  * netdev_bonding_info_change - Dispatch event about slave change
5376  * @dev: device
5377  * @bonding_info: info to dispatch
5378  *
5379  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5380  * The caller must hold the RTNL lock.
5381  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)5382 void netdev_bonding_info_change(struct net_device *dev,
5383 				struct netdev_bonding_info *bonding_info)
5384 {
5385 	struct netdev_notifier_bonding_info	info;
5386 
5387 	memcpy(&info.bonding_info, bonding_info,
5388 	       sizeof(struct netdev_bonding_info));
5389 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5390 				      &info.info);
5391 }
5392 EXPORT_SYMBOL(netdev_bonding_info_change);
5393 
netdev_adjacent_add_links(struct net_device * dev)5394 static void netdev_adjacent_add_links(struct net_device *dev)
5395 {
5396 	struct netdev_adjacent *iter;
5397 
5398 	struct net *net = dev_net(dev);
5399 
5400 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5401 		if (!net_eq(net,dev_net(iter->dev)))
5402 			continue;
5403 		netdev_adjacent_sysfs_add(iter->dev, dev,
5404 					  &iter->dev->adj_list.lower);
5405 		netdev_adjacent_sysfs_add(dev, iter->dev,
5406 					  &dev->adj_list.upper);
5407 	}
5408 
5409 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5410 		if (!net_eq(net,dev_net(iter->dev)))
5411 			continue;
5412 		netdev_adjacent_sysfs_add(iter->dev, dev,
5413 					  &iter->dev->adj_list.upper);
5414 		netdev_adjacent_sysfs_add(dev, iter->dev,
5415 					  &dev->adj_list.lower);
5416 	}
5417 }
5418 
netdev_adjacent_del_links(struct net_device * dev)5419 static void netdev_adjacent_del_links(struct net_device *dev)
5420 {
5421 	struct netdev_adjacent *iter;
5422 
5423 	struct net *net = dev_net(dev);
5424 
5425 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5426 		if (!net_eq(net,dev_net(iter->dev)))
5427 			continue;
5428 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5429 					  &iter->dev->adj_list.lower);
5430 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5431 					  &dev->adj_list.upper);
5432 	}
5433 
5434 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5435 		if (!net_eq(net,dev_net(iter->dev)))
5436 			continue;
5437 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5438 					  &iter->dev->adj_list.upper);
5439 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5440 					  &dev->adj_list.lower);
5441 	}
5442 }
5443 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)5444 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5445 {
5446 	struct netdev_adjacent *iter;
5447 
5448 	struct net *net = dev_net(dev);
5449 
5450 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5451 		if (!net_eq(net,dev_net(iter->dev)))
5452 			continue;
5453 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5454 					  &iter->dev->adj_list.lower);
5455 		netdev_adjacent_sysfs_add(iter->dev, dev,
5456 					  &iter->dev->adj_list.lower);
5457 	}
5458 
5459 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5460 		if (!net_eq(net,dev_net(iter->dev)))
5461 			continue;
5462 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5463 					  &iter->dev->adj_list.upper);
5464 		netdev_adjacent_sysfs_add(iter->dev, dev,
5465 					  &iter->dev->adj_list.upper);
5466 	}
5467 }
5468 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)5469 void *netdev_lower_dev_get_private(struct net_device *dev,
5470 				   struct net_device *lower_dev)
5471 {
5472 	struct netdev_adjacent *lower;
5473 
5474 	if (!lower_dev)
5475 		return NULL;
5476 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5477 	if (!lower)
5478 		return NULL;
5479 
5480 	return lower->private;
5481 }
5482 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5483 
5484 
dev_get_nest_level(struct net_device * dev,bool (* type_check)(struct net_device * dev))5485 int dev_get_nest_level(struct net_device *dev,
5486 		       bool (*type_check)(struct net_device *dev))
5487 {
5488 	struct net_device *lower = NULL;
5489 	struct list_head *iter;
5490 	int max_nest = -1;
5491 	int nest;
5492 
5493 	ASSERT_RTNL();
5494 
5495 	netdev_for_each_lower_dev(dev, lower, iter) {
5496 		nest = dev_get_nest_level(lower, type_check);
5497 		if (max_nest < nest)
5498 			max_nest = nest;
5499 	}
5500 
5501 	if (type_check(dev))
5502 		max_nest++;
5503 
5504 	return max_nest;
5505 }
5506 EXPORT_SYMBOL(dev_get_nest_level);
5507 
dev_change_rx_flags(struct net_device * dev,int flags)5508 static void dev_change_rx_flags(struct net_device *dev, int flags)
5509 {
5510 	const struct net_device_ops *ops = dev->netdev_ops;
5511 
5512 	if (ops->ndo_change_rx_flags)
5513 		ops->ndo_change_rx_flags(dev, flags);
5514 }
5515 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)5516 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5517 {
5518 	unsigned int old_flags = dev->flags;
5519 	kuid_t uid;
5520 	kgid_t gid;
5521 
5522 	ASSERT_RTNL();
5523 
5524 	dev->flags |= IFF_PROMISC;
5525 	dev->promiscuity += inc;
5526 	if (dev->promiscuity == 0) {
5527 		/*
5528 		 * Avoid overflow.
5529 		 * If inc causes overflow, untouch promisc and return error.
5530 		 */
5531 		if (inc < 0)
5532 			dev->flags &= ~IFF_PROMISC;
5533 		else {
5534 			dev->promiscuity -= inc;
5535 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5536 				dev->name);
5537 			return -EOVERFLOW;
5538 		}
5539 	}
5540 	if (dev->flags != old_flags) {
5541 		pr_info("device %s %s promiscuous mode\n",
5542 			dev->name,
5543 			dev->flags & IFF_PROMISC ? "entered" : "left");
5544 		if (audit_enabled) {
5545 			current_uid_gid(&uid, &gid);
5546 			audit_log(current->audit_context, GFP_ATOMIC,
5547 				AUDIT_ANOM_PROMISCUOUS,
5548 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5549 				dev->name, (dev->flags & IFF_PROMISC),
5550 				(old_flags & IFF_PROMISC),
5551 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5552 				from_kuid(&init_user_ns, uid),
5553 				from_kgid(&init_user_ns, gid),
5554 				audit_get_sessionid(current));
5555 		}
5556 
5557 		dev_change_rx_flags(dev, IFF_PROMISC);
5558 	}
5559 	if (notify)
5560 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5561 	return 0;
5562 }
5563 
5564 /**
5565  *	dev_set_promiscuity	- update promiscuity count on a device
5566  *	@dev: device
5567  *	@inc: modifier
5568  *
5569  *	Add or remove promiscuity from a device. While the count in the device
5570  *	remains above zero the interface remains promiscuous. Once it hits zero
5571  *	the device reverts back to normal filtering operation. A negative inc
5572  *	value is used to drop promiscuity on the device.
5573  *	Return 0 if successful or a negative errno code on error.
5574  */
dev_set_promiscuity(struct net_device * dev,int inc)5575 int dev_set_promiscuity(struct net_device *dev, int inc)
5576 {
5577 	unsigned int old_flags = dev->flags;
5578 	int err;
5579 
5580 	err = __dev_set_promiscuity(dev, inc, true);
5581 	if (err < 0)
5582 		return err;
5583 	if (dev->flags != old_flags)
5584 		dev_set_rx_mode(dev);
5585 	return err;
5586 }
5587 EXPORT_SYMBOL(dev_set_promiscuity);
5588 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)5589 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5590 {
5591 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5592 
5593 	ASSERT_RTNL();
5594 
5595 	dev->flags |= IFF_ALLMULTI;
5596 	dev->allmulti += inc;
5597 	if (dev->allmulti == 0) {
5598 		/*
5599 		 * Avoid overflow.
5600 		 * If inc causes overflow, untouch allmulti and return error.
5601 		 */
5602 		if (inc < 0)
5603 			dev->flags &= ~IFF_ALLMULTI;
5604 		else {
5605 			dev->allmulti -= inc;
5606 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5607 				dev->name);
5608 			return -EOVERFLOW;
5609 		}
5610 	}
5611 	if (dev->flags ^ old_flags) {
5612 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5613 		dev_set_rx_mode(dev);
5614 		if (notify)
5615 			__dev_notify_flags(dev, old_flags,
5616 					   dev->gflags ^ old_gflags);
5617 	}
5618 	return 0;
5619 }
5620 
5621 /**
5622  *	dev_set_allmulti	- update allmulti count on a device
5623  *	@dev: device
5624  *	@inc: modifier
5625  *
5626  *	Add or remove reception of all multicast frames to a device. While the
5627  *	count in the device remains above zero the interface remains listening
5628  *	to all interfaces. Once it hits zero the device reverts back to normal
5629  *	filtering operation. A negative @inc value is used to drop the counter
5630  *	when releasing a resource needing all multicasts.
5631  *	Return 0 if successful or a negative errno code on error.
5632  */
5633 
dev_set_allmulti(struct net_device * dev,int inc)5634 int dev_set_allmulti(struct net_device *dev, int inc)
5635 {
5636 	return __dev_set_allmulti(dev, inc, true);
5637 }
5638 EXPORT_SYMBOL(dev_set_allmulti);
5639 
5640 /*
5641  *	Upload unicast and multicast address lists to device and
5642  *	configure RX filtering. When the device doesn't support unicast
5643  *	filtering it is put in promiscuous mode while unicast addresses
5644  *	are present.
5645  */
__dev_set_rx_mode(struct net_device * dev)5646 void __dev_set_rx_mode(struct net_device *dev)
5647 {
5648 	const struct net_device_ops *ops = dev->netdev_ops;
5649 
5650 	/* dev_open will call this function so the list will stay sane. */
5651 	if (!(dev->flags&IFF_UP))
5652 		return;
5653 
5654 	if (!netif_device_present(dev))
5655 		return;
5656 
5657 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5658 		/* Unicast addresses changes may only happen under the rtnl,
5659 		 * therefore calling __dev_set_promiscuity here is safe.
5660 		 */
5661 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5662 			__dev_set_promiscuity(dev, 1, false);
5663 			dev->uc_promisc = true;
5664 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5665 			__dev_set_promiscuity(dev, -1, false);
5666 			dev->uc_promisc = false;
5667 		}
5668 	}
5669 
5670 	if (ops->ndo_set_rx_mode)
5671 		ops->ndo_set_rx_mode(dev);
5672 }
5673 
dev_set_rx_mode(struct net_device * dev)5674 void dev_set_rx_mode(struct net_device *dev)
5675 {
5676 	netif_addr_lock_bh(dev);
5677 	__dev_set_rx_mode(dev);
5678 	netif_addr_unlock_bh(dev);
5679 }
5680 
5681 /**
5682  *	dev_get_flags - get flags reported to userspace
5683  *	@dev: device
5684  *
5685  *	Get the combination of flag bits exported through APIs to userspace.
5686  */
dev_get_flags(const struct net_device * dev)5687 unsigned int dev_get_flags(const struct net_device *dev)
5688 {
5689 	unsigned int flags;
5690 
5691 	flags = (dev->flags & ~(IFF_PROMISC |
5692 				IFF_ALLMULTI |
5693 				IFF_RUNNING |
5694 				IFF_LOWER_UP |
5695 				IFF_DORMANT)) |
5696 		(dev->gflags & (IFF_PROMISC |
5697 				IFF_ALLMULTI));
5698 
5699 	if (netif_running(dev)) {
5700 		if (netif_oper_up(dev))
5701 			flags |= IFF_RUNNING;
5702 		if (netif_carrier_ok(dev))
5703 			flags |= IFF_LOWER_UP;
5704 		if (netif_dormant(dev))
5705 			flags |= IFF_DORMANT;
5706 	}
5707 
5708 	return flags;
5709 }
5710 EXPORT_SYMBOL(dev_get_flags);
5711 
__dev_change_flags(struct net_device * dev,unsigned int flags)5712 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5713 {
5714 	unsigned int old_flags = dev->flags;
5715 	int ret;
5716 
5717 	ASSERT_RTNL();
5718 
5719 	/*
5720 	 *	Set the flags on our device.
5721 	 */
5722 
5723 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5724 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5725 			       IFF_AUTOMEDIA)) |
5726 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5727 				    IFF_ALLMULTI));
5728 
5729 	/*
5730 	 *	Load in the correct multicast list now the flags have changed.
5731 	 */
5732 
5733 	if ((old_flags ^ flags) & IFF_MULTICAST)
5734 		dev_change_rx_flags(dev, IFF_MULTICAST);
5735 
5736 	dev_set_rx_mode(dev);
5737 
5738 	/*
5739 	 *	Have we downed the interface. We handle IFF_UP ourselves
5740 	 *	according to user attempts to set it, rather than blindly
5741 	 *	setting it.
5742 	 */
5743 
5744 	ret = 0;
5745 	if ((old_flags ^ flags) & IFF_UP)
5746 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5747 
5748 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5749 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5750 		unsigned int old_flags = dev->flags;
5751 
5752 		dev->gflags ^= IFF_PROMISC;
5753 
5754 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5755 			if (dev->flags != old_flags)
5756 				dev_set_rx_mode(dev);
5757 	}
5758 
5759 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5760 	   is important. Some (broken) drivers set IFF_PROMISC, when
5761 	   IFF_ALLMULTI is requested not asking us and not reporting.
5762 	 */
5763 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5764 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5765 
5766 		dev->gflags ^= IFF_ALLMULTI;
5767 		__dev_set_allmulti(dev, inc, false);
5768 	}
5769 
5770 	return ret;
5771 }
5772 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)5773 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5774 			unsigned int gchanges)
5775 {
5776 	unsigned int changes = dev->flags ^ old_flags;
5777 
5778 	if (gchanges)
5779 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5780 
5781 	if (changes & IFF_UP) {
5782 		if (dev->flags & IFF_UP)
5783 			call_netdevice_notifiers(NETDEV_UP, dev);
5784 		else
5785 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5786 	}
5787 
5788 	if (dev->flags & IFF_UP &&
5789 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5790 		struct netdev_notifier_change_info change_info;
5791 
5792 		change_info.flags_changed = changes;
5793 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5794 					      &change_info.info);
5795 	}
5796 }
5797 
5798 /**
5799  *	dev_change_flags - change device settings
5800  *	@dev: device
5801  *	@flags: device state flags
5802  *
5803  *	Change settings on device based state flags. The flags are
5804  *	in the userspace exported format.
5805  */
dev_change_flags(struct net_device * dev,unsigned int flags)5806 int dev_change_flags(struct net_device *dev, unsigned int flags)
5807 {
5808 	int ret;
5809 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5810 
5811 	ret = __dev_change_flags(dev, flags);
5812 	if (ret < 0)
5813 		return ret;
5814 
5815 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5816 	__dev_notify_flags(dev, old_flags, changes);
5817 	return ret;
5818 }
5819 EXPORT_SYMBOL(dev_change_flags);
5820 
__dev_set_mtu(struct net_device * dev,int new_mtu)5821 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5822 {
5823 	const struct net_device_ops *ops = dev->netdev_ops;
5824 
5825 	if (ops->ndo_change_mtu)
5826 		return ops->ndo_change_mtu(dev, new_mtu);
5827 
5828 	dev->mtu = new_mtu;
5829 	return 0;
5830 }
5831 
5832 /**
5833  *	dev_set_mtu - Change maximum transfer unit
5834  *	@dev: device
5835  *	@new_mtu: new transfer unit
5836  *
5837  *	Change the maximum transfer size of the network device.
5838  */
dev_set_mtu(struct net_device * dev,int new_mtu)5839 int dev_set_mtu(struct net_device *dev, int new_mtu)
5840 {
5841 	int err, orig_mtu;
5842 
5843 	if (new_mtu == dev->mtu)
5844 		return 0;
5845 
5846 	/*	MTU must be positive.	 */
5847 	if (new_mtu < 0)
5848 		return -EINVAL;
5849 
5850 	if (!netif_device_present(dev))
5851 		return -ENODEV;
5852 
5853 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5854 	err = notifier_to_errno(err);
5855 	if (err)
5856 		return err;
5857 
5858 	orig_mtu = dev->mtu;
5859 	err = __dev_set_mtu(dev, new_mtu);
5860 
5861 	if (!err) {
5862 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5863 		err = notifier_to_errno(err);
5864 		if (err) {
5865 			/* setting mtu back and notifying everyone again,
5866 			 * so that they have a chance to revert changes.
5867 			 */
5868 			__dev_set_mtu(dev, orig_mtu);
5869 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5870 		}
5871 	}
5872 	return err;
5873 }
5874 EXPORT_SYMBOL(dev_set_mtu);
5875 
5876 /**
5877  *	dev_set_group - Change group this device belongs to
5878  *	@dev: device
5879  *	@new_group: group this device should belong to
5880  */
dev_set_group(struct net_device * dev,int new_group)5881 void dev_set_group(struct net_device *dev, int new_group)
5882 {
5883 	dev->group = new_group;
5884 }
5885 EXPORT_SYMBOL(dev_set_group);
5886 
5887 /**
5888  *	dev_set_mac_address - Change Media Access Control Address
5889  *	@dev: device
5890  *	@sa: new address
5891  *
5892  *	Change the hardware (MAC) address of the device
5893  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)5894 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5895 {
5896 	const struct net_device_ops *ops = dev->netdev_ops;
5897 	int err;
5898 
5899 	if (!ops->ndo_set_mac_address)
5900 		return -EOPNOTSUPP;
5901 	if (sa->sa_family != dev->type)
5902 		return -EINVAL;
5903 	if (!netif_device_present(dev))
5904 		return -ENODEV;
5905 	err = ops->ndo_set_mac_address(dev, sa);
5906 	if (err)
5907 		return err;
5908 	dev->addr_assign_type = NET_ADDR_SET;
5909 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5910 	add_device_randomness(dev->dev_addr, dev->addr_len);
5911 	return 0;
5912 }
5913 EXPORT_SYMBOL(dev_set_mac_address);
5914 
5915 /**
5916  *	dev_change_carrier - Change device carrier
5917  *	@dev: device
5918  *	@new_carrier: new value
5919  *
5920  *	Change device carrier
5921  */
dev_change_carrier(struct net_device * dev,bool new_carrier)5922 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5923 {
5924 	const struct net_device_ops *ops = dev->netdev_ops;
5925 
5926 	if (!ops->ndo_change_carrier)
5927 		return -EOPNOTSUPP;
5928 	if (!netif_device_present(dev))
5929 		return -ENODEV;
5930 	return ops->ndo_change_carrier(dev, new_carrier);
5931 }
5932 EXPORT_SYMBOL(dev_change_carrier);
5933 
5934 /**
5935  *	dev_get_phys_port_id - Get device physical port ID
5936  *	@dev: device
5937  *	@ppid: port ID
5938  *
5939  *	Get device physical port ID
5940  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)5941 int dev_get_phys_port_id(struct net_device *dev,
5942 			 struct netdev_phys_item_id *ppid)
5943 {
5944 	const struct net_device_ops *ops = dev->netdev_ops;
5945 
5946 	if (!ops->ndo_get_phys_port_id)
5947 		return -EOPNOTSUPP;
5948 	return ops->ndo_get_phys_port_id(dev, ppid);
5949 }
5950 EXPORT_SYMBOL(dev_get_phys_port_id);
5951 
5952 /**
5953  *	dev_get_phys_port_name - Get device physical port name
5954  *	@dev: device
5955  *	@name: port name
5956  *
5957  *	Get device physical port name
5958  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)5959 int dev_get_phys_port_name(struct net_device *dev,
5960 			   char *name, size_t len)
5961 {
5962 	const struct net_device_ops *ops = dev->netdev_ops;
5963 
5964 	if (!ops->ndo_get_phys_port_name)
5965 		return -EOPNOTSUPP;
5966 	return ops->ndo_get_phys_port_name(dev, name, len);
5967 }
5968 EXPORT_SYMBOL(dev_get_phys_port_name);
5969 
5970 /**
5971  *	dev_new_index	-	allocate an ifindex
5972  *	@net: the applicable net namespace
5973  *
5974  *	Returns a suitable unique value for a new device interface
5975  *	number.  The caller must hold the rtnl semaphore or the
5976  *	dev_base_lock to be sure it remains unique.
5977  */
dev_new_index(struct net * net)5978 static int dev_new_index(struct net *net)
5979 {
5980 	int ifindex = net->ifindex;
5981 	for (;;) {
5982 		if (++ifindex <= 0)
5983 			ifindex = 1;
5984 		if (!__dev_get_by_index(net, ifindex))
5985 			return net->ifindex = ifindex;
5986 	}
5987 }
5988 
5989 /* Delayed registration/unregisteration */
5990 static LIST_HEAD(net_todo_list);
5991 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5992 
net_set_todo(struct net_device * dev)5993 static void net_set_todo(struct net_device *dev)
5994 {
5995 	list_add_tail(&dev->todo_list, &net_todo_list);
5996 	dev_net(dev)->dev_unreg_count++;
5997 }
5998 
rollback_registered_many(struct list_head * head)5999 static void rollback_registered_many(struct list_head *head)
6000 {
6001 	struct net_device *dev, *tmp;
6002 	LIST_HEAD(close_head);
6003 
6004 	BUG_ON(dev_boot_phase);
6005 	ASSERT_RTNL();
6006 
6007 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6008 		/* Some devices call without registering
6009 		 * for initialization unwind. Remove those
6010 		 * devices and proceed with the remaining.
6011 		 */
6012 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6013 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6014 				 dev->name, dev);
6015 
6016 			WARN_ON(1);
6017 			list_del(&dev->unreg_list);
6018 			continue;
6019 		}
6020 		dev->dismantle = true;
6021 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6022 	}
6023 
6024 	/* If device is running, close it first. */
6025 	list_for_each_entry(dev, head, unreg_list)
6026 		list_add_tail(&dev->close_list, &close_head);
6027 	dev_close_many(&close_head, true);
6028 
6029 	list_for_each_entry(dev, head, unreg_list) {
6030 		/* And unlink it from device chain. */
6031 		unlist_netdevice(dev);
6032 
6033 		dev->reg_state = NETREG_UNREGISTERING;
6034 		on_each_cpu(flush_backlog, dev, 1);
6035 	}
6036 
6037 	synchronize_net();
6038 
6039 	list_for_each_entry(dev, head, unreg_list) {
6040 		struct sk_buff *skb = NULL;
6041 
6042 		/* Shutdown queueing discipline. */
6043 		dev_shutdown(dev);
6044 
6045 
6046 		/* Notify protocols, that we are about to destroy
6047 		   this device. They should clean all the things.
6048 		*/
6049 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6050 
6051 		if (!dev->rtnl_link_ops ||
6052 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6053 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6054 						     GFP_KERNEL);
6055 
6056 		/*
6057 		 *	Flush the unicast and multicast chains
6058 		 */
6059 		dev_uc_flush(dev);
6060 		dev_mc_flush(dev);
6061 
6062 		if (dev->netdev_ops->ndo_uninit)
6063 			dev->netdev_ops->ndo_uninit(dev);
6064 
6065 		if (skb)
6066 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6067 
6068 		/* Notifier chain MUST detach us all upper devices. */
6069 		WARN_ON(netdev_has_any_upper_dev(dev));
6070 
6071 		/* Remove entries from kobject tree */
6072 		netdev_unregister_kobject(dev);
6073 #ifdef CONFIG_XPS
6074 		/* Remove XPS queueing entries */
6075 		netif_reset_xps_queues_gt(dev, 0);
6076 #endif
6077 	}
6078 
6079 	synchronize_net();
6080 
6081 	list_for_each_entry(dev, head, unreg_list)
6082 		dev_put(dev);
6083 }
6084 
rollback_registered(struct net_device * dev)6085 static void rollback_registered(struct net_device *dev)
6086 {
6087 	LIST_HEAD(single);
6088 
6089 	list_add(&dev->unreg_list, &single);
6090 	rollback_registered_many(&single);
6091 	list_del(&single);
6092 }
6093 
netdev_fix_features(struct net_device * dev,netdev_features_t features)6094 static netdev_features_t netdev_fix_features(struct net_device *dev,
6095 	netdev_features_t features)
6096 {
6097 	/* Fix illegal checksum combinations */
6098 	if ((features & NETIF_F_HW_CSUM) &&
6099 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6100 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6101 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6102 	}
6103 
6104 	/* TSO requires that SG is present as well. */
6105 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6106 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6107 		features &= ~NETIF_F_ALL_TSO;
6108 	}
6109 
6110 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6111 					!(features & NETIF_F_IP_CSUM)) {
6112 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6113 		features &= ~NETIF_F_TSO;
6114 		features &= ~NETIF_F_TSO_ECN;
6115 	}
6116 
6117 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6118 					 !(features & NETIF_F_IPV6_CSUM)) {
6119 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6120 		features &= ~NETIF_F_TSO6;
6121 	}
6122 
6123 	/* TSO ECN requires that TSO is present as well. */
6124 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6125 		features &= ~NETIF_F_TSO_ECN;
6126 
6127 	/* Software GSO depends on SG. */
6128 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6129 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6130 		features &= ~NETIF_F_GSO;
6131 	}
6132 
6133 	/* UFO needs SG and checksumming */
6134 	if (features & NETIF_F_UFO) {
6135 		/* maybe split UFO into V4 and V6? */
6136 		if (!((features & NETIF_F_GEN_CSUM) ||
6137 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6138 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6139 			netdev_dbg(dev,
6140 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6141 			features &= ~NETIF_F_UFO;
6142 		}
6143 
6144 		if (!(features & NETIF_F_SG)) {
6145 			netdev_dbg(dev,
6146 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6147 			features &= ~NETIF_F_UFO;
6148 		}
6149 	}
6150 
6151 #ifdef CONFIG_NET_RX_BUSY_POLL
6152 	if (dev->netdev_ops->ndo_busy_poll)
6153 		features |= NETIF_F_BUSY_POLL;
6154 	else
6155 #endif
6156 		features &= ~NETIF_F_BUSY_POLL;
6157 
6158 	return features;
6159 }
6160 
__netdev_update_features(struct net_device * dev)6161 int __netdev_update_features(struct net_device *dev)
6162 {
6163 	netdev_features_t features;
6164 	int err = 0;
6165 
6166 	ASSERT_RTNL();
6167 
6168 	features = netdev_get_wanted_features(dev);
6169 
6170 	if (dev->netdev_ops->ndo_fix_features)
6171 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6172 
6173 	/* driver might be less strict about feature dependencies */
6174 	features = netdev_fix_features(dev, features);
6175 
6176 	if (dev->features == features)
6177 		return 0;
6178 
6179 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6180 		&dev->features, &features);
6181 
6182 	if (dev->netdev_ops->ndo_set_features)
6183 		err = dev->netdev_ops->ndo_set_features(dev, features);
6184 
6185 	if (unlikely(err < 0)) {
6186 		netdev_err(dev,
6187 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6188 			err, &features, &dev->features);
6189 		return -1;
6190 	}
6191 
6192 	if (!err)
6193 		dev->features = features;
6194 
6195 	return 1;
6196 }
6197 
6198 /**
6199  *	netdev_update_features - recalculate device features
6200  *	@dev: the device to check
6201  *
6202  *	Recalculate dev->features set and send notifications if it
6203  *	has changed. Should be called after driver or hardware dependent
6204  *	conditions might have changed that influence the features.
6205  */
netdev_update_features(struct net_device * dev)6206 void netdev_update_features(struct net_device *dev)
6207 {
6208 	if (__netdev_update_features(dev))
6209 		netdev_features_change(dev);
6210 }
6211 EXPORT_SYMBOL(netdev_update_features);
6212 
6213 /**
6214  *	netdev_change_features - recalculate device features
6215  *	@dev: the device to check
6216  *
6217  *	Recalculate dev->features set and send notifications even
6218  *	if they have not changed. Should be called instead of
6219  *	netdev_update_features() if also dev->vlan_features might
6220  *	have changed to allow the changes to be propagated to stacked
6221  *	VLAN devices.
6222  */
netdev_change_features(struct net_device * dev)6223 void netdev_change_features(struct net_device *dev)
6224 {
6225 	__netdev_update_features(dev);
6226 	netdev_features_change(dev);
6227 }
6228 EXPORT_SYMBOL(netdev_change_features);
6229 
6230 /**
6231  *	netif_stacked_transfer_operstate -	transfer operstate
6232  *	@rootdev: the root or lower level device to transfer state from
6233  *	@dev: the device to transfer operstate to
6234  *
6235  *	Transfer operational state from root to device. This is normally
6236  *	called when a stacking relationship exists between the root
6237  *	device and the device(a leaf device).
6238  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)6239 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6240 					struct net_device *dev)
6241 {
6242 	if (rootdev->operstate == IF_OPER_DORMANT)
6243 		netif_dormant_on(dev);
6244 	else
6245 		netif_dormant_off(dev);
6246 
6247 	if (netif_carrier_ok(rootdev)) {
6248 		if (!netif_carrier_ok(dev))
6249 			netif_carrier_on(dev);
6250 	} else {
6251 		if (netif_carrier_ok(dev))
6252 			netif_carrier_off(dev);
6253 	}
6254 }
6255 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6256 
6257 #ifdef CONFIG_SYSFS
netif_alloc_rx_queues(struct net_device * dev)6258 static int netif_alloc_rx_queues(struct net_device *dev)
6259 {
6260 	unsigned int i, count = dev->num_rx_queues;
6261 	struct netdev_rx_queue *rx;
6262 	size_t sz = count * sizeof(*rx);
6263 
6264 	BUG_ON(count < 1);
6265 
6266 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6267 	if (!rx) {
6268 		rx = vzalloc(sz);
6269 		if (!rx)
6270 			return -ENOMEM;
6271 	}
6272 	dev->_rx = rx;
6273 
6274 	for (i = 0; i < count; i++)
6275 		rx[i].dev = dev;
6276 	return 0;
6277 }
6278 #endif
6279 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)6280 static void netdev_init_one_queue(struct net_device *dev,
6281 				  struct netdev_queue *queue, void *_unused)
6282 {
6283 	/* Initialize queue lock */
6284 	spin_lock_init(&queue->_xmit_lock);
6285 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6286 	queue->xmit_lock_owner = -1;
6287 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6288 	queue->dev = dev;
6289 #ifdef CONFIG_BQL
6290 	dql_init(&queue->dql, HZ);
6291 #endif
6292 }
6293 
netif_free_tx_queues(struct net_device * dev)6294 static void netif_free_tx_queues(struct net_device *dev)
6295 {
6296 	kvfree(dev->_tx);
6297 }
6298 
netif_alloc_netdev_queues(struct net_device * dev)6299 static int netif_alloc_netdev_queues(struct net_device *dev)
6300 {
6301 	unsigned int count = dev->num_tx_queues;
6302 	struct netdev_queue *tx;
6303 	size_t sz = count * sizeof(*tx);
6304 
6305 	if (count < 1 || count > 0xffff)
6306 		return -EINVAL;
6307 
6308 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6309 	if (!tx) {
6310 		tx = vzalloc(sz);
6311 		if (!tx)
6312 			return -ENOMEM;
6313 	}
6314 	dev->_tx = tx;
6315 
6316 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6317 	spin_lock_init(&dev->tx_global_lock);
6318 
6319 	return 0;
6320 }
6321 
6322 /**
6323  *	register_netdevice	- register a network device
6324  *	@dev: device to register
6325  *
6326  *	Take a completed network device structure and add it to the kernel
6327  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6328  *	chain. 0 is returned on success. A negative errno code is returned
6329  *	on a failure to set up the device, or if the name is a duplicate.
6330  *
6331  *	Callers must hold the rtnl semaphore. You may want
6332  *	register_netdev() instead of this.
6333  *
6334  *	BUGS:
6335  *	The locking appears insufficient to guarantee two parallel registers
6336  *	will not get the same name.
6337  */
6338 
register_netdevice(struct net_device * dev)6339 int register_netdevice(struct net_device *dev)
6340 {
6341 	int ret;
6342 	struct net *net = dev_net(dev);
6343 
6344 	BUG_ON(dev_boot_phase);
6345 	ASSERT_RTNL();
6346 
6347 	might_sleep();
6348 
6349 	/* When net_device's are persistent, this will be fatal. */
6350 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6351 	BUG_ON(!net);
6352 
6353 	spin_lock_init(&dev->addr_list_lock);
6354 	netdev_set_addr_lockdep_class(dev);
6355 
6356 	ret = dev_get_valid_name(net, dev, dev->name);
6357 	if (ret < 0)
6358 		goto out;
6359 
6360 	/* Init, if this function is available */
6361 	if (dev->netdev_ops->ndo_init) {
6362 		ret = dev->netdev_ops->ndo_init(dev);
6363 		if (ret) {
6364 			if (ret > 0)
6365 				ret = -EIO;
6366 			goto out;
6367 		}
6368 	}
6369 
6370 	if (((dev->hw_features | dev->features) &
6371 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6372 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6373 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6374 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6375 		ret = -EINVAL;
6376 		goto err_uninit;
6377 	}
6378 
6379 	ret = -EBUSY;
6380 	if (!dev->ifindex)
6381 		dev->ifindex = dev_new_index(net);
6382 	else if (__dev_get_by_index(net, dev->ifindex))
6383 		goto err_uninit;
6384 
6385 	/* Transfer changeable features to wanted_features and enable
6386 	 * software offloads (GSO and GRO).
6387 	 */
6388 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6389 	dev->features |= NETIF_F_SOFT_FEATURES;
6390 	dev->wanted_features = dev->features & dev->hw_features;
6391 
6392 	if (!(dev->flags & IFF_LOOPBACK)) {
6393 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6394 	}
6395 
6396 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6397 	 */
6398 	dev->vlan_features |= NETIF_F_HIGHDMA;
6399 
6400 	/* Make NETIF_F_SG inheritable to tunnel devices.
6401 	 */
6402 	dev->hw_enc_features |= NETIF_F_SG;
6403 
6404 	/* Make NETIF_F_SG inheritable to MPLS.
6405 	 */
6406 	dev->mpls_features |= NETIF_F_SG;
6407 
6408 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6409 	ret = notifier_to_errno(ret);
6410 	if (ret)
6411 		goto err_uninit;
6412 
6413 	ret = netdev_register_kobject(dev);
6414 	if (ret)
6415 		goto err_uninit;
6416 	dev->reg_state = NETREG_REGISTERED;
6417 
6418 	__netdev_update_features(dev);
6419 
6420 	/*
6421 	 *	Default initial state at registry is that the
6422 	 *	device is present.
6423 	 */
6424 
6425 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6426 
6427 	linkwatch_init_dev(dev);
6428 
6429 	dev_init_scheduler(dev);
6430 	dev_hold(dev);
6431 	list_netdevice(dev);
6432 	add_device_randomness(dev->dev_addr, dev->addr_len);
6433 
6434 	/* If the device has permanent device address, driver should
6435 	 * set dev_addr and also addr_assign_type should be set to
6436 	 * NET_ADDR_PERM (default value).
6437 	 */
6438 	if (dev->addr_assign_type == NET_ADDR_PERM)
6439 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6440 
6441 	/* Notify protocols, that a new device appeared. */
6442 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6443 	ret = notifier_to_errno(ret);
6444 	if (ret) {
6445 		rollback_registered(dev);
6446 		dev->reg_state = NETREG_UNREGISTERED;
6447 	}
6448 	/*
6449 	 *	Prevent userspace races by waiting until the network
6450 	 *	device is fully setup before sending notifications.
6451 	 */
6452 	if (!dev->rtnl_link_ops ||
6453 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6454 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6455 
6456 out:
6457 	return ret;
6458 
6459 err_uninit:
6460 	if (dev->netdev_ops->ndo_uninit)
6461 		dev->netdev_ops->ndo_uninit(dev);
6462 	goto out;
6463 }
6464 EXPORT_SYMBOL(register_netdevice);
6465 
6466 /**
6467  *	init_dummy_netdev	- init a dummy network device for NAPI
6468  *	@dev: device to init
6469  *
6470  *	This takes a network device structure and initialize the minimum
6471  *	amount of fields so it can be used to schedule NAPI polls without
6472  *	registering a full blown interface. This is to be used by drivers
6473  *	that need to tie several hardware interfaces to a single NAPI
6474  *	poll scheduler due to HW limitations.
6475  */
init_dummy_netdev(struct net_device * dev)6476 int init_dummy_netdev(struct net_device *dev)
6477 {
6478 	/* Clear everything. Note we don't initialize spinlocks
6479 	 * are they aren't supposed to be taken by any of the
6480 	 * NAPI code and this dummy netdev is supposed to be
6481 	 * only ever used for NAPI polls
6482 	 */
6483 	memset(dev, 0, sizeof(struct net_device));
6484 
6485 	/* make sure we BUG if trying to hit standard
6486 	 * register/unregister code path
6487 	 */
6488 	dev->reg_state = NETREG_DUMMY;
6489 
6490 	/* NAPI wants this */
6491 	INIT_LIST_HEAD(&dev->napi_list);
6492 
6493 	/* a dummy interface is started by default */
6494 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6495 	set_bit(__LINK_STATE_START, &dev->state);
6496 
6497 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6498 	 * because users of this 'device' dont need to change
6499 	 * its refcount.
6500 	 */
6501 
6502 	return 0;
6503 }
6504 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6505 
6506 
6507 /**
6508  *	register_netdev	- register a network device
6509  *	@dev: device to register
6510  *
6511  *	Take a completed network device structure and add it to the kernel
6512  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6513  *	chain. 0 is returned on success. A negative errno code is returned
6514  *	on a failure to set up the device, or if the name is a duplicate.
6515  *
6516  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6517  *	and expands the device name if you passed a format string to
6518  *	alloc_netdev.
6519  */
register_netdev(struct net_device * dev)6520 int register_netdev(struct net_device *dev)
6521 {
6522 	int err;
6523 
6524 	rtnl_lock();
6525 	err = register_netdevice(dev);
6526 	rtnl_unlock();
6527 	return err;
6528 }
6529 EXPORT_SYMBOL(register_netdev);
6530 
netdev_refcnt_read(const struct net_device * dev)6531 int netdev_refcnt_read(const struct net_device *dev)
6532 {
6533 	int i, refcnt = 0;
6534 
6535 	for_each_possible_cpu(i)
6536 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6537 	return refcnt;
6538 }
6539 EXPORT_SYMBOL(netdev_refcnt_read);
6540 
6541 /**
6542  * netdev_wait_allrefs - wait until all references are gone.
6543  * @dev: target net_device
6544  *
6545  * This is called when unregistering network devices.
6546  *
6547  * Any protocol or device that holds a reference should register
6548  * for netdevice notification, and cleanup and put back the
6549  * reference if they receive an UNREGISTER event.
6550  * We can get stuck here if buggy protocols don't correctly
6551  * call dev_put.
6552  */
netdev_wait_allrefs(struct net_device * dev)6553 static void netdev_wait_allrefs(struct net_device *dev)
6554 {
6555 	unsigned long rebroadcast_time, warning_time;
6556 	int refcnt;
6557 
6558 	linkwatch_forget_dev(dev);
6559 
6560 	rebroadcast_time = warning_time = jiffies;
6561 	refcnt = netdev_refcnt_read(dev);
6562 
6563 	while (refcnt != 0) {
6564 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6565 			rtnl_lock();
6566 
6567 			/* Rebroadcast unregister notification */
6568 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6569 
6570 			__rtnl_unlock();
6571 			rcu_barrier();
6572 			rtnl_lock();
6573 
6574 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6575 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6576 				     &dev->state)) {
6577 				/* We must not have linkwatch events
6578 				 * pending on unregister. If this
6579 				 * happens, we simply run the queue
6580 				 * unscheduled, resulting in a noop
6581 				 * for this device.
6582 				 */
6583 				linkwatch_run_queue();
6584 			}
6585 
6586 			__rtnl_unlock();
6587 
6588 			rebroadcast_time = jiffies;
6589 		}
6590 
6591 		msleep(250);
6592 
6593 		refcnt = netdev_refcnt_read(dev);
6594 
6595 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6596 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6597 				 dev->name, refcnt);
6598 			warning_time = jiffies;
6599 		}
6600 	}
6601 }
6602 
6603 /* The sequence is:
6604  *
6605  *	rtnl_lock();
6606  *	...
6607  *	register_netdevice(x1);
6608  *	register_netdevice(x2);
6609  *	...
6610  *	unregister_netdevice(y1);
6611  *	unregister_netdevice(y2);
6612  *      ...
6613  *	rtnl_unlock();
6614  *	free_netdev(y1);
6615  *	free_netdev(y2);
6616  *
6617  * We are invoked by rtnl_unlock().
6618  * This allows us to deal with problems:
6619  * 1) We can delete sysfs objects which invoke hotplug
6620  *    without deadlocking with linkwatch via keventd.
6621  * 2) Since we run with the RTNL semaphore not held, we can sleep
6622  *    safely in order to wait for the netdev refcnt to drop to zero.
6623  *
6624  * We must not return until all unregister events added during
6625  * the interval the lock was held have been completed.
6626  */
netdev_run_todo(void)6627 void netdev_run_todo(void)
6628 {
6629 	struct list_head list;
6630 
6631 	/* Snapshot list, allow later requests */
6632 	list_replace_init(&net_todo_list, &list);
6633 
6634 	__rtnl_unlock();
6635 
6636 
6637 	/* Wait for rcu callbacks to finish before next phase */
6638 	if (!list_empty(&list))
6639 		rcu_barrier();
6640 
6641 	while (!list_empty(&list)) {
6642 		struct net_device *dev
6643 			= list_first_entry(&list, struct net_device, todo_list);
6644 		list_del(&dev->todo_list);
6645 
6646 		rtnl_lock();
6647 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6648 		__rtnl_unlock();
6649 
6650 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6651 			pr_err("network todo '%s' but state %d\n",
6652 			       dev->name, dev->reg_state);
6653 			dump_stack();
6654 			continue;
6655 		}
6656 
6657 		dev->reg_state = NETREG_UNREGISTERED;
6658 
6659 		netdev_wait_allrefs(dev);
6660 
6661 		/* paranoia */
6662 		BUG_ON(netdev_refcnt_read(dev));
6663 		BUG_ON(!list_empty(&dev->ptype_all));
6664 		BUG_ON(!list_empty(&dev->ptype_specific));
6665 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6666 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6667 		WARN_ON(dev->dn_ptr);
6668 
6669 		if (dev->destructor)
6670 			dev->destructor(dev);
6671 
6672 		/* Report a network device has been unregistered */
6673 		rtnl_lock();
6674 		dev_net(dev)->dev_unreg_count--;
6675 		__rtnl_unlock();
6676 		wake_up(&netdev_unregistering_wq);
6677 
6678 		/* Free network device */
6679 		kobject_put(&dev->dev.kobj);
6680 	}
6681 }
6682 
6683 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6684  * fields in the same order, with only the type differing.
6685  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)6686 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6687 			     const struct net_device_stats *netdev_stats)
6688 {
6689 #if BITS_PER_LONG == 64
6690 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6691 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6692 #else
6693 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6694 	const unsigned long *src = (const unsigned long *)netdev_stats;
6695 	u64 *dst = (u64 *)stats64;
6696 
6697 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6698 		     sizeof(*stats64) / sizeof(u64));
6699 	for (i = 0; i < n; i++)
6700 		dst[i] = src[i];
6701 #endif
6702 }
6703 EXPORT_SYMBOL(netdev_stats_to_stats64);
6704 
6705 /**
6706  *	dev_get_stats	- get network device statistics
6707  *	@dev: device to get statistics from
6708  *	@storage: place to store stats
6709  *
6710  *	Get network statistics from device. Return @storage.
6711  *	The device driver may provide its own method by setting
6712  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6713  *	otherwise the internal statistics structure is used.
6714  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)6715 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6716 					struct rtnl_link_stats64 *storage)
6717 {
6718 	const struct net_device_ops *ops = dev->netdev_ops;
6719 
6720 	if (ops->ndo_get_stats64) {
6721 		memset(storage, 0, sizeof(*storage));
6722 		ops->ndo_get_stats64(dev, storage);
6723 	} else if (ops->ndo_get_stats) {
6724 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6725 	} else {
6726 		netdev_stats_to_stats64(storage, &dev->stats);
6727 	}
6728 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6729 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6730 	return storage;
6731 }
6732 EXPORT_SYMBOL(dev_get_stats);
6733 
dev_ingress_queue_create(struct net_device * dev)6734 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6735 {
6736 	struct netdev_queue *queue = dev_ingress_queue(dev);
6737 
6738 #ifdef CONFIG_NET_CLS_ACT
6739 	if (queue)
6740 		return queue;
6741 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6742 	if (!queue)
6743 		return NULL;
6744 	netdev_init_one_queue(dev, queue, NULL);
6745 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6746 	queue->qdisc_sleeping = &noop_qdisc;
6747 	rcu_assign_pointer(dev->ingress_queue, queue);
6748 #endif
6749 	return queue;
6750 }
6751 
6752 static const struct ethtool_ops default_ethtool_ops;
6753 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)6754 void netdev_set_default_ethtool_ops(struct net_device *dev,
6755 				    const struct ethtool_ops *ops)
6756 {
6757 	if (dev->ethtool_ops == &default_ethtool_ops)
6758 		dev->ethtool_ops = ops;
6759 }
6760 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6761 
netdev_freemem(struct net_device * dev)6762 void netdev_freemem(struct net_device *dev)
6763 {
6764 	char *addr = (char *)dev - dev->padded;
6765 
6766 	kvfree(addr);
6767 }
6768 
6769 /**
6770  *	alloc_netdev_mqs - allocate network device
6771  *	@sizeof_priv:		size of private data to allocate space for
6772  *	@name:			device name format string
6773  *	@name_assign_type: 	origin of device name
6774  *	@setup:			callback to initialize device
6775  *	@txqs:			the number of TX subqueues to allocate
6776  *	@rxqs:			the number of RX subqueues to allocate
6777  *
6778  *	Allocates a struct net_device with private data area for driver use
6779  *	and performs basic initialization.  Also allocates subqueue structs
6780  *	for each queue on the device.
6781  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)6782 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6783 		unsigned char name_assign_type,
6784 		void (*setup)(struct net_device *),
6785 		unsigned int txqs, unsigned int rxqs)
6786 {
6787 	struct net_device *dev;
6788 	size_t alloc_size;
6789 	struct net_device *p;
6790 
6791 	BUG_ON(strlen(name) >= sizeof(dev->name));
6792 
6793 	if (txqs < 1) {
6794 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6795 		return NULL;
6796 	}
6797 
6798 #ifdef CONFIG_SYSFS
6799 	if (rxqs < 1) {
6800 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6801 		return NULL;
6802 	}
6803 #endif
6804 
6805 	alloc_size = sizeof(struct net_device);
6806 	if (sizeof_priv) {
6807 		/* ensure 32-byte alignment of private area */
6808 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6809 		alloc_size += sizeof_priv;
6810 	}
6811 	/* ensure 32-byte alignment of whole construct */
6812 	alloc_size += NETDEV_ALIGN - 1;
6813 
6814 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6815 	if (!p)
6816 		p = vzalloc(alloc_size);
6817 	if (!p)
6818 		return NULL;
6819 
6820 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6821 	dev->padded = (char *)dev - (char *)p;
6822 
6823 	dev->pcpu_refcnt = alloc_percpu(int);
6824 	if (!dev->pcpu_refcnt)
6825 		goto free_dev;
6826 
6827 	if (dev_addr_init(dev))
6828 		goto free_pcpu;
6829 
6830 	dev_mc_init(dev);
6831 	dev_uc_init(dev);
6832 
6833 	dev_net_set(dev, &init_net);
6834 
6835 	dev->gso_max_size = GSO_MAX_SIZE;
6836 	dev->gso_max_segs = GSO_MAX_SEGS;
6837 	dev->gso_min_segs = 0;
6838 
6839 	INIT_LIST_HEAD(&dev->napi_list);
6840 	INIT_LIST_HEAD(&dev->unreg_list);
6841 	INIT_LIST_HEAD(&dev->close_list);
6842 	INIT_LIST_HEAD(&dev->link_watch_list);
6843 	INIT_LIST_HEAD(&dev->adj_list.upper);
6844 	INIT_LIST_HEAD(&dev->adj_list.lower);
6845 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6846 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6847 	INIT_LIST_HEAD(&dev->ptype_all);
6848 	INIT_LIST_HEAD(&dev->ptype_specific);
6849 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6850 	setup(dev);
6851 
6852 	dev->num_tx_queues = txqs;
6853 	dev->real_num_tx_queues = txqs;
6854 	if (netif_alloc_netdev_queues(dev))
6855 		goto free_all;
6856 
6857 #ifdef CONFIG_SYSFS
6858 	dev->num_rx_queues = rxqs;
6859 	dev->real_num_rx_queues = rxqs;
6860 	if (netif_alloc_rx_queues(dev))
6861 		goto free_all;
6862 #endif
6863 
6864 	strcpy(dev->name, name);
6865 	dev->name_assign_type = name_assign_type;
6866 	dev->group = INIT_NETDEV_GROUP;
6867 	if (!dev->ethtool_ops)
6868 		dev->ethtool_ops = &default_ethtool_ops;
6869 	return dev;
6870 
6871 free_all:
6872 	free_netdev(dev);
6873 	return NULL;
6874 
6875 free_pcpu:
6876 	free_percpu(dev->pcpu_refcnt);
6877 free_dev:
6878 	netdev_freemem(dev);
6879 	return NULL;
6880 }
6881 EXPORT_SYMBOL(alloc_netdev_mqs);
6882 
6883 /**
6884  *	free_netdev - free network device
6885  *	@dev: device
6886  *
6887  *	This function does the last stage of destroying an allocated device
6888  * 	interface. The reference to the device object is released.
6889  *	If this is the last reference then it will be freed.
6890  */
free_netdev(struct net_device * dev)6891 void free_netdev(struct net_device *dev)
6892 {
6893 	struct napi_struct *p, *n;
6894 
6895 	netif_free_tx_queues(dev);
6896 #ifdef CONFIG_SYSFS
6897 	kvfree(dev->_rx);
6898 #endif
6899 
6900 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6901 
6902 	/* Flush device addresses */
6903 	dev_addr_flush(dev);
6904 
6905 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6906 		netif_napi_del(p);
6907 
6908 	free_percpu(dev->pcpu_refcnt);
6909 	dev->pcpu_refcnt = NULL;
6910 
6911 	/*  Compatibility with error handling in drivers */
6912 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6913 		netdev_freemem(dev);
6914 		return;
6915 	}
6916 
6917 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6918 	dev->reg_state = NETREG_RELEASED;
6919 
6920 	/* will free via device release */
6921 	put_device(&dev->dev);
6922 }
6923 EXPORT_SYMBOL(free_netdev);
6924 
6925 /**
6926  *	synchronize_net -  Synchronize with packet receive processing
6927  *
6928  *	Wait for packets currently being received to be done.
6929  *	Does not block later packets from starting.
6930  */
synchronize_net(void)6931 void synchronize_net(void)
6932 {
6933 	might_sleep();
6934 	if (rtnl_is_locked())
6935 		synchronize_rcu_expedited();
6936 	else
6937 		synchronize_rcu();
6938 }
6939 EXPORT_SYMBOL(synchronize_net);
6940 
6941 /**
6942  *	unregister_netdevice_queue - remove device from the kernel
6943  *	@dev: device
6944  *	@head: list
6945  *
6946  *	This function shuts down a device interface and removes it
6947  *	from the kernel tables.
6948  *	If head not NULL, device is queued to be unregistered later.
6949  *
6950  *	Callers must hold the rtnl semaphore.  You may want
6951  *	unregister_netdev() instead of this.
6952  */
6953 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)6954 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6955 {
6956 	ASSERT_RTNL();
6957 
6958 	if (head) {
6959 		list_move_tail(&dev->unreg_list, head);
6960 	} else {
6961 		rollback_registered(dev);
6962 		/* Finish processing unregister after unlock */
6963 		net_set_todo(dev);
6964 	}
6965 }
6966 EXPORT_SYMBOL(unregister_netdevice_queue);
6967 
6968 /**
6969  *	unregister_netdevice_many - unregister many devices
6970  *	@head: list of devices
6971  *
6972  *  Note: As most callers use a stack allocated list_head,
6973  *  we force a list_del() to make sure stack wont be corrupted later.
6974  */
unregister_netdevice_many(struct list_head * head)6975 void unregister_netdevice_many(struct list_head *head)
6976 {
6977 	struct net_device *dev;
6978 
6979 	if (!list_empty(head)) {
6980 		rollback_registered_many(head);
6981 		list_for_each_entry(dev, head, unreg_list)
6982 			net_set_todo(dev);
6983 		list_del(head);
6984 	}
6985 }
6986 EXPORT_SYMBOL(unregister_netdevice_many);
6987 
6988 /**
6989  *	unregister_netdev - remove device from the kernel
6990  *	@dev: device
6991  *
6992  *	This function shuts down a device interface and removes it
6993  *	from the kernel tables.
6994  *
6995  *	This is just a wrapper for unregister_netdevice that takes
6996  *	the rtnl semaphore.  In general you want to use this and not
6997  *	unregister_netdevice.
6998  */
unregister_netdev(struct net_device * dev)6999 void unregister_netdev(struct net_device *dev)
7000 {
7001 	rtnl_lock();
7002 	unregister_netdevice(dev);
7003 	rtnl_unlock();
7004 }
7005 EXPORT_SYMBOL(unregister_netdev);
7006 
7007 /**
7008  *	dev_change_net_namespace - move device to different nethost namespace
7009  *	@dev: device
7010  *	@net: network namespace
7011  *	@pat: If not NULL name pattern to try if the current device name
7012  *	      is already taken in the destination network namespace.
7013  *
7014  *	This function shuts down a device interface and moves it
7015  *	to a new network namespace. On success 0 is returned, on
7016  *	a failure a netagive errno code is returned.
7017  *
7018  *	Callers must hold the rtnl semaphore.
7019  */
7020 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)7021 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7022 {
7023 	int err;
7024 
7025 	ASSERT_RTNL();
7026 
7027 	/* Don't allow namespace local devices to be moved. */
7028 	err = -EINVAL;
7029 	if (dev->features & NETIF_F_NETNS_LOCAL)
7030 		goto out;
7031 
7032 	/* Ensure the device has been registrered */
7033 	if (dev->reg_state != NETREG_REGISTERED)
7034 		goto out;
7035 
7036 	/* Get out if there is nothing todo */
7037 	err = 0;
7038 	if (net_eq(dev_net(dev), net))
7039 		goto out;
7040 
7041 	/* Pick the destination device name, and ensure
7042 	 * we can use it in the destination network namespace.
7043 	 */
7044 	err = -EEXIST;
7045 	if (__dev_get_by_name(net, dev->name)) {
7046 		/* We get here if we can't use the current device name */
7047 		if (!pat)
7048 			goto out;
7049 		if (dev_get_valid_name(net, dev, pat) < 0)
7050 			goto out;
7051 	}
7052 
7053 	/*
7054 	 * And now a mini version of register_netdevice unregister_netdevice.
7055 	 */
7056 
7057 	/* If device is running close it first. */
7058 	dev_close(dev);
7059 
7060 	/* And unlink it from device chain */
7061 	err = -ENODEV;
7062 	unlist_netdevice(dev);
7063 
7064 	synchronize_net();
7065 
7066 	/* Shutdown queueing discipline. */
7067 	dev_shutdown(dev);
7068 
7069 	/* Notify protocols, that we are about to destroy
7070 	   this device. They should clean all the things.
7071 
7072 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7073 	   This is wanted because this way 8021q and macvlan know
7074 	   the device is just moving and can keep their slaves up.
7075 	*/
7076 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7077 	rcu_barrier();
7078 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7079 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7080 
7081 	/*
7082 	 *	Flush the unicast and multicast chains
7083 	 */
7084 	dev_uc_flush(dev);
7085 	dev_mc_flush(dev);
7086 
7087 	/* Send a netdev-removed uevent to the old namespace */
7088 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7089 	netdev_adjacent_del_links(dev);
7090 
7091 	/* Actually switch the network namespace */
7092 	dev_net_set(dev, net);
7093 
7094 	/* If there is an ifindex conflict assign a new one */
7095 	if (__dev_get_by_index(net, dev->ifindex))
7096 		dev->ifindex = dev_new_index(net);
7097 
7098 	/* Send a netdev-add uevent to the new namespace */
7099 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7100 	netdev_adjacent_add_links(dev);
7101 
7102 	/* Fixup kobjects */
7103 	err = device_rename(&dev->dev, dev->name);
7104 	WARN_ON(err);
7105 
7106 	/* Add the device back in the hashes */
7107 	list_netdevice(dev);
7108 
7109 	/* Notify protocols, that a new device appeared. */
7110 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7111 
7112 	/*
7113 	 *	Prevent userspace races by waiting until the network
7114 	 *	device is fully setup before sending notifications.
7115 	 */
7116 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7117 
7118 	synchronize_net();
7119 	err = 0;
7120 out:
7121 	return err;
7122 }
7123 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7124 
dev_cpu_callback(struct notifier_block * nfb,unsigned long action,void * ocpu)7125 static int dev_cpu_callback(struct notifier_block *nfb,
7126 			    unsigned long action,
7127 			    void *ocpu)
7128 {
7129 	struct sk_buff **list_skb;
7130 	struct sk_buff *skb;
7131 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7132 	struct softnet_data *sd, *oldsd;
7133 
7134 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7135 		return NOTIFY_OK;
7136 
7137 	local_irq_disable();
7138 	cpu = smp_processor_id();
7139 	sd = &per_cpu(softnet_data, cpu);
7140 	oldsd = &per_cpu(softnet_data, oldcpu);
7141 
7142 	/* Find end of our completion_queue. */
7143 	list_skb = &sd->completion_queue;
7144 	while (*list_skb)
7145 		list_skb = &(*list_skb)->next;
7146 	/* Append completion queue from offline CPU. */
7147 	*list_skb = oldsd->completion_queue;
7148 	oldsd->completion_queue = NULL;
7149 
7150 	/* Append output queue from offline CPU. */
7151 	if (oldsd->output_queue) {
7152 		*sd->output_queue_tailp = oldsd->output_queue;
7153 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7154 		oldsd->output_queue = NULL;
7155 		oldsd->output_queue_tailp = &oldsd->output_queue;
7156 	}
7157 	/* Append NAPI poll list from offline CPU, with one exception :
7158 	 * process_backlog() must be called by cpu owning percpu backlog.
7159 	 * We properly handle process_queue & input_pkt_queue later.
7160 	 */
7161 	while (!list_empty(&oldsd->poll_list)) {
7162 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7163 							    struct napi_struct,
7164 							    poll_list);
7165 
7166 		list_del_init(&napi->poll_list);
7167 		if (napi->poll == process_backlog)
7168 			napi->state = 0;
7169 		else
7170 			____napi_schedule(sd, napi);
7171 	}
7172 
7173 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7174 	local_irq_enable();
7175 
7176 	/* Process offline CPU's input_pkt_queue */
7177 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7178 		netif_rx_ni(skb);
7179 		input_queue_head_incr(oldsd);
7180 	}
7181 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7182 		netif_rx_ni(skb);
7183 		input_queue_head_incr(oldsd);
7184 	}
7185 
7186 	return NOTIFY_OK;
7187 }
7188 
7189 
7190 /**
7191  *	netdev_increment_features - increment feature set by one
7192  *	@all: current feature set
7193  *	@one: new feature set
7194  *	@mask: mask feature set
7195  *
7196  *	Computes a new feature set after adding a device with feature set
7197  *	@one to the master device with current feature set @all.  Will not
7198  *	enable anything that is off in @mask. Returns the new feature set.
7199  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)7200 netdev_features_t netdev_increment_features(netdev_features_t all,
7201 	netdev_features_t one, netdev_features_t mask)
7202 {
7203 	if (mask & NETIF_F_GEN_CSUM)
7204 		mask |= NETIF_F_ALL_CSUM;
7205 	mask |= NETIF_F_VLAN_CHALLENGED;
7206 
7207 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7208 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7209 
7210 	/* If one device supports hw checksumming, set for all. */
7211 	if (all & NETIF_F_GEN_CSUM)
7212 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7213 
7214 	return all;
7215 }
7216 EXPORT_SYMBOL(netdev_increment_features);
7217 
netdev_create_hash(void)7218 static struct hlist_head * __net_init netdev_create_hash(void)
7219 {
7220 	int i;
7221 	struct hlist_head *hash;
7222 
7223 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7224 	if (hash != NULL)
7225 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7226 			INIT_HLIST_HEAD(&hash[i]);
7227 
7228 	return hash;
7229 }
7230 
7231 /* Initialize per network namespace state */
netdev_init(struct net * net)7232 static int __net_init netdev_init(struct net *net)
7233 {
7234 	if (net != &init_net)
7235 		INIT_LIST_HEAD(&net->dev_base_head);
7236 
7237 	net->dev_name_head = netdev_create_hash();
7238 	if (net->dev_name_head == NULL)
7239 		goto err_name;
7240 
7241 	net->dev_index_head = netdev_create_hash();
7242 	if (net->dev_index_head == NULL)
7243 		goto err_idx;
7244 
7245 	return 0;
7246 
7247 err_idx:
7248 	kfree(net->dev_name_head);
7249 err_name:
7250 	return -ENOMEM;
7251 }
7252 
7253 /**
7254  *	netdev_drivername - network driver for the device
7255  *	@dev: network device
7256  *
7257  *	Determine network driver for device.
7258  */
netdev_drivername(const struct net_device * dev)7259 const char *netdev_drivername(const struct net_device *dev)
7260 {
7261 	const struct device_driver *driver;
7262 	const struct device *parent;
7263 	const char *empty = "";
7264 
7265 	parent = dev->dev.parent;
7266 	if (!parent)
7267 		return empty;
7268 
7269 	driver = parent->driver;
7270 	if (driver && driver->name)
7271 		return driver->name;
7272 	return empty;
7273 }
7274 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)7275 static void __netdev_printk(const char *level, const struct net_device *dev,
7276 			    struct va_format *vaf)
7277 {
7278 	if (dev && dev->dev.parent) {
7279 		dev_printk_emit(level[1] - '0',
7280 				dev->dev.parent,
7281 				"%s %s %s%s: %pV",
7282 				dev_driver_string(dev->dev.parent),
7283 				dev_name(dev->dev.parent),
7284 				netdev_name(dev), netdev_reg_state(dev),
7285 				vaf);
7286 	} else if (dev) {
7287 		printk("%s%s%s: %pV",
7288 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7289 	} else {
7290 		printk("%s(NULL net_device): %pV", level, vaf);
7291 	}
7292 }
7293 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)7294 void netdev_printk(const char *level, const struct net_device *dev,
7295 		   const char *format, ...)
7296 {
7297 	struct va_format vaf;
7298 	va_list args;
7299 
7300 	va_start(args, format);
7301 
7302 	vaf.fmt = format;
7303 	vaf.va = &args;
7304 
7305 	__netdev_printk(level, dev, &vaf);
7306 
7307 	va_end(args);
7308 }
7309 EXPORT_SYMBOL(netdev_printk);
7310 
7311 #define define_netdev_printk_level(func, level)			\
7312 void func(const struct net_device *dev, const char *fmt, ...)	\
7313 {								\
7314 	struct va_format vaf;					\
7315 	va_list args;						\
7316 								\
7317 	va_start(args, fmt);					\
7318 								\
7319 	vaf.fmt = fmt;						\
7320 	vaf.va = &args;						\
7321 								\
7322 	__netdev_printk(level, dev, &vaf);			\
7323 								\
7324 	va_end(args);						\
7325 }								\
7326 EXPORT_SYMBOL(func);
7327 
7328 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7329 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7330 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7331 define_netdev_printk_level(netdev_err, KERN_ERR);
7332 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7333 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7334 define_netdev_printk_level(netdev_info, KERN_INFO);
7335 
netdev_exit(struct net * net)7336 static void __net_exit netdev_exit(struct net *net)
7337 {
7338 	kfree(net->dev_name_head);
7339 	kfree(net->dev_index_head);
7340 }
7341 
7342 static struct pernet_operations __net_initdata netdev_net_ops = {
7343 	.init = netdev_init,
7344 	.exit = netdev_exit,
7345 };
7346 
default_device_exit(struct net * net)7347 static void __net_exit default_device_exit(struct net *net)
7348 {
7349 	struct net_device *dev, *aux;
7350 	/*
7351 	 * Push all migratable network devices back to the
7352 	 * initial network namespace
7353 	 */
7354 	rtnl_lock();
7355 	for_each_netdev_safe(net, dev, aux) {
7356 		int err;
7357 		char fb_name[IFNAMSIZ];
7358 
7359 		/* Ignore unmoveable devices (i.e. loopback) */
7360 		if (dev->features & NETIF_F_NETNS_LOCAL)
7361 			continue;
7362 
7363 		/* Leave virtual devices for the generic cleanup */
7364 		if (dev->rtnl_link_ops)
7365 			continue;
7366 
7367 		/* Push remaining network devices to init_net */
7368 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7369 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7370 		if (err) {
7371 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7372 				 __func__, dev->name, err);
7373 			BUG();
7374 		}
7375 	}
7376 	rtnl_unlock();
7377 }
7378 
rtnl_lock_unregistering(struct list_head * net_list)7379 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7380 {
7381 	/* Return with the rtnl_lock held when there are no network
7382 	 * devices unregistering in any network namespace in net_list.
7383 	 */
7384 	struct net *net;
7385 	bool unregistering;
7386 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7387 
7388 	add_wait_queue(&netdev_unregistering_wq, &wait);
7389 	for (;;) {
7390 		unregistering = false;
7391 		rtnl_lock();
7392 		list_for_each_entry(net, net_list, exit_list) {
7393 			if (net->dev_unreg_count > 0) {
7394 				unregistering = true;
7395 				break;
7396 			}
7397 		}
7398 		if (!unregistering)
7399 			break;
7400 		__rtnl_unlock();
7401 
7402 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7403 	}
7404 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7405 }
7406 
default_device_exit_batch(struct list_head * net_list)7407 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7408 {
7409 	/* At exit all network devices most be removed from a network
7410 	 * namespace.  Do this in the reverse order of registration.
7411 	 * Do this across as many network namespaces as possible to
7412 	 * improve batching efficiency.
7413 	 */
7414 	struct net_device *dev;
7415 	struct net *net;
7416 	LIST_HEAD(dev_kill_list);
7417 
7418 	/* To prevent network device cleanup code from dereferencing
7419 	 * loopback devices or network devices that have been freed
7420 	 * wait here for all pending unregistrations to complete,
7421 	 * before unregistring the loopback device and allowing the
7422 	 * network namespace be freed.
7423 	 *
7424 	 * The netdev todo list containing all network devices
7425 	 * unregistrations that happen in default_device_exit_batch
7426 	 * will run in the rtnl_unlock() at the end of
7427 	 * default_device_exit_batch.
7428 	 */
7429 	rtnl_lock_unregistering(net_list);
7430 	list_for_each_entry(net, net_list, exit_list) {
7431 		for_each_netdev_reverse(net, dev) {
7432 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7433 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7434 			else
7435 				unregister_netdevice_queue(dev, &dev_kill_list);
7436 		}
7437 	}
7438 	unregister_netdevice_many(&dev_kill_list);
7439 	rtnl_unlock();
7440 }
7441 
7442 static struct pernet_operations __net_initdata default_device_ops = {
7443 	.exit = default_device_exit,
7444 	.exit_batch = default_device_exit_batch,
7445 };
7446 
7447 /*
7448  *	Initialize the DEV module. At boot time this walks the device list and
7449  *	unhooks any devices that fail to initialise (normally hardware not
7450  *	present) and leaves us with a valid list of present and active devices.
7451  *
7452  */
7453 
7454 /*
7455  *       This is called single threaded during boot, so no need
7456  *       to take the rtnl semaphore.
7457  */
net_dev_init(void)7458 static int __init net_dev_init(void)
7459 {
7460 	int i, rc = -ENOMEM;
7461 
7462 	BUG_ON(!dev_boot_phase);
7463 
7464 	if (dev_proc_init())
7465 		goto out;
7466 
7467 	if (netdev_kobject_init())
7468 		goto out;
7469 
7470 	INIT_LIST_HEAD(&ptype_all);
7471 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7472 		INIT_LIST_HEAD(&ptype_base[i]);
7473 
7474 	INIT_LIST_HEAD(&offload_base);
7475 
7476 	if (register_pernet_subsys(&netdev_net_ops))
7477 		goto out;
7478 
7479 	/*
7480 	 *	Initialise the packet receive queues.
7481 	 */
7482 
7483 	for_each_possible_cpu(i) {
7484 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7485 
7486 		skb_queue_head_init(&sd->input_pkt_queue);
7487 		skb_queue_head_init(&sd->process_queue);
7488 		INIT_LIST_HEAD(&sd->poll_list);
7489 		sd->output_queue_tailp = &sd->output_queue;
7490 #ifdef CONFIG_RPS
7491 		sd->csd.func = rps_trigger_softirq;
7492 		sd->csd.info = sd;
7493 		sd->cpu = i;
7494 #endif
7495 
7496 		sd->backlog.poll = process_backlog;
7497 		sd->backlog.weight = weight_p;
7498 	}
7499 
7500 	dev_boot_phase = 0;
7501 
7502 	/* The loopback device is special if any other network devices
7503 	 * is present in a network namespace the loopback device must
7504 	 * be present. Since we now dynamically allocate and free the
7505 	 * loopback device ensure this invariant is maintained by
7506 	 * keeping the loopback device as the first device on the
7507 	 * list of network devices.  Ensuring the loopback devices
7508 	 * is the first device that appears and the last network device
7509 	 * that disappears.
7510 	 */
7511 	if (register_pernet_device(&loopback_net_ops))
7512 		goto out;
7513 
7514 	if (register_pernet_device(&default_device_ops))
7515 		goto out;
7516 
7517 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7518 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7519 
7520 	hotcpu_notifier(dev_cpu_callback, 0);
7521 	dst_init();
7522 	rc = 0;
7523 out:
7524 	return rc;
7525 }
7526 
7527 subsys_initcall(net_dev_init);
7528