1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
__alloc_fs_devices(void)56 static struct btrfs_fs_devices *__alloc_fs_devices(void)
57 {
58 struct btrfs_fs_devices *fs_devs;
59
60 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
61 if (!fs_devs)
62 return ERR_PTR(-ENOMEM);
63
64 mutex_init(&fs_devs->device_list_mutex);
65
66 INIT_LIST_HEAD(&fs_devs->devices);
67 INIT_LIST_HEAD(&fs_devs->resized_devices);
68 INIT_LIST_HEAD(&fs_devs->alloc_list);
69 INIT_LIST_HEAD(&fs_devs->list);
70
71 return fs_devs;
72 }
73
74 /**
75 * alloc_fs_devices - allocate struct btrfs_fs_devices
76 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
77 * generated.
78 *
79 * Return: a pointer to a new &struct btrfs_fs_devices on success;
80 * ERR_PTR() on error. Returned struct is not linked onto any lists and
81 * can be destroyed with kfree() right away.
82 */
alloc_fs_devices(const u8 * fsid)83 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
84 {
85 struct btrfs_fs_devices *fs_devs;
86
87 fs_devs = __alloc_fs_devices();
88 if (IS_ERR(fs_devs))
89 return fs_devs;
90
91 if (fsid)
92 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
93 else
94 generate_random_uuid(fs_devs->fsid);
95
96 return fs_devs;
97 }
98
free_fs_devices(struct btrfs_fs_devices * fs_devices)99 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
100 {
101 struct btrfs_device *device;
102 WARN_ON(fs_devices->opened);
103 while (!list_empty(&fs_devices->devices)) {
104 device = list_entry(fs_devices->devices.next,
105 struct btrfs_device, dev_list);
106 list_del(&device->dev_list);
107 rcu_string_free(device->name);
108 kfree(device);
109 }
110 kfree(fs_devices);
111 }
112
btrfs_kobject_uevent(struct block_device * bdev,enum kobject_action action)113 static void btrfs_kobject_uevent(struct block_device *bdev,
114 enum kobject_action action)
115 {
116 int ret;
117
118 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
119 if (ret)
120 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
121 action,
122 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
123 &disk_to_dev(bdev->bd_disk)->kobj);
124 }
125
btrfs_cleanup_fs_uuids(void)126 void btrfs_cleanup_fs_uuids(void)
127 {
128 struct btrfs_fs_devices *fs_devices;
129
130 while (!list_empty(&fs_uuids)) {
131 fs_devices = list_entry(fs_uuids.next,
132 struct btrfs_fs_devices, list);
133 list_del(&fs_devices->list);
134 free_fs_devices(fs_devices);
135 }
136 }
137
__alloc_device(void)138 static struct btrfs_device *__alloc_device(void)
139 {
140 struct btrfs_device *dev;
141
142 dev = kzalloc(sizeof(*dev), GFP_NOFS);
143 if (!dev)
144 return ERR_PTR(-ENOMEM);
145
146 INIT_LIST_HEAD(&dev->dev_list);
147 INIT_LIST_HEAD(&dev->dev_alloc_list);
148 INIT_LIST_HEAD(&dev->resized_list);
149
150 spin_lock_init(&dev->io_lock);
151
152 spin_lock_init(&dev->reada_lock);
153 atomic_set(&dev->reada_in_flight, 0);
154 atomic_set(&dev->dev_stats_ccnt, 0);
155 btrfs_device_data_ordered_init(dev);
156 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
157 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
158
159 return dev;
160 }
161
__find_device(struct list_head * head,u64 devid,u8 * uuid)162 static noinline struct btrfs_device *__find_device(struct list_head *head,
163 u64 devid, u8 *uuid)
164 {
165 struct btrfs_device *dev;
166
167 list_for_each_entry(dev, head, dev_list) {
168 if (dev->devid == devid &&
169 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
170 return dev;
171 }
172 }
173 return NULL;
174 }
175
find_fsid(u8 * fsid)176 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
177 {
178 struct btrfs_fs_devices *fs_devices;
179
180 list_for_each_entry(fs_devices, &fs_uuids, list) {
181 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
182 return fs_devices;
183 }
184 return NULL;
185 }
186
187 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)188 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
189 int flush, struct block_device **bdev,
190 struct buffer_head **bh)
191 {
192 int ret;
193
194 *bdev = blkdev_get_by_path(device_path, flags, holder);
195
196 if (IS_ERR(*bdev)) {
197 ret = PTR_ERR(*bdev);
198 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
199 goto error;
200 }
201
202 if (flush)
203 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
204 ret = set_blocksize(*bdev, 4096);
205 if (ret) {
206 blkdev_put(*bdev, flags);
207 goto error;
208 }
209 invalidate_bdev(*bdev);
210 *bh = btrfs_read_dev_super(*bdev);
211 if (!*bh) {
212 ret = -EINVAL;
213 blkdev_put(*bdev, flags);
214 goto error;
215 }
216
217 return 0;
218
219 error:
220 *bdev = NULL;
221 *bh = NULL;
222 return ret;
223 }
224
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)225 static void requeue_list(struct btrfs_pending_bios *pending_bios,
226 struct bio *head, struct bio *tail)
227 {
228
229 struct bio *old_head;
230
231 old_head = pending_bios->head;
232 pending_bios->head = head;
233 if (pending_bios->tail)
234 tail->bi_next = old_head;
235 else
236 pending_bios->tail = tail;
237 }
238
239 /*
240 * we try to collect pending bios for a device so we don't get a large
241 * number of procs sending bios down to the same device. This greatly
242 * improves the schedulers ability to collect and merge the bios.
243 *
244 * But, it also turns into a long list of bios to process and that is sure
245 * to eventually make the worker thread block. The solution here is to
246 * make some progress and then put this work struct back at the end of
247 * the list if the block device is congested. This way, multiple devices
248 * can make progress from a single worker thread.
249 */
run_scheduled_bios(struct btrfs_device * device)250 static noinline void run_scheduled_bios(struct btrfs_device *device)
251 {
252 struct bio *pending;
253 struct backing_dev_info *bdi;
254 struct btrfs_fs_info *fs_info;
255 struct btrfs_pending_bios *pending_bios;
256 struct bio *tail;
257 struct bio *cur;
258 int again = 0;
259 unsigned long num_run;
260 unsigned long batch_run = 0;
261 unsigned long limit;
262 unsigned long last_waited = 0;
263 int force_reg = 0;
264 int sync_pending = 0;
265 struct blk_plug plug;
266
267 /*
268 * this function runs all the bios we've collected for
269 * a particular device. We don't want to wander off to
270 * another device without first sending all of these down.
271 * So, setup a plug here and finish it off before we return
272 */
273 blk_start_plug(&plug);
274
275 bdi = blk_get_backing_dev_info(device->bdev);
276 fs_info = device->dev_root->fs_info;
277 limit = btrfs_async_submit_limit(fs_info);
278 limit = limit * 2 / 3;
279
280 loop:
281 spin_lock(&device->io_lock);
282
283 loop_lock:
284 num_run = 0;
285
286 /* take all the bios off the list at once and process them
287 * later on (without the lock held). But, remember the
288 * tail and other pointers so the bios can be properly reinserted
289 * into the list if we hit congestion
290 */
291 if (!force_reg && device->pending_sync_bios.head) {
292 pending_bios = &device->pending_sync_bios;
293 force_reg = 1;
294 } else {
295 pending_bios = &device->pending_bios;
296 force_reg = 0;
297 }
298
299 pending = pending_bios->head;
300 tail = pending_bios->tail;
301 WARN_ON(pending && !tail);
302
303 /*
304 * if pending was null this time around, no bios need processing
305 * at all and we can stop. Otherwise it'll loop back up again
306 * and do an additional check so no bios are missed.
307 *
308 * device->running_pending is used to synchronize with the
309 * schedule_bio code.
310 */
311 if (device->pending_sync_bios.head == NULL &&
312 device->pending_bios.head == NULL) {
313 again = 0;
314 device->running_pending = 0;
315 } else {
316 again = 1;
317 device->running_pending = 1;
318 }
319
320 pending_bios->head = NULL;
321 pending_bios->tail = NULL;
322
323 spin_unlock(&device->io_lock);
324
325 while (pending) {
326
327 rmb();
328 /* we want to work on both lists, but do more bios on the
329 * sync list than the regular list
330 */
331 if ((num_run > 32 &&
332 pending_bios != &device->pending_sync_bios &&
333 device->pending_sync_bios.head) ||
334 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
335 device->pending_bios.head)) {
336 spin_lock(&device->io_lock);
337 requeue_list(pending_bios, pending, tail);
338 goto loop_lock;
339 }
340
341 cur = pending;
342 pending = pending->bi_next;
343 cur->bi_next = NULL;
344
345 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
346 waitqueue_active(&fs_info->async_submit_wait))
347 wake_up(&fs_info->async_submit_wait);
348
349 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
350
351 /*
352 * if we're doing the sync list, record that our
353 * plug has some sync requests on it
354 *
355 * If we're doing the regular list and there are
356 * sync requests sitting around, unplug before
357 * we add more
358 */
359 if (pending_bios == &device->pending_sync_bios) {
360 sync_pending = 1;
361 } else if (sync_pending) {
362 blk_finish_plug(&plug);
363 blk_start_plug(&plug);
364 sync_pending = 0;
365 }
366
367 btrfsic_submit_bio(cur->bi_rw, cur);
368 num_run++;
369 batch_run++;
370
371 cond_resched();
372
373 /*
374 * we made progress, there is more work to do and the bdi
375 * is now congested. Back off and let other work structs
376 * run instead
377 */
378 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
379 fs_info->fs_devices->open_devices > 1) {
380 struct io_context *ioc;
381
382 ioc = current->io_context;
383
384 /*
385 * the main goal here is that we don't want to
386 * block if we're going to be able to submit
387 * more requests without blocking.
388 *
389 * This code does two great things, it pokes into
390 * the elevator code from a filesystem _and_
391 * it makes assumptions about how batching works.
392 */
393 if (ioc && ioc->nr_batch_requests > 0 &&
394 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
395 (last_waited == 0 ||
396 ioc->last_waited == last_waited)) {
397 /*
398 * we want to go through our batch of
399 * requests and stop. So, we copy out
400 * the ioc->last_waited time and test
401 * against it before looping
402 */
403 last_waited = ioc->last_waited;
404 cond_resched();
405 continue;
406 }
407 spin_lock(&device->io_lock);
408 requeue_list(pending_bios, pending, tail);
409 device->running_pending = 1;
410
411 spin_unlock(&device->io_lock);
412 btrfs_queue_work(fs_info->submit_workers,
413 &device->work);
414 goto done;
415 }
416 /* unplug every 64 requests just for good measure */
417 if (batch_run % 64 == 0) {
418 blk_finish_plug(&plug);
419 blk_start_plug(&plug);
420 sync_pending = 0;
421 }
422 }
423
424 cond_resched();
425 if (again)
426 goto loop;
427
428 spin_lock(&device->io_lock);
429 if (device->pending_bios.head || device->pending_sync_bios.head)
430 goto loop_lock;
431 spin_unlock(&device->io_lock);
432
433 done:
434 blk_finish_plug(&plug);
435 }
436
pending_bios_fn(struct btrfs_work * work)437 static void pending_bios_fn(struct btrfs_work *work)
438 {
439 struct btrfs_device *device;
440
441 device = container_of(work, struct btrfs_device, work);
442 run_scheduled_bios(device);
443 }
444
445 /*
446 * Add new device to list of registered devices
447 *
448 * Returns:
449 * 1 - first time device is seen
450 * 0 - device already known
451 * < 0 - error
452 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,u64 devid,struct btrfs_fs_devices ** fs_devices_ret)453 static noinline int device_list_add(const char *path,
454 struct btrfs_super_block *disk_super,
455 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
456 {
457 struct btrfs_device *device;
458 struct btrfs_fs_devices *fs_devices;
459 struct rcu_string *name;
460 int ret = 0;
461 u64 found_transid = btrfs_super_generation(disk_super);
462
463 fs_devices = find_fsid(disk_super->fsid);
464 if (!fs_devices) {
465 fs_devices = alloc_fs_devices(disk_super->fsid);
466 if (IS_ERR(fs_devices))
467 return PTR_ERR(fs_devices);
468
469 list_add(&fs_devices->list, &fs_uuids);
470
471 device = NULL;
472 } else {
473 device = __find_device(&fs_devices->devices, devid,
474 disk_super->dev_item.uuid);
475 }
476
477 if (!device) {
478 if (fs_devices->opened)
479 return -EBUSY;
480
481 device = btrfs_alloc_device(NULL, &devid,
482 disk_super->dev_item.uuid);
483 if (IS_ERR(device)) {
484 /* we can safely leave the fs_devices entry around */
485 return PTR_ERR(device);
486 }
487
488 name = rcu_string_strdup(path, GFP_NOFS);
489 if (!name) {
490 kfree(device);
491 return -ENOMEM;
492 }
493 rcu_assign_pointer(device->name, name);
494
495 mutex_lock(&fs_devices->device_list_mutex);
496 list_add_rcu(&device->dev_list, &fs_devices->devices);
497 fs_devices->num_devices++;
498 mutex_unlock(&fs_devices->device_list_mutex);
499
500 ret = 1;
501 device->fs_devices = fs_devices;
502 } else if (!device->name || strcmp(device->name->str, path)) {
503 /*
504 * When FS is already mounted.
505 * 1. If you are here and if the device->name is NULL that
506 * means this device was missing at time of FS mount.
507 * 2. If you are here and if the device->name is different
508 * from 'path' that means either
509 * a. The same device disappeared and reappeared with
510 * different name. or
511 * b. The missing-disk-which-was-replaced, has
512 * reappeared now.
513 *
514 * We must allow 1 and 2a above. But 2b would be a spurious
515 * and unintentional.
516 *
517 * Further in case of 1 and 2a above, the disk at 'path'
518 * would have missed some transaction when it was away and
519 * in case of 2a the stale bdev has to be updated as well.
520 * 2b must not be allowed at all time.
521 */
522
523 /*
524 * For now, we do allow update to btrfs_fs_device through the
525 * btrfs dev scan cli after FS has been mounted. We're still
526 * tracking a problem where systems fail mount by subvolume id
527 * when we reject replacement on a mounted FS.
528 */
529 if (!fs_devices->opened && found_transid < device->generation) {
530 /*
531 * That is if the FS is _not_ mounted and if you
532 * are here, that means there is more than one
533 * disk with same uuid and devid.We keep the one
534 * with larger generation number or the last-in if
535 * generation are equal.
536 */
537 return -EEXIST;
538 }
539
540 name = rcu_string_strdup(path, GFP_NOFS);
541 if (!name)
542 return -ENOMEM;
543 rcu_string_free(device->name);
544 rcu_assign_pointer(device->name, name);
545 if (device->missing) {
546 fs_devices->missing_devices--;
547 device->missing = 0;
548 }
549 }
550
551 /*
552 * Unmount does not free the btrfs_device struct but would zero
553 * generation along with most of the other members. So just update
554 * it back. We need it to pick the disk with largest generation
555 * (as above).
556 */
557 if (!fs_devices->opened)
558 device->generation = found_transid;
559
560 *fs_devices_ret = fs_devices;
561
562 return ret;
563 }
564
clone_fs_devices(struct btrfs_fs_devices * orig)565 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
566 {
567 struct btrfs_fs_devices *fs_devices;
568 struct btrfs_device *device;
569 struct btrfs_device *orig_dev;
570
571 fs_devices = alloc_fs_devices(orig->fsid);
572 if (IS_ERR(fs_devices))
573 return fs_devices;
574
575 mutex_lock(&orig->device_list_mutex);
576 fs_devices->total_devices = orig->total_devices;
577
578 /* We have held the volume lock, it is safe to get the devices. */
579 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
580 struct rcu_string *name;
581
582 device = btrfs_alloc_device(NULL, &orig_dev->devid,
583 orig_dev->uuid);
584 if (IS_ERR(device))
585 goto error;
586
587 /*
588 * This is ok to do without rcu read locked because we hold the
589 * uuid mutex so nothing we touch in here is going to disappear.
590 */
591 if (orig_dev->name) {
592 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
593 if (!name) {
594 kfree(device);
595 goto error;
596 }
597 rcu_assign_pointer(device->name, name);
598 }
599
600 list_add(&device->dev_list, &fs_devices->devices);
601 device->fs_devices = fs_devices;
602 fs_devices->num_devices++;
603 }
604 mutex_unlock(&orig->device_list_mutex);
605 return fs_devices;
606 error:
607 mutex_unlock(&orig->device_list_mutex);
608 free_fs_devices(fs_devices);
609 return ERR_PTR(-ENOMEM);
610 }
611
btrfs_close_extra_devices(struct btrfs_fs_devices * fs_devices,int step)612 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
613 {
614 struct btrfs_device *device, *next;
615 struct btrfs_device *latest_dev = NULL;
616
617 mutex_lock(&uuid_mutex);
618 again:
619 /* This is the initialized path, it is safe to release the devices. */
620 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
621 if (device->in_fs_metadata) {
622 if (!device->is_tgtdev_for_dev_replace &&
623 (!latest_dev ||
624 device->generation > latest_dev->generation)) {
625 latest_dev = device;
626 }
627 continue;
628 }
629
630 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
631 /*
632 * In the first step, keep the device which has
633 * the correct fsid and the devid that is used
634 * for the dev_replace procedure.
635 * In the second step, the dev_replace state is
636 * read from the device tree and it is known
637 * whether the procedure is really active or
638 * not, which means whether this device is
639 * used or whether it should be removed.
640 */
641 if (step == 0 || device->is_tgtdev_for_dev_replace) {
642 continue;
643 }
644 }
645 if (device->bdev) {
646 blkdev_put(device->bdev, device->mode);
647 device->bdev = NULL;
648 fs_devices->open_devices--;
649 }
650 if (device->writeable) {
651 list_del_init(&device->dev_alloc_list);
652 device->writeable = 0;
653 if (!device->is_tgtdev_for_dev_replace)
654 fs_devices->rw_devices--;
655 }
656 list_del_init(&device->dev_list);
657 fs_devices->num_devices--;
658 rcu_string_free(device->name);
659 kfree(device);
660 }
661
662 if (fs_devices->seed) {
663 fs_devices = fs_devices->seed;
664 goto again;
665 }
666
667 fs_devices->latest_bdev = latest_dev->bdev;
668
669 mutex_unlock(&uuid_mutex);
670 }
671
__free_device(struct work_struct * work)672 static void __free_device(struct work_struct *work)
673 {
674 struct btrfs_device *device;
675
676 device = container_of(work, struct btrfs_device, rcu_work);
677
678 if (device->bdev)
679 blkdev_put(device->bdev, device->mode);
680
681 rcu_string_free(device->name);
682 kfree(device);
683 }
684
free_device(struct rcu_head * head)685 static void free_device(struct rcu_head *head)
686 {
687 struct btrfs_device *device;
688
689 device = container_of(head, struct btrfs_device, rcu);
690
691 INIT_WORK(&device->rcu_work, __free_device);
692 schedule_work(&device->rcu_work);
693 }
694
__btrfs_close_devices(struct btrfs_fs_devices * fs_devices)695 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
696 {
697 struct btrfs_device *device;
698
699 if (--fs_devices->opened > 0)
700 return 0;
701
702 mutex_lock(&fs_devices->device_list_mutex);
703 list_for_each_entry(device, &fs_devices->devices, dev_list) {
704 struct btrfs_device *new_device;
705 struct rcu_string *name;
706
707 if (device->bdev)
708 fs_devices->open_devices--;
709
710 if (device->writeable &&
711 device->devid != BTRFS_DEV_REPLACE_DEVID) {
712 list_del_init(&device->dev_alloc_list);
713 fs_devices->rw_devices--;
714 }
715
716 if (device->missing)
717 fs_devices->missing_devices--;
718
719 new_device = btrfs_alloc_device(NULL, &device->devid,
720 device->uuid);
721 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
722
723 /* Safe because we are under uuid_mutex */
724 if (device->name) {
725 name = rcu_string_strdup(device->name->str, GFP_NOFS);
726 BUG_ON(!name); /* -ENOMEM */
727 rcu_assign_pointer(new_device->name, name);
728 }
729
730 list_replace_rcu(&device->dev_list, &new_device->dev_list);
731 new_device->fs_devices = device->fs_devices;
732
733 call_rcu(&device->rcu, free_device);
734 }
735 mutex_unlock(&fs_devices->device_list_mutex);
736
737 WARN_ON(fs_devices->open_devices);
738 WARN_ON(fs_devices->rw_devices);
739 fs_devices->opened = 0;
740 fs_devices->seeding = 0;
741
742 return 0;
743 }
744
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)745 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
746 {
747 struct btrfs_fs_devices *seed_devices = NULL;
748 int ret;
749
750 mutex_lock(&uuid_mutex);
751 ret = __btrfs_close_devices(fs_devices);
752 if (!fs_devices->opened) {
753 seed_devices = fs_devices->seed;
754 fs_devices->seed = NULL;
755 }
756 mutex_unlock(&uuid_mutex);
757
758 while (seed_devices) {
759 fs_devices = seed_devices;
760 seed_devices = fs_devices->seed;
761 __btrfs_close_devices(fs_devices);
762 free_fs_devices(fs_devices);
763 }
764 /*
765 * Wait for rcu kworkers under __btrfs_close_devices
766 * to finish all blkdev_puts so device is really
767 * free when umount is done.
768 */
769 rcu_barrier();
770 return ret;
771 }
772
__btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)773 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
774 fmode_t flags, void *holder)
775 {
776 struct request_queue *q;
777 struct block_device *bdev;
778 struct list_head *head = &fs_devices->devices;
779 struct btrfs_device *device;
780 struct btrfs_device *latest_dev = NULL;
781 struct buffer_head *bh;
782 struct btrfs_super_block *disk_super;
783 u64 devid;
784 int seeding = 1;
785 int ret = 0;
786
787 flags |= FMODE_EXCL;
788
789 list_for_each_entry(device, head, dev_list) {
790 if (device->bdev)
791 continue;
792 if (!device->name)
793 continue;
794
795 /* Just open everything we can; ignore failures here */
796 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
797 &bdev, &bh))
798 continue;
799
800 disk_super = (struct btrfs_super_block *)bh->b_data;
801 devid = btrfs_stack_device_id(&disk_super->dev_item);
802 if (devid != device->devid)
803 goto error_brelse;
804
805 if (memcmp(device->uuid, disk_super->dev_item.uuid,
806 BTRFS_UUID_SIZE))
807 goto error_brelse;
808
809 device->generation = btrfs_super_generation(disk_super);
810 if (!latest_dev ||
811 device->generation > latest_dev->generation)
812 latest_dev = device;
813
814 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
815 device->writeable = 0;
816 } else {
817 device->writeable = !bdev_read_only(bdev);
818 seeding = 0;
819 }
820
821 q = bdev_get_queue(bdev);
822 if (blk_queue_discard(q))
823 device->can_discard = 1;
824
825 device->bdev = bdev;
826 device->in_fs_metadata = 0;
827 device->mode = flags;
828
829 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
830 fs_devices->rotating = 1;
831
832 fs_devices->open_devices++;
833 if (device->writeable &&
834 device->devid != BTRFS_DEV_REPLACE_DEVID) {
835 fs_devices->rw_devices++;
836 list_add(&device->dev_alloc_list,
837 &fs_devices->alloc_list);
838 }
839 brelse(bh);
840 continue;
841
842 error_brelse:
843 brelse(bh);
844 blkdev_put(bdev, flags);
845 continue;
846 }
847 if (fs_devices->open_devices == 0) {
848 ret = -EINVAL;
849 goto out;
850 }
851 fs_devices->seeding = seeding;
852 fs_devices->opened = 1;
853 fs_devices->latest_bdev = latest_dev->bdev;
854 fs_devices->total_rw_bytes = 0;
855 out:
856 return ret;
857 }
858
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)859 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
860 fmode_t flags, void *holder)
861 {
862 int ret;
863
864 mutex_lock(&uuid_mutex);
865 if (fs_devices->opened) {
866 fs_devices->opened++;
867 ret = 0;
868 } else {
869 ret = __btrfs_open_devices(fs_devices, flags, holder);
870 }
871 mutex_unlock(&uuid_mutex);
872 return ret;
873 }
874
875 /*
876 * Look for a btrfs signature on a device. This may be called out of the mount path
877 * and we are not allowed to call set_blocksize during the scan. The superblock
878 * is read via pagecache
879 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder,struct btrfs_fs_devices ** fs_devices_ret)880 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
881 struct btrfs_fs_devices **fs_devices_ret)
882 {
883 struct btrfs_super_block *disk_super;
884 struct block_device *bdev;
885 struct page *page;
886 void *p;
887 int ret = -EINVAL;
888 u64 devid;
889 u64 transid;
890 u64 total_devices;
891 u64 bytenr;
892 pgoff_t index;
893
894 /*
895 * we would like to check all the supers, but that would make
896 * a btrfs mount succeed after a mkfs from a different FS.
897 * So, we need to add a special mount option to scan for
898 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
899 */
900 bytenr = btrfs_sb_offset(0);
901 flags |= FMODE_EXCL;
902 mutex_lock(&uuid_mutex);
903
904 bdev = blkdev_get_by_path(path, flags, holder);
905
906 if (IS_ERR(bdev)) {
907 ret = PTR_ERR(bdev);
908 goto error;
909 }
910
911 /* make sure our super fits in the device */
912 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
913 goto error_bdev_put;
914
915 /* make sure our super fits in the page */
916 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
917 goto error_bdev_put;
918
919 /* make sure our super doesn't straddle pages on disk */
920 index = bytenr >> PAGE_CACHE_SHIFT;
921 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
922 goto error_bdev_put;
923
924 /* pull in the page with our super */
925 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
926 index, GFP_NOFS);
927
928 if (IS_ERR_OR_NULL(page))
929 goto error_bdev_put;
930
931 p = kmap(page);
932
933 /* align our pointer to the offset of the super block */
934 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
935
936 if (btrfs_super_bytenr(disk_super) != bytenr ||
937 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
938 goto error_unmap;
939
940 devid = btrfs_stack_device_id(&disk_super->dev_item);
941 transid = btrfs_super_generation(disk_super);
942 total_devices = btrfs_super_num_devices(disk_super);
943
944 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
945 if (ret > 0) {
946 if (disk_super->label[0]) {
947 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
948 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
949 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
950 } else {
951 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
952 }
953
954 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
955 ret = 0;
956 }
957 if (!ret && fs_devices_ret)
958 (*fs_devices_ret)->total_devices = total_devices;
959
960 error_unmap:
961 kunmap(page);
962 page_cache_release(page);
963
964 error_bdev_put:
965 blkdev_put(bdev, flags);
966 error:
967 mutex_unlock(&uuid_mutex);
968 return ret;
969 }
970
971 /* helper to account the used device space in the range */
btrfs_account_dev_extents_size(struct btrfs_device * device,u64 start,u64 end,u64 * length)972 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
973 u64 end, u64 *length)
974 {
975 struct btrfs_key key;
976 struct btrfs_root *root = device->dev_root;
977 struct btrfs_dev_extent *dev_extent;
978 struct btrfs_path *path;
979 u64 extent_end;
980 int ret;
981 int slot;
982 struct extent_buffer *l;
983
984 *length = 0;
985
986 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
987 return 0;
988
989 path = btrfs_alloc_path();
990 if (!path)
991 return -ENOMEM;
992 path->reada = 2;
993
994 key.objectid = device->devid;
995 key.offset = start;
996 key.type = BTRFS_DEV_EXTENT_KEY;
997
998 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
999 if (ret < 0)
1000 goto out;
1001 if (ret > 0) {
1002 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1003 if (ret < 0)
1004 goto out;
1005 }
1006
1007 while (1) {
1008 l = path->nodes[0];
1009 slot = path->slots[0];
1010 if (slot >= btrfs_header_nritems(l)) {
1011 ret = btrfs_next_leaf(root, path);
1012 if (ret == 0)
1013 continue;
1014 if (ret < 0)
1015 goto out;
1016
1017 break;
1018 }
1019 btrfs_item_key_to_cpu(l, &key, slot);
1020
1021 if (key.objectid < device->devid)
1022 goto next;
1023
1024 if (key.objectid > device->devid)
1025 break;
1026
1027 if (key.type != BTRFS_DEV_EXTENT_KEY)
1028 goto next;
1029
1030 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1031 extent_end = key.offset + btrfs_dev_extent_length(l,
1032 dev_extent);
1033 if (key.offset <= start && extent_end > end) {
1034 *length = end - start + 1;
1035 break;
1036 } else if (key.offset <= start && extent_end > start)
1037 *length += extent_end - start;
1038 else if (key.offset > start && extent_end <= end)
1039 *length += extent_end - key.offset;
1040 else if (key.offset > start && key.offset <= end) {
1041 *length += end - key.offset + 1;
1042 break;
1043 } else if (key.offset > end)
1044 break;
1045
1046 next:
1047 path->slots[0]++;
1048 }
1049 ret = 0;
1050 out:
1051 btrfs_free_path(path);
1052 return ret;
1053 }
1054
contains_pending_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 * start,u64 len)1055 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1056 struct btrfs_device *device,
1057 u64 *start, u64 len)
1058 {
1059 struct extent_map *em;
1060 struct list_head *search_list = &trans->transaction->pending_chunks;
1061 int ret = 0;
1062 u64 physical_start = *start;
1063
1064 again:
1065 list_for_each_entry(em, search_list, list) {
1066 struct map_lookup *map;
1067 int i;
1068
1069 map = (struct map_lookup *)em->bdev;
1070 for (i = 0; i < map->num_stripes; i++) {
1071 if (map->stripes[i].dev != device)
1072 continue;
1073 if (map->stripes[i].physical >= physical_start + len ||
1074 map->stripes[i].physical + em->orig_block_len <=
1075 physical_start)
1076 continue;
1077 *start = map->stripes[i].physical +
1078 em->orig_block_len;
1079 ret = 1;
1080 }
1081 }
1082 if (search_list == &trans->transaction->pending_chunks) {
1083 search_list = &trans->root->fs_info->pinned_chunks;
1084 goto again;
1085 }
1086
1087 return ret;
1088 }
1089
1090
1091 /*
1092 * find_free_dev_extent - find free space in the specified device
1093 * @device: the device which we search the free space in
1094 * @num_bytes: the size of the free space that we need
1095 * @start: store the start of the free space.
1096 * @len: the size of the free space. that we find, or the size of the max
1097 * free space if we don't find suitable free space
1098 *
1099 * this uses a pretty simple search, the expectation is that it is
1100 * called very infrequently and that a given device has a small number
1101 * of extents
1102 *
1103 * @start is used to store the start of the free space if we find. But if we
1104 * don't find suitable free space, it will be used to store the start position
1105 * of the max free space.
1106 *
1107 * @len is used to store the size of the free space that we find.
1108 * But if we don't find suitable free space, it is used to store the size of
1109 * the max free space.
1110 */
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1111 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1112 struct btrfs_device *device, u64 num_bytes,
1113 u64 *start, u64 *len)
1114 {
1115 struct btrfs_key key;
1116 struct btrfs_root *root = device->dev_root;
1117 struct btrfs_dev_extent *dev_extent;
1118 struct btrfs_path *path;
1119 u64 hole_size;
1120 u64 max_hole_start;
1121 u64 max_hole_size;
1122 u64 extent_end;
1123 u64 search_start;
1124 u64 search_end = device->total_bytes;
1125 int ret;
1126 int slot;
1127 struct extent_buffer *l;
1128
1129 /* FIXME use last free of some kind */
1130
1131 /* we don't want to overwrite the superblock on the drive,
1132 * so we make sure to start at an offset of at least 1MB
1133 */
1134 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1135
1136 path = btrfs_alloc_path();
1137 if (!path)
1138 return -ENOMEM;
1139
1140 max_hole_start = search_start;
1141 max_hole_size = 0;
1142
1143 again:
1144 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1145 ret = -ENOSPC;
1146 goto out;
1147 }
1148
1149 path->reada = 2;
1150 path->search_commit_root = 1;
1151 path->skip_locking = 1;
1152
1153 key.objectid = device->devid;
1154 key.offset = search_start;
1155 key.type = BTRFS_DEV_EXTENT_KEY;
1156
1157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1158 if (ret < 0)
1159 goto out;
1160 if (ret > 0) {
1161 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1162 if (ret < 0)
1163 goto out;
1164 }
1165
1166 while (1) {
1167 l = path->nodes[0];
1168 slot = path->slots[0];
1169 if (slot >= btrfs_header_nritems(l)) {
1170 ret = btrfs_next_leaf(root, path);
1171 if (ret == 0)
1172 continue;
1173 if (ret < 0)
1174 goto out;
1175
1176 break;
1177 }
1178 btrfs_item_key_to_cpu(l, &key, slot);
1179
1180 if (key.objectid < device->devid)
1181 goto next;
1182
1183 if (key.objectid > device->devid)
1184 break;
1185
1186 if (key.type != BTRFS_DEV_EXTENT_KEY)
1187 goto next;
1188
1189 if (key.offset > search_start) {
1190 hole_size = key.offset - search_start;
1191
1192 /*
1193 * Have to check before we set max_hole_start, otherwise
1194 * we could end up sending back this offset anyway.
1195 */
1196 if (contains_pending_extent(trans, device,
1197 &search_start,
1198 hole_size)) {
1199 if (key.offset >= search_start) {
1200 hole_size = key.offset - search_start;
1201 } else {
1202 WARN_ON_ONCE(1);
1203 hole_size = 0;
1204 }
1205 }
1206
1207 if (hole_size > max_hole_size) {
1208 max_hole_start = search_start;
1209 max_hole_size = hole_size;
1210 }
1211
1212 /*
1213 * If this free space is greater than which we need,
1214 * it must be the max free space that we have found
1215 * until now, so max_hole_start must point to the start
1216 * of this free space and the length of this free space
1217 * is stored in max_hole_size. Thus, we return
1218 * max_hole_start and max_hole_size and go back to the
1219 * caller.
1220 */
1221 if (hole_size >= num_bytes) {
1222 ret = 0;
1223 goto out;
1224 }
1225 }
1226
1227 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1228 extent_end = key.offset + btrfs_dev_extent_length(l,
1229 dev_extent);
1230 if (extent_end > search_start)
1231 search_start = extent_end;
1232 next:
1233 path->slots[0]++;
1234 cond_resched();
1235 }
1236
1237 /*
1238 * At this point, search_start should be the end of
1239 * allocated dev extents, and when shrinking the device,
1240 * search_end may be smaller than search_start.
1241 */
1242 if (search_end > search_start) {
1243 hole_size = search_end - search_start;
1244
1245 if (contains_pending_extent(trans, device, &search_start,
1246 hole_size)) {
1247 btrfs_release_path(path);
1248 goto again;
1249 }
1250
1251 if (hole_size > max_hole_size) {
1252 max_hole_start = search_start;
1253 max_hole_size = hole_size;
1254 }
1255 }
1256
1257 /* See above. */
1258 if (max_hole_size < num_bytes)
1259 ret = -ENOSPC;
1260 else
1261 ret = 0;
1262
1263 out:
1264 btrfs_free_path(path);
1265 *start = max_hole_start;
1266 if (len)
1267 *len = max_hole_size;
1268 return ret;
1269 }
1270
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1271 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1272 struct btrfs_device *device,
1273 u64 start, u64 *dev_extent_len)
1274 {
1275 int ret;
1276 struct btrfs_path *path;
1277 struct btrfs_root *root = device->dev_root;
1278 struct btrfs_key key;
1279 struct btrfs_key found_key;
1280 struct extent_buffer *leaf = NULL;
1281 struct btrfs_dev_extent *extent = NULL;
1282
1283 path = btrfs_alloc_path();
1284 if (!path)
1285 return -ENOMEM;
1286
1287 key.objectid = device->devid;
1288 key.offset = start;
1289 key.type = BTRFS_DEV_EXTENT_KEY;
1290 again:
1291 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1292 if (ret > 0) {
1293 ret = btrfs_previous_item(root, path, key.objectid,
1294 BTRFS_DEV_EXTENT_KEY);
1295 if (ret)
1296 goto out;
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1299 extent = btrfs_item_ptr(leaf, path->slots[0],
1300 struct btrfs_dev_extent);
1301 BUG_ON(found_key.offset > start || found_key.offset +
1302 btrfs_dev_extent_length(leaf, extent) < start);
1303 key = found_key;
1304 btrfs_release_path(path);
1305 goto again;
1306 } else if (ret == 0) {
1307 leaf = path->nodes[0];
1308 extent = btrfs_item_ptr(leaf, path->slots[0],
1309 struct btrfs_dev_extent);
1310 } else {
1311 btrfs_error(root->fs_info, ret, "Slot search failed");
1312 goto out;
1313 }
1314
1315 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1316
1317 ret = btrfs_del_item(trans, root, path);
1318 if (ret) {
1319 btrfs_error(root->fs_info, ret,
1320 "Failed to remove dev extent item");
1321 } else {
1322 trans->transaction->have_free_bgs = 1;
1323 }
1324 out:
1325 btrfs_free_path(path);
1326 return ret;
1327 }
1328
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset,u64 start,u64 num_bytes)1329 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1330 struct btrfs_device *device,
1331 u64 chunk_tree, u64 chunk_objectid,
1332 u64 chunk_offset, u64 start, u64 num_bytes)
1333 {
1334 int ret;
1335 struct btrfs_path *path;
1336 struct btrfs_root *root = device->dev_root;
1337 struct btrfs_dev_extent *extent;
1338 struct extent_buffer *leaf;
1339 struct btrfs_key key;
1340
1341 WARN_ON(!device->in_fs_metadata);
1342 WARN_ON(device->is_tgtdev_for_dev_replace);
1343 path = btrfs_alloc_path();
1344 if (!path)
1345 return -ENOMEM;
1346
1347 key.objectid = device->devid;
1348 key.offset = start;
1349 key.type = BTRFS_DEV_EXTENT_KEY;
1350 ret = btrfs_insert_empty_item(trans, root, path, &key,
1351 sizeof(*extent));
1352 if (ret)
1353 goto out;
1354
1355 leaf = path->nodes[0];
1356 extent = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_dev_extent);
1358 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1359 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1360 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1361
1362 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1363 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1364
1365 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1366 btrfs_mark_buffer_dirty(leaf);
1367 out:
1368 btrfs_free_path(path);
1369 return ret;
1370 }
1371
find_next_chunk(struct btrfs_fs_info * fs_info)1372 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1373 {
1374 struct extent_map_tree *em_tree;
1375 struct extent_map *em;
1376 struct rb_node *n;
1377 u64 ret = 0;
1378
1379 em_tree = &fs_info->mapping_tree.map_tree;
1380 read_lock(&em_tree->lock);
1381 n = rb_last(&em_tree->map);
1382 if (n) {
1383 em = rb_entry(n, struct extent_map, rb_node);
1384 ret = em->start + em->len;
1385 }
1386 read_unlock(&em_tree->lock);
1387
1388 return ret;
1389 }
1390
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1391 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1392 u64 *devid_ret)
1393 {
1394 int ret;
1395 struct btrfs_key key;
1396 struct btrfs_key found_key;
1397 struct btrfs_path *path;
1398
1399 path = btrfs_alloc_path();
1400 if (!path)
1401 return -ENOMEM;
1402
1403 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1404 key.type = BTRFS_DEV_ITEM_KEY;
1405 key.offset = (u64)-1;
1406
1407 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1408 if (ret < 0)
1409 goto error;
1410
1411 BUG_ON(ret == 0); /* Corruption */
1412
1413 ret = btrfs_previous_item(fs_info->chunk_root, path,
1414 BTRFS_DEV_ITEMS_OBJECTID,
1415 BTRFS_DEV_ITEM_KEY);
1416 if (ret) {
1417 *devid_ret = 1;
1418 } else {
1419 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1420 path->slots[0]);
1421 *devid_ret = found_key.offset + 1;
1422 }
1423 ret = 0;
1424 error:
1425 btrfs_free_path(path);
1426 return ret;
1427 }
1428
1429 /*
1430 * the device information is stored in the chunk root
1431 * the btrfs_device struct should be fully filled in
1432 */
btrfs_add_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)1433 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1434 struct btrfs_root *root,
1435 struct btrfs_device *device)
1436 {
1437 int ret;
1438 struct btrfs_path *path;
1439 struct btrfs_dev_item *dev_item;
1440 struct extent_buffer *leaf;
1441 struct btrfs_key key;
1442 unsigned long ptr;
1443
1444 root = root->fs_info->chunk_root;
1445
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return -ENOMEM;
1449
1450 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1451 key.type = BTRFS_DEV_ITEM_KEY;
1452 key.offset = device->devid;
1453
1454 ret = btrfs_insert_empty_item(trans, root, path, &key,
1455 sizeof(*dev_item));
1456 if (ret)
1457 goto out;
1458
1459 leaf = path->nodes[0];
1460 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1461
1462 btrfs_set_device_id(leaf, dev_item, device->devid);
1463 btrfs_set_device_generation(leaf, dev_item, 0);
1464 btrfs_set_device_type(leaf, dev_item, device->type);
1465 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1466 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1467 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1468 btrfs_set_device_total_bytes(leaf, dev_item,
1469 btrfs_device_get_disk_total_bytes(device));
1470 btrfs_set_device_bytes_used(leaf, dev_item,
1471 btrfs_device_get_bytes_used(device));
1472 btrfs_set_device_group(leaf, dev_item, 0);
1473 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1474 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1475 btrfs_set_device_start_offset(leaf, dev_item, 0);
1476
1477 ptr = btrfs_device_uuid(dev_item);
1478 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1479 ptr = btrfs_device_fsid(dev_item);
1480 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1481 btrfs_mark_buffer_dirty(leaf);
1482
1483 ret = 0;
1484 out:
1485 btrfs_free_path(path);
1486 return ret;
1487 }
1488
1489 /*
1490 * Function to update ctime/mtime for a given device path.
1491 * Mainly used for ctime/mtime based probe like libblkid.
1492 */
update_dev_time(char * path_name)1493 static void update_dev_time(char *path_name)
1494 {
1495 struct file *filp;
1496
1497 filp = filp_open(path_name, O_RDWR, 0);
1498 if (IS_ERR(filp))
1499 return;
1500 file_update_time(filp);
1501 filp_close(filp, NULL);
1502 return;
1503 }
1504
btrfs_rm_dev_item(struct btrfs_root * root,struct btrfs_device * device)1505 static int btrfs_rm_dev_item(struct btrfs_root *root,
1506 struct btrfs_device *device)
1507 {
1508 int ret;
1509 struct btrfs_path *path;
1510 struct btrfs_key key;
1511 struct btrfs_trans_handle *trans;
1512
1513 root = root->fs_info->chunk_root;
1514
1515 path = btrfs_alloc_path();
1516 if (!path)
1517 return -ENOMEM;
1518
1519 trans = btrfs_start_transaction(root, 0);
1520 if (IS_ERR(trans)) {
1521 btrfs_free_path(path);
1522 return PTR_ERR(trans);
1523 }
1524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1525 key.type = BTRFS_DEV_ITEM_KEY;
1526 key.offset = device->devid;
1527
1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1529 if (ret < 0)
1530 goto out;
1531
1532 if (ret > 0) {
1533 ret = -ENOENT;
1534 goto out;
1535 }
1536
1537 ret = btrfs_del_item(trans, root, path);
1538 if (ret)
1539 goto out;
1540 out:
1541 btrfs_free_path(path);
1542 btrfs_commit_transaction(trans, root);
1543 return ret;
1544 }
1545
btrfs_rm_device(struct btrfs_root * root,char * device_path)1546 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1547 {
1548 struct btrfs_device *device;
1549 struct btrfs_device *next_device;
1550 struct block_device *bdev;
1551 struct buffer_head *bh = NULL;
1552 struct btrfs_super_block *disk_super;
1553 struct btrfs_fs_devices *cur_devices;
1554 u64 all_avail;
1555 u64 devid;
1556 u64 num_devices;
1557 u8 *dev_uuid;
1558 unsigned seq;
1559 int ret = 0;
1560 bool clear_super = false;
1561
1562 mutex_lock(&uuid_mutex);
1563
1564 do {
1565 seq = read_seqbegin(&root->fs_info->profiles_lock);
1566
1567 all_avail = root->fs_info->avail_data_alloc_bits |
1568 root->fs_info->avail_system_alloc_bits |
1569 root->fs_info->avail_metadata_alloc_bits;
1570 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1571
1572 num_devices = root->fs_info->fs_devices->num_devices;
1573 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1574 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1575 WARN_ON(num_devices < 1);
1576 num_devices--;
1577 }
1578 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1579
1580 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1581 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1582 goto out;
1583 }
1584
1585 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1586 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1587 goto out;
1588 }
1589
1590 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1591 root->fs_info->fs_devices->rw_devices <= 2) {
1592 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1593 goto out;
1594 }
1595 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1596 root->fs_info->fs_devices->rw_devices <= 3) {
1597 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1598 goto out;
1599 }
1600
1601 if (strcmp(device_path, "missing") == 0) {
1602 struct list_head *devices;
1603 struct btrfs_device *tmp;
1604
1605 device = NULL;
1606 devices = &root->fs_info->fs_devices->devices;
1607 /*
1608 * It is safe to read the devices since the volume_mutex
1609 * is held.
1610 */
1611 list_for_each_entry(tmp, devices, dev_list) {
1612 if (tmp->in_fs_metadata &&
1613 !tmp->is_tgtdev_for_dev_replace &&
1614 !tmp->bdev) {
1615 device = tmp;
1616 break;
1617 }
1618 }
1619 bdev = NULL;
1620 bh = NULL;
1621 disk_super = NULL;
1622 if (!device) {
1623 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1624 goto out;
1625 }
1626 } else {
1627 ret = btrfs_get_bdev_and_sb(device_path,
1628 FMODE_WRITE | FMODE_EXCL,
1629 root->fs_info->bdev_holder, 0,
1630 &bdev, &bh);
1631 if (ret)
1632 goto out;
1633 disk_super = (struct btrfs_super_block *)bh->b_data;
1634 devid = btrfs_stack_device_id(&disk_super->dev_item);
1635 dev_uuid = disk_super->dev_item.uuid;
1636 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1637 disk_super->fsid);
1638 if (!device) {
1639 ret = -ENOENT;
1640 goto error_brelse;
1641 }
1642 }
1643
1644 if (device->is_tgtdev_for_dev_replace) {
1645 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1646 goto error_brelse;
1647 }
1648
1649 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1650 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1651 goto error_brelse;
1652 }
1653
1654 if (device->writeable) {
1655 lock_chunks(root);
1656 list_del_init(&device->dev_alloc_list);
1657 device->fs_devices->rw_devices--;
1658 unlock_chunks(root);
1659 clear_super = true;
1660 }
1661
1662 mutex_unlock(&uuid_mutex);
1663 ret = btrfs_shrink_device(device, 0);
1664 mutex_lock(&uuid_mutex);
1665 if (ret)
1666 goto error_undo;
1667
1668 /*
1669 * TODO: the superblock still includes this device in its num_devices
1670 * counter although write_all_supers() is not locked out. This
1671 * could give a filesystem state which requires a degraded mount.
1672 */
1673 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1674 if (ret)
1675 goto error_undo;
1676
1677 device->in_fs_metadata = 0;
1678 btrfs_scrub_cancel_dev(root->fs_info, device);
1679
1680 /*
1681 * the device list mutex makes sure that we don't change
1682 * the device list while someone else is writing out all
1683 * the device supers. Whoever is writing all supers, should
1684 * lock the device list mutex before getting the number of
1685 * devices in the super block (super_copy). Conversely,
1686 * whoever updates the number of devices in the super block
1687 * (super_copy) should hold the device list mutex.
1688 */
1689
1690 cur_devices = device->fs_devices;
1691 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1692 list_del_rcu(&device->dev_list);
1693
1694 device->fs_devices->num_devices--;
1695 device->fs_devices->total_devices--;
1696
1697 if (device->missing)
1698 device->fs_devices->missing_devices--;
1699
1700 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1701 struct btrfs_device, dev_list);
1702 if (device->bdev == root->fs_info->sb->s_bdev)
1703 root->fs_info->sb->s_bdev = next_device->bdev;
1704 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1705 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1706
1707 if (device->bdev) {
1708 device->fs_devices->open_devices--;
1709 /* remove sysfs entry */
1710 btrfs_kobj_rm_device(root->fs_info, device);
1711 }
1712
1713 call_rcu(&device->rcu, free_device);
1714
1715 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1716 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1717 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1718
1719 if (cur_devices->open_devices == 0) {
1720 struct btrfs_fs_devices *fs_devices;
1721 fs_devices = root->fs_info->fs_devices;
1722 while (fs_devices) {
1723 if (fs_devices->seed == cur_devices) {
1724 fs_devices->seed = cur_devices->seed;
1725 break;
1726 }
1727 fs_devices = fs_devices->seed;
1728 }
1729 cur_devices->seed = NULL;
1730 __btrfs_close_devices(cur_devices);
1731 free_fs_devices(cur_devices);
1732 }
1733
1734 root->fs_info->num_tolerated_disk_barrier_failures =
1735 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1736
1737 /*
1738 * at this point, the device is zero sized. We want to
1739 * remove it from the devices list and zero out the old super
1740 */
1741 if (clear_super && disk_super) {
1742 u64 bytenr;
1743 int i;
1744
1745 /* make sure this device isn't detected as part of
1746 * the FS anymore
1747 */
1748 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1749 set_buffer_dirty(bh);
1750 sync_dirty_buffer(bh);
1751
1752 /* clear the mirror copies of super block on the disk
1753 * being removed, 0th copy is been taken care above and
1754 * the below would take of the rest
1755 */
1756 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1757 bytenr = btrfs_sb_offset(i);
1758 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1759 i_size_read(bdev->bd_inode))
1760 break;
1761
1762 brelse(bh);
1763 bh = __bread(bdev, bytenr / 4096,
1764 BTRFS_SUPER_INFO_SIZE);
1765 if (!bh)
1766 continue;
1767
1768 disk_super = (struct btrfs_super_block *)bh->b_data;
1769
1770 if (btrfs_super_bytenr(disk_super) != bytenr ||
1771 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1772 continue;
1773 }
1774 memset(&disk_super->magic, 0,
1775 sizeof(disk_super->magic));
1776 set_buffer_dirty(bh);
1777 sync_dirty_buffer(bh);
1778 }
1779 }
1780
1781 ret = 0;
1782
1783 if (bdev) {
1784 /* Notify udev that device has changed */
1785 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1786
1787 /* Update ctime/mtime for device path for libblkid */
1788 update_dev_time(device_path);
1789 }
1790
1791 error_brelse:
1792 brelse(bh);
1793 if (bdev)
1794 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1795 out:
1796 mutex_unlock(&uuid_mutex);
1797 return ret;
1798 error_undo:
1799 if (device->writeable) {
1800 lock_chunks(root);
1801 list_add(&device->dev_alloc_list,
1802 &root->fs_info->fs_devices->alloc_list);
1803 device->fs_devices->rw_devices++;
1804 unlock_chunks(root);
1805 }
1806 goto error_brelse;
1807 }
1808
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)1809 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1810 struct btrfs_device *srcdev)
1811 {
1812 struct btrfs_fs_devices *fs_devices;
1813
1814 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1815
1816 /*
1817 * in case of fs with no seed, srcdev->fs_devices will point
1818 * to fs_devices of fs_info. However when the dev being replaced is
1819 * a seed dev it will point to the seed's local fs_devices. In short
1820 * srcdev will have its correct fs_devices in both the cases.
1821 */
1822 fs_devices = srcdev->fs_devices;
1823
1824 list_del_rcu(&srcdev->dev_list);
1825 list_del_rcu(&srcdev->dev_alloc_list);
1826 fs_devices->num_devices--;
1827 if (srcdev->missing)
1828 fs_devices->missing_devices--;
1829
1830 if (srcdev->writeable) {
1831 fs_devices->rw_devices--;
1832 /* zero out the old super if it is writable */
1833 btrfs_scratch_superblock(srcdev);
1834 }
1835
1836 if (srcdev->bdev)
1837 fs_devices->open_devices--;
1838 }
1839
btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)1840 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1841 struct btrfs_device *srcdev)
1842 {
1843 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1844
1845 call_rcu(&srcdev->rcu, free_device);
1846
1847 /*
1848 * unless fs_devices is seed fs, num_devices shouldn't go
1849 * zero
1850 */
1851 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1852
1853 /* if this is no devs we rather delete the fs_devices */
1854 if (!fs_devices->num_devices) {
1855 struct btrfs_fs_devices *tmp_fs_devices;
1856
1857 tmp_fs_devices = fs_info->fs_devices;
1858 while (tmp_fs_devices) {
1859 if (tmp_fs_devices->seed == fs_devices) {
1860 tmp_fs_devices->seed = fs_devices->seed;
1861 break;
1862 }
1863 tmp_fs_devices = tmp_fs_devices->seed;
1864 }
1865 fs_devices->seed = NULL;
1866 __btrfs_close_devices(fs_devices);
1867 free_fs_devices(fs_devices);
1868 }
1869 }
1870
btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)1871 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1872 struct btrfs_device *tgtdev)
1873 {
1874 struct btrfs_device *next_device;
1875
1876 mutex_lock(&uuid_mutex);
1877 WARN_ON(!tgtdev);
1878 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1879 if (tgtdev->bdev) {
1880 btrfs_scratch_superblock(tgtdev);
1881 fs_info->fs_devices->open_devices--;
1882 }
1883 fs_info->fs_devices->num_devices--;
1884
1885 next_device = list_entry(fs_info->fs_devices->devices.next,
1886 struct btrfs_device, dev_list);
1887 if (tgtdev->bdev == fs_info->sb->s_bdev)
1888 fs_info->sb->s_bdev = next_device->bdev;
1889 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1890 fs_info->fs_devices->latest_bdev = next_device->bdev;
1891 list_del_rcu(&tgtdev->dev_list);
1892
1893 call_rcu(&tgtdev->rcu, free_device);
1894
1895 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1896 mutex_unlock(&uuid_mutex);
1897 }
1898
btrfs_find_device_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)1899 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1900 struct btrfs_device **device)
1901 {
1902 int ret = 0;
1903 struct btrfs_super_block *disk_super;
1904 u64 devid;
1905 u8 *dev_uuid;
1906 struct block_device *bdev;
1907 struct buffer_head *bh;
1908
1909 *device = NULL;
1910 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1911 root->fs_info->bdev_holder, 0, &bdev, &bh);
1912 if (ret)
1913 return ret;
1914 disk_super = (struct btrfs_super_block *)bh->b_data;
1915 devid = btrfs_stack_device_id(&disk_super->dev_item);
1916 dev_uuid = disk_super->dev_item.uuid;
1917 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1918 disk_super->fsid);
1919 brelse(bh);
1920 if (!*device)
1921 ret = -ENOENT;
1922 blkdev_put(bdev, FMODE_READ);
1923 return ret;
1924 }
1925
btrfs_find_device_missing_or_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)1926 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1927 char *device_path,
1928 struct btrfs_device **device)
1929 {
1930 *device = NULL;
1931 if (strcmp(device_path, "missing") == 0) {
1932 struct list_head *devices;
1933 struct btrfs_device *tmp;
1934
1935 devices = &root->fs_info->fs_devices->devices;
1936 /*
1937 * It is safe to read the devices since the volume_mutex
1938 * is held by the caller.
1939 */
1940 list_for_each_entry(tmp, devices, dev_list) {
1941 if (tmp->in_fs_metadata && !tmp->bdev) {
1942 *device = tmp;
1943 break;
1944 }
1945 }
1946
1947 if (!*device) {
1948 btrfs_err(root->fs_info, "no missing device found");
1949 return -ENOENT;
1950 }
1951
1952 return 0;
1953 } else {
1954 return btrfs_find_device_by_path(root, device_path, device);
1955 }
1956 }
1957
1958 /*
1959 * does all the dirty work required for changing file system's UUID.
1960 */
btrfs_prepare_sprout(struct btrfs_root * root)1961 static int btrfs_prepare_sprout(struct btrfs_root *root)
1962 {
1963 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1964 struct btrfs_fs_devices *old_devices;
1965 struct btrfs_fs_devices *seed_devices;
1966 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1967 struct btrfs_device *device;
1968 u64 super_flags;
1969
1970 BUG_ON(!mutex_is_locked(&uuid_mutex));
1971 if (!fs_devices->seeding)
1972 return -EINVAL;
1973
1974 seed_devices = __alloc_fs_devices();
1975 if (IS_ERR(seed_devices))
1976 return PTR_ERR(seed_devices);
1977
1978 old_devices = clone_fs_devices(fs_devices);
1979 if (IS_ERR(old_devices)) {
1980 kfree(seed_devices);
1981 return PTR_ERR(old_devices);
1982 }
1983
1984 list_add(&old_devices->list, &fs_uuids);
1985
1986 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1987 seed_devices->opened = 1;
1988 INIT_LIST_HEAD(&seed_devices->devices);
1989 INIT_LIST_HEAD(&seed_devices->alloc_list);
1990 mutex_init(&seed_devices->device_list_mutex);
1991
1992 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1993 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1994 synchronize_rcu);
1995 list_for_each_entry(device, &seed_devices->devices, dev_list)
1996 device->fs_devices = seed_devices;
1997
1998 lock_chunks(root);
1999 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2000 unlock_chunks(root);
2001
2002 fs_devices->seeding = 0;
2003 fs_devices->num_devices = 0;
2004 fs_devices->open_devices = 0;
2005 fs_devices->missing_devices = 0;
2006 fs_devices->rotating = 0;
2007 fs_devices->seed = seed_devices;
2008
2009 generate_random_uuid(fs_devices->fsid);
2010 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2011 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2012 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2013
2014 super_flags = btrfs_super_flags(disk_super) &
2015 ~BTRFS_SUPER_FLAG_SEEDING;
2016 btrfs_set_super_flags(disk_super, super_flags);
2017
2018 return 0;
2019 }
2020
2021 /*
2022 * strore the expected generation for seed devices in device items.
2023 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_root * root)2024 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2025 struct btrfs_root *root)
2026 {
2027 struct btrfs_path *path;
2028 struct extent_buffer *leaf;
2029 struct btrfs_dev_item *dev_item;
2030 struct btrfs_device *device;
2031 struct btrfs_key key;
2032 u8 fs_uuid[BTRFS_UUID_SIZE];
2033 u8 dev_uuid[BTRFS_UUID_SIZE];
2034 u64 devid;
2035 int ret;
2036
2037 path = btrfs_alloc_path();
2038 if (!path)
2039 return -ENOMEM;
2040
2041 root = root->fs_info->chunk_root;
2042 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2043 key.offset = 0;
2044 key.type = BTRFS_DEV_ITEM_KEY;
2045
2046 while (1) {
2047 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2048 if (ret < 0)
2049 goto error;
2050
2051 leaf = path->nodes[0];
2052 next_slot:
2053 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2054 ret = btrfs_next_leaf(root, path);
2055 if (ret > 0)
2056 break;
2057 if (ret < 0)
2058 goto error;
2059 leaf = path->nodes[0];
2060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2061 btrfs_release_path(path);
2062 continue;
2063 }
2064
2065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2066 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2067 key.type != BTRFS_DEV_ITEM_KEY)
2068 break;
2069
2070 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2071 struct btrfs_dev_item);
2072 devid = btrfs_device_id(leaf, dev_item);
2073 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2074 BTRFS_UUID_SIZE);
2075 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2076 BTRFS_UUID_SIZE);
2077 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2078 fs_uuid);
2079 BUG_ON(!device); /* Logic error */
2080
2081 if (device->fs_devices->seeding) {
2082 btrfs_set_device_generation(leaf, dev_item,
2083 device->generation);
2084 btrfs_mark_buffer_dirty(leaf);
2085 }
2086
2087 path->slots[0]++;
2088 goto next_slot;
2089 }
2090 ret = 0;
2091 error:
2092 btrfs_free_path(path);
2093 return ret;
2094 }
2095
btrfs_init_new_device(struct btrfs_root * root,char * device_path)2096 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2097 {
2098 struct request_queue *q;
2099 struct btrfs_trans_handle *trans;
2100 struct btrfs_device *device;
2101 struct block_device *bdev;
2102 struct list_head *devices;
2103 struct super_block *sb = root->fs_info->sb;
2104 struct rcu_string *name;
2105 u64 tmp;
2106 int seeding_dev = 0;
2107 int ret = 0;
2108
2109 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2110 return -EROFS;
2111
2112 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2113 root->fs_info->bdev_holder);
2114 if (IS_ERR(bdev))
2115 return PTR_ERR(bdev);
2116
2117 if (root->fs_info->fs_devices->seeding) {
2118 seeding_dev = 1;
2119 down_write(&sb->s_umount);
2120 mutex_lock(&uuid_mutex);
2121 }
2122
2123 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2124
2125 devices = &root->fs_info->fs_devices->devices;
2126
2127 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2128 list_for_each_entry(device, devices, dev_list) {
2129 if (device->bdev == bdev) {
2130 ret = -EEXIST;
2131 mutex_unlock(
2132 &root->fs_info->fs_devices->device_list_mutex);
2133 goto error;
2134 }
2135 }
2136 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2137
2138 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2139 if (IS_ERR(device)) {
2140 /* we can safely leave the fs_devices entry around */
2141 ret = PTR_ERR(device);
2142 goto error;
2143 }
2144
2145 name = rcu_string_strdup(device_path, GFP_NOFS);
2146 if (!name) {
2147 kfree(device);
2148 ret = -ENOMEM;
2149 goto error;
2150 }
2151 rcu_assign_pointer(device->name, name);
2152
2153 trans = btrfs_start_transaction(root, 0);
2154 if (IS_ERR(trans)) {
2155 rcu_string_free(device->name);
2156 kfree(device);
2157 ret = PTR_ERR(trans);
2158 goto error;
2159 }
2160
2161 q = bdev_get_queue(bdev);
2162 if (blk_queue_discard(q))
2163 device->can_discard = 1;
2164 device->writeable = 1;
2165 device->generation = trans->transid;
2166 device->io_width = root->sectorsize;
2167 device->io_align = root->sectorsize;
2168 device->sector_size = root->sectorsize;
2169 device->total_bytes = i_size_read(bdev->bd_inode);
2170 device->disk_total_bytes = device->total_bytes;
2171 device->commit_total_bytes = device->total_bytes;
2172 device->dev_root = root->fs_info->dev_root;
2173 device->bdev = bdev;
2174 device->in_fs_metadata = 1;
2175 device->is_tgtdev_for_dev_replace = 0;
2176 device->mode = FMODE_EXCL;
2177 device->dev_stats_valid = 1;
2178 set_blocksize(device->bdev, 4096);
2179
2180 if (seeding_dev) {
2181 sb->s_flags &= ~MS_RDONLY;
2182 ret = btrfs_prepare_sprout(root);
2183 BUG_ON(ret); /* -ENOMEM */
2184 }
2185
2186 device->fs_devices = root->fs_info->fs_devices;
2187
2188 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2189 lock_chunks(root);
2190 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2191 list_add(&device->dev_alloc_list,
2192 &root->fs_info->fs_devices->alloc_list);
2193 root->fs_info->fs_devices->num_devices++;
2194 root->fs_info->fs_devices->open_devices++;
2195 root->fs_info->fs_devices->rw_devices++;
2196 root->fs_info->fs_devices->total_devices++;
2197 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2198
2199 spin_lock(&root->fs_info->free_chunk_lock);
2200 root->fs_info->free_chunk_space += device->total_bytes;
2201 spin_unlock(&root->fs_info->free_chunk_lock);
2202
2203 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2204 root->fs_info->fs_devices->rotating = 1;
2205
2206 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2207 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2208 tmp + device->total_bytes);
2209
2210 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2211 btrfs_set_super_num_devices(root->fs_info->super_copy,
2212 tmp + 1);
2213
2214 /* add sysfs device entry */
2215 btrfs_kobj_add_device(root->fs_info, device);
2216
2217 /*
2218 * we've got more storage, clear any full flags on the space
2219 * infos
2220 */
2221 btrfs_clear_space_info_full(root->fs_info);
2222
2223 unlock_chunks(root);
2224 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2225
2226 if (seeding_dev) {
2227 lock_chunks(root);
2228 ret = init_first_rw_device(trans, root, device);
2229 unlock_chunks(root);
2230 if (ret) {
2231 btrfs_abort_transaction(trans, root, ret);
2232 goto error_trans;
2233 }
2234 }
2235
2236 ret = btrfs_add_device(trans, root, device);
2237 if (ret) {
2238 btrfs_abort_transaction(trans, root, ret);
2239 goto error_trans;
2240 }
2241
2242 if (seeding_dev) {
2243 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2244
2245 ret = btrfs_finish_sprout(trans, root);
2246 if (ret) {
2247 btrfs_abort_transaction(trans, root, ret);
2248 goto error_trans;
2249 }
2250
2251 /* Sprouting would change fsid of the mounted root,
2252 * so rename the fsid on the sysfs
2253 */
2254 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2255 root->fs_info->fsid);
2256 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2257 goto error_trans;
2258 }
2259
2260 root->fs_info->num_tolerated_disk_barrier_failures =
2261 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2262 ret = btrfs_commit_transaction(trans, root);
2263
2264 if (seeding_dev) {
2265 mutex_unlock(&uuid_mutex);
2266 up_write(&sb->s_umount);
2267
2268 if (ret) /* transaction commit */
2269 return ret;
2270
2271 ret = btrfs_relocate_sys_chunks(root);
2272 if (ret < 0)
2273 btrfs_error(root->fs_info, ret,
2274 "Failed to relocate sys chunks after "
2275 "device initialization. This can be fixed "
2276 "using the \"btrfs balance\" command.");
2277 trans = btrfs_attach_transaction(root);
2278 if (IS_ERR(trans)) {
2279 if (PTR_ERR(trans) == -ENOENT)
2280 return 0;
2281 return PTR_ERR(trans);
2282 }
2283 ret = btrfs_commit_transaction(trans, root);
2284 }
2285
2286 /* Update ctime/mtime for libblkid */
2287 update_dev_time(device_path);
2288 return ret;
2289
2290 error_trans:
2291 btrfs_end_transaction(trans, root);
2292 rcu_string_free(device->name);
2293 btrfs_kobj_rm_device(root->fs_info, device);
2294 kfree(device);
2295 error:
2296 blkdev_put(bdev, FMODE_EXCL);
2297 if (seeding_dev) {
2298 mutex_unlock(&uuid_mutex);
2299 up_write(&sb->s_umount);
2300 }
2301 return ret;
2302 }
2303
btrfs_init_dev_replace_tgtdev(struct btrfs_root * root,char * device_path,struct btrfs_device * srcdev,struct btrfs_device ** device_out)2304 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2305 struct btrfs_device *srcdev,
2306 struct btrfs_device **device_out)
2307 {
2308 struct request_queue *q;
2309 struct btrfs_device *device;
2310 struct block_device *bdev;
2311 struct btrfs_fs_info *fs_info = root->fs_info;
2312 struct list_head *devices;
2313 struct rcu_string *name;
2314 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2315 int ret = 0;
2316
2317 *device_out = NULL;
2318 if (fs_info->fs_devices->seeding) {
2319 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2320 return -EINVAL;
2321 }
2322
2323 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2324 fs_info->bdev_holder);
2325 if (IS_ERR(bdev)) {
2326 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2327 return PTR_ERR(bdev);
2328 }
2329
2330 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2331
2332 devices = &fs_info->fs_devices->devices;
2333 list_for_each_entry(device, devices, dev_list) {
2334 if (device->bdev == bdev) {
2335 btrfs_err(fs_info, "target device is in the filesystem!");
2336 ret = -EEXIST;
2337 goto error;
2338 }
2339 }
2340
2341
2342 if (i_size_read(bdev->bd_inode) <
2343 btrfs_device_get_total_bytes(srcdev)) {
2344 btrfs_err(fs_info, "target device is smaller than source device!");
2345 ret = -EINVAL;
2346 goto error;
2347 }
2348
2349
2350 device = btrfs_alloc_device(NULL, &devid, NULL);
2351 if (IS_ERR(device)) {
2352 ret = PTR_ERR(device);
2353 goto error;
2354 }
2355
2356 name = rcu_string_strdup(device_path, GFP_NOFS);
2357 if (!name) {
2358 kfree(device);
2359 ret = -ENOMEM;
2360 goto error;
2361 }
2362 rcu_assign_pointer(device->name, name);
2363
2364 q = bdev_get_queue(bdev);
2365 if (blk_queue_discard(q))
2366 device->can_discard = 1;
2367 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2368 device->writeable = 1;
2369 device->generation = 0;
2370 device->io_width = root->sectorsize;
2371 device->io_align = root->sectorsize;
2372 device->sector_size = root->sectorsize;
2373 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2374 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2375 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2376 ASSERT(list_empty(&srcdev->resized_list));
2377 device->commit_total_bytes = srcdev->commit_total_bytes;
2378 device->commit_bytes_used = device->bytes_used;
2379 device->dev_root = fs_info->dev_root;
2380 device->bdev = bdev;
2381 device->in_fs_metadata = 1;
2382 device->is_tgtdev_for_dev_replace = 1;
2383 device->mode = FMODE_EXCL;
2384 device->dev_stats_valid = 1;
2385 set_blocksize(device->bdev, 4096);
2386 device->fs_devices = fs_info->fs_devices;
2387 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2388 fs_info->fs_devices->num_devices++;
2389 fs_info->fs_devices->open_devices++;
2390 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2391
2392 *device_out = device;
2393 return ret;
2394
2395 error:
2396 blkdev_put(bdev, FMODE_EXCL);
2397 return ret;
2398 }
2399
btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2400 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2401 struct btrfs_device *tgtdev)
2402 {
2403 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2404 tgtdev->io_width = fs_info->dev_root->sectorsize;
2405 tgtdev->io_align = fs_info->dev_root->sectorsize;
2406 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2407 tgtdev->dev_root = fs_info->dev_root;
2408 tgtdev->in_fs_metadata = 1;
2409 }
2410
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2411 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2412 struct btrfs_device *device)
2413 {
2414 int ret;
2415 struct btrfs_path *path;
2416 struct btrfs_root *root;
2417 struct btrfs_dev_item *dev_item;
2418 struct extent_buffer *leaf;
2419 struct btrfs_key key;
2420
2421 root = device->dev_root->fs_info->chunk_root;
2422
2423 path = btrfs_alloc_path();
2424 if (!path)
2425 return -ENOMEM;
2426
2427 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2428 key.type = BTRFS_DEV_ITEM_KEY;
2429 key.offset = device->devid;
2430
2431 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2432 if (ret < 0)
2433 goto out;
2434
2435 if (ret > 0) {
2436 ret = -ENOENT;
2437 goto out;
2438 }
2439
2440 leaf = path->nodes[0];
2441 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2442
2443 btrfs_set_device_id(leaf, dev_item, device->devid);
2444 btrfs_set_device_type(leaf, dev_item, device->type);
2445 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2446 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2447 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2448 btrfs_set_device_total_bytes(leaf, dev_item,
2449 btrfs_device_get_disk_total_bytes(device));
2450 btrfs_set_device_bytes_used(leaf, dev_item,
2451 btrfs_device_get_bytes_used(device));
2452 btrfs_mark_buffer_dirty(leaf);
2453
2454 out:
2455 btrfs_free_path(path);
2456 return ret;
2457 }
2458
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2459 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2460 struct btrfs_device *device, u64 new_size)
2461 {
2462 struct btrfs_super_block *super_copy =
2463 device->dev_root->fs_info->super_copy;
2464 struct btrfs_fs_devices *fs_devices;
2465 u64 old_total;
2466 u64 diff;
2467
2468 if (!device->writeable)
2469 return -EACCES;
2470
2471 lock_chunks(device->dev_root);
2472 old_total = btrfs_super_total_bytes(super_copy);
2473 diff = new_size - device->total_bytes;
2474
2475 if (new_size <= device->total_bytes ||
2476 device->is_tgtdev_for_dev_replace) {
2477 unlock_chunks(device->dev_root);
2478 return -EINVAL;
2479 }
2480
2481 fs_devices = device->dev_root->fs_info->fs_devices;
2482
2483 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2484 device->fs_devices->total_rw_bytes += diff;
2485
2486 btrfs_device_set_total_bytes(device, new_size);
2487 btrfs_device_set_disk_total_bytes(device, new_size);
2488 btrfs_clear_space_info_full(device->dev_root->fs_info);
2489 if (list_empty(&device->resized_list))
2490 list_add_tail(&device->resized_list,
2491 &fs_devices->resized_devices);
2492 unlock_chunks(device->dev_root);
2493
2494 return btrfs_update_device(trans, device);
2495 }
2496
btrfs_free_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2497 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2498 struct btrfs_root *root, u64 chunk_objectid,
2499 u64 chunk_offset)
2500 {
2501 int ret;
2502 struct btrfs_path *path;
2503 struct btrfs_key key;
2504
2505 root = root->fs_info->chunk_root;
2506 path = btrfs_alloc_path();
2507 if (!path)
2508 return -ENOMEM;
2509
2510 key.objectid = chunk_objectid;
2511 key.offset = chunk_offset;
2512 key.type = BTRFS_CHUNK_ITEM_KEY;
2513
2514 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2515 if (ret < 0)
2516 goto out;
2517 else if (ret > 0) { /* Logic error or corruption */
2518 btrfs_error(root->fs_info, -ENOENT,
2519 "Failed lookup while freeing chunk.");
2520 ret = -ENOENT;
2521 goto out;
2522 }
2523
2524 ret = btrfs_del_item(trans, root, path);
2525 if (ret < 0)
2526 btrfs_error(root->fs_info, ret,
2527 "Failed to delete chunk item.");
2528 out:
2529 btrfs_free_path(path);
2530 return ret;
2531 }
2532
btrfs_del_sys_chunk(struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2533 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2534 chunk_offset)
2535 {
2536 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2537 struct btrfs_disk_key *disk_key;
2538 struct btrfs_chunk *chunk;
2539 u8 *ptr;
2540 int ret = 0;
2541 u32 num_stripes;
2542 u32 array_size;
2543 u32 len = 0;
2544 u32 cur;
2545 struct btrfs_key key;
2546
2547 lock_chunks(root);
2548 array_size = btrfs_super_sys_array_size(super_copy);
2549
2550 ptr = super_copy->sys_chunk_array;
2551 cur = 0;
2552
2553 while (cur < array_size) {
2554 disk_key = (struct btrfs_disk_key *)ptr;
2555 btrfs_disk_key_to_cpu(&key, disk_key);
2556
2557 len = sizeof(*disk_key);
2558
2559 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2560 chunk = (struct btrfs_chunk *)(ptr + len);
2561 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2562 len += btrfs_chunk_item_size(num_stripes);
2563 } else {
2564 ret = -EIO;
2565 break;
2566 }
2567 if (key.objectid == chunk_objectid &&
2568 key.offset == chunk_offset) {
2569 memmove(ptr, ptr + len, array_size - (cur + len));
2570 array_size -= len;
2571 btrfs_set_super_sys_array_size(super_copy, array_size);
2572 } else {
2573 ptr += len;
2574 cur += len;
2575 }
2576 }
2577 unlock_chunks(root);
2578 return ret;
2579 }
2580
btrfs_remove_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_offset)2581 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2582 struct btrfs_root *root, u64 chunk_offset)
2583 {
2584 struct extent_map_tree *em_tree;
2585 struct extent_map *em;
2586 struct btrfs_root *extent_root = root->fs_info->extent_root;
2587 struct map_lookup *map;
2588 u64 dev_extent_len = 0;
2589 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2590 int i, ret = 0;
2591
2592 /* Just in case */
2593 root = root->fs_info->chunk_root;
2594 em_tree = &root->fs_info->mapping_tree.map_tree;
2595
2596 read_lock(&em_tree->lock);
2597 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2598 read_unlock(&em_tree->lock);
2599
2600 if (!em || em->start > chunk_offset ||
2601 em->start + em->len < chunk_offset) {
2602 /*
2603 * This is a logic error, but we don't want to just rely on the
2604 * user having built with ASSERT enabled, so if ASSERT doens't
2605 * do anything we still error out.
2606 */
2607 ASSERT(0);
2608 if (em)
2609 free_extent_map(em);
2610 return -EINVAL;
2611 }
2612 map = (struct map_lookup *)em->bdev;
2613
2614 for (i = 0; i < map->num_stripes; i++) {
2615 struct btrfs_device *device = map->stripes[i].dev;
2616 ret = btrfs_free_dev_extent(trans, device,
2617 map->stripes[i].physical,
2618 &dev_extent_len);
2619 if (ret) {
2620 btrfs_abort_transaction(trans, root, ret);
2621 goto out;
2622 }
2623
2624 if (device->bytes_used > 0) {
2625 lock_chunks(root);
2626 btrfs_device_set_bytes_used(device,
2627 device->bytes_used - dev_extent_len);
2628 spin_lock(&root->fs_info->free_chunk_lock);
2629 root->fs_info->free_chunk_space += dev_extent_len;
2630 spin_unlock(&root->fs_info->free_chunk_lock);
2631 btrfs_clear_space_info_full(root->fs_info);
2632 unlock_chunks(root);
2633 }
2634
2635 if (map->stripes[i].dev) {
2636 ret = btrfs_update_device(trans, map->stripes[i].dev);
2637 if (ret) {
2638 btrfs_abort_transaction(trans, root, ret);
2639 goto out;
2640 }
2641 }
2642 }
2643 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2644 if (ret) {
2645 btrfs_abort_transaction(trans, root, ret);
2646 goto out;
2647 }
2648
2649 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2650
2651 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2652 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2653 if (ret) {
2654 btrfs_abort_transaction(trans, root, ret);
2655 goto out;
2656 }
2657 }
2658
2659 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2660 if (ret) {
2661 btrfs_abort_transaction(trans, extent_root, ret);
2662 goto out;
2663 }
2664
2665 out:
2666 /* once for us */
2667 free_extent_map(em);
2668 return ret;
2669 }
2670
btrfs_relocate_chunk(struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2671 static int btrfs_relocate_chunk(struct btrfs_root *root,
2672 u64 chunk_objectid,
2673 u64 chunk_offset)
2674 {
2675 struct btrfs_root *extent_root;
2676 struct btrfs_trans_handle *trans;
2677 int ret;
2678
2679 root = root->fs_info->chunk_root;
2680 extent_root = root->fs_info->extent_root;
2681
2682 ret = btrfs_can_relocate(extent_root, chunk_offset);
2683 if (ret)
2684 return -ENOSPC;
2685
2686 /* step one, relocate all the extents inside this chunk */
2687 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2688 if (ret)
2689 return ret;
2690
2691 trans = btrfs_start_transaction(root, 0);
2692 if (IS_ERR(trans)) {
2693 ret = PTR_ERR(trans);
2694 btrfs_std_error(root->fs_info, ret);
2695 return ret;
2696 }
2697
2698 /*
2699 * step two, delete the device extents and the
2700 * chunk tree entries
2701 */
2702 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2703 btrfs_end_transaction(trans, root);
2704 return ret;
2705 }
2706
btrfs_relocate_sys_chunks(struct btrfs_root * root)2707 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2708 {
2709 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2710 struct btrfs_path *path;
2711 struct extent_buffer *leaf;
2712 struct btrfs_chunk *chunk;
2713 struct btrfs_key key;
2714 struct btrfs_key found_key;
2715 u64 chunk_type;
2716 bool retried = false;
2717 int failed = 0;
2718 int ret;
2719
2720 path = btrfs_alloc_path();
2721 if (!path)
2722 return -ENOMEM;
2723
2724 again:
2725 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2726 key.offset = (u64)-1;
2727 key.type = BTRFS_CHUNK_ITEM_KEY;
2728
2729 while (1) {
2730 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2731 if (ret < 0)
2732 goto error;
2733 BUG_ON(ret == 0); /* Corruption */
2734
2735 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2736 key.type);
2737 if (ret < 0)
2738 goto error;
2739 if (ret > 0)
2740 break;
2741
2742 leaf = path->nodes[0];
2743 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2744
2745 chunk = btrfs_item_ptr(leaf, path->slots[0],
2746 struct btrfs_chunk);
2747 chunk_type = btrfs_chunk_type(leaf, chunk);
2748 btrfs_release_path(path);
2749
2750 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2751 ret = btrfs_relocate_chunk(chunk_root,
2752 found_key.objectid,
2753 found_key.offset);
2754 if (ret == -ENOSPC)
2755 failed++;
2756 else
2757 BUG_ON(ret);
2758 }
2759
2760 if (found_key.offset == 0)
2761 break;
2762 key.offset = found_key.offset - 1;
2763 }
2764 ret = 0;
2765 if (failed && !retried) {
2766 failed = 0;
2767 retried = true;
2768 goto again;
2769 } else if (WARN_ON(failed && retried)) {
2770 ret = -ENOSPC;
2771 }
2772 error:
2773 btrfs_free_path(path);
2774 return ret;
2775 }
2776
insert_balance_item(struct btrfs_root * root,struct btrfs_balance_control * bctl)2777 static int insert_balance_item(struct btrfs_root *root,
2778 struct btrfs_balance_control *bctl)
2779 {
2780 struct btrfs_trans_handle *trans;
2781 struct btrfs_balance_item *item;
2782 struct btrfs_disk_balance_args disk_bargs;
2783 struct btrfs_path *path;
2784 struct extent_buffer *leaf;
2785 struct btrfs_key key;
2786 int ret, err;
2787
2788 path = btrfs_alloc_path();
2789 if (!path)
2790 return -ENOMEM;
2791
2792 trans = btrfs_start_transaction(root, 0);
2793 if (IS_ERR(trans)) {
2794 btrfs_free_path(path);
2795 return PTR_ERR(trans);
2796 }
2797
2798 key.objectid = BTRFS_BALANCE_OBJECTID;
2799 key.type = BTRFS_BALANCE_ITEM_KEY;
2800 key.offset = 0;
2801
2802 ret = btrfs_insert_empty_item(trans, root, path, &key,
2803 sizeof(*item));
2804 if (ret)
2805 goto out;
2806
2807 leaf = path->nodes[0];
2808 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2809
2810 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2811
2812 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2813 btrfs_set_balance_data(leaf, item, &disk_bargs);
2814 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2815 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2816 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2817 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2818
2819 btrfs_set_balance_flags(leaf, item, bctl->flags);
2820
2821 btrfs_mark_buffer_dirty(leaf);
2822 out:
2823 btrfs_free_path(path);
2824 err = btrfs_commit_transaction(trans, root);
2825 if (err && !ret)
2826 ret = err;
2827 return ret;
2828 }
2829
del_balance_item(struct btrfs_root * root)2830 static int del_balance_item(struct btrfs_root *root)
2831 {
2832 struct btrfs_trans_handle *trans;
2833 struct btrfs_path *path;
2834 struct btrfs_key key;
2835 int ret, err;
2836
2837 path = btrfs_alloc_path();
2838 if (!path)
2839 return -ENOMEM;
2840
2841 trans = btrfs_start_transaction(root, 0);
2842 if (IS_ERR(trans)) {
2843 btrfs_free_path(path);
2844 return PTR_ERR(trans);
2845 }
2846
2847 key.objectid = BTRFS_BALANCE_OBJECTID;
2848 key.type = BTRFS_BALANCE_ITEM_KEY;
2849 key.offset = 0;
2850
2851 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2852 if (ret < 0)
2853 goto out;
2854 if (ret > 0) {
2855 ret = -ENOENT;
2856 goto out;
2857 }
2858
2859 ret = btrfs_del_item(trans, root, path);
2860 out:
2861 btrfs_free_path(path);
2862 err = btrfs_commit_transaction(trans, root);
2863 if (err && !ret)
2864 ret = err;
2865 return ret;
2866 }
2867
2868 /*
2869 * This is a heuristic used to reduce the number of chunks balanced on
2870 * resume after balance was interrupted.
2871 */
update_balance_args(struct btrfs_balance_control * bctl)2872 static void update_balance_args(struct btrfs_balance_control *bctl)
2873 {
2874 /*
2875 * Turn on soft mode for chunk types that were being converted.
2876 */
2877 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2878 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2879 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2880 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2881 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2882 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2883
2884 /*
2885 * Turn on usage filter if is not already used. The idea is
2886 * that chunks that we have already balanced should be
2887 * reasonably full. Don't do it for chunks that are being
2888 * converted - that will keep us from relocating unconverted
2889 * (albeit full) chunks.
2890 */
2891 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2892 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2893 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2894 bctl->data.usage = 90;
2895 }
2896 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2897 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2898 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2899 bctl->sys.usage = 90;
2900 }
2901 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2902 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2903 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2904 bctl->meta.usage = 90;
2905 }
2906 }
2907
2908 /*
2909 * Should be called with both balance and volume mutexes held to
2910 * serialize other volume operations (add_dev/rm_dev/resize) with
2911 * restriper. Same goes for unset_balance_control.
2912 */
set_balance_control(struct btrfs_balance_control * bctl)2913 static void set_balance_control(struct btrfs_balance_control *bctl)
2914 {
2915 struct btrfs_fs_info *fs_info = bctl->fs_info;
2916
2917 BUG_ON(fs_info->balance_ctl);
2918
2919 spin_lock(&fs_info->balance_lock);
2920 fs_info->balance_ctl = bctl;
2921 spin_unlock(&fs_info->balance_lock);
2922 }
2923
unset_balance_control(struct btrfs_fs_info * fs_info)2924 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2925 {
2926 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2927
2928 BUG_ON(!fs_info->balance_ctl);
2929
2930 spin_lock(&fs_info->balance_lock);
2931 fs_info->balance_ctl = NULL;
2932 spin_unlock(&fs_info->balance_lock);
2933
2934 kfree(bctl);
2935 }
2936
2937 /*
2938 * Balance filters. Return 1 if chunk should be filtered out
2939 * (should not be balanced).
2940 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)2941 static int chunk_profiles_filter(u64 chunk_type,
2942 struct btrfs_balance_args *bargs)
2943 {
2944 chunk_type = chunk_to_extended(chunk_type) &
2945 BTRFS_EXTENDED_PROFILE_MASK;
2946
2947 if (bargs->profiles & chunk_type)
2948 return 0;
2949
2950 return 1;
2951 }
2952
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)2953 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2954 struct btrfs_balance_args *bargs)
2955 {
2956 struct btrfs_block_group_cache *cache;
2957 u64 chunk_used, user_thresh;
2958 int ret = 1;
2959
2960 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2961 chunk_used = btrfs_block_group_used(&cache->item);
2962
2963 if (bargs->usage == 0)
2964 user_thresh = 1;
2965 else if (bargs->usage > 100)
2966 user_thresh = cache->key.offset;
2967 else
2968 user_thresh = div_factor_fine(cache->key.offset,
2969 bargs->usage);
2970
2971 if (chunk_used < user_thresh)
2972 ret = 0;
2973
2974 btrfs_put_block_group(cache);
2975 return ret;
2976 }
2977
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)2978 static int chunk_devid_filter(struct extent_buffer *leaf,
2979 struct btrfs_chunk *chunk,
2980 struct btrfs_balance_args *bargs)
2981 {
2982 struct btrfs_stripe *stripe;
2983 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2984 int i;
2985
2986 for (i = 0; i < num_stripes; i++) {
2987 stripe = btrfs_stripe_nr(chunk, i);
2988 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2989 return 0;
2990 }
2991
2992 return 1;
2993 }
2994
2995 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)2996 static int chunk_drange_filter(struct extent_buffer *leaf,
2997 struct btrfs_chunk *chunk,
2998 u64 chunk_offset,
2999 struct btrfs_balance_args *bargs)
3000 {
3001 struct btrfs_stripe *stripe;
3002 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3003 u64 stripe_offset;
3004 u64 stripe_length;
3005 int factor;
3006 int i;
3007
3008 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3009 return 0;
3010
3011 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3012 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3013 factor = num_stripes / 2;
3014 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3015 factor = num_stripes - 1;
3016 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3017 factor = num_stripes - 2;
3018 } else {
3019 factor = num_stripes;
3020 }
3021
3022 for (i = 0; i < num_stripes; i++) {
3023 stripe = btrfs_stripe_nr(chunk, i);
3024 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3025 continue;
3026
3027 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3028 stripe_length = btrfs_chunk_length(leaf, chunk);
3029 stripe_length = div_u64(stripe_length, factor);
3030
3031 if (stripe_offset < bargs->pend &&
3032 stripe_offset + stripe_length > bargs->pstart)
3033 return 0;
3034 }
3035
3036 return 1;
3037 }
3038
3039 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3040 static int chunk_vrange_filter(struct extent_buffer *leaf,
3041 struct btrfs_chunk *chunk,
3042 u64 chunk_offset,
3043 struct btrfs_balance_args *bargs)
3044 {
3045 if (chunk_offset < bargs->vend &&
3046 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3047 /* at least part of the chunk is inside this vrange */
3048 return 0;
3049
3050 return 1;
3051 }
3052
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3053 static int chunk_soft_convert_filter(u64 chunk_type,
3054 struct btrfs_balance_args *bargs)
3055 {
3056 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3057 return 0;
3058
3059 chunk_type = chunk_to_extended(chunk_type) &
3060 BTRFS_EXTENDED_PROFILE_MASK;
3061
3062 if (bargs->target == chunk_type)
3063 return 1;
3064
3065 return 0;
3066 }
3067
should_balance_chunk(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3068 static int should_balance_chunk(struct btrfs_root *root,
3069 struct extent_buffer *leaf,
3070 struct btrfs_chunk *chunk, u64 chunk_offset)
3071 {
3072 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3073 struct btrfs_balance_args *bargs = NULL;
3074 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3075
3076 /* type filter */
3077 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3078 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3079 return 0;
3080 }
3081
3082 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3083 bargs = &bctl->data;
3084 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3085 bargs = &bctl->sys;
3086 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3087 bargs = &bctl->meta;
3088
3089 /* profiles filter */
3090 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3091 chunk_profiles_filter(chunk_type, bargs)) {
3092 return 0;
3093 }
3094
3095 /* usage filter */
3096 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3097 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3098 return 0;
3099 }
3100
3101 /* devid filter */
3102 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3103 chunk_devid_filter(leaf, chunk, bargs)) {
3104 return 0;
3105 }
3106
3107 /* drange filter, makes sense only with devid filter */
3108 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3109 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3110 return 0;
3111 }
3112
3113 /* vrange filter */
3114 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3115 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3116 return 0;
3117 }
3118
3119 /* soft profile changing mode */
3120 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3121 chunk_soft_convert_filter(chunk_type, bargs)) {
3122 return 0;
3123 }
3124
3125 /*
3126 * limited by count, must be the last filter
3127 */
3128 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3129 if (bargs->limit == 0)
3130 return 0;
3131 else
3132 bargs->limit--;
3133 }
3134
3135 return 1;
3136 }
3137
__btrfs_balance(struct btrfs_fs_info * fs_info)3138 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3139 {
3140 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3141 struct btrfs_root *chunk_root = fs_info->chunk_root;
3142 struct btrfs_root *dev_root = fs_info->dev_root;
3143 struct list_head *devices;
3144 struct btrfs_device *device;
3145 u64 old_size;
3146 u64 size_to_free;
3147 struct btrfs_chunk *chunk;
3148 struct btrfs_path *path;
3149 struct btrfs_key key;
3150 struct btrfs_key found_key;
3151 struct btrfs_trans_handle *trans;
3152 struct extent_buffer *leaf;
3153 int slot;
3154 int ret;
3155 int enospc_errors = 0;
3156 bool counting = true;
3157 u64 limit_data = bctl->data.limit;
3158 u64 limit_meta = bctl->meta.limit;
3159 u64 limit_sys = bctl->sys.limit;
3160
3161 /* step one make some room on all the devices */
3162 devices = &fs_info->fs_devices->devices;
3163 list_for_each_entry(device, devices, dev_list) {
3164 old_size = btrfs_device_get_total_bytes(device);
3165 size_to_free = div_factor(old_size, 1);
3166 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3167 if (!device->writeable ||
3168 btrfs_device_get_total_bytes(device) -
3169 btrfs_device_get_bytes_used(device) > size_to_free ||
3170 device->is_tgtdev_for_dev_replace)
3171 continue;
3172
3173 ret = btrfs_shrink_device(device, old_size - size_to_free);
3174 if (ret == -ENOSPC)
3175 break;
3176 BUG_ON(ret);
3177
3178 trans = btrfs_start_transaction(dev_root, 0);
3179 BUG_ON(IS_ERR(trans));
3180
3181 ret = btrfs_grow_device(trans, device, old_size);
3182 BUG_ON(ret);
3183
3184 btrfs_end_transaction(trans, dev_root);
3185 }
3186
3187 /* step two, relocate all the chunks */
3188 path = btrfs_alloc_path();
3189 if (!path) {
3190 ret = -ENOMEM;
3191 goto error;
3192 }
3193
3194 /* zero out stat counters */
3195 spin_lock(&fs_info->balance_lock);
3196 memset(&bctl->stat, 0, sizeof(bctl->stat));
3197 spin_unlock(&fs_info->balance_lock);
3198 again:
3199 if (!counting) {
3200 bctl->data.limit = limit_data;
3201 bctl->meta.limit = limit_meta;
3202 bctl->sys.limit = limit_sys;
3203 }
3204 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3205 key.offset = (u64)-1;
3206 key.type = BTRFS_CHUNK_ITEM_KEY;
3207
3208 while (1) {
3209 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3210 atomic_read(&fs_info->balance_cancel_req)) {
3211 ret = -ECANCELED;
3212 goto error;
3213 }
3214
3215 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3216 if (ret < 0)
3217 goto error;
3218
3219 /*
3220 * this shouldn't happen, it means the last relocate
3221 * failed
3222 */
3223 if (ret == 0)
3224 BUG(); /* FIXME break ? */
3225
3226 ret = btrfs_previous_item(chunk_root, path, 0,
3227 BTRFS_CHUNK_ITEM_KEY);
3228 if (ret) {
3229 ret = 0;
3230 break;
3231 }
3232
3233 leaf = path->nodes[0];
3234 slot = path->slots[0];
3235 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3236
3237 if (found_key.objectid != key.objectid)
3238 break;
3239
3240 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3241
3242 if (!counting) {
3243 spin_lock(&fs_info->balance_lock);
3244 bctl->stat.considered++;
3245 spin_unlock(&fs_info->balance_lock);
3246 }
3247
3248 ret = should_balance_chunk(chunk_root, leaf, chunk,
3249 found_key.offset);
3250 btrfs_release_path(path);
3251 if (!ret)
3252 goto loop;
3253
3254 if (counting) {
3255 spin_lock(&fs_info->balance_lock);
3256 bctl->stat.expected++;
3257 spin_unlock(&fs_info->balance_lock);
3258 goto loop;
3259 }
3260
3261 ret = btrfs_relocate_chunk(chunk_root,
3262 found_key.objectid,
3263 found_key.offset);
3264 if (ret && ret != -ENOSPC)
3265 goto error;
3266 if (ret == -ENOSPC) {
3267 enospc_errors++;
3268 } else {
3269 spin_lock(&fs_info->balance_lock);
3270 bctl->stat.completed++;
3271 spin_unlock(&fs_info->balance_lock);
3272 }
3273 loop:
3274 if (found_key.offset == 0)
3275 break;
3276 key.offset = found_key.offset - 1;
3277 }
3278
3279 if (counting) {
3280 btrfs_release_path(path);
3281 counting = false;
3282 goto again;
3283 }
3284 error:
3285 btrfs_free_path(path);
3286 if (enospc_errors) {
3287 btrfs_info(fs_info, "%d enospc errors during balance",
3288 enospc_errors);
3289 if (!ret)
3290 ret = -ENOSPC;
3291 }
3292
3293 return ret;
3294 }
3295
3296 /**
3297 * alloc_profile_is_valid - see if a given profile is valid and reduced
3298 * @flags: profile to validate
3299 * @extended: if true @flags is treated as an extended profile
3300 */
alloc_profile_is_valid(u64 flags,int extended)3301 static int alloc_profile_is_valid(u64 flags, int extended)
3302 {
3303 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3304 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3305
3306 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3307
3308 /* 1) check that all other bits are zeroed */
3309 if (flags & ~mask)
3310 return 0;
3311
3312 /* 2) see if profile is reduced */
3313 if (flags == 0)
3314 return !extended; /* "0" is valid for usual profiles */
3315
3316 /* true if exactly one bit set */
3317 return (flags & (flags - 1)) == 0;
3318 }
3319
balance_need_close(struct btrfs_fs_info * fs_info)3320 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3321 {
3322 /* cancel requested || normal exit path */
3323 return atomic_read(&fs_info->balance_cancel_req) ||
3324 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3325 atomic_read(&fs_info->balance_cancel_req) == 0);
3326 }
3327
__cancel_balance(struct btrfs_fs_info * fs_info)3328 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3329 {
3330 int ret;
3331
3332 unset_balance_control(fs_info);
3333 ret = del_balance_item(fs_info->tree_root);
3334 if (ret)
3335 btrfs_std_error(fs_info, ret);
3336
3337 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3338 }
3339
3340 /*
3341 * Should be called with both balance and volume mutexes held
3342 */
btrfs_balance(struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3343 int btrfs_balance(struct btrfs_balance_control *bctl,
3344 struct btrfs_ioctl_balance_args *bargs)
3345 {
3346 struct btrfs_fs_info *fs_info = bctl->fs_info;
3347 u64 allowed;
3348 int mixed = 0;
3349 int ret;
3350 u64 num_devices;
3351 unsigned seq;
3352
3353 if (btrfs_fs_closing(fs_info) ||
3354 atomic_read(&fs_info->balance_pause_req) ||
3355 atomic_read(&fs_info->balance_cancel_req)) {
3356 ret = -EINVAL;
3357 goto out;
3358 }
3359
3360 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3361 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3362 mixed = 1;
3363
3364 /*
3365 * In case of mixed groups both data and meta should be picked,
3366 * and identical options should be given for both of them.
3367 */
3368 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3369 if (mixed && (bctl->flags & allowed)) {
3370 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3371 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3372 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3373 btrfs_err(fs_info, "with mixed groups data and "
3374 "metadata balance options must be the same");
3375 ret = -EINVAL;
3376 goto out;
3377 }
3378 }
3379
3380 num_devices = fs_info->fs_devices->num_devices;
3381 btrfs_dev_replace_lock(&fs_info->dev_replace);
3382 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3383 BUG_ON(num_devices < 1);
3384 num_devices--;
3385 }
3386 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3387 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3388 if (num_devices == 1)
3389 allowed |= BTRFS_BLOCK_GROUP_DUP;
3390 else if (num_devices > 1)
3391 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3392 if (num_devices > 2)
3393 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3394 if (num_devices > 3)
3395 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3396 BTRFS_BLOCK_GROUP_RAID6);
3397 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3398 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3399 (bctl->data.target & ~allowed))) {
3400 btrfs_err(fs_info, "unable to start balance with target "
3401 "data profile %llu",
3402 bctl->data.target);
3403 ret = -EINVAL;
3404 goto out;
3405 }
3406 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3407 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3408 (bctl->meta.target & ~allowed))) {
3409 btrfs_err(fs_info,
3410 "unable to start balance with target metadata profile %llu",
3411 bctl->meta.target);
3412 ret = -EINVAL;
3413 goto out;
3414 }
3415 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3416 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3417 (bctl->sys.target & ~allowed))) {
3418 btrfs_err(fs_info,
3419 "unable to start balance with target system profile %llu",
3420 bctl->sys.target);
3421 ret = -EINVAL;
3422 goto out;
3423 }
3424
3425 /* allow dup'ed data chunks only in mixed mode */
3426 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3427 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3428 btrfs_err(fs_info, "dup for data is not allowed");
3429 ret = -EINVAL;
3430 goto out;
3431 }
3432
3433 /* allow to reduce meta or sys integrity only if force set */
3434 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3435 BTRFS_BLOCK_GROUP_RAID10 |
3436 BTRFS_BLOCK_GROUP_RAID5 |
3437 BTRFS_BLOCK_GROUP_RAID6;
3438 do {
3439 seq = read_seqbegin(&fs_info->profiles_lock);
3440
3441 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3442 (fs_info->avail_system_alloc_bits & allowed) &&
3443 !(bctl->sys.target & allowed)) ||
3444 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3445 (fs_info->avail_metadata_alloc_bits & allowed) &&
3446 !(bctl->meta.target & allowed))) {
3447 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3448 btrfs_info(fs_info, "force reducing metadata integrity");
3449 } else {
3450 btrfs_err(fs_info, "balance will reduce metadata "
3451 "integrity, use force if you want this");
3452 ret = -EINVAL;
3453 goto out;
3454 }
3455 }
3456 } while (read_seqretry(&fs_info->profiles_lock, seq));
3457
3458 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3459 int num_tolerated_disk_barrier_failures;
3460 u64 target = bctl->sys.target;
3461
3462 num_tolerated_disk_barrier_failures =
3463 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3464 if (num_tolerated_disk_barrier_failures > 0 &&
3465 (target &
3466 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3467 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3468 num_tolerated_disk_barrier_failures = 0;
3469 else if (num_tolerated_disk_barrier_failures > 1 &&
3470 (target &
3471 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3472 num_tolerated_disk_barrier_failures = 1;
3473
3474 fs_info->num_tolerated_disk_barrier_failures =
3475 num_tolerated_disk_barrier_failures;
3476 }
3477
3478 ret = insert_balance_item(fs_info->tree_root, bctl);
3479 if (ret && ret != -EEXIST)
3480 goto out;
3481
3482 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3483 BUG_ON(ret == -EEXIST);
3484 set_balance_control(bctl);
3485 } else {
3486 BUG_ON(ret != -EEXIST);
3487 spin_lock(&fs_info->balance_lock);
3488 update_balance_args(bctl);
3489 spin_unlock(&fs_info->balance_lock);
3490 }
3491
3492 atomic_inc(&fs_info->balance_running);
3493 mutex_unlock(&fs_info->balance_mutex);
3494
3495 ret = __btrfs_balance(fs_info);
3496
3497 mutex_lock(&fs_info->balance_mutex);
3498 atomic_dec(&fs_info->balance_running);
3499
3500 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3501 fs_info->num_tolerated_disk_barrier_failures =
3502 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3503 }
3504
3505 if (bargs) {
3506 memset(bargs, 0, sizeof(*bargs));
3507 update_ioctl_balance_args(fs_info, 0, bargs);
3508 }
3509
3510 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3511 balance_need_close(fs_info)) {
3512 __cancel_balance(fs_info);
3513 }
3514
3515 wake_up(&fs_info->balance_wait_q);
3516
3517 return ret;
3518 out:
3519 if (bctl->flags & BTRFS_BALANCE_RESUME)
3520 __cancel_balance(fs_info);
3521 else {
3522 kfree(bctl);
3523 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3524 }
3525 return ret;
3526 }
3527
balance_kthread(void * data)3528 static int balance_kthread(void *data)
3529 {
3530 struct btrfs_fs_info *fs_info = data;
3531 int ret = 0;
3532
3533 mutex_lock(&fs_info->volume_mutex);
3534 mutex_lock(&fs_info->balance_mutex);
3535
3536 if (fs_info->balance_ctl) {
3537 btrfs_info(fs_info, "continuing balance");
3538 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3539 }
3540
3541 mutex_unlock(&fs_info->balance_mutex);
3542 mutex_unlock(&fs_info->volume_mutex);
3543
3544 return ret;
3545 }
3546
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)3547 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3548 {
3549 struct task_struct *tsk;
3550
3551 spin_lock(&fs_info->balance_lock);
3552 if (!fs_info->balance_ctl) {
3553 spin_unlock(&fs_info->balance_lock);
3554 return 0;
3555 }
3556 spin_unlock(&fs_info->balance_lock);
3557
3558 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3559 btrfs_info(fs_info, "force skipping balance");
3560 return 0;
3561 }
3562
3563 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3564 return PTR_ERR_OR_ZERO(tsk);
3565 }
3566
btrfs_recover_balance(struct btrfs_fs_info * fs_info)3567 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3568 {
3569 struct btrfs_balance_control *bctl;
3570 struct btrfs_balance_item *item;
3571 struct btrfs_disk_balance_args disk_bargs;
3572 struct btrfs_path *path;
3573 struct extent_buffer *leaf;
3574 struct btrfs_key key;
3575 int ret;
3576
3577 path = btrfs_alloc_path();
3578 if (!path)
3579 return -ENOMEM;
3580
3581 key.objectid = BTRFS_BALANCE_OBJECTID;
3582 key.type = BTRFS_BALANCE_ITEM_KEY;
3583 key.offset = 0;
3584
3585 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3586 if (ret < 0)
3587 goto out;
3588 if (ret > 0) { /* ret = -ENOENT; */
3589 ret = 0;
3590 goto out;
3591 }
3592
3593 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3594 if (!bctl) {
3595 ret = -ENOMEM;
3596 goto out;
3597 }
3598
3599 leaf = path->nodes[0];
3600 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3601
3602 bctl->fs_info = fs_info;
3603 bctl->flags = btrfs_balance_flags(leaf, item);
3604 bctl->flags |= BTRFS_BALANCE_RESUME;
3605
3606 btrfs_balance_data(leaf, item, &disk_bargs);
3607 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3608 btrfs_balance_meta(leaf, item, &disk_bargs);
3609 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3610 btrfs_balance_sys(leaf, item, &disk_bargs);
3611 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3612
3613 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3614
3615 mutex_lock(&fs_info->volume_mutex);
3616 mutex_lock(&fs_info->balance_mutex);
3617
3618 set_balance_control(bctl);
3619
3620 mutex_unlock(&fs_info->balance_mutex);
3621 mutex_unlock(&fs_info->volume_mutex);
3622 out:
3623 btrfs_free_path(path);
3624 return ret;
3625 }
3626
btrfs_pause_balance(struct btrfs_fs_info * fs_info)3627 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3628 {
3629 int ret = 0;
3630
3631 mutex_lock(&fs_info->balance_mutex);
3632 if (!fs_info->balance_ctl) {
3633 mutex_unlock(&fs_info->balance_mutex);
3634 return -ENOTCONN;
3635 }
3636
3637 if (atomic_read(&fs_info->balance_running)) {
3638 atomic_inc(&fs_info->balance_pause_req);
3639 mutex_unlock(&fs_info->balance_mutex);
3640
3641 wait_event(fs_info->balance_wait_q,
3642 atomic_read(&fs_info->balance_running) == 0);
3643
3644 mutex_lock(&fs_info->balance_mutex);
3645 /* we are good with balance_ctl ripped off from under us */
3646 BUG_ON(atomic_read(&fs_info->balance_running));
3647 atomic_dec(&fs_info->balance_pause_req);
3648 } else {
3649 ret = -ENOTCONN;
3650 }
3651
3652 mutex_unlock(&fs_info->balance_mutex);
3653 return ret;
3654 }
3655
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)3656 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3657 {
3658 if (fs_info->sb->s_flags & MS_RDONLY)
3659 return -EROFS;
3660
3661 mutex_lock(&fs_info->balance_mutex);
3662 if (!fs_info->balance_ctl) {
3663 mutex_unlock(&fs_info->balance_mutex);
3664 return -ENOTCONN;
3665 }
3666
3667 atomic_inc(&fs_info->balance_cancel_req);
3668 /*
3669 * if we are running just wait and return, balance item is
3670 * deleted in btrfs_balance in this case
3671 */
3672 if (atomic_read(&fs_info->balance_running)) {
3673 mutex_unlock(&fs_info->balance_mutex);
3674 wait_event(fs_info->balance_wait_q,
3675 atomic_read(&fs_info->balance_running) == 0);
3676 mutex_lock(&fs_info->balance_mutex);
3677 } else {
3678 /* __cancel_balance needs volume_mutex */
3679 mutex_unlock(&fs_info->balance_mutex);
3680 mutex_lock(&fs_info->volume_mutex);
3681 mutex_lock(&fs_info->balance_mutex);
3682
3683 if (fs_info->balance_ctl)
3684 __cancel_balance(fs_info);
3685
3686 mutex_unlock(&fs_info->volume_mutex);
3687 }
3688
3689 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3690 atomic_dec(&fs_info->balance_cancel_req);
3691 mutex_unlock(&fs_info->balance_mutex);
3692 return 0;
3693 }
3694
btrfs_uuid_scan_kthread(void * data)3695 static int btrfs_uuid_scan_kthread(void *data)
3696 {
3697 struct btrfs_fs_info *fs_info = data;
3698 struct btrfs_root *root = fs_info->tree_root;
3699 struct btrfs_key key;
3700 struct btrfs_key max_key;
3701 struct btrfs_path *path = NULL;
3702 int ret = 0;
3703 struct extent_buffer *eb;
3704 int slot;
3705 struct btrfs_root_item root_item;
3706 u32 item_size;
3707 struct btrfs_trans_handle *trans = NULL;
3708
3709 path = btrfs_alloc_path();
3710 if (!path) {
3711 ret = -ENOMEM;
3712 goto out;
3713 }
3714
3715 key.objectid = 0;
3716 key.type = BTRFS_ROOT_ITEM_KEY;
3717 key.offset = 0;
3718
3719 max_key.objectid = (u64)-1;
3720 max_key.type = BTRFS_ROOT_ITEM_KEY;
3721 max_key.offset = (u64)-1;
3722
3723 while (1) {
3724 ret = btrfs_search_forward(root, &key, path, 0);
3725 if (ret) {
3726 if (ret > 0)
3727 ret = 0;
3728 break;
3729 }
3730
3731 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3732 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3733 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3734 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3735 goto skip;
3736
3737 eb = path->nodes[0];
3738 slot = path->slots[0];
3739 item_size = btrfs_item_size_nr(eb, slot);
3740 if (item_size < sizeof(root_item))
3741 goto skip;
3742
3743 read_extent_buffer(eb, &root_item,
3744 btrfs_item_ptr_offset(eb, slot),
3745 (int)sizeof(root_item));
3746 if (btrfs_root_refs(&root_item) == 0)
3747 goto skip;
3748
3749 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3750 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3751 if (trans)
3752 goto update_tree;
3753
3754 btrfs_release_path(path);
3755 /*
3756 * 1 - subvol uuid item
3757 * 1 - received_subvol uuid item
3758 */
3759 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3760 if (IS_ERR(trans)) {
3761 ret = PTR_ERR(trans);
3762 break;
3763 }
3764 continue;
3765 } else {
3766 goto skip;
3767 }
3768 update_tree:
3769 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3770 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3771 root_item.uuid,
3772 BTRFS_UUID_KEY_SUBVOL,
3773 key.objectid);
3774 if (ret < 0) {
3775 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3776 ret);
3777 break;
3778 }
3779 }
3780
3781 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3782 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3783 root_item.received_uuid,
3784 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3785 key.objectid);
3786 if (ret < 0) {
3787 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3788 ret);
3789 break;
3790 }
3791 }
3792
3793 skip:
3794 if (trans) {
3795 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3796 trans = NULL;
3797 if (ret)
3798 break;
3799 }
3800
3801 btrfs_release_path(path);
3802 if (key.offset < (u64)-1) {
3803 key.offset++;
3804 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3805 key.offset = 0;
3806 key.type = BTRFS_ROOT_ITEM_KEY;
3807 } else if (key.objectid < (u64)-1) {
3808 key.offset = 0;
3809 key.type = BTRFS_ROOT_ITEM_KEY;
3810 key.objectid++;
3811 } else {
3812 break;
3813 }
3814 cond_resched();
3815 }
3816
3817 out:
3818 btrfs_free_path(path);
3819 if (trans && !IS_ERR(trans))
3820 btrfs_end_transaction(trans, fs_info->uuid_root);
3821 if (ret)
3822 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3823 else
3824 fs_info->update_uuid_tree_gen = 1;
3825 up(&fs_info->uuid_tree_rescan_sem);
3826 return 0;
3827 }
3828
3829 /*
3830 * Callback for btrfs_uuid_tree_iterate().
3831 * returns:
3832 * 0 check succeeded, the entry is not outdated.
3833 * < 0 if an error occured.
3834 * > 0 if the check failed, which means the caller shall remove the entry.
3835 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)3836 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3837 u8 *uuid, u8 type, u64 subid)
3838 {
3839 struct btrfs_key key;
3840 int ret = 0;
3841 struct btrfs_root *subvol_root;
3842
3843 if (type != BTRFS_UUID_KEY_SUBVOL &&
3844 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3845 goto out;
3846
3847 key.objectid = subid;
3848 key.type = BTRFS_ROOT_ITEM_KEY;
3849 key.offset = (u64)-1;
3850 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3851 if (IS_ERR(subvol_root)) {
3852 ret = PTR_ERR(subvol_root);
3853 if (ret == -ENOENT)
3854 ret = 1;
3855 goto out;
3856 }
3857
3858 switch (type) {
3859 case BTRFS_UUID_KEY_SUBVOL:
3860 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3861 ret = 1;
3862 break;
3863 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3864 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3865 BTRFS_UUID_SIZE))
3866 ret = 1;
3867 break;
3868 }
3869
3870 out:
3871 return ret;
3872 }
3873
btrfs_uuid_rescan_kthread(void * data)3874 static int btrfs_uuid_rescan_kthread(void *data)
3875 {
3876 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3877 int ret;
3878
3879 /*
3880 * 1st step is to iterate through the existing UUID tree and
3881 * to delete all entries that contain outdated data.
3882 * 2nd step is to add all missing entries to the UUID tree.
3883 */
3884 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3885 if (ret < 0) {
3886 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3887 up(&fs_info->uuid_tree_rescan_sem);
3888 return ret;
3889 }
3890 return btrfs_uuid_scan_kthread(data);
3891 }
3892
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)3893 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3894 {
3895 struct btrfs_trans_handle *trans;
3896 struct btrfs_root *tree_root = fs_info->tree_root;
3897 struct btrfs_root *uuid_root;
3898 struct task_struct *task;
3899 int ret;
3900
3901 /*
3902 * 1 - root node
3903 * 1 - root item
3904 */
3905 trans = btrfs_start_transaction(tree_root, 2);
3906 if (IS_ERR(trans))
3907 return PTR_ERR(trans);
3908
3909 uuid_root = btrfs_create_tree(trans, fs_info,
3910 BTRFS_UUID_TREE_OBJECTID);
3911 if (IS_ERR(uuid_root)) {
3912 btrfs_abort_transaction(trans, tree_root,
3913 PTR_ERR(uuid_root));
3914 return PTR_ERR(uuid_root);
3915 }
3916
3917 fs_info->uuid_root = uuid_root;
3918
3919 ret = btrfs_commit_transaction(trans, tree_root);
3920 if (ret)
3921 return ret;
3922
3923 down(&fs_info->uuid_tree_rescan_sem);
3924 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3925 if (IS_ERR(task)) {
3926 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3927 btrfs_warn(fs_info, "failed to start uuid_scan task");
3928 up(&fs_info->uuid_tree_rescan_sem);
3929 return PTR_ERR(task);
3930 }
3931
3932 return 0;
3933 }
3934
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)3935 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3936 {
3937 struct task_struct *task;
3938
3939 down(&fs_info->uuid_tree_rescan_sem);
3940 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3941 if (IS_ERR(task)) {
3942 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3943 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3944 up(&fs_info->uuid_tree_rescan_sem);
3945 return PTR_ERR(task);
3946 }
3947
3948 return 0;
3949 }
3950
3951 /*
3952 * shrinking a device means finding all of the device extents past
3953 * the new size, and then following the back refs to the chunks.
3954 * The chunk relocation code actually frees the device extent
3955 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)3956 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3957 {
3958 struct btrfs_trans_handle *trans;
3959 struct btrfs_root *root = device->dev_root;
3960 struct btrfs_dev_extent *dev_extent = NULL;
3961 struct btrfs_path *path;
3962 u64 length;
3963 u64 chunk_objectid;
3964 u64 chunk_offset;
3965 int ret;
3966 int slot;
3967 int failed = 0;
3968 bool retried = false;
3969 struct extent_buffer *l;
3970 struct btrfs_key key;
3971 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3972 u64 old_total = btrfs_super_total_bytes(super_copy);
3973 u64 old_size = btrfs_device_get_total_bytes(device);
3974 u64 diff = old_size - new_size;
3975
3976 if (device->is_tgtdev_for_dev_replace)
3977 return -EINVAL;
3978
3979 path = btrfs_alloc_path();
3980 if (!path)
3981 return -ENOMEM;
3982
3983 path->reada = 2;
3984
3985 lock_chunks(root);
3986
3987 btrfs_device_set_total_bytes(device, new_size);
3988 if (device->writeable) {
3989 device->fs_devices->total_rw_bytes -= diff;
3990 spin_lock(&root->fs_info->free_chunk_lock);
3991 root->fs_info->free_chunk_space -= diff;
3992 spin_unlock(&root->fs_info->free_chunk_lock);
3993 }
3994 unlock_chunks(root);
3995
3996 again:
3997 key.objectid = device->devid;
3998 key.offset = (u64)-1;
3999 key.type = BTRFS_DEV_EXTENT_KEY;
4000
4001 do {
4002 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4003 if (ret < 0)
4004 goto done;
4005
4006 ret = btrfs_previous_item(root, path, 0, key.type);
4007 if (ret < 0)
4008 goto done;
4009 if (ret) {
4010 ret = 0;
4011 btrfs_release_path(path);
4012 break;
4013 }
4014
4015 l = path->nodes[0];
4016 slot = path->slots[0];
4017 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4018
4019 if (key.objectid != device->devid) {
4020 btrfs_release_path(path);
4021 break;
4022 }
4023
4024 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4025 length = btrfs_dev_extent_length(l, dev_extent);
4026
4027 if (key.offset + length <= new_size) {
4028 btrfs_release_path(path);
4029 break;
4030 }
4031
4032 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4033 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4034 btrfs_release_path(path);
4035
4036 ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4037 if (ret && ret != -ENOSPC)
4038 goto done;
4039 if (ret == -ENOSPC)
4040 failed++;
4041 } while (key.offset-- > 0);
4042
4043 if (failed && !retried) {
4044 failed = 0;
4045 retried = true;
4046 goto again;
4047 } else if (failed && retried) {
4048 ret = -ENOSPC;
4049 lock_chunks(root);
4050
4051 btrfs_device_set_total_bytes(device, old_size);
4052 if (device->writeable)
4053 device->fs_devices->total_rw_bytes += diff;
4054 spin_lock(&root->fs_info->free_chunk_lock);
4055 root->fs_info->free_chunk_space += diff;
4056 spin_unlock(&root->fs_info->free_chunk_lock);
4057 unlock_chunks(root);
4058 goto done;
4059 }
4060
4061 /* Shrinking succeeded, else we would be at "done". */
4062 trans = btrfs_start_transaction(root, 0);
4063 if (IS_ERR(trans)) {
4064 ret = PTR_ERR(trans);
4065 goto done;
4066 }
4067
4068 lock_chunks(root);
4069 btrfs_device_set_disk_total_bytes(device, new_size);
4070 if (list_empty(&device->resized_list))
4071 list_add_tail(&device->resized_list,
4072 &root->fs_info->fs_devices->resized_devices);
4073
4074 WARN_ON(diff > old_total);
4075 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4076 unlock_chunks(root);
4077
4078 /* Now btrfs_update_device() will change the on-disk size. */
4079 ret = btrfs_update_device(trans, device);
4080 btrfs_end_transaction(trans, root);
4081 done:
4082 btrfs_free_path(path);
4083 return ret;
4084 }
4085
btrfs_add_system_chunk(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4086 static int btrfs_add_system_chunk(struct btrfs_root *root,
4087 struct btrfs_key *key,
4088 struct btrfs_chunk *chunk, int item_size)
4089 {
4090 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4091 struct btrfs_disk_key disk_key;
4092 u32 array_size;
4093 u8 *ptr;
4094
4095 lock_chunks(root);
4096 array_size = btrfs_super_sys_array_size(super_copy);
4097 if (array_size + item_size + sizeof(disk_key)
4098 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4099 unlock_chunks(root);
4100 return -EFBIG;
4101 }
4102
4103 ptr = super_copy->sys_chunk_array + array_size;
4104 btrfs_cpu_key_to_disk(&disk_key, key);
4105 memcpy(ptr, &disk_key, sizeof(disk_key));
4106 ptr += sizeof(disk_key);
4107 memcpy(ptr, chunk, item_size);
4108 item_size += sizeof(disk_key);
4109 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4110 unlock_chunks(root);
4111
4112 return 0;
4113 }
4114
4115 /*
4116 * sort the devices in descending order by max_avail, total_avail
4117 */
btrfs_cmp_device_info(const void * a,const void * b)4118 static int btrfs_cmp_device_info(const void *a, const void *b)
4119 {
4120 const struct btrfs_device_info *di_a = a;
4121 const struct btrfs_device_info *di_b = b;
4122
4123 if (di_a->max_avail > di_b->max_avail)
4124 return -1;
4125 if (di_a->max_avail < di_b->max_avail)
4126 return 1;
4127 if (di_a->total_avail > di_b->total_avail)
4128 return -1;
4129 if (di_a->total_avail < di_b->total_avail)
4130 return 1;
4131 return 0;
4132 }
4133
4134 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4135 [BTRFS_RAID_RAID10] = {
4136 .sub_stripes = 2,
4137 .dev_stripes = 1,
4138 .devs_max = 0, /* 0 == as many as possible */
4139 .devs_min = 4,
4140 .devs_increment = 2,
4141 .ncopies = 2,
4142 },
4143 [BTRFS_RAID_RAID1] = {
4144 .sub_stripes = 1,
4145 .dev_stripes = 1,
4146 .devs_max = 2,
4147 .devs_min = 2,
4148 .devs_increment = 2,
4149 .ncopies = 2,
4150 },
4151 [BTRFS_RAID_DUP] = {
4152 .sub_stripes = 1,
4153 .dev_stripes = 2,
4154 .devs_max = 1,
4155 .devs_min = 1,
4156 .devs_increment = 1,
4157 .ncopies = 2,
4158 },
4159 [BTRFS_RAID_RAID0] = {
4160 .sub_stripes = 1,
4161 .dev_stripes = 1,
4162 .devs_max = 0,
4163 .devs_min = 2,
4164 .devs_increment = 1,
4165 .ncopies = 1,
4166 },
4167 [BTRFS_RAID_SINGLE] = {
4168 .sub_stripes = 1,
4169 .dev_stripes = 1,
4170 .devs_max = 1,
4171 .devs_min = 1,
4172 .devs_increment = 1,
4173 .ncopies = 1,
4174 },
4175 [BTRFS_RAID_RAID5] = {
4176 .sub_stripes = 1,
4177 .dev_stripes = 1,
4178 .devs_max = 0,
4179 .devs_min = 2,
4180 .devs_increment = 1,
4181 .ncopies = 2,
4182 },
4183 [BTRFS_RAID_RAID6] = {
4184 .sub_stripes = 1,
4185 .dev_stripes = 1,
4186 .devs_max = 0,
4187 .devs_min = 3,
4188 .devs_increment = 1,
4189 .ncopies = 3,
4190 },
4191 };
4192
find_raid56_stripe_len(u32 data_devices,u32 dev_stripe_target)4193 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4194 {
4195 /* TODO allow them to set a preferred stripe size */
4196 return 64 * 1024;
4197 }
4198
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4199 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4200 {
4201 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4202 return;
4203
4204 btrfs_set_fs_incompat(info, RAID56);
4205 }
4206
4207 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4208 - sizeof(struct btrfs_item) \
4209 - sizeof(struct btrfs_chunk)) \
4210 / sizeof(struct btrfs_stripe) + 1)
4211
4212 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4213 - 2 * sizeof(struct btrfs_disk_key) \
4214 - 2 * sizeof(struct btrfs_chunk)) \
4215 / sizeof(struct btrfs_stripe) + 1)
4216
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 start,u64 type)4217 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4218 struct btrfs_root *extent_root, u64 start,
4219 u64 type)
4220 {
4221 struct btrfs_fs_info *info = extent_root->fs_info;
4222 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4223 struct list_head *cur;
4224 struct map_lookup *map = NULL;
4225 struct extent_map_tree *em_tree;
4226 struct extent_map *em;
4227 struct btrfs_device_info *devices_info = NULL;
4228 u64 total_avail;
4229 int num_stripes; /* total number of stripes to allocate */
4230 int data_stripes; /* number of stripes that count for
4231 block group size */
4232 int sub_stripes; /* sub_stripes info for map */
4233 int dev_stripes; /* stripes per dev */
4234 int devs_max; /* max devs to use */
4235 int devs_min; /* min devs needed */
4236 int devs_increment; /* ndevs has to be a multiple of this */
4237 int ncopies; /* how many copies to data has */
4238 int ret;
4239 u64 max_stripe_size;
4240 u64 max_chunk_size;
4241 u64 stripe_size;
4242 u64 num_bytes;
4243 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4244 int ndevs;
4245 int i;
4246 int j;
4247 int index;
4248
4249 BUG_ON(!alloc_profile_is_valid(type, 0));
4250
4251 if (list_empty(&fs_devices->alloc_list))
4252 return -ENOSPC;
4253
4254 index = __get_raid_index(type);
4255
4256 sub_stripes = btrfs_raid_array[index].sub_stripes;
4257 dev_stripes = btrfs_raid_array[index].dev_stripes;
4258 devs_max = btrfs_raid_array[index].devs_max;
4259 devs_min = btrfs_raid_array[index].devs_min;
4260 devs_increment = btrfs_raid_array[index].devs_increment;
4261 ncopies = btrfs_raid_array[index].ncopies;
4262
4263 if (type & BTRFS_BLOCK_GROUP_DATA) {
4264 max_stripe_size = 1024 * 1024 * 1024;
4265 max_chunk_size = 10 * max_stripe_size;
4266 if (!devs_max)
4267 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4268 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4269 /* for larger filesystems, use larger metadata chunks */
4270 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4271 max_stripe_size = 1024 * 1024 * 1024;
4272 else
4273 max_stripe_size = 256 * 1024 * 1024;
4274 max_chunk_size = max_stripe_size;
4275 if (!devs_max)
4276 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4277 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4278 max_stripe_size = 32 * 1024 * 1024;
4279 max_chunk_size = 2 * max_stripe_size;
4280 if (!devs_max)
4281 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4282 } else {
4283 btrfs_err(info, "invalid chunk type 0x%llx requested",
4284 type);
4285 BUG_ON(1);
4286 }
4287
4288 /* we don't want a chunk larger than 10% of writeable space */
4289 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4290 max_chunk_size);
4291
4292 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4293 GFP_NOFS);
4294 if (!devices_info)
4295 return -ENOMEM;
4296
4297 cur = fs_devices->alloc_list.next;
4298
4299 /*
4300 * in the first pass through the devices list, we gather information
4301 * about the available holes on each device.
4302 */
4303 ndevs = 0;
4304 while (cur != &fs_devices->alloc_list) {
4305 struct btrfs_device *device;
4306 u64 max_avail;
4307 u64 dev_offset;
4308
4309 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4310
4311 cur = cur->next;
4312
4313 if (!device->writeable) {
4314 WARN(1, KERN_ERR
4315 "BTRFS: read-only device in alloc_list\n");
4316 continue;
4317 }
4318
4319 if (!device->in_fs_metadata ||
4320 device->is_tgtdev_for_dev_replace)
4321 continue;
4322
4323 if (device->total_bytes > device->bytes_used)
4324 total_avail = device->total_bytes - device->bytes_used;
4325 else
4326 total_avail = 0;
4327
4328 /* If there is no space on this device, skip it. */
4329 if (total_avail == 0)
4330 continue;
4331
4332 ret = find_free_dev_extent(trans, device,
4333 max_stripe_size * dev_stripes,
4334 &dev_offset, &max_avail);
4335 if (ret && ret != -ENOSPC)
4336 goto error;
4337
4338 if (ret == 0)
4339 max_avail = max_stripe_size * dev_stripes;
4340
4341 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4342 continue;
4343
4344 if (ndevs == fs_devices->rw_devices) {
4345 WARN(1, "%s: found more than %llu devices\n",
4346 __func__, fs_devices->rw_devices);
4347 break;
4348 }
4349 devices_info[ndevs].dev_offset = dev_offset;
4350 devices_info[ndevs].max_avail = max_avail;
4351 devices_info[ndevs].total_avail = total_avail;
4352 devices_info[ndevs].dev = device;
4353 ++ndevs;
4354 }
4355
4356 /*
4357 * now sort the devices by hole size / available space
4358 */
4359 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4360 btrfs_cmp_device_info, NULL);
4361
4362 /* round down to number of usable stripes */
4363 ndevs -= ndevs % devs_increment;
4364
4365 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4366 ret = -ENOSPC;
4367 goto error;
4368 }
4369
4370 if (devs_max && ndevs > devs_max)
4371 ndevs = devs_max;
4372 /*
4373 * the primary goal is to maximize the number of stripes, so use as many
4374 * devices as possible, even if the stripes are not maximum sized.
4375 */
4376 stripe_size = devices_info[ndevs-1].max_avail;
4377 num_stripes = ndevs * dev_stripes;
4378
4379 /*
4380 * this will have to be fixed for RAID1 and RAID10 over
4381 * more drives
4382 */
4383 data_stripes = num_stripes / ncopies;
4384
4385 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4386 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4387 btrfs_super_stripesize(info->super_copy));
4388 data_stripes = num_stripes - 1;
4389 }
4390 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4391 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4392 btrfs_super_stripesize(info->super_copy));
4393 data_stripes = num_stripes - 2;
4394 }
4395
4396 /*
4397 * Use the number of data stripes to figure out how big this chunk
4398 * is really going to be in terms of logical address space,
4399 * and compare that answer with the max chunk size
4400 */
4401 if (stripe_size * data_stripes > max_chunk_size) {
4402 u64 mask = (1ULL << 24) - 1;
4403
4404 stripe_size = div_u64(max_chunk_size, data_stripes);
4405
4406 /* bump the answer up to a 16MB boundary */
4407 stripe_size = (stripe_size + mask) & ~mask;
4408
4409 /* but don't go higher than the limits we found
4410 * while searching for free extents
4411 */
4412 if (stripe_size > devices_info[ndevs-1].max_avail)
4413 stripe_size = devices_info[ndevs-1].max_avail;
4414 }
4415
4416 stripe_size = div_u64(stripe_size, dev_stripes);
4417
4418 /* align to BTRFS_STRIPE_LEN */
4419 stripe_size = div_u64(stripe_size, raid_stripe_len);
4420 stripe_size *= raid_stripe_len;
4421
4422 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4423 if (!map) {
4424 ret = -ENOMEM;
4425 goto error;
4426 }
4427 map->num_stripes = num_stripes;
4428
4429 for (i = 0; i < ndevs; ++i) {
4430 for (j = 0; j < dev_stripes; ++j) {
4431 int s = i * dev_stripes + j;
4432 map->stripes[s].dev = devices_info[i].dev;
4433 map->stripes[s].physical = devices_info[i].dev_offset +
4434 j * stripe_size;
4435 }
4436 }
4437 map->sector_size = extent_root->sectorsize;
4438 map->stripe_len = raid_stripe_len;
4439 map->io_align = raid_stripe_len;
4440 map->io_width = raid_stripe_len;
4441 map->type = type;
4442 map->sub_stripes = sub_stripes;
4443
4444 num_bytes = stripe_size * data_stripes;
4445
4446 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4447
4448 em = alloc_extent_map();
4449 if (!em) {
4450 kfree(map);
4451 ret = -ENOMEM;
4452 goto error;
4453 }
4454 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4455 em->bdev = (struct block_device *)map;
4456 em->start = start;
4457 em->len = num_bytes;
4458 em->block_start = 0;
4459 em->block_len = em->len;
4460 em->orig_block_len = stripe_size;
4461
4462 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4463 write_lock(&em_tree->lock);
4464 ret = add_extent_mapping(em_tree, em, 0);
4465 if (!ret) {
4466 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4467 atomic_inc(&em->refs);
4468 }
4469 write_unlock(&em_tree->lock);
4470 if (ret) {
4471 free_extent_map(em);
4472 goto error;
4473 }
4474
4475 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4476 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4477 start, num_bytes);
4478 if (ret)
4479 goto error_del_extent;
4480
4481 for (i = 0; i < map->num_stripes; i++) {
4482 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4483 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4484 }
4485
4486 spin_lock(&extent_root->fs_info->free_chunk_lock);
4487 extent_root->fs_info->free_chunk_space -= (stripe_size *
4488 map->num_stripes);
4489 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4490
4491 free_extent_map(em);
4492 check_raid56_incompat_flag(extent_root->fs_info, type);
4493
4494 kfree(devices_info);
4495 return 0;
4496
4497 error_del_extent:
4498 write_lock(&em_tree->lock);
4499 remove_extent_mapping(em_tree, em);
4500 write_unlock(&em_tree->lock);
4501
4502 /* One for our allocation */
4503 free_extent_map(em);
4504 /* One for the tree reference */
4505 free_extent_map(em);
4506 /* One for the pending_chunks list reference */
4507 free_extent_map(em);
4508 error:
4509 kfree(devices_info);
4510 return ret;
4511 }
4512
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 chunk_offset,u64 chunk_size)4513 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4514 struct btrfs_root *extent_root,
4515 u64 chunk_offset, u64 chunk_size)
4516 {
4517 struct btrfs_key key;
4518 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4519 struct btrfs_device *device;
4520 struct btrfs_chunk *chunk;
4521 struct btrfs_stripe *stripe;
4522 struct extent_map_tree *em_tree;
4523 struct extent_map *em;
4524 struct map_lookup *map;
4525 size_t item_size;
4526 u64 dev_offset;
4527 u64 stripe_size;
4528 int i = 0;
4529 int ret;
4530
4531 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4532 read_lock(&em_tree->lock);
4533 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4534 read_unlock(&em_tree->lock);
4535
4536 if (!em) {
4537 btrfs_crit(extent_root->fs_info, "unable to find logical "
4538 "%Lu len %Lu", chunk_offset, chunk_size);
4539 return -EINVAL;
4540 }
4541
4542 if (em->start != chunk_offset || em->len != chunk_size) {
4543 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4544 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4545 chunk_size, em->start, em->len);
4546 free_extent_map(em);
4547 return -EINVAL;
4548 }
4549
4550 map = (struct map_lookup *)em->bdev;
4551 item_size = btrfs_chunk_item_size(map->num_stripes);
4552 stripe_size = em->orig_block_len;
4553
4554 chunk = kzalloc(item_size, GFP_NOFS);
4555 if (!chunk) {
4556 ret = -ENOMEM;
4557 goto out;
4558 }
4559
4560 for (i = 0; i < map->num_stripes; i++) {
4561 device = map->stripes[i].dev;
4562 dev_offset = map->stripes[i].physical;
4563
4564 ret = btrfs_update_device(trans, device);
4565 if (ret)
4566 goto out;
4567 ret = btrfs_alloc_dev_extent(trans, device,
4568 chunk_root->root_key.objectid,
4569 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4570 chunk_offset, dev_offset,
4571 stripe_size);
4572 if (ret)
4573 goto out;
4574 }
4575
4576 stripe = &chunk->stripe;
4577 for (i = 0; i < map->num_stripes; i++) {
4578 device = map->stripes[i].dev;
4579 dev_offset = map->stripes[i].physical;
4580
4581 btrfs_set_stack_stripe_devid(stripe, device->devid);
4582 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4583 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4584 stripe++;
4585 }
4586
4587 btrfs_set_stack_chunk_length(chunk, chunk_size);
4588 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4589 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4590 btrfs_set_stack_chunk_type(chunk, map->type);
4591 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4592 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4593 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4594 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4595 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4596
4597 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4598 key.type = BTRFS_CHUNK_ITEM_KEY;
4599 key.offset = chunk_offset;
4600
4601 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4602 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4603 /*
4604 * TODO: Cleanup of inserted chunk root in case of
4605 * failure.
4606 */
4607 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4608 item_size);
4609 }
4610
4611 out:
4612 kfree(chunk);
4613 free_extent_map(em);
4614 return ret;
4615 }
4616
4617 /*
4618 * Chunk allocation falls into two parts. The first part does works
4619 * that make the new allocated chunk useable, but not do any operation
4620 * that modifies the chunk tree. The second part does the works that
4621 * require modifying the chunk tree. This division is important for the
4622 * bootstrap process of adding storage to a seed btrfs.
4623 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 type)4624 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4625 struct btrfs_root *extent_root, u64 type)
4626 {
4627 u64 chunk_offset;
4628
4629 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4630 chunk_offset = find_next_chunk(extent_root->fs_info);
4631 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4632 }
4633
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)4634 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4635 struct btrfs_root *root,
4636 struct btrfs_device *device)
4637 {
4638 u64 chunk_offset;
4639 u64 sys_chunk_offset;
4640 u64 alloc_profile;
4641 struct btrfs_fs_info *fs_info = root->fs_info;
4642 struct btrfs_root *extent_root = fs_info->extent_root;
4643 int ret;
4644
4645 chunk_offset = find_next_chunk(fs_info);
4646 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4647 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4648 alloc_profile);
4649 if (ret)
4650 return ret;
4651
4652 sys_chunk_offset = find_next_chunk(root->fs_info);
4653 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4654 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4655 alloc_profile);
4656 return ret;
4657 }
4658
btrfs_chunk_max_errors(struct map_lookup * map)4659 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4660 {
4661 int max_errors;
4662
4663 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4664 BTRFS_BLOCK_GROUP_RAID10 |
4665 BTRFS_BLOCK_GROUP_RAID5 |
4666 BTRFS_BLOCK_GROUP_DUP)) {
4667 max_errors = 1;
4668 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4669 max_errors = 2;
4670 } else {
4671 max_errors = 0;
4672 }
4673
4674 return max_errors;
4675 }
4676
btrfs_chunk_readonly(struct btrfs_root * root,u64 chunk_offset)4677 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4678 {
4679 struct extent_map *em;
4680 struct map_lookup *map;
4681 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4682 int readonly = 0;
4683 int miss_ndevs = 0;
4684 int i;
4685
4686 read_lock(&map_tree->map_tree.lock);
4687 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4688 read_unlock(&map_tree->map_tree.lock);
4689 if (!em)
4690 return 1;
4691
4692 map = (struct map_lookup *)em->bdev;
4693 for (i = 0; i < map->num_stripes; i++) {
4694 if (map->stripes[i].dev->missing) {
4695 miss_ndevs++;
4696 continue;
4697 }
4698
4699 if (!map->stripes[i].dev->writeable) {
4700 readonly = 1;
4701 goto end;
4702 }
4703 }
4704
4705 /*
4706 * If the number of missing devices is larger than max errors,
4707 * we can not write the data into that chunk successfully, so
4708 * set it readonly.
4709 */
4710 if (miss_ndevs > btrfs_chunk_max_errors(map))
4711 readonly = 1;
4712 end:
4713 free_extent_map(em);
4714 return readonly;
4715 }
4716
btrfs_mapping_init(struct btrfs_mapping_tree * tree)4717 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4718 {
4719 extent_map_tree_init(&tree->map_tree);
4720 }
4721
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)4722 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4723 {
4724 struct extent_map *em;
4725
4726 while (1) {
4727 write_lock(&tree->map_tree.lock);
4728 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4729 if (em)
4730 remove_extent_mapping(&tree->map_tree, em);
4731 write_unlock(&tree->map_tree.lock);
4732 if (!em)
4733 break;
4734 /* once for us */
4735 free_extent_map(em);
4736 /* once for the tree */
4737 free_extent_map(em);
4738 }
4739 }
4740
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)4741 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4742 {
4743 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4744 struct extent_map *em;
4745 struct map_lookup *map;
4746 struct extent_map_tree *em_tree = &map_tree->map_tree;
4747 int ret;
4748
4749 read_lock(&em_tree->lock);
4750 em = lookup_extent_mapping(em_tree, logical, len);
4751 read_unlock(&em_tree->lock);
4752
4753 /*
4754 * We could return errors for these cases, but that could get ugly and
4755 * we'd probably do the same thing which is just not do anything else
4756 * and exit, so return 1 so the callers don't try to use other copies.
4757 */
4758 if (!em) {
4759 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4760 logical+len);
4761 return 1;
4762 }
4763
4764 if (em->start > logical || em->start + em->len < logical) {
4765 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4766 "%Lu-%Lu", logical, logical+len, em->start,
4767 em->start + em->len);
4768 free_extent_map(em);
4769 return 1;
4770 }
4771
4772 map = (struct map_lookup *)em->bdev;
4773 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4774 ret = map->num_stripes;
4775 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4776 ret = map->sub_stripes;
4777 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4778 ret = 2;
4779 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4780 ret = 3;
4781 else
4782 ret = 1;
4783 free_extent_map(em);
4784
4785 btrfs_dev_replace_lock(&fs_info->dev_replace);
4786 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4787 ret++;
4788 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4789
4790 return ret;
4791 }
4792
btrfs_full_stripe_len(struct btrfs_root * root,struct btrfs_mapping_tree * map_tree,u64 logical)4793 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4794 struct btrfs_mapping_tree *map_tree,
4795 u64 logical)
4796 {
4797 struct extent_map *em;
4798 struct map_lookup *map;
4799 struct extent_map_tree *em_tree = &map_tree->map_tree;
4800 unsigned long len = root->sectorsize;
4801
4802 read_lock(&em_tree->lock);
4803 em = lookup_extent_mapping(em_tree, logical, len);
4804 read_unlock(&em_tree->lock);
4805 BUG_ON(!em);
4806
4807 BUG_ON(em->start > logical || em->start + em->len < logical);
4808 map = (struct map_lookup *)em->bdev;
4809 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4810 len = map->stripe_len * nr_data_stripes(map);
4811 free_extent_map(em);
4812 return len;
4813 }
4814
btrfs_is_parity_mirror(struct btrfs_mapping_tree * map_tree,u64 logical,u64 len,int mirror_num)4815 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4816 u64 logical, u64 len, int mirror_num)
4817 {
4818 struct extent_map *em;
4819 struct map_lookup *map;
4820 struct extent_map_tree *em_tree = &map_tree->map_tree;
4821 int ret = 0;
4822
4823 read_lock(&em_tree->lock);
4824 em = lookup_extent_mapping(em_tree, logical, len);
4825 read_unlock(&em_tree->lock);
4826 BUG_ON(!em);
4827
4828 BUG_ON(em->start > logical || em->start + em->len < logical);
4829 map = (struct map_lookup *)em->bdev;
4830 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4831 ret = 1;
4832 free_extent_map(em);
4833 return ret;
4834 }
4835
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int num,int optimal,int dev_replace_is_ongoing)4836 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4837 struct map_lookup *map, int first, int num,
4838 int optimal, int dev_replace_is_ongoing)
4839 {
4840 int i;
4841 int tolerance;
4842 struct btrfs_device *srcdev;
4843
4844 if (dev_replace_is_ongoing &&
4845 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4846 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4847 srcdev = fs_info->dev_replace.srcdev;
4848 else
4849 srcdev = NULL;
4850
4851 /*
4852 * try to avoid the drive that is the source drive for a
4853 * dev-replace procedure, only choose it if no other non-missing
4854 * mirror is available
4855 */
4856 for (tolerance = 0; tolerance < 2; tolerance++) {
4857 if (map->stripes[optimal].dev->bdev &&
4858 (tolerance || map->stripes[optimal].dev != srcdev))
4859 return optimal;
4860 for (i = first; i < first + num; i++) {
4861 if (map->stripes[i].dev->bdev &&
4862 (tolerance || map->stripes[i].dev != srcdev))
4863 return i;
4864 }
4865 }
4866
4867 /* we couldn't find one that doesn't fail. Just return something
4868 * and the io error handling code will clean up eventually
4869 */
4870 return optimal;
4871 }
4872
parity_smaller(u64 a,u64 b)4873 static inline int parity_smaller(u64 a, u64 b)
4874 {
4875 return a > b;
4876 }
4877
4878 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)4879 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4880 {
4881 struct btrfs_bio_stripe s;
4882 int i;
4883 u64 l;
4884 int again = 1;
4885
4886 while (again) {
4887 again = 0;
4888 for (i = 0; i < num_stripes - 1; i++) {
4889 if (parity_smaller(bbio->raid_map[i],
4890 bbio->raid_map[i+1])) {
4891 s = bbio->stripes[i];
4892 l = bbio->raid_map[i];
4893 bbio->stripes[i] = bbio->stripes[i+1];
4894 bbio->raid_map[i] = bbio->raid_map[i+1];
4895 bbio->stripes[i+1] = s;
4896 bbio->raid_map[i+1] = l;
4897
4898 again = 1;
4899 }
4900 }
4901 }
4902 }
4903
alloc_btrfs_bio(int total_stripes,int real_stripes)4904 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
4905 {
4906 struct btrfs_bio *bbio = kzalloc(
4907 /* the size of the btrfs_bio */
4908 sizeof(struct btrfs_bio) +
4909 /* plus the variable array for the stripes */
4910 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
4911 /* plus the variable array for the tgt dev */
4912 sizeof(int) * (real_stripes) +
4913 /*
4914 * plus the raid_map, which includes both the tgt dev
4915 * and the stripes
4916 */
4917 sizeof(u64) * (total_stripes),
4918 GFP_NOFS);
4919 if (!bbio)
4920 return NULL;
4921
4922 atomic_set(&bbio->error, 0);
4923 atomic_set(&bbio->refs, 1);
4924
4925 return bbio;
4926 }
4927
btrfs_get_bbio(struct btrfs_bio * bbio)4928 void btrfs_get_bbio(struct btrfs_bio *bbio)
4929 {
4930 WARN_ON(!atomic_read(&bbio->refs));
4931 atomic_inc(&bbio->refs);
4932 }
4933
btrfs_put_bbio(struct btrfs_bio * bbio)4934 void btrfs_put_bbio(struct btrfs_bio *bbio)
4935 {
4936 if (!bbio)
4937 return;
4938 if (atomic_dec_and_test(&bbio->refs))
4939 kfree(bbio);
4940 }
4941
__btrfs_map_block(struct btrfs_fs_info * fs_info,int rw,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)4942 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4943 u64 logical, u64 *length,
4944 struct btrfs_bio **bbio_ret,
4945 int mirror_num, int need_raid_map)
4946 {
4947 struct extent_map *em;
4948 struct map_lookup *map;
4949 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4950 struct extent_map_tree *em_tree = &map_tree->map_tree;
4951 u64 offset;
4952 u64 stripe_offset;
4953 u64 stripe_end_offset;
4954 u64 stripe_nr;
4955 u64 stripe_nr_orig;
4956 u64 stripe_nr_end;
4957 u64 stripe_len;
4958 u32 stripe_index;
4959 int i;
4960 int ret = 0;
4961 int num_stripes;
4962 int max_errors = 0;
4963 int tgtdev_indexes = 0;
4964 struct btrfs_bio *bbio = NULL;
4965 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4966 int dev_replace_is_ongoing = 0;
4967 int num_alloc_stripes;
4968 int patch_the_first_stripe_for_dev_replace = 0;
4969 u64 physical_to_patch_in_first_stripe = 0;
4970 u64 raid56_full_stripe_start = (u64)-1;
4971
4972 read_lock(&em_tree->lock);
4973 em = lookup_extent_mapping(em_tree, logical, *length);
4974 read_unlock(&em_tree->lock);
4975
4976 if (!em) {
4977 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4978 logical, *length);
4979 return -EINVAL;
4980 }
4981
4982 if (em->start > logical || em->start + em->len < logical) {
4983 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4984 "found %Lu-%Lu", logical, em->start,
4985 em->start + em->len);
4986 free_extent_map(em);
4987 return -EINVAL;
4988 }
4989
4990 map = (struct map_lookup *)em->bdev;
4991 offset = logical - em->start;
4992
4993 stripe_len = map->stripe_len;
4994 stripe_nr = offset;
4995 /*
4996 * stripe_nr counts the total number of stripes we have to stride
4997 * to get to this block
4998 */
4999 stripe_nr = div64_u64(stripe_nr, stripe_len);
5000
5001 stripe_offset = stripe_nr * stripe_len;
5002 BUG_ON(offset < stripe_offset);
5003
5004 /* stripe_offset is the offset of this block in its stripe*/
5005 stripe_offset = offset - stripe_offset;
5006
5007 /* if we're here for raid56, we need to know the stripe aligned start */
5008 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5009 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5010 raid56_full_stripe_start = offset;
5011
5012 /* allow a write of a full stripe, but make sure we don't
5013 * allow straddling of stripes
5014 */
5015 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5016 full_stripe_len);
5017 raid56_full_stripe_start *= full_stripe_len;
5018 }
5019
5020 if (rw & REQ_DISCARD) {
5021 /* we don't discard raid56 yet */
5022 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5023 ret = -EOPNOTSUPP;
5024 goto out;
5025 }
5026 *length = min_t(u64, em->len - offset, *length);
5027 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5028 u64 max_len;
5029 /* For writes to RAID[56], allow a full stripeset across all disks.
5030 For other RAID types and for RAID[56] reads, just allow a single
5031 stripe (on a single disk). */
5032 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5033 (rw & REQ_WRITE)) {
5034 max_len = stripe_len * nr_data_stripes(map) -
5035 (offset - raid56_full_stripe_start);
5036 } else {
5037 /* we limit the length of each bio to what fits in a stripe */
5038 max_len = stripe_len - stripe_offset;
5039 }
5040 *length = min_t(u64, em->len - offset, max_len);
5041 } else {
5042 *length = em->len - offset;
5043 }
5044
5045 /* This is for when we're called from btrfs_merge_bio_hook() and all
5046 it cares about is the length */
5047 if (!bbio_ret)
5048 goto out;
5049
5050 btrfs_dev_replace_lock(dev_replace);
5051 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5052 if (!dev_replace_is_ongoing)
5053 btrfs_dev_replace_unlock(dev_replace);
5054
5055 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5056 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5057 dev_replace->tgtdev != NULL) {
5058 /*
5059 * in dev-replace case, for repair case (that's the only
5060 * case where the mirror is selected explicitly when
5061 * calling btrfs_map_block), blocks left of the left cursor
5062 * can also be read from the target drive.
5063 * For REQ_GET_READ_MIRRORS, the target drive is added as
5064 * the last one to the array of stripes. For READ, it also
5065 * needs to be supported using the same mirror number.
5066 * If the requested block is not left of the left cursor,
5067 * EIO is returned. This can happen because btrfs_num_copies()
5068 * returns one more in the dev-replace case.
5069 */
5070 u64 tmp_length = *length;
5071 struct btrfs_bio *tmp_bbio = NULL;
5072 int tmp_num_stripes;
5073 u64 srcdev_devid = dev_replace->srcdev->devid;
5074 int index_srcdev = 0;
5075 int found = 0;
5076 u64 physical_of_found = 0;
5077
5078 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5079 logical, &tmp_length, &tmp_bbio, 0, 0);
5080 if (ret) {
5081 WARN_ON(tmp_bbio != NULL);
5082 goto out;
5083 }
5084
5085 tmp_num_stripes = tmp_bbio->num_stripes;
5086 if (mirror_num > tmp_num_stripes) {
5087 /*
5088 * REQ_GET_READ_MIRRORS does not contain this
5089 * mirror, that means that the requested area
5090 * is not left of the left cursor
5091 */
5092 ret = -EIO;
5093 btrfs_put_bbio(tmp_bbio);
5094 goto out;
5095 }
5096
5097 /*
5098 * process the rest of the function using the mirror_num
5099 * of the source drive. Therefore look it up first.
5100 * At the end, patch the device pointer to the one of the
5101 * target drive.
5102 */
5103 for (i = 0; i < tmp_num_stripes; i++) {
5104 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5105 /*
5106 * In case of DUP, in order to keep it
5107 * simple, only add the mirror with the
5108 * lowest physical address
5109 */
5110 if (found &&
5111 physical_of_found <=
5112 tmp_bbio->stripes[i].physical)
5113 continue;
5114 index_srcdev = i;
5115 found = 1;
5116 physical_of_found =
5117 tmp_bbio->stripes[i].physical;
5118 }
5119 }
5120
5121 if (found) {
5122 mirror_num = index_srcdev + 1;
5123 patch_the_first_stripe_for_dev_replace = 1;
5124 physical_to_patch_in_first_stripe = physical_of_found;
5125 } else {
5126 WARN_ON(1);
5127 ret = -EIO;
5128 btrfs_put_bbio(tmp_bbio);
5129 goto out;
5130 }
5131
5132 btrfs_put_bbio(tmp_bbio);
5133 } else if (mirror_num > map->num_stripes) {
5134 mirror_num = 0;
5135 }
5136
5137 num_stripes = 1;
5138 stripe_index = 0;
5139 stripe_nr_orig = stripe_nr;
5140 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5141 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5142 stripe_end_offset = stripe_nr_end * map->stripe_len -
5143 (offset + *length);
5144
5145 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5146 if (rw & REQ_DISCARD)
5147 num_stripes = min_t(u64, map->num_stripes,
5148 stripe_nr_end - stripe_nr_orig);
5149 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5150 &stripe_index);
5151 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5152 mirror_num = 1;
5153 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5154 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5155 num_stripes = map->num_stripes;
5156 else if (mirror_num)
5157 stripe_index = mirror_num - 1;
5158 else {
5159 stripe_index = find_live_mirror(fs_info, map, 0,
5160 map->num_stripes,
5161 current->pid % map->num_stripes,
5162 dev_replace_is_ongoing);
5163 mirror_num = stripe_index + 1;
5164 }
5165
5166 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5167 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5168 num_stripes = map->num_stripes;
5169 } else if (mirror_num) {
5170 stripe_index = mirror_num - 1;
5171 } else {
5172 mirror_num = 1;
5173 }
5174
5175 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5176 u32 factor = map->num_stripes / map->sub_stripes;
5177
5178 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5179 stripe_index *= map->sub_stripes;
5180
5181 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5182 num_stripes = map->sub_stripes;
5183 else if (rw & REQ_DISCARD)
5184 num_stripes = min_t(u64, map->sub_stripes *
5185 (stripe_nr_end - stripe_nr_orig),
5186 map->num_stripes);
5187 else if (mirror_num)
5188 stripe_index += mirror_num - 1;
5189 else {
5190 int old_stripe_index = stripe_index;
5191 stripe_index = find_live_mirror(fs_info, map,
5192 stripe_index,
5193 map->sub_stripes, stripe_index +
5194 current->pid % map->sub_stripes,
5195 dev_replace_is_ongoing);
5196 mirror_num = stripe_index - old_stripe_index + 1;
5197 }
5198
5199 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5200 if (need_raid_map &&
5201 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5202 mirror_num > 1)) {
5203 /* push stripe_nr back to the start of the full stripe */
5204 stripe_nr = div_u64(raid56_full_stripe_start,
5205 stripe_len * nr_data_stripes(map));
5206
5207 /* RAID[56] write or recovery. Return all stripes */
5208 num_stripes = map->num_stripes;
5209 max_errors = nr_parity_stripes(map);
5210
5211 *length = map->stripe_len;
5212 stripe_index = 0;
5213 stripe_offset = 0;
5214 } else {
5215 /*
5216 * Mirror #0 or #1 means the original data block.
5217 * Mirror #2 is RAID5 parity block.
5218 * Mirror #3 is RAID6 Q block.
5219 */
5220 stripe_nr = div_u64_rem(stripe_nr,
5221 nr_data_stripes(map), &stripe_index);
5222 if (mirror_num > 1)
5223 stripe_index = nr_data_stripes(map) +
5224 mirror_num - 2;
5225
5226 /* We distribute the parity blocks across stripes */
5227 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5228 &stripe_index);
5229 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5230 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5231 mirror_num = 1;
5232 }
5233 } else {
5234 /*
5235 * after this, stripe_nr is the number of stripes on this
5236 * device we have to walk to find the data, and stripe_index is
5237 * the number of our device in the stripe array
5238 */
5239 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5240 &stripe_index);
5241 mirror_num = stripe_index + 1;
5242 }
5243 BUG_ON(stripe_index >= map->num_stripes);
5244
5245 num_alloc_stripes = num_stripes;
5246 if (dev_replace_is_ongoing) {
5247 if (rw & (REQ_WRITE | REQ_DISCARD))
5248 num_alloc_stripes <<= 1;
5249 if (rw & REQ_GET_READ_MIRRORS)
5250 num_alloc_stripes++;
5251 tgtdev_indexes = num_stripes;
5252 }
5253
5254 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5255 if (!bbio) {
5256 ret = -ENOMEM;
5257 goto out;
5258 }
5259 if (dev_replace_is_ongoing)
5260 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5261
5262 /* build raid_map */
5263 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5264 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5265 mirror_num > 1)) {
5266 u64 tmp;
5267 unsigned rot;
5268
5269 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5270 sizeof(struct btrfs_bio_stripe) *
5271 num_alloc_stripes +
5272 sizeof(int) * tgtdev_indexes);
5273
5274 /* Work out the disk rotation on this stripe-set */
5275 div_u64_rem(stripe_nr, num_stripes, &rot);
5276
5277 /* Fill in the logical address of each stripe */
5278 tmp = stripe_nr * nr_data_stripes(map);
5279 for (i = 0; i < nr_data_stripes(map); i++)
5280 bbio->raid_map[(i+rot) % num_stripes] =
5281 em->start + (tmp + i) * map->stripe_len;
5282
5283 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5284 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5285 bbio->raid_map[(i+rot+1) % num_stripes] =
5286 RAID6_Q_STRIPE;
5287 }
5288
5289 if (rw & REQ_DISCARD) {
5290 u32 factor = 0;
5291 u32 sub_stripes = 0;
5292 u64 stripes_per_dev = 0;
5293 u32 remaining_stripes = 0;
5294 u32 last_stripe = 0;
5295
5296 if (map->type &
5297 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5298 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5299 sub_stripes = 1;
5300 else
5301 sub_stripes = map->sub_stripes;
5302
5303 factor = map->num_stripes / sub_stripes;
5304 stripes_per_dev = div_u64_rem(stripe_nr_end -
5305 stripe_nr_orig,
5306 factor,
5307 &remaining_stripes);
5308 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5309 last_stripe *= sub_stripes;
5310 }
5311
5312 for (i = 0; i < num_stripes; i++) {
5313 bbio->stripes[i].physical =
5314 map->stripes[stripe_index].physical +
5315 stripe_offset + stripe_nr * map->stripe_len;
5316 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5317
5318 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5319 BTRFS_BLOCK_GROUP_RAID10)) {
5320 bbio->stripes[i].length = stripes_per_dev *
5321 map->stripe_len;
5322
5323 if (i / sub_stripes < remaining_stripes)
5324 bbio->stripes[i].length +=
5325 map->stripe_len;
5326
5327 /*
5328 * Special for the first stripe and
5329 * the last stripe:
5330 *
5331 * |-------|...|-------|
5332 * |----------|
5333 * off end_off
5334 */
5335 if (i < sub_stripes)
5336 bbio->stripes[i].length -=
5337 stripe_offset;
5338
5339 if (stripe_index >= last_stripe &&
5340 stripe_index <= (last_stripe +
5341 sub_stripes - 1))
5342 bbio->stripes[i].length -=
5343 stripe_end_offset;
5344
5345 if (i == sub_stripes - 1)
5346 stripe_offset = 0;
5347 } else
5348 bbio->stripes[i].length = *length;
5349
5350 stripe_index++;
5351 if (stripe_index == map->num_stripes) {
5352 /* This could only happen for RAID0/10 */
5353 stripe_index = 0;
5354 stripe_nr++;
5355 }
5356 }
5357 } else {
5358 for (i = 0; i < num_stripes; i++) {
5359 bbio->stripes[i].physical =
5360 map->stripes[stripe_index].physical +
5361 stripe_offset +
5362 stripe_nr * map->stripe_len;
5363 bbio->stripes[i].dev =
5364 map->stripes[stripe_index].dev;
5365 stripe_index++;
5366 }
5367 }
5368
5369 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5370 max_errors = btrfs_chunk_max_errors(map);
5371
5372 if (bbio->raid_map)
5373 sort_parity_stripes(bbio, num_stripes);
5374
5375 tgtdev_indexes = 0;
5376 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5377 dev_replace->tgtdev != NULL) {
5378 int index_where_to_add;
5379 u64 srcdev_devid = dev_replace->srcdev->devid;
5380
5381 /*
5382 * duplicate the write operations while the dev replace
5383 * procedure is running. Since the copying of the old disk
5384 * to the new disk takes place at run time while the
5385 * filesystem is mounted writable, the regular write
5386 * operations to the old disk have to be duplicated to go
5387 * to the new disk as well.
5388 * Note that device->missing is handled by the caller, and
5389 * that the write to the old disk is already set up in the
5390 * stripes array.
5391 */
5392 index_where_to_add = num_stripes;
5393 for (i = 0; i < num_stripes; i++) {
5394 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5395 /* write to new disk, too */
5396 struct btrfs_bio_stripe *new =
5397 bbio->stripes + index_where_to_add;
5398 struct btrfs_bio_stripe *old =
5399 bbio->stripes + i;
5400
5401 new->physical = old->physical;
5402 new->length = old->length;
5403 new->dev = dev_replace->tgtdev;
5404 bbio->tgtdev_map[i] = index_where_to_add;
5405 index_where_to_add++;
5406 max_errors++;
5407 tgtdev_indexes++;
5408 }
5409 }
5410 num_stripes = index_where_to_add;
5411 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5412 dev_replace->tgtdev != NULL) {
5413 u64 srcdev_devid = dev_replace->srcdev->devid;
5414 int index_srcdev = 0;
5415 int found = 0;
5416 u64 physical_of_found = 0;
5417
5418 /*
5419 * During the dev-replace procedure, the target drive can
5420 * also be used to read data in case it is needed to repair
5421 * a corrupt block elsewhere. This is possible if the
5422 * requested area is left of the left cursor. In this area,
5423 * the target drive is a full copy of the source drive.
5424 */
5425 for (i = 0; i < num_stripes; i++) {
5426 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5427 /*
5428 * In case of DUP, in order to keep it
5429 * simple, only add the mirror with the
5430 * lowest physical address
5431 */
5432 if (found &&
5433 physical_of_found <=
5434 bbio->stripes[i].physical)
5435 continue;
5436 index_srcdev = i;
5437 found = 1;
5438 physical_of_found = bbio->stripes[i].physical;
5439 }
5440 }
5441 if (found) {
5442 if (physical_of_found + map->stripe_len <=
5443 dev_replace->cursor_left) {
5444 struct btrfs_bio_stripe *tgtdev_stripe =
5445 bbio->stripes + num_stripes;
5446
5447 tgtdev_stripe->physical = physical_of_found;
5448 tgtdev_stripe->length =
5449 bbio->stripes[index_srcdev].length;
5450 tgtdev_stripe->dev = dev_replace->tgtdev;
5451 bbio->tgtdev_map[index_srcdev] = num_stripes;
5452
5453 tgtdev_indexes++;
5454 num_stripes++;
5455 }
5456 }
5457 }
5458
5459 *bbio_ret = bbio;
5460 bbio->map_type = map->type;
5461 bbio->num_stripes = num_stripes;
5462 bbio->max_errors = max_errors;
5463 bbio->mirror_num = mirror_num;
5464 bbio->num_tgtdevs = tgtdev_indexes;
5465
5466 /*
5467 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5468 * mirror_num == num_stripes + 1 && dev_replace target drive is
5469 * available as a mirror
5470 */
5471 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5472 WARN_ON(num_stripes > 1);
5473 bbio->stripes[0].dev = dev_replace->tgtdev;
5474 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5475 bbio->mirror_num = map->num_stripes + 1;
5476 }
5477 out:
5478 if (dev_replace_is_ongoing)
5479 btrfs_dev_replace_unlock(dev_replace);
5480 free_extent_map(em);
5481 return ret;
5482 }
5483
btrfs_map_block(struct btrfs_fs_info * fs_info,int rw,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)5484 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5485 u64 logical, u64 *length,
5486 struct btrfs_bio **bbio_ret, int mirror_num)
5487 {
5488 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5489 mirror_num, 0);
5490 }
5491
5492 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,int rw,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5493 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5494 u64 logical, u64 *length,
5495 struct btrfs_bio **bbio_ret, int mirror_num,
5496 int need_raid_map)
5497 {
5498 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5499 mirror_num, need_raid_map);
5500 }
5501
btrfs_rmap_block(struct btrfs_mapping_tree * map_tree,u64 chunk_start,u64 physical,u64 devid,u64 ** logical,int * naddrs,int * stripe_len)5502 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5503 u64 chunk_start, u64 physical, u64 devid,
5504 u64 **logical, int *naddrs, int *stripe_len)
5505 {
5506 struct extent_map_tree *em_tree = &map_tree->map_tree;
5507 struct extent_map *em;
5508 struct map_lookup *map;
5509 u64 *buf;
5510 u64 bytenr;
5511 u64 length;
5512 u64 stripe_nr;
5513 u64 rmap_len;
5514 int i, j, nr = 0;
5515
5516 read_lock(&em_tree->lock);
5517 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5518 read_unlock(&em_tree->lock);
5519
5520 if (!em) {
5521 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5522 chunk_start);
5523 return -EIO;
5524 }
5525
5526 if (em->start != chunk_start) {
5527 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5528 em->start, chunk_start);
5529 free_extent_map(em);
5530 return -EIO;
5531 }
5532 map = (struct map_lookup *)em->bdev;
5533
5534 length = em->len;
5535 rmap_len = map->stripe_len;
5536
5537 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5538 length = div_u64(length, map->num_stripes / map->sub_stripes);
5539 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5540 length = div_u64(length, map->num_stripes);
5541 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5542 length = div_u64(length, nr_data_stripes(map));
5543 rmap_len = map->stripe_len * nr_data_stripes(map);
5544 }
5545
5546 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5547 BUG_ON(!buf); /* -ENOMEM */
5548
5549 for (i = 0; i < map->num_stripes; i++) {
5550 if (devid && map->stripes[i].dev->devid != devid)
5551 continue;
5552 if (map->stripes[i].physical > physical ||
5553 map->stripes[i].physical + length <= physical)
5554 continue;
5555
5556 stripe_nr = physical - map->stripes[i].physical;
5557 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5558
5559 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5560 stripe_nr = stripe_nr * map->num_stripes + i;
5561 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5562 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5563 stripe_nr = stripe_nr * map->num_stripes + i;
5564 } /* else if RAID[56], multiply by nr_data_stripes().
5565 * Alternatively, just use rmap_len below instead of
5566 * map->stripe_len */
5567
5568 bytenr = chunk_start + stripe_nr * rmap_len;
5569 WARN_ON(nr >= map->num_stripes);
5570 for (j = 0; j < nr; j++) {
5571 if (buf[j] == bytenr)
5572 break;
5573 }
5574 if (j == nr) {
5575 WARN_ON(nr >= map->num_stripes);
5576 buf[nr++] = bytenr;
5577 }
5578 }
5579
5580 *logical = buf;
5581 *naddrs = nr;
5582 *stripe_len = rmap_len;
5583
5584 free_extent_map(em);
5585 return 0;
5586 }
5587
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio,int err)5588 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5589 {
5590 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5591 bio_endio_nodec(bio, err);
5592 else
5593 bio_endio(bio, err);
5594 btrfs_put_bbio(bbio);
5595 }
5596
btrfs_end_bio(struct bio * bio,int err)5597 static void btrfs_end_bio(struct bio *bio, int err)
5598 {
5599 struct btrfs_bio *bbio = bio->bi_private;
5600 struct btrfs_device *dev = bbio->stripes[0].dev;
5601 int is_orig_bio = 0;
5602
5603 if (err) {
5604 atomic_inc(&bbio->error);
5605 if (err == -EIO || err == -EREMOTEIO) {
5606 unsigned int stripe_index =
5607 btrfs_io_bio(bio)->stripe_index;
5608
5609 BUG_ON(stripe_index >= bbio->num_stripes);
5610 dev = bbio->stripes[stripe_index].dev;
5611 if (dev->bdev) {
5612 if (bio->bi_rw & WRITE)
5613 btrfs_dev_stat_inc(dev,
5614 BTRFS_DEV_STAT_WRITE_ERRS);
5615 else
5616 btrfs_dev_stat_inc(dev,
5617 BTRFS_DEV_STAT_READ_ERRS);
5618 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5619 btrfs_dev_stat_inc(dev,
5620 BTRFS_DEV_STAT_FLUSH_ERRS);
5621 btrfs_dev_stat_print_on_error(dev);
5622 }
5623 }
5624 }
5625
5626 if (bio == bbio->orig_bio)
5627 is_orig_bio = 1;
5628
5629 btrfs_bio_counter_dec(bbio->fs_info);
5630
5631 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5632 if (!is_orig_bio) {
5633 bio_put(bio);
5634 bio = bbio->orig_bio;
5635 }
5636
5637 bio->bi_private = bbio->private;
5638 bio->bi_end_io = bbio->end_io;
5639 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5640 /* only send an error to the higher layers if it is
5641 * beyond the tolerance of the btrfs bio
5642 */
5643 if (atomic_read(&bbio->error) > bbio->max_errors) {
5644 err = -EIO;
5645 } else {
5646 /*
5647 * this bio is actually up to date, we didn't
5648 * go over the max number of errors
5649 */
5650 set_bit(BIO_UPTODATE, &bio->bi_flags);
5651 err = 0;
5652 }
5653
5654 btrfs_end_bbio(bbio, bio, err);
5655 } else if (!is_orig_bio) {
5656 bio_put(bio);
5657 }
5658 }
5659
5660 /*
5661 * see run_scheduled_bios for a description of why bios are collected for
5662 * async submit.
5663 *
5664 * This will add one bio to the pending list for a device and make sure
5665 * the work struct is scheduled.
5666 */
btrfs_schedule_bio(struct btrfs_root * root,struct btrfs_device * device,int rw,struct bio * bio)5667 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5668 struct btrfs_device *device,
5669 int rw, struct bio *bio)
5670 {
5671 int should_queue = 1;
5672 struct btrfs_pending_bios *pending_bios;
5673
5674 if (device->missing || !device->bdev) {
5675 bio_endio(bio, -EIO);
5676 return;
5677 }
5678
5679 /* don't bother with additional async steps for reads, right now */
5680 if (!(rw & REQ_WRITE)) {
5681 bio_get(bio);
5682 btrfsic_submit_bio(rw, bio);
5683 bio_put(bio);
5684 return;
5685 }
5686
5687 /*
5688 * nr_async_bios allows us to reliably return congestion to the
5689 * higher layers. Otherwise, the async bio makes it appear we have
5690 * made progress against dirty pages when we've really just put it
5691 * on a queue for later
5692 */
5693 atomic_inc(&root->fs_info->nr_async_bios);
5694 WARN_ON(bio->bi_next);
5695 bio->bi_next = NULL;
5696 bio->bi_rw |= rw;
5697
5698 spin_lock(&device->io_lock);
5699 if (bio->bi_rw & REQ_SYNC)
5700 pending_bios = &device->pending_sync_bios;
5701 else
5702 pending_bios = &device->pending_bios;
5703
5704 if (pending_bios->tail)
5705 pending_bios->tail->bi_next = bio;
5706
5707 pending_bios->tail = bio;
5708 if (!pending_bios->head)
5709 pending_bios->head = bio;
5710 if (device->running_pending)
5711 should_queue = 0;
5712
5713 spin_unlock(&device->io_lock);
5714
5715 if (should_queue)
5716 btrfs_queue_work(root->fs_info->submit_workers,
5717 &device->work);
5718 }
5719
bio_size_ok(struct block_device * bdev,struct bio * bio,sector_t sector)5720 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5721 sector_t sector)
5722 {
5723 struct bio_vec *prev;
5724 struct request_queue *q = bdev_get_queue(bdev);
5725 unsigned int max_sectors = queue_max_sectors(q);
5726 struct bvec_merge_data bvm = {
5727 .bi_bdev = bdev,
5728 .bi_sector = sector,
5729 .bi_rw = bio->bi_rw,
5730 };
5731
5732 if (WARN_ON(bio->bi_vcnt == 0))
5733 return 1;
5734
5735 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5736 if (bio_sectors(bio) > max_sectors)
5737 return 0;
5738
5739 if (!q->merge_bvec_fn)
5740 return 1;
5741
5742 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5743 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5744 return 0;
5745 return 1;
5746 }
5747
submit_stripe_bio(struct btrfs_root * root,struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int rw,int async)5748 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5749 struct bio *bio, u64 physical, int dev_nr,
5750 int rw, int async)
5751 {
5752 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5753
5754 bio->bi_private = bbio;
5755 btrfs_io_bio(bio)->stripe_index = dev_nr;
5756 bio->bi_end_io = btrfs_end_bio;
5757 bio->bi_iter.bi_sector = physical >> 9;
5758 #ifdef DEBUG
5759 {
5760 struct rcu_string *name;
5761
5762 rcu_read_lock();
5763 name = rcu_dereference(dev->name);
5764 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5765 "(%s id %llu), size=%u\n", rw,
5766 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5767 name->str, dev->devid, bio->bi_iter.bi_size);
5768 rcu_read_unlock();
5769 }
5770 #endif
5771 bio->bi_bdev = dev->bdev;
5772
5773 btrfs_bio_counter_inc_noblocked(root->fs_info);
5774
5775 if (async)
5776 btrfs_schedule_bio(root, dev, rw, bio);
5777 else
5778 btrfsic_submit_bio(rw, bio);
5779 }
5780
breakup_stripe_bio(struct btrfs_root * root,struct btrfs_bio * bbio,struct bio * first_bio,struct btrfs_device * dev,int dev_nr,int rw,int async)5781 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5782 struct bio *first_bio, struct btrfs_device *dev,
5783 int dev_nr, int rw, int async)
5784 {
5785 struct bio_vec *bvec = first_bio->bi_io_vec;
5786 struct bio *bio;
5787 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5788 u64 physical = bbio->stripes[dev_nr].physical;
5789
5790 again:
5791 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5792 if (!bio)
5793 return -ENOMEM;
5794
5795 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5796 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5797 bvec->bv_offset) < bvec->bv_len) {
5798 u64 len = bio->bi_iter.bi_size;
5799
5800 atomic_inc(&bbio->stripes_pending);
5801 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5802 rw, async);
5803 physical += len;
5804 goto again;
5805 }
5806 bvec++;
5807 }
5808
5809 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5810 return 0;
5811 }
5812
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)5813 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5814 {
5815 atomic_inc(&bbio->error);
5816 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5817 /* Shoud be the original bio. */
5818 WARN_ON(bio != bbio->orig_bio);
5819
5820 bio->bi_private = bbio->private;
5821 bio->bi_end_io = bbio->end_io;
5822 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5823 bio->bi_iter.bi_sector = logical >> 9;
5824
5825 btrfs_end_bbio(bbio, bio, -EIO);
5826 }
5827 }
5828
btrfs_map_bio(struct btrfs_root * root,int rw,struct bio * bio,int mirror_num,int async_submit)5829 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5830 int mirror_num, int async_submit)
5831 {
5832 struct btrfs_device *dev;
5833 struct bio *first_bio = bio;
5834 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5835 u64 length = 0;
5836 u64 map_length;
5837 int ret;
5838 int dev_nr;
5839 int total_devs;
5840 struct btrfs_bio *bbio = NULL;
5841
5842 length = bio->bi_iter.bi_size;
5843 map_length = length;
5844
5845 btrfs_bio_counter_inc_blocked(root->fs_info);
5846 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5847 mirror_num, 1);
5848 if (ret) {
5849 btrfs_bio_counter_dec(root->fs_info);
5850 return ret;
5851 }
5852
5853 total_devs = bbio->num_stripes;
5854 bbio->orig_bio = first_bio;
5855 bbio->private = first_bio->bi_private;
5856 bbio->end_io = first_bio->bi_end_io;
5857 bbio->fs_info = root->fs_info;
5858 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5859
5860 if (bbio->raid_map) {
5861 /* In this case, map_length has been set to the length of
5862 a single stripe; not the whole write */
5863 if (rw & WRITE) {
5864 ret = raid56_parity_write(root, bio, bbio, map_length);
5865 } else {
5866 ret = raid56_parity_recover(root, bio, bbio, map_length,
5867 mirror_num, 1);
5868 }
5869
5870 btrfs_bio_counter_dec(root->fs_info);
5871 return ret;
5872 }
5873
5874 if (map_length < length) {
5875 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5876 logical, length, map_length);
5877 BUG();
5878 }
5879
5880 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5881 dev = bbio->stripes[dev_nr].dev;
5882 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5883 bbio_error(bbio, first_bio, logical);
5884 continue;
5885 }
5886
5887 /*
5888 * Check and see if we're ok with this bio based on it's size
5889 * and offset with the given device.
5890 */
5891 if (!bio_size_ok(dev->bdev, first_bio,
5892 bbio->stripes[dev_nr].physical >> 9)) {
5893 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5894 dev_nr, rw, async_submit);
5895 BUG_ON(ret);
5896 continue;
5897 }
5898
5899 if (dev_nr < total_devs - 1) {
5900 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5901 BUG_ON(!bio); /* -ENOMEM */
5902 } else {
5903 bio = first_bio;
5904 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5905 }
5906
5907 submit_stripe_bio(root, bbio, bio,
5908 bbio->stripes[dev_nr].physical, dev_nr, rw,
5909 async_submit);
5910 }
5911 btrfs_bio_counter_dec(root->fs_info);
5912 return 0;
5913 }
5914
btrfs_find_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,u8 * fsid)5915 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5916 u8 *uuid, u8 *fsid)
5917 {
5918 struct btrfs_device *device;
5919 struct btrfs_fs_devices *cur_devices;
5920
5921 cur_devices = fs_info->fs_devices;
5922 while (cur_devices) {
5923 if (!fsid ||
5924 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5925 device = __find_device(&cur_devices->devices,
5926 devid, uuid);
5927 if (device)
5928 return device;
5929 }
5930 cur_devices = cur_devices->seed;
5931 }
5932 return NULL;
5933 }
5934
add_missing_dev(struct btrfs_root * root,struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)5935 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5936 struct btrfs_fs_devices *fs_devices,
5937 u64 devid, u8 *dev_uuid)
5938 {
5939 struct btrfs_device *device;
5940
5941 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5942 if (IS_ERR(device))
5943 return NULL;
5944
5945 list_add(&device->dev_list, &fs_devices->devices);
5946 device->fs_devices = fs_devices;
5947 fs_devices->num_devices++;
5948
5949 device->missing = 1;
5950 fs_devices->missing_devices++;
5951
5952 return device;
5953 }
5954
5955 /**
5956 * btrfs_alloc_device - allocate struct btrfs_device
5957 * @fs_info: used only for generating a new devid, can be NULL if
5958 * devid is provided (i.e. @devid != NULL).
5959 * @devid: a pointer to devid for this device. If NULL a new devid
5960 * is generated.
5961 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5962 * is generated.
5963 *
5964 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5965 * on error. Returned struct is not linked onto any lists and can be
5966 * destroyed with kfree() right away.
5967 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)5968 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5969 const u64 *devid,
5970 const u8 *uuid)
5971 {
5972 struct btrfs_device *dev;
5973 u64 tmp;
5974
5975 if (WARN_ON(!devid && !fs_info))
5976 return ERR_PTR(-EINVAL);
5977
5978 dev = __alloc_device();
5979 if (IS_ERR(dev))
5980 return dev;
5981
5982 if (devid)
5983 tmp = *devid;
5984 else {
5985 int ret;
5986
5987 ret = find_next_devid(fs_info, &tmp);
5988 if (ret) {
5989 kfree(dev);
5990 return ERR_PTR(ret);
5991 }
5992 }
5993 dev->devid = tmp;
5994
5995 if (uuid)
5996 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5997 else
5998 generate_random_uuid(dev->uuid);
5999
6000 btrfs_init_work(&dev->work, btrfs_submit_helper,
6001 pending_bios_fn, NULL, NULL);
6002
6003 return dev;
6004 }
6005
read_one_chunk(struct btrfs_root * root,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6006 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6007 struct extent_buffer *leaf,
6008 struct btrfs_chunk *chunk)
6009 {
6010 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6011 struct map_lookup *map;
6012 struct extent_map *em;
6013 u64 logical;
6014 u64 length;
6015 u64 devid;
6016 u8 uuid[BTRFS_UUID_SIZE];
6017 int num_stripes;
6018 int ret;
6019 int i;
6020
6021 logical = key->offset;
6022 length = btrfs_chunk_length(leaf, chunk);
6023
6024 read_lock(&map_tree->map_tree.lock);
6025 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6026 read_unlock(&map_tree->map_tree.lock);
6027
6028 /* already mapped? */
6029 if (em && em->start <= logical && em->start + em->len > logical) {
6030 free_extent_map(em);
6031 return 0;
6032 } else if (em) {
6033 free_extent_map(em);
6034 }
6035
6036 em = alloc_extent_map();
6037 if (!em)
6038 return -ENOMEM;
6039 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6040 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6041 if (!map) {
6042 free_extent_map(em);
6043 return -ENOMEM;
6044 }
6045
6046 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6047 em->bdev = (struct block_device *)map;
6048 em->start = logical;
6049 em->len = length;
6050 em->orig_start = 0;
6051 em->block_start = 0;
6052 em->block_len = em->len;
6053
6054 map->num_stripes = num_stripes;
6055 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6056 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6057 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6058 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6059 map->type = btrfs_chunk_type(leaf, chunk);
6060 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6061 for (i = 0; i < num_stripes; i++) {
6062 map->stripes[i].physical =
6063 btrfs_stripe_offset_nr(leaf, chunk, i);
6064 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6065 read_extent_buffer(leaf, uuid, (unsigned long)
6066 btrfs_stripe_dev_uuid_nr(chunk, i),
6067 BTRFS_UUID_SIZE);
6068 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6069 uuid, NULL);
6070 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6071 free_extent_map(em);
6072 return -EIO;
6073 }
6074 if (!map->stripes[i].dev) {
6075 map->stripes[i].dev =
6076 add_missing_dev(root, root->fs_info->fs_devices,
6077 devid, uuid);
6078 if (!map->stripes[i].dev) {
6079 free_extent_map(em);
6080 return -EIO;
6081 }
6082 }
6083 map->stripes[i].dev->in_fs_metadata = 1;
6084 }
6085
6086 write_lock(&map_tree->map_tree.lock);
6087 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6088 write_unlock(&map_tree->map_tree.lock);
6089 BUG_ON(ret); /* Tree corruption */
6090 free_extent_map(em);
6091
6092 return 0;
6093 }
6094
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6095 static void fill_device_from_item(struct extent_buffer *leaf,
6096 struct btrfs_dev_item *dev_item,
6097 struct btrfs_device *device)
6098 {
6099 unsigned long ptr;
6100
6101 device->devid = btrfs_device_id(leaf, dev_item);
6102 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6103 device->total_bytes = device->disk_total_bytes;
6104 device->commit_total_bytes = device->disk_total_bytes;
6105 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6106 device->commit_bytes_used = device->bytes_used;
6107 device->type = btrfs_device_type(leaf, dev_item);
6108 device->io_align = btrfs_device_io_align(leaf, dev_item);
6109 device->io_width = btrfs_device_io_width(leaf, dev_item);
6110 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6111 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6112 device->is_tgtdev_for_dev_replace = 0;
6113
6114 ptr = btrfs_device_uuid(dev_item);
6115 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6116 }
6117
open_seed_devices(struct btrfs_root * root,u8 * fsid)6118 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6119 u8 *fsid)
6120 {
6121 struct btrfs_fs_devices *fs_devices;
6122 int ret;
6123
6124 BUG_ON(!mutex_is_locked(&uuid_mutex));
6125
6126 fs_devices = root->fs_info->fs_devices->seed;
6127 while (fs_devices) {
6128 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6129 return fs_devices;
6130
6131 fs_devices = fs_devices->seed;
6132 }
6133
6134 fs_devices = find_fsid(fsid);
6135 if (!fs_devices) {
6136 if (!btrfs_test_opt(root, DEGRADED))
6137 return ERR_PTR(-ENOENT);
6138
6139 fs_devices = alloc_fs_devices(fsid);
6140 if (IS_ERR(fs_devices))
6141 return fs_devices;
6142
6143 fs_devices->seeding = 1;
6144 fs_devices->opened = 1;
6145 return fs_devices;
6146 }
6147
6148 fs_devices = clone_fs_devices(fs_devices);
6149 if (IS_ERR(fs_devices))
6150 return fs_devices;
6151
6152 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6153 root->fs_info->bdev_holder);
6154 if (ret) {
6155 free_fs_devices(fs_devices);
6156 fs_devices = ERR_PTR(ret);
6157 goto out;
6158 }
6159
6160 if (!fs_devices->seeding) {
6161 __btrfs_close_devices(fs_devices);
6162 free_fs_devices(fs_devices);
6163 fs_devices = ERR_PTR(-EINVAL);
6164 goto out;
6165 }
6166
6167 fs_devices->seed = root->fs_info->fs_devices->seed;
6168 root->fs_info->fs_devices->seed = fs_devices;
6169 out:
6170 return fs_devices;
6171 }
6172
read_one_dev(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6173 static int read_one_dev(struct btrfs_root *root,
6174 struct extent_buffer *leaf,
6175 struct btrfs_dev_item *dev_item)
6176 {
6177 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6178 struct btrfs_device *device;
6179 u64 devid;
6180 int ret;
6181 u8 fs_uuid[BTRFS_UUID_SIZE];
6182 u8 dev_uuid[BTRFS_UUID_SIZE];
6183
6184 devid = btrfs_device_id(leaf, dev_item);
6185 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6186 BTRFS_UUID_SIZE);
6187 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6188 BTRFS_UUID_SIZE);
6189
6190 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6191 fs_devices = open_seed_devices(root, fs_uuid);
6192 if (IS_ERR(fs_devices))
6193 return PTR_ERR(fs_devices);
6194 }
6195
6196 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6197 if (!device) {
6198 if (!btrfs_test_opt(root, DEGRADED))
6199 return -EIO;
6200
6201 btrfs_warn(root->fs_info, "devid %llu missing", devid);
6202 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6203 if (!device)
6204 return -ENOMEM;
6205 } else {
6206 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6207 return -EIO;
6208
6209 if(!device->bdev && !device->missing) {
6210 /*
6211 * this happens when a device that was properly setup
6212 * in the device info lists suddenly goes bad.
6213 * device->bdev is NULL, and so we have to set
6214 * device->missing to one here
6215 */
6216 device->fs_devices->missing_devices++;
6217 device->missing = 1;
6218 }
6219
6220 /* Move the device to its own fs_devices */
6221 if (device->fs_devices != fs_devices) {
6222 ASSERT(device->missing);
6223
6224 list_move(&device->dev_list, &fs_devices->devices);
6225 device->fs_devices->num_devices--;
6226 fs_devices->num_devices++;
6227
6228 device->fs_devices->missing_devices--;
6229 fs_devices->missing_devices++;
6230
6231 device->fs_devices = fs_devices;
6232 }
6233 }
6234
6235 if (device->fs_devices != root->fs_info->fs_devices) {
6236 BUG_ON(device->writeable);
6237 if (device->generation !=
6238 btrfs_device_generation(leaf, dev_item))
6239 return -EINVAL;
6240 }
6241
6242 fill_device_from_item(leaf, dev_item, device);
6243 device->in_fs_metadata = 1;
6244 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6245 device->fs_devices->total_rw_bytes += device->total_bytes;
6246 spin_lock(&root->fs_info->free_chunk_lock);
6247 root->fs_info->free_chunk_space += device->total_bytes -
6248 device->bytes_used;
6249 spin_unlock(&root->fs_info->free_chunk_lock);
6250 }
6251 ret = 0;
6252 return ret;
6253 }
6254
btrfs_read_sys_array(struct btrfs_root * root)6255 int btrfs_read_sys_array(struct btrfs_root *root)
6256 {
6257 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6258 struct extent_buffer *sb;
6259 struct btrfs_disk_key *disk_key;
6260 struct btrfs_chunk *chunk;
6261 u8 *array_ptr;
6262 unsigned long sb_array_offset;
6263 int ret = 0;
6264 u32 num_stripes;
6265 u32 array_size;
6266 u32 len = 0;
6267 u32 cur_offset;
6268 struct btrfs_key key;
6269
6270 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6271 /*
6272 * This will create extent buffer of nodesize, superblock size is
6273 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6274 * overallocate but we can keep it as-is, only the first page is used.
6275 */
6276 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6277 if (!sb)
6278 return -ENOMEM;
6279 btrfs_set_buffer_uptodate(sb);
6280 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6281 /*
6282 * The sb extent buffer is artifical and just used to read the system array.
6283 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6284 * pages up-to-date when the page is larger: extent does not cover the
6285 * whole page and consequently check_page_uptodate does not find all
6286 * the page's extents up-to-date (the hole beyond sb),
6287 * write_extent_buffer then triggers a WARN_ON.
6288 *
6289 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6290 * but sb spans only this function. Add an explicit SetPageUptodate call
6291 * to silence the warning eg. on PowerPC 64.
6292 */
6293 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6294 SetPageUptodate(sb->pages[0]);
6295
6296 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6297 array_size = btrfs_super_sys_array_size(super_copy);
6298
6299 array_ptr = super_copy->sys_chunk_array;
6300 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6301 cur_offset = 0;
6302
6303 while (cur_offset < array_size) {
6304 disk_key = (struct btrfs_disk_key *)array_ptr;
6305 len = sizeof(*disk_key);
6306 if (cur_offset + len > array_size)
6307 goto out_short_read;
6308
6309 btrfs_disk_key_to_cpu(&key, disk_key);
6310
6311 array_ptr += len;
6312 sb_array_offset += len;
6313 cur_offset += len;
6314
6315 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6316 chunk = (struct btrfs_chunk *)sb_array_offset;
6317 /*
6318 * At least one btrfs_chunk with one stripe must be
6319 * present, exact stripe count check comes afterwards
6320 */
6321 len = btrfs_chunk_item_size(1);
6322 if (cur_offset + len > array_size)
6323 goto out_short_read;
6324
6325 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6326 if (!num_stripes) {
6327 printk(KERN_ERR
6328 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6329 num_stripes, cur_offset);
6330 ret = -EIO;
6331 break;
6332 }
6333
6334 len = btrfs_chunk_item_size(num_stripes);
6335 if (cur_offset + len > array_size)
6336 goto out_short_read;
6337
6338 ret = read_one_chunk(root, &key, sb, chunk);
6339 if (ret)
6340 break;
6341 } else {
6342 ret = -EIO;
6343 break;
6344 }
6345 array_ptr += len;
6346 sb_array_offset += len;
6347 cur_offset += len;
6348 }
6349 free_extent_buffer(sb);
6350 return ret;
6351
6352 out_short_read:
6353 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6354 len, cur_offset);
6355 free_extent_buffer(sb);
6356 return -EIO;
6357 }
6358
btrfs_read_chunk_tree(struct btrfs_root * root)6359 int btrfs_read_chunk_tree(struct btrfs_root *root)
6360 {
6361 struct btrfs_path *path;
6362 struct extent_buffer *leaf;
6363 struct btrfs_key key;
6364 struct btrfs_key found_key;
6365 int ret;
6366 int slot;
6367
6368 root = root->fs_info->chunk_root;
6369
6370 path = btrfs_alloc_path();
6371 if (!path)
6372 return -ENOMEM;
6373
6374 mutex_lock(&uuid_mutex);
6375 lock_chunks(root);
6376
6377 /*
6378 * Read all device items, and then all the chunk items. All
6379 * device items are found before any chunk item (their object id
6380 * is smaller than the lowest possible object id for a chunk
6381 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6382 */
6383 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6384 key.offset = 0;
6385 key.type = 0;
6386 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6387 if (ret < 0)
6388 goto error;
6389 while (1) {
6390 leaf = path->nodes[0];
6391 slot = path->slots[0];
6392 if (slot >= btrfs_header_nritems(leaf)) {
6393 ret = btrfs_next_leaf(root, path);
6394 if (ret == 0)
6395 continue;
6396 if (ret < 0)
6397 goto error;
6398 break;
6399 }
6400 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6401 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6402 struct btrfs_dev_item *dev_item;
6403 dev_item = btrfs_item_ptr(leaf, slot,
6404 struct btrfs_dev_item);
6405 ret = read_one_dev(root, leaf, dev_item);
6406 if (ret)
6407 goto error;
6408 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6409 struct btrfs_chunk *chunk;
6410 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6411 ret = read_one_chunk(root, &found_key, leaf, chunk);
6412 if (ret)
6413 goto error;
6414 }
6415 path->slots[0]++;
6416 }
6417 ret = 0;
6418 error:
6419 unlock_chunks(root);
6420 mutex_unlock(&uuid_mutex);
6421
6422 btrfs_free_path(path);
6423 return ret;
6424 }
6425
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)6426 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6427 {
6428 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6429 struct btrfs_device *device;
6430
6431 while (fs_devices) {
6432 mutex_lock(&fs_devices->device_list_mutex);
6433 list_for_each_entry(device, &fs_devices->devices, dev_list)
6434 device->dev_root = fs_info->dev_root;
6435 mutex_unlock(&fs_devices->device_list_mutex);
6436
6437 fs_devices = fs_devices->seed;
6438 }
6439 }
6440
__btrfs_reset_dev_stats(struct btrfs_device * dev)6441 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6442 {
6443 int i;
6444
6445 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6446 btrfs_dev_stat_reset(dev, i);
6447 }
6448
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)6449 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6450 {
6451 struct btrfs_key key;
6452 struct btrfs_key found_key;
6453 struct btrfs_root *dev_root = fs_info->dev_root;
6454 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6455 struct extent_buffer *eb;
6456 int slot;
6457 int ret = 0;
6458 struct btrfs_device *device;
6459 struct btrfs_path *path = NULL;
6460 int i;
6461
6462 path = btrfs_alloc_path();
6463 if (!path) {
6464 ret = -ENOMEM;
6465 goto out;
6466 }
6467
6468 mutex_lock(&fs_devices->device_list_mutex);
6469 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6470 int item_size;
6471 struct btrfs_dev_stats_item *ptr;
6472
6473 key.objectid = 0;
6474 key.type = BTRFS_DEV_STATS_KEY;
6475 key.offset = device->devid;
6476 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6477 if (ret) {
6478 __btrfs_reset_dev_stats(device);
6479 device->dev_stats_valid = 1;
6480 btrfs_release_path(path);
6481 continue;
6482 }
6483 slot = path->slots[0];
6484 eb = path->nodes[0];
6485 btrfs_item_key_to_cpu(eb, &found_key, slot);
6486 item_size = btrfs_item_size_nr(eb, slot);
6487
6488 ptr = btrfs_item_ptr(eb, slot,
6489 struct btrfs_dev_stats_item);
6490
6491 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6492 if (item_size >= (1 + i) * sizeof(__le64))
6493 btrfs_dev_stat_set(device, i,
6494 btrfs_dev_stats_value(eb, ptr, i));
6495 else
6496 btrfs_dev_stat_reset(device, i);
6497 }
6498
6499 device->dev_stats_valid = 1;
6500 btrfs_dev_stat_print_on_load(device);
6501 btrfs_release_path(path);
6502 }
6503 mutex_unlock(&fs_devices->device_list_mutex);
6504
6505 out:
6506 btrfs_free_path(path);
6507 return ret < 0 ? ret : 0;
6508 }
6509
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_root * dev_root,struct btrfs_device * device)6510 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6511 struct btrfs_root *dev_root,
6512 struct btrfs_device *device)
6513 {
6514 struct btrfs_path *path;
6515 struct btrfs_key key;
6516 struct extent_buffer *eb;
6517 struct btrfs_dev_stats_item *ptr;
6518 int ret;
6519 int i;
6520
6521 key.objectid = 0;
6522 key.type = BTRFS_DEV_STATS_KEY;
6523 key.offset = device->devid;
6524
6525 path = btrfs_alloc_path();
6526 BUG_ON(!path);
6527 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6528 if (ret < 0) {
6529 printk_in_rcu(KERN_WARNING "BTRFS: "
6530 "error %d while searching for dev_stats item for device %s!\n",
6531 ret, rcu_str_deref(device->name));
6532 goto out;
6533 }
6534
6535 if (ret == 0 &&
6536 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6537 /* need to delete old one and insert a new one */
6538 ret = btrfs_del_item(trans, dev_root, path);
6539 if (ret != 0) {
6540 printk_in_rcu(KERN_WARNING "BTRFS: "
6541 "delete too small dev_stats item for device %s failed %d!\n",
6542 rcu_str_deref(device->name), ret);
6543 goto out;
6544 }
6545 ret = 1;
6546 }
6547
6548 if (ret == 1) {
6549 /* need to insert a new item */
6550 btrfs_release_path(path);
6551 ret = btrfs_insert_empty_item(trans, dev_root, path,
6552 &key, sizeof(*ptr));
6553 if (ret < 0) {
6554 printk_in_rcu(KERN_WARNING "BTRFS: "
6555 "insert dev_stats item for device %s failed %d!\n",
6556 rcu_str_deref(device->name), ret);
6557 goto out;
6558 }
6559 }
6560
6561 eb = path->nodes[0];
6562 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6563 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6564 btrfs_set_dev_stats_value(eb, ptr, i,
6565 btrfs_dev_stat_read(device, i));
6566 btrfs_mark_buffer_dirty(eb);
6567
6568 out:
6569 btrfs_free_path(path);
6570 return ret;
6571 }
6572
6573 /*
6574 * called from commit_transaction. Writes all changed device stats to disk.
6575 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)6576 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6577 struct btrfs_fs_info *fs_info)
6578 {
6579 struct btrfs_root *dev_root = fs_info->dev_root;
6580 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6581 struct btrfs_device *device;
6582 int stats_cnt;
6583 int ret = 0;
6584
6585 mutex_lock(&fs_devices->device_list_mutex);
6586 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6587 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6588 continue;
6589
6590 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6591 ret = update_dev_stat_item(trans, dev_root, device);
6592 if (!ret)
6593 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6594 }
6595 mutex_unlock(&fs_devices->device_list_mutex);
6596
6597 return ret;
6598 }
6599
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)6600 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6601 {
6602 btrfs_dev_stat_inc(dev, index);
6603 btrfs_dev_stat_print_on_error(dev);
6604 }
6605
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)6606 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6607 {
6608 if (!dev->dev_stats_valid)
6609 return;
6610 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6611 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6612 rcu_str_deref(dev->name),
6613 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6614 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6615 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6616 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6617 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6618 }
6619
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)6620 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6621 {
6622 int i;
6623
6624 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6625 if (btrfs_dev_stat_read(dev, i) != 0)
6626 break;
6627 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6628 return; /* all values == 0, suppress message */
6629
6630 printk_in_rcu(KERN_INFO "BTRFS: "
6631 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6632 rcu_str_deref(dev->name),
6633 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6634 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6635 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6636 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6637 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6638 }
6639
btrfs_get_dev_stats(struct btrfs_root * root,struct btrfs_ioctl_get_dev_stats * stats)6640 int btrfs_get_dev_stats(struct btrfs_root *root,
6641 struct btrfs_ioctl_get_dev_stats *stats)
6642 {
6643 struct btrfs_device *dev;
6644 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6645 int i;
6646
6647 mutex_lock(&fs_devices->device_list_mutex);
6648 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6649 mutex_unlock(&fs_devices->device_list_mutex);
6650
6651 if (!dev) {
6652 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6653 return -ENODEV;
6654 } else if (!dev->dev_stats_valid) {
6655 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6656 return -ENODEV;
6657 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6658 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6659 if (stats->nr_items > i)
6660 stats->values[i] =
6661 btrfs_dev_stat_read_and_reset(dev, i);
6662 else
6663 btrfs_dev_stat_reset(dev, i);
6664 }
6665 } else {
6666 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6667 if (stats->nr_items > i)
6668 stats->values[i] = btrfs_dev_stat_read(dev, i);
6669 }
6670 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6671 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6672 return 0;
6673 }
6674
btrfs_scratch_superblock(struct btrfs_device * device)6675 int btrfs_scratch_superblock(struct btrfs_device *device)
6676 {
6677 struct buffer_head *bh;
6678 struct btrfs_super_block *disk_super;
6679
6680 bh = btrfs_read_dev_super(device->bdev);
6681 if (!bh)
6682 return -EINVAL;
6683 disk_super = (struct btrfs_super_block *)bh->b_data;
6684
6685 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6686 set_buffer_dirty(bh);
6687 sync_dirty_buffer(bh);
6688 brelse(bh);
6689
6690 return 0;
6691 }
6692
6693 /*
6694 * Update the size of all devices, which is used for writing out the
6695 * super blocks.
6696 */
btrfs_update_commit_device_size(struct btrfs_fs_info * fs_info)6697 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6698 {
6699 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6700 struct btrfs_device *curr, *next;
6701
6702 if (list_empty(&fs_devices->resized_devices))
6703 return;
6704
6705 mutex_lock(&fs_devices->device_list_mutex);
6706 lock_chunks(fs_info->dev_root);
6707 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6708 resized_list) {
6709 list_del_init(&curr->resized_list);
6710 curr->commit_total_bytes = curr->disk_total_bytes;
6711 }
6712 unlock_chunks(fs_info->dev_root);
6713 mutex_unlock(&fs_devices->device_list_mutex);
6714 }
6715
6716 /* Must be invoked during the transaction commit */
btrfs_update_commit_device_bytes_used(struct btrfs_root * root,struct btrfs_transaction * transaction)6717 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6718 struct btrfs_transaction *transaction)
6719 {
6720 struct extent_map *em;
6721 struct map_lookup *map;
6722 struct btrfs_device *dev;
6723 int i;
6724
6725 if (list_empty(&transaction->pending_chunks))
6726 return;
6727
6728 /* In order to kick the device replace finish process */
6729 lock_chunks(root);
6730 list_for_each_entry(em, &transaction->pending_chunks, list) {
6731 map = (struct map_lookup *)em->bdev;
6732
6733 for (i = 0; i < map->num_stripes; i++) {
6734 dev = map->stripes[i].dev;
6735 dev->commit_bytes_used = dev->bytes_used;
6736 }
6737 }
6738 unlock_chunks(root);
6739 }
6740