root/arch/x86/mm/pageattr.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. update_page_count
  2. split_page_count
  3. arch_report_meminfo
  4. split_page_count
  5. cpa_inc_1g_checked
  6. cpa_inc_2m_checked
  7. cpa_inc_4k_install
  8. cpa_inc_lp_sameprot
  9. cpa_inc_lp_preserved
  10. cpastats_show
  11. cpastats_open
  12. cpa_stats_init
  13. cpa_inc_1g_checked
  14. cpa_inc_2m_checked
  15. cpa_inc_4k_install
  16. cpa_inc_lp_sameprot
  17. cpa_inc_lp_preserved
  18. within
  19. within_inclusive
  20. highmap_start_pfn
  21. highmap_end_pfn
  22. __cpa_pfn_in_highmap
  23. __cpa_pfn_in_highmap
  24. fix_addr
  25. __cpa_addr
  26. clflush_cache_range_opt
  27. clflush_cache_range
  28. arch_invalidate_pmem
  29. __cpa_flush_all
  30. cpa_flush_all
  31. __cpa_flush_tlb
  32. cpa_flush
  33. overlaps
  34. protect_pci_bios
  35. protect_pci_bios
  36. protect_rodata
  37. protect_kernel_text
  38. protect_kernel_text_ro
  39. protect_kernel_text_ro
  40. conflicts
  41. check_conflict
  42. static_protections
  43. lookup_address_in_pgd
  44. lookup_address
  45. _lookup_address_cpa
  46. lookup_pmd_address
  47. slow_virt_to_phys
  48. __set_pmd_pte
  49. pgprot_clear_protnone_bits
  50. __should_split_large_page
  51. should_split_large_page
  52. split_set_pte
  53. __split_large_page
  54. split_large_page
  55. try_to_free_pte_page
  56. try_to_free_pmd_page
  57. unmap_pte_range
  58. __unmap_pmd_range
  59. unmap_pmd_range
  60. unmap_pud_range
  61. alloc_pte_page
  62. alloc_pmd_page
  63. populate_pte
  64. populate_pmd
  65. populate_pud
  66. populate_pgd
  67. __cpa_process_fault
  68. __change_page_attr
  69. cpa_process_alias
  70. __change_page_attr_set_clr
  71. change_page_attr_set_clr
  72. change_page_attr_set
  73. change_page_attr_clear
  74. cpa_set_pages_array
  75. cpa_clear_pages_array
  76. _set_memory_uc
  77. set_memory_uc
  78. _set_memory_wc
  79. set_memory_wc
  80. _set_memory_wt
  81. _set_memory_wb
  82. set_memory_wb
  83. set_memory_x
  84. set_memory_nx
  85. set_memory_ro
  86. set_memory_rw
  87. set_memory_np
  88. set_memory_np_noalias
  89. set_memory_4k
  90. set_memory_nonglobal
  91. set_memory_global
  92. __set_memory_enc_dec
  93. set_memory_encrypted
  94. set_memory_decrypted
  95. set_pages_uc
  96. _set_pages_array
  97. set_pages_array_uc
  98. set_pages_array_wc
  99. set_pages_array_wt
  100. set_pages_wb
  101. set_pages_array_wb
  102. set_pages_ro
  103. set_pages_rw
  104. __set_pages_p
  105. __set_pages_np
  106. set_direct_map_invalid_noflush
  107. set_direct_map_default_noflush
  108. __kernel_map_pages
  109. kernel_page_present
  110. kernel_map_pages_in_pgd
  111. kernel_unmap_pages_in_pgd

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright 2002 Andi Kleen, SuSE Labs.
   4  * Thanks to Ben LaHaise for precious feedback.
   5  */
   6 #include <linux/highmem.h>
   7 #include <linux/memblock.h>
   8 #include <linux/sched.h>
   9 #include <linux/mm.h>
  10 #include <linux/interrupt.h>
  11 #include <linux/seq_file.h>
  12 #include <linux/debugfs.h>
  13 #include <linux/pfn.h>
  14 #include <linux/percpu.h>
  15 #include <linux/gfp.h>
  16 #include <linux/pci.h>
  17 #include <linux/vmalloc.h>
  18 
  19 #include <asm/e820/api.h>
  20 #include <asm/processor.h>
  21 #include <asm/tlbflush.h>
  22 #include <asm/sections.h>
  23 #include <asm/setup.h>
  24 #include <linux/uaccess.h>
  25 #include <asm/pgalloc.h>
  26 #include <asm/proto.h>
  27 #include <asm/pat.h>
  28 #include <asm/set_memory.h>
  29 
  30 #include "mm_internal.h"
  31 
  32 /*
  33  * The current flushing context - we pass it instead of 5 arguments:
  34  */
  35 struct cpa_data {
  36         unsigned long   *vaddr;
  37         pgd_t           *pgd;
  38         pgprot_t        mask_set;
  39         pgprot_t        mask_clr;
  40         unsigned long   numpages;
  41         unsigned long   curpage;
  42         unsigned long   pfn;
  43         unsigned int    flags;
  44         unsigned int    force_split             : 1,
  45                         force_static_prot       : 1,
  46                         force_flush_all         : 1;
  47         struct page     **pages;
  48 };
  49 
  50 enum cpa_warn {
  51         CPA_CONFLICT,
  52         CPA_PROTECT,
  53         CPA_DETECT,
  54 };
  55 
  56 static const int cpa_warn_level = CPA_PROTECT;
  57 
  58 /*
  59  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  60  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  61  * entries change the page attribute in parallel to some other cpu
  62  * splitting a large page entry along with changing the attribute.
  63  */
  64 static DEFINE_SPINLOCK(cpa_lock);
  65 
  66 #define CPA_FLUSHTLB 1
  67 #define CPA_ARRAY 2
  68 #define CPA_PAGES_ARRAY 4
  69 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
  70 
  71 #ifdef CONFIG_PROC_FS
  72 static unsigned long direct_pages_count[PG_LEVEL_NUM];
  73 
  74 void update_page_count(int level, unsigned long pages)
  75 {
  76         /* Protect against CPA */
  77         spin_lock(&pgd_lock);
  78         direct_pages_count[level] += pages;
  79         spin_unlock(&pgd_lock);
  80 }
  81 
  82 static void split_page_count(int level)
  83 {
  84         if (direct_pages_count[level] == 0)
  85                 return;
  86 
  87         direct_pages_count[level]--;
  88         direct_pages_count[level - 1] += PTRS_PER_PTE;
  89 }
  90 
  91 void arch_report_meminfo(struct seq_file *m)
  92 {
  93         seq_printf(m, "DirectMap4k:    %8lu kB\n",
  94                         direct_pages_count[PG_LEVEL_4K] << 2);
  95 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  96         seq_printf(m, "DirectMap2M:    %8lu kB\n",
  97                         direct_pages_count[PG_LEVEL_2M] << 11);
  98 #else
  99         seq_printf(m, "DirectMap4M:    %8lu kB\n",
 100                         direct_pages_count[PG_LEVEL_2M] << 12);
 101 #endif
 102         if (direct_gbpages)
 103                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
 104                         direct_pages_count[PG_LEVEL_1G] << 20);
 105 }
 106 #else
 107 static inline void split_page_count(int level) { }
 108 #endif
 109 
 110 #ifdef CONFIG_X86_CPA_STATISTICS
 111 
 112 static unsigned long cpa_1g_checked;
 113 static unsigned long cpa_1g_sameprot;
 114 static unsigned long cpa_1g_preserved;
 115 static unsigned long cpa_2m_checked;
 116 static unsigned long cpa_2m_sameprot;
 117 static unsigned long cpa_2m_preserved;
 118 static unsigned long cpa_4k_install;
 119 
 120 static inline void cpa_inc_1g_checked(void)
 121 {
 122         cpa_1g_checked++;
 123 }
 124 
 125 static inline void cpa_inc_2m_checked(void)
 126 {
 127         cpa_2m_checked++;
 128 }
 129 
 130 static inline void cpa_inc_4k_install(void)
 131 {
 132         cpa_4k_install++;
 133 }
 134 
 135 static inline void cpa_inc_lp_sameprot(int level)
 136 {
 137         if (level == PG_LEVEL_1G)
 138                 cpa_1g_sameprot++;
 139         else
 140                 cpa_2m_sameprot++;
 141 }
 142 
 143 static inline void cpa_inc_lp_preserved(int level)
 144 {
 145         if (level == PG_LEVEL_1G)
 146                 cpa_1g_preserved++;
 147         else
 148                 cpa_2m_preserved++;
 149 }
 150 
 151 static int cpastats_show(struct seq_file *m, void *p)
 152 {
 153         seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 154         seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 155         seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 156         seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 157         seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 158         seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 159         seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 160         return 0;
 161 }
 162 
 163 static int cpastats_open(struct inode *inode, struct file *file)
 164 {
 165         return single_open(file, cpastats_show, NULL);
 166 }
 167 
 168 static const struct file_operations cpastats_fops = {
 169         .open           = cpastats_open,
 170         .read           = seq_read,
 171         .llseek         = seq_lseek,
 172         .release        = single_release,
 173 };
 174 
 175 static int __init cpa_stats_init(void)
 176 {
 177         debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 178                             &cpastats_fops);
 179         return 0;
 180 }
 181 late_initcall(cpa_stats_init);
 182 #else
 183 static inline void cpa_inc_1g_checked(void) { }
 184 static inline void cpa_inc_2m_checked(void) { }
 185 static inline void cpa_inc_4k_install(void) { }
 186 static inline void cpa_inc_lp_sameprot(int level) { }
 187 static inline void cpa_inc_lp_preserved(int level) { }
 188 #endif
 189 
 190 
 191 static inline int
 192 within(unsigned long addr, unsigned long start, unsigned long end)
 193 {
 194         return addr >= start && addr < end;
 195 }
 196 
 197 static inline int
 198 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 199 {
 200         return addr >= start && addr <= end;
 201 }
 202 
 203 #ifdef CONFIG_X86_64
 204 
 205 static inline unsigned long highmap_start_pfn(void)
 206 {
 207         return __pa_symbol(_text) >> PAGE_SHIFT;
 208 }
 209 
 210 static inline unsigned long highmap_end_pfn(void)
 211 {
 212         /* Do not reference physical address outside the kernel. */
 213         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 214 }
 215 
 216 static bool __cpa_pfn_in_highmap(unsigned long pfn)
 217 {
 218         /*
 219          * Kernel text has an alias mapping at a high address, known
 220          * here as "highmap".
 221          */
 222         return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 223 }
 224 
 225 #else
 226 
 227 static bool __cpa_pfn_in_highmap(unsigned long pfn)
 228 {
 229         /* There is no highmap on 32-bit */
 230         return false;
 231 }
 232 
 233 #endif
 234 
 235 /*
 236  * See set_mce_nospec().
 237  *
 238  * Machine check recovery code needs to change cache mode of poisoned pages to
 239  * UC to avoid speculative access logging another error. But passing the
 240  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 241  * speculative access. So we cheat and flip the top bit of the address. This
 242  * works fine for the code that updates the page tables. But at the end of the
 243  * process we need to flush the TLB and cache and the non-canonical address
 244  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 245  *
 246  * But in the common case we already have a canonical address. This code
 247  * will fix the top bit if needed and is a no-op otherwise.
 248  */
 249 static inline unsigned long fix_addr(unsigned long addr)
 250 {
 251 #ifdef CONFIG_X86_64
 252         return (long)(addr << 1) >> 1;
 253 #else
 254         return addr;
 255 #endif
 256 }
 257 
 258 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 259 {
 260         if (cpa->flags & CPA_PAGES_ARRAY) {
 261                 struct page *page = cpa->pages[idx];
 262 
 263                 if (unlikely(PageHighMem(page)))
 264                         return 0;
 265 
 266                 return (unsigned long)page_address(page);
 267         }
 268 
 269         if (cpa->flags & CPA_ARRAY)
 270                 return cpa->vaddr[idx];
 271 
 272         return *cpa->vaddr + idx * PAGE_SIZE;
 273 }
 274 
 275 /*
 276  * Flushing functions
 277  */
 278 
 279 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 280 {
 281         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 282         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 283         void *vend = vaddr + size;
 284 
 285         if (p >= vend)
 286                 return;
 287 
 288         for (; p < vend; p += clflush_size)
 289                 clflushopt(p);
 290 }
 291 
 292 /**
 293  * clflush_cache_range - flush a cache range with clflush
 294  * @vaddr:      virtual start address
 295  * @size:       number of bytes to flush
 296  *
 297  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 298  * SFENCE to avoid ordering issues.
 299  */
 300 void clflush_cache_range(void *vaddr, unsigned int size)
 301 {
 302         mb();
 303         clflush_cache_range_opt(vaddr, size);
 304         mb();
 305 }
 306 EXPORT_SYMBOL_GPL(clflush_cache_range);
 307 
 308 void arch_invalidate_pmem(void *addr, size_t size)
 309 {
 310         clflush_cache_range(addr, size);
 311 }
 312 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 313 
 314 static void __cpa_flush_all(void *arg)
 315 {
 316         unsigned long cache = (unsigned long)arg;
 317 
 318         /*
 319          * Flush all to work around Errata in early athlons regarding
 320          * large page flushing.
 321          */
 322         __flush_tlb_all();
 323 
 324         if (cache && boot_cpu_data.x86 >= 4)
 325                 wbinvd();
 326 }
 327 
 328 static void cpa_flush_all(unsigned long cache)
 329 {
 330         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 331 
 332         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 333 }
 334 
 335 void __cpa_flush_tlb(void *data)
 336 {
 337         struct cpa_data *cpa = data;
 338         unsigned int i;
 339 
 340         for (i = 0; i < cpa->numpages; i++)
 341                 __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 342 }
 343 
 344 static void cpa_flush(struct cpa_data *data, int cache)
 345 {
 346         struct cpa_data *cpa = data;
 347         unsigned int i;
 348 
 349         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 350 
 351         if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 352                 cpa_flush_all(cache);
 353                 return;
 354         }
 355 
 356         if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
 357                 flush_tlb_all();
 358         else
 359                 on_each_cpu(__cpa_flush_tlb, cpa, 1);
 360 
 361         if (!cache)
 362                 return;
 363 
 364         mb();
 365         for (i = 0; i < cpa->numpages; i++) {
 366                 unsigned long addr = __cpa_addr(cpa, i);
 367                 unsigned int level;
 368 
 369                 pte_t *pte = lookup_address(addr, &level);
 370 
 371                 /*
 372                  * Only flush present addresses:
 373                  */
 374                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 375                         clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 376         }
 377         mb();
 378 }
 379 
 380 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 381                      unsigned long r2_start, unsigned long r2_end)
 382 {
 383         return (r1_start <= r2_end && r1_end >= r2_start) ||
 384                 (r2_start <= r1_end && r2_end >= r1_start);
 385 }
 386 
 387 #ifdef CONFIG_PCI_BIOS
 388 /*
 389  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 390  * based config access (CONFIG_PCI_GOBIOS) support.
 391  */
 392 #define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
 393 #define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
 394 
 395 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 396 {
 397         if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 398                 return _PAGE_NX;
 399         return 0;
 400 }
 401 #else
 402 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 403 {
 404         return 0;
 405 }
 406 #endif
 407 
 408 /*
 409  * The .rodata section needs to be read-only. Using the pfn catches all
 410  * aliases.  This also includes __ro_after_init, so do not enforce until
 411  * kernel_set_to_readonly is true.
 412  */
 413 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 414 {
 415         unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 416 
 417         /*
 418          * Note: __end_rodata is at page aligned and not inclusive, so
 419          * subtract 1 to get the last enforced PFN in the rodata area.
 420          */
 421         epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 422 
 423         if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 424                 return _PAGE_RW;
 425         return 0;
 426 }
 427 
 428 /*
 429  * Protect kernel text against becoming non executable by forbidding
 430  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 431  * out of which the kernel actually executes.  Do not protect the low
 432  * mapping.
 433  *
 434  * This does not cover __inittext since that is gone after boot.
 435  */
 436 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 437 {
 438         unsigned long t_end = (unsigned long)_etext - 1;
 439         unsigned long t_start = (unsigned long)_text;
 440 
 441         if (overlaps(start, end, t_start, t_end))
 442                 return _PAGE_NX;
 443         return 0;
 444 }
 445 
 446 #if defined(CONFIG_X86_64)
 447 /*
 448  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 449  * kernel text mappings for the large page aligned text, rodata sections
 450  * will be always read-only. For the kernel identity mappings covering the
 451  * holes caused by this alignment can be anything that user asks.
 452  *
 453  * This will preserve the large page mappings for kernel text/data at no
 454  * extra cost.
 455  */
 456 static pgprotval_t protect_kernel_text_ro(unsigned long start,
 457                                           unsigned long end)
 458 {
 459         unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 460         unsigned long t_start = (unsigned long)_text;
 461         unsigned int level;
 462 
 463         if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 464                 return 0;
 465         /*
 466          * Don't enforce the !RW mapping for the kernel text mapping, if
 467          * the current mapping is already using small page mapping.  No
 468          * need to work hard to preserve large page mappings in this case.
 469          *
 470          * This also fixes the Linux Xen paravirt guest boot failure caused
 471          * by unexpected read-only mappings for kernel identity
 472          * mappings. In this paravirt guest case, the kernel text mapping
 473          * and the kernel identity mapping share the same page-table pages,
 474          * so the protections for kernel text and identity mappings have to
 475          * be the same.
 476          */
 477         if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 478                 return _PAGE_RW;
 479         return 0;
 480 }
 481 #else
 482 static pgprotval_t protect_kernel_text_ro(unsigned long start,
 483                                           unsigned long end)
 484 {
 485         return 0;
 486 }
 487 #endif
 488 
 489 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 490 {
 491         return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 492 }
 493 
 494 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 495                                   unsigned long start, unsigned long end,
 496                                   unsigned long pfn, const char *txt)
 497 {
 498         static const char *lvltxt[] = {
 499                 [CPA_CONFLICT]  = "conflict",
 500                 [CPA_PROTECT]   = "protect",
 501                 [CPA_DETECT]    = "detect",
 502         };
 503 
 504         if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 505                 return;
 506 
 507         pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 508                 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 509                 (unsigned long long)val);
 510 }
 511 
 512 /*
 513  * Certain areas of memory on x86 require very specific protection flags,
 514  * for example the BIOS area or kernel text. Callers don't always get this
 515  * right (again, ioremap() on BIOS memory is not uncommon) so this function
 516  * checks and fixes these known static required protection bits.
 517  */
 518 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 519                                           unsigned long pfn, unsigned long npg,
 520                                           unsigned long lpsize, int warnlvl)
 521 {
 522         pgprotval_t forbidden, res;
 523         unsigned long end;
 524 
 525         /*
 526          * There is no point in checking RW/NX conflicts when the requested
 527          * mapping is setting the page !PRESENT.
 528          */
 529         if (!(pgprot_val(prot) & _PAGE_PRESENT))
 530                 return prot;
 531 
 532         /* Operate on the virtual address */
 533         end = start + npg * PAGE_SIZE - 1;
 534 
 535         res = protect_kernel_text(start, end);
 536         check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 537         forbidden = res;
 538 
 539         /*
 540          * Special case to preserve a large page. If the change spawns the
 541          * full large page mapping then there is no point to split it
 542          * up. Happens with ftrace and is going to be removed once ftrace
 543          * switched to text_poke().
 544          */
 545         if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
 546                 res = protect_kernel_text_ro(start, end);
 547                 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 548                 forbidden |= res;
 549         }
 550 
 551         /* Check the PFN directly */
 552         res = protect_pci_bios(pfn, pfn + npg - 1);
 553         check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 554         forbidden |= res;
 555 
 556         res = protect_rodata(pfn, pfn + npg - 1);
 557         check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 558         forbidden |= res;
 559 
 560         return __pgprot(pgprot_val(prot) & ~forbidden);
 561 }
 562 
 563 /*
 564  * Lookup the page table entry for a virtual address in a specific pgd.
 565  * Return a pointer to the entry and the level of the mapping.
 566  */
 567 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 568                              unsigned int *level)
 569 {
 570         p4d_t *p4d;
 571         pud_t *pud;
 572         pmd_t *pmd;
 573 
 574         *level = PG_LEVEL_NONE;
 575 
 576         if (pgd_none(*pgd))
 577                 return NULL;
 578 
 579         p4d = p4d_offset(pgd, address);
 580         if (p4d_none(*p4d))
 581                 return NULL;
 582 
 583         *level = PG_LEVEL_512G;
 584         if (p4d_large(*p4d) || !p4d_present(*p4d))
 585                 return (pte_t *)p4d;
 586 
 587         pud = pud_offset(p4d, address);
 588         if (pud_none(*pud))
 589                 return NULL;
 590 
 591         *level = PG_LEVEL_1G;
 592         if (pud_large(*pud) || !pud_present(*pud))
 593                 return (pte_t *)pud;
 594 
 595         pmd = pmd_offset(pud, address);
 596         if (pmd_none(*pmd))
 597                 return NULL;
 598 
 599         *level = PG_LEVEL_2M;
 600         if (pmd_large(*pmd) || !pmd_present(*pmd))
 601                 return (pte_t *)pmd;
 602 
 603         *level = PG_LEVEL_4K;
 604 
 605         return pte_offset_kernel(pmd, address);
 606 }
 607 
 608 /*
 609  * Lookup the page table entry for a virtual address. Return a pointer
 610  * to the entry and the level of the mapping.
 611  *
 612  * Note: We return pud and pmd either when the entry is marked large
 613  * or when the present bit is not set. Otherwise we would return a
 614  * pointer to a nonexisting mapping.
 615  */
 616 pte_t *lookup_address(unsigned long address, unsigned int *level)
 617 {
 618         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 619 }
 620 EXPORT_SYMBOL_GPL(lookup_address);
 621 
 622 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 623                                   unsigned int *level)
 624 {
 625         if (cpa->pgd)
 626                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 627                                                address, level);
 628 
 629         return lookup_address(address, level);
 630 }
 631 
 632 /*
 633  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 634  * or NULL if not present.
 635  */
 636 pmd_t *lookup_pmd_address(unsigned long address)
 637 {
 638         pgd_t *pgd;
 639         p4d_t *p4d;
 640         pud_t *pud;
 641 
 642         pgd = pgd_offset_k(address);
 643         if (pgd_none(*pgd))
 644                 return NULL;
 645 
 646         p4d = p4d_offset(pgd, address);
 647         if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 648                 return NULL;
 649 
 650         pud = pud_offset(p4d, address);
 651         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 652                 return NULL;
 653 
 654         return pmd_offset(pud, address);
 655 }
 656 
 657 /*
 658  * This is necessary because __pa() does not work on some
 659  * kinds of memory, like vmalloc() or the alloc_remap()
 660  * areas on 32-bit NUMA systems.  The percpu areas can
 661  * end up in this kind of memory, for instance.
 662  *
 663  * This could be optimized, but it is only intended to be
 664  * used at inititalization time, and keeping it
 665  * unoptimized should increase the testing coverage for
 666  * the more obscure platforms.
 667  */
 668 phys_addr_t slow_virt_to_phys(void *__virt_addr)
 669 {
 670         unsigned long virt_addr = (unsigned long)__virt_addr;
 671         phys_addr_t phys_addr;
 672         unsigned long offset;
 673         enum pg_level level;
 674         pte_t *pte;
 675 
 676         pte = lookup_address(virt_addr, &level);
 677         BUG_ON(!pte);
 678 
 679         /*
 680          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 681          * before being left-shifted PAGE_SHIFT bits -- this trick is to
 682          * make 32-PAE kernel work correctly.
 683          */
 684         switch (level) {
 685         case PG_LEVEL_1G:
 686                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 687                 offset = virt_addr & ~PUD_PAGE_MASK;
 688                 break;
 689         case PG_LEVEL_2M:
 690                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 691                 offset = virt_addr & ~PMD_PAGE_MASK;
 692                 break;
 693         default:
 694                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 695                 offset = virt_addr & ~PAGE_MASK;
 696         }
 697 
 698         return (phys_addr_t)(phys_addr | offset);
 699 }
 700 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 701 
 702 /*
 703  * Set the new pmd in all the pgds we know about:
 704  */
 705 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 706 {
 707         /* change init_mm */
 708         set_pte_atomic(kpte, pte);
 709 #ifdef CONFIG_X86_32
 710         if (!SHARED_KERNEL_PMD) {
 711                 struct page *page;
 712 
 713                 list_for_each_entry(page, &pgd_list, lru) {
 714                         pgd_t *pgd;
 715                         p4d_t *p4d;
 716                         pud_t *pud;
 717                         pmd_t *pmd;
 718 
 719                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
 720                         p4d = p4d_offset(pgd, address);
 721                         pud = pud_offset(p4d, address);
 722                         pmd = pmd_offset(pud, address);
 723                         set_pte_atomic((pte_t *)pmd, pte);
 724                 }
 725         }
 726 #endif
 727 }
 728 
 729 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 730 {
 731         /*
 732          * _PAGE_GLOBAL means "global page" for present PTEs.
 733          * But, it is also used to indicate _PAGE_PROTNONE
 734          * for non-present PTEs.
 735          *
 736          * This ensures that a _PAGE_GLOBAL PTE going from
 737          * present to non-present is not confused as
 738          * _PAGE_PROTNONE.
 739          */
 740         if (!(pgprot_val(prot) & _PAGE_PRESENT))
 741                 pgprot_val(prot) &= ~_PAGE_GLOBAL;
 742 
 743         return prot;
 744 }
 745 
 746 static int __should_split_large_page(pte_t *kpte, unsigned long address,
 747                                      struct cpa_data *cpa)
 748 {
 749         unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 750         pgprot_t old_prot, new_prot, req_prot, chk_prot;
 751         pte_t new_pte, *tmp;
 752         enum pg_level level;
 753 
 754         /*
 755          * Check for races, another CPU might have split this page
 756          * up already:
 757          */
 758         tmp = _lookup_address_cpa(cpa, address, &level);
 759         if (tmp != kpte)
 760                 return 1;
 761 
 762         switch (level) {
 763         case PG_LEVEL_2M:
 764                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
 765                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
 766                 cpa_inc_2m_checked();
 767                 break;
 768         case PG_LEVEL_1G:
 769                 old_prot = pud_pgprot(*(pud_t *)kpte);
 770                 old_pfn = pud_pfn(*(pud_t *)kpte);
 771                 cpa_inc_1g_checked();
 772                 break;
 773         default:
 774                 return -EINVAL;
 775         }
 776 
 777         psize = page_level_size(level);
 778         pmask = page_level_mask(level);
 779 
 780         /*
 781          * Calculate the number of pages, which fit into this large
 782          * page starting at address:
 783          */
 784         lpaddr = (address + psize) & pmask;
 785         numpages = (lpaddr - address) >> PAGE_SHIFT;
 786         if (numpages < cpa->numpages)
 787                 cpa->numpages = numpages;
 788 
 789         /*
 790          * We are safe now. Check whether the new pgprot is the same:
 791          * Convert protection attributes to 4k-format, as cpa->mask* are set
 792          * up accordingly.
 793          */
 794 
 795         /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 796         req_prot = pgprot_large_2_4k(old_prot);
 797 
 798         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 799         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 800 
 801         /*
 802          * req_prot is in format of 4k pages. It must be converted to large
 803          * page format: the caching mode includes the PAT bit located at
 804          * different bit positions in the two formats.
 805          */
 806         req_prot = pgprot_4k_2_large(req_prot);
 807         req_prot = pgprot_clear_protnone_bits(req_prot);
 808         if (pgprot_val(req_prot) & _PAGE_PRESENT)
 809                 pgprot_val(req_prot) |= _PAGE_PSE;
 810 
 811         /*
 812          * old_pfn points to the large page base pfn. So we need to add the
 813          * offset of the virtual address:
 814          */
 815         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 816         cpa->pfn = pfn;
 817 
 818         /*
 819          * Calculate the large page base address and the number of 4K pages
 820          * in the large page
 821          */
 822         lpaddr = address & pmask;
 823         numpages = psize >> PAGE_SHIFT;
 824 
 825         /*
 826          * Sanity check that the existing mapping is correct versus the static
 827          * protections. static_protections() guards against !PRESENT, so no
 828          * extra conditional required here.
 829          */
 830         chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 831                                       psize, CPA_CONFLICT);
 832 
 833         if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 834                 /*
 835                  * Split the large page and tell the split code to
 836                  * enforce static protections.
 837                  */
 838                 cpa->force_static_prot = 1;
 839                 return 1;
 840         }
 841 
 842         /*
 843          * Optimization: If the requested pgprot is the same as the current
 844          * pgprot, then the large page can be preserved and no updates are
 845          * required independent of alignment and length of the requested
 846          * range. The above already established that the current pgprot is
 847          * correct, which in consequence makes the requested pgprot correct
 848          * as well if it is the same. The static protection scan below will
 849          * not come to a different conclusion.
 850          */
 851         if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 852                 cpa_inc_lp_sameprot(level);
 853                 return 0;
 854         }
 855 
 856         /*
 857          * If the requested range does not cover the full page, split it up
 858          */
 859         if (address != lpaddr || cpa->numpages != numpages)
 860                 return 1;
 861 
 862         /*
 863          * Check whether the requested pgprot is conflicting with a static
 864          * protection requirement in the large page.
 865          */
 866         new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 867                                       psize, CPA_DETECT);
 868 
 869         /*
 870          * If there is a conflict, split the large page.
 871          *
 872          * There used to be a 4k wise evaluation trying really hard to
 873          * preserve the large pages, but experimentation has shown, that this
 874          * does not help at all. There might be corner cases which would
 875          * preserve one large page occasionally, but it's really not worth the
 876          * extra code and cycles for the common case.
 877          */
 878         if (pgprot_val(req_prot) != pgprot_val(new_prot))
 879                 return 1;
 880 
 881         /* All checks passed. Update the large page mapping. */
 882         new_pte = pfn_pte(old_pfn, new_prot);
 883         __set_pmd_pte(kpte, address, new_pte);
 884         cpa->flags |= CPA_FLUSHTLB;
 885         cpa_inc_lp_preserved(level);
 886         return 0;
 887 }
 888 
 889 static int should_split_large_page(pte_t *kpte, unsigned long address,
 890                                    struct cpa_data *cpa)
 891 {
 892         int do_split;
 893 
 894         if (cpa->force_split)
 895                 return 1;
 896 
 897         spin_lock(&pgd_lock);
 898         do_split = __should_split_large_page(kpte, address, cpa);
 899         spin_unlock(&pgd_lock);
 900 
 901         return do_split;
 902 }
 903 
 904 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
 905                           pgprot_t ref_prot, unsigned long address,
 906                           unsigned long size)
 907 {
 908         unsigned int npg = PFN_DOWN(size);
 909         pgprot_t prot;
 910 
 911         /*
 912          * If should_split_large_page() discovered an inconsistent mapping,
 913          * remove the invalid protection in the split mapping.
 914          */
 915         if (!cpa->force_static_prot)
 916                 goto set;
 917 
 918         /* Hand in lpsize = 0 to enforce the protection mechanism */
 919         prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
 920 
 921         if (pgprot_val(prot) == pgprot_val(ref_prot))
 922                 goto set;
 923 
 924         /*
 925          * If this is splitting a PMD, fix it up. PUD splits cannot be
 926          * fixed trivially as that would require to rescan the newly
 927          * installed PMD mappings after returning from split_large_page()
 928          * so an eventual further split can allocate the necessary PTE
 929          * pages. Warn for now and revisit it in case this actually
 930          * happens.
 931          */
 932         if (size == PAGE_SIZE)
 933                 ref_prot = prot;
 934         else
 935                 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
 936 set:
 937         set_pte(pte, pfn_pte(pfn, ref_prot));
 938 }
 939 
 940 static int
 941 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 942                    struct page *base)
 943 {
 944         unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
 945         pte_t *pbase = (pte_t *)page_address(base);
 946         unsigned int i, level;
 947         pgprot_t ref_prot;
 948         pte_t *tmp;
 949 
 950         spin_lock(&pgd_lock);
 951         /*
 952          * Check for races, another CPU might have split this page
 953          * up for us already:
 954          */
 955         tmp = _lookup_address_cpa(cpa, address, &level);
 956         if (tmp != kpte) {
 957                 spin_unlock(&pgd_lock);
 958                 return 1;
 959         }
 960 
 961         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 962 
 963         switch (level) {
 964         case PG_LEVEL_2M:
 965                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
 966                 /*
 967                  * Clear PSE (aka _PAGE_PAT) and move
 968                  * PAT bit to correct position.
 969                  */
 970                 ref_prot = pgprot_large_2_4k(ref_prot);
 971                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
 972                 lpaddr = address & PMD_MASK;
 973                 lpinc = PAGE_SIZE;
 974                 break;
 975 
 976         case PG_LEVEL_1G:
 977                 ref_prot = pud_pgprot(*(pud_t *)kpte);
 978                 ref_pfn = pud_pfn(*(pud_t *)kpte);
 979                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 980                 lpaddr = address & PUD_MASK;
 981                 lpinc = PMD_SIZE;
 982                 /*
 983                  * Clear the PSE flags if the PRESENT flag is not set
 984                  * otherwise pmd_present/pmd_huge will return true
 985                  * even on a non present pmd.
 986                  */
 987                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
 988                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
 989                 break;
 990 
 991         default:
 992                 spin_unlock(&pgd_lock);
 993                 return 1;
 994         }
 995 
 996         ref_prot = pgprot_clear_protnone_bits(ref_prot);
 997 
 998         /*
 999          * Get the target pfn from the original entry:
1000          */
1001         pfn = ref_pfn;
1002         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1003                 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1004 
1005         if (virt_addr_valid(address)) {
1006                 unsigned long pfn = PFN_DOWN(__pa(address));
1007 
1008                 if (pfn_range_is_mapped(pfn, pfn + 1))
1009                         split_page_count(level);
1010         }
1011 
1012         /*
1013          * Install the new, split up pagetable.
1014          *
1015          * We use the standard kernel pagetable protections for the new
1016          * pagetable protections, the actual ptes set above control the
1017          * primary protection behavior:
1018          */
1019         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1020 
1021         /*
1022          * Do a global flush tlb after splitting the large page
1023          * and before we do the actual change page attribute in the PTE.
1024          *
1025          * Without this, we violate the TLB application note, that says:
1026          * "The TLBs may contain both ordinary and large-page
1027          *  translations for a 4-KByte range of linear addresses. This
1028          *  may occur if software modifies the paging structures so that
1029          *  the page size used for the address range changes. If the two
1030          *  translations differ with respect to page frame or attributes
1031          *  (e.g., permissions), processor behavior is undefined and may
1032          *  be implementation-specific."
1033          *
1034          * We do this global tlb flush inside the cpa_lock, so that we
1035          * don't allow any other cpu, with stale tlb entries change the
1036          * page attribute in parallel, that also falls into the
1037          * just split large page entry.
1038          */
1039         flush_tlb_all();
1040         spin_unlock(&pgd_lock);
1041 
1042         return 0;
1043 }
1044 
1045 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1046                             unsigned long address)
1047 {
1048         struct page *base;
1049 
1050         if (!debug_pagealloc_enabled())
1051                 spin_unlock(&cpa_lock);
1052         base = alloc_pages(GFP_KERNEL, 0);
1053         if (!debug_pagealloc_enabled())
1054                 spin_lock(&cpa_lock);
1055         if (!base)
1056                 return -ENOMEM;
1057 
1058         if (__split_large_page(cpa, kpte, address, base))
1059                 __free_page(base);
1060 
1061         return 0;
1062 }
1063 
1064 static bool try_to_free_pte_page(pte_t *pte)
1065 {
1066         int i;
1067 
1068         for (i = 0; i < PTRS_PER_PTE; i++)
1069                 if (!pte_none(pte[i]))
1070                         return false;
1071 
1072         free_page((unsigned long)pte);
1073         return true;
1074 }
1075 
1076 static bool try_to_free_pmd_page(pmd_t *pmd)
1077 {
1078         int i;
1079 
1080         for (i = 0; i < PTRS_PER_PMD; i++)
1081                 if (!pmd_none(pmd[i]))
1082                         return false;
1083 
1084         free_page((unsigned long)pmd);
1085         return true;
1086 }
1087 
1088 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1089 {
1090         pte_t *pte = pte_offset_kernel(pmd, start);
1091 
1092         while (start < end) {
1093                 set_pte(pte, __pte(0));
1094 
1095                 start += PAGE_SIZE;
1096                 pte++;
1097         }
1098 
1099         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1100                 pmd_clear(pmd);
1101                 return true;
1102         }
1103         return false;
1104 }
1105 
1106 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1107                               unsigned long start, unsigned long end)
1108 {
1109         if (unmap_pte_range(pmd, start, end))
1110                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1111                         pud_clear(pud);
1112 }
1113 
1114 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1115 {
1116         pmd_t *pmd = pmd_offset(pud, start);
1117 
1118         /*
1119          * Not on a 2MB page boundary?
1120          */
1121         if (start & (PMD_SIZE - 1)) {
1122                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1123                 unsigned long pre_end = min_t(unsigned long, end, next_page);
1124 
1125                 __unmap_pmd_range(pud, pmd, start, pre_end);
1126 
1127                 start = pre_end;
1128                 pmd++;
1129         }
1130 
1131         /*
1132          * Try to unmap in 2M chunks.
1133          */
1134         while (end - start >= PMD_SIZE) {
1135                 if (pmd_large(*pmd))
1136                         pmd_clear(pmd);
1137                 else
1138                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1139 
1140                 start += PMD_SIZE;
1141                 pmd++;
1142         }
1143 
1144         /*
1145          * 4K leftovers?
1146          */
1147         if (start < end)
1148                 return __unmap_pmd_range(pud, pmd, start, end);
1149 
1150         /*
1151          * Try again to free the PMD page if haven't succeeded above.
1152          */
1153         if (!pud_none(*pud))
1154                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1155                         pud_clear(pud);
1156 }
1157 
1158 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1159 {
1160         pud_t *pud = pud_offset(p4d, start);
1161 
1162         /*
1163          * Not on a GB page boundary?
1164          */
1165         if (start & (PUD_SIZE - 1)) {
1166                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1167                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
1168 
1169                 unmap_pmd_range(pud, start, pre_end);
1170 
1171                 start = pre_end;
1172                 pud++;
1173         }
1174 
1175         /*
1176          * Try to unmap in 1G chunks?
1177          */
1178         while (end - start >= PUD_SIZE) {
1179 
1180                 if (pud_large(*pud))
1181                         pud_clear(pud);
1182                 else
1183                         unmap_pmd_range(pud, start, start + PUD_SIZE);
1184 
1185                 start += PUD_SIZE;
1186                 pud++;
1187         }
1188 
1189         /*
1190          * 2M leftovers?
1191          */
1192         if (start < end)
1193                 unmap_pmd_range(pud, start, end);
1194 
1195         /*
1196          * No need to try to free the PUD page because we'll free it in
1197          * populate_pgd's error path
1198          */
1199 }
1200 
1201 static int alloc_pte_page(pmd_t *pmd)
1202 {
1203         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1204         if (!pte)
1205                 return -1;
1206 
1207         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1208         return 0;
1209 }
1210 
1211 static int alloc_pmd_page(pud_t *pud)
1212 {
1213         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1214         if (!pmd)
1215                 return -1;
1216 
1217         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1218         return 0;
1219 }
1220 
1221 static void populate_pte(struct cpa_data *cpa,
1222                          unsigned long start, unsigned long end,
1223                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1224 {
1225         pte_t *pte;
1226 
1227         pte = pte_offset_kernel(pmd, start);
1228 
1229         pgprot = pgprot_clear_protnone_bits(pgprot);
1230 
1231         while (num_pages-- && start < end) {
1232                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1233 
1234                 start    += PAGE_SIZE;
1235                 cpa->pfn++;
1236                 pte++;
1237         }
1238 }
1239 
1240 static long populate_pmd(struct cpa_data *cpa,
1241                          unsigned long start, unsigned long end,
1242                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1243 {
1244         long cur_pages = 0;
1245         pmd_t *pmd;
1246         pgprot_t pmd_pgprot;
1247 
1248         /*
1249          * Not on a 2M boundary?
1250          */
1251         if (start & (PMD_SIZE - 1)) {
1252                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1253                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1254 
1255                 pre_end   = min_t(unsigned long, pre_end, next_page);
1256                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1257                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1258 
1259                 /*
1260                  * Need a PTE page?
1261                  */
1262                 pmd = pmd_offset(pud, start);
1263                 if (pmd_none(*pmd))
1264                         if (alloc_pte_page(pmd))
1265                                 return -1;
1266 
1267                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1268 
1269                 start = pre_end;
1270         }
1271 
1272         /*
1273          * We mapped them all?
1274          */
1275         if (num_pages == cur_pages)
1276                 return cur_pages;
1277 
1278         pmd_pgprot = pgprot_4k_2_large(pgprot);
1279 
1280         while (end - start >= PMD_SIZE) {
1281 
1282                 /*
1283                  * We cannot use a 1G page so allocate a PMD page if needed.
1284                  */
1285                 if (pud_none(*pud))
1286                         if (alloc_pmd_page(pud))
1287                                 return -1;
1288 
1289                 pmd = pmd_offset(pud, start);
1290 
1291                 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1292                                         canon_pgprot(pmd_pgprot))));
1293 
1294                 start     += PMD_SIZE;
1295                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1296                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1297         }
1298 
1299         /*
1300          * Map trailing 4K pages.
1301          */
1302         if (start < end) {
1303                 pmd = pmd_offset(pud, start);
1304                 if (pmd_none(*pmd))
1305                         if (alloc_pte_page(pmd))
1306                                 return -1;
1307 
1308                 populate_pte(cpa, start, end, num_pages - cur_pages,
1309                              pmd, pgprot);
1310         }
1311         return num_pages;
1312 }
1313 
1314 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1315                         pgprot_t pgprot)
1316 {
1317         pud_t *pud;
1318         unsigned long end;
1319         long cur_pages = 0;
1320         pgprot_t pud_pgprot;
1321 
1322         end = start + (cpa->numpages << PAGE_SHIFT);
1323 
1324         /*
1325          * Not on a Gb page boundary? => map everything up to it with
1326          * smaller pages.
1327          */
1328         if (start & (PUD_SIZE - 1)) {
1329                 unsigned long pre_end;
1330                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1331 
1332                 pre_end   = min_t(unsigned long, end, next_page);
1333                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1334                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1335 
1336                 pud = pud_offset(p4d, start);
1337 
1338                 /*
1339                  * Need a PMD page?
1340                  */
1341                 if (pud_none(*pud))
1342                         if (alloc_pmd_page(pud))
1343                                 return -1;
1344 
1345                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1346                                          pud, pgprot);
1347                 if (cur_pages < 0)
1348                         return cur_pages;
1349 
1350                 start = pre_end;
1351         }
1352 
1353         /* We mapped them all? */
1354         if (cpa->numpages == cur_pages)
1355                 return cur_pages;
1356 
1357         pud = pud_offset(p4d, start);
1358         pud_pgprot = pgprot_4k_2_large(pgprot);
1359 
1360         /*
1361          * Map everything starting from the Gb boundary, possibly with 1G pages
1362          */
1363         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1364                 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1365                                    canon_pgprot(pud_pgprot))));
1366 
1367                 start     += PUD_SIZE;
1368                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1369                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1370                 pud++;
1371         }
1372 
1373         /* Map trailing leftover */
1374         if (start < end) {
1375                 long tmp;
1376 
1377                 pud = pud_offset(p4d, start);
1378                 if (pud_none(*pud))
1379                         if (alloc_pmd_page(pud))
1380                                 return -1;
1381 
1382                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1383                                    pud, pgprot);
1384                 if (tmp < 0)
1385                         return cur_pages;
1386 
1387                 cur_pages += tmp;
1388         }
1389         return cur_pages;
1390 }
1391 
1392 /*
1393  * Restrictions for kernel page table do not necessarily apply when mapping in
1394  * an alternate PGD.
1395  */
1396 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1397 {
1398         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1399         pud_t *pud = NULL;      /* shut up gcc */
1400         p4d_t *p4d;
1401         pgd_t *pgd_entry;
1402         long ret;
1403 
1404         pgd_entry = cpa->pgd + pgd_index(addr);
1405 
1406         if (pgd_none(*pgd_entry)) {
1407                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1408                 if (!p4d)
1409                         return -1;
1410 
1411                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1412         }
1413 
1414         /*
1415          * Allocate a PUD page and hand it down for mapping.
1416          */
1417         p4d = p4d_offset(pgd_entry, addr);
1418         if (p4d_none(*p4d)) {
1419                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1420                 if (!pud)
1421                         return -1;
1422 
1423                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1424         }
1425 
1426         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1427         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1428 
1429         ret = populate_pud(cpa, addr, p4d, pgprot);
1430         if (ret < 0) {
1431                 /*
1432                  * Leave the PUD page in place in case some other CPU or thread
1433                  * already found it, but remove any useless entries we just
1434                  * added to it.
1435                  */
1436                 unmap_pud_range(p4d, addr,
1437                                 addr + (cpa->numpages << PAGE_SHIFT));
1438                 return ret;
1439         }
1440 
1441         cpa->numpages = ret;
1442         return 0;
1443 }
1444 
1445 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1446                                int primary)
1447 {
1448         if (cpa->pgd) {
1449                 /*
1450                  * Right now, we only execute this code path when mapping
1451                  * the EFI virtual memory map regions, no other users
1452                  * provide a ->pgd value. This may change in the future.
1453                  */
1454                 return populate_pgd(cpa, vaddr);
1455         }
1456 
1457         /*
1458          * Ignore all non primary paths.
1459          */
1460         if (!primary) {
1461                 cpa->numpages = 1;
1462                 return 0;
1463         }
1464 
1465         /*
1466          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1467          * to have holes.
1468          * Also set numpages to '1' indicating that we processed cpa req for
1469          * one virtual address page and its pfn. TBD: numpages can be set based
1470          * on the initial value and the level returned by lookup_address().
1471          */
1472         if (within(vaddr, PAGE_OFFSET,
1473                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1474                 cpa->numpages = 1;
1475                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1476                 return 0;
1477 
1478         } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1479                 /* Faults in the highmap are OK, so do not warn: */
1480                 return -EFAULT;
1481         } else {
1482                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1483                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1484                         *cpa->vaddr);
1485 
1486                 return -EFAULT;
1487         }
1488 }
1489 
1490 static int __change_page_attr(struct cpa_data *cpa, int primary)
1491 {
1492         unsigned long address;
1493         int do_split, err;
1494         unsigned int level;
1495         pte_t *kpte, old_pte;
1496 
1497         address = __cpa_addr(cpa, cpa->curpage);
1498 repeat:
1499         kpte = _lookup_address_cpa(cpa, address, &level);
1500         if (!kpte)
1501                 return __cpa_process_fault(cpa, address, primary);
1502 
1503         old_pte = *kpte;
1504         if (pte_none(old_pte))
1505                 return __cpa_process_fault(cpa, address, primary);
1506 
1507         if (level == PG_LEVEL_4K) {
1508                 pte_t new_pte;
1509                 pgprot_t new_prot = pte_pgprot(old_pte);
1510                 unsigned long pfn = pte_pfn(old_pte);
1511 
1512                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1513                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1514 
1515                 cpa_inc_4k_install();
1516                 /* Hand in lpsize = 0 to enforce the protection mechanism */
1517                 new_prot = static_protections(new_prot, address, pfn, 1, 0,
1518                                               CPA_PROTECT);
1519 
1520                 new_prot = pgprot_clear_protnone_bits(new_prot);
1521 
1522                 /*
1523                  * We need to keep the pfn from the existing PTE,
1524                  * after all we're only going to change it's attributes
1525                  * not the memory it points to
1526                  */
1527                 new_pte = pfn_pte(pfn, new_prot);
1528                 cpa->pfn = pfn;
1529                 /*
1530                  * Do we really change anything ?
1531                  */
1532                 if (pte_val(old_pte) != pte_val(new_pte)) {
1533                         set_pte_atomic(kpte, new_pte);
1534                         cpa->flags |= CPA_FLUSHTLB;
1535                 }
1536                 cpa->numpages = 1;
1537                 return 0;
1538         }
1539 
1540         /*
1541          * Check, whether we can keep the large page intact
1542          * and just change the pte:
1543          */
1544         do_split = should_split_large_page(kpte, address, cpa);
1545         /*
1546          * When the range fits into the existing large page,
1547          * return. cp->numpages and cpa->tlbflush have been updated in
1548          * try_large_page:
1549          */
1550         if (do_split <= 0)
1551                 return do_split;
1552 
1553         /*
1554          * We have to split the large page:
1555          */
1556         err = split_large_page(cpa, kpte, address);
1557         if (!err)
1558                 goto repeat;
1559 
1560         return err;
1561 }
1562 
1563 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1564 
1565 static int cpa_process_alias(struct cpa_data *cpa)
1566 {
1567         struct cpa_data alias_cpa;
1568         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1569         unsigned long vaddr;
1570         int ret;
1571 
1572         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1573                 return 0;
1574 
1575         /*
1576          * No need to redo, when the primary call touched the direct
1577          * mapping already:
1578          */
1579         vaddr = __cpa_addr(cpa, cpa->curpage);
1580         if (!(within(vaddr, PAGE_OFFSET,
1581                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1582 
1583                 alias_cpa = *cpa;
1584                 alias_cpa.vaddr = &laddr;
1585                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1586                 alias_cpa.curpage = 0;
1587 
1588                 cpa->force_flush_all = 1;
1589 
1590                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1591                 if (ret)
1592                         return ret;
1593         }
1594 
1595 #ifdef CONFIG_X86_64
1596         /*
1597          * If the primary call didn't touch the high mapping already
1598          * and the physical address is inside the kernel map, we need
1599          * to touch the high mapped kernel as well:
1600          */
1601         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1602             __cpa_pfn_in_highmap(cpa->pfn)) {
1603                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1604                                                __START_KERNEL_map - phys_base;
1605                 alias_cpa = *cpa;
1606                 alias_cpa.vaddr = &temp_cpa_vaddr;
1607                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1608                 alias_cpa.curpage = 0;
1609 
1610                 cpa->force_flush_all = 1;
1611                 /*
1612                  * The high mapping range is imprecise, so ignore the
1613                  * return value.
1614                  */
1615                 __change_page_attr_set_clr(&alias_cpa, 0);
1616         }
1617 #endif
1618 
1619         return 0;
1620 }
1621 
1622 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1623 {
1624         unsigned long numpages = cpa->numpages;
1625         unsigned long rempages = numpages;
1626         int ret = 0;
1627 
1628         while (rempages) {
1629                 /*
1630                  * Store the remaining nr of pages for the large page
1631                  * preservation check.
1632                  */
1633                 cpa->numpages = rempages;
1634                 /* for array changes, we can't use large page */
1635                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1636                         cpa->numpages = 1;
1637 
1638                 if (!debug_pagealloc_enabled())
1639                         spin_lock(&cpa_lock);
1640                 ret = __change_page_attr(cpa, checkalias);
1641                 if (!debug_pagealloc_enabled())
1642                         spin_unlock(&cpa_lock);
1643                 if (ret)
1644                         goto out;
1645 
1646                 if (checkalias) {
1647                         ret = cpa_process_alias(cpa);
1648                         if (ret)
1649                                 goto out;
1650                 }
1651 
1652                 /*
1653                  * Adjust the number of pages with the result of the
1654                  * CPA operation. Either a large page has been
1655                  * preserved or a single page update happened.
1656                  */
1657                 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1658                 rempages -= cpa->numpages;
1659                 cpa->curpage += cpa->numpages;
1660         }
1661 
1662 out:
1663         /* Restore the original numpages */
1664         cpa->numpages = numpages;
1665         return ret;
1666 }
1667 
1668 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1669                                     pgprot_t mask_set, pgprot_t mask_clr,
1670                                     int force_split, int in_flag,
1671                                     struct page **pages)
1672 {
1673         struct cpa_data cpa;
1674         int ret, cache, checkalias;
1675 
1676         memset(&cpa, 0, sizeof(cpa));
1677 
1678         /*
1679          * Check, if we are requested to set a not supported
1680          * feature.  Clearing non-supported features is OK.
1681          */
1682         mask_set = canon_pgprot(mask_set);
1683 
1684         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1685                 return 0;
1686 
1687         /* Ensure we are PAGE_SIZE aligned */
1688         if (in_flag & CPA_ARRAY) {
1689                 int i;
1690                 for (i = 0; i < numpages; i++) {
1691                         if (addr[i] & ~PAGE_MASK) {
1692                                 addr[i] &= PAGE_MASK;
1693                                 WARN_ON_ONCE(1);
1694                         }
1695                 }
1696         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1697                 /*
1698                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1699                  * No need to check in that case
1700                  */
1701                 if (*addr & ~PAGE_MASK) {
1702                         *addr &= PAGE_MASK;
1703                         /*
1704                          * People should not be passing in unaligned addresses:
1705                          */
1706                         WARN_ON_ONCE(1);
1707                 }
1708         }
1709 
1710         /* Must avoid aliasing mappings in the highmem code */
1711         kmap_flush_unused();
1712 
1713         vm_unmap_aliases();
1714 
1715         cpa.vaddr = addr;
1716         cpa.pages = pages;
1717         cpa.numpages = numpages;
1718         cpa.mask_set = mask_set;
1719         cpa.mask_clr = mask_clr;
1720         cpa.flags = 0;
1721         cpa.curpage = 0;
1722         cpa.force_split = force_split;
1723 
1724         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1725                 cpa.flags |= in_flag;
1726 
1727         /* No alias checking for _NX bit modifications */
1728         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1729         /* Has caller explicitly disabled alias checking? */
1730         if (in_flag & CPA_NO_CHECK_ALIAS)
1731                 checkalias = 0;
1732 
1733         ret = __change_page_attr_set_clr(&cpa, checkalias);
1734 
1735         /*
1736          * Check whether we really changed something:
1737          */
1738         if (!(cpa.flags & CPA_FLUSHTLB))
1739                 goto out;
1740 
1741         /*
1742          * No need to flush, when we did not set any of the caching
1743          * attributes:
1744          */
1745         cache = !!pgprot2cachemode(mask_set);
1746 
1747         /*
1748          * On error; flush everything to be sure.
1749          */
1750         if (ret) {
1751                 cpa_flush_all(cache);
1752                 goto out;
1753         }
1754 
1755         cpa_flush(&cpa, cache);
1756 out:
1757         return ret;
1758 }
1759 
1760 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1761                                        pgprot_t mask, int array)
1762 {
1763         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1764                 (array ? CPA_ARRAY : 0), NULL);
1765 }
1766 
1767 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1768                                          pgprot_t mask, int array)
1769 {
1770         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1771                 (array ? CPA_ARRAY : 0), NULL);
1772 }
1773 
1774 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1775                                        pgprot_t mask)
1776 {
1777         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1778                 CPA_PAGES_ARRAY, pages);
1779 }
1780 
1781 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1782                                          pgprot_t mask)
1783 {
1784         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1785                 CPA_PAGES_ARRAY, pages);
1786 }
1787 
1788 int _set_memory_uc(unsigned long addr, int numpages)
1789 {
1790         /*
1791          * for now UC MINUS. see comments in ioremap_nocache()
1792          * If you really need strong UC use ioremap_uc(), but note
1793          * that you cannot override IO areas with set_memory_*() as
1794          * these helpers cannot work with IO memory.
1795          */
1796         return change_page_attr_set(&addr, numpages,
1797                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1798                                     0);
1799 }
1800 
1801 int set_memory_uc(unsigned long addr, int numpages)
1802 {
1803         int ret;
1804 
1805         /*
1806          * for now UC MINUS. see comments in ioremap_nocache()
1807          */
1808         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1809                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1810         if (ret)
1811                 goto out_err;
1812 
1813         ret = _set_memory_uc(addr, numpages);
1814         if (ret)
1815                 goto out_free;
1816 
1817         return 0;
1818 
1819 out_free:
1820         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1821 out_err:
1822         return ret;
1823 }
1824 EXPORT_SYMBOL(set_memory_uc);
1825 
1826 int _set_memory_wc(unsigned long addr, int numpages)
1827 {
1828         int ret;
1829 
1830         ret = change_page_attr_set(&addr, numpages,
1831                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1832                                    0);
1833         if (!ret) {
1834                 ret = change_page_attr_set_clr(&addr, numpages,
1835                                                cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1836                                                __pgprot(_PAGE_CACHE_MASK),
1837                                                0, 0, NULL);
1838         }
1839         return ret;
1840 }
1841 
1842 int set_memory_wc(unsigned long addr, int numpages)
1843 {
1844         int ret;
1845 
1846         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1847                 _PAGE_CACHE_MODE_WC, NULL);
1848         if (ret)
1849                 return ret;
1850 
1851         ret = _set_memory_wc(addr, numpages);
1852         if (ret)
1853                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1854 
1855         return ret;
1856 }
1857 EXPORT_SYMBOL(set_memory_wc);
1858 
1859 int _set_memory_wt(unsigned long addr, int numpages)
1860 {
1861         return change_page_attr_set(&addr, numpages,
1862                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1863 }
1864 
1865 int _set_memory_wb(unsigned long addr, int numpages)
1866 {
1867         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1868         return change_page_attr_clear(&addr, numpages,
1869                                       __pgprot(_PAGE_CACHE_MASK), 0);
1870 }
1871 
1872 int set_memory_wb(unsigned long addr, int numpages)
1873 {
1874         int ret;
1875 
1876         ret = _set_memory_wb(addr, numpages);
1877         if (ret)
1878                 return ret;
1879 
1880         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1881         return 0;
1882 }
1883 EXPORT_SYMBOL(set_memory_wb);
1884 
1885 int set_memory_x(unsigned long addr, int numpages)
1886 {
1887         if (!(__supported_pte_mask & _PAGE_NX))
1888                 return 0;
1889 
1890         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1891 }
1892 
1893 int set_memory_nx(unsigned long addr, int numpages)
1894 {
1895         if (!(__supported_pte_mask & _PAGE_NX))
1896                 return 0;
1897 
1898         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1899 }
1900 
1901 int set_memory_ro(unsigned long addr, int numpages)
1902 {
1903         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1904 }
1905 
1906 int set_memory_rw(unsigned long addr, int numpages)
1907 {
1908         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1909 }
1910 
1911 int set_memory_np(unsigned long addr, int numpages)
1912 {
1913         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1914 }
1915 
1916 int set_memory_np_noalias(unsigned long addr, int numpages)
1917 {
1918         int cpa_flags = CPA_NO_CHECK_ALIAS;
1919 
1920         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1921                                         __pgprot(_PAGE_PRESENT), 0,
1922                                         cpa_flags, NULL);
1923 }
1924 
1925 int set_memory_4k(unsigned long addr, int numpages)
1926 {
1927         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1928                                         __pgprot(0), 1, 0, NULL);
1929 }
1930 
1931 int set_memory_nonglobal(unsigned long addr, int numpages)
1932 {
1933         return change_page_attr_clear(&addr, numpages,
1934                                       __pgprot(_PAGE_GLOBAL), 0);
1935 }
1936 
1937 int set_memory_global(unsigned long addr, int numpages)
1938 {
1939         return change_page_attr_set(&addr, numpages,
1940                                     __pgprot(_PAGE_GLOBAL), 0);
1941 }
1942 
1943 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1944 {
1945         struct cpa_data cpa;
1946         int ret;
1947 
1948         /* Nothing to do if memory encryption is not active */
1949         if (!mem_encrypt_active())
1950                 return 0;
1951 
1952         /* Should not be working on unaligned addresses */
1953         if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1954                 addr &= PAGE_MASK;
1955 
1956         memset(&cpa, 0, sizeof(cpa));
1957         cpa.vaddr = &addr;
1958         cpa.numpages = numpages;
1959         cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1960         cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1961         cpa.pgd = init_mm.pgd;
1962 
1963         /* Must avoid aliasing mappings in the highmem code */
1964         kmap_flush_unused();
1965         vm_unmap_aliases();
1966 
1967         /*
1968          * Before changing the encryption attribute, we need to flush caches.
1969          */
1970         cpa_flush(&cpa, 1);
1971 
1972         ret = __change_page_attr_set_clr(&cpa, 1);
1973 
1974         /*
1975          * After changing the encryption attribute, we need to flush TLBs again
1976          * in case any speculative TLB caching occurred (but no need to flush
1977          * caches again).  We could just use cpa_flush_all(), but in case TLB
1978          * flushing gets optimized in the cpa_flush() path use the same logic
1979          * as above.
1980          */
1981         cpa_flush(&cpa, 0);
1982 
1983         return ret;
1984 }
1985 
1986 int set_memory_encrypted(unsigned long addr, int numpages)
1987 {
1988         return __set_memory_enc_dec(addr, numpages, true);
1989 }
1990 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1991 
1992 int set_memory_decrypted(unsigned long addr, int numpages)
1993 {
1994         return __set_memory_enc_dec(addr, numpages, false);
1995 }
1996 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1997 
1998 int set_pages_uc(struct page *page, int numpages)
1999 {
2000         unsigned long addr = (unsigned long)page_address(page);
2001 
2002         return set_memory_uc(addr, numpages);
2003 }
2004 EXPORT_SYMBOL(set_pages_uc);
2005 
2006 static int _set_pages_array(struct page **pages, int numpages,
2007                 enum page_cache_mode new_type)
2008 {
2009         unsigned long start;
2010         unsigned long end;
2011         enum page_cache_mode set_type;
2012         int i;
2013         int free_idx;
2014         int ret;
2015 
2016         for (i = 0; i < numpages; i++) {
2017                 if (PageHighMem(pages[i]))
2018                         continue;
2019                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2020                 end = start + PAGE_SIZE;
2021                 if (reserve_memtype(start, end, new_type, NULL))
2022                         goto err_out;
2023         }
2024 
2025         /* If WC, set to UC- first and then WC */
2026         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2027                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2028 
2029         ret = cpa_set_pages_array(pages, numpages,
2030                                   cachemode2pgprot(set_type));
2031         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2032                 ret = change_page_attr_set_clr(NULL, numpages,
2033                                                cachemode2pgprot(
2034                                                 _PAGE_CACHE_MODE_WC),
2035                                                __pgprot(_PAGE_CACHE_MASK),
2036                                                0, CPA_PAGES_ARRAY, pages);
2037         if (ret)
2038                 goto err_out;
2039         return 0; /* Success */
2040 err_out:
2041         free_idx = i;
2042         for (i = 0; i < free_idx; i++) {
2043                 if (PageHighMem(pages[i]))
2044                         continue;
2045                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2046                 end = start + PAGE_SIZE;
2047                 free_memtype(start, end);
2048         }
2049         return -EINVAL;
2050 }
2051 
2052 int set_pages_array_uc(struct page **pages, int numpages)
2053 {
2054         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2055 }
2056 EXPORT_SYMBOL(set_pages_array_uc);
2057 
2058 int set_pages_array_wc(struct page **pages, int numpages)
2059 {
2060         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2061 }
2062 EXPORT_SYMBOL(set_pages_array_wc);
2063 
2064 int set_pages_array_wt(struct page **pages, int numpages)
2065 {
2066         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2067 }
2068 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2069 
2070 int set_pages_wb(struct page *page, int numpages)
2071 {
2072         unsigned long addr = (unsigned long)page_address(page);
2073 
2074         return set_memory_wb(addr, numpages);
2075 }
2076 EXPORT_SYMBOL(set_pages_wb);
2077 
2078 int set_pages_array_wb(struct page **pages, int numpages)
2079 {
2080         int retval;
2081         unsigned long start;
2082         unsigned long end;
2083         int i;
2084 
2085         /* WB cache mode is hard wired to all cache attribute bits being 0 */
2086         retval = cpa_clear_pages_array(pages, numpages,
2087                         __pgprot(_PAGE_CACHE_MASK));
2088         if (retval)
2089                 return retval;
2090 
2091         for (i = 0; i < numpages; i++) {
2092                 if (PageHighMem(pages[i]))
2093                         continue;
2094                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2095                 end = start + PAGE_SIZE;
2096                 free_memtype(start, end);
2097         }
2098 
2099         return 0;
2100 }
2101 EXPORT_SYMBOL(set_pages_array_wb);
2102 
2103 int set_pages_ro(struct page *page, int numpages)
2104 {
2105         unsigned long addr = (unsigned long)page_address(page);
2106 
2107         return set_memory_ro(addr, numpages);
2108 }
2109 
2110 int set_pages_rw(struct page *page, int numpages)
2111 {
2112         unsigned long addr = (unsigned long)page_address(page);
2113 
2114         return set_memory_rw(addr, numpages);
2115 }
2116 
2117 static int __set_pages_p(struct page *page, int numpages)
2118 {
2119         unsigned long tempaddr = (unsigned long) page_address(page);
2120         struct cpa_data cpa = { .vaddr = &tempaddr,
2121                                 .pgd = NULL,
2122                                 .numpages = numpages,
2123                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2124                                 .mask_clr = __pgprot(0),
2125                                 .flags = 0};
2126 
2127         /*
2128          * No alias checking needed for setting present flag. otherwise,
2129          * we may need to break large pages for 64-bit kernel text
2130          * mappings (this adds to complexity if we want to do this from
2131          * atomic context especially). Let's keep it simple!
2132          */
2133         return __change_page_attr_set_clr(&cpa, 0);
2134 }
2135 
2136 static int __set_pages_np(struct page *page, int numpages)
2137 {
2138         unsigned long tempaddr = (unsigned long) page_address(page);
2139         struct cpa_data cpa = { .vaddr = &tempaddr,
2140                                 .pgd = NULL,
2141                                 .numpages = numpages,
2142                                 .mask_set = __pgprot(0),
2143                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2144                                 .flags = 0};
2145 
2146         /*
2147          * No alias checking needed for setting not present flag. otherwise,
2148          * we may need to break large pages for 64-bit kernel text
2149          * mappings (this adds to complexity if we want to do this from
2150          * atomic context especially). Let's keep it simple!
2151          */
2152         return __change_page_attr_set_clr(&cpa, 0);
2153 }
2154 
2155 int set_direct_map_invalid_noflush(struct page *page)
2156 {
2157         return __set_pages_np(page, 1);
2158 }
2159 
2160 int set_direct_map_default_noflush(struct page *page)
2161 {
2162         return __set_pages_p(page, 1);
2163 }
2164 
2165 void __kernel_map_pages(struct page *page, int numpages, int enable)
2166 {
2167         if (PageHighMem(page))
2168                 return;
2169         if (!enable) {
2170                 debug_check_no_locks_freed(page_address(page),
2171                                            numpages * PAGE_SIZE);
2172         }
2173 
2174         /*
2175          * The return value is ignored as the calls cannot fail.
2176          * Large pages for identity mappings are not used at boot time
2177          * and hence no memory allocations during large page split.
2178          */
2179         if (enable)
2180                 __set_pages_p(page, numpages);
2181         else
2182                 __set_pages_np(page, numpages);
2183 
2184         /*
2185          * We should perform an IPI and flush all tlbs,
2186          * but that can deadlock->flush only current cpu.
2187          * Preemption needs to be disabled around __flush_tlb_all() due to
2188          * CR3 reload in __native_flush_tlb().
2189          */
2190         preempt_disable();
2191         __flush_tlb_all();
2192         preempt_enable();
2193 
2194         arch_flush_lazy_mmu_mode();
2195 }
2196 
2197 #ifdef CONFIG_HIBERNATION
2198 bool kernel_page_present(struct page *page)
2199 {
2200         unsigned int level;
2201         pte_t *pte;
2202 
2203         if (PageHighMem(page))
2204                 return false;
2205 
2206         pte = lookup_address((unsigned long)page_address(page), &level);
2207         return (pte_val(*pte) & _PAGE_PRESENT);
2208 }
2209 #endif /* CONFIG_HIBERNATION */
2210 
2211 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2212                                    unsigned numpages, unsigned long page_flags)
2213 {
2214         int retval = -EINVAL;
2215 
2216         struct cpa_data cpa = {
2217                 .vaddr = &address,
2218                 .pfn = pfn,
2219                 .pgd = pgd,
2220                 .numpages = numpages,
2221                 .mask_set = __pgprot(0),
2222                 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2223                 .flags = 0,
2224         };
2225 
2226         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2227 
2228         if (!(__supported_pte_mask & _PAGE_NX))
2229                 goto out;
2230 
2231         if (!(page_flags & _PAGE_ENC))
2232                 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2233 
2234         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2235 
2236         retval = __change_page_attr_set_clr(&cpa, 0);
2237         __flush_tlb_all();
2238 
2239 out:
2240         return retval;
2241 }
2242 
2243 /*
2244  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2245  * function shouldn't be used in an SMP environment. Presently, it's used only
2246  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2247  */
2248 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2249                                      unsigned long numpages)
2250 {
2251         int retval;
2252 
2253         /*
2254          * The typical sequence for unmapping is to find a pte through
2255          * lookup_address_in_pgd() (ideally, it should never return NULL because
2256          * the address is already mapped) and change it's protections. As pfn is
2257          * the *target* of a mapping, it's not useful while unmapping.
2258          */
2259         struct cpa_data cpa = {
2260                 .vaddr          = &address,
2261                 .pfn            = 0,
2262                 .pgd            = pgd,
2263                 .numpages       = numpages,
2264                 .mask_set       = __pgprot(0),
2265                 .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2266                 .flags          = 0,
2267         };
2268 
2269         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2270 
2271         retval = __change_page_attr_set_clr(&cpa, 0);
2272         __flush_tlb_all();
2273 
2274         return retval;
2275 }
2276 
2277 /*
2278  * The testcases use internal knowledge of the implementation that shouldn't
2279  * be exposed to the rest of the kernel. Include these directly here.
2280  */
2281 #ifdef CONFIG_CPA_DEBUG
2282 #include "pageattr-test.c"
2283 #endif

/* [<][>][^][v][top][bottom][index][help] */