1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
d_hash(const struct dentry * parent,unsigned int hash)107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113 
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 	.age_limit = 45,
117 };
118 
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 
124 /*
125  * Here we resort to our own counters instead of using generic per-cpu counters
126  * for consistency with what the vfs inode code does. We are expected to harvest
127  * better code and performance by having our own specialized counters.
128  *
129  * Please note that the loop is done over all possible CPUs, not over all online
130  * CPUs. The reason for this is that we don't want to play games with CPUs going
131  * on and off. If one of them goes off, we will just keep their counters.
132  *
133  * glommer: See cffbc8a for details, and if you ever intend to change this,
134  * please update all vfs counters to match.
135  */
get_nr_dentry(void)136 static long get_nr_dentry(void)
137 {
138 	int i;
139 	long sum = 0;
140 	for_each_possible_cpu(i)
141 		sum += per_cpu(nr_dentry, i);
142 	return sum < 0 ? 0 : sum;
143 }
144 
get_nr_dentry_unused(void)145 static long get_nr_dentry_unused(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry_unused, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 		   size_t *lenp, loff_t *ppos)
156 {
157 	dentry_stat.nr_dentry = get_nr_dentry();
158 	dentry_stat.nr_unused = get_nr_dentry_unused();
159 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162 
163 /*
164  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165  * The strings are both count bytes long, and count is non-zero.
166  */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 
169 #include <asm/word-at-a-time.h>
170 /*
171  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172  * aligned allocation for this particular component. We don't
173  * strictly need the load_unaligned_zeropad() safety, but it
174  * doesn't hurt either.
175  *
176  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177  * need the careful unaligned handling.
178  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	unsigned long a,b,mask;
182 
183 	for (;;) {
184 		a = *(unsigned long *)cs;
185 		b = load_unaligned_zeropad(ct);
186 		if (tcount < sizeof(unsigned long))
187 			break;
188 		if (unlikely(a != b))
189 			return 1;
190 		cs += sizeof(unsigned long);
191 		ct += sizeof(unsigned long);
192 		tcount -= sizeof(unsigned long);
193 		if (!tcount)
194 			return 0;
195 	}
196 	mask = bytemask_from_count(tcount);
197 	return unlikely(!!((a ^ b) & mask));
198 }
199 
200 #else
201 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 	do {
205 		if (*cs != *ct)
206 			return 1;
207 		cs++;
208 		ct++;
209 		tcount--;
210 	} while (tcount);
211 	return 0;
212 }
213 
214 #endif
215 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 	const unsigned char *cs;
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use ACCESS_ONCE to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	cs = ACCESS_ONCE(dentry->d_name.name);
236 	smp_read_barrier_depends();
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
external_name(struct dentry * dentry)248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
__d_free(struct rcu_head * head)253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
__d_free_external(struct rcu_head * head)260 static void __d_free_external(struct rcu_head *head)
261 {
262 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
dname_external(const struct dentry * dentry)267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)272 static inline void __d_set_inode_and_type(struct dentry *dentry,
273 					  struct inode *inode,
274 					  unsigned type_flags)
275 {
276 	unsigned flags;
277 
278 	dentry->d_inode = inode;
279 	flags = READ_ONCE(dentry->d_flags);
280 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
281 	flags |= type_flags;
282 	WRITE_ONCE(dentry->d_flags, flags);
283 }
284 
__d_clear_type_and_inode(struct dentry * dentry)285 static inline void __d_clear_type_and_inode(struct dentry *dentry)
286 {
287 	unsigned flags = READ_ONCE(dentry->d_flags);
288 
289 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
290 	WRITE_ONCE(dentry->d_flags, flags);
291 	dentry->d_inode = NULL;
292 }
293 
dentry_free(struct dentry * dentry)294 static void dentry_free(struct dentry *dentry)
295 {
296 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
297 	if (unlikely(dname_external(dentry))) {
298 		struct external_name *p = external_name(dentry);
299 		if (likely(atomic_dec_and_test(&p->u.count))) {
300 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
301 			return;
302 		}
303 	}
304 	/* if dentry was never visible to RCU, immediate free is OK */
305 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
306 		__d_free(&dentry->d_u.d_rcu);
307 	else
308 		call_rcu(&dentry->d_u.d_rcu, __d_free);
309 }
310 
311 /**
312  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
313  * @dentry: the target dentry
314  * After this call, in-progress rcu-walk path lookup will fail. This
315  * should be called after unhashing, and after changing d_inode (if
316  * the dentry has not already been unhashed).
317  */
dentry_rcuwalk_invalidate(struct dentry * dentry)318 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
319 {
320 	lockdep_assert_held(&dentry->d_lock);
321 	/* Go through am invalidation barrier */
322 	write_seqcount_invalidate(&dentry->d_seq);
323 }
324 
325 /*
326  * Release the dentry's inode, using the filesystem
327  * d_iput() operation if defined. Dentry has no refcount
328  * and is unhashed.
329  */
dentry_iput(struct dentry * dentry)330 static void dentry_iput(struct dentry * dentry)
331 	__releases(dentry->d_lock)
332 	__releases(dentry->d_inode->i_lock)
333 {
334 	struct inode *inode = dentry->d_inode;
335 	if (inode) {
336 		__d_clear_type_and_inode(dentry);
337 		hlist_del_init(&dentry->d_u.d_alias);
338 		spin_unlock(&dentry->d_lock);
339 		spin_unlock(&inode->i_lock);
340 		if (!inode->i_nlink)
341 			fsnotify_inoderemove(inode);
342 		if (dentry->d_op && dentry->d_op->d_iput)
343 			dentry->d_op->d_iput(dentry, inode);
344 		else
345 			iput(inode);
346 	} else {
347 		spin_unlock(&dentry->d_lock);
348 	}
349 }
350 
351 /*
352  * Release the dentry's inode, using the filesystem
353  * d_iput() operation if defined. dentry remains in-use.
354  */
dentry_unlink_inode(struct dentry * dentry)355 static void dentry_unlink_inode(struct dentry * dentry)
356 	__releases(dentry->d_lock)
357 	__releases(dentry->d_inode->i_lock)
358 {
359 	struct inode *inode = dentry->d_inode;
360 
361 	raw_write_seqcount_begin(&dentry->d_seq);
362 	__d_clear_type_and_inode(dentry);
363 	hlist_del_init(&dentry->d_u.d_alias);
364 	raw_write_seqcount_end(&dentry->d_seq);
365 	spin_unlock(&dentry->d_lock);
366 	spin_unlock(&inode->i_lock);
367 	if (!inode->i_nlink)
368 		fsnotify_inoderemove(inode);
369 	if (dentry->d_op && dentry->d_op->d_iput)
370 		dentry->d_op->d_iput(dentry, inode);
371 	else
372 		iput(inode);
373 }
374 
375 /*
376  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
377  * is in use - which includes both the "real" per-superblock
378  * LRU list _and_ the DCACHE_SHRINK_LIST use.
379  *
380  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
381  * on the shrink list (ie not on the superblock LRU list).
382  *
383  * The per-cpu "nr_dentry_unused" counters are updated with
384  * the DCACHE_LRU_LIST bit.
385  *
386  * These helper functions make sure we always follow the
387  * rules. d_lock must be held by the caller.
388  */
389 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)390 static void d_lru_add(struct dentry *dentry)
391 {
392 	D_FLAG_VERIFY(dentry, 0);
393 	dentry->d_flags |= DCACHE_LRU_LIST;
394 	this_cpu_inc(nr_dentry_unused);
395 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
396 }
397 
d_lru_del(struct dentry * dentry)398 static void d_lru_del(struct dentry *dentry)
399 {
400 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
401 	dentry->d_flags &= ~DCACHE_LRU_LIST;
402 	this_cpu_dec(nr_dentry_unused);
403 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404 }
405 
d_shrink_del(struct dentry * dentry)406 static void d_shrink_del(struct dentry *dentry)
407 {
408 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 	list_del_init(&dentry->d_lru);
410 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 	this_cpu_dec(nr_dentry_unused);
412 }
413 
d_shrink_add(struct dentry * dentry,struct list_head * list)414 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415 {
416 	D_FLAG_VERIFY(dentry, 0);
417 	list_add(&dentry->d_lru, list);
418 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
419 	this_cpu_inc(nr_dentry_unused);
420 }
421 
422 /*
423  * These can only be called under the global LRU lock, ie during the
424  * callback for freeing the LRU list. "isolate" removes it from the
425  * LRU lists entirely, while shrink_move moves it to the indicated
426  * private list.
427  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)428 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429 {
430 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
431 	dentry->d_flags &= ~DCACHE_LRU_LIST;
432 	this_cpu_dec(nr_dentry_unused);
433 	list_lru_isolate(lru, &dentry->d_lru);
434 }
435 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)436 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
437 			      struct list_head *list)
438 {
439 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
440 	dentry->d_flags |= DCACHE_SHRINK_LIST;
441 	list_lru_isolate_move(lru, &dentry->d_lru, list);
442 }
443 
444 /*
445  * dentry_lru_(add|del)_list) must be called with d_lock held.
446  */
dentry_lru_add(struct dentry * dentry)447 static void dentry_lru_add(struct dentry *dentry)
448 {
449 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450 		d_lru_add(dentry);
451 }
452 
453 /**
454  * d_drop - drop a dentry
455  * @dentry: dentry to drop
456  *
457  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458  * be found through a VFS lookup any more. Note that this is different from
459  * deleting the dentry - d_delete will try to mark the dentry negative if
460  * possible, giving a successful _negative_ lookup, while d_drop will
461  * just make the cache lookup fail.
462  *
463  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464  * reason (NFS timeouts or autofs deletes).
465  *
466  * __d_drop requires dentry->d_lock.
467  */
__d_drop(struct dentry * dentry)468 void __d_drop(struct dentry *dentry)
469 {
470 	if (!d_unhashed(dentry)) {
471 		struct hlist_bl_head *b;
472 		/*
473 		 * Hashed dentries are normally on the dentry hashtable,
474 		 * with the exception of those newly allocated by
475 		 * d_obtain_alias, which are always IS_ROOT:
476 		 */
477 		if (unlikely(IS_ROOT(dentry)))
478 			b = &dentry->d_sb->s_anon;
479 		else
480 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
481 
482 		hlist_bl_lock(b);
483 		__hlist_bl_del(&dentry->d_hash);
484 		dentry->d_hash.pprev = NULL;
485 		hlist_bl_unlock(b);
486 		dentry_rcuwalk_invalidate(dentry);
487 	}
488 }
489 EXPORT_SYMBOL(__d_drop);
490 
d_drop(struct dentry * dentry)491 void d_drop(struct dentry *dentry)
492 {
493 	spin_lock(&dentry->d_lock);
494 	__d_drop(dentry);
495 	spin_unlock(&dentry->d_lock);
496 }
497 EXPORT_SYMBOL(d_drop);
498 
__dentry_kill(struct dentry * dentry)499 static void __dentry_kill(struct dentry *dentry)
500 {
501 	struct dentry *parent = NULL;
502 	bool can_free = true;
503 	if (!IS_ROOT(dentry))
504 		parent = dentry->d_parent;
505 
506 	/*
507 	 * The dentry is now unrecoverably dead to the world.
508 	 */
509 	lockref_mark_dead(&dentry->d_lockref);
510 
511 	/*
512 	 * inform the fs via d_prune that this dentry is about to be
513 	 * unhashed and destroyed.
514 	 */
515 	if (dentry->d_flags & DCACHE_OP_PRUNE)
516 		dentry->d_op->d_prune(dentry);
517 
518 	if (dentry->d_flags & DCACHE_LRU_LIST) {
519 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
520 			d_lru_del(dentry);
521 	}
522 	/* if it was on the hash then remove it */
523 	__d_drop(dentry);
524 	__list_del_entry(&dentry->d_child);
525 	/*
526 	 * Inform d_walk() that we are no longer attached to the
527 	 * dentry tree
528 	 */
529 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
530 	if (parent)
531 		spin_unlock(&parent->d_lock);
532 	dentry_iput(dentry);
533 	/*
534 	 * dentry_iput drops the locks, at which point nobody (except
535 	 * transient RCU lookups) can reach this dentry.
536 	 */
537 	BUG_ON(dentry->d_lockref.count > 0);
538 	this_cpu_dec(nr_dentry);
539 	if (dentry->d_op && dentry->d_op->d_release)
540 		dentry->d_op->d_release(dentry);
541 
542 	spin_lock(&dentry->d_lock);
543 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
544 		dentry->d_flags |= DCACHE_MAY_FREE;
545 		can_free = false;
546 	}
547 	spin_unlock(&dentry->d_lock);
548 	if (likely(can_free))
549 		dentry_free(dentry);
550 }
551 
552 /*
553  * Finish off a dentry we've decided to kill.
554  * dentry->d_lock must be held, returns with it unlocked.
555  * If ref is non-zero, then decrement the refcount too.
556  * Returns dentry requiring refcount drop, or NULL if we're done.
557  */
dentry_kill(struct dentry * dentry)558 static struct dentry *dentry_kill(struct dentry *dentry)
559 	__releases(dentry->d_lock)
560 {
561 	struct inode *inode = dentry->d_inode;
562 	struct dentry *parent = NULL;
563 
564 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
565 		goto failed;
566 
567 	if (!IS_ROOT(dentry)) {
568 		parent = dentry->d_parent;
569 		if (unlikely(!spin_trylock(&parent->d_lock))) {
570 			if (inode)
571 				spin_unlock(&inode->i_lock);
572 			goto failed;
573 		}
574 	}
575 
576 	__dentry_kill(dentry);
577 	return parent;
578 
579 failed:
580 	spin_unlock(&dentry->d_lock);
581 	cpu_relax();
582 	return dentry; /* try again with same dentry */
583 }
584 
lock_parent(struct dentry * dentry)585 static inline struct dentry *lock_parent(struct dentry *dentry)
586 {
587 	struct dentry *parent = dentry->d_parent;
588 	if (IS_ROOT(dentry))
589 		return NULL;
590 	if (unlikely(dentry->d_lockref.count < 0))
591 		return NULL;
592 	if (likely(spin_trylock(&parent->d_lock)))
593 		return parent;
594 	rcu_read_lock();
595 	spin_unlock(&dentry->d_lock);
596 again:
597 	parent = ACCESS_ONCE(dentry->d_parent);
598 	spin_lock(&parent->d_lock);
599 	/*
600 	 * We can't blindly lock dentry until we are sure
601 	 * that we won't violate the locking order.
602 	 * Any changes of dentry->d_parent must have
603 	 * been done with parent->d_lock held, so
604 	 * spin_lock() above is enough of a barrier
605 	 * for checking if it's still our child.
606 	 */
607 	if (unlikely(parent != dentry->d_parent)) {
608 		spin_unlock(&parent->d_lock);
609 		goto again;
610 	}
611 	rcu_read_unlock();
612 	if (parent != dentry)
613 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
614 	else
615 		parent = NULL;
616 	return parent;
617 }
618 
619 /*
620  * Try to do a lockless dput(), and return whether that was successful.
621  *
622  * If unsuccessful, we return false, having already taken the dentry lock.
623  *
624  * The caller needs to hold the RCU read lock, so that the dentry is
625  * guaranteed to stay around even if the refcount goes down to zero!
626  */
fast_dput(struct dentry * dentry)627 static inline bool fast_dput(struct dentry *dentry)
628 {
629 	int ret;
630 	unsigned int d_flags;
631 
632 	/*
633 	 * If we have a d_op->d_delete() operation, we sould not
634 	 * let the dentry count go to zero, so use "put_or_lock".
635 	 */
636 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
637 		return lockref_put_or_lock(&dentry->d_lockref);
638 
639 	/*
640 	 * .. otherwise, we can try to just decrement the
641 	 * lockref optimistically.
642 	 */
643 	ret = lockref_put_return(&dentry->d_lockref);
644 
645 	/*
646 	 * If the lockref_put_return() failed due to the lock being held
647 	 * by somebody else, the fast path has failed. We will need to
648 	 * get the lock, and then check the count again.
649 	 */
650 	if (unlikely(ret < 0)) {
651 		spin_lock(&dentry->d_lock);
652 		if (dentry->d_lockref.count > 1) {
653 			dentry->d_lockref.count--;
654 			spin_unlock(&dentry->d_lock);
655 			return 1;
656 		}
657 		return 0;
658 	}
659 
660 	/*
661 	 * If we weren't the last ref, we're done.
662 	 */
663 	if (ret)
664 		return 1;
665 
666 	/*
667 	 * Careful, careful. The reference count went down
668 	 * to zero, but we don't hold the dentry lock, so
669 	 * somebody else could get it again, and do another
670 	 * dput(), and we need to not race with that.
671 	 *
672 	 * However, there is a very special and common case
673 	 * where we don't care, because there is nothing to
674 	 * do: the dentry is still hashed, it does not have
675 	 * a 'delete' op, and it's referenced and already on
676 	 * the LRU list.
677 	 *
678 	 * NOTE! Since we aren't locked, these values are
679 	 * not "stable". However, it is sufficient that at
680 	 * some point after we dropped the reference the
681 	 * dentry was hashed and the flags had the proper
682 	 * value. Other dentry users may have re-gotten
683 	 * a reference to the dentry and change that, but
684 	 * our work is done - we can leave the dentry
685 	 * around with a zero refcount.
686 	 */
687 	smp_rmb();
688 	d_flags = ACCESS_ONCE(dentry->d_flags);
689 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
690 
691 	/* Nothing to do? Dropping the reference was all we needed? */
692 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
693 		return 1;
694 
695 	/*
696 	 * Not the fast normal case? Get the lock. We've already decremented
697 	 * the refcount, but we'll need to re-check the situation after
698 	 * getting the lock.
699 	 */
700 	spin_lock(&dentry->d_lock);
701 
702 	/*
703 	 * Did somebody else grab a reference to it in the meantime, and
704 	 * we're no longer the last user after all? Alternatively, somebody
705 	 * else could have killed it and marked it dead. Either way, we
706 	 * don't need to do anything else.
707 	 */
708 	if (dentry->d_lockref.count) {
709 		spin_unlock(&dentry->d_lock);
710 		return 1;
711 	}
712 
713 	/*
714 	 * Re-get the reference we optimistically dropped. We hold the
715 	 * lock, and we just tested that it was zero, so we can just
716 	 * set it to 1.
717 	 */
718 	dentry->d_lockref.count = 1;
719 	return 0;
720 }
721 
722 
723 /*
724  * This is dput
725  *
726  * This is complicated by the fact that we do not want to put
727  * dentries that are no longer on any hash chain on the unused
728  * list: we'd much rather just get rid of them immediately.
729  *
730  * However, that implies that we have to traverse the dentry
731  * tree upwards to the parents which might _also_ now be
732  * scheduled for deletion (it may have been only waiting for
733  * its last child to go away).
734  *
735  * This tail recursion is done by hand as we don't want to depend
736  * on the compiler to always get this right (gcc generally doesn't).
737  * Real recursion would eat up our stack space.
738  */
739 
740 /*
741  * dput - release a dentry
742  * @dentry: dentry to release
743  *
744  * Release a dentry. This will drop the usage count and if appropriate
745  * call the dentry unlink method as well as removing it from the queues and
746  * releasing its resources. If the parent dentries were scheduled for release
747  * they too may now get deleted.
748  */
dput(struct dentry * dentry)749 void dput(struct dentry *dentry)
750 {
751 	if (unlikely(!dentry))
752 		return;
753 
754 repeat:
755 	rcu_read_lock();
756 	if (likely(fast_dput(dentry))) {
757 		rcu_read_unlock();
758 		return;
759 	}
760 
761 	/* Slow case: now with the dentry lock held */
762 	rcu_read_unlock();
763 
764 	/* Unreachable? Get rid of it */
765 	if (unlikely(d_unhashed(dentry)))
766 		goto kill_it;
767 
768 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
769 		goto kill_it;
770 
771 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
772 		if (dentry->d_op->d_delete(dentry))
773 			goto kill_it;
774 	}
775 
776 	if (!(dentry->d_flags & DCACHE_REFERENCED))
777 		dentry->d_flags |= DCACHE_REFERENCED;
778 	dentry_lru_add(dentry);
779 
780 	dentry->d_lockref.count--;
781 	spin_unlock(&dentry->d_lock);
782 	return;
783 
784 kill_it:
785 	dentry = dentry_kill(dentry);
786 	if (dentry)
787 		goto repeat;
788 }
789 EXPORT_SYMBOL(dput);
790 
791 
792 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)793 static inline void __dget_dlock(struct dentry *dentry)
794 {
795 	dentry->d_lockref.count++;
796 }
797 
__dget(struct dentry * dentry)798 static inline void __dget(struct dentry *dentry)
799 {
800 	lockref_get(&dentry->d_lockref);
801 }
802 
dget_parent(struct dentry * dentry)803 struct dentry *dget_parent(struct dentry *dentry)
804 {
805 	int gotref;
806 	struct dentry *ret;
807 
808 	/*
809 	 * Do optimistic parent lookup without any
810 	 * locking.
811 	 */
812 	rcu_read_lock();
813 	ret = ACCESS_ONCE(dentry->d_parent);
814 	gotref = lockref_get_not_zero(&ret->d_lockref);
815 	rcu_read_unlock();
816 	if (likely(gotref)) {
817 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
818 			return ret;
819 		dput(ret);
820 	}
821 
822 repeat:
823 	/*
824 	 * Don't need rcu_dereference because we re-check it was correct under
825 	 * the lock.
826 	 */
827 	rcu_read_lock();
828 	ret = dentry->d_parent;
829 	spin_lock(&ret->d_lock);
830 	if (unlikely(ret != dentry->d_parent)) {
831 		spin_unlock(&ret->d_lock);
832 		rcu_read_unlock();
833 		goto repeat;
834 	}
835 	rcu_read_unlock();
836 	BUG_ON(!ret->d_lockref.count);
837 	ret->d_lockref.count++;
838 	spin_unlock(&ret->d_lock);
839 	return ret;
840 }
841 EXPORT_SYMBOL(dget_parent);
842 
843 /**
844  * d_find_alias - grab a hashed alias of inode
845  * @inode: inode in question
846  *
847  * If inode has a hashed alias, or is a directory and has any alias,
848  * acquire the reference to alias and return it. Otherwise return NULL.
849  * Notice that if inode is a directory there can be only one alias and
850  * it can be unhashed only if it has no children, or if it is the root
851  * of a filesystem, or if the directory was renamed and d_revalidate
852  * was the first vfs operation to notice.
853  *
854  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
855  * any other hashed alias over that one.
856  */
__d_find_alias(struct inode * inode)857 static struct dentry *__d_find_alias(struct inode *inode)
858 {
859 	struct dentry *alias, *discon_alias;
860 
861 again:
862 	discon_alias = NULL;
863 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
864 		spin_lock(&alias->d_lock);
865  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
866 			if (IS_ROOT(alias) &&
867 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
868 				discon_alias = alias;
869 			} else {
870 				__dget_dlock(alias);
871 				spin_unlock(&alias->d_lock);
872 				return alias;
873 			}
874 		}
875 		spin_unlock(&alias->d_lock);
876 	}
877 	if (discon_alias) {
878 		alias = discon_alias;
879 		spin_lock(&alias->d_lock);
880 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
881 			__dget_dlock(alias);
882 			spin_unlock(&alias->d_lock);
883 			return alias;
884 		}
885 		spin_unlock(&alias->d_lock);
886 		goto again;
887 	}
888 	return NULL;
889 }
890 
d_find_alias(struct inode * inode)891 struct dentry *d_find_alias(struct inode *inode)
892 {
893 	struct dentry *de = NULL;
894 
895 	if (!hlist_empty(&inode->i_dentry)) {
896 		spin_lock(&inode->i_lock);
897 		de = __d_find_alias(inode);
898 		spin_unlock(&inode->i_lock);
899 	}
900 	return de;
901 }
902 EXPORT_SYMBOL(d_find_alias);
903 
904 /*
905  *	Try to kill dentries associated with this inode.
906  * WARNING: you must own a reference to inode.
907  */
d_prune_aliases(struct inode * inode)908 void d_prune_aliases(struct inode *inode)
909 {
910 	struct dentry *dentry;
911 restart:
912 	spin_lock(&inode->i_lock);
913 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
914 		spin_lock(&dentry->d_lock);
915 		if (!dentry->d_lockref.count) {
916 			struct dentry *parent = lock_parent(dentry);
917 			if (likely(!dentry->d_lockref.count)) {
918 				__dentry_kill(dentry);
919 				dput(parent);
920 				goto restart;
921 			}
922 			if (parent)
923 				spin_unlock(&parent->d_lock);
924 		}
925 		spin_unlock(&dentry->d_lock);
926 	}
927 	spin_unlock(&inode->i_lock);
928 }
929 EXPORT_SYMBOL(d_prune_aliases);
930 
shrink_dentry_list(struct list_head * list)931 static void shrink_dentry_list(struct list_head *list)
932 {
933 	struct dentry *dentry, *parent;
934 
935 	while (!list_empty(list)) {
936 		struct inode *inode;
937 		dentry = list_entry(list->prev, struct dentry, d_lru);
938 		spin_lock(&dentry->d_lock);
939 		parent = lock_parent(dentry);
940 
941 		/*
942 		 * The dispose list is isolated and dentries are not accounted
943 		 * to the LRU here, so we can simply remove it from the list
944 		 * here regardless of whether it is referenced or not.
945 		 */
946 		d_shrink_del(dentry);
947 
948 		/*
949 		 * We found an inuse dentry which was not removed from
950 		 * the LRU because of laziness during lookup. Do not free it.
951 		 */
952 		if (dentry->d_lockref.count > 0) {
953 			spin_unlock(&dentry->d_lock);
954 			if (parent)
955 				spin_unlock(&parent->d_lock);
956 			continue;
957 		}
958 
959 
960 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
961 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
962 			spin_unlock(&dentry->d_lock);
963 			if (parent)
964 				spin_unlock(&parent->d_lock);
965 			if (can_free)
966 				dentry_free(dentry);
967 			continue;
968 		}
969 
970 		inode = dentry->d_inode;
971 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
972 			d_shrink_add(dentry, list);
973 			spin_unlock(&dentry->d_lock);
974 			if (parent)
975 				spin_unlock(&parent->d_lock);
976 			continue;
977 		}
978 
979 		__dentry_kill(dentry);
980 
981 		/*
982 		 * We need to prune ancestors too. This is necessary to prevent
983 		 * quadratic behavior of shrink_dcache_parent(), but is also
984 		 * expected to be beneficial in reducing dentry cache
985 		 * fragmentation.
986 		 */
987 		dentry = parent;
988 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
989 			parent = lock_parent(dentry);
990 			if (dentry->d_lockref.count != 1) {
991 				dentry->d_lockref.count--;
992 				spin_unlock(&dentry->d_lock);
993 				if (parent)
994 					spin_unlock(&parent->d_lock);
995 				break;
996 			}
997 			inode = dentry->d_inode;	/* can't be NULL */
998 			if (unlikely(!spin_trylock(&inode->i_lock))) {
999 				spin_unlock(&dentry->d_lock);
1000 				if (parent)
1001 					spin_unlock(&parent->d_lock);
1002 				cpu_relax();
1003 				continue;
1004 			}
1005 			__dentry_kill(dentry);
1006 			dentry = parent;
1007 		}
1008 	}
1009 }
1010 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1011 static enum lru_status dentry_lru_isolate(struct list_head *item,
1012 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1013 {
1014 	struct list_head *freeable = arg;
1015 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1016 
1017 
1018 	/*
1019 	 * we are inverting the lru lock/dentry->d_lock here,
1020 	 * so use a trylock. If we fail to get the lock, just skip
1021 	 * it
1022 	 */
1023 	if (!spin_trylock(&dentry->d_lock))
1024 		return LRU_SKIP;
1025 
1026 	/*
1027 	 * Referenced dentries are still in use. If they have active
1028 	 * counts, just remove them from the LRU. Otherwise give them
1029 	 * another pass through the LRU.
1030 	 */
1031 	if (dentry->d_lockref.count) {
1032 		d_lru_isolate(lru, dentry);
1033 		spin_unlock(&dentry->d_lock);
1034 		return LRU_REMOVED;
1035 	}
1036 
1037 	if (dentry->d_flags & DCACHE_REFERENCED) {
1038 		dentry->d_flags &= ~DCACHE_REFERENCED;
1039 		spin_unlock(&dentry->d_lock);
1040 
1041 		/*
1042 		 * The list move itself will be made by the common LRU code. At
1043 		 * this point, we've dropped the dentry->d_lock but keep the
1044 		 * lru lock. This is safe to do, since every list movement is
1045 		 * protected by the lru lock even if both locks are held.
1046 		 *
1047 		 * This is guaranteed by the fact that all LRU management
1048 		 * functions are intermediated by the LRU API calls like
1049 		 * list_lru_add and list_lru_del. List movement in this file
1050 		 * only ever occur through this functions or through callbacks
1051 		 * like this one, that are called from the LRU API.
1052 		 *
1053 		 * The only exceptions to this are functions like
1054 		 * shrink_dentry_list, and code that first checks for the
1055 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1056 		 * operating only with stack provided lists after they are
1057 		 * properly isolated from the main list.  It is thus, always a
1058 		 * local access.
1059 		 */
1060 		return LRU_ROTATE;
1061 	}
1062 
1063 	d_lru_shrink_move(lru, dentry, freeable);
1064 	spin_unlock(&dentry->d_lock);
1065 
1066 	return LRU_REMOVED;
1067 }
1068 
1069 /**
1070  * prune_dcache_sb - shrink the dcache
1071  * @sb: superblock
1072  * @sc: shrink control, passed to list_lru_shrink_walk()
1073  *
1074  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1075  * is done when we need more memory and called from the superblock shrinker
1076  * function.
1077  *
1078  * This function may fail to free any resources if all the dentries are in
1079  * use.
1080  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1081 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1082 {
1083 	LIST_HEAD(dispose);
1084 	long freed;
1085 
1086 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1087 				     dentry_lru_isolate, &dispose);
1088 	shrink_dentry_list(&dispose);
1089 	return freed;
1090 }
1091 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1092 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1093 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1094 {
1095 	struct list_head *freeable = arg;
1096 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1097 
1098 	/*
1099 	 * we are inverting the lru lock/dentry->d_lock here,
1100 	 * so use a trylock. If we fail to get the lock, just skip
1101 	 * it
1102 	 */
1103 	if (!spin_trylock(&dentry->d_lock))
1104 		return LRU_SKIP;
1105 
1106 	d_lru_shrink_move(lru, dentry, freeable);
1107 	spin_unlock(&dentry->d_lock);
1108 
1109 	return LRU_REMOVED;
1110 }
1111 
1112 
1113 /**
1114  * shrink_dcache_sb - shrink dcache for a superblock
1115  * @sb: superblock
1116  *
1117  * Shrink the dcache for the specified super block. This is used to free
1118  * the dcache before unmounting a file system.
1119  */
shrink_dcache_sb(struct super_block * sb)1120 void shrink_dcache_sb(struct super_block *sb)
1121 {
1122 	long freed;
1123 
1124 	do {
1125 		LIST_HEAD(dispose);
1126 
1127 		freed = list_lru_walk(&sb->s_dentry_lru,
1128 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1129 
1130 		this_cpu_sub(nr_dentry_unused, freed);
1131 		shrink_dentry_list(&dispose);
1132 	} while (freed > 0);
1133 }
1134 EXPORT_SYMBOL(shrink_dcache_sb);
1135 
1136 /**
1137  * enum d_walk_ret - action to talke during tree walk
1138  * @D_WALK_CONTINUE:	contrinue walk
1139  * @D_WALK_QUIT:	quit walk
1140  * @D_WALK_NORETRY:	quit when retry is needed
1141  * @D_WALK_SKIP:	skip this dentry and its children
1142  */
1143 enum d_walk_ret {
1144 	D_WALK_CONTINUE,
1145 	D_WALK_QUIT,
1146 	D_WALK_NORETRY,
1147 	D_WALK_SKIP,
1148 };
1149 
1150 /**
1151  * d_walk - walk the dentry tree
1152  * @parent:	start of walk
1153  * @data:	data passed to @enter() and @finish()
1154  * @enter:	callback when first entering the dentry
1155  * @finish:	callback when successfully finished the walk
1156  *
1157  * The @enter() and @finish() callbacks are called with d_lock held.
1158  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *),void (* finish)(void *))1159 static void d_walk(struct dentry *parent, void *data,
1160 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1161 		   void (*finish)(void *))
1162 {
1163 	struct dentry *this_parent;
1164 	struct list_head *next;
1165 	unsigned seq = 0;
1166 	enum d_walk_ret ret;
1167 	bool retry = true;
1168 
1169 again:
1170 	read_seqbegin_or_lock(&rename_lock, &seq);
1171 	this_parent = parent;
1172 	spin_lock(&this_parent->d_lock);
1173 
1174 	ret = enter(data, this_parent);
1175 	switch (ret) {
1176 	case D_WALK_CONTINUE:
1177 		break;
1178 	case D_WALK_QUIT:
1179 	case D_WALK_SKIP:
1180 		goto out_unlock;
1181 	case D_WALK_NORETRY:
1182 		retry = false;
1183 		break;
1184 	}
1185 repeat:
1186 	next = this_parent->d_subdirs.next;
1187 resume:
1188 	while (next != &this_parent->d_subdirs) {
1189 		struct list_head *tmp = next;
1190 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1191 		next = tmp->next;
1192 
1193 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1194 
1195 		ret = enter(data, dentry);
1196 		switch (ret) {
1197 		case D_WALK_CONTINUE:
1198 			break;
1199 		case D_WALK_QUIT:
1200 			spin_unlock(&dentry->d_lock);
1201 			goto out_unlock;
1202 		case D_WALK_NORETRY:
1203 			retry = false;
1204 			break;
1205 		case D_WALK_SKIP:
1206 			spin_unlock(&dentry->d_lock);
1207 			continue;
1208 		}
1209 
1210 		if (!list_empty(&dentry->d_subdirs)) {
1211 			spin_unlock(&this_parent->d_lock);
1212 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1213 			this_parent = dentry;
1214 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1215 			goto repeat;
1216 		}
1217 		spin_unlock(&dentry->d_lock);
1218 	}
1219 	/*
1220 	 * All done at this level ... ascend and resume the search.
1221 	 */
1222 	rcu_read_lock();
1223 ascend:
1224 	if (this_parent != parent) {
1225 		struct dentry *child = this_parent;
1226 		this_parent = child->d_parent;
1227 
1228 		spin_unlock(&child->d_lock);
1229 		spin_lock(&this_parent->d_lock);
1230 
1231 		/* might go back up the wrong parent if we have had a rename. */
1232 		if (need_seqretry(&rename_lock, seq))
1233 			goto rename_retry;
1234 		/* go into the first sibling still alive */
1235 		do {
1236 			next = child->d_child.next;
1237 			if (next == &this_parent->d_subdirs)
1238 				goto ascend;
1239 			child = list_entry(next, struct dentry, d_child);
1240 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1241 		rcu_read_unlock();
1242 		goto resume;
1243 	}
1244 	if (need_seqretry(&rename_lock, seq))
1245 		goto rename_retry;
1246 	rcu_read_unlock();
1247 	if (finish)
1248 		finish(data);
1249 
1250 out_unlock:
1251 	spin_unlock(&this_parent->d_lock);
1252 	done_seqretry(&rename_lock, seq);
1253 	return;
1254 
1255 rename_retry:
1256 	spin_unlock(&this_parent->d_lock);
1257 	rcu_read_unlock();
1258 	BUG_ON(seq & 1);
1259 	if (!retry)
1260 		return;
1261 	seq = 1;
1262 	goto again;
1263 }
1264 
1265 /*
1266  * Search for at least 1 mount point in the dentry's subdirs.
1267  * We descend to the next level whenever the d_subdirs
1268  * list is non-empty and continue searching.
1269  */
1270 
check_mount(void * data,struct dentry * dentry)1271 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1272 {
1273 	int *ret = data;
1274 	if (d_mountpoint(dentry)) {
1275 		*ret = 1;
1276 		return D_WALK_QUIT;
1277 	}
1278 	return D_WALK_CONTINUE;
1279 }
1280 
1281 /**
1282  * have_submounts - check for mounts over a dentry
1283  * @parent: dentry to check.
1284  *
1285  * Return true if the parent or its subdirectories contain
1286  * a mount point
1287  */
have_submounts(struct dentry * parent)1288 int have_submounts(struct dentry *parent)
1289 {
1290 	int ret = 0;
1291 
1292 	d_walk(parent, &ret, check_mount, NULL);
1293 
1294 	return ret;
1295 }
1296 EXPORT_SYMBOL(have_submounts);
1297 
1298 /*
1299  * Called by mount code to set a mountpoint and check if the mountpoint is
1300  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1301  * subtree can become unreachable).
1302  *
1303  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1304  * this reason take rename_lock and d_lock on dentry and ancestors.
1305  */
d_set_mounted(struct dentry * dentry)1306 int d_set_mounted(struct dentry *dentry)
1307 {
1308 	struct dentry *p;
1309 	int ret = -ENOENT;
1310 	write_seqlock(&rename_lock);
1311 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1312 		/* Need exclusion wrt. d_invalidate() */
1313 		spin_lock(&p->d_lock);
1314 		if (unlikely(d_unhashed(p))) {
1315 			spin_unlock(&p->d_lock);
1316 			goto out;
1317 		}
1318 		spin_unlock(&p->d_lock);
1319 	}
1320 	spin_lock(&dentry->d_lock);
1321 	if (!d_unlinked(dentry)) {
1322 		dentry->d_flags |= DCACHE_MOUNTED;
1323 		ret = 0;
1324 	}
1325  	spin_unlock(&dentry->d_lock);
1326 out:
1327 	write_sequnlock(&rename_lock);
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Search the dentry child list of the specified parent,
1333  * and move any unused dentries to the end of the unused
1334  * list for prune_dcache(). We descend to the next level
1335  * whenever the d_subdirs list is non-empty and continue
1336  * searching.
1337  *
1338  * It returns zero iff there are no unused children,
1339  * otherwise  it returns the number of children moved to
1340  * the end of the unused list. This may not be the total
1341  * number of unused children, because select_parent can
1342  * drop the lock and return early due to latency
1343  * constraints.
1344  */
1345 
1346 struct select_data {
1347 	struct dentry *start;
1348 	struct list_head dispose;
1349 	int found;
1350 };
1351 
select_collect(void * _data,struct dentry * dentry)1352 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1353 {
1354 	struct select_data *data = _data;
1355 	enum d_walk_ret ret = D_WALK_CONTINUE;
1356 
1357 	if (data->start == dentry)
1358 		goto out;
1359 
1360 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1361 		data->found++;
1362 	} else {
1363 		if (dentry->d_flags & DCACHE_LRU_LIST)
1364 			d_lru_del(dentry);
1365 		if (!dentry->d_lockref.count) {
1366 			d_shrink_add(dentry, &data->dispose);
1367 			data->found++;
1368 		}
1369 	}
1370 	/*
1371 	 * We can return to the caller if we have found some (this
1372 	 * ensures forward progress). We'll be coming back to find
1373 	 * the rest.
1374 	 */
1375 	if (!list_empty(&data->dispose))
1376 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1377 out:
1378 	return ret;
1379 }
1380 
1381 /**
1382  * shrink_dcache_parent - prune dcache
1383  * @parent: parent of entries to prune
1384  *
1385  * Prune the dcache to remove unused children of the parent dentry.
1386  */
shrink_dcache_parent(struct dentry * parent)1387 void shrink_dcache_parent(struct dentry *parent)
1388 {
1389 	for (;;) {
1390 		struct select_data data;
1391 
1392 		INIT_LIST_HEAD(&data.dispose);
1393 		data.start = parent;
1394 		data.found = 0;
1395 
1396 		d_walk(parent, &data, select_collect, NULL);
1397 		if (!data.found)
1398 			break;
1399 
1400 		shrink_dentry_list(&data.dispose);
1401 		cond_resched();
1402 	}
1403 }
1404 EXPORT_SYMBOL(shrink_dcache_parent);
1405 
umount_check(void * _data,struct dentry * dentry)1406 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1407 {
1408 	/* it has busy descendents; complain about those instead */
1409 	if (!list_empty(&dentry->d_subdirs))
1410 		return D_WALK_CONTINUE;
1411 
1412 	/* root with refcount 1 is fine */
1413 	if (dentry == _data && dentry->d_lockref.count == 1)
1414 		return D_WALK_CONTINUE;
1415 
1416 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1417 			" still in use (%d) [unmount of %s %s]\n",
1418 		       dentry,
1419 		       dentry->d_inode ?
1420 		       dentry->d_inode->i_ino : 0UL,
1421 		       dentry,
1422 		       dentry->d_lockref.count,
1423 		       dentry->d_sb->s_type->name,
1424 		       dentry->d_sb->s_id);
1425 	WARN_ON(1);
1426 	return D_WALK_CONTINUE;
1427 }
1428 
do_one_tree(struct dentry * dentry)1429 static void do_one_tree(struct dentry *dentry)
1430 {
1431 	shrink_dcache_parent(dentry);
1432 	d_walk(dentry, dentry, umount_check, NULL);
1433 	d_drop(dentry);
1434 	dput(dentry);
1435 }
1436 
1437 /*
1438  * destroy the dentries attached to a superblock on unmounting
1439  */
shrink_dcache_for_umount(struct super_block * sb)1440 void shrink_dcache_for_umount(struct super_block *sb)
1441 {
1442 	struct dentry *dentry;
1443 
1444 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1445 
1446 	dentry = sb->s_root;
1447 	sb->s_root = NULL;
1448 	do_one_tree(dentry);
1449 
1450 	while (!hlist_bl_empty(&sb->s_anon)) {
1451 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1452 		do_one_tree(dentry);
1453 	}
1454 }
1455 
1456 struct detach_data {
1457 	struct select_data select;
1458 	struct dentry *mountpoint;
1459 };
detach_and_collect(void * _data,struct dentry * dentry)1460 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1461 {
1462 	struct detach_data *data = _data;
1463 
1464 	if (d_mountpoint(dentry)) {
1465 		__dget_dlock(dentry);
1466 		data->mountpoint = dentry;
1467 		return D_WALK_QUIT;
1468 	}
1469 
1470 	return select_collect(&data->select, dentry);
1471 }
1472 
check_and_drop(void * _data)1473 static void check_and_drop(void *_data)
1474 {
1475 	struct detach_data *data = _data;
1476 
1477 	if (!data->mountpoint && !data->select.found)
1478 		__d_drop(data->select.start);
1479 }
1480 
1481 /**
1482  * d_invalidate - detach submounts, prune dcache, and drop
1483  * @dentry: dentry to invalidate (aka detach, prune and drop)
1484  *
1485  * no dcache lock.
1486  *
1487  * The final d_drop is done as an atomic operation relative to
1488  * rename_lock ensuring there are no races with d_set_mounted.  This
1489  * ensures there are no unhashed dentries on the path to a mountpoint.
1490  */
d_invalidate(struct dentry * dentry)1491 void d_invalidate(struct dentry *dentry)
1492 {
1493 	/*
1494 	 * If it's already been dropped, return OK.
1495 	 */
1496 	spin_lock(&dentry->d_lock);
1497 	if (d_unhashed(dentry)) {
1498 		spin_unlock(&dentry->d_lock);
1499 		return;
1500 	}
1501 	spin_unlock(&dentry->d_lock);
1502 
1503 	/* Negative dentries can be dropped without further checks */
1504 	if (!dentry->d_inode) {
1505 		d_drop(dentry);
1506 		return;
1507 	}
1508 
1509 	for (;;) {
1510 		struct detach_data data;
1511 
1512 		data.mountpoint = NULL;
1513 		INIT_LIST_HEAD(&data.select.dispose);
1514 		data.select.start = dentry;
1515 		data.select.found = 0;
1516 
1517 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1518 
1519 		if (data.select.found)
1520 			shrink_dentry_list(&data.select.dispose);
1521 
1522 		if (data.mountpoint) {
1523 			detach_mounts(data.mountpoint);
1524 			dput(data.mountpoint);
1525 		}
1526 
1527 		if (!data.mountpoint && !data.select.found)
1528 			break;
1529 
1530 		cond_resched();
1531 	}
1532 }
1533 EXPORT_SYMBOL(d_invalidate);
1534 
1535 /**
1536  * __d_alloc	-	allocate a dcache entry
1537  * @sb: filesystem it will belong to
1538  * @name: qstr of the name
1539  *
1540  * Allocates a dentry. It returns %NULL if there is insufficient memory
1541  * available. On a success the dentry is returned. The name passed in is
1542  * copied and the copy passed in may be reused after this call.
1543  */
1544 
__d_alloc(struct super_block * sb,const struct qstr * name)1545 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1546 {
1547 	struct dentry *dentry;
1548 	char *dname;
1549 
1550 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1551 	if (!dentry)
1552 		return NULL;
1553 
1554 	/*
1555 	 * We guarantee that the inline name is always NUL-terminated.
1556 	 * This way the memcpy() done by the name switching in rename
1557 	 * will still always have a NUL at the end, even if we might
1558 	 * be overwriting an internal NUL character
1559 	 */
1560 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1561 	if (name->len > DNAME_INLINE_LEN-1) {
1562 		size_t size = offsetof(struct external_name, name[1]);
1563 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1564 		if (!p) {
1565 			kmem_cache_free(dentry_cache, dentry);
1566 			return NULL;
1567 		}
1568 		atomic_set(&p->u.count, 1);
1569 		dname = p->name;
1570 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1571 			kasan_unpoison_shadow(dname,
1572 				round_up(name->len + 1,	sizeof(unsigned long)));
1573 	} else  {
1574 		dname = dentry->d_iname;
1575 	}
1576 
1577 	dentry->d_name.len = name->len;
1578 	dentry->d_name.hash = name->hash;
1579 	memcpy(dname, name->name, name->len);
1580 	dname[name->len] = 0;
1581 
1582 	/* Make sure we always see the terminating NUL character */
1583 	smp_wmb();
1584 	dentry->d_name.name = dname;
1585 
1586 	dentry->d_lockref.count = 1;
1587 	dentry->d_flags = 0;
1588 	spin_lock_init(&dentry->d_lock);
1589 	seqcount_init(&dentry->d_seq);
1590 	dentry->d_inode = NULL;
1591 	dentry->d_parent = dentry;
1592 	dentry->d_sb = sb;
1593 	dentry->d_op = NULL;
1594 	dentry->d_fsdata = NULL;
1595 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1596 	INIT_LIST_HEAD(&dentry->d_lru);
1597 	INIT_LIST_HEAD(&dentry->d_subdirs);
1598 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1599 	INIT_LIST_HEAD(&dentry->d_child);
1600 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1601 
1602 	this_cpu_inc(nr_dentry);
1603 
1604 	return dentry;
1605 }
1606 
1607 /**
1608  * d_alloc	-	allocate a dcache entry
1609  * @parent: parent of entry to allocate
1610  * @name: qstr of the name
1611  *
1612  * Allocates a dentry. It returns %NULL if there is insufficient memory
1613  * available. On a success the dentry is returned. The name passed in is
1614  * copied and the copy passed in may be reused after this call.
1615  */
d_alloc(struct dentry * parent,const struct qstr * name)1616 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1617 {
1618 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1619 	if (!dentry)
1620 		return NULL;
1621 	dentry->d_flags |= DCACHE_RCUACCESS;
1622 	spin_lock(&parent->d_lock);
1623 	/*
1624 	 * don't need child lock because it is not subject
1625 	 * to concurrency here
1626 	 */
1627 	__dget_dlock(parent);
1628 	dentry->d_parent = parent;
1629 	list_add(&dentry->d_child, &parent->d_subdirs);
1630 	spin_unlock(&parent->d_lock);
1631 
1632 	return dentry;
1633 }
1634 EXPORT_SYMBOL(d_alloc);
1635 
1636 /**
1637  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1638  * @sb: the superblock
1639  * @name: qstr of the name
1640  *
1641  * For a filesystem that just pins its dentries in memory and never
1642  * performs lookups at all, return an unhashed IS_ROOT dentry.
1643  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1644 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1645 {
1646 	return __d_alloc(sb, name);
1647 }
1648 EXPORT_SYMBOL(d_alloc_pseudo);
1649 
d_alloc_name(struct dentry * parent,const char * name)1650 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1651 {
1652 	struct qstr q;
1653 
1654 	q.name = name;
1655 	q.len = strlen(name);
1656 	q.hash = full_name_hash(q.name, q.len);
1657 	return d_alloc(parent, &q);
1658 }
1659 EXPORT_SYMBOL(d_alloc_name);
1660 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1661 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1662 {
1663 	WARN_ON_ONCE(dentry->d_op);
1664 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1665 				DCACHE_OP_COMPARE	|
1666 				DCACHE_OP_REVALIDATE	|
1667 				DCACHE_OP_WEAK_REVALIDATE	|
1668 				DCACHE_OP_DELETE	|
1669 				DCACHE_OP_SELECT_INODE	|
1670 				DCACHE_OP_REAL));
1671 	dentry->d_op = op;
1672 	if (!op)
1673 		return;
1674 	if (op->d_hash)
1675 		dentry->d_flags |= DCACHE_OP_HASH;
1676 	if (op->d_compare)
1677 		dentry->d_flags |= DCACHE_OP_COMPARE;
1678 	if (op->d_revalidate)
1679 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1680 	if (op->d_weak_revalidate)
1681 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1682 	if (op->d_delete)
1683 		dentry->d_flags |= DCACHE_OP_DELETE;
1684 	if (op->d_prune)
1685 		dentry->d_flags |= DCACHE_OP_PRUNE;
1686 	if (op->d_select_inode)
1687 		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1688 	if (op->d_real)
1689 		dentry->d_flags |= DCACHE_OP_REAL;
1690 
1691 }
1692 EXPORT_SYMBOL(d_set_d_op);
1693 
1694 
1695 /*
1696  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1697  * @dentry - The dentry to mark
1698  *
1699  * Mark a dentry as falling through to the lower layer (as set with
1700  * d_pin_lower()).  This flag may be recorded on the medium.
1701  */
d_set_fallthru(struct dentry * dentry)1702 void d_set_fallthru(struct dentry *dentry)
1703 {
1704 	spin_lock(&dentry->d_lock);
1705 	dentry->d_flags |= DCACHE_FALLTHRU;
1706 	spin_unlock(&dentry->d_lock);
1707 }
1708 EXPORT_SYMBOL(d_set_fallthru);
1709 
d_flags_for_inode(struct inode * inode)1710 static unsigned d_flags_for_inode(struct inode *inode)
1711 {
1712 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1713 
1714 	if (!inode)
1715 		return DCACHE_MISS_TYPE;
1716 
1717 	if (S_ISDIR(inode->i_mode)) {
1718 		add_flags = DCACHE_DIRECTORY_TYPE;
1719 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1720 			if (unlikely(!inode->i_op->lookup))
1721 				add_flags = DCACHE_AUTODIR_TYPE;
1722 			else
1723 				inode->i_opflags |= IOP_LOOKUP;
1724 		}
1725 		goto type_determined;
1726 	}
1727 
1728 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1729 		if (unlikely(inode->i_op->follow_link)) {
1730 			add_flags = DCACHE_SYMLINK_TYPE;
1731 			goto type_determined;
1732 		}
1733 		inode->i_opflags |= IOP_NOFOLLOW;
1734 	}
1735 
1736 	if (unlikely(!S_ISREG(inode->i_mode)))
1737 		add_flags = DCACHE_SPECIAL_TYPE;
1738 
1739 type_determined:
1740 	if (unlikely(IS_AUTOMOUNT(inode)))
1741 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1742 	return add_flags;
1743 }
1744 
__d_instantiate(struct dentry * dentry,struct inode * inode)1745 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1746 {
1747 	unsigned add_flags = d_flags_for_inode(inode);
1748 
1749 	spin_lock(&dentry->d_lock);
1750 	if (inode)
1751 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1752 	raw_write_seqcount_begin(&dentry->d_seq);
1753 	__d_set_inode_and_type(dentry, inode, add_flags);
1754 	raw_write_seqcount_end(&dentry->d_seq);
1755 	spin_unlock(&dentry->d_lock);
1756 	fsnotify_d_instantiate(dentry, inode);
1757 }
1758 
1759 /**
1760  * d_instantiate - fill in inode information for a dentry
1761  * @entry: dentry to complete
1762  * @inode: inode to attach to this dentry
1763  *
1764  * Fill in inode information in the entry.
1765  *
1766  * This turns negative dentries into productive full members
1767  * of society.
1768  *
1769  * NOTE! This assumes that the inode count has been incremented
1770  * (or otherwise set) by the caller to indicate that it is now
1771  * in use by the dcache.
1772  */
1773 
d_instantiate(struct dentry * entry,struct inode * inode)1774 void d_instantiate(struct dentry *entry, struct inode * inode)
1775 {
1776 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1777 	if (inode)
1778 		spin_lock(&inode->i_lock);
1779 	__d_instantiate(entry, inode);
1780 	if (inode)
1781 		spin_unlock(&inode->i_lock);
1782 	security_d_instantiate(entry, inode);
1783 }
1784 EXPORT_SYMBOL(d_instantiate);
1785 
1786 /**
1787  * d_instantiate_unique - instantiate a non-aliased dentry
1788  * @entry: dentry to instantiate
1789  * @inode: inode to attach to this dentry
1790  *
1791  * Fill in inode information in the entry. On success, it returns NULL.
1792  * If an unhashed alias of "entry" already exists, then we return the
1793  * aliased dentry instead and drop one reference to inode.
1794  *
1795  * Note that in order to avoid conflicts with rename() etc, the caller
1796  * had better be holding the parent directory semaphore.
1797  *
1798  * This also assumes that the inode count has been incremented
1799  * (or otherwise set) by the caller to indicate that it is now
1800  * in use by the dcache.
1801  */
__d_instantiate_unique(struct dentry * entry,struct inode * inode)1802 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1803 					     struct inode *inode)
1804 {
1805 	struct dentry *alias;
1806 	int len = entry->d_name.len;
1807 	const char *name = entry->d_name.name;
1808 	unsigned int hash = entry->d_name.hash;
1809 
1810 	if (!inode) {
1811 		__d_instantiate(entry, NULL);
1812 		return NULL;
1813 	}
1814 
1815 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1816 		/*
1817 		 * Don't need alias->d_lock here, because aliases with
1818 		 * d_parent == entry->d_parent are not subject to name or
1819 		 * parent changes, because the parent inode i_mutex is held.
1820 		 */
1821 		if (alias->d_name.hash != hash)
1822 			continue;
1823 		if (alias->d_parent != entry->d_parent)
1824 			continue;
1825 		if (alias->d_name.len != len)
1826 			continue;
1827 		if (dentry_cmp(alias, name, len))
1828 			continue;
1829 		__dget(alias);
1830 		return alias;
1831 	}
1832 
1833 	__d_instantiate(entry, inode);
1834 	return NULL;
1835 }
1836 
d_instantiate_unique(struct dentry * entry,struct inode * inode)1837 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1838 {
1839 	struct dentry *result;
1840 
1841 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1842 
1843 	if (inode)
1844 		spin_lock(&inode->i_lock);
1845 	result = __d_instantiate_unique(entry, inode);
1846 	if (inode)
1847 		spin_unlock(&inode->i_lock);
1848 
1849 	if (!result) {
1850 		security_d_instantiate(entry, inode);
1851 		return NULL;
1852 	}
1853 
1854 	BUG_ON(!d_unhashed(result));
1855 	iput(inode);
1856 	return result;
1857 }
1858 
1859 EXPORT_SYMBOL(d_instantiate_unique);
1860 
1861 /**
1862  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1863  * @entry: dentry to complete
1864  * @inode: inode to attach to this dentry
1865  *
1866  * Fill in inode information in the entry.  If a directory alias is found, then
1867  * return an error (and drop inode).  Together with d_materialise_unique() this
1868  * guarantees that a directory inode may never have more than one alias.
1869  */
d_instantiate_no_diralias(struct dentry * entry,struct inode * inode)1870 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1871 {
1872 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1873 
1874 	spin_lock(&inode->i_lock);
1875 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1876 		spin_unlock(&inode->i_lock);
1877 		iput(inode);
1878 		return -EBUSY;
1879 	}
1880 	__d_instantiate(entry, inode);
1881 	spin_unlock(&inode->i_lock);
1882 	security_d_instantiate(entry, inode);
1883 
1884 	return 0;
1885 }
1886 EXPORT_SYMBOL(d_instantiate_no_diralias);
1887 
d_make_root(struct inode * root_inode)1888 struct dentry *d_make_root(struct inode *root_inode)
1889 {
1890 	struct dentry *res = NULL;
1891 
1892 	if (root_inode) {
1893 		static const struct qstr name = QSTR_INIT("/", 1);
1894 
1895 		res = __d_alloc(root_inode->i_sb, &name);
1896 		if (res)
1897 			d_instantiate(res, root_inode);
1898 		else
1899 			iput(root_inode);
1900 	}
1901 	return res;
1902 }
1903 EXPORT_SYMBOL(d_make_root);
1904 
__d_find_any_alias(struct inode * inode)1905 static struct dentry * __d_find_any_alias(struct inode *inode)
1906 {
1907 	struct dentry *alias;
1908 
1909 	if (hlist_empty(&inode->i_dentry))
1910 		return NULL;
1911 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1912 	__dget(alias);
1913 	return alias;
1914 }
1915 
1916 /**
1917  * d_find_any_alias - find any alias for a given inode
1918  * @inode: inode to find an alias for
1919  *
1920  * If any aliases exist for the given inode, take and return a
1921  * reference for one of them.  If no aliases exist, return %NULL.
1922  */
d_find_any_alias(struct inode * inode)1923 struct dentry *d_find_any_alias(struct inode *inode)
1924 {
1925 	struct dentry *de;
1926 
1927 	spin_lock(&inode->i_lock);
1928 	de = __d_find_any_alias(inode);
1929 	spin_unlock(&inode->i_lock);
1930 	return de;
1931 }
1932 EXPORT_SYMBOL(d_find_any_alias);
1933 
__d_obtain_alias(struct inode * inode,int disconnected)1934 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1935 {
1936 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1937 	struct dentry *tmp;
1938 	struct dentry *res;
1939 	unsigned add_flags;
1940 
1941 	if (!inode)
1942 		return ERR_PTR(-ESTALE);
1943 	if (IS_ERR(inode))
1944 		return ERR_CAST(inode);
1945 
1946 	res = d_find_any_alias(inode);
1947 	if (res)
1948 		goto out_iput;
1949 
1950 	tmp = __d_alloc(inode->i_sb, &anonstring);
1951 	if (!tmp) {
1952 		res = ERR_PTR(-ENOMEM);
1953 		goto out_iput;
1954 	}
1955 
1956 	spin_lock(&inode->i_lock);
1957 	res = __d_find_any_alias(inode);
1958 	if (res) {
1959 		spin_unlock(&inode->i_lock);
1960 		dput(tmp);
1961 		goto out_iput;
1962 	}
1963 
1964 	/* attach a disconnected dentry */
1965 	add_flags = d_flags_for_inode(inode);
1966 
1967 	if (disconnected)
1968 		add_flags |= DCACHE_DISCONNECTED;
1969 
1970 	spin_lock(&tmp->d_lock);
1971 	__d_set_inode_and_type(tmp, inode, add_flags);
1972 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1973 	hlist_bl_lock(&tmp->d_sb->s_anon);
1974 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1975 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1976 	spin_unlock(&tmp->d_lock);
1977 	spin_unlock(&inode->i_lock);
1978 	security_d_instantiate(tmp, inode);
1979 
1980 	return tmp;
1981 
1982  out_iput:
1983 	if (res && !IS_ERR(res))
1984 		security_d_instantiate(res, inode);
1985 	iput(inode);
1986 	return res;
1987 }
1988 
1989 /**
1990  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1991  * @inode: inode to allocate the dentry for
1992  *
1993  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1994  * similar open by handle operations.  The returned dentry may be anonymous,
1995  * or may have a full name (if the inode was already in the cache).
1996  *
1997  * When called on a directory inode, we must ensure that the inode only ever
1998  * has one dentry.  If a dentry is found, that is returned instead of
1999  * allocating a new one.
2000  *
2001  * On successful return, the reference to the inode has been transferred
2002  * to the dentry.  In case of an error the reference on the inode is released.
2003  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2004  * be passed in and the error will be propagated to the return value,
2005  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2006  */
d_obtain_alias(struct inode * inode)2007 struct dentry *d_obtain_alias(struct inode *inode)
2008 {
2009 	return __d_obtain_alias(inode, 1);
2010 }
2011 EXPORT_SYMBOL(d_obtain_alias);
2012 
2013 /**
2014  * d_obtain_root - find or allocate a dentry for a given inode
2015  * @inode: inode to allocate the dentry for
2016  *
2017  * Obtain an IS_ROOT dentry for the root of a filesystem.
2018  *
2019  * We must ensure that directory inodes only ever have one dentry.  If a
2020  * dentry is found, that is returned instead of allocating a new one.
2021  *
2022  * On successful return, the reference to the inode has been transferred
2023  * to the dentry.  In case of an error the reference on the inode is
2024  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2025  * error will be propagate to the return value, with a %NULL @inode
2026  * replaced by ERR_PTR(-ESTALE).
2027  */
d_obtain_root(struct inode * inode)2028 struct dentry *d_obtain_root(struct inode *inode)
2029 {
2030 	return __d_obtain_alias(inode, 0);
2031 }
2032 EXPORT_SYMBOL(d_obtain_root);
2033 
2034 /**
2035  * d_add_ci - lookup or allocate new dentry with case-exact name
2036  * @inode:  the inode case-insensitive lookup has found
2037  * @dentry: the negative dentry that was passed to the parent's lookup func
2038  * @name:   the case-exact name to be associated with the returned dentry
2039  *
2040  * This is to avoid filling the dcache with case-insensitive names to the
2041  * same inode, only the actual correct case is stored in the dcache for
2042  * case-insensitive filesystems.
2043  *
2044  * For a case-insensitive lookup match and if the the case-exact dentry
2045  * already exists in in the dcache, use it and return it.
2046  *
2047  * If no entry exists with the exact case name, allocate new dentry with
2048  * the exact case, and return the spliced entry.
2049  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2050 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2051 			struct qstr *name)
2052 {
2053 	struct dentry *found;
2054 	struct dentry *new;
2055 
2056 	/*
2057 	 * First check if a dentry matching the name already exists,
2058 	 * if not go ahead and create it now.
2059 	 */
2060 	found = d_hash_and_lookup(dentry->d_parent, name);
2061 	if (!found) {
2062 		new = d_alloc(dentry->d_parent, name);
2063 		if (!new) {
2064 			found = ERR_PTR(-ENOMEM);
2065 		} else {
2066 			found = d_splice_alias(inode, new);
2067 			if (found) {
2068 				dput(new);
2069 				return found;
2070 			}
2071 			return new;
2072 		}
2073 	}
2074 	iput(inode);
2075 	return found;
2076 }
2077 EXPORT_SYMBOL(d_add_ci);
2078 
2079 /*
2080  * Do the slow-case of the dentry name compare.
2081  *
2082  * Unlike the dentry_cmp() function, we need to atomically
2083  * load the name and length information, so that the
2084  * filesystem can rely on them, and can use the 'name' and
2085  * 'len' information without worrying about walking off the
2086  * end of memory etc.
2087  *
2088  * Thus the read_seqcount_retry() and the "duplicate" info
2089  * in arguments (the low-level filesystem should not look
2090  * at the dentry inode or name contents directly, since
2091  * rename can change them while we're in RCU mode).
2092  */
2093 enum slow_d_compare {
2094 	D_COMP_OK,
2095 	D_COMP_NOMATCH,
2096 	D_COMP_SEQRETRY,
2097 };
2098 
slow_dentry_cmp(const struct dentry * parent,struct dentry * dentry,unsigned int seq,const struct qstr * name)2099 static noinline enum slow_d_compare slow_dentry_cmp(
2100 		const struct dentry *parent,
2101 		struct dentry *dentry,
2102 		unsigned int seq,
2103 		const struct qstr *name)
2104 {
2105 	int tlen = dentry->d_name.len;
2106 	const char *tname = dentry->d_name.name;
2107 
2108 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2109 		cpu_relax();
2110 		return D_COMP_SEQRETRY;
2111 	}
2112 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2113 		return D_COMP_NOMATCH;
2114 	return D_COMP_OK;
2115 }
2116 
2117 /**
2118  * __d_lookup_rcu - search for a dentry (racy, store-free)
2119  * @parent: parent dentry
2120  * @name: qstr of name we wish to find
2121  * @seqp: returns d_seq value at the point where the dentry was found
2122  * Returns: dentry, or NULL
2123  *
2124  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2125  * resolution (store-free path walking) design described in
2126  * Documentation/filesystems/path-lookup.txt.
2127  *
2128  * This is not to be used outside core vfs.
2129  *
2130  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2131  * held, and rcu_read_lock held. The returned dentry must not be stored into
2132  * without taking d_lock and checking d_seq sequence count against @seq
2133  * returned here.
2134  *
2135  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2136  * function.
2137  *
2138  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2139  * the returned dentry, so long as its parent's seqlock is checked after the
2140  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2141  * is formed, giving integrity down the path walk.
2142  *
2143  * NOTE! The caller *has* to check the resulting dentry against the sequence
2144  * number we've returned before using any of the resulting dentry state!
2145  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2146 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2147 				const struct qstr *name,
2148 				unsigned *seqp)
2149 {
2150 	u64 hashlen = name->hash_len;
2151 	const unsigned char *str = name->name;
2152 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2153 	struct hlist_bl_node *node;
2154 	struct dentry *dentry;
2155 
2156 	/*
2157 	 * Note: There is significant duplication with __d_lookup_rcu which is
2158 	 * required to prevent single threaded performance regressions
2159 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2160 	 * Keep the two functions in sync.
2161 	 */
2162 
2163 	/*
2164 	 * The hash list is protected using RCU.
2165 	 *
2166 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2167 	 * races with d_move().
2168 	 *
2169 	 * It is possible that concurrent renames can mess up our list
2170 	 * walk here and result in missing our dentry, resulting in the
2171 	 * false-negative result. d_lookup() protects against concurrent
2172 	 * renames using rename_lock seqlock.
2173 	 *
2174 	 * See Documentation/filesystems/path-lookup.txt for more details.
2175 	 */
2176 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2177 		unsigned seq;
2178 
2179 seqretry:
2180 		/*
2181 		 * The dentry sequence count protects us from concurrent
2182 		 * renames, and thus protects parent and name fields.
2183 		 *
2184 		 * The caller must perform a seqcount check in order
2185 		 * to do anything useful with the returned dentry.
2186 		 *
2187 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2188 		 * we don't wait for the sequence count to stabilize if it
2189 		 * is in the middle of a sequence change. If we do the slow
2190 		 * dentry compare, we will do seqretries until it is stable,
2191 		 * and if we end up with a successful lookup, we actually
2192 		 * want to exit RCU lookup anyway.
2193 		 */
2194 		seq = raw_seqcount_begin(&dentry->d_seq);
2195 		if (dentry->d_parent != parent)
2196 			continue;
2197 		if (d_unhashed(dentry))
2198 			continue;
2199 
2200 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2201 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2202 				continue;
2203 			*seqp = seq;
2204 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2205 			case D_COMP_OK:
2206 				return dentry;
2207 			case D_COMP_NOMATCH:
2208 				continue;
2209 			default:
2210 				goto seqretry;
2211 			}
2212 		}
2213 
2214 		if (dentry->d_name.hash_len != hashlen)
2215 			continue;
2216 		*seqp = seq;
2217 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2218 			return dentry;
2219 	}
2220 	return NULL;
2221 }
2222 
2223 /**
2224  * d_lookup - search for a dentry
2225  * @parent: parent dentry
2226  * @name: qstr of name we wish to find
2227  * Returns: dentry, or NULL
2228  *
2229  * d_lookup searches the children of the parent dentry for the name in
2230  * question. If the dentry is found its reference count is incremented and the
2231  * dentry is returned. The caller must use dput to free the entry when it has
2232  * finished using it. %NULL is returned if the dentry does not exist.
2233  */
d_lookup(const struct dentry * parent,const struct qstr * name)2234 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2235 {
2236 	struct dentry *dentry;
2237 	unsigned seq;
2238 
2239 	do {
2240 		seq = read_seqbegin(&rename_lock);
2241 		dentry = __d_lookup(parent, name);
2242 		if (dentry)
2243 			break;
2244 	} while (read_seqretry(&rename_lock, seq));
2245 	return dentry;
2246 }
2247 EXPORT_SYMBOL(d_lookup);
2248 
2249 /**
2250  * __d_lookup - search for a dentry (racy)
2251  * @parent: parent dentry
2252  * @name: qstr of name we wish to find
2253  * Returns: dentry, or NULL
2254  *
2255  * __d_lookup is like d_lookup, however it may (rarely) return a
2256  * false-negative result due to unrelated rename activity.
2257  *
2258  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2259  * however it must be used carefully, eg. with a following d_lookup in
2260  * the case of failure.
2261  *
2262  * __d_lookup callers must be commented.
2263  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2264 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2265 {
2266 	unsigned int len = name->len;
2267 	unsigned int hash = name->hash;
2268 	const unsigned char *str = name->name;
2269 	struct hlist_bl_head *b = d_hash(parent, hash);
2270 	struct hlist_bl_node *node;
2271 	struct dentry *found = NULL;
2272 	struct dentry *dentry;
2273 
2274 	/*
2275 	 * Note: There is significant duplication with __d_lookup_rcu which is
2276 	 * required to prevent single threaded performance regressions
2277 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2278 	 * Keep the two functions in sync.
2279 	 */
2280 
2281 	/*
2282 	 * The hash list is protected using RCU.
2283 	 *
2284 	 * Take d_lock when comparing a candidate dentry, to avoid races
2285 	 * with d_move().
2286 	 *
2287 	 * It is possible that concurrent renames can mess up our list
2288 	 * walk here and result in missing our dentry, resulting in the
2289 	 * false-negative result. d_lookup() protects against concurrent
2290 	 * renames using rename_lock seqlock.
2291 	 *
2292 	 * See Documentation/filesystems/path-lookup.txt for more details.
2293 	 */
2294 	rcu_read_lock();
2295 
2296 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2297 
2298 		if (dentry->d_name.hash != hash)
2299 			continue;
2300 
2301 		spin_lock(&dentry->d_lock);
2302 		if (dentry->d_parent != parent)
2303 			goto next;
2304 		if (d_unhashed(dentry))
2305 			goto next;
2306 
2307 		/*
2308 		 * It is safe to compare names since d_move() cannot
2309 		 * change the qstr (protected by d_lock).
2310 		 */
2311 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2312 			int tlen = dentry->d_name.len;
2313 			const char *tname = dentry->d_name.name;
2314 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2315 				goto next;
2316 		} else {
2317 			if (dentry->d_name.len != len)
2318 				goto next;
2319 			if (dentry_cmp(dentry, str, len))
2320 				goto next;
2321 		}
2322 
2323 		dentry->d_lockref.count++;
2324 		found = dentry;
2325 		spin_unlock(&dentry->d_lock);
2326 		break;
2327 next:
2328 		spin_unlock(&dentry->d_lock);
2329  	}
2330  	rcu_read_unlock();
2331 
2332  	return found;
2333 }
2334 
2335 /**
2336  * d_hash_and_lookup - hash the qstr then search for a dentry
2337  * @dir: Directory to search in
2338  * @name: qstr of name we wish to find
2339  *
2340  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2341  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2342 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2343 {
2344 	/*
2345 	 * Check for a fs-specific hash function. Note that we must
2346 	 * calculate the standard hash first, as the d_op->d_hash()
2347 	 * routine may choose to leave the hash value unchanged.
2348 	 */
2349 	name->hash = full_name_hash(name->name, name->len);
2350 	if (dir->d_flags & DCACHE_OP_HASH) {
2351 		int err = dir->d_op->d_hash(dir, name);
2352 		if (unlikely(err < 0))
2353 			return ERR_PTR(err);
2354 	}
2355 	return d_lookup(dir, name);
2356 }
2357 EXPORT_SYMBOL(d_hash_and_lookup);
2358 
2359 /*
2360  * When a file is deleted, we have two options:
2361  * - turn this dentry into a negative dentry
2362  * - unhash this dentry and free it.
2363  *
2364  * Usually, we want to just turn this into
2365  * a negative dentry, but if anybody else is
2366  * currently using the dentry or the inode
2367  * we can't do that and we fall back on removing
2368  * it from the hash queues and waiting for
2369  * it to be deleted later when it has no users
2370  */
2371 
2372 /**
2373  * d_delete - delete a dentry
2374  * @dentry: The dentry to delete
2375  *
2376  * Turn the dentry into a negative dentry if possible, otherwise
2377  * remove it from the hash queues so it can be deleted later
2378  */
2379 
d_delete(struct dentry * dentry)2380 void d_delete(struct dentry * dentry)
2381 {
2382 	struct inode *inode;
2383 	int isdir = 0;
2384 	/*
2385 	 * Are we the only user?
2386 	 */
2387 again:
2388 	spin_lock(&dentry->d_lock);
2389 	inode = dentry->d_inode;
2390 	isdir = S_ISDIR(inode->i_mode);
2391 	if (dentry->d_lockref.count == 1) {
2392 		if (!spin_trylock(&inode->i_lock)) {
2393 			spin_unlock(&dentry->d_lock);
2394 			cpu_relax();
2395 			goto again;
2396 		}
2397 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2398 		dentry_unlink_inode(dentry);
2399 		fsnotify_nameremove(dentry, isdir);
2400 		return;
2401 	}
2402 
2403 	if (!d_unhashed(dentry))
2404 		__d_drop(dentry);
2405 
2406 	spin_unlock(&dentry->d_lock);
2407 
2408 	fsnotify_nameremove(dentry, isdir);
2409 }
2410 EXPORT_SYMBOL(d_delete);
2411 
__d_rehash(struct dentry * entry,struct hlist_bl_head * b)2412 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2413 {
2414 	BUG_ON(!d_unhashed(entry));
2415 	hlist_bl_lock(b);
2416 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2417 	hlist_bl_unlock(b);
2418 }
2419 
_d_rehash(struct dentry * entry)2420 static void _d_rehash(struct dentry * entry)
2421 {
2422 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2423 }
2424 
2425 /**
2426  * d_rehash	- add an entry back to the hash
2427  * @entry: dentry to add to the hash
2428  *
2429  * Adds a dentry to the hash according to its name.
2430  */
2431 
d_rehash(struct dentry * entry)2432 void d_rehash(struct dentry * entry)
2433 {
2434 	spin_lock(&entry->d_lock);
2435 	_d_rehash(entry);
2436 	spin_unlock(&entry->d_lock);
2437 }
2438 EXPORT_SYMBOL(d_rehash);
2439 
2440 /**
2441  * dentry_update_name_case - update case insensitive dentry with a new name
2442  * @dentry: dentry to be updated
2443  * @name: new name
2444  *
2445  * Update a case insensitive dentry with new case of name.
2446  *
2447  * dentry must have been returned by d_lookup with name @name. Old and new
2448  * name lengths must match (ie. no d_compare which allows mismatched name
2449  * lengths).
2450  *
2451  * Parent inode i_mutex must be held over d_lookup and into this call (to
2452  * keep renames and concurrent inserts, and readdir(2) away).
2453  */
dentry_update_name_case(struct dentry * dentry,struct qstr * name)2454 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2455 {
2456 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2457 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2458 
2459 	spin_lock(&dentry->d_lock);
2460 	write_seqcount_begin(&dentry->d_seq);
2461 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2462 	write_seqcount_end(&dentry->d_seq);
2463 	spin_unlock(&dentry->d_lock);
2464 }
2465 EXPORT_SYMBOL(dentry_update_name_case);
2466 
swap_names(struct dentry * dentry,struct dentry * target)2467 static void swap_names(struct dentry *dentry, struct dentry *target)
2468 {
2469 	if (unlikely(dname_external(target))) {
2470 		if (unlikely(dname_external(dentry))) {
2471 			/*
2472 			 * Both external: swap the pointers
2473 			 */
2474 			swap(target->d_name.name, dentry->d_name.name);
2475 		} else {
2476 			/*
2477 			 * dentry:internal, target:external.  Steal target's
2478 			 * storage and make target internal.
2479 			 */
2480 			memcpy(target->d_iname, dentry->d_name.name,
2481 					dentry->d_name.len + 1);
2482 			dentry->d_name.name = target->d_name.name;
2483 			target->d_name.name = target->d_iname;
2484 		}
2485 	} else {
2486 		if (unlikely(dname_external(dentry))) {
2487 			/*
2488 			 * dentry:external, target:internal.  Give dentry's
2489 			 * storage to target and make dentry internal
2490 			 */
2491 			memcpy(dentry->d_iname, target->d_name.name,
2492 					target->d_name.len + 1);
2493 			target->d_name.name = dentry->d_name.name;
2494 			dentry->d_name.name = dentry->d_iname;
2495 		} else {
2496 			/*
2497 			 * Both are internal.
2498 			 */
2499 			unsigned int i;
2500 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2501 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2502 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2503 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2504 				swap(((long *) &dentry->d_iname)[i],
2505 				     ((long *) &target->d_iname)[i]);
2506 			}
2507 		}
2508 	}
2509 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2510 }
2511 
copy_name(struct dentry * dentry,struct dentry * target)2512 static void copy_name(struct dentry *dentry, struct dentry *target)
2513 {
2514 	struct external_name *old_name = NULL;
2515 	if (unlikely(dname_external(dentry)))
2516 		old_name = external_name(dentry);
2517 	if (unlikely(dname_external(target))) {
2518 		atomic_inc(&external_name(target)->u.count);
2519 		dentry->d_name = target->d_name;
2520 	} else {
2521 		memcpy(dentry->d_iname, target->d_name.name,
2522 				target->d_name.len + 1);
2523 		dentry->d_name.name = dentry->d_iname;
2524 		dentry->d_name.hash_len = target->d_name.hash_len;
2525 	}
2526 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2527 		kfree_rcu(old_name, u.head);
2528 }
2529 
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2530 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2531 {
2532 	/*
2533 	 * XXXX: do we really need to take target->d_lock?
2534 	 */
2535 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2536 		spin_lock(&target->d_parent->d_lock);
2537 	else {
2538 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2539 			spin_lock(&dentry->d_parent->d_lock);
2540 			spin_lock_nested(&target->d_parent->d_lock,
2541 						DENTRY_D_LOCK_NESTED);
2542 		} else {
2543 			spin_lock(&target->d_parent->d_lock);
2544 			spin_lock_nested(&dentry->d_parent->d_lock,
2545 						DENTRY_D_LOCK_NESTED);
2546 		}
2547 	}
2548 	if (target < dentry) {
2549 		spin_lock_nested(&target->d_lock, 2);
2550 		spin_lock_nested(&dentry->d_lock, 3);
2551 	} else {
2552 		spin_lock_nested(&dentry->d_lock, 2);
2553 		spin_lock_nested(&target->d_lock, 3);
2554 	}
2555 }
2556 
dentry_unlock_for_move(struct dentry * dentry,struct dentry * target)2557 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2558 {
2559 	if (target->d_parent != dentry->d_parent)
2560 		spin_unlock(&dentry->d_parent->d_lock);
2561 	if (target->d_parent != target)
2562 		spin_unlock(&target->d_parent->d_lock);
2563 	spin_unlock(&target->d_lock);
2564 	spin_unlock(&dentry->d_lock);
2565 }
2566 
2567 /*
2568  * When switching names, the actual string doesn't strictly have to
2569  * be preserved in the target - because we're dropping the target
2570  * anyway. As such, we can just do a simple memcpy() to copy over
2571  * the new name before we switch, unless we are going to rehash
2572  * it.  Note that if we *do* unhash the target, we are not allowed
2573  * to rehash it without giving it a new name/hash key - whether
2574  * we swap or overwrite the names here, resulting name won't match
2575  * the reality in filesystem; it's only there for d_path() purposes.
2576  * Note that all of this is happening under rename_lock, so the
2577  * any hash lookup seeing it in the middle of manipulations will
2578  * be discarded anyway.  So we do not care what happens to the hash
2579  * key in that case.
2580  */
2581 /*
2582  * __d_move - move a dentry
2583  * @dentry: entry to move
2584  * @target: new dentry
2585  * @exchange: exchange the two dentries
2586  *
2587  * Update the dcache to reflect the move of a file name. Negative
2588  * dcache entries should not be moved in this way. Caller must hold
2589  * rename_lock, the i_mutex of the source and target directories,
2590  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2591  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2592 static void __d_move(struct dentry *dentry, struct dentry *target,
2593 		     bool exchange)
2594 {
2595 	if (!dentry->d_inode)
2596 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2597 
2598 	BUG_ON(d_ancestor(dentry, target));
2599 	BUG_ON(d_ancestor(target, dentry));
2600 
2601 	dentry_lock_for_move(dentry, target);
2602 
2603 	write_seqcount_begin(&dentry->d_seq);
2604 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2605 
2606 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2607 
2608 	/*
2609 	 * Move the dentry to the target hash queue. Don't bother checking
2610 	 * for the same hash queue because of how unlikely it is.
2611 	 */
2612 	__d_drop(dentry);
2613 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2614 
2615 	/*
2616 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2617 	 * the two dentries, then rehash onto the other's hash queue.
2618 	 */
2619 	__d_drop(target);
2620 	if (exchange) {
2621 		__d_rehash(target,
2622 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2623 	}
2624 
2625 	/* Switch the names.. */
2626 	if (exchange)
2627 		swap_names(dentry, target);
2628 	else
2629 		copy_name(dentry, target);
2630 
2631 	/* ... and switch them in the tree */
2632 	if (IS_ROOT(dentry)) {
2633 		/* splicing a tree */
2634 		dentry->d_flags |= DCACHE_RCUACCESS;
2635 		dentry->d_parent = target->d_parent;
2636 		target->d_parent = target;
2637 		list_del_init(&target->d_child);
2638 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2639 	} else {
2640 		/* swapping two dentries */
2641 		swap(dentry->d_parent, target->d_parent);
2642 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2643 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2644 		if (exchange)
2645 			fsnotify_d_move(target);
2646 		fsnotify_d_move(dentry);
2647 	}
2648 
2649 	write_seqcount_end(&target->d_seq);
2650 	write_seqcount_end(&dentry->d_seq);
2651 
2652 	dentry_unlock_for_move(dentry, target);
2653 }
2654 
2655 /*
2656  * d_move - move a dentry
2657  * @dentry: entry to move
2658  * @target: new dentry
2659  *
2660  * Update the dcache to reflect the move of a file name. Negative
2661  * dcache entries should not be moved in this way. See the locking
2662  * requirements for __d_move.
2663  */
d_move(struct dentry * dentry,struct dentry * target)2664 void d_move(struct dentry *dentry, struct dentry *target)
2665 {
2666 	write_seqlock(&rename_lock);
2667 	__d_move(dentry, target, false);
2668 	write_sequnlock(&rename_lock);
2669 }
2670 EXPORT_SYMBOL(d_move);
2671 
2672 /*
2673  * d_exchange - exchange two dentries
2674  * @dentry1: first dentry
2675  * @dentry2: second dentry
2676  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2677 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2678 {
2679 	write_seqlock(&rename_lock);
2680 
2681 	WARN_ON(!dentry1->d_inode);
2682 	WARN_ON(!dentry2->d_inode);
2683 	WARN_ON(IS_ROOT(dentry1));
2684 	WARN_ON(IS_ROOT(dentry2));
2685 
2686 	__d_move(dentry1, dentry2, true);
2687 
2688 	write_sequnlock(&rename_lock);
2689 }
2690 
2691 /**
2692  * d_ancestor - search for an ancestor
2693  * @p1: ancestor dentry
2694  * @p2: child dentry
2695  *
2696  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2697  * an ancestor of p2, else NULL.
2698  */
d_ancestor(struct dentry * p1,struct dentry * p2)2699 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2700 {
2701 	struct dentry *p;
2702 
2703 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2704 		if (p->d_parent == p1)
2705 			return p;
2706 	}
2707 	return NULL;
2708 }
2709 
2710 /*
2711  * This helper attempts to cope with remotely renamed directories
2712  *
2713  * It assumes that the caller is already holding
2714  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2715  *
2716  * Note: If ever the locking in lock_rename() changes, then please
2717  * remember to update this too...
2718  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2719 static int __d_unalias(struct inode *inode,
2720 		struct dentry *dentry, struct dentry *alias)
2721 {
2722 	struct mutex *m1 = NULL, *m2 = NULL;
2723 	int ret = -ESTALE;
2724 
2725 	/* If alias and dentry share a parent, then no extra locks required */
2726 	if (alias->d_parent == dentry->d_parent)
2727 		goto out_unalias;
2728 
2729 	/* See lock_rename() */
2730 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2731 		goto out_err;
2732 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2733 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2734 		goto out_err;
2735 	m2 = &alias->d_parent->d_inode->i_mutex;
2736 out_unalias:
2737 	__d_move(alias, dentry, false);
2738 	ret = 0;
2739 out_err:
2740 	if (m2)
2741 		mutex_unlock(m2);
2742 	if (m1)
2743 		mutex_unlock(m1);
2744 	return ret;
2745 }
2746 
2747 /**
2748  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2749  * @inode:  the inode which may have a disconnected dentry
2750  * @dentry: a negative dentry which we want to point to the inode.
2751  *
2752  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2753  * place of the given dentry and return it, else simply d_add the inode
2754  * to the dentry and return NULL.
2755  *
2756  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2757  * we should error out: directories can't have multiple aliases.
2758  *
2759  * This is needed in the lookup routine of any filesystem that is exportable
2760  * (via knfsd) so that we can build dcache paths to directories effectively.
2761  *
2762  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2763  * is returned.  This matches the expected return value of ->lookup.
2764  *
2765  * Cluster filesystems may call this function with a negative, hashed dentry.
2766  * In that case, we know that the inode will be a regular file, and also this
2767  * will only occur during atomic_open. So we need to check for the dentry
2768  * being already hashed only in the final case.
2769  */
d_splice_alias(struct inode * inode,struct dentry * dentry)2770 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2771 {
2772 	if (IS_ERR(inode))
2773 		return ERR_CAST(inode);
2774 
2775 	BUG_ON(!d_unhashed(dentry));
2776 
2777 	if (!inode) {
2778 		__d_instantiate(dentry, NULL);
2779 		goto out;
2780 	}
2781 	spin_lock(&inode->i_lock);
2782 	if (S_ISDIR(inode->i_mode)) {
2783 		struct dentry *new = __d_find_any_alias(inode);
2784 		if (unlikely(new)) {
2785 			/* The reference to new ensures it remains an alias */
2786 			spin_unlock(&inode->i_lock);
2787 			write_seqlock(&rename_lock);
2788 			if (unlikely(d_ancestor(new, dentry))) {
2789 				write_sequnlock(&rename_lock);
2790 				dput(new);
2791 				new = ERR_PTR(-ELOOP);
2792 				pr_warn_ratelimited(
2793 					"VFS: Lookup of '%s' in %s %s"
2794 					" would have caused loop\n",
2795 					dentry->d_name.name,
2796 					inode->i_sb->s_type->name,
2797 					inode->i_sb->s_id);
2798 			} else if (!IS_ROOT(new)) {
2799 				int err = __d_unalias(inode, dentry, new);
2800 				write_sequnlock(&rename_lock);
2801 				if (err) {
2802 					dput(new);
2803 					new = ERR_PTR(err);
2804 				}
2805 			} else {
2806 				__d_move(new, dentry, false);
2807 				write_sequnlock(&rename_lock);
2808 				security_d_instantiate(new, inode);
2809 			}
2810 			iput(inode);
2811 			return new;
2812 		}
2813 	}
2814 	/* already taking inode->i_lock, so d_add() by hand */
2815 	__d_instantiate(dentry, inode);
2816 	spin_unlock(&inode->i_lock);
2817 out:
2818 	security_d_instantiate(dentry, inode);
2819 	d_rehash(dentry);
2820 	return NULL;
2821 }
2822 EXPORT_SYMBOL(d_splice_alias);
2823 
prepend(char ** buffer,int * buflen,const char * str,int namelen)2824 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2825 {
2826 	*buflen -= namelen;
2827 	if (*buflen < 0)
2828 		return -ENAMETOOLONG;
2829 	*buffer -= namelen;
2830 	memcpy(*buffer, str, namelen);
2831 	return 0;
2832 }
2833 
2834 /**
2835  * prepend_name - prepend a pathname in front of current buffer pointer
2836  * @buffer: buffer pointer
2837  * @buflen: allocated length of the buffer
2838  * @name:   name string and length qstr structure
2839  *
2840  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2841  * make sure that either the old or the new name pointer and length are
2842  * fetched. However, there may be mismatch between length and pointer.
2843  * The length cannot be trusted, we need to copy it byte-by-byte until
2844  * the length is reached or a null byte is found. It also prepends "/" at
2845  * the beginning of the name. The sequence number check at the caller will
2846  * retry it again when a d_move() does happen. So any garbage in the buffer
2847  * due to mismatched pointer and length will be discarded.
2848  *
2849  * Data dependency barrier is needed to make sure that we see that terminating
2850  * NUL.  Alpha strikes again, film at 11...
2851  */
prepend_name(char ** buffer,int * buflen,struct qstr * name)2852 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2853 {
2854 	const char *dname = ACCESS_ONCE(name->name);
2855 	u32 dlen = ACCESS_ONCE(name->len);
2856 	char *p;
2857 
2858 	smp_read_barrier_depends();
2859 
2860 	*buflen -= dlen + 1;
2861 	if (*buflen < 0)
2862 		return -ENAMETOOLONG;
2863 	p = *buffer -= dlen + 1;
2864 	*p++ = '/';
2865 	while (dlen--) {
2866 		char c = *dname++;
2867 		if (!c)
2868 			break;
2869 		*p++ = c;
2870 	}
2871 	return 0;
2872 }
2873 
2874 /**
2875  * prepend_path - Prepend path string to a buffer
2876  * @path: the dentry/vfsmount to report
2877  * @root: root vfsmnt/dentry
2878  * @buffer: pointer to the end of the buffer
2879  * @buflen: pointer to buffer length
2880  *
2881  * The function will first try to write out the pathname without taking any
2882  * lock other than the RCU read lock to make sure that dentries won't go away.
2883  * It only checks the sequence number of the global rename_lock as any change
2884  * in the dentry's d_seq will be preceded by changes in the rename_lock
2885  * sequence number. If the sequence number had been changed, it will restart
2886  * the whole pathname back-tracing sequence again by taking the rename_lock.
2887  * In this case, there is no need to take the RCU read lock as the recursive
2888  * parent pointer references will keep the dentry chain alive as long as no
2889  * rename operation is performed.
2890  */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)2891 static int prepend_path(const struct path *path,
2892 			const struct path *root,
2893 			char **buffer, int *buflen)
2894 {
2895 	struct dentry *dentry;
2896 	struct vfsmount *vfsmnt;
2897 	struct mount *mnt;
2898 	int error = 0;
2899 	unsigned seq, m_seq = 0;
2900 	char *bptr;
2901 	int blen;
2902 
2903 	rcu_read_lock();
2904 restart_mnt:
2905 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2906 	seq = 0;
2907 	rcu_read_lock();
2908 restart:
2909 	bptr = *buffer;
2910 	blen = *buflen;
2911 	error = 0;
2912 	dentry = path->dentry;
2913 	vfsmnt = path->mnt;
2914 	mnt = real_mount(vfsmnt);
2915 	read_seqbegin_or_lock(&rename_lock, &seq);
2916 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2917 		struct dentry * parent;
2918 
2919 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2920 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2921 			/* Escaped? */
2922 			if (dentry != vfsmnt->mnt_root) {
2923 				bptr = *buffer;
2924 				blen = *buflen;
2925 				error = 3;
2926 				break;
2927 			}
2928 			/* Global root? */
2929 			if (mnt != parent) {
2930 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2931 				mnt = parent;
2932 				vfsmnt = &mnt->mnt;
2933 				continue;
2934 			}
2935 			if (!error)
2936 				error = is_mounted(vfsmnt) ? 1 : 2;
2937 			break;
2938 		}
2939 		parent = dentry->d_parent;
2940 		prefetch(parent);
2941 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2942 		if (error)
2943 			break;
2944 
2945 		dentry = parent;
2946 	}
2947 	if (!(seq & 1))
2948 		rcu_read_unlock();
2949 	if (need_seqretry(&rename_lock, seq)) {
2950 		seq = 1;
2951 		goto restart;
2952 	}
2953 	done_seqretry(&rename_lock, seq);
2954 
2955 	if (!(m_seq & 1))
2956 		rcu_read_unlock();
2957 	if (need_seqretry(&mount_lock, m_seq)) {
2958 		m_seq = 1;
2959 		goto restart_mnt;
2960 	}
2961 	done_seqretry(&mount_lock, m_seq);
2962 
2963 	if (error >= 0 && bptr == *buffer) {
2964 		if (--blen < 0)
2965 			error = -ENAMETOOLONG;
2966 		else
2967 			*--bptr = '/';
2968 	}
2969 	*buffer = bptr;
2970 	*buflen = blen;
2971 	return error;
2972 }
2973 
2974 /**
2975  * __d_path - return the path of a dentry
2976  * @path: the dentry/vfsmount to report
2977  * @root: root vfsmnt/dentry
2978  * @buf: buffer to return value in
2979  * @buflen: buffer length
2980  *
2981  * Convert a dentry into an ASCII path name.
2982  *
2983  * Returns a pointer into the buffer or an error code if the
2984  * path was too long.
2985  *
2986  * "buflen" should be positive.
2987  *
2988  * If the path is not reachable from the supplied root, return %NULL.
2989  */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)2990 char *__d_path(const struct path *path,
2991 	       const struct path *root,
2992 	       char *buf, int buflen)
2993 {
2994 	char *res = buf + buflen;
2995 	int error;
2996 
2997 	prepend(&res, &buflen, "\0", 1);
2998 	error = prepend_path(path, root, &res, &buflen);
2999 
3000 	if (error < 0)
3001 		return ERR_PTR(error);
3002 	if (error > 0)
3003 		return NULL;
3004 	return res;
3005 }
3006 
d_absolute_path(const struct path * path,char * buf,int buflen)3007 char *d_absolute_path(const struct path *path,
3008 	       char *buf, int buflen)
3009 {
3010 	struct path root = {};
3011 	char *res = buf + buflen;
3012 	int error;
3013 
3014 	prepend(&res, &buflen, "\0", 1);
3015 	error = prepend_path(path, &root, &res, &buflen);
3016 
3017 	if (error > 1)
3018 		error = -EINVAL;
3019 	if (error < 0)
3020 		return ERR_PTR(error);
3021 	return res;
3022 }
3023 
3024 /*
3025  * same as __d_path but appends "(deleted)" for unlinked files.
3026  */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)3027 static int path_with_deleted(const struct path *path,
3028 			     const struct path *root,
3029 			     char **buf, int *buflen)
3030 {
3031 	prepend(buf, buflen, "\0", 1);
3032 	if (d_unlinked(path->dentry)) {
3033 		int error = prepend(buf, buflen, " (deleted)", 10);
3034 		if (error)
3035 			return error;
3036 	}
3037 
3038 	return prepend_path(path, root, buf, buflen);
3039 }
3040 
prepend_unreachable(char ** buffer,int * buflen)3041 static int prepend_unreachable(char **buffer, int *buflen)
3042 {
3043 	return prepend(buffer, buflen, "(unreachable)", 13);
3044 }
3045 
get_fs_root_rcu(struct fs_struct * fs,struct path * root)3046 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3047 {
3048 	unsigned seq;
3049 
3050 	do {
3051 		seq = read_seqcount_begin(&fs->seq);
3052 		*root = fs->root;
3053 	} while (read_seqcount_retry(&fs->seq, seq));
3054 }
3055 
3056 /**
3057  * d_path - return the path of a dentry
3058  * @path: path to report
3059  * @buf: buffer to return value in
3060  * @buflen: buffer length
3061  *
3062  * Convert a dentry into an ASCII path name. If the entry has been deleted
3063  * the string " (deleted)" is appended. Note that this is ambiguous.
3064  *
3065  * Returns a pointer into the buffer or an error code if the path was
3066  * too long. Note: Callers should use the returned pointer, not the passed
3067  * in buffer, to use the name! The implementation often starts at an offset
3068  * into the buffer, and may leave 0 bytes at the start.
3069  *
3070  * "buflen" should be positive.
3071  */
d_path(const struct path * path,char * buf,int buflen)3072 char *d_path(const struct path *path, char *buf, int buflen)
3073 {
3074 	char *res = buf + buflen;
3075 	struct path root;
3076 	int error;
3077 
3078 	/*
3079 	 * We have various synthetic filesystems that never get mounted.  On
3080 	 * these filesystems dentries are never used for lookup purposes, and
3081 	 * thus don't need to be hashed.  They also don't need a name until a
3082 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3083 	 * below allows us to generate a name for these objects on demand:
3084 	 *
3085 	 * Some pseudo inodes are mountable.  When they are mounted
3086 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3087 	 * and instead have d_path return the mounted path.
3088 	 */
3089 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3090 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3091 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3092 
3093 	rcu_read_lock();
3094 	get_fs_root_rcu(current->fs, &root);
3095 	error = path_with_deleted(path, &root, &res, &buflen);
3096 	rcu_read_unlock();
3097 
3098 	if (error < 0)
3099 		res = ERR_PTR(error);
3100 	return res;
3101 }
3102 EXPORT_SYMBOL(d_path);
3103 
3104 /*
3105  * Helper function for dentry_operations.d_dname() members
3106  */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)3107 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3108 			const char *fmt, ...)
3109 {
3110 	va_list args;
3111 	char temp[64];
3112 	int sz;
3113 
3114 	va_start(args, fmt);
3115 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3116 	va_end(args);
3117 
3118 	if (sz > sizeof(temp) || sz > buflen)
3119 		return ERR_PTR(-ENAMETOOLONG);
3120 
3121 	buffer += buflen - sz;
3122 	return memcpy(buffer, temp, sz);
3123 }
3124 
simple_dname(struct dentry * dentry,char * buffer,int buflen)3125 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3126 {
3127 	char *end = buffer + buflen;
3128 	/* these dentries are never renamed, so d_lock is not needed */
3129 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3130 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3131 	    prepend(&end, &buflen, "/", 1))
3132 		end = ERR_PTR(-ENAMETOOLONG);
3133 	return end;
3134 }
3135 EXPORT_SYMBOL(simple_dname);
3136 
3137 /*
3138  * Write full pathname from the root of the filesystem into the buffer.
3139  */
__dentry_path(struct dentry * d,char * buf,int buflen)3140 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3141 {
3142 	struct dentry *dentry;
3143 	char *end, *retval;
3144 	int len, seq = 0;
3145 	int error = 0;
3146 
3147 	if (buflen < 2)
3148 		goto Elong;
3149 
3150 	rcu_read_lock();
3151 restart:
3152 	dentry = d;
3153 	end = buf + buflen;
3154 	len = buflen;
3155 	prepend(&end, &len, "\0", 1);
3156 	/* Get '/' right */
3157 	retval = end-1;
3158 	*retval = '/';
3159 	read_seqbegin_or_lock(&rename_lock, &seq);
3160 	while (!IS_ROOT(dentry)) {
3161 		struct dentry *parent = dentry->d_parent;
3162 
3163 		prefetch(parent);
3164 		error = prepend_name(&end, &len, &dentry->d_name);
3165 		if (error)
3166 			break;
3167 
3168 		retval = end;
3169 		dentry = parent;
3170 	}
3171 	if (!(seq & 1))
3172 		rcu_read_unlock();
3173 	if (need_seqretry(&rename_lock, seq)) {
3174 		seq = 1;
3175 		goto restart;
3176 	}
3177 	done_seqretry(&rename_lock, seq);
3178 	if (error)
3179 		goto Elong;
3180 	return retval;
3181 Elong:
3182 	return ERR_PTR(-ENAMETOOLONG);
3183 }
3184 
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)3185 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3186 {
3187 	return __dentry_path(dentry, buf, buflen);
3188 }
3189 EXPORT_SYMBOL(dentry_path_raw);
3190 
dentry_path(struct dentry * dentry,char * buf,int buflen)3191 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3192 {
3193 	char *p = NULL;
3194 	char *retval;
3195 
3196 	if (d_unlinked(dentry)) {
3197 		p = buf + buflen;
3198 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3199 			goto Elong;
3200 		buflen++;
3201 	}
3202 	retval = __dentry_path(dentry, buf, buflen);
3203 	if (!IS_ERR(retval) && p)
3204 		*p = '/';	/* restore '/' overriden with '\0' */
3205 	return retval;
3206 Elong:
3207 	return ERR_PTR(-ENAMETOOLONG);
3208 }
3209 
get_fs_root_and_pwd_rcu(struct fs_struct * fs,struct path * root,struct path * pwd)3210 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3211 				    struct path *pwd)
3212 {
3213 	unsigned seq;
3214 
3215 	do {
3216 		seq = read_seqcount_begin(&fs->seq);
3217 		*root = fs->root;
3218 		*pwd = fs->pwd;
3219 	} while (read_seqcount_retry(&fs->seq, seq));
3220 }
3221 
3222 /*
3223  * NOTE! The user-level library version returns a
3224  * character pointer. The kernel system call just
3225  * returns the length of the buffer filled (which
3226  * includes the ending '\0' character), or a negative
3227  * error value. So libc would do something like
3228  *
3229  *	char *getcwd(char * buf, size_t size)
3230  *	{
3231  *		int retval;
3232  *
3233  *		retval = sys_getcwd(buf, size);
3234  *		if (retval >= 0)
3235  *			return buf;
3236  *		errno = -retval;
3237  *		return NULL;
3238  *	}
3239  */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)3240 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3241 {
3242 	int error;
3243 	struct path pwd, root;
3244 	char *page = __getname();
3245 
3246 	if (!page)
3247 		return -ENOMEM;
3248 
3249 	rcu_read_lock();
3250 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3251 
3252 	error = -ENOENT;
3253 	if (!d_unlinked(pwd.dentry)) {
3254 		unsigned long len;
3255 		char *cwd = page + PATH_MAX;
3256 		int buflen = PATH_MAX;
3257 
3258 		prepend(&cwd, &buflen, "\0", 1);
3259 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3260 		rcu_read_unlock();
3261 
3262 		if (error < 0)
3263 			goto out;
3264 
3265 		/* Unreachable from current root */
3266 		if (error > 0) {
3267 			error = prepend_unreachable(&cwd, &buflen);
3268 			if (error)
3269 				goto out;
3270 		}
3271 
3272 		error = -ERANGE;
3273 		len = PATH_MAX + page - cwd;
3274 		if (len <= size) {
3275 			error = len;
3276 			if (copy_to_user(buf, cwd, len))
3277 				error = -EFAULT;
3278 		}
3279 	} else {
3280 		rcu_read_unlock();
3281 	}
3282 
3283 out:
3284 	__putname(page);
3285 	return error;
3286 }
3287 
3288 /*
3289  * Test whether new_dentry is a subdirectory of old_dentry.
3290  *
3291  * Trivially implemented using the dcache structure
3292  */
3293 
3294 /**
3295  * is_subdir - is new dentry a subdirectory of old_dentry
3296  * @new_dentry: new dentry
3297  * @old_dentry: old dentry
3298  *
3299  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3300  * Returns 0 otherwise.
3301  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3302  */
3303 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3304 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3305 {
3306 	int result;
3307 	unsigned seq;
3308 
3309 	if (new_dentry == old_dentry)
3310 		return 1;
3311 
3312 	do {
3313 		/* for restarting inner loop in case of seq retry */
3314 		seq = read_seqbegin(&rename_lock);
3315 		/*
3316 		 * Need rcu_readlock to protect against the d_parent trashing
3317 		 * due to d_move
3318 		 */
3319 		rcu_read_lock();
3320 		if (d_ancestor(old_dentry, new_dentry))
3321 			result = 1;
3322 		else
3323 			result = 0;
3324 		rcu_read_unlock();
3325 	} while (read_seqretry(&rename_lock, seq));
3326 
3327 	return result;
3328 }
3329 
d_genocide_kill(void * data,struct dentry * dentry)3330 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3331 {
3332 	struct dentry *root = data;
3333 	if (dentry != root) {
3334 		if (d_unhashed(dentry) || !dentry->d_inode)
3335 			return D_WALK_SKIP;
3336 
3337 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3338 			dentry->d_flags |= DCACHE_GENOCIDE;
3339 			dentry->d_lockref.count--;
3340 		}
3341 	}
3342 	return D_WALK_CONTINUE;
3343 }
3344 
d_genocide(struct dentry * parent)3345 void d_genocide(struct dentry *parent)
3346 {
3347 	d_walk(parent, parent, d_genocide_kill, NULL);
3348 }
3349 
d_tmpfile(struct dentry * dentry,struct inode * inode)3350 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3351 {
3352 	inode_dec_link_count(inode);
3353 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3354 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3355 		!d_unlinked(dentry));
3356 	spin_lock(&dentry->d_parent->d_lock);
3357 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3358 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3359 				(unsigned long long)inode->i_ino);
3360 	spin_unlock(&dentry->d_lock);
3361 	spin_unlock(&dentry->d_parent->d_lock);
3362 	d_instantiate(dentry, inode);
3363 }
3364 EXPORT_SYMBOL(d_tmpfile);
3365 
3366 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3367 static int __init set_dhash_entries(char *str)
3368 {
3369 	if (!str)
3370 		return 0;
3371 	dhash_entries = simple_strtoul(str, &str, 0);
3372 	return 1;
3373 }
3374 __setup("dhash_entries=", set_dhash_entries);
3375 
dcache_init_early(void)3376 static void __init dcache_init_early(void)
3377 {
3378 	unsigned int loop;
3379 
3380 	/* If hashes are distributed across NUMA nodes, defer
3381 	 * hash allocation until vmalloc space is available.
3382 	 */
3383 	if (hashdist)
3384 		return;
3385 
3386 	dentry_hashtable =
3387 		alloc_large_system_hash("Dentry cache",
3388 					sizeof(struct hlist_bl_head),
3389 					dhash_entries,
3390 					13,
3391 					HASH_EARLY,
3392 					&d_hash_shift,
3393 					&d_hash_mask,
3394 					0,
3395 					0);
3396 
3397 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3398 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3399 }
3400 
dcache_init(void)3401 static void __init dcache_init(void)
3402 {
3403 	unsigned int loop;
3404 
3405 	/*
3406 	 * A constructor could be added for stable state like the lists,
3407 	 * but it is probably not worth it because of the cache nature
3408 	 * of the dcache.
3409 	 */
3410 	dentry_cache = KMEM_CACHE(dentry,
3411 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3412 
3413 	/* Hash may have been set up in dcache_init_early */
3414 	if (!hashdist)
3415 		return;
3416 
3417 	dentry_hashtable =
3418 		alloc_large_system_hash("Dentry cache",
3419 					sizeof(struct hlist_bl_head),
3420 					dhash_entries,
3421 					13,
3422 					0,
3423 					&d_hash_shift,
3424 					&d_hash_mask,
3425 					0,
3426 					0);
3427 
3428 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3429 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3430 }
3431 
3432 /* SLAB cache for __getname() consumers */
3433 struct kmem_cache *names_cachep __read_mostly;
3434 EXPORT_SYMBOL(names_cachep);
3435 
3436 EXPORT_SYMBOL(d_genocide);
3437 
vfs_caches_init_early(void)3438 void __init vfs_caches_init_early(void)
3439 {
3440 	dcache_init_early();
3441 	inode_init_early();
3442 }
3443 
vfs_caches_init(void)3444 void __init vfs_caches_init(void)
3445 {
3446 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3447 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3448 
3449 	dcache_init();
3450 	inode_init();
3451 	files_init();
3452 	files_maxfiles_init();
3453 	mnt_init();
3454 	bdev_cache_init();
3455 	chrdev_init();
3456 }
3457