root/arch/x86/crypto/camellia-aesni-avx-asm_64.S

/* [<][>][^][v][top][bottom][index][help] */
   1 /*
   2  * x86_64/AVX/AES-NI assembler implementation of Camellia
   3  *
   4  * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
   5  *
   6  * This program is free software; you can redistribute it and/or modify
   7  * it under the terms of the GNU General Public License as published by
   8  * the Free Software Foundation; either version 2 of the License, or
   9  * (at your option) any later version.
  10  *
  11  */
  12 
  13 /*
  14  * Version licensed under 2-clause BSD License is available at:
  15  *      http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
  16  */
  17 
  18 #include <linux/linkage.h>
  19 #include <asm/frame.h>
  20 #include <asm/nospec-branch.h>
  21 
  22 #define CAMELLIA_TABLE_BYTE_LEN 272
  23 
  24 /* struct camellia_ctx: */
  25 #define key_table 0
  26 #define key_length CAMELLIA_TABLE_BYTE_LEN
  27 
  28 /* register macros */
  29 #define CTX %rdi
  30 
  31 /**********************************************************************
  32   16-way camellia
  33  **********************************************************************/
  34 #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  35         vpand x, mask4bit, tmp0; \
  36         vpandn x, mask4bit, x; \
  37         vpsrld $4, x, x; \
  38         \
  39         vpshufb tmp0, lo_t, tmp0; \
  40         vpshufb x, hi_t, x; \
  41         vpxor tmp0, x, x;
  42 
  43 /*
  44  * IN:
  45  *   x0..x7: byte-sliced AB state
  46  *   mem_cd: register pointer storing CD state
  47  *   key: index for key material
  48  * OUT:
  49  *   x0..x7: new byte-sliced CD state
  50  */
  51 #define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  52                   t7, mem_cd, key) \
  53         /* \
  54          * S-function with AES subbytes \
  55          */ \
  56         vmovdqa .Linv_shift_row, t4; \
  57         vbroadcastss .L0f0f0f0f, t7; \
  58         vmovdqa .Lpre_tf_lo_s1, t0; \
  59         vmovdqa .Lpre_tf_hi_s1, t1; \
  60         \
  61         /* AES inverse shift rows */ \
  62         vpshufb t4, x0, x0; \
  63         vpshufb t4, x7, x7; \
  64         vpshufb t4, x1, x1; \
  65         vpshufb t4, x4, x4; \
  66         vpshufb t4, x2, x2; \
  67         vpshufb t4, x5, x5; \
  68         vpshufb t4, x3, x3; \
  69         vpshufb t4, x6, x6; \
  70         \
  71         /* prefilter sboxes 1, 2 and 3 */ \
  72         vmovdqa .Lpre_tf_lo_s4, t2; \
  73         vmovdqa .Lpre_tf_hi_s4, t3; \
  74         filter_8bit(x0, t0, t1, t7, t6); \
  75         filter_8bit(x7, t0, t1, t7, t6); \
  76         filter_8bit(x1, t0, t1, t7, t6); \
  77         filter_8bit(x4, t0, t1, t7, t6); \
  78         filter_8bit(x2, t0, t1, t7, t6); \
  79         filter_8bit(x5, t0, t1, t7, t6); \
  80         \
  81         /* prefilter sbox 4 */ \
  82         vpxor t4, t4, t4; \
  83         filter_8bit(x3, t2, t3, t7, t6); \
  84         filter_8bit(x6, t2, t3, t7, t6); \
  85         \
  86         /* AES subbytes + AES shift rows */ \
  87         vmovdqa .Lpost_tf_lo_s1, t0; \
  88         vmovdqa .Lpost_tf_hi_s1, t1; \
  89         vaesenclast t4, x0, x0; \
  90         vaesenclast t4, x7, x7; \
  91         vaesenclast t4, x1, x1; \
  92         vaesenclast t4, x4, x4; \
  93         vaesenclast t4, x2, x2; \
  94         vaesenclast t4, x5, x5; \
  95         vaesenclast t4, x3, x3; \
  96         vaesenclast t4, x6, x6; \
  97         \
  98         /* postfilter sboxes 1 and 4 */ \
  99         vmovdqa .Lpost_tf_lo_s3, t2; \
 100         vmovdqa .Lpost_tf_hi_s3, t3; \
 101         filter_8bit(x0, t0, t1, t7, t6); \
 102         filter_8bit(x7, t0, t1, t7, t6); \
 103         filter_8bit(x3, t0, t1, t7, t6); \
 104         filter_8bit(x6, t0, t1, t7, t6); \
 105         \
 106         /* postfilter sbox 3 */ \
 107         vmovdqa .Lpost_tf_lo_s2, t4; \
 108         vmovdqa .Lpost_tf_hi_s2, t5; \
 109         filter_8bit(x2, t2, t3, t7, t6); \
 110         filter_8bit(x5, t2, t3, t7, t6); \
 111         \
 112         vpxor t6, t6, t6; \
 113         vmovq key, t0; \
 114         \
 115         /* postfilter sbox 2 */ \
 116         filter_8bit(x1, t4, t5, t7, t2); \
 117         filter_8bit(x4, t4, t5, t7, t2); \
 118         \
 119         vpsrldq $5, t0, t5; \
 120         vpsrldq $1, t0, t1; \
 121         vpsrldq $2, t0, t2; \
 122         vpsrldq $3, t0, t3; \
 123         vpsrldq $4, t0, t4; \
 124         vpshufb t6, t0, t0; \
 125         vpshufb t6, t1, t1; \
 126         vpshufb t6, t2, t2; \
 127         vpshufb t6, t3, t3; \
 128         vpshufb t6, t4, t4; \
 129         vpsrldq $2, t5, t7; \
 130         vpshufb t6, t7, t7; \
 131         \
 132         /* \
 133          * P-function \
 134          */ \
 135         vpxor x5, x0, x0; \
 136         vpxor x6, x1, x1; \
 137         vpxor x7, x2, x2; \
 138         vpxor x4, x3, x3; \
 139         \
 140         vpxor x2, x4, x4; \
 141         vpxor x3, x5, x5; \
 142         vpxor x0, x6, x6; \
 143         vpxor x1, x7, x7; \
 144         \
 145         vpxor x7, x0, x0; \
 146         vpxor x4, x1, x1; \
 147         vpxor x5, x2, x2; \
 148         vpxor x6, x3, x3; \
 149         \
 150         vpxor x3, x4, x4; \
 151         vpxor x0, x5, x5; \
 152         vpxor x1, x6, x6; \
 153         vpxor x2, x7, x7; /* note: high and low parts swapped */ \
 154         \
 155         /* \
 156          * Add key material and result to CD (x becomes new CD) \
 157          */ \
 158         \
 159         vpxor t3, x4, x4; \
 160         vpxor 0 * 16(mem_cd), x4, x4; \
 161         \
 162         vpxor t2, x5, x5; \
 163         vpxor 1 * 16(mem_cd), x5, x5; \
 164         \
 165         vpsrldq $1, t5, t3; \
 166         vpshufb t6, t5, t5; \
 167         vpshufb t6, t3, t6; \
 168         \
 169         vpxor t1, x6, x6; \
 170         vpxor 2 * 16(mem_cd), x6, x6; \
 171         \
 172         vpxor t0, x7, x7; \
 173         vpxor 3 * 16(mem_cd), x7, x7; \
 174         \
 175         vpxor t7, x0, x0; \
 176         vpxor 4 * 16(mem_cd), x0, x0; \
 177         \
 178         vpxor t6, x1, x1; \
 179         vpxor 5 * 16(mem_cd), x1, x1; \
 180         \
 181         vpxor t5, x2, x2; \
 182         vpxor 6 * 16(mem_cd), x2, x2; \
 183         \
 184         vpxor t4, x3, x3; \
 185         vpxor 7 * 16(mem_cd), x3, x3;
 186 
 187 /*
 188  * Size optimization... with inlined roundsm16, binary would be over 5 times
 189  * larger and would only be 0.5% faster (on sandy-bridge).
 190  */
 191 .align 8
 192 roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
 193         roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 194                   %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
 195                   %rcx, (%r9));
 196         ret;
 197 ENDPROC(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 198 
 199 .align 8
 200 roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
 201         roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
 202                   %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
 203                   %rax, (%r9));
 204         ret;
 205 ENDPROC(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 206 
 207 /*
 208  * IN/OUT:
 209  *  x0..x7: byte-sliced AB state preloaded
 210  *  mem_ab: byte-sliced AB state in memory
 211  *  mem_cb: byte-sliced CD state in memory
 212  */
 213 #define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 214                       y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
 215         leaq (key_table + (i) * 8)(CTX), %r9; \
 216         call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
 217         \
 218         vmovdqu x4, 0 * 16(mem_cd); \
 219         vmovdqu x5, 1 * 16(mem_cd); \
 220         vmovdqu x6, 2 * 16(mem_cd); \
 221         vmovdqu x7, 3 * 16(mem_cd); \
 222         vmovdqu x0, 4 * 16(mem_cd); \
 223         vmovdqu x1, 5 * 16(mem_cd); \
 224         vmovdqu x2, 6 * 16(mem_cd); \
 225         vmovdqu x3, 7 * 16(mem_cd); \
 226         \
 227         leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
 228         call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
 229         \
 230         store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
 231 
 232 #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
 233 
 234 #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
 235         /* Store new AB state */ \
 236         vmovdqu x0, 0 * 16(mem_ab); \
 237         vmovdqu x1, 1 * 16(mem_ab); \
 238         vmovdqu x2, 2 * 16(mem_ab); \
 239         vmovdqu x3, 3 * 16(mem_ab); \
 240         vmovdqu x4, 4 * 16(mem_ab); \
 241         vmovdqu x5, 5 * 16(mem_ab); \
 242         vmovdqu x6, 6 * 16(mem_ab); \
 243         vmovdqu x7, 7 * 16(mem_ab);
 244 
 245 #define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 246                       y6, y7, mem_ab, mem_cd, i) \
 247         two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 248                       y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
 249         two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 250                       y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
 251         two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 252                       y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
 253 
 254 #define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 255                       y6, y7, mem_ab, mem_cd, i) \
 256         two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 257                       y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
 258         two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 259                       y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
 260         two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 261                       y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
 262 
 263 /*
 264  * IN:
 265  *  v0..3: byte-sliced 32-bit integers
 266  * OUT:
 267  *  v0..3: (IN <<< 1)
 268  */
 269 #define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
 270         vpcmpgtb v0, zero, t0; \
 271         vpaddb v0, v0, v0; \
 272         vpabsb t0, t0; \
 273         \
 274         vpcmpgtb v1, zero, t1; \
 275         vpaddb v1, v1, v1; \
 276         vpabsb t1, t1; \
 277         \
 278         vpcmpgtb v2, zero, t2; \
 279         vpaddb v2, v2, v2; \
 280         vpabsb t2, t2; \
 281         \
 282         vpor t0, v1, v1; \
 283         \
 284         vpcmpgtb v3, zero, t0; \
 285         vpaddb v3, v3, v3; \
 286         vpabsb t0, t0; \
 287         \
 288         vpor t1, v2, v2; \
 289         vpor t2, v3, v3; \
 290         vpor t0, v0, v0;
 291 
 292 /*
 293  * IN:
 294  *   r: byte-sliced AB state in memory
 295  *   l: byte-sliced CD state in memory
 296  * OUT:
 297  *   x0..x7: new byte-sliced CD state
 298  */
 299 #define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
 300               tt1, tt2, tt3, kll, klr, krl, krr) \
 301         /* \
 302          * t0 = kll; \
 303          * t0 &= ll; \
 304          * lr ^= rol32(t0, 1); \
 305          */ \
 306         vpxor tt0, tt0, tt0; \
 307         vmovd kll, t0; \
 308         vpshufb tt0, t0, t3; \
 309         vpsrldq $1, t0, t0; \
 310         vpshufb tt0, t0, t2; \
 311         vpsrldq $1, t0, t0; \
 312         vpshufb tt0, t0, t1; \
 313         vpsrldq $1, t0, t0; \
 314         vpshufb tt0, t0, t0; \
 315         \
 316         vpand l0, t0, t0; \
 317         vpand l1, t1, t1; \
 318         vpand l2, t2, t2; \
 319         vpand l3, t3, t3; \
 320         \
 321         rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 322         \
 323         vpxor l4, t0, l4; \
 324         vmovdqu l4, 4 * 16(l); \
 325         vpxor l5, t1, l5; \
 326         vmovdqu l5, 5 * 16(l); \
 327         vpxor l6, t2, l6; \
 328         vmovdqu l6, 6 * 16(l); \
 329         vpxor l7, t3, l7; \
 330         vmovdqu l7, 7 * 16(l); \
 331         \
 332         /* \
 333          * t2 = krr; \
 334          * t2 |= rr; \
 335          * rl ^= t2; \
 336          */ \
 337         \
 338         vmovd krr, t0; \
 339         vpshufb tt0, t0, t3; \
 340         vpsrldq $1, t0, t0; \
 341         vpshufb tt0, t0, t2; \
 342         vpsrldq $1, t0, t0; \
 343         vpshufb tt0, t0, t1; \
 344         vpsrldq $1, t0, t0; \
 345         vpshufb tt0, t0, t0; \
 346         \
 347         vpor 4 * 16(r), t0, t0; \
 348         vpor 5 * 16(r), t1, t1; \
 349         vpor 6 * 16(r), t2, t2; \
 350         vpor 7 * 16(r), t3, t3; \
 351         \
 352         vpxor 0 * 16(r), t0, t0; \
 353         vpxor 1 * 16(r), t1, t1; \
 354         vpxor 2 * 16(r), t2, t2; \
 355         vpxor 3 * 16(r), t3, t3; \
 356         vmovdqu t0, 0 * 16(r); \
 357         vmovdqu t1, 1 * 16(r); \
 358         vmovdqu t2, 2 * 16(r); \
 359         vmovdqu t3, 3 * 16(r); \
 360         \
 361         /* \
 362          * t2 = krl; \
 363          * t2 &= rl; \
 364          * rr ^= rol32(t2, 1); \
 365          */ \
 366         vmovd krl, t0; \
 367         vpshufb tt0, t0, t3; \
 368         vpsrldq $1, t0, t0; \
 369         vpshufb tt0, t0, t2; \
 370         vpsrldq $1, t0, t0; \
 371         vpshufb tt0, t0, t1; \
 372         vpsrldq $1, t0, t0; \
 373         vpshufb tt0, t0, t0; \
 374         \
 375         vpand 0 * 16(r), t0, t0; \
 376         vpand 1 * 16(r), t1, t1; \
 377         vpand 2 * 16(r), t2, t2; \
 378         vpand 3 * 16(r), t3, t3; \
 379         \
 380         rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 381         \
 382         vpxor 4 * 16(r), t0, t0; \
 383         vpxor 5 * 16(r), t1, t1; \
 384         vpxor 6 * 16(r), t2, t2; \
 385         vpxor 7 * 16(r), t3, t3; \
 386         vmovdqu t0, 4 * 16(r); \
 387         vmovdqu t1, 5 * 16(r); \
 388         vmovdqu t2, 6 * 16(r); \
 389         vmovdqu t3, 7 * 16(r); \
 390         \
 391         /* \
 392          * t0 = klr; \
 393          * t0 |= lr; \
 394          * ll ^= t0; \
 395          */ \
 396         \
 397         vmovd klr, t0; \
 398         vpshufb tt0, t0, t3; \
 399         vpsrldq $1, t0, t0; \
 400         vpshufb tt0, t0, t2; \
 401         vpsrldq $1, t0, t0; \
 402         vpshufb tt0, t0, t1; \
 403         vpsrldq $1, t0, t0; \
 404         vpshufb tt0, t0, t0; \
 405         \
 406         vpor l4, t0, t0; \
 407         vpor l5, t1, t1; \
 408         vpor l6, t2, t2; \
 409         vpor l7, t3, t3; \
 410         \
 411         vpxor l0, t0, l0; \
 412         vmovdqu l0, 0 * 16(l); \
 413         vpxor l1, t1, l1; \
 414         vmovdqu l1, 1 * 16(l); \
 415         vpxor l2, t2, l2; \
 416         vmovdqu l2, 2 * 16(l); \
 417         vpxor l3, t3, l3; \
 418         vmovdqu l3, 3 * 16(l);
 419 
 420 #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
 421         vpunpckhdq x1, x0, t2; \
 422         vpunpckldq x1, x0, x0; \
 423         \
 424         vpunpckldq x3, x2, t1; \
 425         vpunpckhdq x3, x2, x2; \
 426         \
 427         vpunpckhqdq t1, x0, x1; \
 428         vpunpcklqdq t1, x0, x0; \
 429         \
 430         vpunpckhqdq x2, t2, x3; \
 431         vpunpcklqdq x2, t2, x2;
 432 
 433 #define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
 434                          b3, c3, d3, st0, st1) \
 435         vmovdqu d2, st0; \
 436         vmovdqu d3, st1; \
 437         transpose_4x4(a0, a1, a2, a3, d2, d3); \
 438         transpose_4x4(b0, b1, b2, b3, d2, d3); \
 439         vmovdqu st0, d2; \
 440         vmovdqu st1, d3; \
 441         \
 442         vmovdqu a0, st0; \
 443         vmovdqu a1, st1; \
 444         transpose_4x4(c0, c1, c2, c3, a0, a1); \
 445         transpose_4x4(d0, d1, d2, d3, a0, a1); \
 446         \
 447         vmovdqu .Lshufb_16x16b, a0; \
 448         vmovdqu st1, a1; \
 449         vpshufb a0, a2, a2; \
 450         vpshufb a0, a3, a3; \
 451         vpshufb a0, b0, b0; \
 452         vpshufb a0, b1, b1; \
 453         vpshufb a0, b2, b2; \
 454         vpshufb a0, b3, b3; \
 455         vpshufb a0, a1, a1; \
 456         vpshufb a0, c0, c0; \
 457         vpshufb a0, c1, c1; \
 458         vpshufb a0, c2, c2; \
 459         vpshufb a0, c3, c3; \
 460         vpshufb a0, d0, d0; \
 461         vpshufb a0, d1, d1; \
 462         vpshufb a0, d2, d2; \
 463         vpshufb a0, d3, d3; \
 464         vmovdqu d3, st1; \
 465         vmovdqu st0, d3; \
 466         vpshufb a0, d3, a0; \
 467         vmovdqu d2, st0; \
 468         \
 469         transpose_4x4(a0, b0, c0, d0, d2, d3); \
 470         transpose_4x4(a1, b1, c1, d1, d2, d3); \
 471         vmovdqu st0, d2; \
 472         vmovdqu st1, d3; \
 473         \
 474         vmovdqu b0, st0; \
 475         vmovdqu b1, st1; \
 476         transpose_4x4(a2, b2, c2, d2, b0, b1); \
 477         transpose_4x4(a3, b3, c3, d3, b0, b1); \
 478         vmovdqu st0, b0; \
 479         vmovdqu st1, b1; \
 480         /* does not adjust output bytes inside vectors */
 481 
 482 /* load blocks to registers and apply pre-whitening */
 483 #define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 484                      y6, y7, rio, key) \
 485         vmovq key, x0; \
 486         vpshufb .Lpack_bswap, x0, x0; \
 487         \
 488         vpxor 0 * 16(rio), x0, y7; \
 489         vpxor 1 * 16(rio), x0, y6; \
 490         vpxor 2 * 16(rio), x0, y5; \
 491         vpxor 3 * 16(rio), x0, y4; \
 492         vpxor 4 * 16(rio), x0, y3; \
 493         vpxor 5 * 16(rio), x0, y2; \
 494         vpxor 6 * 16(rio), x0, y1; \
 495         vpxor 7 * 16(rio), x0, y0; \
 496         vpxor 8 * 16(rio), x0, x7; \
 497         vpxor 9 * 16(rio), x0, x6; \
 498         vpxor 10 * 16(rio), x0, x5; \
 499         vpxor 11 * 16(rio), x0, x4; \
 500         vpxor 12 * 16(rio), x0, x3; \
 501         vpxor 13 * 16(rio), x0, x2; \
 502         vpxor 14 * 16(rio), x0, x1; \
 503         vpxor 15 * 16(rio), x0, x0;
 504 
 505 /* byteslice pre-whitened blocks and store to temporary memory */
 506 #define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 507                       y6, y7, mem_ab, mem_cd) \
 508         byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
 509                          y5, y6, y7, (mem_ab), (mem_cd)); \
 510         \
 511         vmovdqu x0, 0 * 16(mem_ab); \
 512         vmovdqu x1, 1 * 16(mem_ab); \
 513         vmovdqu x2, 2 * 16(mem_ab); \
 514         vmovdqu x3, 3 * 16(mem_ab); \
 515         vmovdqu x4, 4 * 16(mem_ab); \
 516         vmovdqu x5, 5 * 16(mem_ab); \
 517         vmovdqu x6, 6 * 16(mem_ab); \
 518         vmovdqu x7, 7 * 16(mem_ab); \
 519         vmovdqu y0, 0 * 16(mem_cd); \
 520         vmovdqu y1, 1 * 16(mem_cd); \
 521         vmovdqu y2, 2 * 16(mem_cd); \
 522         vmovdqu y3, 3 * 16(mem_cd); \
 523         vmovdqu y4, 4 * 16(mem_cd); \
 524         vmovdqu y5, 5 * 16(mem_cd); \
 525         vmovdqu y6, 6 * 16(mem_cd); \
 526         vmovdqu y7, 7 * 16(mem_cd);
 527 
 528 /* de-byteslice, apply post-whitening and store blocks */
 529 #define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
 530                     y5, y6, y7, key, stack_tmp0, stack_tmp1) \
 531         byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
 532                          y7, x3, x7, stack_tmp0, stack_tmp1); \
 533         \
 534         vmovdqu x0, stack_tmp0; \
 535         \
 536         vmovq key, x0; \
 537         vpshufb .Lpack_bswap, x0, x0; \
 538         \
 539         vpxor x0, y7, y7; \
 540         vpxor x0, y6, y6; \
 541         vpxor x0, y5, y5; \
 542         vpxor x0, y4, y4; \
 543         vpxor x0, y3, y3; \
 544         vpxor x0, y2, y2; \
 545         vpxor x0, y1, y1; \
 546         vpxor x0, y0, y0; \
 547         vpxor x0, x7, x7; \
 548         vpxor x0, x6, x6; \
 549         vpxor x0, x5, x5; \
 550         vpxor x0, x4, x4; \
 551         vpxor x0, x3, x3; \
 552         vpxor x0, x2, x2; \
 553         vpxor x0, x1, x1; \
 554         vpxor stack_tmp0, x0, x0;
 555 
 556 #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 557                      y6, y7, rio) \
 558         vmovdqu x0, 0 * 16(rio); \
 559         vmovdqu x1, 1 * 16(rio); \
 560         vmovdqu x2, 2 * 16(rio); \
 561         vmovdqu x3, 3 * 16(rio); \
 562         vmovdqu x4, 4 * 16(rio); \
 563         vmovdqu x5, 5 * 16(rio); \
 564         vmovdqu x6, 6 * 16(rio); \
 565         vmovdqu x7, 7 * 16(rio); \
 566         vmovdqu y0, 8 * 16(rio); \
 567         vmovdqu y1, 9 * 16(rio); \
 568         vmovdqu y2, 10 * 16(rio); \
 569         vmovdqu y3, 11 * 16(rio); \
 570         vmovdqu y4, 12 * 16(rio); \
 571         vmovdqu y5, 13 * 16(rio); \
 572         vmovdqu y6, 14 * 16(rio); \
 573         vmovdqu y7, 15 * 16(rio);
 574 
 575 
 576 /* NB: section is mergeable, all elements must be aligned 16-byte blocks */
 577 .section        .rodata.cst16, "aM", @progbits, 16
 578 .align 16
 579 
 580 #define SHUFB_BYTES(idx) \
 581         0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
 582 
 583 .Lshufb_16x16b:
 584         .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
 585 
 586 .Lpack_bswap:
 587         .long 0x00010203
 588         .long 0x04050607
 589         .long 0x80808080
 590         .long 0x80808080
 591 
 592 /* For CTR-mode IV byteswap */
 593 .Lbswap128_mask:
 594         .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
 595 
 596 /* For XTS mode IV generation */
 597 .Lxts_gf128mul_and_shl1_mask:
 598         .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
 599 
 600 /*
 601  * pre-SubByte transform
 602  *
 603  * pre-lookup for sbox1, sbox2, sbox3:
 604  *   swap_bitendianness(
 605  *       isom_map_camellia_to_aes(
 606  *           camellia_f(
 607  *               swap_bitendianess(in)
 608  *           )
 609  *       )
 610  *   )
 611  *
 612  * (note: '⊕ 0xc5' inside camellia_f())
 613  */
 614 .Lpre_tf_lo_s1:
 615         .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
 616         .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
 617 .Lpre_tf_hi_s1:
 618         .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
 619         .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
 620 
 621 /*
 622  * pre-SubByte transform
 623  *
 624  * pre-lookup for sbox4:
 625  *   swap_bitendianness(
 626  *       isom_map_camellia_to_aes(
 627  *           camellia_f(
 628  *               swap_bitendianess(in <<< 1)
 629  *           )
 630  *       )
 631  *   )
 632  *
 633  * (note: '⊕ 0xc5' inside camellia_f())
 634  */
 635 .Lpre_tf_lo_s4:
 636         .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
 637         .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
 638 .Lpre_tf_hi_s4:
 639         .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
 640         .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
 641 
 642 /*
 643  * post-SubByte transform
 644  *
 645  * post-lookup for sbox1, sbox4:
 646  *  swap_bitendianness(
 647  *      camellia_h(
 648  *          isom_map_aes_to_camellia(
 649  *              swap_bitendianness(
 650  *                  aes_inverse_affine_transform(in)
 651  *              )
 652  *          )
 653  *      )
 654  *  )
 655  *
 656  * (note: '⊕ 0x6e' inside camellia_h())
 657  */
 658 .Lpost_tf_lo_s1:
 659         .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
 660         .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
 661 .Lpost_tf_hi_s1:
 662         .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
 663         .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
 664 
 665 /*
 666  * post-SubByte transform
 667  *
 668  * post-lookup for sbox2:
 669  *  swap_bitendianness(
 670  *      camellia_h(
 671  *          isom_map_aes_to_camellia(
 672  *              swap_bitendianness(
 673  *                  aes_inverse_affine_transform(in)
 674  *              )
 675  *          )
 676  *      )
 677  *  ) <<< 1
 678  *
 679  * (note: '⊕ 0x6e' inside camellia_h())
 680  */
 681 .Lpost_tf_lo_s2:
 682         .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
 683         .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
 684 .Lpost_tf_hi_s2:
 685         .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
 686         .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
 687 
 688 /*
 689  * post-SubByte transform
 690  *
 691  * post-lookup for sbox3:
 692  *  swap_bitendianness(
 693  *      camellia_h(
 694  *          isom_map_aes_to_camellia(
 695  *              swap_bitendianness(
 696  *                  aes_inverse_affine_transform(in)
 697  *              )
 698  *          )
 699  *      )
 700  *  ) >>> 1
 701  *
 702  * (note: '⊕ 0x6e' inside camellia_h())
 703  */
 704 .Lpost_tf_lo_s3:
 705         .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
 706         .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
 707 .Lpost_tf_hi_s3:
 708         .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
 709         .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
 710 
 711 /* For isolating SubBytes from AESENCLAST, inverse shift row */
 712 .Linv_shift_row:
 713         .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
 714         .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
 715 
 716 /* 4-bit mask */
 717 .section        .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
 718 .align 4
 719 .L0f0f0f0f:
 720         .long 0x0f0f0f0f
 721 
 722 .text
 723 
 724 .align 8
 725 __camellia_enc_blk16:
 726         /* input:
 727          *      %rdi: ctx, CTX
 728          *      %rax: temporary storage, 256 bytes
 729          *      %xmm0..%xmm15: 16 plaintext blocks
 730          * output:
 731          *      %xmm0..%xmm15: 16 encrypted blocks, order swapped:
 732          *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 733          */
 734         FRAME_BEGIN
 735 
 736         leaq 8 * 16(%rax), %rcx;
 737 
 738         inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 739                       %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 740                       %xmm15, %rax, %rcx);
 741 
 742         enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 743                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 744                      %xmm15, %rax, %rcx, 0);
 745 
 746         fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 747               %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 748               %xmm15,
 749               ((key_table + (8) * 8) + 0)(CTX),
 750               ((key_table + (8) * 8) + 4)(CTX),
 751               ((key_table + (8) * 8) + 8)(CTX),
 752               ((key_table + (8) * 8) + 12)(CTX));
 753 
 754         enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 755                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 756                      %xmm15, %rax, %rcx, 8);
 757 
 758         fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 759               %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 760               %xmm15,
 761               ((key_table + (16) * 8) + 0)(CTX),
 762               ((key_table + (16) * 8) + 4)(CTX),
 763               ((key_table + (16) * 8) + 8)(CTX),
 764               ((key_table + (16) * 8) + 12)(CTX));
 765 
 766         enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 767                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 768                      %xmm15, %rax, %rcx, 16);
 769 
 770         movl $24, %r8d;
 771         cmpl $16, key_length(CTX);
 772         jne .Lenc_max32;
 773 
 774 .Lenc_done:
 775         /* load CD for output */
 776         vmovdqu 0 * 16(%rcx), %xmm8;
 777         vmovdqu 1 * 16(%rcx), %xmm9;
 778         vmovdqu 2 * 16(%rcx), %xmm10;
 779         vmovdqu 3 * 16(%rcx), %xmm11;
 780         vmovdqu 4 * 16(%rcx), %xmm12;
 781         vmovdqu 5 * 16(%rcx), %xmm13;
 782         vmovdqu 6 * 16(%rcx), %xmm14;
 783         vmovdqu 7 * 16(%rcx), %xmm15;
 784 
 785         outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 786                     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 787                     %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
 788 
 789         FRAME_END
 790         ret;
 791 
 792 .align 8
 793 .Lenc_max32:
 794         movl $32, %r8d;
 795 
 796         fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 797               %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 798               %xmm15,
 799               ((key_table + (24) * 8) + 0)(CTX),
 800               ((key_table + (24) * 8) + 4)(CTX),
 801               ((key_table + (24) * 8) + 8)(CTX),
 802               ((key_table + (24) * 8) + 12)(CTX));
 803 
 804         enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 805                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 806                      %xmm15, %rax, %rcx, 24);
 807 
 808         jmp .Lenc_done;
 809 ENDPROC(__camellia_enc_blk16)
 810 
 811 .align 8
 812 __camellia_dec_blk16:
 813         /* input:
 814          *      %rdi: ctx, CTX
 815          *      %rax: temporary storage, 256 bytes
 816          *      %r8d: 24 for 16 byte key, 32 for larger
 817          *      %xmm0..%xmm15: 16 encrypted blocks
 818          * output:
 819          *      %xmm0..%xmm15: 16 plaintext blocks, order swapped:
 820          *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 821          */
 822         FRAME_BEGIN
 823 
 824         leaq 8 * 16(%rax), %rcx;
 825 
 826         inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 827                       %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 828                       %xmm15, %rax, %rcx);
 829 
 830         cmpl $32, %r8d;
 831         je .Ldec_max32;
 832 
 833 .Ldec_max24:
 834         dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 835                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 836                      %xmm15, %rax, %rcx, 16);
 837 
 838         fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 839               %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 840               %xmm15,
 841               ((key_table + (16) * 8) + 8)(CTX),
 842               ((key_table + (16) * 8) + 12)(CTX),
 843               ((key_table + (16) * 8) + 0)(CTX),
 844               ((key_table + (16) * 8) + 4)(CTX));
 845 
 846         dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 847                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 848                      %xmm15, %rax, %rcx, 8);
 849 
 850         fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 851               %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 852               %xmm15,
 853               ((key_table + (8) * 8) + 8)(CTX),
 854               ((key_table + (8) * 8) + 12)(CTX),
 855               ((key_table + (8) * 8) + 0)(CTX),
 856               ((key_table + (8) * 8) + 4)(CTX));
 857 
 858         dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 859                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 860                      %xmm15, %rax, %rcx, 0);
 861 
 862         /* load CD for output */
 863         vmovdqu 0 * 16(%rcx), %xmm8;
 864         vmovdqu 1 * 16(%rcx), %xmm9;
 865         vmovdqu 2 * 16(%rcx), %xmm10;
 866         vmovdqu 3 * 16(%rcx), %xmm11;
 867         vmovdqu 4 * 16(%rcx), %xmm12;
 868         vmovdqu 5 * 16(%rcx), %xmm13;
 869         vmovdqu 6 * 16(%rcx), %xmm14;
 870         vmovdqu 7 * 16(%rcx), %xmm15;
 871 
 872         outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 873                     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 874                     %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
 875 
 876         FRAME_END
 877         ret;
 878 
 879 .align 8
 880 .Ldec_max32:
 881         dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 882                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 883                      %xmm15, %rax, %rcx, 24);
 884 
 885         fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 886               %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 887               %xmm15,
 888               ((key_table + (24) * 8) + 8)(CTX),
 889               ((key_table + (24) * 8) + 12)(CTX),
 890               ((key_table + (24) * 8) + 0)(CTX),
 891               ((key_table + (24) * 8) + 4)(CTX));
 892 
 893         jmp .Ldec_max24;
 894 ENDPROC(__camellia_dec_blk16)
 895 
 896 ENTRY(camellia_ecb_enc_16way)
 897         /* input:
 898          *      %rdi: ctx, CTX
 899          *      %rsi: dst (16 blocks)
 900          *      %rdx: src (16 blocks)
 901          */
 902          FRAME_BEGIN
 903 
 904         inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 905                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 906                      %xmm15, %rdx, (key_table)(CTX));
 907 
 908         /* now dst can be used as temporary buffer (even in src == dst case) */
 909         movq    %rsi, %rax;
 910 
 911         call __camellia_enc_blk16;
 912 
 913         write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
 914                      %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
 915                      %xmm8, %rsi);
 916 
 917         FRAME_END
 918         ret;
 919 ENDPROC(camellia_ecb_enc_16way)
 920 
 921 ENTRY(camellia_ecb_dec_16way)
 922         /* input:
 923          *      %rdi: ctx, CTX
 924          *      %rsi: dst (16 blocks)
 925          *      %rdx: src (16 blocks)
 926          */
 927          FRAME_BEGIN
 928 
 929         cmpl $16, key_length(CTX);
 930         movl $32, %r8d;
 931         movl $24, %eax;
 932         cmovel %eax, %r8d; /* max */
 933 
 934         inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 935                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 936                      %xmm15, %rdx, (key_table)(CTX, %r8, 8));
 937 
 938         /* now dst can be used as temporary buffer (even in src == dst case) */
 939         movq    %rsi, %rax;
 940 
 941         call __camellia_dec_blk16;
 942 
 943         write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
 944                      %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
 945                      %xmm8, %rsi);
 946 
 947         FRAME_END
 948         ret;
 949 ENDPROC(camellia_ecb_dec_16way)
 950 
 951 ENTRY(camellia_cbc_dec_16way)
 952         /* input:
 953          *      %rdi: ctx, CTX
 954          *      %rsi: dst (16 blocks)
 955          *      %rdx: src (16 blocks)
 956          */
 957         FRAME_BEGIN
 958 
 959         cmpl $16, key_length(CTX);
 960         movl $32, %r8d;
 961         movl $24, %eax;
 962         cmovel %eax, %r8d; /* max */
 963 
 964         inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 965                      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 966                      %xmm15, %rdx, (key_table)(CTX, %r8, 8));
 967 
 968         /*
 969          * dst might still be in-use (in case dst == src), so use stack for
 970          * temporary storage.
 971          */
 972         subq $(16 * 16), %rsp;
 973         movq %rsp, %rax;
 974 
 975         call __camellia_dec_blk16;
 976 
 977         addq $(16 * 16), %rsp;
 978 
 979         vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
 980         vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
 981         vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
 982         vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
 983         vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
 984         vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
 985         vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
 986         vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
 987         vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
 988         vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
 989         vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
 990         vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
 991         vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
 992         vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
 993         vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
 994         write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
 995                      %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
 996                      %xmm8, %rsi);
 997 
 998         FRAME_END
 999         ret;
1000 ENDPROC(camellia_cbc_dec_16way)
1001 
1002 #define inc_le128(x, minus_one, tmp) \
1003         vpcmpeqq minus_one, x, tmp; \
1004         vpsubq minus_one, x, x; \
1005         vpslldq $8, tmp, tmp; \
1006         vpsubq tmp, x, x;
1007 
1008 ENTRY(camellia_ctr_16way)
1009         /* input:
1010          *      %rdi: ctx, CTX
1011          *      %rsi: dst (16 blocks)
1012          *      %rdx: src (16 blocks)
1013          *      %rcx: iv (little endian, 128bit)
1014          */
1015         FRAME_BEGIN
1016 
1017         subq $(16 * 16), %rsp;
1018         movq %rsp, %rax;
1019 
1020         vmovdqa .Lbswap128_mask, %xmm14;
1021 
1022         /* load IV and byteswap */
1023         vmovdqu (%rcx), %xmm0;
1024         vpshufb %xmm14, %xmm0, %xmm15;
1025         vmovdqu %xmm15, 15 * 16(%rax);
1026 
1027         vpcmpeqd %xmm15, %xmm15, %xmm15;
1028         vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */
1029 
1030         /* construct IVs */
1031         inc_le128(%xmm0, %xmm15, %xmm13);
1032         vpshufb %xmm14, %xmm0, %xmm13;
1033         vmovdqu %xmm13, 14 * 16(%rax);
1034         inc_le128(%xmm0, %xmm15, %xmm13);
1035         vpshufb %xmm14, %xmm0, %xmm13;
1036         vmovdqu %xmm13, 13 * 16(%rax);
1037         inc_le128(%xmm0, %xmm15, %xmm13);
1038         vpshufb %xmm14, %xmm0, %xmm12;
1039         inc_le128(%xmm0, %xmm15, %xmm13);
1040         vpshufb %xmm14, %xmm0, %xmm11;
1041         inc_le128(%xmm0, %xmm15, %xmm13);
1042         vpshufb %xmm14, %xmm0, %xmm10;
1043         inc_le128(%xmm0, %xmm15, %xmm13);
1044         vpshufb %xmm14, %xmm0, %xmm9;
1045         inc_le128(%xmm0, %xmm15, %xmm13);
1046         vpshufb %xmm14, %xmm0, %xmm8;
1047         inc_le128(%xmm0, %xmm15, %xmm13);
1048         vpshufb %xmm14, %xmm0, %xmm7;
1049         inc_le128(%xmm0, %xmm15, %xmm13);
1050         vpshufb %xmm14, %xmm0, %xmm6;
1051         inc_le128(%xmm0, %xmm15, %xmm13);
1052         vpshufb %xmm14, %xmm0, %xmm5;
1053         inc_le128(%xmm0, %xmm15, %xmm13);
1054         vpshufb %xmm14, %xmm0, %xmm4;
1055         inc_le128(%xmm0, %xmm15, %xmm13);
1056         vpshufb %xmm14, %xmm0, %xmm3;
1057         inc_le128(%xmm0, %xmm15, %xmm13);
1058         vpshufb %xmm14, %xmm0, %xmm2;
1059         inc_le128(%xmm0, %xmm15, %xmm13);
1060         vpshufb %xmm14, %xmm0, %xmm1;
1061         inc_le128(%xmm0, %xmm15, %xmm13);
1062         vmovdqa %xmm0, %xmm13;
1063         vpshufb %xmm14, %xmm0, %xmm0;
1064         inc_le128(%xmm13, %xmm15, %xmm14);
1065         vmovdqu %xmm13, (%rcx);
1066 
1067         /* inpack16_pre: */
1068         vmovq (key_table)(CTX), %xmm15;
1069         vpshufb .Lpack_bswap, %xmm15, %xmm15;
1070         vpxor %xmm0, %xmm15, %xmm0;
1071         vpxor %xmm1, %xmm15, %xmm1;
1072         vpxor %xmm2, %xmm15, %xmm2;
1073         vpxor %xmm3, %xmm15, %xmm3;
1074         vpxor %xmm4, %xmm15, %xmm4;
1075         vpxor %xmm5, %xmm15, %xmm5;
1076         vpxor %xmm6, %xmm15, %xmm6;
1077         vpxor %xmm7, %xmm15, %xmm7;
1078         vpxor %xmm8, %xmm15, %xmm8;
1079         vpxor %xmm9, %xmm15, %xmm9;
1080         vpxor %xmm10, %xmm15, %xmm10;
1081         vpxor %xmm11, %xmm15, %xmm11;
1082         vpxor %xmm12, %xmm15, %xmm12;
1083         vpxor 13 * 16(%rax), %xmm15, %xmm13;
1084         vpxor 14 * 16(%rax), %xmm15, %xmm14;
1085         vpxor 15 * 16(%rax), %xmm15, %xmm15;
1086 
1087         call __camellia_enc_blk16;
1088 
1089         addq $(16 * 16), %rsp;
1090 
1091         vpxor 0 * 16(%rdx), %xmm7, %xmm7;
1092         vpxor 1 * 16(%rdx), %xmm6, %xmm6;
1093         vpxor 2 * 16(%rdx), %xmm5, %xmm5;
1094         vpxor 3 * 16(%rdx), %xmm4, %xmm4;
1095         vpxor 4 * 16(%rdx), %xmm3, %xmm3;
1096         vpxor 5 * 16(%rdx), %xmm2, %xmm2;
1097         vpxor 6 * 16(%rdx), %xmm1, %xmm1;
1098         vpxor 7 * 16(%rdx), %xmm0, %xmm0;
1099         vpxor 8 * 16(%rdx), %xmm15, %xmm15;
1100         vpxor 9 * 16(%rdx), %xmm14, %xmm14;
1101         vpxor 10 * 16(%rdx), %xmm13, %xmm13;
1102         vpxor 11 * 16(%rdx), %xmm12, %xmm12;
1103         vpxor 12 * 16(%rdx), %xmm11, %xmm11;
1104         vpxor 13 * 16(%rdx), %xmm10, %xmm10;
1105         vpxor 14 * 16(%rdx), %xmm9, %xmm9;
1106         vpxor 15 * 16(%rdx), %xmm8, %xmm8;
1107         write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1108                      %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1109                      %xmm8, %rsi);
1110 
1111         FRAME_END
1112         ret;
1113 ENDPROC(camellia_ctr_16way)
1114 
1115 #define gf128mul_x_ble(iv, mask, tmp) \
1116         vpsrad $31, iv, tmp; \
1117         vpaddq iv, iv, iv; \
1118         vpshufd $0x13, tmp, tmp; \
1119         vpand mask, tmp, tmp; \
1120         vpxor tmp, iv, iv;
1121 
1122 .align 8
1123 camellia_xts_crypt_16way:
1124         /* input:
1125          *      %rdi: ctx, CTX
1126          *      %rsi: dst (16 blocks)
1127          *      %rdx: src (16 blocks)
1128          *      %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1129          *      %r8: index for input whitening key
1130          *      %r9: pointer to  __camellia_enc_blk16 or __camellia_dec_blk16
1131          */
1132         FRAME_BEGIN
1133 
1134         subq $(16 * 16), %rsp;
1135         movq %rsp, %rax;
1136 
1137         vmovdqa .Lxts_gf128mul_and_shl1_mask, %xmm14;
1138 
1139         /* load IV */
1140         vmovdqu (%rcx), %xmm0;
1141         vpxor 0 * 16(%rdx), %xmm0, %xmm15;
1142         vmovdqu %xmm15, 15 * 16(%rax);
1143         vmovdqu %xmm0, 0 * 16(%rsi);
1144 
1145         /* construct IVs */
1146         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1147         vpxor 1 * 16(%rdx), %xmm0, %xmm15;
1148         vmovdqu %xmm15, 14 * 16(%rax);
1149         vmovdqu %xmm0, 1 * 16(%rsi);
1150 
1151         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1152         vpxor 2 * 16(%rdx), %xmm0, %xmm13;
1153         vmovdqu %xmm0, 2 * 16(%rsi);
1154 
1155         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1156         vpxor 3 * 16(%rdx), %xmm0, %xmm12;
1157         vmovdqu %xmm0, 3 * 16(%rsi);
1158 
1159         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1160         vpxor 4 * 16(%rdx), %xmm0, %xmm11;
1161         vmovdqu %xmm0, 4 * 16(%rsi);
1162 
1163         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1164         vpxor 5 * 16(%rdx), %xmm0, %xmm10;
1165         vmovdqu %xmm0, 5 * 16(%rsi);
1166 
1167         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1168         vpxor 6 * 16(%rdx), %xmm0, %xmm9;
1169         vmovdqu %xmm0, 6 * 16(%rsi);
1170 
1171         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1172         vpxor 7 * 16(%rdx), %xmm0, %xmm8;
1173         vmovdqu %xmm0, 7 * 16(%rsi);
1174 
1175         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1176         vpxor 8 * 16(%rdx), %xmm0, %xmm7;
1177         vmovdqu %xmm0, 8 * 16(%rsi);
1178 
1179         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1180         vpxor 9 * 16(%rdx), %xmm0, %xmm6;
1181         vmovdqu %xmm0, 9 * 16(%rsi);
1182 
1183         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1184         vpxor 10 * 16(%rdx), %xmm0, %xmm5;
1185         vmovdqu %xmm0, 10 * 16(%rsi);
1186 
1187         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1188         vpxor 11 * 16(%rdx), %xmm0, %xmm4;
1189         vmovdqu %xmm0, 11 * 16(%rsi);
1190 
1191         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1192         vpxor 12 * 16(%rdx), %xmm0, %xmm3;
1193         vmovdqu %xmm0, 12 * 16(%rsi);
1194 
1195         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1196         vpxor 13 * 16(%rdx), %xmm0, %xmm2;
1197         vmovdqu %xmm0, 13 * 16(%rsi);
1198 
1199         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1200         vpxor 14 * 16(%rdx), %xmm0, %xmm1;
1201         vmovdqu %xmm0, 14 * 16(%rsi);
1202 
1203         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1204         vpxor 15 * 16(%rdx), %xmm0, %xmm15;
1205         vmovdqu %xmm15, 0 * 16(%rax);
1206         vmovdqu %xmm0, 15 * 16(%rsi);
1207 
1208         gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1209         vmovdqu %xmm0, (%rcx);
1210 
1211         /* inpack16_pre: */
1212         vmovq (key_table)(CTX, %r8, 8), %xmm15;
1213         vpshufb .Lpack_bswap, %xmm15, %xmm15;
1214         vpxor 0 * 16(%rax), %xmm15, %xmm0;
1215         vpxor %xmm1, %xmm15, %xmm1;
1216         vpxor %xmm2, %xmm15, %xmm2;
1217         vpxor %xmm3, %xmm15, %xmm3;
1218         vpxor %xmm4, %xmm15, %xmm4;
1219         vpxor %xmm5, %xmm15, %xmm5;
1220         vpxor %xmm6, %xmm15, %xmm6;
1221         vpxor %xmm7, %xmm15, %xmm7;
1222         vpxor %xmm8, %xmm15, %xmm8;
1223         vpxor %xmm9, %xmm15, %xmm9;
1224         vpxor %xmm10, %xmm15, %xmm10;
1225         vpxor %xmm11, %xmm15, %xmm11;
1226         vpxor %xmm12, %xmm15, %xmm12;
1227         vpxor %xmm13, %xmm15, %xmm13;
1228         vpxor 14 * 16(%rax), %xmm15, %xmm14;
1229         vpxor 15 * 16(%rax), %xmm15, %xmm15;
1230 
1231         CALL_NOSPEC %r9;
1232 
1233         addq $(16 * 16), %rsp;
1234 
1235         vpxor 0 * 16(%rsi), %xmm7, %xmm7;
1236         vpxor 1 * 16(%rsi), %xmm6, %xmm6;
1237         vpxor 2 * 16(%rsi), %xmm5, %xmm5;
1238         vpxor 3 * 16(%rsi), %xmm4, %xmm4;
1239         vpxor 4 * 16(%rsi), %xmm3, %xmm3;
1240         vpxor 5 * 16(%rsi), %xmm2, %xmm2;
1241         vpxor 6 * 16(%rsi), %xmm1, %xmm1;
1242         vpxor 7 * 16(%rsi), %xmm0, %xmm0;
1243         vpxor 8 * 16(%rsi), %xmm15, %xmm15;
1244         vpxor 9 * 16(%rsi), %xmm14, %xmm14;
1245         vpxor 10 * 16(%rsi), %xmm13, %xmm13;
1246         vpxor 11 * 16(%rsi), %xmm12, %xmm12;
1247         vpxor 12 * 16(%rsi), %xmm11, %xmm11;
1248         vpxor 13 * 16(%rsi), %xmm10, %xmm10;
1249         vpxor 14 * 16(%rsi), %xmm9, %xmm9;
1250         vpxor 15 * 16(%rsi), %xmm8, %xmm8;
1251         write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1252                      %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1253                      %xmm8, %rsi);
1254 
1255         FRAME_END
1256         ret;
1257 ENDPROC(camellia_xts_crypt_16way)
1258 
1259 ENTRY(camellia_xts_enc_16way)
1260         /* input:
1261          *      %rdi: ctx, CTX
1262          *      %rsi: dst (16 blocks)
1263          *      %rdx: src (16 blocks)
1264          *      %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1265          */
1266         xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1267 
1268         leaq __camellia_enc_blk16, %r9;
1269 
1270         jmp camellia_xts_crypt_16way;
1271 ENDPROC(camellia_xts_enc_16way)
1272 
1273 ENTRY(camellia_xts_dec_16way)
1274         /* input:
1275          *      %rdi: ctx, CTX
1276          *      %rsi: dst (16 blocks)
1277          *      %rdx: src (16 blocks)
1278          *      %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1279          */
1280 
1281         cmpl $16, key_length(CTX);
1282         movl $32, %r8d;
1283         movl $24, %eax;
1284         cmovel %eax, %r8d;  /* input whitening key, last for dec */
1285 
1286         leaq __camellia_dec_blk16, %r9;
1287 
1288         jmp camellia_xts_crypt_16way;
1289 ENDPROC(camellia_xts_dec_16way)

/* [<][>][^][v][top][bottom][index][help] */