root/arch/x86/mm/mem_encrypt_identity.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sme_clear_pgd
  2. sme_prepare_pgd
  3. sme_populate_pgd_large
  4. sme_populate_pgd
  5. __sme_map_range_pmd
  6. __sme_map_range_pte
  7. __sme_map_range
  8. sme_map_range_encrypted
  9. sme_map_range_decrypted
  10. sme_map_range_decrypted_wp
  11. sme_pgtable_calc
  12. sme_encrypt_kernel
  13. sme_enable

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * AMD Memory Encryption Support
   4  *
   5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
   6  *
   7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8  */
   9 
  10 #define DISABLE_BRANCH_PROFILING
  11 
  12 /*
  13  * Since we're dealing with identity mappings, physical and virtual
  14  * addresses are the same, so override these defines which are ultimately
  15  * used by the headers in misc.h.
  16  */
  17 #define __pa(x)  ((unsigned long)(x))
  18 #define __va(x)  ((void *)((unsigned long)(x)))
  19 
  20 /*
  21  * Special hack: we have to be careful, because no indirections are
  22  * allowed here, and paravirt_ops is a kind of one. As it will only run in
  23  * baremetal anyway, we just keep it from happening. (This list needs to
  24  * be extended when new paravirt and debugging variants are added.)
  25  */
  26 #undef CONFIG_PARAVIRT
  27 #undef CONFIG_PARAVIRT_XXL
  28 #undef CONFIG_PARAVIRT_SPINLOCKS
  29 
  30 #include <linux/kernel.h>
  31 #include <linux/mm.h>
  32 #include <linux/mem_encrypt.h>
  33 
  34 #include <asm/setup.h>
  35 #include <asm/sections.h>
  36 #include <asm/cmdline.h>
  37 
  38 #include "mm_internal.h"
  39 
  40 #define PGD_FLAGS               _KERNPG_TABLE_NOENC
  41 #define P4D_FLAGS               _KERNPG_TABLE_NOENC
  42 #define PUD_FLAGS               _KERNPG_TABLE_NOENC
  43 #define PMD_FLAGS               _KERNPG_TABLE_NOENC
  44 
  45 #define PMD_FLAGS_LARGE         (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
  46 
  47 #define PMD_FLAGS_DEC           PMD_FLAGS_LARGE
  48 #define PMD_FLAGS_DEC_WP        ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
  49                                  (_PAGE_PAT | _PAGE_PWT))
  50 
  51 #define PMD_FLAGS_ENC           (PMD_FLAGS_LARGE | _PAGE_ENC)
  52 
  53 #define PTE_FLAGS               (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
  54 
  55 #define PTE_FLAGS_DEC           PTE_FLAGS
  56 #define PTE_FLAGS_DEC_WP        ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
  57                                  (_PAGE_PAT | _PAGE_PWT))
  58 
  59 #define PTE_FLAGS_ENC           (PTE_FLAGS | _PAGE_ENC)
  60 
  61 struct sme_populate_pgd_data {
  62         void    *pgtable_area;
  63         pgd_t   *pgd;
  64 
  65         pmdval_t pmd_flags;
  66         pteval_t pte_flags;
  67         unsigned long paddr;
  68 
  69         unsigned long vaddr;
  70         unsigned long vaddr_end;
  71 };
  72 
  73 /*
  74  * This work area lives in the .init.scratch section, which lives outside of
  75  * the kernel proper. It is sized to hold the intermediate copy buffer and
  76  * more than enough pagetable pages.
  77  *
  78  * By using this section, the kernel can be encrypted in place and it
  79  * avoids any possibility of boot parameters or initramfs images being
  80  * placed such that the in-place encryption logic overwrites them.  This
  81  * section is 2MB aligned to allow for simple pagetable setup using only
  82  * PMD entries (see vmlinux.lds.S).
  83  */
  84 static char sme_workarea[2 * PMD_PAGE_SIZE] __section(.init.scratch);
  85 
  86 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
  87 static char sme_cmdline_on[]  __initdata = "on";
  88 static char sme_cmdline_off[] __initdata = "off";
  89 
  90 static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
  91 {
  92         unsigned long pgd_start, pgd_end, pgd_size;
  93         pgd_t *pgd_p;
  94 
  95         pgd_start = ppd->vaddr & PGDIR_MASK;
  96         pgd_end = ppd->vaddr_end & PGDIR_MASK;
  97 
  98         pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
  99 
 100         pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
 101 
 102         memset(pgd_p, 0, pgd_size);
 103 }
 104 
 105 static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
 106 {
 107         pgd_t *pgd;
 108         p4d_t *p4d;
 109         pud_t *pud;
 110         pmd_t *pmd;
 111 
 112         pgd = ppd->pgd + pgd_index(ppd->vaddr);
 113         if (pgd_none(*pgd)) {
 114                 p4d = ppd->pgtable_area;
 115                 memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
 116                 ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
 117                 set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
 118         }
 119 
 120         p4d = p4d_offset(pgd, ppd->vaddr);
 121         if (p4d_none(*p4d)) {
 122                 pud = ppd->pgtable_area;
 123                 memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
 124                 ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
 125                 set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
 126         }
 127 
 128         pud = pud_offset(p4d, ppd->vaddr);
 129         if (pud_none(*pud)) {
 130                 pmd = ppd->pgtable_area;
 131                 memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
 132                 ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
 133                 set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
 134         }
 135 
 136         if (pud_large(*pud))
 137                 return NULL;
 138 
 139         return pud;
 140 }
 141 
 142 static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
 143 {
 144         pud_t *pud;
 145         pmd_t *pmd;
 146 
 147         pud = sme_prepare_pgd(ppd);
 148         if (!pud)
 149                 return;
 150 
 151         pmd = pmd_offset(pud, ppd->vaddr);
 152         if (pmd_large(*pmd))
 153                 return;
 154 
 155         set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
 156 }
 157 
 158 static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
 159 {
 160         pud_t *pud;
 161         pmd_t *pmd;
 162         pte_t *pte;
 163 
 164         pud = sme_prepare_pgd(ppd);
 165         if (!pud)
 166                 return;
 167 
 168         pmd = pmd_offset(pud, ppd->vaddr);
 169         if (pmd_none(*pmd)) {
 170                 pte = ppd->pgtable_area;
 171                 memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
 172                 ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
 173                 set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
 174         }
 175 
 176         if (pmd_large(*pmd))
 177                 return;
 178 
 179         pte = pte_offset_map(pmd, ppd->vaddr);
 180         if (pte_none(*pte))
 181                 set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
 182 }
 183 
 184 static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
 185 {
 186         while (ppd->vaddr < ppd->vaddr_end) {
 187                 sme_populate_pgd_large(ppd);
 188 
 189                 ppd->vaddr += PMD_PAGE_SIZE;
 190                 ppd->paddr += PMD_PAGE_SIZE;
 191         }
 192 }
 193 
 194 static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
 195 {
 196         while (ppd->vaddr < ppd->vaddr_end) {
 197                 sme_populate_pgd(ppd);
 198 
 199                 ppd->vaddr += PAGE_SIZE;
 200                 ppd->paddr += PAGE_SIZE;
 201         }
 202 }
 203 
 204 static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
 205                                    pmdval_t pmd_flags, pteval_t pte_flags)
 206 {
 207         unsigned long vaddr_end;
 208 
 209         ppd->pmd_flags = pmd_flags;
 210         ppd->pte_flags = pte_flags;
 211 
 212         /* Save original end value since we modify the struct value */
 213         vaddr_end = ppd->vaddr_end;
 214 
 215         /* If start is not 2MB aligned, create PTE entries */
 216         ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
 217         __sme_map_range_pte(ppd);
 218 
 219         /* Create PMD entries */
 220         ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
 221         __sme_map_range_pmd(ppd);
 222 
 223         /* If end is not 2MB aligned, create PTE entries */
 224         ppd->vaddr_end = vaddr_end;
 225         __sme_map_range_pte(ppd);
 226 }
 227 
 228 static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
 229 {
 230         __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
 231 }
 232 
 233 static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
 234 {
 235         __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
 236 }
 237 
 238 static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
 239 {
 240         __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
 241 }
 242 
 243 static unsigned long __init sme_pgtable_calc(unsigned long len)
 244 {
 245         unsigned long entries = 0, tables = 0;
 246 
 247         /*
 248          * Perform a relatively simplistic calculation of the pagetable
 249          * entries that are needed. Those mappings will be covered mostly
 250          * by 2MB PMD entries so we can conservatively calculate the required
 251          * number of P4D, PUD and PMD structures needed to perform the
 252          * mappings.  For mappings that are not 2MB aligned, PTE mappings
 253          * would be needed for the start and end portion of the address range
 254          * that fall outside of the 2MB alignment.  This results in, at most,
 255          * two extra pages to hold PTE entries for each range that is mapped.
 256          * Incrementing the count for each covers the case where the addresses
 257          * cross entries.
 258          */
 259 
 260         /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
 261         if (PTRS_PER_P4D > 1)
 262                 entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
 263         entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
 264         entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
 265         entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
 266 
 267         /*
 268          * Now calculate the added pagetable structures needed to populate
 269          * the new pagetables.
 270          */
 271 
 272         if (PTRS_PER_P4D > 1)
 273                 tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
 274         tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
 275         tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
 276 
 277         return entries + tables;
 278 }
 279 
 280 void __init sme_encrypt_kernel(struct boot_params *bp)
 281 {
 282         unsigned long workarea_start, workarea_end, workarea_len;
 283         unsigned long execute_start, execute_end, execute_len;
 284         unsigned long kernel_start, kernel_end, kernel_len;
 285         unsigned long initrd_start, initrd_end, initrd_len;
 286         struct sme_populate_pgd_data ppd;
 287         unsigned long pgtable_area_len;
 288         unsigned long decrypted_base;
 289 
 290         if (!sme_active())
 291                 return;
 292 
 293         /*
 294          * Prepare for encrypting the kernel and initrd by building new
 295          * pagetables with the necessary attributes needed to encrypt the
 296          * kernel in place.
 297          *
 298          *   One range of virtual addresses will map the memory occupied
 299          *   by the kernel and initrd as encrypted.
 300          *
 301          *   Another range of virtual addresses will map the memory occupied
 302          *   by the kernel and initrd as decrypted and write-protected.
 303          *
 304          *     The use of write-protect attribute will prevent any of the
 305          *     memory from being cached.
 306          */
 307 
 308         /* Physical addresses gives us the identity mapped virtual addresses */
 309         kernel_start = __pa_symbol(_text);
 310         kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
 311         kernel_len = kernel_end - kernel_start;
 312 
 313         initrd_start = 0;
 314         initrd_end = 0;
 315         initrd_len = 0;
 316 #ifdef CONFIG_BLK_DEV_INITRD
 317         initrd_len = (unsigned long)bp->hdr.ramdisk_size |
 318                      ((unsigned long)bp->ext_ramdisk_size << 32);
 319         if (initrd_len) {
 320                 initrd_start = (unsigned long)bp->hdr.ramdisk_image |
 321                                ((unsigned long)bp->ext_ramdisk_image << 32);
 322                 initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
 323                 initrd_len = initrd_end - initrd_start;
 324         }
 325 #endif
 326 
 327         /*
 328          * We're running identity mapped, so we must obtain the address to the
 329          * SME encryption workarea using rip-relative addressing.
 330          */
 331         asm ("lea sme_workarea(%%rip), %0"
 332              : "=r" (workarea_start)
 333              : "p" (sme_workarea));
 334 
 335         /*
 336          * Calculate required number of workarea bytes needed:
 337          *   executable encryption area size:
 338          *     stack page (PAGE_SIZE)
 339          *     encryption routine page (PAGE_SIZE)
 340          *     intermediate copy buffer (PMD_PAGE_SIZE)
 341          *   pagetable structures for the encryption of the kernel
 342          *   pagetable structures for workarea (in case not currently mapped)
 343          */
 344         execute_start = workarea_start;
 345         execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
 346         execute_len = execute_end - execute_start;
 347 
 348         /*
 349          * One PGD for both encrypted and decrypted mappings and a set of
 350          * PUDs and PMDs for each of the encrypted and decrypted mappings.
 351          */
 352         pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
 353         pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
 354         if (initrd_len)
 355                 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
 356 
 357         /* PUDs and PMDs needed in the current pagetables for the workarea */
 358         pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
 359 
 360         /*
 361          * The total workarea includes the executable encryption area and
 362          * the pagetable area. The start of the workarea is already 2MB
 363          * aligned, align the end of the workarea on a 2MB boundary so that
 364          * we don't try to create/allocate PTE entries from the workarea
 365          * before it is mapped.
 366          */
 367         workarea_len = execute_len + pgtable_area_len;
 368         workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
 369 
 370         /*
 371          * Set the address to the start of where newly created pagetable
 372          * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
 373          * structures are created when the workarea is added to the current
 374          * pagetables and when the new encrypted and decrypted kernel
 375          * mappings are populated.
 376          */
 377         ppd.pgtable_area = (void *)execute_end;
 378 
 379         /*
 380          * Make sure the current pagetable structure has entries for
 381          * addressing the workarea.
 382          */
 383         ppd.pgd = (pgd_t *)native_read_cr3_pa();
 384         ppd.paddr = workarea_start;
 385         ppd.vaddr = workarea_start;
 386         ppd.vaddr_end = workarea_end;
 387         sme_map_range_decrypted(&ppd);
 388 
 389         /* Flush the TLB - no globals so cr3 is enough */
 390         native_write_cr3(__native_read_cr3());
 391 
 392         /*
 393          * A new pagetable structure is being built to allow for the kernel
 394          * and initrd to be encrypted. It starts with an empty PGD that will
 395          * then be populated with new PUDs and PMDs as the encrypted and
 396          * decrypted kernel mappings are created.
 397          */
 398         ppd.pgd = ppd.pgtable_area;
 399         memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
 400         ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
 401 
 402         /*
 403          * A different PGD index/entry must be used to get different
 404          * pagetable entries for the decrypted mapping. Choose the next
 405          * PGD index and convert it to a virtual address to be used as
 406          * the base of the mapping.
 407          */
 408         decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
 409         if (initrd_len) {
 410                 unsigned long check_base;
 411 
 412                 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
 413                 decrypted_base = max(decrypted_base, check_base);
 414         }
 415         decrypted_base <<= PGDIR_SHIFT;
 416 
 417         /* Add encrypted kernel (identity) mappings */
 418         ppd.paddr = kernel_start;
 419         ppd.vaddr = kernel_start;
 420         ppd.vaddr_end = kernel_end;
 421         sme_map_range_encrypted(&ppd);
 422 
 423         /* Add decrypted, write-protected kernel (non-identity) mappings */
 424         ppd.paddr = kernel_start;
 425         ppd.vaddr = kernel_start + decrypted_base;
 426         ppd.vaddr_end = kernel_end + decrypted_base;
 427         sme_map_range_decrypted_wp(&ppd);
 428 
 429         if (initrd_len) {
 430                 /* Add encrypted initrd (identity) mappings */
 431                 ppd.paddr = initrd_start;
 432                 ppd.vaddr = initrd_start;
 433                 ppd.vaddr_end = initrd_end;
 434                 sme_map_range_encrypted(&ppd);
 435                 /*
 436                  * Add decrypted, write-protected initrd (non-identity) mappings
 437                  */
 438                 ppd.paddr = initrd_start;
 439                 ppd.vaddr = initrd_start + decrypted_base;
 440                 ppd.vaddr_end = initrd_end + decrypted_base;
 441                 sme_map_range_decrypted_wp(&ppd);
 442         }
 443 
 444         /* Add decrypted workarea mappings to both kernel mappings */
 445         ppd.paddr = workarea_start;
 446         ppd.vaddr = workarea_start;
 447         ppd.vaddr_end = workarea_end;
 448         sme_map_range_decrypted(&ppd);
 449 
 450         ppd.paddr = workarea_start;
 451         ppd.vaddr = workarea_start + decrypted_base;
 452         ppd.vaddr_end = workarea_end + decrypted_base;
 453         sme_map_range_decrypted(&ppd);
 454 
 455         /* Perform the encryption */
 456         sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
 457                             kernel_len, workarea_start, (unsigned long)ppd.pgd);
 458 
 459         if (initrd_len)
 460                 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
 461                                     initrd_len, workarea_start,
 462                                     (unsigned long)ppd.pgd);
 463 
 464         /*
 465          * At this point we are running encrypted.  Remove the mappings for
 466          * the decrypted areas - all that is needed for this is to remove
 467          * the PGD entry/entries.
 468          */
 469         ppd.vaddr = kernel_start + decrypted_base;
 470         ppd.vaddr_end = kernel_end + decrypted_base;
 471         sme_clear_pgd(&ppd);
 472 
 473         if (initrd_len) {
 474                 ppd.vaddr = initrd_start + decrypted_base;
 475                 ppd.vaddr_end = initrd_end + decrypted_base;
 476                 sme_clear_pgd(&ppd);
 477         }
 478 
 479         ppd.vaddr = workarea_start + decrypted_base;
 480         ppd.vaddr_end = workarea_end + decrypted_base;
 481         sme_clear_pgd(&ppd);
 482 
 483         /* Flush the TLB - no globals so cr3 is enough */
 484         native_write_cr3(__native_read_cr3());
 485 }
 486 
 487 void __init sme_enable(struct boot_params *bp)
 488 {
 489         const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
 490         unsigned int eax, ebx, ecx, edx;
 491         unsigned long feature_mask;
 492         bool active_by_default;
 493         unsigned long me_mask;
 494         char buffer[16];
 495         u64 msr;
 496 
 497         /* Check for the SME/SEV support leaf */
 498         eax = 0x80000000;
 499         ecx = 0;
 500         native_cpuid(&eax, &ebx, &ecx, &edx);
 501         if (eax < 0x8000001f)
 502                 return;
 503 
 504 #define AMD_SME_BIT     BIT(0)
 505 #define AMD_SEV_BIT     BIT(1)
 506         /*
 507          * Set the feature mask (SME or SEV) based on whether we are
 508          * running under a hypervisor.
 509          */
 510         eax = 1;
 511         ecx = 0;
 512         native_cpuid(&eax, &ebx, &ecx, &edx);
 513         feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
 514 
 515         /*
 516          * Check for the SME/SEV feature:
 517          *   CPUID Fn8000_001F[EAX]
 518          *   - Bit 0 - Secure Memory Encryption support
 519          *   - Bit 1 - Secure Encrypted Virtualization support
 520          *   CPUID Fn8000_001F[EBX]
 521          *   - Bits 5:0 - Pagetable bit position used to indicate encryption
 522          */
 523         eax = 0x8000001f;
 524         ecx = 0;
 525         native_cpuid(&eax, &ebx, &ecx, &edx);
 526         if (!(eax & feature_mask))
 527                 return;
 528 
 529         me_mask = 1UL << (ebx & 0x3f);
 530 
 531         /* Check if memory encryption is enabled */
 532         if (feature_mask == AMD_SME_BIT) {
 533                 /* For SME, check the SYSCFG MSR */
 534                 msr = __rdmsr(MSR_K8_SYSCFG);
 535                 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
 536                         return;
 537         } else {
 538                 /* For SEV, check the SEV MSR */
 539                 msr = __rdmsr(MSR_AMD64_SEV);
 540                 if (!(msr & MSR_AMD64_SEV_ENABLED))
 541                         return;
 542 
 543                 /* SEV state cannot be controlled by a command line option */
 544                 sme_me_mask = me_mask;
 545                 sev_enabled = true;
 546                 physical_mask &= ~sme_me_mask;
 547                 return;
 548         }
 549 
 550         /*
 551          * Fixups have not been applied to phys_base yet and we're running
 552          * identity mapped, so we must obtain the address to the SME command
 553          * line argument data using rip-relative addressing.
 554          */
 555         asm ("lea sme_cmdline_arg(%%rip), %0"
 556              : "=r" (cmdline_arg)
 557              : "p" (sme_cmdline_arg));
 558         asm ("lea sme_cmdline_on(%%rip), %0"
 559              : "=r" (cmdline_on)
 560              : "p" (sme_cmdline_on));
 561         asm ("lea sme_cmdline_off(%%rip), %0"
 562              : "=r" (cmdline_off)
 563              : "p" (sme_cmdline_off));
 564 
 565         if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
 566                 active_by_default = true;
 567         else
 568                 active_by_default = false;
 569 
 570         cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
 571                                      ((u64)bp->ext_cmd_line_ptr << 32));
 572 
 573         cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
 574 
 575         if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
 576                 sme_me_mask = me_mask;
 577         else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
 578                 sme_me_mask = 0;
 579         else
 580                 sme_me_mask = active_by_default ? me_mask : 0;
 581 
 582         physical_mask &= ~sme_me_mask;
 583 }

/* [<][>][^][v][top][bottom][index][help] */