root/arch/x86/mm/pat.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pat_disable
  2. nopat
  3. pat_enabled
  4. pat_debug_setup
  5. get_page_memtype
  6. set_page_memtype
  7. get_page_memtype
  8. set_page_memtype
  9. pat_get_cache_mode
  10. __init_cache_modes
  11. pat_bsp_init
  12. pat_ap_init
  13. init_cache_modes
  14. pat_init
  15. pat_x_mtrr_type
  16. pagerange_is_ram_callback
  17. pat_pagerange_is_ram
  18. reserve_ram_pages_type
  19. free_ram_pages_type
  20. sanitize_phys
  21. reserve_memtype
  22. free_memtype
  23. lookup_memtype
  24. pat_pfn_immune_to_uc_mtrr
  25. io_reserve_memtype
  26. io_free_memtype
  27. arch_io_reserve_memtype_wc
  28. arch_io_free_memtype_wc
  29. phys_mem_access_prot
  30. range_is_allowed
  31. range_is_allowed
  32. phys_mem_access_prot_allowed
  33. kernel_map_sync_memtype
  34. reserve_pfn_range
  35. free_pfn_range
  36. track_pfn_copy
  37. track_pfn_remap
  38. track_pfn_insert
  39. untrack_pfn
  40. untrack_pfn_moved
  41. pgprot_writecombine
  42. pgprot_writethrough
  43. memtype_get_idx
  44. memtype_seq_start
  45. memtype_seq_next
  46. memtype_seq_stop
  47. memtype_seq_show
  48. memtype_seq_open
  49. pat_memtype_list_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Handle caching attributes in page tables (PAT)
   4  *
   5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
   7  *
   8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
   9  */
  10 
  11 #include <linux/seq_file.h>
  12 #include <linux/memblock.h>
  13 #include <linux/debugfs.h>
  14 #include <linux/ioport.h>
  15 #include <linux/kernel.h>
  16 #include <linux/pfn_t.h>
  17 #include <linux/slab.h>
  18 #include <linux/mm.h>
  19 #include <linux/fs.h>
  20 #include <linux/rbtree.h>
  21 
  22 #include <asm/cacheflush.h>
  23 #include <asm/processor.h>
  24 #include <asm/tlbflush.h>
  25 #include <asm/x86_init.h>
  26 #include <asm/pgtable.h>
  27 #include <asm/fcntl.h>
  28 #include <asm/e820/api.h>
  29 #include <asm/mtrr.h>
  30 #include <asm/page.h>
  31 #include <asm/msr.h>
  32 #include <asm/pat.h>
  33 #include <asm/io.h>
  34 
  35 #include "pat_internal.h"
  36 #include "mm_internal.h"
  37 
  38 #undef pr_fmt
  39 #define pr_fmt(fmt) "" fmt
  40 
  41 static bool __read_mostly boot_cpu_done;
  42 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
  43 static bool __read_mostly pat_initialized;
  44 static bool __read_mostly init_cm_done;
  45 
  46 void pat_disable(const char *reason)
  47 {
  48         if (pat_disabled)
  49                 return;
  50 
  51         if (boot_cpu_done) {
  52                 WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
  53                 return;
  54         }
  55 
  56         pat_disabled = true;
  57         pr_info("x86/PAT: %s\n", reason);
  58 }
  59 
  60 static int __init nopat(char *str)
  61 {
  62         pat_disable("PAT support disabled.");
  63         return 0;
  64 }
  65 early_param("nopat", nopat);
  66 
  67 bool pat_enabled(void)
  68 {
  69         return pat_initialized;
  70 }
  71 EXPORT_SYMBOL_GPL(pat_enabled);
  72 
  73 int pat_debug_enable;
  74 
  75 static int __init pat_debug_setup(char *str)
  76 {
  77         pat_debug_enable = 1;
  78         return 0;
  79 }
  80 __setup("debugpat", pat_debug_setup);
  81 
  82 #ifdef CONFIG_X86_PAT
  83 /*
  84  * X86 PAT uses page flags arch_1 and uncached together to keep track of
  85  * memory type of pages that have backing page struct.
  86  *
  87  * X86 PAT supports 4 different memory types:
  88  *  - _PAGE_CACHE_MODE_WB
  89  *  - _PAGE_CACHE_MODE_WC
  90  *  - _PAGE_CACHE_MODE_UC_MINUS
  91  *  - _PAGE_CACHE_MODE_WT
  92  *
  93  * _PAGE_CACHE_MODE_WB is the default type.
  94  */
  95 
  96 #define _PGMT_WB                0
  97 #define _PGMT_WC                (1UL << PG_arch_1)
  98 #define _PGMT_UC_MINUS          (1UL << PG_uncached)
  99 #define _PGMT_WT                (1UL << PG_uncached | 1UL << PG_arch_1)
 100 #define _PGMT_MASK              (1UL << PG_uncached | 1UL << PG_arch_1)
 101 #define _PGMT_CLEAR_MASK        (~_PGMT_MASK)
 102 
 103 static inline enum page_cache_mode get_page_memtype(struct page *pg)
 104 {
 105         unsigned long pg_flags = pg->flags & _PGMT_MASK;
 106 
 107         if (pg_flags == _PGMT_WB)
 108                 return _PAGE_CACHE_MODE_WB;
 109         else if (pg_flags == _PGMT_WC)
 110                 return _PAGE_CACHE_MODE_WC;
 111         else if (pg_flags == _PGMT_UC_MINUS)
 112                 return _PAGE_CACHE_MODE_UC_MINUS;
 113         else
 114                 return _PAGE_CACHE_MODE_WT;
 115 }
 116 
 117 static inline void set_page_memtype(struct page *pg,
 118                                     enum page_cache_mode memtype)
 119 {
 120         unsigned long memtype_flags;
 121         unsigned long old_flags;
 122         unsigned long new_flags;
 123 
 124         switch (memtype) {
 125         case _PAGE_CACHE_MODE_WC:
 126                 memtype_flags = _PGMT_WC;
 127                 break;
 128         case _PAGE_CACHE_MODE_UC_MINUS:
 129                 memtype_flags = _PGMT_UC_MINUS;
 130                 break;
 131         case _PAGE_CACHE_MODE_WT:
 132                 memtype_flags = _PGMT_WT;
 133                 break;
 134         case _PAGE_CACHE_MODE_WB:
 135         default:
 136                 memtype_flags = _PGMT_WB;
 137                 break;
 138         }
 139 
 140         do {
 141                 old_flags = pg->flags;
 142                 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
 143         } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
 144 }
 145 #else
 146 static inline enum page_cache_mode get_page_memtype(struct page *pg)
 147 {
 148         return -1;
 149 }
 150 static inline void set_page_memtype(struct page *pg,
 151                                     enum page_cache_mode memtype)
 152 {
 153 }
 154 #endif
 155 
 156 enum {
 157         PAT_UC = 0,             /* uncached */
 158         PAT_WC = 1,             /* Write combining */
 159         PAT_WT = 4,             /* Write Through */
 160         PAT_WP = 5,             /* Write Protected */
 161         PAT_WB = 6,             /* Write Back (default) */
 162         PAT_UC_MINUS = 7,       /* UC, but can be overridden by MTRR */
 163 };
 164 
 165 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
 166 
 167 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
 168 {
 169         enum page_cache_mode cache;
 170         char *cache_mode;
 171 
 172         switch (pat_val) {
 173         case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
 174         case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
 175         case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
 176         case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
 177         case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
 178         case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
 179         default:           cache = CM(WB);       cache_mode = "WB  "; break;
 180         }
 181 
 182         memcpy(msg, cache_mode, 4);
 183 
 184         return cache;
 185 }
 186 
 187 #undef CM
 188 
 189 /*
 190  * Update the cache mode to pgprot translation tables according to PAT
 191  * configuration.
 192  * Using lower indices is preferred, so we start with highest index.
 193  */
 194 static void __init_cache_modes(u64 pat)
 195 {
 196         enum page_cache_mode cache;
 197         char pat_msg[33];
 198         int i;
 199 
 200         pat_msg[32] = 0;
 201         for (i = 7; i >= 0; i--) {
 202                 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
 203                                            pat_msg + 4 * i);
 204                 update_cache_mode_entry(i, cache);
 205         }
 206         pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
 207 
 208         init_cm_done = true;
 209 }
 210 
 211 #define PAT(x, y)       ((u64)PAT_ ## y << ((x)*8))
 212 
 213 static void pat_bsp_init(u64 pat)
 214 {
 215         u64 tmp_pat;
 216 
 217         if (!boot_cpu_has(X86_FEATURE_PAT)) {
 218                 pat_disable("PAT not supported by CPU.");
 219                 return;
 220         }
 221 
 222         rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
 223         if (!tmp_pat) {
 224                 pat_disable("PAT MSR is 0, disabled.");
 225                 return;
 226         }
 227 
 228         wrmsrl(MSR_IA32_CR_PAT, pat);
 229         pat_initialized = true;
 230 
 231         __init_cache_modes(pat);
 232 }
 233 
 234 static void pat_ap_init(u64 pat)
 235 {
 236         if (!boot_cpu_has(X86_FEATURE_PAT)) {
 237                 /*
 238                  * If this happens we are on a secondary CPU, but switched to
 239                  * PAT on the boot CPU. We have no way to undo PAT.
 240                  */
 241                 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
 242         }
 243 
 244         wrmsrl(MSR_IA32_CR_PAT, pat);
 245 }
 246 
 247 void init_cache_modes(void)
 248 {
 249         u64 pat = 0;
 250 
 251         if (init_cm_done)
 252                 return;
 253 
 254         if (boot_cpu_has(X86_FEATURE_PAT)) {
 255                 /*
 256                  * CPU supports PAT. Set PAT table to be consistent with
 257                  * PAT MSR. This case supports "nopat" boot option, and
 258                  * virtual machine environments which support PAT without
 259                  * MTRRs. In specific, Xen has unique setup to PAT MSR.
 260                  *
 261                  * If PAT MSR returns 0, it is considered invalid and emulates
 262                  * as No PAT.
 263                  */
 264                 rdmsrl(MSR_IA32_CR_PAT, pat);
 265         }
 266 
 267         if (!pat) {
 268                 /*
 269                  * No PAT. Emulate the PAT table that corresponds to the two
 270                  * cache bits, PWT (Write Through) and PCD (Cache Disable).
 271                  * This setup is also the same as the BIOS default setup.
 272                  *
 273                  * PTE encoding:
 274                  *
 275                  *       PCD
 276                  *       |PWT  PAT
 277                  *       ||    slot
 278                  *       00    0    WB : _PAGE_CACHE_MODE_WB
 279                  *       01    1    WT : _PAGE_CACHE_MODE_WT
 280                  *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 281                  *       11    3    UC : _PAGE_CACHE_MODE_UC
 282                  *
 283                  * NOTE: When WC or WP is used, it is redirected to UC- per
 284                  * the default setup in __cachemode2pte_tbl[].
 285                  */
 286                 pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
 287                       PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
 288         }
 289 
 290         __init_cache_modes(pat);
 291 }
 292 
 293 /**
 294  * pat_init - Initialize PAT MSR and PAT table
 295  *
 296  * This function initializes PAT MSR and PAT table with an OS-defined value
 297  * to enable additional cache attributes, WC, WT and WP.
 298  *
 299  * This function must be called on all CPUs using the specific sequence of
 300  * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
 301  * procedure for PAT.
 302  */
 303 void pat_init(void)
 304 {
 305         u64 pat;
 306         struct cpuinfo_x86 *c = &boot_cpu_data;
 307 
 308         if (pat_disabled)
 309                 return;
 310 
 311         if ((c->x86_vendor == X86_VENDOR_INTEL) &&
 312             (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
 313              ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
 314                 /*
 315                  * PAT support with the lower four entries. Intel Pentium 2,
 316                  * 3, M, and 4 are affected by PAT errata, which makes the
 317                  * upper four entries unusable. To be on the safe side, we don't
 318                  * use those.
 319                  *
 320                  *  PTE encoding:
 321                  *      PAT
 322                  *      |PCD
 323                  *      ||PWT  PAT
 324                  *      |||    slot
 325                  *      000    0    WB : _PAGE_CACHE_MODE_WB
 326                  *      001    1    WC : _PAGE_CACHE_MODE_WC
 327                  *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 328                  *      011    3    UC : _PAGE_CACHE_MODE_UC
 329                  * PAT bit unused
 330                  *
 331                  * NOTE: When WT or WP is used, it is redirected to UC- per
 332                  * the default setup in __cachemode2pte_tbl[].
 333                  */
 334                 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 335                       PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
 336         } else {
 337                 /*
 338                  * Full PAT support.  We put WT in slot 7 to improve
 339                  * robustness in the presence of errata that might cause
 340                  * the high PAT bit to be ignored.  This way, a buggy slot 7
 341                  * access will hit slot 3, and slot 3 is UC, so at worst
 342                  * we lose performance without causing a correctness issue.
 343                  * Pentium 4 erratum N46 is an example for such an erratum,
 344                  * although we try not to use PAT at all on affected CPUs.
 345                  *
 346                  *  PTE encoding:
 347                  *      PAT
 348                  *      |PCD
 349                  *      ||PWT  PAT
 350                  *      |||    slot
 351                  *      000    0    WB : _PAGE_CACHE_MODE_WB
 352                  *      001    1    WC : _PAGE_CACHE_MODE_WC
 353                  *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 354                  *      011    3    UC : _PAGE_CACHE_MODE_UC
 355                  *      100    4    WB : Reserved
 356                  *      101    5    WP : _PAGE_CACHE_MODE_WP
 357                  *      110    6    UC-: Reserved
 358                  *      111    7    WT : _PAGE_CACHE_MODE_WT
 359                  *
 360                  * The reserved slots are unused, but mapped to their
 361                  * corresponding types in the presence of PAT errata.
 362                  */
 363                 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 364                       PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
 365         }
 366 
 367         if (!boot_cpu_done) {
 368                 pat_bsp_init(pat);
 369                 boot_cpu_done = true;
 370         } else {
 371                 pat_ap_init(pat);
 372         }
 373 }
 374 
 375 #undef PAT
 376 
 377 static DEFINE_SPINLOCK(memtype_lock);   /* protects memtype accesses */
 378 
 379 /*
 380  * Does intersection of PAT memory type and MTRR memory type and returns
 381  * the resulting memory type as PAT understands it.
 382  * (Type in pat and mtrr will not have same value)
 383  * The intersection is based on "Effective Memory Type" tables in IA-32
 384  * SDM vol 3a
 385  */
 386 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
 387                                      enum page_cache_mode req_type)
 388 {
 389         /*
 390          * Look for MTRR hint to get the effective type in case where PAT
 391          * request is for WB.
 392          */
 393         if (req_type == _PAGE_CACHE_MODE_WB) {
 394                 u8 mtrr_type, uniform;
 395 
 396                 mtrr_type = mtrr_type_lookup(start, end, &uniform);
 397                 if (mtrr_type != MTRR_TYPE_WRBACK)
 398                         return _PAGE_CACHE_MODE_UC_MINUS;
 399 
 400                 return _PAGE_CACHE_MODE_WB;
 401         }
 402 
 403         return req_type;
 404 }
 405 
 406 struct pagerange_state {
 407         unsigned long           cur_pfn;
 408         int                     ram;
 409         int                     not_ram;
 410 };
 411 
 412 static int
 413 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
 414 {
 415         struct pagerange_state *state = arg;
 416 
 417         state->not_ram  |= initial_pfn > state->cur_pfn;
 418         state->ram      |= total_nr_pages > 0;
 419         state->cur_pfn   = initial_pfn + total_nr_pages;
 420 
 421         return state->ram && state->not_ram;
 422 }
 423 
 424 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
 425 {
 426         int ret = 0;
 427         unsigned long start_pfn = start >> PAGE_SHIFT;
 428         unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 429         struct pagerange_state state = {start_pfn, 0, 0};
 430 
 431         /*
 432          * For legacy reasons, physical address range in the legacy ISA
 433          * region is tracked as non-RAM. This will allow users of
 434          * /dev/mem to map portions of legacy ISA region, even when
 435          * some of those portions are listed(or not even listed) with
 436          * different e820 types(RAM/reserved/..)
 437          */
 438         if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
 439                 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
 440 
 441         if (start_pfn < end_pfn) {
 442                 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
 443                                 &state, pagerange_is_ram_callback);
 444         }
 445 
 446         return (ret > 0) ? -1 : (state.ram ? 1 : 0);
 447 }
 448 
 449 /*
 450  * For RAM pages, we use page flags to mark the pages with appropriate type.
 451  * The page flags are limited to four types, WB (default), WC, WT and UC-.
 452  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
 453  * a new memory type is only allowed for a page mapped with the default WB
 454  * type.
 455  *
 456  * Here we do two passes:
 457  * - Find the memtype of all the pages in the range, look for any conflicts.
 458  * - In case of no conflicts, set the new memtype for pages in the range.
 459  */
 460 static int reserve_ram_pages_type(u64 start, u64 end,
 461                                   enum page_cache_mode req_type,
 462                                   enum page_cache_mode *new_type)
 463 {
 464         struct page *page;
 465         u64 pfn;
 466 
 467         if (req_type == _PAGE_CACHE_MODE_WP) {
 468                 if (new_type)
 469                         *new_type = _PAGE_CACHE_MODE_UC_MINUS;
 470                 return -EINVAL;
 471         }
 472 
 473         if (req_type == _PAGE_CACHE_MODE_UC) {
 474                 /* We do not support strong UC */
 475                 WARN_ON_ONCE(1);
 476                 req_type = _PAGE_CACHE_MODE_UC_MINUS;
 477         }
 478 
 479         for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 480                 enum page_cache_mode type;
 481 
 482                 page = pfn_to_page(pfn);
 483                 type = get_page_memtype(page);
 484                 if (type != _PAGE_CACHE_MODE_WB) {
 485                         pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
 486                                 start, end - 1, type, req_type);
 487                         if (new_type)
 488                                 *new_type = type;
 489 
 490                         return -EBUSY;
 491                 }
 492         }
 493 
 494         if (new_type)
 495                 *new_type = req_type;
 496 
 497         for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 498                 page = pfn_to_page(pfn);
 499                 set_page_memtype(page, req_type);
 500         }
 501         return 0;
 502 }
 503 
 504 static int free_ram_pages_type(u64 start, u64 end)
 505 {
 506         struct page *page;
 507         u64 pfn;
 508 
 509         for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 510                 page = pfn_to_page(pfn);
 511                 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
 512         }
 513         return 0;
 514 }
 515 
 516 static u64 sanitize_phys(u64 address)
 517 {
 518         /*
 519          * When changing the memtype for pages containing poison allow
 520          * for a "decoy" virtual address (bit 63 clear) passed to
 521          * set_memory_X(). __pa() on a "decoy" address results in a
 522          * physical address with bit 63 set.
 523          *
 524          * Decoy addresses are not present for 32-bit builds, see
 525          * set_mce_nospec().
 526          */
 527         if (IS_ENABLED(CONFIG_X86_64))
 528                 return address & __PHYSICAL_MASK;
 529         return address;
 530 }
 531 
 532 /*
 533  * req_type typically has one of the:
 534  * - _PAGE_CACHE_MODE_WB
 535  * - _PAGE_CACHE_MODE_WC
 536  * - _PAGE_CACHE_MODE_UC_MINUS
 537  * - _PAGE_CACHE_MODE_UC
 538  * - _PAGE_CACHE_MODE_WT
 539  *
 540  * If new_type is NULL, function will return an error if it cannot reserve the
 541  * region with req_type. If new_type is non-NULL, function will return
 542  * available type in new_type in case of no error. In case of any error
 543  * it will return a negative return value.
 544  */
 545 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
 546                     enum page_cache_mode *new_type)
 547 {
 548         struct memtype *new;
 549         enum page_cache_mode actual_type;
 550         int is_range_ram;
 551         int err = 0;
 552 
 553         start = sanitize_phys(start);
 554         end = sanitize_phys(end);
 555         if (start >= end) {
 556                 WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
 557                                 start, end - 1, cattr_name(req_type));
 558                 return -EINVAL;
 559         }
 560 
 561         if (!pat_enabled()) {
 562                 /* This is identical to page table setting without PAT */
 563                 if (new_type)
 564                         *new_type = req_type;
 565                 return 0;
 566         }
 567 
 568         /* Low ISA region is always mapped WB in page table. No need to track */
 569         if (x86_platform.is_untracked_pat_range(start, end)) {
 570                 if (new_type)
 571                         *new_type = _PAGE_CACHE_MODE_WB;
 572                 return 0;
 573         }
 574 
 575         /*
 576          * Call mtrr_lookup to get the type hint. This is an
 577          * optimization for /dev/mem mmap'ers into WB memory (BIOS
 578          * tools and ACPI tools). Use WB request for WB memory and use
 579          * UC_MINUS otherwise.
 580          */
 581         actual_type = pat_x_mtrr_type(start, end, req_type);
 582 
 583         if (new_type)
 584                 *new_type = actual_type;
 585 
 586         is_range_ram = pat_pagerange_is_ram(start, end);
 587         if (is_range_ram == 1) {
 588 
 589                 err = reserve_ram_pages_type(start, end, req_type, new_type);
 590 
 591                 return err;
 592         } else if (is_range_ram < 0) {
 593                 return -EINVAL;
 594         }
 595 
 596         new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
 597         if (!new)
 598                 return -ENOMEM;
 599 
 600         new->start      = start;
 601         new->end        = end;
 602         new->type       = actual_type;
 603 
 604         spin_lock(&memtype_lock);
 605 
 606         err = rbt_memtype_check_insert(new, new_type);
 607         if (err) {
 608                 pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
 609                         start, end - 1,
 610                         cattr_name(new->type), cattr_name(req_type));
 611                 kfree(new);
 612                 spin_unlock(&memtype_lock);
 613 
 614                 return err;
 615         }
 616 
 617         spin_unlock(&memtype_lock);
 618 
 619         dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
 620                 start, end - 1, cattr_name(new->type), cattr_name(req_type),
 621                 new_type ? cattr_name(*new_type) : "-");
 622 
 623         return err;
 624 }
 625 
 626 int free_memtype(u64 start, u64 end)
 627 {
 628         int err = -EINVAL;
 629         int is_range_ram;
 630         struct memtype *entry;
 631 
 632         if (!pat_enabled())
 633                 return 0;
 634 
 635         start = sanitize_phys(start);
 636         end = sanitize_phys(end);
 637 
 638         /* Low ISA region is always mapped WB. No need to track */
 639         if (x86_platform.is_untracked_pat_range(start, end))
 640                 return 0;
 641 
 642         is_range_ram = pat_pagerange_is_ram(start, end);
 643         if (is_range_ram == 1) {
 644 
 645                 err = free_ram_pages_type(start, end);
 646 
 647                 return err;
 648         } else if (is_range_ram < 0) {
 649                 return -EINVAL;
 650         }
 651 
 652         spin_lock(&memtype_lock);
 653         entry = rbt_memtype_erase(start, end);
 654         spin_unlock(&memtype_lock);
 655 
 656         if (IS_ERR(entry)) {
 657                 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
 658                         current->comm, current->pid, start, end - 1);
 659                 return -EINVAL;
 660         }
 661 
 662         kfree(entry);
 663 
 664         dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
 665 
 666         return 0;
 667 }
 668 
 669 
 670 /**
 671  * lookup_memtype - Looksup the memory type for a physical address
 672  * @paddr: physical address of which memory type needs to be looked up
 673  *
 674  * Only to be called when PAT is enabled
 675  *
 676  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
 677  * or _PAGE_CACHE_MODE_WT.
 678  */
 679 static enum page_cache_mode lookup_memtype(u64 paddr)
 680 {
 681         enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
 682         struct memtype *entry;
 683 
 684         if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
 685                 return rettype;
 686 
 687         if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
 688                 struct page *page;
 689 
 690                 page = pfn_to_page(paddr >> PAGE_SHIFT);
 691                 return get_page_memtype(page);
 692         }
 693 
 694         spin_lock(&memtype_lock);
 695 
 696         entry = rbt_memtype_lookup(paddr);
 697         if (entry != NULL)
 698                 rettype = entry->type;
 699         else
 700                 rettype = _PAGE_CACHE_MODE_UC_MINUS;
 701 
 702         spin_unlock(&memtype_lock);
 703         return rettype;
 704 }
 705 
 706 /**
 707  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
 708  * of @pfn cannot be overridden by UC MTRR memory type.
 709  *
 710  * Only to be called when PAT is enabled.
 711  *
 712  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
 713  * Returns false in other cases.
 714  */
 715 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
 716 {
 717         enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
 718 
 719         return cm == _PAGE_CACHE_MODE_UC ||
 720                cm == _PAGE_CACHE_MODE_UC_MINUS ||
 721                cm == _PAGE_CACHE_MODE_WC;
 722 }
 723 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
 724 
 725 /**
 726  * io_reserve_memtype - Request a memory type mapping for a region of memory
 727  * @start: start (physical address) of the region
 728  * @end: end (physical address) of the region
 729  * @type: A pointer to memtype, with requested type. On success, requested
 730  * or any other compatible type that was available for the region is returned
 731  *
 732  * On success, returns 0
 733  * On failure, returns non-zero
 734  */
 735 int io_reserve_memtype(resource_size_t start, resource_size_t end,
 736                         enum page_cache_mode *type)
 737 {
 738         resource_size_t size = end - start;
 739         enum page_cache_mode req_type = *type;
 740         enum page_cache_mode new_type;
 741         int ret;
 742 
 743         WARN_ON_ONCE(iomem_map_sanity_check(start, size));
 744 
 745         ret = reserve_memtype(start, end, req_type, &new_type);
 746         if (ret)
 747                 goto out_err;
 748 
 749         if (!is_new_memtype_allowed(start, size, req_type, new_type))
 750                 goto out_free;
 751 
 752         if (kernel_map_sync_memtype(start, size, new_type) < 0)
 753                 goto out_free;
 754 
 755         *type = new_type;
 756         return 0;
 757 
 758 out_free:
 759         free_memtype(start, end);
 760         ret = -EBUSY;
 761 out_err:
 762         return ret;
 763 }
 764 
 765 /**
 766  * io_free_memtype - Release a memory type mapping for a region of memory
 767  * @start: start (physical address) of the region
 768  * @end: end (physical address) of the region
 769  */
 770 void io_free_memtype(resource_size_t start, resource_size_t end)
 771 {
 772         free_memtype(start, end);
 773 }
 774 
 775 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
 776 {
 777         enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
 778 
 779         return io_reserve_memtype(start, start + size, &type);
 780 }
 781 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
 782 
 783 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
 784 {
 785         io_free_memtype(start, start + size);
 786 }
 787 EXPORT_SYMBOL(arch_io_free_memtype_wc);
 788 
 789 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 790                                 unsigned long size, pgprot_t vma_prot)
 791 {
 792         if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
 793                 vma_prot = pgprot_decrypted(vma_prot);
 794 
 795         return vma_prot;
 796 }
 797 
 798 #ifdef CONFIG_STRICT_DEVMEM
 799 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
 800 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 801 {
 802         return 1;
 803 }
 804 #else
 805 /* This check is needed to avoid cache aliasing when PAT is enabled */
 806 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 807 {
 808         u64 from = ((u64)pfn) << PAGE_SHIFT;
 809         u64 to = from + size;
 810         u64 cursor = from;
 811 
 812         if (!pat_enabled())
 813                 return 1;
 814 
 815         while (cursor < to) {
 816                 if (!devmem_is_allowed(pfn))
 817                         return 0;
 818                 cursor += PAGE_SIZE;
 819                 pfn++;
 820         }
 821         return 1;
 822 }
 823 #endif /* CONFIG_STRICT_DEVMEM */
 824 
 825 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 826                                 unsigned long size, pgprot_t *vma_prot)
 827 {
 828         enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
 829 
 830         if (!range_is_allowed(pfn, size))
 831                 return 0;
 832 
 833         if (file->f_flags & O_DSYNC)
 834                 pcm = _PAGE_CACHE_MODE_UC_MINUS;
 835 
 836         *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
 837                              cachemode2protval(pcm));
 838         return 1;
 839 }
 840 
 841 /*
 842  * Change the memory type for the physial address range in kernel identity
 843  * mapping space if that range is a part of identity map.
 844  */
 845 int kernel_map_sync_memtype(u64 base, unsigned long size,
 846                             enum page_cache_mode pcm)
 847 {
 848         unsigned long id_sz;
 849 
 850         if (base > __pa(high_memory-1))
 851                 return 0;
 852 
 853         /*
 854          * some areas in the middle of the kernel identity range
 855          * are not mapped, like the PCI space.
 856          */
 857         if (!page_is_ram(base >> PAGE_SHIFT))
 858                 return 0;
 859 
 860         id_sz = (__pa(high_memory-1) <= base + size) ?
 861                                 __pa(high_memory) - base :
 862                                 size;
 863 
 864         if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
 865                 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
 866                         current->comm, current->pid,
 867                         cattr_name(pcm),
 868                         base, (unsigned long long)(base + size-1));
 869                 return -EINVAL;
 870         }
 871         return 0;
 872 }
 873 
 874 /*
 875  * Internal interface to reserve a range of physical memory with prot.
 876  * Reserved non RAM regions only and after successful reserve_memtype,
 877  * this func also keeps identity mapping (if any) in sync with this new prot.
 878  */
 879 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
 880                                 int strict_prot)
 881 {
 882         int is_ram = 0;
 883         int ret;
 884         enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
 885         enum page_cache_mode pcm = want_pcm;
 886 
 887         is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 888 
 889         /*
 890          * reserve_pfn_range() for RAM pages. We do not refcount to keep
 891          * track of number of mappings of RAM pages. We can assert that
 892          * the type requested matches the type of first page in the range.
 893          */
 894         if (is_ram) {
 895                 if (!pat_enabled())
 896                         return 0;
 897 
 898                 pcm = lookup_memtype(paddr);
 899                 if (want_pcm != pcm) {
 900                         pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
 901                                 current->comm, current->pid,
 902                                 cattr_name(want_pcm),
 903                                 (unsigned long long)paddr,
 904                                 (unsigned long long)(paddr + size - 1),
 905                                 cattr_name(pcm));
 906                         *vma_prot = __pgprot((pgprot_val(*vma_prot) &
 907                                              (~_PAGE_CACHE_MASK)) |
 908                                              cachemode2protval(pcm));
 909                 }
 910                 return 0;
 911         }
 912 
 913         ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
 914         if (ret)
 915                 return ret;
 916 
 917         if (pcm != want_pcm) {
 918                 if (strict_prot ||
 919                     !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
 920                         free_memtype(paddr, paddr + size);
 921                         pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
 922                                current->comm, current->pid,
 923                                cattr_name(want_pcm),
 924                                (unsigned long long)paddr,
 925                                (unsigned long long)(paddr + size - 1),
 926                                cattr_name(pcm));
 927                         return -EINVAL;
 928                 }
 929                 /*
 930                  * We allow returning different type than the one requested in
 931                  * non strict case.
 932                  */
 933                 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
 934                                       (~_PAGE_CACHE_MASK)) |
 935                                      cachemode2protval(pcm));
 936         }
 937 
 938         if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
 939                 free_memtype(paddr, paddr + size);
 940                 return -EINVAL;
 941         }
 942         return 0;
 943 }
 944 
 945 /*
 946  * Internal interface to free a range of physical memory.
 947  * Frees non RAM regions only.
 948  */
 949 static void free_pfn_range(u64 paddr, unsigned long size)
 950 {
 951         int is_ram;
 952 
 953         is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 954         if (is_ram == 0)
 955                 free_memtype(paddr, paddr + size);
 956 }
 957 
 958 /*
 959  * track_pfn_copy is called when vma that is covering the pfnmap gets
 960  * copied through copy_page_range().
 961  *
 962  * If the vma has a linear pfn mapping for the entire range, we get the prot
 963  * from pte and reserve the entire vma range with single reserve_pfn_range call.
 964  */
 965 int track_pfn_copy(struct vm_area_struct *vma)
 966 {
 967         resource_size_t paddr;
 968         unsigned long prot;
 969         unsigned long vma_size = vma->vm_end - vma->vm_start;
 970         pgprot_t pgprot;
 971 
 972         if (vma->vm_flags & VM_PAT) {
 973                 /*
 974                  * reserve the whole chunk covered by vma. We need the
 975                  * starting address and protection from pte.
 976                  */
 977                 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 978                         WARN_ON_ONCE(1);
 979                         return -EINVAL;
 980                 }
 981                 pgprot = __pgprot(prot);
 982                 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
 983         }
 984 
 985         return 0;
 986 }
 987 
 988 /*
 989  * prot is passed in as a parameter for the new mapping. If the vma has
 990  * a linear pfn mapping for the entire range, or no vma is provided,
 991  * reserve the entire pfn + size range with single reserve_pfn_range
 992  * call.
 993  */
 994 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 995                     unsigned long pfn, unsigned long addr, unsigned long size)
 996 {
 997         resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
 998         enum page_cache_mode pcm;
 999 
1000         /* reserve the whole chunk starting from paddr */
1001         if (!vma || (addr == vma->vm_start
1002                                 && size == (vma->vm_end - vma->vm_start))) {
1003                 int ret;
1004 
1005                 ret = reserve_pfn_range(paddr, size, prot, 0);
1006                 if (ret == 0 && vma)
1007                         vma->vm_flags |= VM_PAT;
1008                 return ret;
1009         }
1010 
1011         if (!pat_enabled())
1012                 return 0;
1013 
1014         /*
1015          * For anything smaller than the vma size we set prot based on the
1016          * lookup.
1017          */
1018         pcm = lookup_memtype(paddr);
1019 
1020         /* Check memtype for the remaining pages */
1021         while (size > PAGE_SIZE) {
1022                 size -= PAGE_SIZE;
1023                 paddr += PAGE_SIZE;
1024                 if (pcm != lookup_memtype(paddr))
1025                         return -EINVAL;
1026         }
1027 
1028         *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1029                          cachemode2protval(pcm));
1030 
1031         return 0;
1032 }
1033 
1034 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1035 {
1036         enum page_cache_mode pcm;
1037 
1038         if (!pat_enabled())
1039                 return;
1040 
1041         /* Set prot based on lookup */
1042         pcm = lookup_memtype(pfn_t_to_phys(pfn));
1043         *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1044                          cachemode2protval(pcm));
1045 }
1046 
1047 /*
1048  * untrack_pfn is called while unmapping a pfnmap for a region.
1049  * untrack can be called for a specific region indicated by pfn and size or
1050  * can be for the entire vma (in which case pfn, size are zero).
1051  */
1052 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1053                  unsigned long size)
1054 {
1055         resource_size_t paddr;
1056         unsigned long prot;
1057 
1058         if (vma && !(vma->vm_flags & VM_PAT))
1059                 return;
1060 
1061         /* free the chunk starting from pfn or the whole chunk */
1062         paddr = (resource_size_t)pfn << PAGE_SHIFT;
1063         if (!paddr && !size) {
1064                 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1065                         WARN_ON_ONCE(1);
1066                         return;
1067                 }
1068 
1069                 size = vma->vm_end - vma->vm_start;
1070         }
1071         free_pfn_range(paddr, size);
1072         if (vma)
1073                 vma->vm_flags &= ~VM_PAT;
1074 }
1075 
1076 /*
1077  * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1078  * with the old vma after its pfnmap page table has been removed.  The new
1079  * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1080  */
1081 void untrack_pfn_moved(struct vm_area_struct *vma)
1082 {
1083         vma->vm_flags &= ~VM_PAT;
1084 }
1085 
1086 pgprot_t pgprot_writecombine(pgprot_t prot)
1087 {
1088         return __pgprot(pgprot_val(prot) |
1089                                 cachemode2protval(_PAGE_CACHE_MODE_WC));
1090 }
1091 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1092 
1093 pgprot_t pgprot_writethrough(pgprot_t prot)
1094 {
1095         return __pgprot(pgprot_val(prot) |
1096                                 cachemode2protval(_PAGE_CACHE_MODE_WT));
1097 }
1098 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1099 
1100 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1101 
1102 static struct memtype *memtype_get_idx(loff_t pos)
1103 {
1104         struct memtype *print_entry;
1105         int ret;
1106 
1107         print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1108         if (!print_entry)
1109                 return NULL;
1110 
1111         spin_lock(&memtype_lock);
1112         ret = rbt_memtype_copy_nth_element(print_entry, pos);
1113         spin_unlock(&memtype_lock);
1114 
1115         if (!ret) {
1116                 return print_entry;
1117         } else {
1118                 kfree(print_entry);
1119                 return NULL;
1120         }
1121 }
1122 
1123 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1124 {
1125         if (*pos == 0) {
1126                 ++*pos;
1127                 seq_puts(seq, "PAT memtype list:\n");
1128         }
1129 
1130         return memtype_get_idx(*pos);
1131 }
1132 
1133 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1134 {
1135         ++*pos;
1136         return memtype_get_idx(*pos);
1137 }
1138 
1139 static void memtype_seq_stop(struct seq_file *seq, void *v)
1140 {
1141 }
1142 
1143 static int memtype_seq_show(struct seq_file *seq, void *v)
1144 {
1145         struct memtype *print_entry = (struct memtype *)v;
1146 
1147         seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1148                         print_entry->start, print_entry->end);
1149         kfree(print_entry);
1150 
1151         return 0;
1152 }
1153 
1154 static const struct seq_operations memtype_seq_ops = {
1155         .start = memtype_seq_start,
1156         .next  = memtype_seq_next,
1157         .stop  = memtype_seq_stop,
1158         .show  = memtype_seq_show,
1159 };
1160 
1161 static int memtype_seq_open(struct inode *inode, struct file *file)
1162 {
1163         return seq_open(file, &memtype_seq_ops);
1164 }
1165 
1166 static const struct file_operations memtype_fops = {
1167         .open    = memtype_seq_open,
1168         .read    = seq_read,
1169         .llseek  = seq_lseek,
1170         .release = seq_release,
1171 };
1172 
1173 static int __init pat_memtype_list_init(void)
1174 {
1175         if (pat_enabled()) {
1176                 debugfs_create_file("pat_memtype_list", S_IRUSR,
1177                                     arch_debugfs_dir, NULL, &memtype_fops);
1178         }
1179         return 0;
1180 }
1181 
1182 late_initcall(pat_memtype_list_init);
1183 
1184 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */

/* [<][>][^][v][top][bottom][index][help] */