1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-provider.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 static long clk_core_get_accuracy(struct clk_core *clk);
41 static unsigned long clk_core_get_rate(struct clk_core *clk);
42 static int clk_core_get_phase(struct clk_core *clk);
43 static bool clk_core_is_prepared(struct clk_core *clk);
44 static bool clk_core_is_enabled(struct clk_core *clk);
45 static struct clk_core *clk_core_lookup(const char *name);
46
47 /*** private data structures ***/
48
49 struct clk_core {
50 const char *name;
51 const struct clk_ops *ops;
52 struct clk_hw *hw;
53 struct module *owner;
54 struct clk_core *parent;
55 const char **parent_names;
56 struct clk_core **parents;
57 u8 num_parents;
58 u8 new_parent_index;
59 unsigned long rate;
60 unsigned long req_rate;
61 unsigned long new_rate;
62 struct clk_core *new_parent;
63 struct clk_core *new_child;
64 unsigned long flags;
65 unsigned int enable_count;
66 unsigned int prepare_count;
67 unsigned long accuracy;
68 int phase;
69 struct hlist_head children;
70 struct hlist_node child_node;
71 struct hlist_node debug_node;
72 struct hlist_head clks;
73 unsigned int notifier_count;
74 #ifdef CONFIG_DEBUG_FS
75 struct dentry *dentry;
76 #endif
77 struct kref ref;
78 };
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/clk.h>
82
83 struct clk {
84 struct clk_core *core;
85 const char *dev_id;
86 const char *con_id;
87 unsigned long min_rate;
88 unsigned long max_rate;
89 struct hlist_node clks_node;
90 };
91
92 /*** locking ***/
clk_prepare_lock(void)93 static void clk_prepare_lock(void)
94 {
95 if (!mutex_trylock(&prepare_lock)) {
96 if (prepare_owner == current) {
97 prepare_refcnt++;
98 return;
99 }
100 mutex_lock(&prepare_lock);
101 }
102 WARN_ON_ONCE(prepare_owner != NULL);
103 WARN_ON_ONCE(prepare_refcnt != 0);
104 prepare_owner = current;
105 prepare_refcnt = 1;
106 }
107
clk_prepare_unlock(void)108 static void clk_prepare_unlock(void)
109 {
110 WARN_ON_ONCE(prepare_owner != current);
111 WARN_ON_ONCE(prepare_refcnt == 0);
112
113 if (--prepare_refcnt)
114 return;
115 prepare_owner = NULL;
116 mutex_unlock(&prepare_lock);
117 }
118
clk_enable_lock(void)119 static unsigned long clk_enable_lock(void)
120 {
121 unsigned long flags;
122
123 if (!spin_trylock_irqsave(&enable_lock, flags)) {
124 if (enable_owner == current) {
125 enable_refcnt++;
126 return flags;
127 }
128 spin_lock_irqsave(&enable_lock, flags);
129 }
130 WARN_ON_ONCE(enable_owner != NULL);
131 WARN_ON_ONCE(enable_refcnt != 0);
132 enable_owner = current;
133 enable_refcnt = 1;
134 return flags;
135 }
136
clk_enable_unlock(unsigned long flags)137 static void clk_enable_unlock(unsigned long flags)
138 {
139 WARN_ON_ONCE(enable_owner != current);
140 WARN_ON_ONCE(enable_refcnt == 0);
141
142 if (--enable_refcnt)
143 return;
144 enable_owner = NULL;
145 spin_unlock_irqrestore(&enable_lock, flags);
146 }
147
148 /*** debugfs support ***/
149
150 #ifdef CONFIG_DEBUG_FS
151 #include <linux/debugfs.h>
152
153 static struct dentry *rootdir;
154 static int inited = 0;
155 static DEFINE_MUTEX(clk_debug_lock);
156 static HLIST_HEAD(clk_debug_list);
157
158 static struct hlist_head *all_lists[] = {
159 &clk_root_list,
160 &clk_orphan_list,
161 NULL,
162 };
163
164 static struct hlist_head *orphan_list[] = {
165 &clk_orphan_list,
166 NULL,
167 };
168
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)169 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
170 int level)
171 {
172 if (!c)
173 return;
174
175 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
176 level * 3 + 1, "",
177 30 - level * 3, c->name,
178 c->enable_count, c->prepare_count, clk_core_get_rate(c),
179 clk_core_get_accuracy(c), clk_core_get_phase(c));
180 }
181
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)182 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
183 int level)
184 {
185 struct clk_core *child;
186
187 if (!c)
188 return;
189
190 clk_summary_show_one(s, c, level);
191
192 hlist_for_each_entry(child, &c->children, child_node)
193 clk_summary_show_subtree(s, child, level + 1);
194 }
195
clk_summary_show(struct seq_file * s,void * data)196 static int clk_summary_show(struct seq_file *s, void *data)
197 {
198 struct clk_core *c;
199 struct hlist_head **lists = (struct hlist_head **)s->private;
200
201 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n");
202 seq_puts(s, "----------------------------------------------------------------------------------------\n");
203
204 clk_prepare_lock();
205
206 for (; *lists; lists++)
207 hlist_for_each_entry(c, *lists, child_node)
208 clk_summary_show_subtree(s, c, 0);
209
210 clk_prepare_unlock();
211
212 return 0;
213 }
214
215
clk_summary_open(struct inode * inode,struct file * file)216 static int clk_summary_open(struct inode *inode, struct file *file)
217 {
218 return single_open(file, clk_summary_show, inode->i_private);
219 }
220
221 static const struct file_operations clk_summary_fops = {
222 .open = clk_summary_open,
223 .read = seq_read,
224 .llseek = seq_lseek,
225 .release = single_release,
226 };
227
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)228 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
229 {
230 if (!c)
231 return;
232
233 /* This should be JSON format, i.e. elements separated with a comma */
234 seq_printf(s, "\"%s\": { ", c->name);
235 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
236 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
237 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
238 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
239 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
240 }
241
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)242 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
243 {
244 struct clk_core *child;
245
246 if (!c)
247 return;
248
249 clk_dump_one(s, c, level);
250
251 hlist_for_each_entry(child, &c->children, child_node) {
252 seq_printf(s, ",");
253 clk_dump_subtree(s, child, level + 1);
254 }
255
256 seq_printf(s, "}");
257 }
258
clk_dump(struct seq_file * s,void * data)259 static int clk_dump(struct seq_file *s, void *data)
260 {
261 struct clk_core *c;
262 bool first_node = true;
263 struct hlist_head **lists = (struct hlist_head **)s->private;
264
265 seq_printf(s, "{");
266
267 clk_prepare_lock();
268
269 for (; *lists; lists++) {
270 hlist_for_each_entry(c, *lists, child_node) {
271 if (!first_node)
272 seq_puts(s, ",");
273 first_node = false;
274 clk_dump_subtree(s, c, 0);
275 }
276 }
277
278 clk_prepare_unlock();
279
280 seq_printf(s, "}");
281 return 0;
282 }
283
284
clk_dump_open(struct inode * inode,struct file * file)285 static int clk_dump_open(struct inode *inode, struct file *file)
286 {
287 return single_open(file, clk_dump, inode->i_private);
288 }
289
290 static const struct file_operations clk_dump_fops = {
291 .open = clk_dump_open,
292 .read = seq_read,
293 .llseek = seq_lseek,
294 .release = single_release,
295 };
296
clk_debug_create_one(struct clk_core * clk,struct dentry * pdentry)297 static int clk_debug_create_one(struct clk_core *clk, struct dentry *pdentry)
298 {
299 struct dentry *d;
300 int ret = -ENOMEM;
301
302 if (!clk || !pdentry) {
303 ret = -EINVAL;
304 goto out;
305 }
306
307 d = debugfs_create_dir(clk->name, pdentry);
308 if (!d)
309 goto out;
310
311 clk->dentry = d;
312
313 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
314 (u32 *)&clk->rate);
315 if (!d)
316 goto err_out;
317
318 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
319 (u32 *)&clk->accuracy);
320 if (!d)
321 goto err_out;
322
323 d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry,
324 (u32 *)&clk->phase);
325 if (!d)
326 goto err_out;
327
328 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
329 (u32 *)&clk->flags);
330 if (!d)
331 goto err_out;
332
333 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
334 (u32 *)&clk->prepare_count);
335 if (!d)
336 goto err_out;
337
338 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
339 (u32 *)&clk->enable_count);
340 if (!d)
341 goto err_out;
342
343 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
344 (u32 *)&clk->notifier_count);
345 if (!d)
346 goto err_out;
347
348 if (clk->ops->debug_init) {
349 ret = clk->ops->debug_init(clk->hw, clk->dentry);
350 if (ret)
351 goto err_out;
352 }
353
354 ret = 0;
355 goto out;
356
357 err_out:
358 debugfs_remove_recursive(clk->dentry);
359 clk->dentry = NULL;
360 out:
361 return ret;
362 }
363
364 /**
365 * clk_debug_register - add a clk node to the debugfs clk tree
366 * @clk: the clk being added to the debugfs clk tree
367 *
368 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
369 * initialized. Otherwise it bails out early since the debugfs clk tree
370 * will be created lazily by clk_debug_init as part of a late_initcall.
371 */
clk_debug_register(struct clk_core * clk)372 static int clk_debug_register(struct clk_core *clk)
373 {
374 int ret = 0;
375
376 mutex_lock(&clk_debug_lock);
377 hlist_add_head(&clk->debug_node, &clk_debug_list);
378
379 if (!inited)
380 goto unlock;
381
382 ret = clk_debug_create_one(clk, rootdir);
383 unlock:
384 mutex_unlock(&clk_debug_lock);
385
386 return ret;
387 }
388
389 /**
390 * clk_debug_unregister - remove a clk node from the debugfs clk tree
391 * @clk: the clk being removed from the debugfs clk tree
392 *
393 * Dynamically removes a clk and all it's children clk nodes from the
394 * debugfs clk tree if clk->dentry points to debugfs created by
395 * clk_debug_register in __clk_init.
396 */
clk_debug_unregister(struct clk_core * clk)397 static void clk_debug_unregister(struct clk_core *clk)
398 {
399 mutex_lock(&clk_debug_lock);
400 hlist_del_init(&clk->debug_node);
401 debugfs_remove_recursive(clk->dentry);
402 clk->dentry = NULL;
403 mutex_unlock(&clk_debug_lock);
404 }
405
clk_debugfs_add_file(struct clk_hw * hw,char * name,umode_t mode,void * data,const struct file_operations * fops)406 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
407 void *data, const struct file_operations *fops)
408 {
409 struct dentry *d = NULL;
410
411 if (hw->core->dentry)
412 d = debugfs_create_file(name, mode, hw->core->dentry, data,
413 fops);
414
415 return d;
416 }
417 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
418
419 /**
420 * clk_debug_init - lazily create the debugfs clk tree visualization
421 *
422 * clks are often initialized very early during boot before memory can
423 * be dynamically allocated and well before debugfs is setup.
424 * clk_debug_init walks the clk tree hierarchy while holding
425 * prepare_lock and creates the topology as part of a late_initcall,
426 * thus insuring that clks initialized very early will still be
427 * represented in the debugfs clk tree. This function should only be
428 * called once at boot-time, and all other clks added dynamically will
429 * be done so with clk_debug_register.
430 */
clk_debug_init(void)431 static int __init clk_debug_init(void)
432 {
433 struct clk_core *clk;
434 struct dentry *d;
435
436 rootdir = debugfs_create_dir("clk", NULL);
437
438 if (!rootdir)
439 return -ENOMEM;
440
441 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
442 &clk_summary_fops);
443 if (!d)
444 return -ENOMEM;
445
446 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
447 &clk_dump_fops);
448 if (!d)
449 return -ENOMEM;
450
451 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
452 &orphan_list, &clk_summary_fops);
453 if (!d)
454 return -ENOMEM;
455
456 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
457 &orphan_list, &clk_dump_fops);
458 if (!d)
459 return -ENOMEM;
460
461 mutex_lock(&clk_debug_lock);
462 hlist_for_each_entry(clk, &clk_debug_list, debug_node)
463 clk_debug_create_one(clk, rootdir);
464
465 inited = 1;
466 mutex_unlock(&clk_debug_lock);
467
468 return 0;
469 }
470 late_initcall(clk_debug_init);
471 #else
clk_debug_register(struct clk_core * clk)472 static inline int clk_debug_register(struct clk_core *clk) { return 0; }
clk_debug_reparent(struct clk_core * clk,struct clk_core * new_parent)473 static inline void clk_debug_reparent(struct clk_core *clk,
474 struct clk_core *new_parent)
475 {
476 }
clk_debug_unregister(struct clk_core * clk)477 static inline void clk_debug_unregister(struct clk_core *clk)
478 {
479 }
480 #endif
481
482 /* caller must hold prepare_lock */
clk_unprepare_unused_subtree(struct clk_core * clk)483 static void clk_unprepare_unused_subtree(struct clk_core *clk)
484 {
485 struct clk_core *child;
486
487 lockdep_assert_held(&prepare_lock);
488
489 hlist_for_each_entry(child, &clk->children, child_node)
490 clk_unprepare_unused_subtree(child);
491
492 if (clk->prepare_count)
493 return;
494
495 if (clk->flags & CLK_IGNORE_UNUSED)
496 return;
497
498 if (clk_core_is_prepared(clk)) {
499 trace_clk_unprepare(clk);
500 if (clk->ops->unprepare_unused)
501 clk->ops->unprepare_unused(clk->hw);
502 else if (clk->ops->unprepare)
503 clk->ops->unprepare(clk->hw);
504 trace_clk_unprepare_complete(clk);
505 }
506 }
507
508 /* caller must hold prepare_lock */
clk_disable_unused_subtree(struct clk_core * clk)509 static void clk_disable_unused_subtree(struct clk_core *clk)
510 {
511 struct clk_core *child;
512 unsigned long flags;
513
514 lockdep_assert_held(&prepare_lock);
515
516 hlist_for_each_entry(child, &clk->children, child_node)
517 clk_disable_unused_subtree(child);
518
519 flags = clk_enable_lock();
520
521 if (clk->enable_count)
522 goto unlock_out;
523
524 if (clk->flags & CLK_IGNORE_UNUSED)
525 goto unlock_out;
526
527 /*
528 * some gate clocks have special needs during the disable-unused
529 * sequence. call .disable_unused if available, otherwise fall
530 * back to .disable
531 */
532 if (clk_core_is_enabled(clk)) {
533 trace_clk_disable(clk);
534 if (clk->ops->disable_unused)
535 clk->ops->disable_unused(clk->hw);
536 else if (clk->ops->disable)
537 clk->ops->disable(clk->hw);
538 trace_clk_disable_complete(clk);
539 }
540
541 unlock_out:
542 clk_enable_unlock(flags);
543 }
544
545 static bool clk_ignore_unused;
clk_ignore_unused_setup(char * __unused)546 static int __init clk_ignore_unused_setup(char *__unused)
547 {
548 clk_ignore_unused = true;
549 return 1;
550 }
551 __setup("clk_ignore_unused", clk_ignore_unused_setup);
552
clk_disable_unused(void)553 static int clk_disable_unused(void)
554 {
555 struct clk_core *clk;
556
557 if (clk_ignore_unused) {
558 pr_warn("clk: Not disabling unused clocks\n");
559 return 0;
560 }
561
562 clk_prepare_lock();
563
564 hlist_for_each_entry(clk, &clk_root_list, child_node)
565 clk_disable_unused_subtree(clk);
566
567 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
568 clk_disable_unused_subtree(clk);
569
570 hlist_for_each_entry(clk, &clk_root_list, child_node)
571 clk_unprepare_unused_subtree(clk);
572
573 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
574 clk_unprepare_unused_subtree(clk);
575
576 clk_prepare_unlock();
577
578 return 0;
579 }
580 late_initcall_sync(clk_disable_unused);
581
582 /*** helper functions ***/
583
__clk_get_name(struct clk * clk)584 const char *__clk_get_name(struct clk *clk)
585 {
586 return !clk ? NULL : clk->core->name;
587 }
588 EXPORT_SYMBOL_GPL(__clk_get_name);
589
__clk_get_hw(struct clk * clk)590 struct clk_hw *__clk_get_hw(struct clk *clk)
591 {
592 return !clk ? NULL : clk->core->hw;
593 }
594 EXPORT_SYMBOL_GPL(__clk_get_hw);
595
__clk_get_num_parents(struct clk * clk)596 u8 __clk_get_num_parents(struct clk *clk)
597 {
598 return !clk ? 0 : clk->core->num_parents;
599 }
600 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
601
__clk_get_parent(struct clk * clk)602 struct clk *__clk_get_parent(struct clk *clk)
603 {
604 if (!clk)
605 return NULL;
606
607 /* TODO: Create a per-user clk and change callers to call clk_put */
608 return !clk->core->parent ? NULL : clk->core->parent->hw->clk;
609 }
610 EXPORT_SYMBOL_GPL(__clk_get_parent);
611
clk_core_get_parent_by_index(struct clk_core * clk,u8 index)612 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *clk,
613 u8 index)
614 {
615 if (!clk || index >= clk->num_parents)
616 return NULL;
617 else if (!clk->parents)
618 return clk_core_lookup(clk->parent_names[index]);
619 else if (!clk->parents[index])
620 return clk->parents[index] =
621 clk_core_lookup(clk->parent_names[index]);
622 else
623 return clk->parents[index];
624 }
625
clk_get_parent_by_index(struct clk * clk,u8 index)626 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
627 {
628 struct clk_core *parent;
629
630 if (!clk)
631 return NULL;
632
633 parent = clk_core_get_parent_by_index(clk->core, index);
634
635 return !parent ? NULL : parent->hw->clk;
636 }
637 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
638
__clk_get_enable_count(struct clk * clk)639 unsigned int __clk_get_enable_count(struct clk *clk)
640 {
641 return !clk ? 0 : clk->core->enable_count;
642 }
643
clk_core_get_rate_nolock(struct clk_core * clk)644 static unsigned long clk_core_get_rate_nolock(struct clk_core *clk)
645 {
646 unsigned long ret;
647
648 if (!clk) {
649 ret = 0;
650 goto out;
651 }
652
653 ret = clk->rate;
654
655 if (clk->flags & CLK_IS_ROOT)
656 goto out;
657
658 if (!clk->parent)
659 ret = 0;
660
661 out:
662 return ret;
663 }
664
__clk_get_rate(struct clk * clk)665 unsigned long __clk_get_rate(struct clk *clk)
666 {
667 if (!clk)
668 return 0;
669
670 return clk_core_get_rate_nolock(clk->core);
671 }
672 EXPORT_SYMBOL_GPL(__clk_get_rate);
673
__clk_get_accuracy(struct clk_core * clk)674 static unsigned long __clk_get_accuracy(struct clk_core *clk)
675 {
676 if (!clk)
677 return 0;
678
679 return clk->accuracy;
680 }
681
__clk_get_flags(struct clk * clk)682 unsigned long __clk_get_flags(struct clk *clk)
683 {
684 return !clk ? 0 : clk->core->flags;
685 }
686 EXPORT_SYMBOL_GPL(__clk_get_flags);
687
clk_core_is_prepared(struct clk_core * clk)688 static bool clk_core_is_prepared(struct clk_core *clk)
689 {
690 int ret;
691
692 if (!clk)
693 return false;
694
695 /*
696 * .is_prepared is optional for clocks that can prepare
697 * fall back to software usage counter if it is missing
698 */
699 if (!clk->ops->is_prepared) {
700 ret = clk->prepare_count ? 1 : 0;
701 goto out;
702 }
703
704 ret = clk->ops->is_prepared(clk->hw);
705 out:
706 return !!ret;
707 }
708
__clk_is_prepared(struct clk * clk)709 bool __clk_is_prepared(struct clk *clk)
710 {
711 if (!clk)
712 return false;
713
714 return clk_core_is_prepared(clk->core);
715 }
716
clk_core_is_enabled(struct clk_core * clk)717 static bool clk_core_is_enabled(struct clk_core *clk)
718 {
719 int ret;
720
721 if (!clk)
722 return false;
723
724 /*
725 * .is_enabled is only mandatory for clocks that gate
726 * fall back to software usage counter if .is_enabled is missing
727 */
728 if (!clk->ops->is_enabled) {
729 ret = clk->enable_count ? 1 : 0;
730 goto out;
731 }
732
733 ret = clk->ops->is_enabled(clk->hw);
734 out:
735 return !!ret;
736 }
737
__clk_is_enabled(struct clk * clk)738 bool __clk_is_enabled(struct clk *clk)
739 {
740 if (!clk)
741 return false;
742
743 return clk_core_is_enabled(clk->core);
744 }
745 EXPORT_SYMBOL_GPL(__clk_is_enabled);
746
__clk_lookup_subtree(const char * name,struct clk_core * clk)747 static struct clk_core *__clk_lookup_subtree(const char *name,
748 struct clk_core *clk)
749 {
750 struct clk_core *child;
751 struct clk_core *ret;
752
753 if (!strcmp(clk->name, name))
754 return clk;
755
756 hlist_for_each_entry(child, &clk->children, child_node) {
757 ret = __clk_lookup_subtree(name, child);
758 if (ret)
759 return ret;
760 }
761
762 return NULL;
763 }
764
clk_core_lookup(const char * name)765 static struct clk_core *clk_core_lookup(const char *name)
766 {
767 struct clk_core *root_clk;
768 struct clk_core *ret;
769
770 if (!name)
771 return NULL;
772
773 /* search the 'proper' clk tree first */
774 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
775 ret = __clk_lookup_subtree(name, root_clk);
776 if (ret)
777 return ret;
778 }
779
780 /* if not found, then search the orphan tree */
781 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
782 ret = __clk_lookup_subtree(name, root_clk);
783 if (ret)
784 return ret;
785 }
786
787 return NULL;
788 }
789
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)790 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
791 unsigned long best, unsigned long flags)
792 {
793 if (flags & CLK_MUX_ROUND_CLOSEST)
794 return abs(now - rate) < abs(best - rate);
795
796 return now <= rate && now > best;
797 }
798
799 static long
clk_mux_determine_rate_flags(struct clk_hw * hw,unsigned long rate,unsigned long min_rate,unsigned long max_rate,unsigned long * best_parent_rate,struct clk_hw ** best_parent_p,unsigned long flags)800 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate,
801 unsigned long min_rate,
802 unsigned long max_rate,
803 unsigned long *best_parent_rate,
804 struct clk_hw **best_parent_p,
805 unsigned long flags)
806 {
807 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
808 int i, num_parents;
809 unsigned long parent_rate, best = 0;
810
811 /* if NO_REPARENT flag set, pass through to current parent */
812 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
813 parent = core->parent;
814 if (core->flags & CLK_SET_RATE_PARENT)
815 best = __clk_determine_rate(parent ? parent->hw : NULL,
816 rate, min_rate, max_rate);
817 else if (parent)
818 best = clk_core_get_rate_nolock(parent);
819 else
820 best = clk_core_get_rate_nolock(core);
821 goto out;
822 }
823
824 /* find the parent that can provide the fastest rate <= rate */
825 num_parents = core->num_parents;
826 for (i = 0; i < num_parents; i++) {
827 parent = clk_core_get_parent_by_index(core, i);
828 if (!parent)
829 continue;
830 if (core->flags & CLK_SET_RATE_PARENT)
831 parent_rate = __clk_determine_rate(parent->hw, rate,
832 min_rate,
833 max_rate);
834 else
835 parent_rate = clk_core_get_rate_nolock(parent);
836 if (mux_is_better_rate(rate, parent_rate, best, flags)) {
837 best_parent = parent;
838 best = parent_rate;
839 }
840 }
841
842 out:
843 if (best_parent)
844 *best_parent_p = best_parent->hw;
845 *best_parent_rate = best;
846
847 return best;
848 }
849
__clk_lookup(const char * name)850 struct clk *__clk_lookup(const char *name)
851 {
852 struct clk_core *core = clk_core_lookup(name);
853
854 return !core ? NULL : core->hw->clk;
855 }
856
clk_core_get_boundaries(struct clk_core * clk,unsigned long * min_rate,unsigned long * max_rate)857 static void clk_core_get_boundaries(struct clk_core *clk,
858 unsigned long *min_rate,
859 unsigned long *max_rate)
860 {
861 struct clk *clk_user;
862
863 *min_rate = 0;
864 *max_rate = ULONG_MAX;
865
866 hlist_for_each_entry(clk_user, &clk->clks, clks_node)
867 *min_rate = max(*min_rate, clk_user->min_rate);
868
869 hlist_for_each_entry(clk_user, &clk->clks, clks_node)
870 *max_rate = min(*max_rate, clk_user->max_rate);
871 }
872
873 /*
874 * Helper for finding best parent to provide a given frequency. This can be used
875 * directly as a determine_rate callback (e.g. for a mux), or from a more
876 * complex clock that may combine a mux with other operations.
877 */
__clk_mux_determine_rate(struct clk_hw * hw,unsigned long rate,unsigned long min_rate,unsigned long max_rate,unsigned long * best_parent_rate,struct clk_hw ** best_parent_p)878 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
879 unsigned long min_rate,
880 unsigned long max_rate,
881 unsigned long *best_parent_rate,
882 struct clk_hw **best_parent_p)
883 {
884 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
885 best_parent_rate,
886 best_parent_p, 0);
887 }
888 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
889
__clk_mux_determine_rate_closest(struct clk_hw * hw,unsigned long rate,unsigned long min_rate,unsigned long max_rate,unsigned long * best_parent_rate,struct clk_hw ** best_parent_p)890 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate,
891 unsigned long min_rate,
892 unsigned long max_rate,
893 unsigned long *best_parent_rate,
894 struct clk_hw **best_parent_p)
895 {
896 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
897 best_parent_rate,
898 best_parent_p,
899 CLK_MUX_ROUND_CLOSEST);
900 }
901 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
902
903 /*** clk api ***/
904
clk_core_unprepare(struct clk_core * clk)905 static void clk_core_unprepare(struct clk_core *clk)
906 {
907 if (!clk)
908 return;
909
910 if (WARN_ON(clk->prepare_count == 0))
911 return;
912
913 if (--clk->prepare_count > 0)
914 return;
915
916 WARN_ON(clk->enable_count > 0);
917
918 trace_clk_unprepare(clk);
919
920 if (clk->ops->unprepare)
921 clk->ops->unprepare(clk->hw);
922
923 trace_clk_unprepare_complete(clk);
924 clk_core_unprepare(clk->parent);
925 }
926
927 /**
928 * clk_unprepare - undo preparation of a clock source
929 * @clk: the clk being unprepared
930 *
931 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
932 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
933 * if the operation may sleep. One example is a clk which is accessed over
934 * I2c. In the complex case a clk gate operation may require a fast and a slow
935 * part. It is this reason that clk_unprepare and clk_disable are not mutually
936 * exclusive. In fact clk_disable must be called before clk_unprepare.
937 */
clk_unprepare(struct clk * clk)938 void clk_unprepare(struct clk *clk)
939 {
940 if (IS_ERR_OR_NULL(clk))
941 return;
942
943 clk_prepare_lock();
944 clk_core_unprepare(clk->core);
945 clk_prepare_unlock();
946 }
947 EXPORT_SYMBOL_GPL(clk_unprepare);
948
clk_core_prepare(struct clk_core * clk)949 static int clk_core_prepare(struct clk_core *clk)
950 {
951 int ret = 0;
952
953 if (!clk)
954 return 0;
955
956 if (clk->prepare_count == 0) {
957 ret = clk_core_prepare(clk->parent);
958 if (ret)
959 return ret;
960
961 trace_clk_prepare(clk);
962
963 if (clk->ops->prepare)
964 ret = clk->ops->prepare(clk->hw);
965
966 trace_clk_prepare_complete(clk);
967
968 if (ret) {
969 clk_core_unprepare(clk->parent);
970 return ret;
971 }
972 }
973
974 clk->prepare_count++;
975
976 return 0;
977 }
978
979 /**
980 * clk_prepare - prepare a clock source
981 * @clk: the clk being prepared
982 *
983 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
984 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
985 * operation may sleep. One example is a clk which is accessed over I2c. In
986 * the complex case a clk ungate operation may require a fast and a slow part.
987 * It is this reason that clk_prepare and clk_enable are not mutually
988 * exclusive. In fact clk_prepare must be called before clk_enable.
989 * Returns 0 on success, -EERROR otherwise.
990 */
clk_prepare(struct clk * clk)991 int clk_prepare(struct clk *clk)
992 {
993 int ret;
994
995 if (!clk)
996 return 0;
997
998 clk_prepare_lock();
999 ret = clk_core_prepare(clk->core);
1000 clk_prepare_unlock();
1001
1002 return ret;
1003 }
1004 EXPORT_SYMBOL_GPL(clk_prepare);
1005
clk_core_disable(struct clk_core * clk)1006 static void clk_core_disable(struct clk_core *clk)
1007 {
1008 if (!clk)
1009 return;
1010
1011 if (WARN_ON(clk->enable_count == 0))
1012 return;
1013
1014 if (--clk->enable_count > 0)
1015 return;
1016
1017 trace_clk_disable(clk);
1018
1019 if (clk->ops->disable)
1020 clk->ops->disable(clk->hw);
1021
1022 trace_clk_disable_complete(clk);
1023
1024 clk_core_disable(clk->parent);
1025 }
1026
__clk_disable(struct clk * clk)1027 static void __clk_disable(struct clk *clk)
1028 {
1029 if (!clk)
1030 return;
1031
1032 clk_core_disable(clk->core);
1033 }
1034
1035 /**
1036 * clk_disable - gate a clock
1037 * @clk: the clk being gated
1038 *
1039 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
1040 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1041 * clk if the operation is fast and will never sleep. One example is a
1042 * SoC-internal clk which is controlled via simple register writes. In the
1043 * complex case a clk gate operation may require a fast and a slow part. It is
1044 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1045 * In fact clk_disable must be called before clk_unprepare.
1046 */
clk_disable(struct clk * clk)1047 void clk_disable(struct clk *clk)
1048 {
1049 unsigned long flags;
1050
1051 if (IS_ERR_OR_NULL(clk))
1052 return;
1053
1054 flags = clk_enable_lock();
1055 __clk_disable(clk);
1056 clk_enable_unlock(flags);
1057 }
1058 EXPORT_SYMBOL_GPL(clk_disable);
1059
clk_core_enable(struct clk_core * clk)1060 static int clk_core_enable(struct clk_core *clk)
1061 {
1062 int ret = 0;
1063
1064 if (!clk)
1065 return 0;
1066
1067 if (WARN_ON(clk->prepare_count == 0))
1068 return -ESHUTDOWN;
1069
1070 if (clk->enable_count == 0) {
1071 ret = clk_core_enable(clk->parent);
1072
1073 if (ret)
1074 return ret;
1075
1076 trace_clk_enable(clk);
1077
1078 if (clk->ops->enable)
1079 ret = clk->ops->enable(clk->hw);
1080
1081 trace_clk_enable_complete(clk);
1082
1083 if (ret) {
1084 clk_core_disable(clk->parent);
1085 return ret;
1086 }
1087 }
1088
1089 clk->enable_count++;
1090 return 0;
1091 }
1092
__clk_enable(struct clk * clk)1093 static int __clk_enable(struct clk *clk)
1094 {
1095 if (!clk)
1096 return 0;
1097
1098 return clk_core_enable(clk->core);
1099 }
1100
1101 /**
1102 * clk_enable - ungate a clock
1103 * @clk: the clk being ungated
1104 *
1105 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1106 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1107 * if the operation will never sleep. One example is a SoC-internal clk which
1108 * is controlled via simple register writes. In the complex case a clk ungate
1109 * operation may require a fast and a slow part. It is this reason that
1110 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1111 * must be called before clk_enable. Returns 0 on success, -EERROR
1112 * otherwise.
1113 */
clk_enable(struct clk * clk)1114 int clk_enable(struct clk *clk)
1115 {
1116 unsigned long flags;
1117 int ret;
1118
1119 flags = clk_enable_lock();
1120 ret = __clk_enable(clk);
1121 clk_enable_unlock(flags);
1122
1123 return ret;
1124 }
1125 EXPORT_SYMBOL_GPL(clk_enable);
1126
clk_core_round_rate_nolock(struct clk_core * clk,unsigned long rate,unsigned long min_rate,unsigned long max_rate)1127 static unsigned long clk_core_round_rate_nolock(struct clk_core *clk,
1128 unsigned long rate,
1129 unsigned long min_rate,
1130 unsigned long max_rate)
1131 {
1132 unsigned long parent_rate = 0;
1133 struct clk_core *parent;
1134 struct clk_hw *parent_hw;
1135
1136 lockdep_assert_held(&prepare_lock);
1137
1138 if (!clk)
1139 return 0;
1140
1141 parent = clk->parent;
1142 if (parent)
1143 parent_rate = parent->rate;
1144
1145 if (clk->ops->determine_rate) {
1146 parent_hw = parent ? parent->hw : NULL;
1147 return clk->ops->determine_rate(clk->hw, rate,
1148 min_rate, max_rate,
1149 &parent_rate, &parent_hw);
1150 } else if (clk->ops->round_rate)
1151 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1152 else if (clk->flags & CLK_SET_RATE_PARENT)
1153 return clk_core_round_rate_nolock(clk->parent, rate, min_rate,
1154 max_rate);
1155 else
1156 return clk->rate;
1157 }
1158
1159 /**
1160 * __clk_determine_rate - get the closest rate actually supported by a clock
1161 * @hw: determine the rate of this clock
1162 * @rate: target rate
1163 * @min_rate: returned rate must be greater than this rate
1164 * @max_rate: returned rate must be less than this rate
1165 *
1166 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate and
1167 * .determine_rate.
1168 */
__clk_determine_rate(struct clk_hw * hw,unsigned long rate,unsigned long min_rate,unsigned long max_rate)1169 unsigned long __clk_determine_rate(struct clk_hw *hw,
1170 unsigned long rate,
1171 unsigned long min_rate,
1172 unsigned long max_rate)
1173 {
1174 if (!hw)
1175 return 0;
1176
1177 return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate);
1178 }
1179 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1180
1181 /**
1182 * __clk_round_rate - round the given rate for a clk
1183 * @clk: round the rate of this clock
1184 * @rate: the rate which is to be rounded
1185 *
1186 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
1187 */
__clk_round_rate(struct clk * clk,unsigned long rate)1188 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
1189 {
1190 unsigned long min_rate;
1191 unsigned long max_rate;
1192
1193 if (!clk)
1194 return 0;
1195
1196 clk_core_get_boundaries(clk->core, &min_rate, &max_rate);
1197
1198 return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate);
1199 }
1200 EXPORT_SYMBOL_GPL(__clk_round_rate);
1201
1202 /**
1203 * clk_round_rate - round the given rate for a clk
1204 * @clk: the clk for which we are rounding a rate
1205 * @rate: the rate which is to be rounded
1206 *
1207 * Takes in a rate as input and rounds it to a rate that the clk can actually
1208 * use which is then returned. If clk doesn't support round_rate operation
1209 * then the parent rate is returned.
1210 */
clk_round_rate(struct clk * clk,unsigned long rate)1211 long clk_round_rate(struct clk *clk, unsigned long rate)
1212 {
1213 unsigned long ret;
1214
1215 if (!clk)
1216 return 0;
1217
1218 clk_prepare_lock();
1219 ret = __clk_round_rate(clk, rate);
1220 clk_prepare_unlock();
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL_GPL(clk_round_rate);
1225
1226 /**
1227 * __clk_notify - call clk notifier chain
1228 * @clk: struct clk * that is changing rate
1229 * @msg: clk notifier type (see include/linux/clk.h)
1230 * @old_rate: old clk rate
1231 * @new_rate: new clk rate
1232 *
1233 * Triggers a notifier call chain on the clk rate-change notification
1234 * for 'clk'. Passes a pointer to the struct clk and the previous
1235 * and current rates to the notifier callback. Intended to be called by
1236 * internal clock code only. Returns NOTIFY_DONE from the last driver
1237 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1238 * a driver returns that.
1239 */
__clk_notify(struct clk_core * clk,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1240 static int __clk_notify(struct clk_core *clk, unsigned long msg,
1241 unsigned long old_rate, unsigned long new_rate)
1242 {
1243 struct clk_notifier *cn;
1244 struct clk_notifier_data cnd;
1245 int ret = NOTIFY_DONE;
1246
1247 cnd.old_rate = old_rate;
1248 cnd.new_rate = new_rate;
1249
1250 list_for_each_entry(cn, &clk_notifier_list, node) {
1251 if (cn->clk->core == clk) {
1252 cnd.clk = cn->clk;
1253 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1254 &cnd);
1255 }
1256 }
1257
1258 return ret;
1259 }
1260
1261 /**
1262 * __clk_recalc_accuracies
1263 * @clk: first clk in the subtree
1264 *
1265 * Walks the subtree of clks starting with clk and recalculates accuracies as
1266 * it goes. Note that if a clk does not implement the .recalc_accuracy
1267 * callback then it is assumed that the clock will take on the accuracy of it's
1268 * parent.
1269 *
1270 * Caller must hold prepare_lock.
1271 */
__clk_recalc_accuracies(struct clk_core * clk)1272 static void __clk_recalc_accuracies(struct clk_core *clk)
1273 {
1274 unsigned long parent_accuracy = 0;
1275 struct clk_core *child;
1276
1277 lockdep_assert_held(&prepare_lock);
1278
1279 if (clk->parent)
1280 parent_accuracy = clk->parent->accuracy;
1281
1282 if (clk->ops->recalc_accuracy)
1283 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1284 parent_accuracy);
1285 else
1286 clk->accuracy = parent_accuracy;
1287
1288 hlist_for_each_entry(child, &clk->children, child_node)
1289 __clk_recalc_accuracies(child);
1290 }
1291
clk_core_get_accuracy(struct clk_core * clk)1292 static long clk_core_get_accuracy(struct clk_core *clk)
1293 {
1294 unsigned long accuracy;
1295
1296 clk_prepare_lock();
1297 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1298 __clk_recalc_accuracies(clk);
1299
1300 accuracy = __clk_get_accuracy(clk);
1301 clk_prepare_unlock();
1302
1303 return accuracy;
1304 }
1305
1306 /**
1307 * clk_get_accuracy - return the accuracy of clk
1308 * @clk: the clk whose accuracy is being returned
1309 *
1310 * Simply returns the cached accuracy of the clk, unless
1311 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1312 * issued.
1313 * If clk is NULL then returns 0.
1314 */
clk_get_accuracy(struct clk * clk)1315 long clk_get_accuracy(struct clk *clk)
1316 {
1317 if (!clk)
1318 return 0;
1319
1320 return clk_core_get_accuracy(clk->core);
1321 }
1322 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1323
clk_recalc(struct clk_core * clk,unsigned long parent_rate)1324 static unsigned long clk_recalc(struct clk_core *clk,
1325 unsigned long parent_rate)
1326 {
1327 if (clk->ops->recalc_rate)
1328 return clk->ops->recalc_rate(clk->hw, parent_rate);
1329 return parent_rate;
1330 }
1331
1332 /**
1333 * __clk_recalc_rates
1334 * @clk: first clk in the subtree
1335 * @msg: notification type (see include/linux/clk.h)
1336 *
1337 * Walks the subtree of clks starting with clk and recalculates rates as it
1338 * goes. Note that if a clk does not implement the .recalc_rate callback then
1339 * it is assumed that the clock will take on the rate of its parent.
1340 *
1341 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1342 * if necessary.
1343 *
1344 * Caller must hold prepare_lock.
1345 */
__clk_recalc_rates(struct clk_core * clk,unsigned long msg)1346 static void __clk_recalc_rates(struct clk_core *clk, unsigned long msg)
1347 {
1348 unsigned long old_rate;
1349 unsigned long parent_rate = 0;
1350 struct clk_core *child;
1351
1352 lockdep_assert_held(&prepare_lock);
1353
1354 old_rate = clk->rate;
1355
1356 if (clk->parent)
1357 parent_rate = clk->parent->rate;
1358
1359 clk->rate = clk_recalc(clk, parent_rate);
1360
1361 /*
1362 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1363 * & ABORT_RATE_CHANGE notifiers
1364 */
1365 if (clk->notifier_count && msg)
1366 __clk_notify(clk, msg, old_rate, clk->rate);
1367
1368 hlist_for_each_entry(child, &clk->children, child_node)
1369 __clk_recalc_rates(child, msg);
1370 }
1371
clk_core_get_rate(struct clk_core * clk)1372 static unsigned long clk_core_get_rate(struct clk_core *clk)
1373 {
1374 unsigned long rate;
1375
1376 clk_prepare_lock();
1377
1378 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1379 __clk_recalc_rates(clk, 0);
1380
1381 rate = clk_core_get_rate_nolock(clk);
1382 clk_prepare_unlock();
1383
1384 return rate;
1385 }
1386
1387 /**
1388 * clk_get_rate - return the rate of clk
1389 * @clk: the clk whose rate is being returned
1390 *
1391 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1392 * is set, which means a recalc_rate will be issued.
1393 * If clk is NULL then returns 0.
1394 */
clk_get_rate(struct clk * clk)1395 unsigned long clk_get_rate(struct clk *clk)
1396 {
1397 if (!clk)
1398 return 0;
1399
1400 return clk_core_get_rate(clk->core);
1401 }
1402 EXPORT_SYMBOL_GPL(clk_get_rate);
1403
clk_fetch_parent_index(struct clk_core * clk,struct clk_core * parent)1404 static int clk_fetch_parent_index(struct clk_core *clk,
1405 struct clk_core *parent)
1406 {
1407 int i;
1408
1409 if (!clk->parents) {
1410 clk->parents = kcalloc(clk->num_parents,
1411 sizeof(struct clk *), GFP_KERNEL);
1412 if (!clk->parents)
1413 return -ENOMEM;
1414 }
1415
1416 /*
1417 * find index of new parent clock using cached parent ptrs,
1418 * or if not yet cached, use string name comparison and cache
1419 * them now to avoid future calls to clk_core_lookup.
1420 */
1421 for (i = 0; i < clk->num_parents; i++) {
1422 if (clk->parents[i] == parent)
1423 return i;
1424
1425 if (clk->parents[i])
1426 continue;
1427
1428 if (!strcmp(clk->parent_names[i], parent->name)) {
1429 clk->parents[i] = clk_core_lookup(parent->name);
1430 return i;
1431 }
1432 }
1433
1434 return -EINVAL;
1435 }
1436
clk_reparent(struct clk_core * clk,struct clk_core * new_parent)1437 static void clk_reparent(struct clk_core *clk, struct clk_core *new_parent)
1438 {
1439 hlist_del(&clk->child_node);
1440
1441 if (new_parent) {
1442 /* avoid duplicate POST_RATE_CHANGE notifications */
1443 if (new_parent->new_child == clk)
1444 new_parent->new_child = NULL;
1445
1446 hlist_add_head(&clk->child_node, &new_parent->children);
1447 } else {
1448 hlist_add_head(&clk->child_node, &clk_orphan_list);
1449 }
1450
1451 clk->parent = new_parent;
1452 }
1453
__clk_set_parent_before(struct clk_core * clk,struct clk_core * parent)1454 static struct clk_core *__clk_set_parent_before(struct clk_core *clk,
1455 struct clk_core *parent)
1456 {
1457 unsigned long flags;
1458 struct clk_core *old_parent = clk->parent;
1459
1460 /*
1461 * Migrate prepare state between parents and prevent race with
1462 * clk_enable().
1463 *
1464 * If the clock is not prepared, then a race with
1465 * clk_enable/disable() is impossible since we already have the
1466 * prepare lock (future calls to clk_enable() need to be preceded by
1467 * a clk_prepare()).
1468 *
1469 * If the clock is prepared, migrate the prepared state to the new
1470 * parent and also protect against a race with clk_enable() by
1471 * forcing the clock and the new parent on. This ensures that all
1472 * future calls to clk_enable() are practically NOPs with respect to
1473 * hardware and software states.
1474 *
1475 * See also: Comment for clk_set_parent() below.
1476 */
1477 if (clk->prepare_count) {
1478 clk_core_prepare(parent);
1479 flags = clk_enable_lock();
1480 clk_core_enable(parent);
1481 clk_core_enable(clk);
1482 clk_enable_unlock(flags);
1483 }
1484
1485 /* update the clk tree topology */
1486 flags = clk_enable_lock();
1487 clk_reparent(clk, parent);
1488 clk_enable_unlock(flags);
1489
1490 return old_parent;
1491 }
1492
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1493 static void __clk_set_parent_after(struct clk_core *core,
1494 struct clk_core *parent,
1495 struct clk_core *old_parent)
1496 {
1497 unsigned long flags;
1498
1499 /*
1500 * Finish the migration of prepare state and undo the changes done
1501 * for preventing a race with clk_enable().
1502 */
1503 if (core->prepare_count) {
1504 flags = clk_enable_lock();
1505 clk_core_disable(core);
1506 clk_core_disable(old_parent);
1507 clk_enable_unlock(flags);
1508 clk_core_unprepare(old_parent);
1509 }
1510 }
1511
__clk_set_parent(struct clk_core * clk,struct clk_core * parent,u8 p_index)1512 static int __clk_set_parent(struct clk_core *clk, struct clk_core *parent,
1513 u8 p_index)
1514 {
1515 unsigned long flags;
1516 int ret = 0;
1517 struct clk_core *old_parent;
1518
1519 old_parent = __clk_set_parent_before(clk, parent);
1520
1521 trace_clk_set_parent(clk, parent);
1522
1523 /* change clock input source */
1524 if (parent && clk->ops->set_parent)
1525 ret = clk->ops->set_parent(clk->hw, p_index);
1526
1527 trace_clk_set_parent_complete(clk, parent);
1528
1529 if (ret) {
1530 flags = clk_enable_lock();
1531 clk_reparent(clk, old_parent);
1532 clk_enable_unlock(flags);
1533
1534 if (clk->prepare_count) {
1535 flags = clk_enable_lock();
1536 clk_core_disable(clk);
1537 clk_core_disable(parent);
1538 clk_enable_unlock(flags);
1539 clk_core_unprepare(parent);
1540 }
1541 return ret;
1542 }
1543
1544 __clk_set_parent_after(clk, parent, old_parent);
1545
1546 return 0;
1547 }
1548
1549 /**
1550 * __clk_speculate_rates
1551 * @clk: first clk in the subtree
1552 * @parent_rate: the "future" rate of clk's parent
1553 *
1554 * Walks the subtree of clks starting with clk, speculating rates as it
1555 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1556 *
1557 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1558 * pre-rate change notifications and returns early if no clks in the
1559 * subtree have subscribed to the notifications. Note that if a clk does not
1560 * implement the .recalc_rate callback then it is assumed that the clock will
1561 * take on the rate of its parent.
1562 *
1563 * Caller must hold prepare_lock.
1564 */
__clk_speculate_rates(struct clk_core * clk,unsigned long parent_rate)1565 static int __clk_speculate_rates(struct clk_core *clk,
1566 unsigned long parent_rate)
1567 {
1568 struct clk_core *child;
1569 unsigned long new_rate;
1570 int ret = NOTIFY_DONE;
1571
1572 lockdep_assert_held(&prepare_lock);
1573
1574 new_rate = clk_recalc(clk, parent_rate);
1575
1576 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1577 if (clk->notifier_count)
1578 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1579
1580 if (ret & NOTIFY_STOP_MASK) {
1581 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1582 __func__, clk->name, ret);
1583 goto out;
1584 }
1585
1586 hlist_for_each_entry(child, &clk->children, child_node) {
1587 ret = __clk_speculate_rates(child, new_rate);
1588 if (ret & NOTIFY_STOP_MASK)
1589 break;
1590 }
1591
1592 out:
1593 return ret;
1594 }
1595
clk_calc_subtree(struct clk_core * clk,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)1596 static void clk_calc_subtree(struct clk_core *clk, unsigned long new_rate,
1597 struct clk_core *new_parent, u8 p_index)
1598 {
1599 struct clk_core *child;
1600
1601 clk->new_rate = new_rate;
1602 clk->new_parent = new_parent;
1603 clk->new_parent_index = p_index;
1604 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1605 clk->new_child = NULL;
1606 if (new_parent && new_parent != clk->parent)
1607 new_parent->new_child = clk;
1608
1609 hlist_for_each_entry(child, &clk->children, child_node) {
1610 child->new_rate = clk_recalc(child, new_rate);
1611 clk_calc_subtree(child, child->new_rate, NULL, 0);
1612 }
1613 }
1614
1615 /*
1616 * calculate the new rates returning the topmost clock that has to be
1617 * changed.
1618 */
clk_calc_new_rates(struct clk_core * clk,unsigned long rate)1619 static struct clk_core *clk_calc_new_rates(struct clk_core *clk,
1620 unsigned long rate)
1621 {
1622 struct clk_core *top = clk;
1623 struct clk_core *old_parent, *parent;
1624 struct clk_hw *parent_hw;
1625 unsigned long best_parent_rate = 0;
1626 unsigned long new_rate;
1627 unsigned long min_rate;
1628 unsigned long max_rate;
1629 int p_index = 0;
1630 long ret;
1631
1632 /* sanity */
1633 if (IS_ERR_OR_NULL(clk))
1634 return NULL;
1635
1636 /* save parent rate, if it exists */
1637 parent = old_parent = clk->parent;
1638 if (parent)
1639 best_parent_rate = parent->rate;
1640
1641 clk_core_get_boundaries(clk, &min_rate, &max_rate);
1642
1643 /* find the closest rate and parent clk/rate */
1644 if (clk->ops->determine_rate) {
1645 parent_hw = parent ? parent->hw : NULL;
1646 ret = clk->ops->determine_rate(clk->hw, rate,
1647 min_rate,
1648 max_rate,
1649 &best_parent_rate,
1650 &parent_hw);
1651 if (ret < 0)
1652 return NULL;
1653
1654 new_rate = ret;
1655 parent = parent_hw ? parent_hw->core : NULL;
1656 } else if (clk->ops->round_rate) {
1657 ret = clk->ops->round_rate(clk->hw, rate,
1658 &best_parent_rate);
1659 if (ret < 0)
1660 return NULL;
1661
1662 new_rate = ret;
1663 if (new_rate < min_rate || new_rate > max_rate)
1664 return NULL;
1665 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1666 /* pass-through clock without adjustable parent */
1667 clk->new_rate = clk->rate;
1668 return NULL;
1669 } else {
1670 /* pass-through clock with adjustable parent */
1671 top = clk_calc_new_rates(parent, rate);
1672 new_rate = parent->new_rate;
1673 goto out;
1674 }
1675
1676 /* some clocks must be gated to change parent */
1677 if (parent != old_parent &&
1678 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1679 pr_debug("%s: %s not gated but wants to reparent\n",
1680 __func__, clk->name);
1681 return NULL;
1682 }
1683
1684 /* try finding the new parent index */
1685 if (parent && clk->num_parents > 1) {
1686 p_index = clk_fetch_parent_index(clk, parent);
1687 if (p_index < 0) {
1688 pr_debug("%s: clk %s can not be parent of clk %s\n",
1689 __func__, parent->name, clk->name);
1690 return NULL;
1691 }
1692 }
1693
1694 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1695 best_parent_rate != parent->rate)
1696 top = clk_calc_new_rates(parent, best_parent_rate);
1697
1698 out:
1699 clk_calc_subtree(clk, new_rate, parent, p_index);
1700
1701 return top;
1702 }
1703
1704 /*
1705 * Notify about rate changes in a subtree. Always walk down the whole tree
1706 * so that in case of an error we can walk down the whole tree again and
1707 * abort the change.
1708 */
clk_propagate_rate_change(struct clk_core * clk,unsigned long event)1709 static struct clk_core *clk_propagate_rate_change(struct clk_core *clk,
1710 unsigned long event)
1711 {
1712 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1713 int ret = NOTIFY_DONE;
1714
1715 if (clk->rate == clk->new_rate)
1716 return NULL;
1717
1718 if (clk->notifier_count) {
1719 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1720 if (ret & NOTIFY_STOP_MASK)
1721 fail_clk = clk;
1722 }
1723
1724 hlist_for_each_entry(child, &clk->children, child_node) {
1725 /* Skip children who will be reparented to another clock */
1726 if (child->new_parent && child->new_parent != clk)
1727 continue;
1728 tmp_clk = clk_propagate_rate_change(child, event);
1729 if (tmp_clk)
1730 fail_clk = tmp_clk;
1731 }
1732
1733 /* handle the new child who might not be in clk->children yet */
1734 if (clk->new_child) {
1735 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1736 if (tmp_clk)
1737 fail_clk = tmp_clk;
1738 }
1739
1740 return fail_clk;
1741 }
1742
1743 /*
1744 * walk down a subtree and set the new rates notifying the rate
1745 * change on the way
1746 */
clk_change_rate(struct clk_core * clk)1747 static void clk_change_rate(struct clk_core *clk)
1748 {
1749 struct clk_core *child;
1750 struct hlist_node *tmp;
1751 unsigned long old_rate;
1752 unsigned long best_parent_rate = 0;
1753 bool skip_set_rate = false;
1754 struct clk_core *old_parent;
1755
1756 old_rate = clk->rate;
1757
1758 if (clk->new_parent)
1759 best_parent_rate = clk->new_parent->rate;
1760 else if (clk->parent)
1761 best_parent_rate = clk->parent->rate;
1762
1763 if (clk->new_parent && clk->new_parent != clk->parent) {
1764 old_parent = __clk_set_parent_before(clk, clk->new_parent);
1765 trace_clk_set_parent(clk, clk->new_parent);
1766
1767 if (clk->ops->set_rate_and_parent) {
1768 skip_set_rate = true;
1769 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1770 best_parent_rate,
1771 clk->new_parent_index);
1772 } else if (clk->ops->set_parent) {
1773 clk->ops->set_parent(clk->hw, clk->new_parent_index);
1774 }
1775
1776 trace_clk_set_parent_complete(clk, clk->new_parent);
1777 __clk_set_parent_after(clk, clk->new_parent, old_parent);
1778 }
1779
1780 trace_clk_set_rate(clk, clk->new_rate);
1781
1782 if (!skip_set_rate && clk->ops->set_rate)
1783 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1784
1785 trace_clk_set_rate_complete(clk, clk->new_rate);
1786
1787 clk->rate = clk_recalc(clk, best_parent_rate);
1788
1789 if (clk->notifier_count && old_rate != clk->rate)
1790 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1791
1792 /*
1793 * Use safe iteration, as change_rate can actually swap parents
1794 * for certain clock types.
1795 */
1796 hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) {
1797 /* Skip children who will be reparented to another clock */
1798 if (child->new_parent && child->new_parent != clk)
1799 continue;
1800 clk_change_rate(child);
1801 }
1802
1803 /* handle the new child who might not be in clk->children yet */
1804 if (clk->new_child)
1805 clk_change_rate(clk->new_child);
1806 }
1807
clk_core_set_rate_nolock(struct clk_core * clk,unsigned long req_rate)1808 static int clk_core_set_rate_nolock(struct clk_core *clk,
1809 unsigned long req_rate)
1810 {
1811 struct clk_core *top, *fail_clk;
1812 unsigned long rate = req_rate;
1813 int ret = 0;
1814
1815 if (!clk)
1816 return 0;
1817
1818 /* bail early if nothing to do */
1819 if (rate == clk_core_get_rate_nolock(clk))
1820 return 0;
1821
1822 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count)
1823 return -EBUSY;
1824
1825 /* calculate new rates and get the topmost changed clock */
1826 top = clk_calc_new_rates(clk, rate);
1827 if (!top)
1828 return -EINVAL;
1829
1830 /* notify that we are about to change rates */
1831 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1832 if (fail_clk) {
1833 pr_debug("%s: failed to set %s rate\n", __func__,
1834 fail_clk->name);
1835 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1836 return -EBUSY;
1837 }
1838
1839 /* change the rates */
1840 clk_change_rate(top);
1841
1842 clk->req_rate = req_rate;
1843
1844 return ret;
1845 }
1846
1847 /**
1848 * clk_set_rate - specify a new rate for clk
1849 * @clk: the clk whose rate is being changed
1850 * @rate: the new rate for clk
1851 *
1852 * In the simplest case clk_set_rate will only adjust the rate of clk.
1853 *
1854 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1855 * propagate up to clk's parent; whether or not this happens depends on the
1856 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1857 * after calling .round_rate then upstream parent propagation is ignored. If
1858 * *parent_rate comes back with a new rate for clk's parent then we propagate
1859 * up to clk's parent and set its rate. Upward propagation will continue
1860 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1861 * .round_rate stops requesting changes to clk's parent_rate.
1862 *
1863 * Rate changes are accomplished via tree traversal that also recalculates the
1864 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1865 *
1866 * Returns 0 on success, -EERROR otherwise.
1867 */
clk_set_rate(struct clk * clk,unsigned long rate)1868 int clk_set_rate(struct clk *clk, unsigned long rate)
1869 {
1870 int ret;
1871
1872 if (!clk)
1873 return 0;
1874
1875 /* prevent racing with updates to the clock topology */
1876 clk_prepare_lock();
1877
1878 ret = clk_core_set_rate_nolock(clk->core, rate);
1879
1880 clk_prepare_unlock();
1881
1882 return ret;
1883 }
1884 EXPORT_SYMBOL_GPL(clk_set_rate);
1885
1886 /**
1887 * clk_set_rate_range - set a rate range for a clock source
1888 * @clk: clock source
1889 * @min: desired minimum clock rate in Hz, inclusive
1890 * @max: desired maximum clock rate in Hz, inclusive
1891 *
1892 * Returns success (0) or negative errno.
1893 */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)1894 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1895 {
1896 int ret = 0;
1897
1898 if (!clk)
1899 return 0;
1900
1901 if (min > max) {
1902 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1903 __func__, clk->core->name, clk->dev_id, clk->con_id,
1904 min, max);
1905 return -EINVAL;
1906 }
1907
1908 clk_prepare_lock();
1909
1910 if (min != clk->min_rate || max != clk->max_rate) {
1911 clk->min_rate = min;
1912 clk->max_rate = max;
1913 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1914 }
1915
1916 clk_prepare_unlock();
1917
1918 return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1921
1922 /**
1923 * clk_set_min_rate - set a minimum clock rate for a clock source
1924 * @clk: clock source
1925 * @rate: desired minimum clock rate in Hz, inclusive
1926 *
1927 * Returns success (0) or negative errno.
1928 */
clk_set_min_rate(struct clk * clk,unsigned long rate)1929 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1930 {
1931 if (!clk)
1932 return 0;
1933
1934 return clk_set_rate_range(clk, rate, clk->max_rate);
1935 }
1936 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1937
1938 /**
1939 * clk_set_max_rate - set a maximum clock rate for a clock source
1940 * @clk: clock source
1941 * @rate: desired maximum clock rate in Hz, inclusive
1942 *
1943 * Returns success (0) or negative errno.
1944 */
clk_set_max_rate(struct clk * clk,unsigned long rate)1945 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1946 {
1947 if (!clk)
1948 return 0;
1949
1950 return clk_set_rate_range(clk, clk->min_rate, rate);
1951 }
1952 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1953
1954 /**
1955 * clk_get_parent - return the parent of a clk
1956 * @clk: the clk whose parent gets returned
1957 *
1958 * Simply returns clk->parent. Returns NULL if clk is NULL.
1959 */
clk_get_parent(struct clk * clk)1960 struct clk *clk_get_parent(struct clk *clk)
1961 {
1962 struct clk *parent;
1963
1964 clk_prepare_lock();
1965 parent = __clk_get_parent(clk);
1966 clk_prepare_unlock();
1967
1968 return parent;
1969 }
1970 EXPORT_SYMBOL_GPL(clk_get_parent);
1971
1972 /*
1973 * .get_parent is mandatory for clocks with multiple possible parents. It is
1974 * optional for single-parent clocks. Always call .get_parent if it is
1975 * available and WARN if it is missing for multi-parent clocks.
1976 *
1977 * For single-parent clocks without .get_parent, first check to see if the
1978 * .parents array exists, and if so use it to avoid an expensive tree
1979 * traversal. If .parents does not exist then walk the tree.
1980 */
__clk_init_parent(struct clk_core * clk)1981 static struct clk_core *__clk_init_parent(struct clk_core *clk)
1982 {
1983 struct clk_core *ret = NULL;
1984 u8 index;
1985
1986 /* handle the trivial cases */
1987
1988 if (!clk->num_parents)
1989 goto out;
1990
1991 if (clk->num_parents == 1) {
1992 if (IS_ERR_OR_NULL(clk->parent))
1993 clk->parent = clk_core_lookup(clk->parent_names[0]);
1994 ret = clk->parent;
1995 goto out;
1996 }
1997
1998 if (!clk->ops->get_parent) {
1999 WARN(!clk->ops->get_parent,
2000 "%s: multi-parent clocks must implement .get_parent\n",
2001 __func__);
2002 goto out;
2003 };
2004
2005 /*
2006 * Do our best to cache parent clocks in clk->parents. This prevents
2007 * unnecessary and expensive lookups. We don't set clk->parent here;
2008 * that is done by the calling function.
2009 */
2010
2011 index = clk->ops->get_parent(clk->hw);
2012
2013 if (!clk->parents)
2014 clk->parents =
2015 kcalloc(clk->num_parents, sizeof(struct clk *),
2016 GFP_KERNEL);
2017
2018 ret = clk_core_get_parent_by_index(clk, index);
2019
2020 out:
2021 return ret;
2022 }
2023
clk_core_reparent(struct clk_core * clk,struct clk_core * new_parent)2024 static void clk_core_reparent(struct clk_core *clk,
2025 struct clk_core *new_parent)
2026 {
2027 clk_reparent(clk, new_parent);
2028 __clk_recalc_accuracies(clk);
2029 __clk_recalc_rates(clk, POST_RATE_CHANGE);
2030 }
2031
2032 /**
2033 * clk_has_parent - check if a clock is a possible parent for another
2034 * @clk: clock source
2035 * @parent: parent clock source
2036 *
2037 * This function can be used in drivers that need to check that a clock can be
2038 * the parent of another without actually changing the parent.
2039 *
2040 * Returns true if @parent is a possible parent for @clk, false otherwise.
2041 */
clk_has_parent(struct clk * clk,struct clk * parent)2042 bool clk_has_parent(struct clk *clk, struct clk *parent)
2043 {
2044 struct clk_core *core, *parent_core;
2045 unsigned int i;
2046
2047 /* NULL clocks should be nops, so return success if either is NULL. */
2048 if (!clk || !parent)
2049 return true;
2050
2051 core = clk->core;
2052 parent_core = parent->core;
2053
2054 /* Optimize for the case where the parent is already the parent. */
2055 if (core->parent == parent_core)
2056 return true;
2057
2058 for (i = 0; i < core->num_parents; i++)
2059 if (strcmp(core->parent_names[i], parent_core->name) == 0)
2060 return true;
2061
2062 return false;
2063 }
2064 EXPORT_SYMBOL_GPL(clk_has_parent);
2065
clk_core_set_parent(struct clk_core * clk,struct clk_core * parent)2066 static int clk_core_set_parent(struct clk_core *clk, struct clk_core *parent)
2067 {
2068 int ret = 0;
2069 int p_index = 0;
2070 unsigned long p_rate = 0;
2071
2072 if (!clk)
2073 return 0;
2074
2075 /* prevent racing with updates to the clock topology */
2076 clk_prepare_lock();
2077
2078 if (clk->parent == parent)
2079 goto out;
2080
2081 /* verify ops for for multi-parent clks */
2082 if ((clk->num_parents > 1) && (!clk->ops->set_parent)) {
2083 ret = -ENOSYS;
2084 goto out;
2085 }
2086
2087 /* check that we are allowed to re-parent if the clock is in use */
2088 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
2089 ret = -EBUSY;
2090 goto out;
2091 }
2092
2093 /* try finding the new parent index */
2094 if (parent) {
2095 p_index = clk_fetch_parent_index(clk, parent);
2096 p_rate = parent->rate;
2097 if (p_index < 0) {
2098 pr_debug("%s: clk %s can not be parent of clk %s\n",
2099 __func__, parent->name, clk->name);
2100 ret = p_index;
2101 goto out;
2102 }
2103 }
2104
2105 /* propagate PRE_RATE_CHANGE notifications */
2106 ret = __clk_speculate_rates(clk, p_rate);
2107
2108 /* abort if a driver objects */
2109 if (ret & NOTIFY_STOP_MASK)
2110 goto out;
2111
2112 /* do the re-parent */
2113 ret = __clk_set_parent(clk, parent, p_index);
2114
2115 /* propagate rate an accuracy recalculation accordingly */
2116 if (ret) {
2117 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
2118 } else {
2119 __clk_recalc_rates(clk, POST_RATE_CHANGE);
2120 __clk_recalc_accuracies(clk);
2121 }
2122
2123 out:
2124 clk_prepare_unlock();
2125
2126 return ret;
2127 }
2128
2129 /**
2130 * clk_set_parent - switch the parent of a mux clk
2131 * @clk: the mux clk whose input we are switching
2132 * @parent: the new input to clk
2133 *
2134 * Re-parent clk to use parent as its new input source. If clk is in
2135 * prepared state, the clk will get enabled for the duration of this call. If
2136 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2137 * that, the reparenting is glitchy in hardware, etc), use the
2138 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2139 *
2140 * After successfully changing clk's parent clk_set_parent will update the
2141 * clk topology, sysfs topology and propagate rate recalculation via
2142 * __clk_recalc_rates.
2143 *
2144 * Returns 0 on success, -EERROR otherwise.
2145 */
clk_set_parent(struct clk * clk,struct clk * parent)2146 int clk_set_parent(struct clk *clk, struct clk *parent)
2147 {
2148 if (!clk)
2149 return 0;
2150
2151 return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
2152 }
2153 EXPORT_SYMBOL_GPL(clk_set_parent);
2154
2155 /**
2156 * clk_set_phase - adjust the phase shift of a clock signal
2157 * @clk: clock signal source
2158 * @degrees: number of degrees the signal is shifted
2159 *
2160 * Shifts the phase of a clock signal by the specified
2161 * degrees. Returns 0 on success, -EERROR otherwise.
2162 *
2163 * This function makes no distinction about the input or reference
2164 * signal that we adjust the clock signal phase against. For example
2165 * phase locked-loop clock signal generators we may shift phase with
2166 * respect to feedback clock signal input, but for other cases the
2167 * clock phase may be shifted with respect to some other, unspecified
2168 * signal.
2169 *
2170 * Additionally the concept of phase shift does not propagate through
2171 * the clock tree hierarchy, which sets it apart from clock rates and
2172 * clock accuracy. A parent clock phase attribute does not have an
2173 * impact on the phase attribute of a child clock.
2174 */
clk_set_phase(struct clk * clk,int degrees)2175 int clk_set_phase(struct clk *clk, int degrees)
2176 {
2177 int ret = -EINVAL;
2178
2179 if (!clk)
2180 return 0;
2181
2182 /* sanity check degrees */
2183 degrees %= 360;
2184 if (degrees < 0)
2185 degrees += 360;
2186
2187 clk_prepare_lock();
2188
2189 trace_clk_set_phase(clk->core, degrees);
2190
2191 if (clk->core->ops->set_phase)
2192 ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2193
2194 trace_clk_set_phase_complete(clk->core, degrees);
2195
2196 if (!ret)
2197 clk->core->phase = degrees;
2198
2199 clk_prepare_unlock();
2200
2201 return ret;
2202 }
2203 EXPORT_SYMBOL_GPL(clk_set_phase);
2204
clk_core_get_phase(struct clk_core * clk)2205 static int clk_core_get_phase(struct clk_core *clk)
2206 {
2207 int ret = 0;
2208
2209 if (!clk)
2210 goto out;
2211
2212 clk_prepare_lock();
2213 ret = clk->phase;
2214 clk_prepare_unlock();
2215
2216 out:
2217 return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(clk_get_phase);
2220
2221 /**
2222 * clk_get_phase - return the phase shift of a clock signal
2223 * @clk: clock signal source
2224 *
2225 * Returns the phase shift of a clock node in degrees, otherwise returns
2226 * -EERROR.
2227 */
clk_get_phase(struct clk * clk)2228 int clk_get_phase(struct clk *clk)
2229 {
2230 if (!clk)
2231 return 0;
2232
2233 return clk_core_get_phase(clk->core);
2234 }
2235
2236 /**
2237 * clk_is_match - check if two clk's point to the same hardware clock
2238 * @p: clk compared against q
2239 * @q: clk compared against p
2240 *
2241 * Returns true if the two struct clk pointers both point to the same hardware
2242 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2243 * share the same struct clk_core object.
2244 *
2245 * Returns false otherwise. Note that two NULL clks are treated as matching.
2246 */
clk_is_match(const struct clk * p,const struct clk * q)2247 bool clk_is_match(const struct clk *p, const struct clk *q)
2248 {
2249 /* trivial case: identical struct clk's or both NULL */
2250 if (p == q)
2251 return true;
2252
2253 /* true if clk->core pointers match. Avoid derefing garbage */
2254 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2255 if (p->core == q->core)
2256 return true;
2257
2258 return false;
2259 }
2260 EXPORT_SYMBOL_GPL(clk_is_match);
2261
2262 /**
2263 * __clk_init - initialize the data structures in a struct clk
2264 * @dev: device initializing this clk, placeholder for now
2265 * @clk: clk being initialized
2266 *
2267 * Initializes the lists in struct clk_core, queries the hardware for the
2268 * parent and rate and sets them both.
2269 */
__clk_init(struct device * dev,struct clk * clk_user)2270 static int __clk_init(struct device *dev, struct clk *clk_user)
2271 {
2272 int i, ret = 0;
2273 struct clk_core *orphan;
2274 struct hlist_node *tmp2;
2275 struct clk_core *clk;
2276 unsigned long rate;
2277
2278 if (!clk_user)
2279 return -EINVAL;
2280
2281 clk = clk_user->core;
2282
2283 clk_prepare_lock();
2284
2285 /* check to see if a clock with this name is already registered */
2286 if (clk_core_lookup(clk->name)) {
2287 pr_debug("%s: clk %s already initialized\n",
2288 __func__, clk->name);
2289 ret = -EEXIST;
2290 goto out;
2291 }
2292
2293 /* check that clk_ops are sane. See Documentation/clk.txt */
2294 if (clk->ops->set_rate &&
2295 !((clk->ops->round_rate || clk->ops->determine_rate) &&
2296 clk->ops->recalc_rate)) {
2297 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2298 __func__, clk->name);
2299 ret = -EINVAL;
2300 goto out;
2301 }
2302
2303 if (clk->ops->set_parent && !clk->ops->get_parent) {
2304 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2305 __func__, clk->name);
2306 ret = -EINVAL;
2307 goto out;
2308 }
2309
2310 if (clk->ops->set_rate_and_parent &&
2311 !(clk->ops->set_parent && clk->ops->set_rate)) {
2312 pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2313 __func__, clk->name);
2314 ret = -EINVAL;
2315 goto out;
2316 }
2317
2318 /* throw a WARN if any entries in parent_names are NULL */
2319 for (i = 0; i < clk->num_parents; i++)
2320 WARN(!clk->parent_names[i],
2321 "%s: invalid NULL in %s's .parent_names\n",
2322 __func__, clk->name);
2323
2324 /*
2325 * Allocate an array of struct clk *'s to avoid unnecessary string
2326 * look-ups of clk's possible parents. This can fail for clocks passed
2327 * in to clk_init during early boot; thus any access to clk->parents[]
2328 * must always check for a NULL pointer and try to populate it if
2329 * necessary.
2330 *
2331 * If clk->parents is not NULL we skip this entire block. This allows
2332 * for clock drivers to statically initialize clk->parents.
2333 */
2334 if (clk->num_parents > 1 && !clk->parents) {
2335 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
2336 GFP_KERNEL);
2337 /*
2338 * clk_core_lookup returns NULL for parents that have not been
2339 * clk_init'd; thus any access to clk->parents[] must check
2340 * for a NULL pointer. We can always perform lazy lookups for
2341 * missing parents later on.
2342 */
2343 if (clk->parents)
2344 for (i = 0; i < clk->num_parents; i++)
2345 clk->parents[i] =
2346 clk_core_lookup(clk->parent_names[i]);
2347 }
2348
2349 clk->parent = __clk_init_parent(clk);
2350
2351 /*
2352 * Populate clk->parent if parent has already been __clk_init'd. If
2353 * parent has not yet been __clk_init'd then place clk in the orphan
2354 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
2355 * clk list.
2356 *
2357 * Every time a new clk is clk_init'd then we walk the list of orphan
2358 * clocks and re-parent any that are children of the clock currently
2359 * being clk_init'd.
2360 */
2361 if (clk->parent)
2362 hlist_add_head(&clk->child_node,
2363 &clk->parent->children);
2364 else if (clk->flags & CLK_IS_ROOT)
2365 hlist_add_head(&clk->child_node, &clk_root_list);
2366 else
2367 hlist_add_head(&clk->child_node, &clk_orphan_list);
2368
2369 /*
2370 * Set clk's accuracy. The preferred method is to use
2371 * .recalc_accuracy. For simple clocks and lazy developers the default
2372 * fallback is to use the parent's accuracy. If a clock doesn't have a
2373 * parent (or is orphaned) then accuracy is set to zero (perfect
2374 * clock).
2375 */
2376 if (clk->ops->recalc_accuracy)
2377 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
2378 __clk_get_accuracy(clk->parent));
2379 else if (clk->parent)
2380 clk->accuracy = clk->parent->accuracy;
2381 else
2382 clk->accuracy = 0;
2383
2384 /*
2385 * Set clk's phase.
2386 * Since a phase is by definition relative to its parent, just
2387 * query the current clock phase, or just assume it's in phase.
2388 */
2389 if (clk->ops->get_phase)
2390 clk->phase = clk->ops->get_phase(clk->hw);
2391 else
2392 clk->phase = 0;
2393
2394 /*
2395 * Set clk's rate. The preferred method is to use .recalc_rate. For
2396 * simple clocks and lazy developers the default fallback is to use the
2397 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2398 * then rate is set to zero.
2399 */
2400 if (clk->ops->recalc_rate)
2401 rate = clk->ops->recalc_rate(clk->hw,
2402 clk_core_get_rate_nolock(clk->parent));
2403 else if (clk->parent)
2404 rate = clk->parent->rate;
2405 else
2406 rate = 0;
2407 clk->rate = clk->req_rate = rate;
2408
2409 /*
2410 * walk the list of orphan clocks and reparent any that are children of
2411 * this clock
2412 */
2413 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2414 if (orphan->num_parents && orphan->ops->get_parent) {
2415 i = orphan->ops->get_parent(orphan->hw);
2416 if (!strcmp(clk->name, orphan->parent_names[i]))
2417 clk_core_reparent(orphan, clk);
2418 continue;
2419 }
2420
2421 for (i = 0; i < orphan->num_parents; i++)
2422 if (!strcmp(clk->name, orphan->parent_names[i])) {
2423 clk_core_reparent(orphan, clk);
2424 break;
2425 }
2426 }
2427
2428 /*
2429 * optional platform-specific magic
2430 *
2431 * The .init callback is not used by any of the basic clock types, but
2432 * exists for weird hardware that must perform initialization magic.
2433 * Please consider other ways of solving initialization problems before
2434 * using this callback, as its use is discouraged.
2435 */
2436 if (clk->ops->init)
2437 clk->ops->init(clk->hw);
2438
2439 kref_init(&clk->ref);
2440 out:
2441 clk_prepare_unlock();
2442
2443 if (!ret)
2444 clk_debug_register(clk);
2445
2446 return ret;
2447 }
2448
__clk_create_clk(struct clk_hw * hw,const char * dev_id,const char * con_id)2449 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2450 const char *con_id)
2451 {
2452 struct clk *clk;
2453
2454 /* This is to allow this function to be chained to others */
2455 if (!hw || IS_ERR(hw))
2456 return (struct clk *) hw;
2457
2458 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2459 if (!clk)
2460 return ERR_PTR(-ENOMEM);
2461
2462 clk->core = hw->core;
2463 clk->dev_id = dev_id;
2464 clk->con_id = con_id;
2465 clk->max_rate = ULONG_MAX;
2466
2467 clk_prepare_lock();
2468 hlist_add_head(&clk->clks_node, &hw->core->clks);
2469 clk_prepare_unlock();
2470
2471 return clk;
2472 }
2473
__clk_free_clk(struct clk * clk)2474 void __clk_free_clk(struct clk *clk)
2475 {
2476 clk_prepare_lock();
2477 hlist_del(&clk->clks_node);
2478 clk_prepare_unlock();
2479
2480 kfree(clk);
2481 }
2482
2483 /**
2484 * clk_register - allocate a new clock, register it and return an opaque cookie
2485 * @dev: device that is registering this clock
2486 * @hw: link to hardware-specific clock data
2487 *
2488 * clk_register is the primary interface for populating the clock tree with new
2489 * clock nodes. It returns a pointer to the newly allocated struct clk which
2490 * cannot be dereferenced by driver code but may be used in conjuction with the
2491 * rest of the clock API. In the event of an error clk_register will return an
2492 * error code; drivers must test for an error code after calling clk_register.
2493 */
clk_register(struct device * dev,struct clk_hw * hw)2494 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2495 {
2496 int i, ret;
2497 struct clk_core *clk;
2498
2499 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2500 if (!clk) {
2501 pr_err("%s: could not allocate clk\n", __func__);
2502 ret = -ENOMEM;
2503 goto fail_out;
2504 }
2505
2506 clk->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2507 if (!clk->name) {
2508 pr_err("%s: could not allocate clk->name\n", __func__);
2509 ret = -ENOMEM;
2510 goto fail_name;
2511 }
2512 clk->ops = hw->init->ops;
2513 if (dev && dev->driver)
2514 clk->owner = dev->driver->owner;
2515 clk->hw = hw;
2516 clk->flags = hw->init->flags;
2517 clk->num_parents = hw->init->num_parents;
2518 hw->core = clk;
2519
2520 /* allocate local copy in case parent_names is __initdata */
2521 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2522 GFP_KERNEL);
2523
2524 if (!clk->parent_names) {
2525 pr_err("%s: could not allocate clk->parent_names\n", __func__);
2526 ret = -ENOMEM;
2527 goto fail_parent_names;
2528 }
2529
2530
2531 /* copy each string name in case parent_names is __initdata */
2532 for (i = 0; i < clk->num_parents; i++) {
2533 clk->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2534 GFP_KERNEL);
2535 if (!clk->parent_names[i]) {
2536 pr_err("%s: could not copy parent_names\n", __func__);
2537 ret = -ENOMEM;
2538 goto fail_parent_names_copy;
2539 }
2540 }
2541
2542 INIT_HLIST_HEAD(&clk->clks);
2543
2544 hw->clk = __clk_create_clk(hw, NULL, NULL);
2545 if (IS_ERR(hw->clk)) {
2546 pr_err("%s: could not allocate per-user clk\n", __func__);
2547 ret = PTR_ERR(hw->clk);
2548 goto fail_parent_names_copy;
2549 }
2550
2551 ret = __clk_init(dev, hw->clk);
2552 if (!ret)
2553 return hw->clk;
2554
2555 __clk_free_clk(hw->clk);
2556 hw->clk = NULL;
2557
2558 fail_parent_names_copy:
2559 while (--i >= 0)
2560 kfree_const(clk->parent_names[i]);
2561 kfree(clk->parent_names);
2562 fail_parent_names:
2563 kfree_const(clk->name);
2564 fail_name:
2565 kfree(clk);
2566 fail_out:
2567 return ERR_PTR(ret);
2568 }
2569 EXPORT_SYMBOL_GPL(clk_register);
2570
2571 /*
2572 * Free memory allocated for a clock.
2573 * Caller must hold prepare_lock.
2574 */
__clk_release(struct kref * ref)2575 static void __clk_release(struct kref *ref)
2576 {
2577 struct clk_core *clk = container_of(ref, struct clk_core, ref);
2578 int i = clk->num_parents;
2579
2580 lockdep_assert_held(&prepare_lock);
2581
2582 kfree(clk->parents);
2583 while (--i >= 0)
2584 kfree_const(clk->parent_names[i]);
2585
2586 kfree(clk->parent_names);
2587 kfree_const(clk->name);
2588 kfree(clk);
2589 }
2590
2591 /*
2592 * Empty clk_ops for unregistered clocks. These are used temporarily
2593 * after clk_unregister() was called on a clock and until last clock
2594 * consumer calls clk_put() and the struct clk object is freed.
2595 */
clk_nodrv_prepare_enable(struct clk_hw * hw)2596 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2597 {
2598 return -ENXIO;
2599 }
2600
clk_nodrv_disable_unprepare(struct clk_hw * hw)2601 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2602 {
2603 WARN_ON_ONCE(1);
2604 }
2605
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)2606 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2607 unsigned long parent_rate)
2608 {
2609 return -ENXIO;
2610 }
2611
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)2612 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2613 {
2614 return -ENXIO;
2615 }
2616
2617 static const struct clk_ops clk_nodrv_ops = {
2618 .enable = clk_nodrv_prepare_enable,
2619 .disable = clk_nodrv_disable_unprepare,
2620 .prepare = clk_nodrv_prepare_enable,
2621 .unprepare = clk_nodrv_disable_unprepare,
2622 .set_rate = clk_nodrv_set_rate,
2623 .set_parent = clk_nodrv_set_parent,
2624 };
2625
2626 /**
2627 * clk_unregister - unregister a currently registered clock
2628 * @clk: clock to unregister
2629 */
clk_unregister(struct clk * clk)2630 void clk_unregister(struct clk *clk)
2631 {
2632 unsigned long flags;
2633
2634 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2635 return;
2636
2637 clk_debug_unregister(clk->core);
2638
2639 clk_prepare_lock();
2640
2641 if (clk->core->ops == &clk_nodrv_ops) {
2642 pr_err("%s: unregistered clock: %s\n", __func__,
2643 clk->core->name);
2644 return;
2645 }
2646 /*
2647 * Assign empty clock ops for consumers that might still hold
2648 * a reference to this clock.
2649 */
2650 flags = clk_enable_lock();
2651 clk->core->ops = &clk_nodrv_ops;
2652 clk_enable_unlock(flags);
2653
2654 if (!hlist_empty(&clk->core->children)) {
2655 struct clk_core *child;
2656 struct hlist_node *t;
2657
2658 /* Reparent all children to the orphan list. */
2659 hlist_for_each_entry_safe(child, t, &clk->core->children,
2660 child_node)
2661 clk_core_set_parent(child, NULL);
2662 }
2663
2664 hlist_del_init(&clk->core->child_node);
2665
2666 if (clk->core->prepare_count)
2667 pr_warn("%s: unregistering prepared clock: %s\n",
2668 __func__, clk->core->name);
2669 kref_put(&clk->core->ref, __clk_release);
2670
2671 clk_prepare_unlock();
2672 }
2673 EXPORT_SYMBOL_GPL(clk_unregister);
2674
devm_clk_release(struct device * dev,void * res)2675 static void devm_clk_release(struct device *dev, void *res)
2676 {
2677 clk_unregister(*(struct clk **)res);
2678 }
2679
2680 /**
2681 * devm_clk_register - resource managed clk_register()
2682 * @dev: device that is registering this clock
2683 * @hw: link to hardware-specific clock data
2684 *
2685 * Managed clk_register(). Clocks returned from this function are
2686 * automatically clk_unregister()ed on driver detach. See clk_register() for
2687 * more information.
2688 */
devm_clk_register(struct device * dev,struct clk_hw * hw)2689 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2690 {
2691 struct clk *clk;
2692 struct clk **clkp;
2693
2694 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2695 if (!clkp)
2696 return ERR_PTR(-ENOMEM);
2697
2698 clk = clk_register(dev, hw);
2699 if (!IS_ERR(clk)) {
2700 *clkp = clk;
2701 devres_add(dev, clkp);
2702 } else {
2703 devres_free(clkp);
2704 }
2705
2706 return clk;
2707 }
2708 EXPORT_SYMBOL_GPL(devm_clk_register);
2709
devm_clk_match(struct device * dev,void * res,void * data)2710 static int devm_clk_match(struct device *dev, void *res, void *data)
2711 {
2712 struct clk *c = res;
2713 if (WARN_ON(!c))
2714 return 0;
2715 return c == data;
2716 }
2717
2718 /**
2719 * devm_clk_unregister - resource managed clk_unregister()
2720 * @clk: clock to unregister
2721 *
2722 * Deallocate a clock allocated with devm_clk_register(). Normally
2723 * this function will not need to be called and the resource management
2724 * code will ensure that the resource is freed.
2725 */
devm_clk_unregister(struct device * dev,struct clk * clk)2726 void devm_clk_unregister(struct device *dev, struct clk *clk)
2727 {
2728 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2729 }
2730 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2731
2732 /*
2733 * clkdev helpers
2734 */
__clk_get(struct clk * clk)2735 int __clk_get(struct clk *clk)
2736 {
2737 struct clk_core *core = !clk ? NULL : clk->core;
2738
2739 if (core) {
2740 if (!try_module_get(core->owner))
2741 return 0;
2742
2743 kref_get(&core->ref);
2744 }
2745 return 1;
2746 }
2747
__clk_put(struct clk * clk)2748 void __clk_put(struct clk *clk)
2749 {
2750 struct module *owner;
2751
2752 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2753 return;
2754
2755 clk_prepare_lock();
2756
2757 hlist_del(&clk->clks_node);
2758 if (clk->min_rate > clk->core->req_rate ||
2759 clk->max_rate < clk->core->req_rate)
2760 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2761
2762 owner = clk->core->owner;
2763 kref_put(&clk->core->ref, __clk_release);
2764
2765 clk_prepare_unlock();
2766
2767 module_put(owner);
2768
2769 kfree(clk);
2770 }
2771
2772 /*** clk rate change notifiers ***/
2773
2774 /**
2775 * clk_notifier_register - add a clk rate change notifier
2776 * @clk: struct clk * to watch
2777 * @nb: struct notifier_block * with callback info
2778 *
2779 * Request notification when clk's rate changes. This uses an SRCU
2780 * notifier because we want it to block and notifier unregistrations are
2781 * uncommon. The callbacks associated with the notifier must not
2782 * re-enter into the clk framework by calling any top-level clk APIs;
2783 * this will cause a nested prepare_lock mutex.
2784 *
2785 * In all notification cases cases (pre, post and abort rate change) the
2786 * original clock rate is passed to the callback via struct
2787 * clk_notifier_data.old_rate and the new frequency is passed via struct
2788 * clk_notifier_data.new_rate.
2789 *
2790 * clk_notifier_register() must be called from non-atomic context.
2791 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2792 * allocation failure; otherwise, passes along the return value of
2793 * srcu_notifier_chain_register().
2794 */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)2795 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2796 {
2797 struct clk_notifier *cn;
2798 int ret = -ENOMEM;
2799
2800 if (!clk || !nb)
2801 return -EINVAL;
2802
2803 clk_prepare_lock();
2804
2805 /* search the list of notifiers for this clk */
2806 list_for_each_entry(cn, &clk_notifier_list, node)
2807 if (cn->clk == clk)
2808 break;
2809
2810 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2811 if (cn->clk != clk) {
2812 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2813 if (!cn)
2814 goto out;
2815
2816 cn->clk = clk;
2817 srcu_init_notifier_head(&cn->notifier_head);
2818
2819 list_add(&cn->node, &clk_notifier_list);
2820 }
2821
2822 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2823
2824 clk->core->notifier_count++;
2825
2826 out:
2827 clk_prepare_unlock();
2828
2829 return ret;
2830 }
2831 EXPORT_SYMBOL_GPL(clk_notifier_register);
2832
2833 /**
2834 * clk_notifier_unregister - remove a clk rate change notifier
2835 * @clk: struct clk *
2836 * @nb: struct notifier_block * with callback info
2837 *
2838 * Request no further notification for changes to 'clk' and frees memory
2839 * allocated in clk_notifier_register.
2840 *
2841 * Returns -EINVAL if called with null arguments; otherwise, passes
2842 * along the return value of srcu_notifier_chain_unregister().
2843 */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)2844 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2845 {
2846 struct clk_notifier *cn = NULL;
2847 int ret = -EINVAL;
2848
2849 if (!clk || !nb)
2850 return -EINVAL;
2851
2852 clk_prepare_lock();
2853
2854 list_for_each_entry(cn, &clk_notifier_list, node)
2855 if (cn->clk == clk)
2856 break;
2857
2858 if (cn->clk == clk) {
2859 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2860
2861 clk->core->notifier_count--;
2862
2863 /* XXX the notifier code should handle this better */
2864 if (!cn->notifier_head.head) {
2865 srcu_cleanup_notifier_head(&cn->notifier_head);
2866 list_del(&cn->node);
2867 kfree(cn);
2868 }
2869
2870 } else {
2871 ret = -ENOENT;
2872 }
2873
2874 clk_prepare_unlock();
2875
2876 return ret;
2877 }
2878 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2879
2880 #ifdef CONFIG_OF
2881 /**
2882 * struct of_clk_provider - Clock provider registration structure
2883 * @link: Entry in global list of clock providers
2884 * @node: Pointer to device tree node of clock provider
2885 * @get: Get clock callback. Returns NULL or a struct clk for the
2886 * given clock specifier
2887 * @data: context pointer to be passed into @get callback
2888 */
2889 struct of_clk_provider {
2890 struct list_head link;
2891
2892 struct device_node *node;
2893 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2894 void *data;
2895 };
2896
2897 static const struct of_device_id __clk_of_table_sentinel
2898 __used __section(__clk_of_table_end);
2899
2900 static LIST_HEAD(of_clk_providers);
2901 static DEFINE_MUTEX(of_clk_mutex);
2902
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)2903 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2904 void *data)
2905 {
2906 return data;
2907 }
2908 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2909
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)2910 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2911 {
2912 struct clk_onecell_data *clk_data = data;
2913 unsigned int idx = clkspec->args[0];
2914
2915 if (idx >= clk_data->clk_num) {
2916 pr_err("%s: invalid clock index %d\n", __func__, idx);
2917 return ERR_PTR(-EINVAL);
2918 }
2919
2920 return clk_data->clks[idx];
2921 }
2922 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2923
2924 /**
2925 * of_clk_add_provider() - Register a clock provider for a node
2926 * @np: Device node pointer associated with clock provider
2927 * @clk_src_get: callback for decoding clock
2928 * @data: context pointer for @clk_src_get callback.
2929 */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)2930 int of_clk_add_provider(struct device_node *np,
2931 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2932 void *data),
2933 void *data)
2934 {
2935 struct of_clk_provider *cp;
2936 int ret;
2937
2938 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2939 if (!cp)
2940 return -ENOMEM;
2941
2942 cp->node = of_node_get(np);
2943 cp->data = data;
2944 cp->get = clk_src_get;
2945
2946 mutex_lock(&of_clk_mutex);
2947 list_add(&cp->link, &of_clk_providers);
2948 mutex_unlock(&of_clk_mutex);
2949 pr_debug("Added clock from %s\n", np->full_name);
2950
2951 ret = of_clk_set_defaults(np, true);
2952 if (ret < 0)
2953 of_clk_del_provider(np);
2954
2955 return ret;
2956 }
2957 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2958
2959 /**
2960 * of_clk_del_provider() - Remove a previously registered clock provider
2961 * @np: Device node pointer associated with clock provider
2962 */
of_clk_del_provider(struct device_node * np)2963 void of_clk_del_provider(struct device_node *np)
2964 {
2965 struct of_clk_provider *cp;
2966
2967 mutex_lock(&of_clk_mutex);
2968 list_for_each_entry(cp, &of_clk_providers, link) {
2969 if (cp->node == np) {
2970 list_del(&cp->link);
2971 of_node_put(cp->node);
2972 kfree(cp);
2973 break;
2974 }
2975 }
2976 mutex_unlock(&of_clk_mutex);
2977 }
2978 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2979
__of_clk_get_from_provider(struct of_phandle_args * clkspec,const char * dev_id,const char * con_id)2980 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2981 const char *dev_id, const char *con_id)
2982 {
2983 struct of_clk_provider *provider;
2984 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2985
2986 if (!clkspec)
2987 return ERR_PTR(-EINVAL);
2988
2989 /* Check if we have such a provider in our array */
2990 mutex_lock(&of_clk_mutex);
2991 list_for_each_entry(provider, &of_clk_providers, link) {
2992 if (provider->node == clkspec->np)
2993 clk = provider->get(clkspec, provider->data);
2994 if (!IS_ERR(clk)) {
2995 clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2996 con_id);
2997
2998 if (!IS_ERR(clk) && !__clk_get(clk)) {
2999 __clk_free_clk(clk);
3000 clk = ERR_PTR(-ENOENT);
3001 }
3002
3003 break;
3004 }
3005 }
3006 mutex_unlock(&of_clk_mutex);
3007
3008 return clk;
3009 }
3010
3011 /**
3012 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3013 * @clkspec: pointer to a clock specifier data structure
3014 *
3015 * This function looks up a struct clk from the registered list of clock
3016 * providers, an input is a clock specifier data structure as returned
3017 * from the of_parse_phandle_with_args() function call.
3018 */
of_clk_get_from_provider(struct of_phandle_args * clkspec)3019 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3020 {
3021 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3022 }
3023
of_clk_get_parent_count(struct device_node * np)3024 int of_clk_get_parent_count(struct device_node *np)
3025 {
3026 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
3027 }
3028 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3029
of_clk_get_parent_name(struct device_node * np,int index)3030 const char *of_clk_get_parent_name(struct device_node *np, int index)
3031 {
3032 struct of_phandle_args clkspec;
3033 struct property *prop;
3034 const char *clk_name;
3035 const __be32 *vp;
3036 u32 pv;
3037 int rc;
3038 int count;
3039
3040 if (index < 0)
3041 return NULL;
3042
3043 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3044 &clkspec);
3045 if (rc)
3046 return NULL;
3047
3048 index = clkspec.args_count ? clkspec.args[0] : 0;
3049 count = 0;
3050
3051 /* if there is an indices property, use it to transfer the index
3052 * specified into an array offset for the clock-output-names property.
3053 */
3054 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3055 if (index == pv) {
3056 index = count;
3057 break;
3058 }
3059 count++;
3060 }
3061
3062 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3063 index,
3064 &clk_name) < 0)
3065 clk_name = clkspec.np->name;
3066
3067 of_node_put(clkspec.np);
3068 return clk_name;
3069 }
3070 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3071
3072 struct clock_provider {
3073 of_clk_init_cb_t clk_init_cb;
3074 struct device_node *np;
3075 struct list_head node;
3076 };
3077
3078 static LIST_HEAD(clk_provider_list);
3079
3080 /*
3081 * This function looks for a parent clock. If there is one, then it
3082 * checks that the provider for this parent clock was initialized, in
3083 * this case the parent clock will be ready.
3084 */
parent_ready(struct device_node * np)3085 static int parent_ready(struct device_node *np)
3086 {
3087 int i = 0;
3088
3089 while (true) {
3090 struct clk *clk = of_clk_get(np, i);
3091
3092 /* this parent is ready we can check the next one */
3093 if (!IS_ERR(clk)) {
3094 clk_put(clk);
3095 i++;
3096 continue;
3097 }
3098
3099 /* at least one parent is not ready, we exit now */
3100 if (PTR_ERR(clk) == -EPROBE_DEFER)
3101 return 0;
3102
3103 /*
3104 * Here we make assumption that the device tree is
3105 * written correctly. So an error means that there is
3106 * no more parent. As we didn't exit yet, then the
3107 * previous parent are ready. If there is no clock
3108 * parent, no need to wait for them, then we can
3109 * consider their absence as being ready
3110 */
3111 return 1;
3112 }
3113 }
3114
3115 /**
3116 * of_clk_init() - Scan and init clock providers from the DT
3117 * @matches: array of compatible values and init functions for providers.
3118 *
3119 * This function scans the device tree for matching clock providers
3120 * and calls their initialization functions. It also does it by trying
3121 * to follow the dependencies.
3122 */
of_clk_init(const struct of_device_id * matches)3123 void __init of_clk_init(const struct of_device_id *matches)
3124 {
3125 const struct of_device_id *match;
3126 struct device_node *np;
3127 struct clock_provider *clk_provider, *next;
3128 bool is_init_done;
3129 bool force = false;
3130
3131 if (!matches)
3132 matches = &__clk_of_table;
3133
3134 /* First prepare the list of the clocks providers */
3135 for_each_matching_node_and_match(np, matches, &match) {
3136 struct clock_provider *parent =
3137 kzalloc(sizeof(struct clock_provider), GFP_KERNEL);
3138
3139 parent->clk_init_cb = match->data;
3140 parent->np = np;
3141 list_add_tail(&parent->node, &clk_provider_list);
3142 }
3143
3144 while (!list_empty(&clk_provider_list)) {
3145 is_init_done = false;
3146 list_for_each_entry_safe(clk_provider, next,
3147 &clk_provider_list, node) {
3148 if (force || parent_ready(clk_provider->np)) {
3149
3150 clk_provider->clk_init_cb(clk_provider->np);
3151 of_clk_set_defaults(clk_provider->np, true);
3152
3153 list_del(&clk_provider->node);
3154 kfree(clk_provider);
3155 is_init_done = true;
3156 }
3157 }
3158
3159 /*
3160 * We didn't manage to initialize any of the
3161 * remaining providers during the last loop, so now we
3162 * initialize all the remaining ones unconditionally
3163 * in case the clock parent was not mandatory
3164 */
3165 if (!is_init_done)
3166 force = true;
3167 }
3168 }
3169 #endif
3170