root/arch/x86/mm/mpx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mpx_bd_size_bytes
  2. mpx_bt_size_bytes
  3. mpx_mmap
  4. mpx_insn_decode
  5. mpx_fault_info
  6. mpx_get_bounds_dir
  7. mpx_enable_management
  8. mpx_disable_management
  9. mpx_cmpxchg_bd_entry
  10. allocate_bt
  11. do_mpx_bt_fault
  12. mpx_handle_bd_fault
  13. mpx_resolve_fault
  14. mpx_bd_entry_to_bt_addr
  15. get_user_bd_entry
  16. get_bt_addr
  17. bt_entry_size_bytes
  18. mpx_get_bt_entry_offset_bytes
  19. bd_entry_virt_space
  20. zap_bt_entries_mapping
  21. mpx_get_bd_entry_offset
  22. unmap_entire_bt
  23. try_unmap_single_bt
  24. mpx_unmap_tables
  25. mpx_notify_unmap
  26. mpx_unmapped_area_check

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * mpx.c - Memory Protection eXtensions
   4  *
   5  * Copyright (c) 2014, Intel Corporation.
   6  * Qiaowei Ren <qiaowei.ren@intel.com>
   7  * Dave Hansen <dave.hansen@intel.com>
   8  */
   9 #include <linux/kernel.h>
  10 #include <linux/slab.h>
  11 #include <linux/mm_types.h>
  12 #include <linux/mman.h>
  13 #include <linux/syscalls.h>
  14 #include <linux/sched/sysctl.h>
  15 
  16 #include <asm/insn.h>
  17 #include <asm/insn-eval.h>
  18 #include <asm/mmu_context.h>
  19 #include <asm/mpx.h>
  20 #include <asm/processor.h>
  21 #include <asm/fpu/internal.h>
  22 
  23 #define CREATE_TRACE_POINTS
  24 #include <asm/trace/mpx.h>
  25 
  26 static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
  27 {
  28         if (is_64bit_mm(mm))
  29                 return MPX_BD_SIZE_BYTES_64;
  30         else
  31                 return MPX_BD_SIZE_BYTES_32;
  32 }
  33 
  34 static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
  35 {
  36         if (is_64bit_mm(mm))
  37                 return MPX_BT_SIZE_BYTES_64;
  38         else
  39                 return MPX_BT_SIZE_BYTES_32;
  40 }
  41 
  42 /*
  43  * This is really a simplified "vm_mmap". it only handles MPX
  44  * bounds tables (the bounds directory is user-allocated).
  45  */
  46 static unsigned long mpx_mmap(unsigned long len)
  47 {
  48         struct mm_struct *mm = current->mm;
  49         unsigned long addr, populate;
  50 
  51         /* Only bounds table can be allocated here */
  52         if (len != mpx_bt_size_bytes(mm))
  53                 return -EINVAL;
  54 
  55         down_write(&mm->mmap_sem);
  56         addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
  57                        MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL);
  58         up_write(&mm->mmap_sem);
  59         if (populate)
  60                 mm_populate(addr, populate);
  61 
  62         return addr;
  63 }
  64 
  65 static int mpx_insn_decode(struct insn *insn,
  66                            struct pt_regs *regs)
  67 {
  68         unsigned char buf[MAX_INSN_SIZE];
  69         int x86_64 = !test_thread_flag(TIF_IA32);
  70         int not_copied;
  71         int nr_copied;
  72 
  73         not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
  74         nr_copied = sizeof(buf) - not_copied;
  75         /*
  76          * The decoder _should_ fail nicely if we pass it a short buffer.
  77          * But, let's not depend on that implementation detail.  If we
  78          * did not get anything, just error out now.
  79          */
  80         if (!nr_copied)
  81                 return -EFAULT;
  82         insn_init(insn, buf, nr_copied, x86_64);
  83         insn_get_length(insn);
  84         /*
  85          * copy_from_user() tries to get as many bytes as we could see in
  86          * the largest possible instruction.  If the instruction we are
  87          * after is shorter than that _and_ we attempt to copy from
  88          * something unreadable, we might get a short read.  This is OK
  89          * as long as the read did not stop in the middle of the
  90          * instruction.  Check to see if we got a partial instruction.
  91          */
  92         if (nr_copied < insn->length)
  93                 return -EFAULT;
  94 
  95         insn_get_opcode(insn);
  96         /*
  97          * We only _really_ need to decode bndcl/bndcn/bndcu
  98          * Error out on anything else.
  99          */
 100         if (insn->opcode.bytes[0] != 0x0f)
 101                 goto bad_opcode;
 102         if ((insn->opcode.bytes[1] != 0x1a) &&
 103             (insn->opcode.bytes[1] != 0x1b))
 104                 goto bad_opcode;
 105 
 106         return 0;
 107 bad_opcode:
 108         return -EINVAL;
 109 }
 110 
 111 /*
 112  * If a bounds overflow occurs then a #BR is generated. This
 113  * function decodes MPX instructions to get violation address
 114  * and set this address into extended struct siginfo.
 115  *
 116  * Note that this is not a super precise way of doing this.
 117  * Userspace could have, by the time we get here, written
 118  * anything it wants in to the instructions.  We can not
 119  * trust anything about it.  They might not be valid
 120  * instructions or might encode invalid registers, etc...
 121  */
 122 int mpx_fault_info(struct mpx_fault_info *info, struct pt_regs *regs)
 123 {
 124         const struct mpx_bndreg_state *bndregs;
 125         const struct mpx_bndreg *bndreg;
 126         struct insn insn;
 127         uint8_t bndregno;
 128         int err;
 129 
 130         err = mpx_insn_decode(&insn, regs);
 131         if (err)
 132                 goto err_out;
 133 
 134         /*
 135          * We know at this point that we are only dealing with
 136          * MPX instructions.
 137          */
 138         insn_get_modrm(&insn);
 139         bndregno = X86_MODRM_REG(insn.modrm.value);
 140         if (bndregno > 3) {
 141                 err = -EINVAL;
 142                 goto err_out;
 143         }
 144         /* get bndregs field from current task's xsave area */
 145         bndregs = get_xsave_field_ptr(XFEATURE_BNDREGS);
 146         if (!bndregs) {
 147                 err = -EINVAL;
 148                 goto err_out;
 149         }
 150         /* now go select the individual register in the set of 4 */
 151         bndreg = &bndregs->bndreg[bndregno];
 152 
 153         /*
 154          * The registers are always 64-bit, but the upper 32
 155          * bits are ignored in 32-bit mode.  Also, note that the
 156          * upper bounds are architecturally represented in 1's
 157          * complement form.
 158          *
 159          * The 'unsigned long' cast is because the compiler
 160          * complains when casting from integers to different-size
 161          * pointers.
 162          */
 163         info->lower = (void __user *)(unsigned long)bndreg->lower_bound;
 164         info->upper = (void __user *)(unsigned long)~bndreg->upper_bound;
 165         info->addr  = insn_get_addr_ref(&insn, regs);
 166 
 167         /*
 168          * We were not able to extract an address from the instruction,
 169          * probably because there was something invalid in it.
 170          */
 171         if (info->addr == (void __user *)-1) {
 172                 err = -EINVAL;
 173                 goto err_out;
 174         }
 175         trace_mpx_bounds_register_exception(info->addr, bndreg);
 176         return 0;
 177 err_out:
 178         /* info might be NULL, but kfree() handles that */
 179         return err;
 180 }
 181 
 182 static __user void *mpx_get_bounds_dir(void)
 183 {
 184         const struct mpx_bndcsr *bndcsr;
 185 
 186         if (!cpu_feature_enabled(X86_FEATURE_MPX))
 187                 return MPX_INVALID_BOUNDS_DIR;
 188 
 189         /*
 190          * The bounds directory pointer is stored in a register
 191          * only accessible if we first do an xsave.
 192          */
 193         bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
 194         if (!bndcsr)
 195                 return MPX_INVALID_BOUNDS_DIR;
 196 
 197         /*
 198          * Make sure the register looks valid by checking the
 199          * enable bit.
 200          */
 201         if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
 202                 return MPX_INVALID_BOUNDS_DIR;
 203 
 204         /*
 205          * Lastly, mask off the low bits used for configuration
 206          * flags, and return the address of the bounds table.
 207          */
 208         return (void __user *)(unsigned long)
 209                 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
 210 }
 211 
 212 int mpx_enable_management(void)
 213 {
 214         void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
 215         struct mm_struct *mm = current->mm;
 216         int ret = 0;
 217 
 218         /*
 219          * runtime in the userspace will be responsible for allocation of
 220          * the bounds directory. Then, it will save the base of the bounds
 221          * directory into XSAVE/XRSTOR Save Area and enable MPX through
 222          * XRSTOR instruction.
 223          *
 224          * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
 225          * expected to be relatively expensive. Storing the bounds
 226          * directory here means that we do not have to do xsave in the
 227          * unmap path; we can just use mm->context.bd_addr instead.
 228          */
 229         bd_base = mpx_get_bounds_dir();
 230         down_write(&mm->mmap_sem);
 231 
 232         /* MPX doesn't support addresses above 47 bits yet. */
 233         if (find_vma(mm, DEFAULT_MAP_WINDOW)) {
 234                 pr_warn_once("%s (%d): MPX cannot handle addresses "
 235                                 "above 47-bits. Disabling.",
 236                                 current->comm, current->pid);
 237                 ret = -ENXIO;
 238                 goto out;
 239         }
 240         mm->context.bd_addr = bd_base;
 241         if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR)
 242                 ret = -ENXIO;
 243 out:
 244         up_write(&mm->mmap_sem);
 245         return ret;
 246 }
 247 
 248 int mpx_disable_management(void)
 249 {
 250         struct mm_struct *mm = current->mm;
 251 
 252         if (!cpu_feature_enabled(X86_FEATURE_MPX))
 253                 return -ENXIO;
 254 
 255         down_write(&mm->mmap_sem);
 256         mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR;
 257         up_write(&mm->mmap_sem);
 258         return 0;
 259 }
 260 
 261 static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
 262                 unsigned long *curval,
 263                 unsigned long __user *addr,
 264                 unsigned long old_val, unsigned long new_val)
 265 {
 266         int ret;
 267         /*
 268          * user_atomic_cmpxchg_inatomic() actually uses sizeof()
 269          * the pointer that we pass to it to figure out how much
 270          * data to cmpxchg.  We have to be careful here not to
 271          * pass a pointer to a 64-bit data type when we only want
 272          * a 32-bit copy.
 273          */
 274         if (is_64bit_mm(mm)) {
 275                 ret = user_atomic_cmpxchg_inatomic(curval,
 276                                 addr, old_val, new_val);
 277         } else {
 278                 u32 uninitialized_var(curval_32);
 279                 u32 old_val_32 = old_val;
 280                 u32 new_val_32 = new_val;
 281                 u32 __user *addr_32 = (u32 __user *)addr;
 282 
 283                 ret = user_atomic_cmpxchg_inatomic(&curval_32,
 284                                 addr_32, old_val_32, new_val_32);
 285                 *curval = curval_32;
 286         }
 287         return ret;
 288 }
 289 
 290 /*
 291  * With 32-bit mode, a bounds directory is 4MB, and the size of each
 292  * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
 293  * and the size of each bounds table is 4MB.
 294  */
 295 static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
 296 {
 297         unsigned long expected_old_val = 0;
 298         unsigned long actual_old_val = 0;
 299         unsigned long bt_addr;
 300         unsigned long bd_new_entry;
 301         int ret = 0;
 302 
 303         /*
 304          * Carve the virtual space out of userspace for the new
 305          * bounds table:
 306          */
 307         bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
 308         if (IS_ERR((void *)bt_addr))
 309                 return PTR_ERR((void *)bt_addr);
 310         /*
 311          * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
 312          */
 313         bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 314 
 315         /*
 316          * Go poke the address of the new bounds table in to the
 317          * bounds directory entry out in userspace memory.  Note:
 318          * we may race with another CPU instantiating the same table.
 319          * In that case the cmpxchg will see an unexpected
 320          * 'actual_old_val'.
 321          *
 322          * This can fault, but that's OK because we do not hold
 323          * mmap_sem at this point, unlike some of the other part
 324          * of the MPX code that have to pagefault_disable().
 325          */
 326         ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
 327                                    expected_old_val, bd_new_entry);
 328         if (ret)
 329                 goto out_unmap;
 330 
 331         /*
 332          * The user_atomic_cmpxchg_inatomic() will only return nonzero
 333          * for faults, *not* if the cmpxchg itself fails.  Now we must
 334          * verify that the cmpxchg itself completed successfully.
 335          */
 336         /*
 337          * We expected an empty 'expected_old_val', but instead found
 338          * an apparently valid entry.  Assume we raced with another
 339          * thread to instantiate this table and desclare succecss.
 340          */
 341         if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
 342                 ret = 0;
 343                 goto out_unmap;
 344         }
 345         /*
 346          * We found a non-empty bd_entry but it did not have the
 347          * VALID_FLAG set.  Return an error which will result in
 348          * a SEGV since this probably means that somebody scribbled
 349          * some invalid data in to a bounds table.
 350          */
 351         if (expected_old_val != actual_old_val) {
 352                 ret = -EINVAL;
 353                 goto out_unmap;
 354         }
 355         trace_mpx_new_bounds_table(bt_addr);
 356         return 0;
 357 out_unmap:
 358         vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
 359         return ret;
 360 }
 361 
 362 /*
 363  * When a BNDSTX instruction attempts to save bounds to a bounds
 364  * table, it will first attempt to look up the table in the
 365  * first-level bounds directory.  If it does not find a table in
 366  * the directory, a #BR is generated and we get here in order to
 367  * allocate a new table.
 368  *
 369  * With 32-bit mode, the size of BD is 4MB, and the size of each
 370  * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
 371  * and the size of each bound table is 4MB.
 372  */
 373 static int do_mpx_bt_fault(void)
 374 {
 375         unsigned long bd_entry, bd_base;
 376         const struct mpx_bndcsr *bndcsr;
 377         struct mm_struct *mm = current->mm;
 378 
 379         bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
 380         if (!bndcsr)
 381                 return -EINVAL;
 382         /*
 383          * Mask off the preserve and enable bits
 384          */
 385         bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
 386         /*
 387          * The hardware provides the address of the missing or invalid
 388          * entry via BNDSTATUS, so we don't have to go look it up.
 389          */
 390         bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
 391         /*
 392          * Make sure the directory entry is within where we think
 393          * the directory is.
 394          */
 395         if ((bd_entry < bd_base) ||
 396             (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
 397                 return -EINVAL;
 398 
 399         return allocate_bt(mm, (long __user *)bd_entry);
 400 }
 401 
 402 int mpx_handle_bd_fault(void)
 403 {
 404         /*
 405          * Userspace never asked us to manage the bounds tables,
 406          * so refuse to help.
 407          */
 408         if (!kernel_managing_mpx_tables(current->mm))
 409                 return -EINVAL;
 410 
 411         return do_mpx_bt_fault();
 412 }
 413 
 414 /*
 415  * A thin wrapper around get_user_pages().  Returns 0 if the
 416  * fault was resolved or -errno if not.
 417  */
 418 static int mpx_resolve_fault(long __user *addr, int write)
 419 {
 420         long gup_ret;
 421         int nr_pages = 1;
 422 
 423         gup_ret = get_user_pages((unsigned long)addr, nr_pages,
 424                         write ? FOLL_WRITE : 0, NULL, NULL);
 425         /*
 426          * get_user_pages() returns number of pages gotten.
 427          * 0 means we failed to fault in and get anything,
 428          * probably because 'addr' is bad.
 429          */
 430         if (!gup_ret)
 431                 return -EFAULT;
 432         /* Other error, return it */
 433         if (gup_ret < 0)
 434                 return gup_ret;
 435         /* must have gup'd a page and gup_ret>0, success */
 436         return 0;
 437 }
 438 
 439 static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
 440                                              unsigned long bd_entry)
 441 {
 442         unsigned long bt_addr = bd_entry;
 443         int align_to_bytes;
 444         /*
 445          * Bit 0 in a bt_entry is always the valid bit.
 446          */
 447         bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
 448         /*
 449          * Tables are naturally aligned at 8-byte boundaries
 450          * on 64-bit and 4-byte boundaries on 32-bit.  The
 451          * documentation makes it appear that the low bits
 452          * are ignored by the hardware, so we do the same.
 453          */
 454         if (is_64bit_mm(mm))
 455                 align_to_bytes = 8;
 456         else
 457                 align_to_bytes = 4;
 458         bt_addr &= ~(align_to_bytes-1);
 459         return bt_addr;
 460 }
 461 
 462 /*
 463  * We only want to do a 4-byte get_user() on 32-bit.  Otherwise,
 464  * we might run off the end of the bounds table if we are on
 465  * a 64-bit kernel and try to get 8 bytes.
 466  */
 467 static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
 468                 long __user *bd_entry_ptr)
 469 {
 470         u32 bd_entry_32;
 471         int ret;
 472 
 473         if (is_64bit_mm(mm))
 474                 return get_user(*bd_entry_ret, bd_entry_ptr);
 475 
 476         /*
 477          * Note that get_user() uses the type of the *pointer* to
 478          * establish the size of the get, not the destination.
 479          */
 480         ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
 481         *bd_entry_ret = bd_entry_32;
 482         return ret;
 483 }
 484 
 485 /*
 486  * Get the base of bounds tables pointed by specific bounds
 487  * directory entry.
 488  */
 489 static int get_bt_addr(struct mm_struct *mm,
 490                         long __user *bd_entry_ptr,
 491                         unsigned long *bt_addr_result)
 492 {
 493         int ret;
 494         int valid_bit;
 495         unsigned long bd_entry;
 496         unsigned long bt_addr;
 497 
 498         if (!access_ok((bd_entry_ptr), sizeof(*bd_entry_ptr)))
 499                 return -EFAULT;
 500 
 501         while (1) {
 502                 int need_write = 0;
 503 
 504                 pagefault_disable();
 505                 ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
 506                 pagefault_enable();
 507                 if (!ret)
 508                         break;
 509                 if (ret == -EFAULT)
 510                         ret = mpx_resolve_fault(bd_entry_ptr, need_write);
 511                 /*
 512                  * If we could not resolve the fault, consider it
 513                  * userspace's fault and error out.
 514                  */
 515                 if (ret)
 516                         return ret;
 517         }
 518 
 519         valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
 520         bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
 521 
 522         /*
 523          * When the kernel is managing bounds tables, a bounds directory
 524          * entry will either have a valid address (plus the valid bit)
 525          * *OR* be completely empty. If we see a !valid entry *and* some
 526          * data in the address field, we know something is wrong. This
 527          * -EINVAL return will cause a SIGSEGV.
 528          */
 529         if (!valid_bit && bt_addr)
 530                 return -EINVAL;
 531         /*
 532          * Do we have an completely zeroed bt entry?  That is OK.  It
 533          * just means there was no bounds table for this memory.  Make
 534          * sure to distinguish this from -EINVAL, which will cause
 535          * a SEGV.
 536          */
 537         if (!valid_bit)
 538                 return -ENOENT;
 539 
 540         *bt_addr_result = bt_addr;
 541         return 0;
 542 }
 543 
 544 static inline int bt_entry_size_bytes(struct mm_struct *mm)
 545 {
 546         if (is_64bit_mm(mm))
 547                 return MPX_BT_ENTRY_BYTES_64;
 548         else
 549                 return MPX_BT_ENTRY_BYTES_32;
 550 }
 551 
 552 /*
 553  * Take a virtual address and turns it in to the offset in bytes
 554  * inside of the bounds table where the bounds table entry
 555  * controlling 'addr' can be found.
 556  */
 557 static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
 558                 unsigned long addr)
 559 {
 560         unsigned long bt_table_nr_entries;
 561         unsigned long offset = addr;
 562 
 563         if (is_64bit_mm(mm)) {
 564                 /* Bottom 3 bits are ignored on 64-bit */
 565                 offset >>= 3;
 566                 bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
 567         } else {
 568                 /* Bottom 2 bits are ignored on 32-bit */
 569                 offset >>= 2;
 570                 bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
 571         }
 572         /*
 573          * We know the size of the table in to which we are
 574          * indexing, and we have eliminated all the low bits
 575          * which are ignored for indexing.
 576          *
 577          * Mask out all the high bits which we do not need
 578          * to index in to the table.  Note that the tables
 579          * are always powers of two so this gives us a proper
 580          * mask.
 581          */
 582         offset &= (bt_table_nr_entries-1);
 583         /*
 584          * We now have an entry offset in terms of *entries* in
 585          * the table.  We need to scale it back up to bytes.
 586          */
 587         offset *= bt_entry_size_bytes(mm);
 588         return offset;
 589 }
 590 
 591 /*
 592  * How much virtual address space does a single bounds
 593  * directory entry cover?
 594  *
 595  * Note, we need a long long because 4GB doesn't fit in
 596  * to a long on 32-bit.
 597  */
 598 static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
 599 {
 600         unsigned long long virt_space;
 601         unsigned long long GB = (1ULL << 30);
 602 
 603         /*
 604          * This covers 32-bit emulation as well as 32-bit kernels
 605          * running on 64-bit hardware.
 606          */
 607         if (!is_64bit_mm(mm))
 608                 return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
 609 
 610         /*
 611          * 'x86_virt_bits' returns what the hardware is capable
 612          * of, and returns the full >32-bit address space when
 613          * running 32-bit kernels on 64-bit hardware.
 614          */
 615         virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
 616         return virt_space / MPX_BD_NR_ENTRIES_64;
 617 }
 618 
 619 /*
 620  * Free the backing physical pages of bounds table 'bt_addr'.
 621  * Assume start...end is within that bounds table.
 622  */
 623 static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
 624                 unsigned long bt_addr,
 625                 unsigned long start_mapping, unsigned long end_mapping)
 626 {
 627         struct vm_area_struct *vma;
 628         unsigned long addr, len;
 629         unsigned long start;
 630         unsigned long end;
 631 
 632         /*
 633          * if we 'end' on a boundary, the offset will be 0 which
 634          * is not what we want.  Back it up a byte to get the
 635          * last bt entry.  Then once we have the entry itself,
 636          * move 'end' back up by the table entry size.
 637          */
 638         start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
 639         end   = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
 640         /*
 641          * Move end back up by one entry.  Among other things
 642          * this ensures that it remains page-aligned and does
 643          * not screw up zap_page_range()
 644          */
 645         end += bt_entry_size_bytes(mm);
 646 
 647         /*
 648          * Find the first overlapping vma. If vma->vm_start > start, there
 649          * will be a hole in the bounds table. This -EINVAL return will
 650          * cause a SIGSEGV.
 651          */
 652         vma = find_vma(mm, start);
 653         if (!vma || vma->vm_start > start)
 654                 return -EINVAL;
 655 
 656         /*
 657          * A NUMA policy on a VM_MPX VMA could cause this bounds table to
 658          * be split. So we need to look across the entire 'start -> end'
 659          * range of this bounds table, find all of the VM_MPX VMAs, and
 660          * zap only those.
 661          */
 662         addr = start;
 663         while (vma && vma->vm_start < end) {
 664                 /*
 665                  * We followed a bounds directory entry down
 666                  * here.  If we find a non-MPX VMA, that's bad,
 667                  * so stop immediately and return an error.  This
 668                  * probably results in a SIGSEGV.
 669                  */
 670                 if (!(vma->vm_flags & VM_MPX))
 671                         return -EINVAL;
 672 
 673                 len = min(vma->vm_end, end) - addr;
 674                 zap_page_range(vma, addr, len);
 675                 trace_mpx_unmap_zap(addr, addr+len);
 676 
 677                 vma = vma->vm_next;
 678                 addr = vma->vm_start;
 679         }
 680         return 0;
 681 }
 682 
 683 static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
 684                 unsigned long addr)
 685 {
 686         /*
 687          * There are several ways to derive the bd offsets.  We
 688          * use the following approach here:
 689          * 1. We know the size of the virtual address space
 690          * 2. We know the number of entries in a bounds table
 691          * 3. We know that each entry covers a fixed amount of
 692          *    virtual address space.
 693          * So, we can just divide the virtual address by the
 694          * virtual space used by one entry to determine which
 695          * entry "controls" the given virtual address.
 696          */
 697         if (is_64bit_mm(mm)) {
 698                 int bd_entry_size = 8; /* 64-bit pointer */
 699                 /*
 700                  * Take the 64-bit addressing hole in to account.
 701                  */
 702                 addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
 703                 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 704         } else {
 705                 int bd_entry_size = 4; /* 32-bit pointer */
 706                 /*
 707                  * 32-bit has no hole so this case needs no mask
 708                  */
 709                 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 710         }
 711         /*
 712          * The two return calls above are exact copies.  If we
 713          * pull out a single copy and put it in here, gcc won't
 714          * realize that we're doing a power-of-2 divide and use
 715          * shifts.  It uses a real divide.  If we put them up
 716          * there, it manages to figure it out (gcc 4.8.3).
 717          */
 718 }
 719 
 720 static int unmap_entire_bt(struct mm_struct *mm,
 721                 long __user *bd_entry, unsigned long bt_addr)
 722 {
 723         unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 724         unsigned long uninitialized_var(actual_old_val);
 725         int ret;
 726 
 727         while (1) {
 728                 int need_write = 1;
 729                 unsigned long cleared_bd_entry = 0;
 730 
 731                 pagefault_disable();
 732                 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
 733                                 bd_entry, expected_old_val, cleared_bd_entry);
 734                 pagefault_enable();
 735                 if (!ret)
 736                         break;
 737                 if (ret == -EFAULT)
 738                         ret = mpx_resolve_fault(bd_entry, need_write);
 739                 /*
 740                  * If we could not resolve the fault, consider it
 741                  * userspace's fault and error out.
 742                  */
 743                 if (ret)
 744                         return ret;
 745         }
 746         /*
 747          * The cmpxchg was performed, check the results.
 748          */
 749         if (actual_old_val != expected_old_val) {
 750                 /*
 751                  * Someone else raced with us to unmap the table.
 752                  * That is OK, since we were both trying to do
 753                  * the same thing.  Declare success.
 754                  */
 755                 if (!actual_old_val)
 756                         return 0;
 757                 /*
 758                  * Something messed with the bounds directory
 759                  * entry.  We hold mmap_sem for read or write
 760                  * here, so it could not be a _new_ bounds table
 761                  * that someone just allocated.  Something is
 762                  * wrong, so pass up the error and SIGSEGV.
 763                  */
 764                 return -EINVAL;
 765         }
 766         /*
 767          * Note, we are likely being called under do_munmap() already. To
 768          * avoid recursion, do_munmap() will check whether it comes
 769          * from one bounds table through VM_MPX flag.
 770          */
 771         return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL);
 772 }
 773 
 774 static int try_unmap_single_bt(struct mm_struct *mm,
 775                unsigned long start, unsigned long end)
 776 {
 777         struct vm_area_struct *next;
 778         struct vm_area_struct *prev;
 779         /*
 780          * "bta" == Bounds Table Area: the area controlled by the
 781          * bounds table that we are unmapping.
 782          */
 783         unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
 784         unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
 785         unsigned long uninitialized_var(bt_addr);
 786         void __user *bde_vaddr;
 787         int ret;
 788         /*
 789          * We already unlinked the VMAs from the mm's rbtree so 'start'
 790          * is guaranteed to be in a hole. This gets us the first VMA
 791          * before the hole in to 'prev' and the next VMA after the hole
 792          * in to 'next'.
 793          */
 794         next = find_vma_prev(mm, start, &prev);
 795         /*
 796          * Do not count other MPX bounds table VMAs as neighbors.
 797          * Although theoretically possible, we do not allow bounds
 798          * tables for bounds tables so our heads do not explode.
 799          * If we count them as neighbors here, we may end up with
 800          * lots of tables even though we have no actual table
 801          * entries in use.
 802          */
 803         while (next && (next->vm_flags & VM_MPX))
 804                 next = next->vm_next;
 805         while (prev && (prev->vm_flags & VM_MPX))
 806                 prev = prev->vm_prev;
 807         /*
 808          * We know 'start' and 'end' lie within an area controlled
 809          * by a single bounds table.  See if there are any other
 810          * VMAs controlled by that bounds table.  If there are not
 811          * then we can "expand" the are we are unmapping to possibly
 812          * cover the entire table.
 813          */
 814         next = find_vma_prev(mm, start, &prev);
 815         if ((!prev || prev->vm_end <= bta_start_vaddr) &&
 816             (!next || next->vm_start >= bta_end_vaddr)) {
 817                 /*
 818                  * No neighbor VMAs controlled by same bounds
 819                  * table.  Try to unmap the whole thing
 820                  */
 821                 start = bta_start_vaddr;
 822                 end = bta_end_vaddr;
 823         }
 824 
 825         bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start);
 826         ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
 827         /*
 828          * No bounds table there, so nothing to unmap.
 829          */
 830         if (ret == -ENOENT) {
 831                 ret = 0;
 832                 return 0;
 833         }
 834         if (ret)
 835                 return ret;
 836         /*
 837          * We are unmapping an entire table.  Either because the
 838          * unmap that started this whole process was large enough
 839          * to cover an entire table, or that the unmap was small
 840          * but was the area covered by a bounds table.
 841          */
 842         if ((start == bta_start_vaddr) &&
 843             (end == bta_end_vaddr))
 844                 return unmap_entire_bt(mm, bde_vaddr, bt_addr);
 845         return zap_bt_entries_mapping(mm, bt_addr, start, end);
 846 }
 847 
 848 static int mpx_unmap_tables(struct mm_struct *mm,
 849                 unsigned long start, unsigned long end)
 850 {
 851         unsigned long one_unmap_start;
 852         trace_mpx_unmap_search(start, end);
 853 
 854         one_unmap_start = start;
 855         while (one_unmap_start < end) {
 856                 int ret;
 857                 unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
 858                                                        bd_entry_virt_space(mm));
 859                 unsigned long one_unmap_end = end;
 860                 /*
 861                  * if the end is beyond the current bounds table,
 862                  * move it back so we only deal with a single one
 863                  * at a time
 864                  */
 865                 if (one_unmap_end > next_unmap_start)
 866                         one_unmap_end = next_unmap_start;
 867                 ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
 868                 if (ret)
 869                         return ret;
 870 
 871                 one_unmap_start = next_unmap_start;
 872         }
 873         return 0;
 874 }
 875 
 876 /*
 877  * Free unused bounds tables covered in a virtual address region being
 878  * munmap()ed. Assume end > start.
 879  *
 880  * This function will be called by do_munmap(), and the VMAs covering
 881  * the virtual address region start...end have already been split if
 882  * necessary, and the 'vma' is the first vma in this range (start -> end).
 883  */
 884 void mpx_notify_unmap(struct mm_struct *mm, unsigned long start,
 885                       unsigned long end)
 886 {
 887         struct vm_area_struct *vma;
 888         int ret;
 889 
 890         /*
 891          * Refuse to do anything unless userspace has asked
 892          * the kernel to help manage the bounds tables,
 893          */
 894         if (!kernel_managing_mpx_tables(current->mm))
 895                 return;
 896         /*
 897          * This will look across the entire 'start -> end' range,
 898          * and find all of the non-VM_MPX VMAs.
 899          *
 900          * To avoid recursion, if a VM_MPX vma is found in the range
 901          * (start->end), we will not continue follow-up work. This
 902          * recursion represents having bounds tables for bounds tables,
 903          * which should not occur normally. Being strict about it here
 904          * helps ensure that we do not have an exploitable stack overflow.
 905          */
 906         vma = find_vma(mm, start);
 907         while (vma && vma->vm_start < end) {
 908                 if (vma->vm_flags & VM_MPX)
 909                         return;
 910                 vma = vma->vm_next;
 911         }
 912 
 913         ret = mpx_unmap_tables(mm, start, end);
 914         if (ret)
 915                 force_sig(SIGSEGV);
 916 }
 917 
 918 /* MPX cannot handle addresses above 47 bits yet. */
 919 unsigned long mpx_unmapped_area_check(unsigned long addr, unsigned long len,
 920                 unsigned long flags)
 921 {
 922         if (!kernel_managing_mpx_tables(current->mm))
 923                 return addr;
 924         if (addr + len <= DEFAULT_MAP_WINDOW)
 925                 return addr;
 926         if (flags & MAP_FIXED)
 927                 return -ENOMEM;
 928 
 929         /*
 930          * Requested len is larger than the whole area we're allowed to map in.
 931          * Resetting hinting address wouldn't do much good -- fail early.
 932          */
 933         if (len > DEFAULT_MAP_WINDOW)
 934                 return -ENOMEM;
 935 
 936         /* Look for unmap area within DEFAULT_MAP_WINDOW */
 937         return 0;
 938 }

/* [<][>][^][v][top][bottom][index][help] */