Detailed Colorspace Descriptions

Colorspace SMPTE 170M (V4L2_COLORSPACE_SMPTE170M)
Colorspace Rec. 709 (V4L2_COLORSPACE_REC709)
Colorspace sRGB (V4L2_COLORSPACE_SRGB)
Colorspace Adobe RGB (V4L2_COLORSPACE_ADOBERGB)
Colorspace BT.2020 (V4L2_COLORSPACE_BT2020)
Colorspace SMPTE 240M (V4L2_COLORSPACE_SMPTE240M)
Colorspace NTSC 1953 (V4L2_COLORSPACE_470_SYSTEM_M)
Colorspace EBU Tech. 3213 (V4L2_COLORSPACE_470_SYSTEM_BG)
Colorspace JPEG (V4L2_COLORSPACE_JPEG)

Colorspace SMPTE 170M (V4L2_COLORSPACE_SMPTE170M)

The [SMPTE 170M] standard defines the colorspace used by NTSC and PAL and by SDTV in general. The default Y'CbCr encoding is V4L2_YCBCR_ENC_601. The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

Table 2.7. SMPTE 170M Chromaticities

Colorxy
Red0.6300.340
Green0.3100.595
Blue0.1550.070
White Reference (D65)0.31270.3290

The red, green and blue chromaticities are also often referred to as the SMPTE C set, so this colorspace is sometimes called SMPTE C as well.

The transfer function defined for SMPTE 170M is the same as the one defined in Rec. 709.

L' = -1.099(-L)0.45 + 0.099 for L ≤ -0.018

L' = 4.5L for -0.018 < L < 0.018

L' = 1.099L0.45 - 0.099 for L ≥ 0.018

Inverse Transfer function:

L = -((L' - 0.099) / -1.099)1/0.45 for L' ≤ -0.081

L = L' / 4.5 for -0.081 < L' < 0.081

L = ((L' + 0.099) / 1.099)1/0.45 for L' ≥ 0.081

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601 encoding:

Y' = 0.299R' + 0.587G' + 0.114B'

Cb = -0.169R' - 0.331G' + 0.5B'

Cr = 0.5R' - 0.419G' - 0.081B'

Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. This conversion to Y'CbCr is identical to the one defined in the [ITU BT.601] standard and this colorspace is sometimes called BT.601 as well, even though BT.601 does not mention any color primaries.

The default quantization is limited range, but full range is possible although rarely seen.

Colorspace Rec. 709 (V4L2_COLORSPACE_REC709)

The [ITU BT.709] standard defines the colorspace used by HDTV in general. The default Y'CbCr encoding is V4L2_YCBCR_ENC_709. The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

Table 2.8. Rec. 709 Chromaticities

Colorxy
Red0.6400.330
Green0.3000.600
Blue0.1500.060
White Reference (D65)0.31270.3290

The full name of this standard is Rec. ITU-R BT.709-5.

Transfer function. Normally L is in the range [0…1], but for the extended gamut xvYCC encoding values outside that range are allowed.

L' = -1.099(-L)0.45 + 0.099 for L ≤ -0.018

L' = 4.5L for -0.018 < L < 0.018

L' = 1.099L0.45 - 0.099 for L ≥ 0.018

Inverse Transfer function:

L = -((L' - 0.099) / -1.099)1/0.45 for L' ≤ -0.081

L = L' / 4.5 for -0.081 < L' < 0.081

L = ((L' + 0.099) / 1.099)1/0.45 for L' ≥ 0.081

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_709 encoding:

Y' = 0.2126R' + 0.7152G' + 0.0722B'

Cb = -0.1146R' - 0.3854G' + 0.5B'

Cr = 0.5R' - 0.4542G' - 0.0458B'

Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5].

The default quantization is limited range, but full range is possible although rarely seen.

The V4L2_YCBCR_ENC_709 encoding described above is the default for this colorspace, but it can be overridden with V4L2_YCBCR_ENC_601, in which case the BT.601 Y'CbCr encoding is used.

Two additional extended gamut Y'CbCr encodings are also possible with this colorspace:

The xvYCC 709 encoding (V4L2_YCBCR_ENC_XV709, [xvYCC]) is similar to the Rec. 709 encoding, but it allows for R', G' and B' values that are outside the range [0…1]. The resulting Y', Cb and Cr values are scaled and offset:

Y' = (219 / 256) * (0.2126R' + 0.7152G' + 0.0722B') + (16 / 256)

Cb = (224 / 256) * (-0.1146R' - 0.3854G' + 0.5B')

Cr = (224 / 256) * (0.5R' - 0.4542G' - 0.0458B')

The xvYCC 601 encoding (V4L2_YCBCR_ENC_XV601, [xvYCC]) is similar to the BT.601 encoding, but it allows for R', G' and B' values that are outside the range [0…1]. The resulting Y', Cb and Cr values are scaled and offset:

Y' = (219 / 256) * (0.299R' + 0.587G' + 0.114B') + (16 / 256)

Cb = (224 / 256) * (-0.169R' - 0.331G' + 0.5B')

Cr = (224 / 256) * (0.5R' - 0.419G' - 0.081B')

Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The non-standard xvYCC 709 or xvYCC 601 encodings can be used by selecting V4L2_YCBCR_ENC_XV709 or V4L2_YCBCR_ENC_XV601. The xvYCC encodings always use full range quantization.

Colorspace sRGB (V4L2_COLORSPACE_SRGB)

The [sRGB] standard defines the colorspace used by most webcams and computer graphics. The default Y'CbCr encoding is V4L2_YCBCR_ENC_SYCC. The default Y'CbCr quantization is full range. The chromaticities of the primary colors and the white reference are:

Table 2.9. sRGB Chromaticities

Colorxy
Red0.6400.330
Green0.3000.600
Blue0.1500.060
White Reference (D65)0.31270.3290

These chromaticities are identical to the Rec. 709 colorspace.

Transfer function. Note that negative values for L are only used by the Y'CbCr conversion.

L' = -1.055(-L)1/2.4 + 0.055 for L < -0.0031308

L' = 12.92L for -0.0031308 ≤ L ≤ 0.0031308

L' = 1.055L1/2.4 - 0.055 for 0.0031308 < L ≤ 1

Inverse Transfer function:

L = -((-L' + 0.055) / 1.055)2.4 for L' < -0.04045

L = L' / 12.92 for -0.04045 ≤ L' ≤ 0.04045

L = ((L' + 0.055) / 1.055)2.4 for L' > 0.04045

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_SYCC encoding as defined by [sYCC]:

Y' = 0.2990R' + 0.5870G' + 0.1140B'

Cb = -0.1687R' - 0.3313G' + 0.5B'

Cr = 0.5R' - 0.4187G' - 0.0813B'

Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The V4L2_YCBCR_ENC_SYCC quantization is always full range. Although this Y'CbCr encoding looks very similar to the V4L2_YCBCR_ENC_XV601 encoding, it is not. The V4L2_YCBCR_ENC_XV601 scales and offsets the Y'CbCr values before quantization, but this encoding does not do that.

Colorspace Adobe RGB (V4L2_COLORSPACE_ADOBERGB)

The [AdobeRGB] standard defines the colorspace used by computer graphics that use the AdobeRGB colorspace. This is also known as the [opRGB] standard. The default Y'CbCr encoding is V4L2_YCBCR_ENC_601. The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

Table 2.10. Adobe RGB Chromaticities

Colorxy
Red0.64000.3300
Green0.21000.7100
Blue0.15000.0600
White Reference (D65)0.31270.3290

Transfer function:

L' = L1/2.19921875

Inverse Transfer function:

L = L'2.19921875

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601 encoding:

Y' = 0.299R' + 0.587G' + 0.114B'

Cb = -0.169R' - 0.331G' + 0.5B'

Cr = 0.5R' - 0.419G' - 0.081B'

Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. This transform is identical to one defined in SMPTE 170M/BT.601. The Y'CbCr quantization is limited range.

Colorspace BT.2020 (V4L2_COLORSPACE_BT2020)

The [ITU BT.2020] standard defines the colorspace used by Ultra-high definition television (UHDTV). The default Y'CbCr encoding is V4L2_YCBCR_ENC_BT2020. The default R'G'B' quantization is limited range (!), and so is the default Y'CbCr quantization. The chromaticities of the primary colors and the white reference are:

Table 2.11. BT.2020 Chromaticities

Colorxy
Red0.7080.292
Green0.1700.797
Blue0.1310.046
White Reference (D65)0.31270.3290

Transfer function (same as Rec. 709):

L' = 4.5L for 0 ≤ L < 0.018

L' = 1.099L0.45 - 0.099 for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L = L' / 4.5 for L' < 0.081

L = ((L' + 0.099) / 1.099)1/0.45 for L' ≥ 0.081

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_BT2020 encoding:

Y' = 0.2627R' + 0.6780G' + 0.0593B'

Cb = -0.1396R' - 0.3604G' + 0.5B'

Cr = 0.5R' - 0.4598G' - 0.0402B'

Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.

There is also an alternate constant luminance R'G'B' to Yc'CbcCrc (V4L2_YCBCR_ENC_BT2020_CONST_LUM) encoding:

Luma:

Yc' = (0.2627R + 0.6780G + 0.0593B)'

B' - Yc' ≤ 0:

Cbc = (B' - Yc') / 1.9404

B' - Yc' > 0:

Cbc = (B' - Yc') / 1.5816

R' - Yc' ≤ 0:

Crc = (R' - Y') / 1.7184

R' - Yc' > 0:

Crc = (R' - Y') / 0.9936

Yc' is clamped to the range [0…1] and Cbc and Crc are clamped to the range [-0.5…0.5]. The Yc'CbcCrc quantization is limited range.

Colorspace SMPTE 240M (V4L2_COLORSPACE_SMPTE240M)

The [SMPTE 240M] standard was an interim standard used during the early days of HDTV (1988-1998). It has been superseded by Rec. 709. The default Y'CbCr encoding is V4L2_YCBCR_ENC_SMPTE240M. The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

Table 2.12. SMPTE 240M Chromaticities

Colorxy
Red0.6300.340
Green0.3100.595
Blue0.1550.070
White Reference (D65)0.31270.3290

These chromaticities are identical to the SMPTE 170M colorspace.

Transfer function:

L' = 4L for 0 ≤ L < 0.0228

L' = 1.1115L0.45 - 0.1115 for 0.0228 ≤ L ≤ 1

Inverse Transfer function:

L = L' / 4 for 0 ≤ L' < 0.0913

L = ((L' + 0.1115) / 1.1115)1/0.45 for L' ≥ 0.0913

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_SMPTE240M encoding:

Y' = 0.2122R' + 0.7013G' + 0.0865B'

Cb = -0.1161R' - 0.3839G' + 0.5B'

Cr = 0.5R' - 0.4451G' - 0.0549B'

Yc' is clamped to the range [0…1] and Cbc and Crc are clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.

Colorspace NTSC 1953 (V4L2_COLORSPACE_470_SYSTEM_M)

This standard defines the colorspace used by NTSC in 1953. In practice this colorspace is obsolete and SMPTE 170M should be used instead. The default Y'CbCr encoding is V4L2_YCBCR_ENC_601. The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

Table 2.13. NTSC 1953 Chromaticities

Colorxy
Red0.670.33
Green0.210.71
Blue0.140.08
White Reference (C)0.3100.316

Note that this colorspace uses Illuminant C instead of D65 as the white reference. To correctly convert an image in this colorspace to another that uses D65 you need to apply a chromatic adaptation algorithm such as the Bradford method.

The transfer function was never properly defined for NTSC 1953. The Rec. 709 transfer function is recommended in the literature:

L' = 4.5L for 0 ≤ L < 0.018

L' = 1.099L0.45 - 0.099 for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L = L' / 4.5 for L' < 0.081

L = ((L' + 0.099) / 1.099)1/0.45 for L' ≥ 0.081

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601 encoding:

Y' = 0.299R' + 0.587G' + 0.114B'

Cb = -0.169R' - 0.331G' + 0.5B'

Cr = 0.5R' - 0.419G' - 0.081B'

Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range. This transform is identical to one defined in SMPTE 170M/BT.601.

Colorspace EBU Tech. 3213 (V4L2_COLORSPACE_470_SYSTEM_BG)

The [EBU Tech 3213] standard defines the colorspace used by PAL/SECAM in 1975. In practice this colorspace is obsolete and SMPTE 170M should be used instead. The default Y'CbCr encoding is V4L2_YCBCR_ENC_601. The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

Table 2.14. EBU Tech. 3213 Chromaticities

Colorxy
Red0.640.33
Green0.290.60
Blue0.150.06
White Reference (D65)0.31270.3290

The transfer function was never properly defined for this colorspace. The Rec. 709 transfer function is recommended in the literature:

L' = 4.5L for 0 ≤ L < 0.018

L' = 1.099L0.45 - 0.099 for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L = L' / 4.5 for L' < 0.081

L = ((L' + 0.099) / 1.099)1/0.45 for L' ≥ 0.081

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601 encoding:

Y' = 0.299R' + 0.587G' + 0.114B'

Cb = -0.169R' - 0.331G' + 0.5B'

Cr = 0.5R' - 0.419G' - 0.081B'

Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range. This transform is identical to one defined in SMPTE 170M/BT.601.

Colorspace JPEG (V4L2_COLORSPACE_JPEG)

This colorspace defines the colorspace used by most (Motion-)JPEG formats. The chromaticities of the primary colors and the white reference are identical to sRGB. The Y'CbCr encoding is V4L2_YCBCR_ENC_601 with full range quantization where Y' is scaled to [0…255] and Cb/Cr are scaled to [-128…128] and then clipped to [-128…127].

Note that the JPEG standard does not actually store colorspace information. So if something other than sRGB is used, then the driver will have to set that information explicitly. Effectively V4L2_COLORSPACE_JPEG can be considered to be an abbreviation for V4L2_COLORSPACE_SRGB, V4L2_YCBCR_ENC_601 and V4L2_QUANTIZATION_FULL_RANGE.