1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
bio_find_or_create_slab(unsigned int extra_size)71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
bio_put_slab(struct bio_set * bs)127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
bvec_nr_vecs(unsigned short idx)156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172 }
173
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176 {
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235 }
236
__bio_free(struct bio * bio)237 static void __bio_free(struct bio *bio)
238 {
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243 }
244
bio_free(struct bio * bio)245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
bio_init(struct bio * bio)269 void bio_init(struct bio *bio)
270 {
271 memset(bio, 0, sizeof(*bio));
272 bio->bi_flags = 1 << BIO_UPTODATE;
273 atomic_set(&bio->bi_remaining, 1);
274 atomic_set(&bio->bi_cnt, 1);
275 }
276 EXPORT_SYMBOL(bio_init);
277
278 /**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
bio_reset(struct bio * bio)288 void bio_reset(struct bio *bio)
289 {
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
292 __bio_free(bio);
293
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags|(1 << BIO_UPTODATE);
296 atomic_set(&bio->bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299
bio_chain_endio(struct bio * bio,int error)300 static void bio_chain_endio(struct bio *bio, int error)
301 {
302 bio_endio(bio->bi_private, error);
303 bio_put(bio);
304 }
305
306 /**
307 * bio_chain - chain bio completions
308 * @bio: the target bio
309 * @parent: the @bio's parent bio
310 *
311 * The caller won't have a bi_end_io called when @bio completes - instead,
312 * @parent's bi_end_io won't be called until both @parent and @bio have
313 * completed; the chained bio will also be freed when it completes.
314 *
315 * The caller must not set bi_private or bi_end_io in @bio.
316 */
bio_chain(struct bio * bio,struct bio * parent)317 void bio_chain(struct bio *bio, struct bio *parent)
318 {
319 BUG_ON(bio->bi_private || bio->bi_end_io);
320
321 bio->bi_private = parent;
322 bio->bi_end_io = bio_chain_endio;
323 atomic_inc(&parent->bi_remaining);
324 }
325 EXPORT_SYMBOL(bio_chain);
326
bio_alloc_rescue(struct work_struct * work)327 static void bio_alloc_rescue(struct work_struct *work)
328 {
329 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
330 struct bio *bio;
331
332 while (1) {
333 spin_lock(&bs->rescue_lock);
334 bio = bio_list_pop(&bs->rescue_list);
335 spin_unlock(&bs->rescue_lock);
336
337 if (!bio)
338 break;
339
340 generic_make_request(bio);
341 }
342 }
343
punt_bios_to_rescuer(struct bio_set * bs)344 static void punt_bios_to_rescuer(struct bio_set *bs)
345 {
346 struct bio_list punt, nopunt;
347 struct bio *bio;
348
349 /*
350 * In order to guarantee forward progress we must punt only bios that
351 * were allocated from this bio_set; otherwise, if there was a bio on
352 * there for a stacking driver higher up in the stack, processing it
353 * could require allocating bios from this bio_set, and doing that from
354 * our own rescuer would be bad.
355 *
356 * Since bio lists are singly linked, pop them all instead of trying to
357 * remove from the middle of the list:
358 */
359
360 bio_list_init(&punt);
361 bio_list_init(&nopunt);
362
363 while ((bio = bio_list_pop(current->bio_list)))
364 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
365
366 *current->bio_list = nopunt;
367
368 spin_lock(&bs->rescue_lock);
369 bio_list_merge(&bs->rescue_list, &punt);
370 spin_unlock(&bs->rescue_lock);
371
372 queue_work(bs->rescue_workqueue, &bs->rescue_work);
373 }
374
375 /**
376 * bio_alloc_bioset - allocate a bio for I/O
377 * @gfp_mask: the GFP_ mask given to the slab allocator
378 * @nr_iovecs: number of iovecs to pre-allocate
379 * @bs: the bio_set to allocate from.
380 *
381 * Description:
382 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
383 * backed by the @bs's mempool.
384 *
385 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
386 * able to allocate a bio. This is due to the mempool guarantees. To make this
387 * work, callers must never allocate more than 1 bio at a time from this pool.
388 * Callers that need to allocate more than 1 bio must always submit the
389 * previously allocated bio for IO before attempting to allocate a new one.
390 * Failure to do so can cause deadlocks under memory pressure.
391 *
392 * Note that when running under generic_make_request() (i.e. any block
393 * driver), bios are not submitted until after you return - see the code in
394 * generic_make_request() that converts recursion into iteration, to prevent
395 * stack overflows.
396 *
397 * This would normally mean allocating multiple bios under
398 * generic_make_request() would be susceptible to deadlocks, but we have
399 * deadlock avoidance code that resubmits any blocked bios from a rescuer
400 * thread.
401 *
402 * However, we do not guarantee forward progress for allocations from other
403 * mempools. Doing multiple allocations from the same mempool under
404 * generic_make_request() should be avoided - instead, use bio_set's front_pad
405 * for per bio allocations.
406 *
407 * RETURNS:
408 * Pointer to new bio on success, NULL on failure.
409 */
bio_alloc_bioset(gfp_t gfp_mask,int nr_iovecs,struct bio_set * bs)410 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
411 {
412 gfp_t saved_gfp = gfp_mask;
413 unsigned front_pad;
414 unsigned inline_vecs;
415 unsigned long idx = BIO_POOL_NONE;
416 struct bio_vec *bvl = NULL;
417 struct bio *bio;
418 void *p;
419
420 if (!bs) {
421 if (nr_iovecs > UIO_MAXIOV)
422 return NULL;
423
424 p = kmalloc(sizeof(struct bio) +
425 nr_iovecs * sizeof(struct bio_vec),
426 gfp_mask);
427 front_pad = 0;
428 inline_vecs = nr_iovecs;
429 } else {
430 /* should not use nobvec bioset for nr_iovecs > 0 */
431 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
432 return NULL;
433 /*
434 * generic_make_request() converts recursion to iteration; this
435 * means if we're running beneath it, any bios we allocate and
436 * submit will not be submitted (and thus freed) until after we
437 * return.
438 *
439 * This exposes us to a potential deadlock if we allocate
440 * multiple bios from the same bio_set() while running
441 * underneath generic_make_request(). If we were to allocate
442 * multiple bios (say a stacking block driver that was splitting
443 * bios), we would deadlock if we exhausted the mempool's
444 * reserve.
445 *
446 * We solve this, and guarantee forward progress, with a rescuer
447 * workqueue per bio_set. If we go to allocate and there are
448 * bios on current->bio_list, we first try the allocation
449 * without __GFP_WAIT; if that fails, we punt those bios we
450 * would be blocking to the rescuer workqueue before we retry
451 * with the original gfp_flags.
452 */
453
454 if (current->bio_list && !bio_list_empty(current->bio_list))
455 gfp_mask &= ~__GFP_WAIT;
456
457 p = mempool_alloc(bs->bio_pool, gfp_mask);
458 if (!p && gfp_mask != saved_gfp) {
459 punt_bios_to_rescuer(bs);
460 gfp_mask = saved_gfp;
461 p = mempool_alloc(bs->bio_pool, gfp_mask);
462 }
463
464 front_pad = bs->front_pad;
465 inline_vecs = BIO_INLINE_VECS;
466 }
467
468 if (unlikely(!p))
469 return NULL;
470
471 bio = p + front_pad;
472 bio_init(bio);
473
474 if (nr_iovecs > inline_vecs) {
475 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
476 if (!bvl && gfp_mask != saved_gfp) {
477 punt_bios_to_rescuer(bs);
478 gfp_mask = saved_gfp;
479 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
480 }
481
482 if (unlikely(!bvl))
483 goto err_free;
484
485 bio->bi_flags |= 1 << BIO_OWNS_VEC;
486 } else if (nr_iovecs) {
487 bvl = bio->bi_inline_vecs;
488 }
489
490 bio->bi_pool = bs;
491 bio->bi_flags |= idx << BIO_POOL_OFFSET;
492 bio->bi_max_vecs = nr_iovecs;
493 bio->bi_io_vec = bvl;
494 return bio;
495
496 err_free:
497 mempool_free(p, bs->bio_pool);
498 return NULL;
499 }
500 EXPORT_SYMBOL(bio_alloc_bioset);
501
zero_fill_bio(struct bio * bio)502 void zero_fill_bio(struct bio *bio)
503 {
504 unsigned long flags;
505 struct bio_vec bv;
506 struct bvec_iter iter;
507
508 bio_for_each_segment(bv, bio, iter) {
509 char *data = bvec_kmap_irq(&bv, &flags);
510 memset(data, 0, bv.bv_len);
511 flush_dcache_page(bv.bv_page);
512 bvec_kunmap_irq(data, &flags);
513 }
514 }
515 EXPORT_SYMBOL(zero_fill_bio);
516
517 /**
518 * bio_put - release a reference to a bio
519 * @bio: bio to release reference to
520 *
521 * Description:
522 * Put a reference to a &struct bio, either one you have gotten with
523 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
524 **/
bio_put(struct bio * bio)525 void bio_put(struct bio *bio)
526 {
527 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
528
529 /*
530 * last put frees it
531 */
532 if (atomic_dec_and_test(&bio->bi_cnt))
533 bio_free(bio);
534 }
535 EXPORT_SYMBOL(bio_put);
536
bio_phys_segments(struct request_queue * q,struct bio * bio)537 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
538 {
539 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
540 blk_recount_segments(q, bio);
541
542 return bio->bi_phys_segments;
543 }
544 EXPORT_SYMBOL(bio_phys_segments);
545
546 /**
547 * __bio_clone_fast - clone a bio that shares the original bio's biovec
548 * @bio: destination bio
549 * @bio_src: bio to clone
550 *
551 * Clone a &bio. Caller will own the returned bio, but not
552 * the actual data it points to. Reference count of returned
553 * bio will be one.
554 *
555 * Caller must ensure that @bio_src is not freed before @bio.
556 */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)557 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
558 {
559 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
560
561 /*
562 * most users will be overriding ->bi_bdev with a new target,
563 * so we don't set nor calculate new physical/hw segment counts here
564 */
565 bio->bi_bdev = bio_src->bi_bdev;
566 bio->bi_flags |= 1 << BIO_CLONED;
567 bio->bi_rw = bio_src->bi_rw;
568 bio->bi_iter = bio_src->bi_iter;
569 bio->bi_io_vec = bio_src->bi_io_vec;
570 }
571 EXPORT_SYMBOL(__bio_clone_fast);
572
573 /**
574 * bio_clone_fast - clone a bio that shares the original bio's biovec
575 * @bio: bio to clone
576 * @gfp_mask: allocation priority
577 * @bs: bio_set to allocate from
578 *
579 * Like __bio_clone_fast, only also allocates the returned bio
580 */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)581 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
582 {
583 struct bio *b;
584
585 b = bio_alloc_bioset(gfp_mask, 0, bs);
586 if (!b)
587 return NULL;
588
589 __bio_clone_fast(b, bio);
590
591 if (bio_integrity(bio)) {
592 int ret;
593
594 ret = bio_integrity_clone(b, bio, gfp_mask);
595
596 if (ret < 0) {
597 bio_put(b);
598 return NULL;
599 }
600 }
601
602 return b;
603 }
604 EXPORT_SYMBOL(bio_clone_fast);
605
606 /**
607 * bio_clone_bioset - clone a bio
608 * @bio_src: bio to clone
609 * @gfp_mask: allocation priority
610 * @bs: bio_set to allocate from
611 *
612 * Clone bio. Caller will own the returned bio, but not the actual data it
613 * points to. Reference count of returned bio will be one.
614 */
bio_clone_bioset(struct bio * bio_src,gfp_t gfp_mask,struct bio_set * bs)615 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
616 struct bio_set *bs)
617 {
618 struct bvec_iter iter;
619 struct bio_vec bv;
620 struct bio *bio;
621
622 /*
623 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
624 * bio_src->bi_io_vec to bio->bi_io_vec.
625 *
626 * We can't do that anymore, because:
627 *
628 * - The point of cloning the biovec is to produce a bio with a biovec
629 * the caller can modify: bi_idx and bi_bvec_done should be 0.
630 *
631 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
632 * we tried to clone the whole thing bio_alloc_bioset() would fail.
633 * But the clone should succeed as long as the number of biovecs we
634 * actually need to allocate is fewer than BIO_MAX_PAGES.
635 *
636 * - Lastly, bi_vcnt should not be looked at or relied upon by code
637 * that does not own the bio - reason being drivers don't use it for
638 * iterating over the biovec anymore, so expecting it to be kept up
639 * to date (i.e. for clones that share the parent biovec) is just
640 * asking for trouble and would force extra work on
641 * __bio_clone_fast() anyways.
642 */
643
644 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
645 if (!bio)
646 return NULL;
647
648 bio->bi_bdev = bio_src->bi_bdev;
649 bio->bi_rw = bio_src->bi_rw;
650 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
651 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
652
653 if (bio->bi_rw & REQ_DISCARD)
654 goto integrity_clone;
655
656 if (bio->bi_rw & REQ_WRITE_SAME) {
657 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
658 goto integrity_clone;
659 }
660
661 bio_for_each_segment(bv, bio_src, iter)
662 bio->bi_io_vec[bio->bi_vcnt++] = bv;
663
664 integrity_clone:
665 if (bio_integrity(bio_src)) {
666 int ret;
667
668 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
669 if (ret < 0) {
670 bio_put(bio);
671 return NULL;
672 }
673 }
674
675 return bio;
676 }
677 EXPORT_SYMBOL(bio_clone_bioset);
678
679 /**
680 * bio_get_nr_vecs - return approx number of vecs
681 * @bdev: I/O target
682 *
683 * Return the approximate number of pages we can send to this target.
684 * There's no guarantee that you will be able to fit this number of pages
685 * into a bio, it does not account for dynamic restrictions that vary
686 * on offset.
687 */
bio_get_nr_vecs(struct block_device * bdev)688 int bio_get_nr_vecs(struct block_device *bdev)
689 {
690 struct request_queue *q = bdev_get_queue(bdev);
691 int nr_pages;
692
693 nr_pages = min_t(unsigned,
694 queue_max_segments(q),
695 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
696
697 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
698
699 }
700 EXPORT_SYMBOL(bio_get_nr_vecs);
701
__bio_add_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned int max_sectors)702 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
703 *page, unsigned int len, unsigned int offset,
704 unsigned int max_sectors)
705 {
706 int retried_segments = 0;
707 struct bio_vec *bvec;
708
709 /*
710 * cloned bio must not modify vec list
711 */
712 if (unlikely(bio_flagged(bio, BIO_CLONED)))
713 return 0;
714
715 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
716 return 0;
717
718 /*
719 * For filesystems with a blocksize smaller than the pagesize
720 * we will often be called with the same page as last time and
721 * a consecutive offset. Optimize this special case.
722 */
723 if (bio->bi_vcnt > 0) {
724 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
725
726 if (page == prev->bv_page &&
727 offset == prev->bv_offset + prev->bv_len) {
728 unsigned int prev_bv_len = prev->bv_len;
729 prev->bv_len += len;
730
731 if (q->merge_bvec_fn) {
732 struct bvec_merge_data bvm = {
733 /* prev_bvec is already charged in
734 bi_size, discharge it in order to
735 simulate merging updated prev_bvec
736 as new bvec. */
737 .bi_bdev = bio->bi_bdev,
738 .bi_sector = bio->bi_iter.bi_sector,
739 .bi_size = bio->bi_iter.bi_size -
740 prev_bv_len,
741 .bi_rw = bio->bi_rw,
742 };
743
744 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
745 prev->bv_len -= len;
746 return 0;
747 }
748 }
749
750 bio->bi_iter.bi_size += len;
751 goto done;
752 }
753
754 /*
755 * If the queue doesn't support SG gaps and adding this
756 * offset would create a gap, disallow it.
757 */
758 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
759 bvec_gap_to_prev(prev, offset))
760 return 0;
761 }
762
763 if (bio->bi_vcnt >= bio->bi_max_vecs)
764 return 0;
765
766 /*
767 * setup the new entry, we might clear it again later if we
768 * cannot add the page
769 */
770 bvec = &bio->bi_io_vec[bio->bi_vcnt];
771 bvec->bv_page = page;
772 bvec->bv_len = len;
773 bvec->bv_offset = offset;
774 bio->bi_vcnt++;
775 bio->bi_phys_segments++;
776 bio->bi_iter.bi_size += len;
777
778 /*
779 * Perform a recount if the number of segments is greater
780 * than queue_max_segments(q).
781 */
782
783 while (bio->bi_phys_segments > queue_max_segments(q)) {
784
785 if (retried_segments)
786 goto failed;
787
788 retried_segments = 1;
789 blk_recount_segments(q, bio);
790 }
791
792 /*
793 * if queue has other restrictions (eg varying max sector size
794 * depending on offset), it can specify a merge_bvec_fn in the
795 * queue to get further control
796 */
797 if (q->merge_bvec_fn) {
798 struct bvec_merge_data bvm = {
799 .bi_bdev = bio->bi_bdev,
800 .bi_sector = bio->bi_iter.bi_sector,
801 .bi_size = bio->bi_iter.bi_size - len,
802 .bi_rw = bio->bi_rw,
803 };
804
805 /*
806 * merge_bvec_fn() returns number of bytes it can accept
807 * at this offset
808 */
809 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
810 goto failed;
811 }
812
813 /* If we may be able to merge these biovecs, force a recount */
814 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
815 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
816
817 done:
818 return len;
819
820 failed:
821 bvec->bv_page = NULL;
822 bvec->bv_len = 0;
823 bvec->bv_offset = 0;
824 bio->bi_vcnt--;
825 bio->bi_iter.bi_size -= len;
826 blk_recount_segments(q, bio);
827 return 0;
828 }
829
830 /**
831 * bio_add_pc_page - attempt to add page to bio
832 * @q: the target queue
833 * @bio: destination bio
834 * @page: page to add
835 * @len: vec entry length
836 * @offset: vec entry offset
837 *
838 * Attempt to add a page to the bio_vec maplist. This can fail for a
839 * number of reasons, such as the bio being full or target block device
840 * limitations. The target block device must allow bio's up to PAGE_SIZE,
841 * so it is always possible to add a single page to an empty bio.
842 *
843 * This should only be used by REQ_PC bios.
844 */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)845 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
846 unsigned int len, unsigned int offset)
847 {
848 return __bio_add_page(q, bio, page, len, offset,
849 queue_max_hw_sectors(q));
850 }
851 EXPORT_SYMBOL(bio_add_pc_page);
852
853 /**
854 * bio_add_page - attempt to add page to bio
855 * @bio: destination bio
856 * @page: page to add
857 * @len: vec entry length
858 * @offset: vec entry offset
859 *
860 * Attempt to add a page to the bio_vec maplist. This can fail for a
861 * number of reasons, such as the bio being full or target block device
862 * limitations. The target block device must allow bio's up to PAGE_SIZE,
863 * so it is always possible to add a single page to an empty bio.
864 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)865 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
866 unsigned int offset)
867 {
868 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
869 unsigned int max_sectors;
870
871 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
872 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
873 max_sectors = len >> 9;
874
875 return __bio_add_page(q, bio, page, len, offset, max_sectors);
876 }
877 EXPORT_SYMBOL(bio_add_page);
878
879 struct submit_bio_ret {
880 struct completion event;
881 int error;
882 };
883
submit_bio_wait_endio(struct bio * bio,int error)884 static void submit_bio_wait_endio(struct bio *bio, int error)
885 {
886 struct submit_bio_ret *ret = bio->bi_private;
887
888 ret->error = error;
889 complete(&ret->event);
890 }
891
892 /**
893 * submit_bio_wait - submit a bio, and wait until it completes
894 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
895 * @bio: The &struct bio which describes the I/O
896 *
897 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
898 * bio_endio() on failure.
899 */
submit_bio_wait(int rw,struct bio * bio)900 int submit_bio_wait(int rw, struct bio *bio)
901 {
902 struct submit_bio_ret ret;
903
904 rw |= REQ_SYNC;
905 init_completion(&ret.event);
906 bio->bi_private = &ret;
907 bio->bi_end_io = submit_bio_wait_endio;
908 submit_bio(rw, bio);
909 wait_for_completion(&ret.event);
910
911 return ret.error;
912 }
913 EXPORT_SYMBOL(submit_bio_wait);
914
915 /**
916 * bio_advance - increment/complete a bio by some number of bytes
917 * @bio: bio to advance
918 * @bytes: number of bytes to complete
919 *
920 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
921 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
922 * be updated on the last bvec as well.
923 *
924 * @bio will then represent the remaining, uncompleted portion of the io.
925 */
bio_advance(struct bio * bio,unsigned bytes)926 void bio_advance(struct bio *bio, unsigned bytes)
927 {
928 if (bio_integrity(bio))
929 bio_integrity_advance(bio, bytes);
930
931 bio_advance_iter(bio, &bio->bi_iter, bytes);
932 }
933 EXPORT_SYMBOL(bio_advance);
934
935 /**
936 * bio_alloc_pages - allocates a single page for each bvec in a bio
937 * @bio: bio to allocate pages for
938 * @gfp_mask: flags for allocation
939 *
940 * Allocates pages up to @bio->bi_vcnt.
941 *
942 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
943 * freed.
944 */
bio_alloc_pages(struct bio * bio,gfp_t gfp_mask)945 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
946 {
947 int i;
948 struct bio_vec *bv;
949
950 bio_for_each_segment_all(bv, bio, i) {
951 bv->bv_page = alloc_page(gfp_mask);
952 if (!bv->bv_page) {
953 while (--bv >= bio->bi_io_vec)
954 __free_page(bv->bv_page);
955 return -ENOMEM;
956 }
957 }
958
959 return 0;
960 }
961 EXPORT_SYMBOL(bio_alloc_pages);
962
963 /**
964 * bio_copy_data - copy contents of data buffers from one chain of bios to
965 * another
966 * @src: source bio list
967 * @dst: destination bio list
968 *
969 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
970 * @src and @dst as linked lists of bios.
971 *
972 * Stops when it reaches the end of either @src or @dst - that is, copies
973 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
974 */
bio_copy_data(struct bio * dst,struct bio * src)975 void bio_copy_data(struct bio *dst, struct bio *src)
976 {
977 struct bvec_iter src_iter, dst_iter;
978 struct bio_vec src_bv, dst_bv;
979 void *src_p, *dst_p;
980 unsigned bytes;
981
982 src_iter = src->bi_iter;
983 dst_iter = dst->bi_iter;
984
985 while (1) {
986 if (!src_iter.bi_size) {
987 src = src->bi_next;
988 if (!src)
989 break;
990
991 src_iter = src->bi_iter;
992 }
993
994 if (!dst_iter.bi_size) {
995 dst = dst->bi_next;
996 if (!dst)
997 break;
998
999 dst_iter = dst->bi_iter;
1000 }
1001
1002 src_bv = bio_iter_iovec(src, src_iter);
1003 dst_bv = bio_iter_iovec(dst, dst_iter);
1004
1005 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1006
1007 src_p = kmap_atomic(src_bv.bv_page);
1008 dst_p = kmap_atomic(dst_bv.bv_page);
1009
1010 memcpy(dst_p + dst_bv.bv_offset,
1011 src_p + src_bv.bv_offset,
1012 bytes);
1013
1014 kunmap_atomic(dst_p);
1015 kunmap_atomic(src_p);
1016
1017 bio_advance_iter(src, &src_iter, bytes);
1018 bio_advance_iter(dst, &dst_iter, bytes);
1019 }
1020 }
1021 EXPORT_SYMBOL(bio_copy_data);
1022
1023 struct bio_map_data {
1024 int is_our_pages;
1025 struct iov_iter iter;
1026 struct iovec iov[];
1027 };
1028
bio_alloc_map_data(unsigned int iov_count,gfp_t gfp_mask)1029 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1030 gfp_t gfp_mask)
1031 {
1032 if (iov_count > UIO_MAXIOV)
1033 return NULL;
1034
1035 return kmalloc(sizeof(struct bio_map_data) +
1036 sizeof(struct iovec) * iov_count, gfp_mask);
1037 }
1038
1039 /**
1040 * bio_copy_from_iter - copy all pages from iov_iter to bio
1041 * @bio: The &struct bio which describes the I/O as destination
1042 * @iter: iov_iter as source
1043 *
1044 * Copy all pages from iov_iter to bio.
1045 * Returns 0 on success, or error on failure.
1046 */
bio_copy_from_iter(struct bio * bio,struct iov_iter iter)1047 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1048 {
1049 int i;
1050 struct bio_vec *bvec;
1051
1052 bio_for_each_segment_all(bvec, bio, i) {
1053 ssize_t ret;
1054
1055 ret = copy_page_from_iter(bvec->bv_page,
1056 bvec->bv_offset,
1057 bvec->bv_len,
1058 &iter);
1059
1060 if (!iov_iter_count(&iter))
1061 break;
1062
1063 if (ret < bvec->bv_len)
1064 return -EFAULT;
1065 }
1066
1067 return 0;
1068 }
1069
1070 /**
1071 * bio_copy_to_iter - copy all pages from bio to iov_iter
1072 * @bio: The &struct bio which describes the I/O as source
1073 * @iter: iov_iter as destination
1074 *
1075 * Copy all pages from bio to iov_iter.
1076 * Returns 0 on success, or error on failure.
1077 */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1078 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1079 {
1080 int i;
1081 struct bio_vec *bvec;
1082
1083 bio_for_each_segment_all(bvec, bio, i) {
1084 ssize_t ret;
1085
1086 ret = copy_page_to_iter(bvec->bv_page,
1087 bvec->bv_offset,
1088 bvec->bv_len,
1089 &iter);
1090
1091 if (!iov_iter_count(&iter))
1092 break;
1093
1094 if (ret < bvec->bv_len)
1095 return -EFAULT;
1096 }
1097
1098 return 0;
1099 }
1100
bio_free_pages(struct bio * bio)1101 static void bio_free_pages(struct bio *bio)
1102 {
1103 struct bio_vec *bvec;
1104 int i;
1105
1106 bio_for_each_segment_all(bvec, bio, i)
1107 __free_page(bvec->bv_page);
1108 }
1109
1110 /**
1111 * bio_uncopy_user - finish previously mapped bio
1112 * @bio: bio being terminated
1113 *
1114 * Free pages allocated from bio_copy_user_iov() and write back data
1115 * to user space in case of a read.
1116 */
bio_uncopy_user(struct bio * bio)1117 int bio_uncopy_user(struct bio *bio)
1118 {
1119 struct bio_map_data *bmd = bio->bi_private;
1120 int ret = 0;
1121
1122 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1123 /*
1124 * if we're in a workqueue, the request is orphaned, so
1125 * don't copy into a random user address space, just free
1126 * and return -EINTR so user space doesn't expect any data.
1127 */
1128 if (!current->mm)
1129 ret = -EINTR;
1130 else if (bio_data_dir(bio) == READ)
1131 ret = bio_copy_to_iter(bio, bmd->iter);
1132 if (bmd->is_our_pages)
1133 bio_free_pages(bio);
1134 }
1135 kfree(bmd);
1136 bio_put(bio);
1137 return ret;
1138 }
1139 EXPORT_SYMBOL(bio_uncopy_user);
1140
1141 /**
1142 * bio_copy_user_iov - copy user data to bio
1143 * @q: destination block queue
1144 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1145 * @iter: iovec iterator
1146 * @gfp_mask: memory allocation flags
1147 *
1148 * Prepares and returns a bio for indirect user io, bouncing data
1149 * to/from kernel pages as necessary. Must be paired with
1150 * call bio_uncopy_user() on io completion.
1151 */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)1152 struct bio *bio_copy_user_iov(struct request_queue *q,
1153 struct rq_map_data *map_data,
1154 const struct iov_iter *iter,
1155 gfp_t gfp_mask)
1156 {
1157 struct bio_map_data *bmd;
1158 struct page *page;
1159 struct bio *bio;
1160 int i, ret;
1161 int nr_pages = 0;
1162 unsigned int len = iter->count;
1163 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1164
1165 for (i = 0; i < iter->nr_segs; i++) {
1166 unsigned long uaddr;
1167 unsigned long end;
1168 unsigned long start;
1169
1170 uaddr = (unsigned long) iter->iov[i].iov_base;
1171 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1172 >> PAGE_SHIFT;
1173 start = uaddr >> PAGE_SHIFT;
1174
1175 /*
1176 * Overflow, abort
1177 */
1178 if (end < start)
1179 return ERR_PTR(-EINVAL);
1180
1181 nr_pages += end - start;
1182 }
1183
1184 if (offset)
1185 nr_pages++;
1186
1187 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1188 if (!bmd)
1189 return ERR_PTR(-ENOMEM);
1190
1191 /*
1192 * We need to do a deep copy of the iov_iter including the iovecs.
1193 * The caller provided iov might point to an on-stack or otherwise
1194 * shortlived one.
1195 */
1196 bmd->is_our_pages = map_data ? 0 : 1;
1197 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1198 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1199 iter->nr_segs, iter->count);
1200
1201 ret = -ENOMEM;
1202 bio = bio_kmalloc(gfp_mask, nr_pages);
1203 if (!bio)
1204 goto out_bmd;
1205
1206 if (iter->type & WRITE)
1207 bio->bi_rw |= REQ_WRITE;
1208
1209 ret = 0;
1210
1211 if (map_data) {
1212 nr_pages = 1 << map_data->page_order;
1213 i = map_data->offset / PAGE_SIZE;
1214 }
1215 while (len) {
1216 unsigned int bytes = PAGE_SIZE;
1217
1218 bytes -= offset;
1219
1220 if (bytes > len)
1221 bytes = len;
1222
1223 if (map_data) {
1224 if (i == map_data->nr_entries * nr_pages) {
1225 ret = -ENOMEM;
1226 break;
1227 }
1228
1229 page = map_data->pages[i / nr_pages];
1230 page += (i % nr_pages);
1231
1232 i++;
1233 } else {
1234 page = alloc_page(q->bounce_gfp | gfp_mask);
1235 if (!page) {
1236 ret = -ENOMEM;
1237 break;
1238 }
1239 }
1240
1241 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1242 break;
1243
1244 len -= bytes;
1245 offset = 0;
1246 }
1247
1248 if (ret)
1249 goto cleanup;
1250
1251 /*
1252 * success
1253 */
1254 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1255 (map_data && map_data->from_user)) {
1256 ret = bio_copy_from_iter(bio, *iter);
1257 if (ret)
1258 goto cleanup;
1259 }
1260
1261 bio->bi_private = bmd;
1262 return bio;
1263 cleanup:
1264 if (!map_data)
1265 bio_free_pages(bio);
1266 bio_put(bio);
1267 out_bmd:
1268 kfree(bmd);
1269 return ERR_PTR(ret);
1270 }
1271
1272 /**
1273 * bio_map_user_iov - map user iovec into bio
1274 * @q: the struct request_queue for the bio
1275 * @iter: iovec iterator
1276 * @gfp_mask: memory allocation flags
1277 *
1278 * Map the user space address into a bio suitable for io to a block
1279 * device. Returns an error pointer in case of error.
1280 */
bio_map_user_iov(struct request_queue * q,const struct iov_iter * iter,gfp_t gfp_mask)1281 struct bio *bio_map_user_iov(struct request_queue *q,
1282 const struct iov_iter *iter,
1283 gfp_t gfp_mask)
1284 {
1285 int j;
1286 int nr_pages = 0;
1287 struct page **pages;
1288 struct bio *bio;
1289 int cur_page = 0;
1290 int ret, offset;
1291 struct iov_iter i;
1292 struct iovec iov;
1293
1294 iov_for_each(iov, i, *iter) {
1295 unsigned long uaddr = (unsigned long) iov.iov_base;
1296 unsigned long len = iov.iov_len;
1297 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1298 unsigned long start = uaddr >> PAGE_SHIFT;
1299
1300 /*
1301 * Overflow, abort
1302 */
1303 if (end < start)
1304 return ERR_PTR(-EINVAL);
1305
1306 nr_pages += end - start;
1307 /*
1308 * buffer must be aligned to at least hardsector size for now
1309 */
1310 if (uaddr & queue_dma_alignment(q))
1311 return ERR_PTR(-EINVAL);
1312 }
1313
1314 if (!nr_pages)
1315 return ERR_PTR(-EINVAL);
1316
1317 bio = bio_kmalloc(gfp_mask, nr_pages);
1318 if (!bio)
1319 return ERR_PTR(-ENOMEM);
1320
1321 ret = -ENOMEM;
1322 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1323 if (!pages)
1324 goto out;
1325
1326 iov_for_each(iov, i, *iter) {
1327 unsigned long uaddr = (unsigned long) iov.iov_base;
1328 unsigned long len = iov.iov_len;
1329 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330 unsigned long start = uaddr >> PAGE_SHIFT;
1331 const int local_nr_pages = end - start;
1332 const int page_limit = cur_page + local_nr_pages;
1333
1334 ret = get_user_pages_fast(uaddr, local_nr_pages,
1335 (iter->type & WRITE) != WRITE,
1336 &pages[cur_page]);
1337 if (ret < local_nr_pages) {
1338 ret = -EFAULT;
1339 goto out_unmap;
1340 }
1341
1342 offset = uaddr & ~PAGE_MASK;
1343 for (j = cur_page; j < page_limit; j++) {
1344 unsigned int bytes = PAGE_SIZE - offset;
1345
1346 if (len <= 0)
1347 break;
1348
1349 if (bytes > len)
1350 bytes = len;
1351
1352 /*
1353 * sorry...
1354 */
1355 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1356 bytes)
1357 break;
1358
1359 len -= bytes;
1360 offset = 0;
1361 }
1362
1363 cur_page = j;
1364 /*
1365 * release the pages we didn't map into the bio, if any
1366 */
1367 while (j < page_limit)
1368 page_cache_release(pages[j++]);
1369 }
1370
1371 kfree(pages);
1372
1373 /*
1374 * set data direction, and check if mapped pages need bouncing
1375 */
1376 if (iter->type & WRITE)
1377 bio->bi_rw |= REQ_WRITE;
1378
1379 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1380
1381 /*
1382 * subtle -- if __bio_map_user() ended up bouncing a bio,
1383 * it would normally disappear when its bi_end_io is run.
1384 * however, we need it for the unmap, so grab an extra
1385 * reference to it
1386 */
1387 bio_get(bio);
1388 return bio;
1389
1390 out_unmap:
1391 for (j = 0; j < nr_pages; j++) {
1392 if (!pages[j])
1393 break;
1394 page_cache_release(pages[j]);
1395 }
1396 out:
1397 kfree(pages);
1398 bio_put(bio);
1399 return ERR_PTR(ret);
1400 }
1401
__bio_unmap_user(struct bio * bio)1402 static void __bio_unmap_user(struct bio *bio)
1403 {
1404 struct bio_vec *bvec;
1405 int i;
1406
1407 /*
1408 * make sure we dirty pages we wrote to
1409 */
1410 bio_for_each_segment_all(bvec, bio, i) {
1411 if (bio_data_dir(bio) == READ)
1412 set_page_dirty_lock(bvec->bv_page);
1413
1414 page_cache_release(bvec->bv_page);
1415 }
1416
1417 bio_put(bio);
1418 }
1419
1420 /**
1421 * bio_unmap_user - unmap a bio
1422 * @bio: the bio being unmapped
1423 *
1424 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1425 * a process context.
1426 *
1427 * bio_unmap_user() may sleep.
1428 */
bio_unmap_user(struct bio * bio)1429 void bio_unmap_user(struct bio *bio)
1430 {
1431 __bio_unmap_user(bio);
1432 bio_put(bio);
1433 }
1434 EXPORT_SYMBOL(bio_unmap_user);
1435
bio_map_kern_endio(struct bio * bio,int err)1436 static void bio_map_kern_endio(struct bio *bio, int err)
1437 {
1438 bio_put(bio);
1439 }
1440
1441 /**
1442 * bio_map_kern - map kernel address into bio
1443 * @q: the struct request_queue for the bio
1444 * @data: pointer to buffer to map
1445 * @len: length in bytes
1446 * @gfp_mask: allocation flags for bio allocation
1447 *
1448 * Map the kernel address into a bio suitable for io to a block
1449 * device. Returns an error pointer in case of error.
1450 */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1451 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1452 gfp_t gfp_mask)
1453 {
1454 unsigned long kaddr = (unsigned long)data;
1455 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1456 unsigned long start = kaddr >> PAGE_SHIFT;
1457 const int nr_pages = end - start;
1458 int offset, i;
1459 struct bio *bio;
1460
1461 bio = bio_kmalloc(gfp_mask, nr_pages);
1462 if (!bio)
1463 return ERR_PTR(-ENOMEM);
1464
1465 offset = offset_in_page(kaddr);
1466 for (i = 0; i < nr_pages; i++) {
1467 unsigned int bytes = PAGE_SIZE - offset;
1468
1469 if (len <= 0)
1470 break;
1471
1472 if (bytes > len)
1473 bytes = len;
1474
1475 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1476 offset) < bytes) {
1477 /* we don't support partial mappings */
1478 bio_put(bio);
1479 return ERR_PTR(-EINVAL);
1480 }
1481
1482 data += bytes;
1483 len -= bytes;
1484 offset = 0;
1485 }
1486
1487 bio->bi_end_io = bio_map_kern_endio;
1488 return bio;
1489 }
1490 EXPORT_SYMBOL(bio_map_kern);
1491
bio_copy_kern_endio(struct bio * bio,int err)1492 static void bio_copy_kern_endio(struct bio *bio, int err)
1493 {
1494 bio_free_pages(bio);
1495 bio_put(bio);
1496 }
1497
bio_copy_kern_endio_read(struct bio * bio,int err)1498 static void bio_copy_kern_endio_read(struct bio *bio, int err)
1499 {
1500 char *p = bio->bi_private;
1501 struct bio_vec *bvec;
1502 int i;
1503
1504 bio_for_each_segment_all(bvec, bio, i) {
1505 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1506 p += bvec->bv_len;
1507 }
1508
1509 bio_copy_kern_endio(bio, err);
1510 }
1511
1512 /**
1513 * bio_copy_kern - copy kernel address into bio
1514 * @q: the struct request_queue for the bio
1515 * @data: pointer to buffer to copy
1516 * @len: length in bytes
1517 * @gfp_mask: allocation flags for bio and page allocation
1518 * @reading: data direction is READ
1519 *
1520 * copy the kernel address into a bio suitable for io to a block
1521 * device. Returns an error pointer in case of error.
1522 */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1523 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1524 gfp_t gfp_mask, int reading)
1525 {
1526 unsigned long kaddr = (unsigned long)data;
1527 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1528 unsigned long start = kaddr >> PAGE_SHIFT;
1529 struct bio *bio;
1530 void *p = data;
1531 int nr_pages = 0;
1532
1533 /*
1534 * Overflow, abort
1535 */
1536 if (end < start)
1537 return ERR_PTR(-EINVAL);
1538
1539 nr_pages = end - start;
1540 bio = bio_kmalloc(gfp_mask, nr_pages);
1541 if (!bio)
1542 return ERR_PTR(-ENOMEM);
1543
1544 while (len) {
1545 struct page *page;
1546 unsigned int bytes = PAGE_SIZE;
1547
1548 if (bytes > len)
1549 bytes = len;
1550
1551 page = alloc_page(q->bounce_gfp | gfp_mask);
1552 if (!page)
1553 goto cleanup;
1554
1555 if (!reading)
1556 memcpy(page_address(page), p, bytes);
1557
1558 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1559 break;
1560
1561 len -= bytes;
1562 p += bytes;
1563 }
1564
1565 if (reading) {
1566 bio->bi_end_io = bio_copy_kern_endio_read;
1567 bio->bi_private = data;
1568 } else {
1569 bio->bi_end_io = bio_copy_kern_endio;
1570 bio->bi_rw |= REQ_WRITE;
1571 }
1572
1573 return bio;
1574
1575 cleanup:
1576 bio_free_pages(bio);
1577 bio_put(bio);
1578 return ERR_PTR(-ENOMEM);
1579 }
1580 EXPORT_SYMBOL(bio_copy_kern);
1581
1582 /*
1583 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1584 * for performing direct-IO in BIOs.
1585 *
1586 * The problem is that we cannot run set_page_dirty() from interrupt context
1587 * because the required locks are not interrupt-safe. So what we can do is to
1588 * mark the pages dirty _before_ performing IO. And in interrupt context,
1589 * check that the pages are still dirty. If so, fine. If not, redirty them
1590 * in process context.
1591 *
1592 * We special-case compound pages here: normally this means reads into hugetlb
1593 * pages. The logic in here doesn't really work right for compound pages
1594 * because the VM does not uniformly chase down the head page in all cases.
1595 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1596 * handle them at all. So we skip compound pages here at an early stage.
1597 *
1598 * Note that this code is very hard to test under normal circumstances because
1599 * direct-io pins the pages with get_user_pages(). This makes
1600 * is_page_cache_freeable return false, and the VM will not clean the pages.
1601 * But other code (eg, flusher threads) could clean the pages if they are mapped
1602 * pagecache.
1603 *
1604 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1605 * deferred bio dirtying paths.
1606 */
1607
1608 /*
1609 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1610 */
bio_set_pages_dirty(struct bio * bio)1611 void bio_set_pages_dirty(struct bio *bio)
1612 {
1613 struct bio_vec *bvec;
1614 int i;
1615
1616 bio_for_each_segment_all(bvec, bio, i) {
1617 struct page *page = bvec->bv_page;
1618
1619 if (page && !PageCompound(page))
1620 set_page_dirty_lock(page);
1621 }
1622 }
1623
bio_release_pages(struct bio * bio)1624 static void bio_release_pages(struct bio *bio)
1625 {
1626 struct bio_vec *bvec;
1627 int i;
1628
1629 bio_for_each_segment_all(bvec, bio, i) {
1630 struct page *page = bvec->bv_page;
1631
1632 if (page)
1633 put_page(page);
1634 }
1635 }
1636
1637 /*
1638 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1639 * If they are, then fine. If, however, some pages are clean then they must
1640 * have been written out during the direct-IO read. So we take another ref on
1641 * the BIO and the offending pages and re-dirty the pages in process context.
1642 *
1643 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1644 * here on. It will run one page_cache_release() against each page and will
1645 * run one bio_put() against the BIO.
1646 */
1647
1648 static void bio_dirty_fn(struct work_struct *work);
1649
1650 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1651 static DEFINE_SPINLOCK(bio_dirty_lock);
1652 static struct bio *bio_dirty_list;
1653
1654 /*
1655 * This runs in process context
1656 */
bio_dirty_fn(struct work_struct * work)1657 static void bio_dirty_fn(struct work_struct *work)
1658 {
1659 unsigned long flags;
1660 struct bio *bio;
1661
1662 spin_lock_irqsave(&bio_dirty_lock, flags);
1663 bio = bio_dirty_list;
1664 bio_dirty_list = NULL;
1665 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1666
1667 while (bio) {
1668 struct bio *next = bio->bi_private;
1669
1670 bio_set_pages_dirty(bio);
1671 bio_release_pages(bio);
1672 bio_put(bio);
1673 bio = next;
1674 }
1675 }
1676
bio_check_pages_dirty(struct bio * bio)1677 void bio_check_pages_dirty(struct bio *bio)
1678 {
1679 struct bio_vec *bvec;
1680 int nr_clean_pages = 0;
1681 int i;
1682
1683 bio_for_each_segment_all(bvec, bio, i) {
1684 struct page *page = bvec->bv_page;
1685
1686 if (PageDirty(page) || PageCompound(page)) {
1687 page_cache_release(page);
1688 bvec->bv_page = NULL;
1689 } else {
1690 nr_clean_pages++;
1691 }
1692 }
1693
1694 if (nr_clean_pages) {
1695 unsigned long flags;
1696
1697 spin_lock_irqsave(&bio_dirty_lock, flags);
1698 bio->bi_private = bio_dirty_list;
1699 bio_dirty_list = bio;
1700 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1701 schedule_work(&bio_dirty_work);
1702 } else {
1703 bio_put(bio);
1704 }
1705 }
1706
generic_start_io_acct(int rw,unsigned long sectors,struct hd_struct * part)1707 void generic_start_io_acct(int rw, unsigned long sectors,
1708 struct hd_struct *part)
1709 {
1710 int cpu = part_stat_lock();
1711
1712 part_round_stats(cpu, part);
1713 part_stat_inc(cpu, part, ios[rw]);
1714 part_stat_add(cpu, part, sectors[rw], sectors);
1715 part_inc_in_flight(part, rw);
1716
1717 part_stat_unlock();
1718 }
1719 EXPORT_SYMBOL(generic_start_io_acct);
1720
generic_end_io_acct(int rw,struct hd_struct * part,unsigned long start_time)1721 void generic_end_io_acct(int rw, struct hd_struct *part,
1722 unsigned long start_time)
1723 {
1724 unsigned long duration = jiffies - start_time;
1725 int cpu = part_stat_lock();
1726
1727 part_stat_add(cpu, part, ticks[rw], duration);
1728 part_round_stats(cpu, part);
1729 part_dec_in_flight(part, rw);
1730
1731 part_stat_unlock();
1732 }
1733 EXPORT_SYMBOL(generic_end_io_acct);
1734
1735 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1736 void bio_flush_dcache_pages(struct bio *bi)
1737 {
1738 struct bio_vec bvec;
1739 struct bvec_iter iter;
1740
1741 bio_for_each_segment(bvec, bi, iter)
1742 flush_dcache_page(bvec.bv_page);
1743 }
1744 EXPORT_SYMBOL(bio_flush_dcache_pages);
1745 #endif
1746
1747 /**
1748 * bio_endio - end I/O on a bio
1749 * @bio: bio
1750 * @error: error, if any
1751 *
1752 * Description:
1753 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1754 * preferred way to end I/O on a bio, it takes care of clearing
1755 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1756 * established -Exxxx (-EIO, for instance) error values in case
1757 * something went wrong. No one should call bi_end_io() directly on a
1758 * bio unless they own it and thus know that it has an end_io
1759 * function.
1760 **/
bio_endio(struct bio * bio,int error)1761 void bio_endio(struct bio *bio, int error)
1762 {
1763 while (bio) {
1764 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1765
1766 if (error)
1767 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1768 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1769 error = -EIO;
1770
1771 if (!atomic_dec_and_test(&bio->bi_remaining))
1772 return;
1773
1774 /*
1775 * Need to have a real endio function for chained bios,
1776 * otherwise various corner cases will break (like stacking
1777 * block devices that save/restore bi_end_io) - however, we want
1778 * to avoid unbounded recursion and blowing the stack. Tail call
1779 * optimization would handle this, but compiling with frame
1780 * pointers also disables gcc's sibling call optimization.
1781 */
1782 if (bio->bi_end_io == bio_chain_endio) {
1783 struct bio *parent = bio->bi_private;
1784 bio_put(bio);
1785 bio = parent;
1786 } else {
1787 if (bio->bi_end_io)
1788 bio->bi_end_io(bio, error);
1789 bio = NULL;
1790 }
1791 }
1792 }
1793 EXPORT_SYMBOL(bio_endio);
1794
1795 /**
1796 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1797 * @bio: bio
1798 * @error: error, if any
1799 *
1800 * For code that has saved and restored bi_end_io; thing hard before using this
1801 * function, probably you should've cloned the entire bio.
1802 **/
bio_endio_nodec(struct bio * bio,int error)1803 void bio_endio_nodec(struct bio *bio, int error)
1804 {
1805 atomic_inc(&bio->bi_remaining);
1806 bio_endio(bio, error);
1807 }
1808 EXPORT_SYMBOL(bio_endio_nodec);
1809
1810 /**
1811 * bio_split - split a bio
1812 * @bio: bio to split
1813 * @sectors: number of sectors to split from the front of @bio
1814 * @gfp: gfp mask
1815 * @bs: bio set to allocate from
1816 *
1817 * Allocates and returns a new bio which represents @sectors from the start of
1818 * @bio, and updates @bio to represent the remaining sectors.
1819 *
1820 * Unless this is a discard request the newly allocated bio will point
1821 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1822 * @bio is not freed before the split.
1823 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1824 struct bio *bio_split(struct bio *bio, int sectors,
1825 gfp_t gfp, struct bio_set *bs)
1826 {
1827 struct bio *split = NULL;
1828
1829 BUG_ON(sectors <= 0);
1830 BUG_ON(sectors >= bio_sectors(bio));
1831
1832 /*
1833 * Discards need a mutable bio_vec to accommodate the payload
1834 * required by the DSM TRIM and UNMAP commands.
1835 */
1836 if (bio->bi_rw & REQ_DISCARD)
1837 split = bio_clone_bioset(bio, gfp, bs);
1838 else
1839 split = bio_clone_fast(bio, gfp, bs);
1840
1841 if (!split)
1842 return NULL;
1843
1844 split->bi_iter.bi_size = sectors << 9;
1845
1846 if (bio_integrity(split))
1847 bio_integrity_trim(split, 0, sectors);
1848
1849 bio_advance(bio, split->bi_iter.bi_size);
1850
1851 return split;
1852 }
1853 EXPORT_SYMBOL(bio_split);
1854
1855 /**
1856 * bio_trim - trim a bio
1857 * @bio: bio to trim
1858 * @offset: number of sectors to trim from the front of @bio
1859 * @size: size we want to trim @bio to, in sectors
1860 */
bio_trim(struct bio * bio,int offset,int size)1861 void bio_trim(struct bio *bio, int offset, int size)
1862 {
1863 /* 'bio' is a cloned bio which we need to trim to match
1864 * the given offset and size.
1865 */
1866
1867 size <<= 9;
1868 if (offset == 0 && size == bio->bi_iter.bi_size)
1869 return;
1870
1871 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1872
1873 bio_advance(bio, offset << 9);
1874
1875 bio->bi_iter.bi_size = size;
1876 }
1877 EXPORT_SYMBOL_GPL(bio_trim);
1878
1879 /*
1880 * create memory pools for biovec's in a bio_set.
1881 * use the global biovec slabs created for general use.
1882 */
biovec_create_pool(int pool_entries)1883 mempool_t *biovec_create_pool(int pool_entries)
1884 {
1885 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1886
1887 return mempool_create_slab_pool(pool_entries, bp->slab);
1888 }
1889
bioset_free(struct bio_set * bs)1890 void bioset_free(struct bio_set *bs)
1891 {
1892 if (bs->rescue_workqueue)
1893 destroy_workqueue(bs->rescue_workqueue);
1894
1895 if (bs->bio_pool)
1896 mempool_destroy(bs->bio_pool);
1897
1898 if (bs->bvec_pool)
1899 mempool_destroy(bs->bvec_pool);
1900
1901 bioset_integrity_free(bs);
1902 bio_put_slab(bs);
1903
1904 kfree(bs);
1905 }
1906 EXPORT_SYMBOL(bioset_free);
1907
__bioset_create(unsigned int pool_size,unsigned int front_pad,bool create_bvec_pool)1908 static struct bio_set *__bioset_create(unsigned int pool_size,
1909 unsigned int front_pad,
1910 bool create_bvec_pool)
1911 {
1912 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1913 struct bio_set *bs;
1914
1915 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1916 if (!bs)
1917 return NULL;
1918
1919 bs->front_pad = front_pad;
1920
1921 spin_lock_init(&bs->rescue_lock);
1922 bio_list_init(&bs->rescue_list);
1923 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1924
1925 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1926 if (!bs->bio_slab) {
1927 kfree(bs);
1928 return NULL;
1929 }
1930
1931 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1932 if (!bs->bio_pool)
1933 goto bad;
1934
1935 if (create_bvec_pool) {
1936 bs->bvec_pool = biovec_create_pool(pool_size);
1937 if (!bs->bvec_pool)
1938 goto bad;
1939 }
1940
1941 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1942 if (!bs->rescue_workqueue)
1943 goto bad;
1944
1945 return bs;
1946 bad:
1947 bioset_free(bs);
1948 return NULL;
1949 }
1950
1951 /**
1952 * bioset_create - Create a bio_set
1953 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1954 * @front_pad: Number of bytes to allocate in front of the returned bio
1955 *
1956 * Description:
1957 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1958 * to ask for a number of bytes to be allocated in front of the bio.
1959 * Front pad allocation is useful for embedding the bio inside
1960 * another structure, to avoid allocating extra data to go with the bio.
1961 * Note that the bio must be embedded at the END of that structure always,
1962 * or things will break badly.
1963 */
bioset_create(unsigned int pool_size,unsigned int front_pad)1964 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1965 {
1966 return __bioset_create(pool_size, front_pad, true);
1967 }
1968 EXPORT_SYMBOL(bioset_create);
1969
1970 /**
1971 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1972 * @pool_size: Number of bio to cache in the mempool
1973 * @front_pad: Number of bytes to allocate in front of the returned bio
1974 *
1975 * Description:
1976 * Same functionality as bioset_create() except that mempool is not
1977 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1978 */
bioset_create_nobvec(unsigned int pool_size,unsigned int front_pad)1979 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1980 {
1981 return __bioset_create(pool_size, front_pad, false);
1982 }
1983 EXPORT_SYMBOL(bioset_create_nobvec);
1984
1985 #ifdef CONFIG_BLK_CGROUP
1986 /**
1987 * bio_associate_current - associate a bio with %current
1988 * @bio: target bio
1989 *
1990 * Associate @bio with %current if it hasn't been associated yet. Block
1991 * layer will treat @bio as if it were issued by %current no matter which
1992 * task actually issues it.
1993 *
1994 * This function takes an extra reference of @task's io_context and blkcg
1995 * which will be put when @bio is released. The caller must own @bio,
1996 * ensure %current->io_context exists, and is responsible for synchronizing
1997 * calls to this function.
1998 */
bio_associate_current(struct bio * bio)1999 int bio_associate_current(struct bio *bio)
2000 {
2001 struct io_context *ioc;
2002 struct cgroup_subsys_state *css;
2003
2004 if (bio->bi_ioc)
2005 return -EBUSY;
2006
2007 ioc = current->io_context;
2008 if (!ioc)
2009 return -ENOENT;
2010
2011 /* acquire active ref on @ioc and associate */
2012 get_io_context_active(ioc);
2013 bio->bi_ioc = ioc;
2014
2015 /* associate blkcg if exists */
2016 rcu_read_lock();
2017 css = task_css(current, blkio_cgrp_id);
2018 if (css && css_tryget_online(css))
2019 bio->bi_css = css;
2020 rcu_read_unlock();
2021
2022 return 0;
2023 }
2024
2025 /**
2026 * bio_disassociate_task - undo bio_associate_current()
2027 * @bio: target bio
2028 */
bio_disassociate_task(struct bio * bio)2029 void bio_disassociate_task(struct bio *bio)
2030 {
2031 if (bio->bi_ioc) {
2032 put_io_context(bio->bi_ioc);
2033 bio->bi_ioc = NULL;
2034 }
2035 if (bio->bi_css) {
2036 css_put(bio->bi_css);
2037 bio->bi_css = NULL;
2038 }
2039 }
2040
2041 #endif /* CONFIG_BLK_CGROUP */
2042
biovec_init_slabs(void)2043 static void __init biovec_init_slabs(void)
2044 {
2045 int i;
2046
2047 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2048 int size;
2049 struct biovec_slab *bvs = bvec_slabs + i;
2050
2051 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2052 bvs->slab = NULL;
2053 continue;
2054 }
2055
2056 size = bvs->nr_vecs * sizeof(struct bio_vec);
2057 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2058 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2059 }
2060 }
2061
init_bio(void)2062 static int __init init_bio(void)
2063 {
2064 bio_slab_max = 2;
2065 bio_slab_nr = 0;
2066 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2067 if (!bio_slabs)
2068 panic("bio: can't allocate bios\n");
2069
2070 bio_integrity_init();
2071 biovec_init_slabs();
2072
2073 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2074 if (!fs_bio_set)
2075 panic("bio: can't allocate bios\n");
2076
2077 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2078 panic("bio: can't create integrity pool\n");
2079
2080 return 0;
2081 }
2082 subsys_initcall(init_bio);
2083