root/arch/x86/crypto/camellia-aesni-avx2-asm_64.S

/* [<][>][^][v][top][bottom][index][help] */
   1 /* SPDX-License-Identifier: GPL-2.0-or-later */
   2 /*
   3  * x86_64/AVX2/AES-NI assembler implementation of Camellia
   4  *
   5  * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
   6  */
   7 
   8 #include <linux/linkage.h>
   9 #include <asm/frame.h>
  10 #include <asm/nospec-branch.h>
  11 
  12 #define CAMELLIA_TABLE_BYTE_LEN 272
  13 
  14 /* struct camellia_ctx: */
  15 #define key_table 0
  16 #define key_length CAMELLIA_TABLE_BYTE_LEN
  17 
  18 /* register macros */
  19 #define CTX %rdi
  20 #define RIO %r8
  21 
  22 /**********************************************************************
  23   helper macros
  24  **********************************************************************/
  25 #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  26         vpand x, mask4bit, tmp0; \
  27         vpandn x, mask4bit, x; \
  28         vpsrld $4, x, x; \
  29         \
  30         vpshufb tmp0, lo_t, tmp0; \
  31         vpshufb x, hi_t, x; \
  32         vpxor tmp0, x, x;
  33 
  34 #define ymm0_x xmm0
  35 #define ymm1_x xmm1
  36 #define ymm2_x xmm2
  37 #define ymm3_x xmm3
  38 #define ymm4_x xmm4
  39 #define ymm5_x xmm5
  40 #define ymm6_x xmm6
  41 #define ymm7_x xmm7
  42 #define ymm8_x xmm8
  43 #define ymm9_x xmm9
  44 #define ymm10_x xmm10
  45 #define ymm11_x xmm11
  46 #define ymm12_x xmm12
  47 #define ymm13_x xmm13
  48 #define ymm14_x xmm14
  49 #define ymm15_x xmm15
  50 
  51 /**********************************************************************
  52   32-way camellia
  53  **********************************************************************/
  54 
  55 /*
  56  * IN:
  57  *   x0..x7: byte-sliced AB state
  58  *   mem_cd: register pointer storing CD state
  59  *   key: index for key material
  60  * OUT:
  61  *   x0..x7: new byte-sliced CD state
  62  */
  63 #define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  64                   t7, mem_cd, key) \
  65         /* \
  66          * S-function with AES subbytes \
  67          */ \
  68         vbroadcasti128 .Linv_shift_row, t4; \
  69         vpbroadcastd .L0f0f0f0f, t7; \
  70         vbroadcasti128 .Lpre_tf_lo_s1, t5; \
  71         vbroadcasti128 .Lpre_tf_hi_s1, t6; \
  72         vbroadcasti128 .Lpre_tf_lo_s4, t2; \
  73         vbroadcasti128 .Lpre_tf_hi_s4, t3; \
  74         \
  75         /* AES inverse shift rows */ \
  76         vpshufb t4, x0, x0; \
  77         vpshufb t4, x7, x7; \
  78         vpshufb t4, x3, x3; \
  79         vpshufb t4, x6, x6; \
  80         vpshufb t4, x2, x2; \
  81         vpshufb t4, x5, x5; \
  82         vpshufb t4, x1, x1; \
  83         vpshufb t4, x4, x4; \
  84         \
  85         /* prefilter sboxes 1, 2 and 3 */ \
  86         /* prefilter sbox 4 */ \
  87         filter_8bit(x0, t5, t6, t7, t4); \
  88         filter_8bit(x7, t5, t6, t7, t4); \
  89         vextracti128 $1, x0, t0##_x; \
  90         vextracti128 $1, x7, t1##_x; \
  91         filter_8bit(x3, t2, t3, t7, t4); \
  92         filter_8bit(x6, t2, t3, t7, t4); \
  93         vextracti128 $1, x3, t3##_x; \
  94         vextracti128 $1, x6, t2##_x; \
  95         filter_8bit(x2, t5, t6, t7, t4); \
  96         filter_8bit(x5, t5, t6, t7, t4); \
  97         filter_8bit(x1, t5, t6, t7, t4); \
  98         filter_8bit(x4, t5, t6, t7, t4); \
  99         \
 100         vpxor t4##_x, t4##_x, t4##_x; \
 101         \
 102         /* AES subbytes + AES shift rows */ \
 103         vextracti128 $1, x2, t6##_x; \
 104         vextracti128 $1, x5, t5##_x; \
 105         vaesenclast t4##_x, x0##_x, x0##_x; \
 106         vaesenclast t4##_x, t0##_x, t0##_x; \
 107         vinserti128 $1, t0##_x, x0, x0; \
 108         vaesenclast t4##_x, x7##_x, x7##_x; \
 109         vaesenclast t4##_x, t1##_x, t1##_x; \
 110         vinserti128 $1, t1##_x, x7, x7; \
 111         vaesenclast t4##_x, x3##_x, x3##_x; \
 112         vaesenclast t4##_x, t3##_x, t3##_x; \
 113         vinserti128 $1, t3##_x, x3, x3; \
 114         vaesenclast t4##_x, x6##_x, x6##_x; \
 115         vaesenclast t4##_x, t2##_x, t2##_x; \
 116         vinserti128 $1, t2##_x, x6, x6; \
 117         vextracti128 $1, x1, t3##_x; \
 118         vextracti128 $1, x4, t2##_x; \
 119         vbroadcasti128 .Lpost_tf_lo_s1, t0; \
 120         vbroadcasti128 .Lpost_tf_hi_s1, t1; \
 121         vaesenclast t4##_x, x2##_x, x2##_x; \
 122         vaesenclast t4##_x, t6##_x, t6##_x; \
 123         vinserti128 $1, t6##_x, x2, x2; \
 124         vaesenclast t4##_x, x5##_x, x5##_x; \
 125         vaesenclast t4##_x, t5##_x, t5##_x; \
 126         vinserti128 $1, t5##_x, x5, x5; \
 127         vaesenclast t4##_x, x1##_x, x1##_x; \
 128         vaesenclast t4##_x, t3##_x, t3##_x; \
 129         vinserti128 $1, t3##_x, x1, x1; \
 130         vaesenclast t4##_x, x4##_x, x4##_x; \
 131         vaesenclast t4##_x, t2##_x, t2##_x; \
 132         vinserti128 $1, t2##_x, x4, x4; \
 133         \
 134         /* postfilter sboxes 1 and 4 */ \
 135         vbroadcasti128 .Lpost_tf_lo_s3, t2; \
 136         vbroadcasti128 .Lpost_tf_hi_s3, t3; \
 137         filter_8bit(x0, t0, t1, t7, t6); \
 138         filter_8bit(x7, t0, t1, t7, t6); \
 139         filter_8bit(x3, t0, t1, t7, t6); \
 140         filter_8bit(x6, t0, t1, t7, t6); \
 141         \
 142         /* postfilter sbox 3 */ \
 143         vbroadcasti128 .Lpost_tf_lo_s2, t4; \
 144         vbroadcasti128 .Lpost_tf_hi_s2, t5; \
 145         filter_8bit(x2, t2, t3, t7, t6); \
 146         filter_8bit(x5, t2, t3, t7, t6); \
 147         \
 148         vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
 149         \
 150         /* postfilter sbox 2 */ \
 151         filter_8bit(x1, t4, t5, t7, t2); \
 152         filter_8bit(x4, t4, t5, t7, t2); \
 153         vpxor t7, t7, t7; \
 154         \
 155         vpsrldq $1, t0, t1; \
 156         vpsrldq $2, t0, t2; \
 157         vpshufb t7, t1, t1; \
 158         vpsrldq $3, t0, t3; \
 159         \
 160         /* P-function */ \
 161         vpxor x5, x0, x0; \
 162         vpxor x6, x1, x1; \
 163         vpxor x7, x2, x2; \
 164         vpxor x4, x3, x3; \
 165         \
 166         vpshufb t7, t2, t2; \
 167         vpsrldq $4, t0, t4; \
 168         vpshufb t7, t3, t3; \
 169         vpsrldq $5, t0, t5; \
 170         vpshufb t7, t4, t4; \
 171         \
 172         vpxor x2, x4, x4; \
 173         vpxor x3, x5, x5; \
 174         vpxor x0, x6, x6; \
 175         vpxor x1, x7, x7; \
 176         \
 177         vpsrldq $6, t0, t6; \
 178         vpshufb t7, t5, t5; \
 179         vpshufb t7, t6, t6; \
 180         \
 181         vpxor x7, x0, x0; \
 182         vpxor x4, x1, x1; \
 183         vpxor x5, x2, x2; \
 184         vpxor x6, x3, x3; \
 185         \
 186         vpxor x3, x4, x4; \
 187         vpxor x0, x5, x5; \
 188         vpxor x1, x6, x6; \
 189         vpxor x2, x7, x7; /* note: high and low parts swapped */ \
 190         \
 191         /* Add key material and result to CD (x becomes new CD) */ \
 192         \
 193         vpxor t6, x1, x1; \
 194         vpxor 5 * 32(mem_cd), x1, x1; \
 195         \
 196         vpsrldq $7, t0, t6; \
 197         vpshufb t7, t0, t0; \
 198         vpshufb t7, t6, t7; \
 199         \
 200         vpxor t7, x0, x0; \
 201         vpxor 4 * 32(mem_cd), x0, x0; \
 202         \
 203         vpxor t5, x2, x2; \
 204         vpxor 6 * 32(mem_cd), x2, x2; \
 205         \
 206         vpxor t4, x3, x3; \
 207         vpxor 7 * 32(mem_cd), x3, x3; \
 208         \
 209         vpxor t3, x4, x4; \
 210         vpxor 0 * 32(mem_cd), x4, x4; \
 211         \
 212         vpxor t2, x5, x5; \
 213         vpxor 1 * 32(mem_cd), x5, x5; \
 214         \
 215         vpxor t1, x6, x6; \
 216         vpxor 2 * 32(mem_cd), x6, x6; \
 217         \
 218         vpxor t0, x7, x7; \
 219         vpxor 3 * 32(mem_cd), x7, x7;
 220 
 221 /*
 222  * Size optimization... with inlined roundsm32 binary would be over 5 times
 223  * larger and would only marginally faster.
 224  */
 225 .align 8
 226 roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
 227         roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 228                   %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
 229                   %rcx, (%r9));
 230         ret;
 231 ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 232 
 233 .align 8
 234 roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
 235         roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
 236                   %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
 237                   %rax, (%r9));
 238         ret;
 239 ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 240 
 241 /*
 242  * IN/OUT:
 243  *  x0..x7: byte-sliced AB state preloaded
 244  *  mem_ab: byte-sliced AB state in memory
 245  *  mem_cb: byte-sliced CD state in memory
 246  */
 247 #define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 248                       y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
 249         leaq (key_table + (i) * 8)(CTX), %r9; \
 250         call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
 251         \
 252         vmovdqu x0, 4 * 32(mem_cd); \
 253         vmovdqu x1, 5 * 32(mem_cd); \
 254         vmovdqu x2, 6 * 32(mem_cd); \
 255         vmovdqu x3, 7 * 32(mem_cd); \
 256         vmovdqu x4, 0 * 32(mem_cd); \
 257         vmovdqu x5, 1 * 32(mem_cd); \
 258         vmovdqu x6, 2 * 32(mem_cd); \
 259         vmovdqu x7, 3 * 32(mem_cd); \
 260         \
 261         leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
 262         call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
 263         \
 264         store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
 265 
 266 #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
 267 
 268 #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
 269         /* Store new AB state */ \
 270         vmovdqu x4, 4 * 32(mem_ab); \
 271         vmovdqu x5, 5 * 32(mem_ab); \
 272         vmovdqu x6, 6 * 32(mem_ab); \
 273         vmovdqu x7, 7 * 32(mem_ab); \
 274         vmovdqu x0, 0 * 32(mem_ab); \
 275         vmovdqu x1, 1 * 32(mem_ab); \
 276         vmovdqu x2, 2 * 32(mem_ab); \
 277         vmovdqu x3, 3 * 32(mem_ab);
 278 
 279 #define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 280                       y6, y7, mem_ab, mem_cd, i) \
 281         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 282                       y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
 283         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 284                       y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
 285         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 286                       y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
 287 
 288 #define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 289                       y6, y7, mem_ab, mem_cd, i) \
 290         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 291                       y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
 292         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 293                       y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
 294         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 295                       y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
 296 
 297 /*
 298  * IN:
 299  *  v0..3: byte-sliced 32-bit integers
 300  * OUT:
 301  *  v0..3: (IN <<< 1)
 302  */
 303 #define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
 304         vpcmpgtb v0, zero, t0; \
 305         vpaddb v0, v0, v0; \
 306         vpabsb t0, t0; \
 307         \
 308         vpcmpgtb v1, zero, t1; \
 309         vpaddb v1, v1, v1; \
 310         vpabsb t1, t1; \
 311         \
 312         vpcmpgtb v2, zero, t2; \
 313         vpaddb v2, v2, v2; \
 314         vpabsb t2, t2; \
 315         \
 316         vpor t0, v1, v1; \
 317         \
 318         vpcmpgtb v3, zero, t0; \
 319         vpaddb v3, v3, v3; \
 320         vpabsb t0, t0; \
 321         \
 322         vpor t1, v2, v2; \
 323         vpor t2, v3, v3; \
 324         vpor t0, v0, v0;
 325 
 326 /*
 327  * IN:
 328  *   r: byte-sliced AB state in memory
 329  *   l: byte-sliced CD state in memory
 330  * OUT:
 331  *   x0..x7: new byte-sliced CD state
 332  */
 333 #define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
 334               tt1, tt2, tt3, kll, klr, krl, krr) \
 335         /* \
 336          * t0 = kll; \
 337          * t0 &= ll; \
 338          * lr ^= rol32(t0, 1); \
 339          */ \
 340         vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
 341         vpxor tt0, tt0, tt0; \
 342         vpshufb tt0, t0, t3; \
 343         vpsrldq $1, t0, t0; \
 344         vpshufb tt0, t0, t2; \
 345         vpsrldq $1, t0, t0; \
 346         vpshufb tt0, t0, t1; \
 347         vpsrldq $1, t0, t0; \
 348         vpshufb tt0, t0, t0; \
 349         \
 350         vpand l0, t0, t0; \
 351         vpand l1, t1, t1; \
 352         vpand l2, t2, t2; \
 353         vpand l3, t3, t3; \
 354         \
 355         rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 356         \
 357         vpxor l4, t0, l4; \
 358         vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
 359         vmovdqu l4, 4 * 32(l); \
 360         vpxor l5, t1, l5; \
 361         vmovdqu l5, 5 * 32(l); \
 362         vpxor l6, t2, l6; \
 363         vmovdqu l6, 6 * 32(l); \
 364         vpxor l7, t3, l7; \
 365         vmovdqu l7, 7 * 32(l); \
 366         \
 367         /* \
 368          * t2 = krr; \
 369          * t2 |= rr; \
 370          * rl ^= t2; \
 371          */ \
 372         \
 373         vpshufb tt0, t0, t3; \
 374         vpsrldq $1, t0, t0; \
 375         vpshufb tt0, t0, t2; \
 376         vpsrldq $1, t0, t0; \
 377         vpshufb tt0, t0, t1; \
 378         vpsrldq $1, t0, t0; \
 379         vpshufb tt0, t0, t0; \
 380         \
 381         vpor 4 * 32(r), t0, t0; \
 382         vpor 5 * 32(r), t1, t1; \
 383         vpor 6 * 32(r), t2, t2; \
 384         vpor 7 * 32(r), t3, t3; \
 385         \
 386         vpxor 0 * 32(r), t0, t0; \
 387         vpxor 1 * 32(r), t1, t1; \
 388         vpxor 2 * 32(r), t2, t2; \
 389         vpxor 3 * 32(r), t3, t3; \
 390         vmovdqu t0, 0 * 32(r); \
 391         vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
 392         vmovdqu t1, 1 * 32(r); \
 393         vmovdqu t2, 2 * 32(r); \
 394         vmovdqu t3, 3 * 32(r); \
 395         \
 396         /* \
 397          * t2 = krl; \
 398          * t2 &= rl; \
 399          * rr ^= rol32(t2, 1); \
 400          */ \
 401         vpshufb tt0, t0, t3; \
 402         vpsrldq $1, t0, t0; \
 403         vpshufb tt0, t0, t2; \
 404         vpsrldq $1, t0, t0; \
 405         vpshufb tt0, t0, t1; \
 406         vpsrldq $1, t0, t0; \
 407         vpshufb tt0, t0, t0; \
 408         \
 409         vpand 0 * 32(r), t0, t0; \
 410         vpand 1 * 32(r), t1, t1; \
 411         vpand 2 * 32(r), t2, t2; \
 412         vpand 3 * 32(r), t3, t3; \
 413         \
 414         rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 415         \
 416         vpxor 4 * 32(r), t0, t0; \
 417         vpxor 5 * 32(r), t1, t1; \
 418         vpxor 6 * 32(r), t2, t2; \
 419         vpxor 7 * 32(r), t3, t3; \
 420         vmovdqu t0, 4 * 32(r); \
 421         vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
 422         vmovdqu t1, 5 * 32(r); \
 423         vmovdqu t2, 6 * 32(r); \
 424         vmovdqu t3, 7 * 32(r); \
 425         \
 426         /* \
 427          * t0 = klr; \
 428          * t0 |= lr; \
 429          * ll ^= t0; \
 430          */ \
 431         \
 432         vpshufb tt0, t0, t3; \
 433         vpsrldq $1, t0, t0; \
 434         vpshufb tt0, t0, t2; \
 435         vpsrldq $1, t0, t0; \
 436         vpshufb tt0, t0, t1; \
 437         vpsrldq $1, t0, t0; \
 438         vpshufb tt0, t0, t0; \
 439         \
 440         vpor l4, t0, t0; \
 441         vpor l5, t1, t1; \
 442         vpor l6, t2, t2; \
 443         vpor l7, t3, t3; \
 444         \
 445         vpxor l0, t0, l0; \
 446         vmovdqu l0, 0 * 32(l); \
 447         vpxor l1, t1, l1; \
 448         vmovdqu l1, 1 * 32(l); \
 449         vpxor l2, t2, l2; \
 450         vmovdqu l2, 2 * 32(l); \
 451         vpxor l3, t3, l3; \
 452         vmovdqu l3, 3 * 32(l);
 453 
 454 #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
 455         vpunpckhdq x1, x0, t2; \
 456         vpunpckldq x1, x0, x0; \
 457         \
 458         vpunpckldq x3, x2, t1; \
 459         vpunpckhdq x3, x2, x2; \
 460         \
 461         vpunpckhqdq t1, x0, x1; \
 462         vpunpcklqdq t1, x0, x0; \
 463         \
 464         vpunpckhqdq x2, t2, x3; \
 465         vpunpcklqdq x2, t2, x2;
 466 
 467 #define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
 468                               a3, b3, c3, d3, st0, st1) \
 469         vmovdqu d2, st0; \
 470         vmovdqu d3, st1; \
 471         transpose_4x4(a0, a1, a2, a3, d2, d3); \
 472         transpose_4x4(b0, b1, b2, b3, d2, d3); \
 473         vmovdqu st0, d2; \
 474         vmovdqu st1, d3; \
 475         \
 476         vmovdqu a0, st0; \
 477         vmovdqu a1, st1; \
 478         transpose_4x4(c0, c1, c2, c3, a0, a1); \
 479         transpose_4x4(d0, d1, d2, d3, a0, a1); \
 480         \
 481         vbroadcasti128 .Lshufb_16x16b, a0; \
 482         vmovdqu st1, a1; \
 483         vpshufb a0, a2, a2; \
 484         vpshufb a0, a3, a3; \
 485         vpshufb a0, b0, b0; \
 486         vpshufb a0, b1, b1; \
 487         vpshufb a0, b2, b2; \
 488         vpshufb a0, b3, b3; \
 489         vpshufb a0, a1, a1; \
 490         vpshufb a0, c0, c0; \
 491         vpshufb a0, c1, c1; \
 492         vpshufb a0, c2, c2; \
 493         vpshufb a0, c3, c3; \
 494         vpshufb a0, d0, d0; \
 495         vpshufb a0, d1, d1; \
 496         vpshufb a0, d2, d2; \
 497         vpshufb a0, d3, d3; \
 498         vmovdqu d3, st1; \
 499         vmovdqu st0, d3; \
 500         vpshufb a0, d3, a0; \
 501         vmovdqu d2, st0; \
 502         \
 503         transpose_4x4(a0, b0, c0, d0, d2, d3); \
 504         transpose_4x4(a1, b1, c1, d1, d2, d3); \
 505         vmovdqu st0, d2; \
 506         vmovdqu st1, d3; \
 507         \
 508         vmovdqu b0, st0; \
 509         vmovdqu b1, st1; \
 510         transpose_4x4(a2, b2, c2, d2, b0, b1); \
 511         transpose_4x4(a3, b3, c3, d3, b0, b1); \
 512         vmovdqu st0, b0; \
 513         vmovdqu st1, b1; \
 514         /* does not adjust output bytes inside vectors */
 515 
 516 /* load blocks to registers and apply pre-whitening */
 517 #define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 518                      y6, y7, rio, key) \
 519         vpbroadcastq key, x0; \
 520         vpshufb .Lpack_bswap, x0, x0; \
 521         \
 522         vpxor 0 * 32(rio), x0, y7; \
 523         vpxor 1 * 32(rio), x0, y6; \
 524         vpxor 2 * 32(rio), x0, y5; \
 525         vpxor 3 * 32(rio), x0, y4; \
 526         vpxor 4 * 32(rio), x0, y3; \
 527         vpxor 5 * 32(rio), x0, y2; \
 528         vpxor 6 * 32(rio), x0, y1; \
 529         vpxor 7 * 32(rio), x0, y0; \
 530         vpxor 8 * 32(rio), x0, x7; \
 531         vpxor 9 * 32(rio), x0, x6; \
 532         vpxor 10 * 32(rio), x0, x5; \
 533         vpxor 11 * 32(rio), x0, x4; \
 534         vpxor 12 * 32(rio), x0, x3; \
 535         vpxor 13 * 32(rio), x0, x2; \
 536         vpxor 14 * 32(rio), x0, x1; \
 537         vpxor 15 * 32(rio), x0, x0;
 538 
 539 /* byteslice pre-whitened blocks and store to temporary memory */
 540 #define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 541                       y6, y7, mem_ab, mem_cd) \
 542         byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
 543                               y4, y5, y6, y7, (mem_ab), (mem_cd)); \
 544         \
 545         vmovdqu x0, 0 * 32(mem_ab); \
 546         vmovdqu x1, 1 * 32(mem_ab); \
 547         vmovdqu x2, 2 * 32(mem_ab); \
 548         vmovdqu x3, 3 * 32(mem_ab); \
 549         vmovdqu x4, 4 * 32(mem_ab); \
 550         vmovdqu x5, 5 * 32(mem_ab); \
 551         vmovdqu x6, 6 * 32(mem_ab); \
 552         vmovdqu x7, 7 * 32(mem_ab); \
 553         vmovdqu y0, 0 * 32(mem_cd); \
 554         vmovdqu y1, 1 * 32(mem_cd); \
 555         vmovdqu y2, 2 * 32(mem_cd); \
 556         vmovdqu y3, 3 * 32(mem_cd); \
 557         vmovdqu y4, 4 * 32(mem_cd); \
 558         vmovdqu y5, 5 * 32(mem_cd); \
 559         vmovdqu y6, 6 * 32(mem_cd); \
 560         vmovdqu y7, 7 * 32(mem_cd);
 561 
 562 /* de-byteslice, apply post-whitening and store blocks */
 563 #define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
 564                     y5, y6, y7, key, stack_tmp0, stack_tmp1) \
 565         byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
 566                               y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
 567         \
 568         vmovdqu x0, stack_tmp0; \
 569         \
 570         vpbroadcastq key, x0; \
 571         vpshufb .Lpack_bswap, x0, x0; \
 572         \
 573         vpxor x0, y7, y7; \
 574         vpxor x0, y6, y6; \
 575         vpxor x0, y5, y5; \
 576         vpxor x0, y4, y4; \
 577         vpxor x0, y3, y3; \
 578         vpxor x0, y2, y2; \
 579         vpxor x0, y1, y1; \
 580         vpxor x0, y0, y0; \
 581         vpxor x0, x7, x7; \
 582         vpxor x0, x6, x6; \
 583         vpxor x0, x5, x5; \
 584         vpxor x0, x4, x4; \
 585         vpxor x0, x3, x3; \
 586         vpxor x0, x2, x2; \
 587         vpxor x0, x1, x1; \
 588         vpxor stack_tmp0, x0, x0;
 589 
 590 #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 591                      y6, y7, rio) \
 592         vmovdqu x0, 0 * 32(rio); \
 593         vmovdqu x1, 1 * 32(rio); \
 594         vmovdqu x2, 2 * 32(rio); \
 595         vmovdqu x3, 3 * 32(rio); \
 596         vmovdqu x4, 4 * 32(rio); \
 597         vmovdqu x5, 5 * 32(rio); \
 598         vmovdqu x6, 6 * 32(rio); \
 599         vmovdqu x7, 7 * 32(rio); \
 600         vmovdqu y0, 8 * 32(rio); \
 601         vmovdqu y1, 9 * 32(rio); \
 602         vmovdqu y2, 10 * 32(rio); \
 603         vmovdqu y3, 11 * 32(rio); \
 604         vmovdqu y4, 12 * 32(rio); \
 605         vmovdqu y5, 13 * 32(rio); \
 606         vmovdqu y6, 14 * 32(rio); \
 607         vmovdqu y7, 15 * 32(rio);
 608 
 609 
 610 .section        .rodata.cst32.shufb_16x16b, "aM", @progbits, 32
 611 .align 32
 612 #define SHUFB_BYTES(idx) \
 613         0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
 614 .Lshufb_16x16b:
 615         .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 616         .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 617 
 618 .section        .rodata.cst32.pack_bswap, "aM", @progbits, 32
 619 .align 32
 620 .Lpack_bswap:
 621         .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 622         .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 623 
 624 /* NB: section is mergeable, all elements must be aligned 16-byte blocks */
 625 .section        .rodata.cst16, "aM", @progbits, 16
 626 .align 16
 627 
 628 /* For CTR-mode IV byteswap */
 629 .Lbswap128_mask:
 630         .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
 631 
 632 /* For XTS mode */
 633 .Lxts_gf128mul_and_shl1_mask_0:
 634         .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
 635 .Lxts_gf128mul_and_shl1_mask_1:
 636         .byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
 637 
 638 /*
 639  * pre-SubByte transform
 640  *
 641  * pre-lookup for sbox1, sbox2, sbox3:
 642  *   swap_bitendianness(
 643  *       isom_map_camellia_to_aes(
 644  *           camellia_f(
 645  *               swap_bitendianess(in)
 646  *           )
 647  *       )
 648  *   )
 649  *
 650  * (note: '⊕ 0xc5' inside camellia_f())
 651  */
 652 .Lpre_tf_lo_s1:
 653         .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
 654         .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
 655 .Lpre_tf_hi_s1:
 656         .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
 657         .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
 658 
 659 /*
 660  * pre-SubByte transform
 661  *
 662  * pre-lookup for sbox4:
 663  *   swap_bitendianness(
 664  *       isom_map_camellia_to_aes(
 665  *           camellia_f(
 666  *               swap_bitendianess(in <<< 1)
 667  *           )
 668  *       )
 669  *   )
 670  *
 671  * (note: '⊕ 0xc5' inside camellia_f())
 672  */
 673 .Lpre_tf_lo_s4:
 674         .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
 675         .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
 676 .Lpre_tf_hi_s4:
 677         .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
 678         .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
 679 
 680 /*
 681  * post-SubByte transform
 682  *
 683  * post-lookup for sbox1, sbox4:
 684  *  swap_bitendianness(
 685  *      camellia_h(
 686  *          isom_map_aes_to_camellia(
 687  *              swap_bitendianness(
 688  *                  aes_inverse_affine_transform(in)
 689  *              )
 690  *          )
 691  *      )
 692  *  )
 693  *
 694  * (note: '⊕ 0x6e' inside camellia_h())
 695  */
 696 .Lpost_tf_lo_s1:
 697         .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
 698         .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
 699 .Lpost_tf_hi_s1:
 700         .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
 701         .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
 702 
 703 /*
 704  * post-SubByte transform
 705  *
 706  * post-lookup for sbox2:
 707  *  swap_bitendianness(
 708  *      camellia_h(
 709  *          isom_map_aes_to_camellia(
 710  *              swap_bitendianness(
 711  *                  aes_inverse_affine_transform(in)
 712  *              )
 713  *          )
 714  *      )
 715  *  ) <<< 1
 716  *
 717  * (note: '⊕ 0x6e' inside camellia_h())
 718  */
 719 .Lpost_tf_lo_s2:
 720         .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
 721         .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
 722 .Lpost_tf_hi_s2:
 723         .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
 724         .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
 725 
 726 /*
 727  * post-SubByte transform
 728  *
 729  * post-lookup for sbox3:
 730  *  swap_bitendianness(
 731  *      camellia_h(
 732  *          isom_map_aes_to_camellia(
 733  *              swap_bitendianness(
 734  *                  aes_inverse_affine_transform(in)
 735  *              )
 736  *          )
 737  *      )
 738  *  ) >>> 1
 739  *
 740  * (note: '⊕ 0x6e' inside camellia_h())
 741  */
 742 .Lpost_tf_lo_s3:
 743         .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
 744         .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
 745 .Lpost_tf_hi_s3:
 746         .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
 747         .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
 748 
 749 /* For isolating SubBytes from AESENCLAST, inverse shift row */
 750 .Linv_shift_row:
 751         .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
 752         .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
 753 
 754 .section        .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
 755 .align 4
 756 /* 4-bit mask */
 757 .L0f0f0f0f:
 758         .long 0x0f0f0f0f
 759 
 760 .text
 761 
 762 .align 8
 763 __camellia_enc_blk32:
 764         /* input:
 765          *      %rdi: ctx, CTX
 766          *      %rax: temporary storage, 512 bytes
 767          *      %ymm0..%ymm15: 32 plaintext blocks
 768          * output:
 769          *      %ymm0..%ymm15: 32 encrypted blocks, order swapped:
 770          *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 771          */
 772         FRAME_BEGIN
 773 
 774         leaq 8 * 32(%rax), %rcx;
 775 
 776         inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 777                       %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 778                       %ymm15, %rax, %rcx);
 779 
 780         enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 781                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 782                      %ymm15, %rax, %rcx, 0);
 783 
 784         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 785               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 786               %ymm15,
 787               ((key_table + (8) * 8) + 0)(CTX),
 788               ((key_table + (8) * 8) + 4)(CTX),
 789               ((key_table + (8) * 8) + 8)(CTX),
 790               ((key_table + (8) * 8) + 12)(CTX));
 791 
 792         enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 793                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 794                      %ymm15, %rax, %rcx, 8);
 795 
 796         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 797               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 798               %ymm15,
 799               ((key_table + (16) * 8) + 0)(CTX),
 800               ((key_table + (16) * 8) + 4)(CTX),
 801               ((key_table + (16) * 8) + 8)(CTX),
 802               ((key_table + (16) * 8) + 12)(CTX));
 803 
 804         enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 805                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 806                      %ymm15, %rax, %rcx, 16);
 807 
 808         movl $24, %r8d;
 809         cmpl $16, key_length(CTX);
 810         jne .Lenc_max32;
 811 
 812 .Lenc_done:
 813         /* load CD for output */
 814         vmovdqu 0 * 32(%rcx), %ymm8;
 815         vmovdqu 1 * 32(%rcx), %ymm9;
 816         vmovdqu 2 * 32(%rcx), %ymm10;
 817         vmovdqu 3 * 32(%rcx), %ymm11;
 818         vmovdqu 4 * 32(%rcx), %ymm12;
 819         vmovdqu 5 * 32(%rcx), %ymm13;
 820         vmovdqu 6 * 32(%rcx), %ymm14;
 821         vmovdqu 7 * 32(%rcx), %ymm15;
 822 
 823         outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 824                     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 825                     %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
 826 
 827         FRAME_END
 828         ret;
 829 
 830 .align 8
 831 .Lenc_max32:
 832         movl $32, %r8d;
 833 
 834         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 835               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 836               %ymm15,
 837               ((key_table + (24) * 8) + 0)(CTX),
 838               ((key_table + (24) * 8) + 4)(CTX),
 839               ((key_table + (24) * 8) + 8)(CTX),
 840               ((key_table + (24) * 8) + 12)(CTX));
 841 
 842         enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 843                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 844                      %ymm15, %rax, %rcx, 24);
 845 
 846         jmp .Lenc_done;
 847 ENDPROC(__camellia_enc_blk32)
 848 
 849 .align 8
 850 __camellia_dec_blk32:
 851         /* input:
 852          *      %rdi: ctx, CTX
 853          *      %rax: temporary storage, 512 bytes
 854          *      %r8d: 24 for 16 byte key, 32 for larger
 855          *      %ymm0..%ymm15: 16 encrypted blocks
 856          * output:
 857          *      %ymm0..%ymm15: 16 plaintext blocks, order swapped:
 858          *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 859          */
 860         FRAME_BEGIN
 861 
 862         leaq 8 * 32(%rax), %rcx;
 863 
 864         inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 865                       %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 866                       %ymm15, %rax, %rcx);
 867 
 868         cmpl $32, %r8d;
 869         je .Ldec_max32;
 870 
 871 .Ldec_max24:
 872         dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 873                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 874                      %ymm15, %rax, %rcx, 16);
 875 
 876         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 877               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 878               %ymm15,
 879               ((key_table + (16) * 8) + 8)(CTX),
 880               ((key_table + (16) * 8) + 12)(CTX),
 881               ((key_table + (16) * 8) + 0)(CTX),
 882               ((key_table + (16) * 8) + 4)(CTX));
 883 
 884         dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 885                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 886                      %ymm15, %rax, %rcx, 8);
 887 
 888         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 889               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 890               %ymm15,
 891               ((key_table + (8) * 8) + 8)(CTX),
 892               ((key_table + (8) * 8) + 12)(CTX),
 893               ((key_table + (8) * 8) + 0)(CTX),
 894               ((key_table + (8) * 8) + 4)(CTX));
 895 
 896         dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 897                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 898                      %ymm15, %rax, %rcx, 0);
 899 
 900         /* load CD for output */
 901         vmovdqu 0 * 32(%rcx), %ymm8;
 902         vmovdqu 1 * 32(%rcx), %ymm9;
 903         vmovdqu 2 * 32(%rcx), %ymm10;
 904         vmovdqu 3 * 32(%rcx), %ymm11;
 905         vmovdqu 4 * 32(%rcx), %ymm12;
 906         vmovdqu 5 * 32(%rcx), %ymm13;
 907         vmovdqu 6 * 32(%rcx), %ymm14;
 908         vmovdqu 7 * 32(%rcx), %ymm15;
 909 
 910         outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 911                     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 912                     %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
 913 
 914         FRAME_END
 915         ret;
 916 
 917 .align 8
 918 .Ldec_max32:
 919         dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 920                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 921                      %ymm15, %rax, %rcx, 24);
 922 
 923         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 924               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 925               %ymm15,
 926               ((key_table + (24) * 8) + 8)(CTX),
 927               ((key_table + (24) * 8) + 12)(CTX),
 928               ((key_table + (24) * 8) + 0)(CTX),
 929               ((key_table + (24) * 8) + 4)(CTX));
 930 
 931         jmp .Ldec_max24;
 932 ENDPROC(__camellia_dec_blk32)
 933 
 934 ENTRY(camellia_ecb_enc_32way)
 935         /* input:
 936          *      %rdi: ctx, CTX
 937          *      %rsi: dst (32 blocks)
 938          *      %rdx: src (32 blocks)
 939          */
 940         FRAME_BEGIN
 941 
 942         vzeroupper;
 943 
 944         inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 945                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 946                      %ymm15, %rdx, (key_table)(CTX));
 947 
 948         /* now dst can be used as temporary buffer (even in src == dst case) */
 949         movq    %rsi, %rax;
 950 
 951         call __camellia_enc_blk32;
 952 
 953         write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 954                      %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 955                      %ymm8, %rsi);
 956 
 957         vzeroupper;
 958 
 959         FRAME_END
 960         ret;
 961 ENDPROC(camellia_ecb_enc_32way)
 962 
 963 ENTRY(camellia_ecb_dec_32way)
 964         /* input:
 965          *      %rdi: ctx, CTX
 966          *      %rsi: dst (32 blocks)
 967          *      %rdx: src (32 blocks)
 968          */
 969         FRAME_BEGIN
 970 
 971         vzeroupper;
 972 
 973         cmpl $16, key_length(CTX);
 974         movl $32, %r8d;
 975         movl $24, %eax;
 976         cmovel %eax, %r8d; /* max */
 977 
 978         inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 979                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 980                      %ymm15, %rdx, (key_table)(CTX, %r8, 8));
 981 
 982         /* now dst can be used as temporary buffer (even in src == dst case) */
 983         movq    %rsi, %rax;
 984 
 985         call __camellia_dec_blk32;
 986 
 987         write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 988                      %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 989                      %ymm8, %rsi);
 990 
 991         vzeroupper;
 992 
 993         FRAME_END
 994         ret;
 995 ENDPROC(camellia_ecb_dec_32way)
 996 
 997 ENTRY(camellia_cbc_dec_32way)
 998         /* input:
 999          *      %rdi: ctx, CTX
1000          *      %rsi: dst (32 blocks)
1001          *      %rdx: src (32 blocks)
1002          */
1003         FRAME_BEGIN
1004 
1005         vzeroupper;
1006 
1007         cmpl $16, key_length(CTX);
1008         movl $32, %r8d;
1009         movl $24, %eax;
1010         cmovel %eax, %r8d; /* max */
1011 
1012         inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1013                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1014                      %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1015 
1016         movq %rsp, %r10;
1017         cmpq %rsi, %rdx;
1018         je .Lcbc_dec_use_stack;
1019 
1020         /* dst can be used as temporary storage, src is not overwritten. */
1021         movq %rsi, %rax;
1022         jmp .Lcbc_dec_continue;
1023 
1024 .Lcbc_dec_use_stack:
1025         /*
1026          * dst still in-use (because dst == src), so use stack for temporary
1027          * storage.
1028          */
1029         subq $(16 * 32), %rsp;
1030         movq %rsp, %rax;
1031 
1032 .Lcbc_dec_continue:
1033         call __camellia_dec_blk32;
1034 
1035         vmovdqu %ymm7, (%rax);
1036         vpxor %ymm7, %ymm7, %ymm7;
1037         vinserti128 $1, (%rdx), %ymm7, %ymm7;
1038         vpxor (%rax), %ymm7, %ymm7;
1039         movq %r10, %rsp;
1040         vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1041         vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1042         vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1043         vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1044         vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1045         vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1046         vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1047         vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1048         vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1049         vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1050         vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1051         vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1052         vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1053         vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1054         vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1055         write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1056                      %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1057                      %ymm8, %rsi);
1058 
1059         vzeroupper;
1060 
1061         FRAME_END
1062         ret;
1063 ENDPROC(camellia_cbc_dec_32way)
1064 
1065 #define inc_le128(x, minus_one, tmp) \
1066         vpcmpeqq minus_one, x, tmp; \
1067         vpsubq minus_one, x, x; \
1068         vpslldq $8, tmp, tmp; \
1069         vpsubq tmp, x, x;
1070 
1071 #define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
1072         vpcmpeqq minus_one, x, tmp1; \
1073         vpcmpeqq minus_two, x, tmp2; \
1074         vpsubq minus_two, x, x; \
1075         vpor tmp2, tmp1, tmp1; \
1076         vpslldq $8, tmp1, tmp1; \
1077         vpsubq tmp1, x, x;
1078 
1079 ENTRY(camellia_ctr_32way)
1080         /* input:
1081          *      %rdi: ctx, CTX
1082          *      %rsi: dst (32 blocks)
1083          *      %rdx: src (32 blocks)
1084          *      %rcx: iv (little endian, 128bit)
1085          */
1086         FRAME_BEGIN
1087 
1088         vzeroupper;
1089 
1090         movq %rsp, %r10;
1091         cmpq %rsi, %rdx;
1092         je .Lctr_use_stack;
1093 
1094         /* dst can be used as temporary storage, src is not overwritten. */
1095         movq %rsi, %rax;
1096         jmp .Lctr_continue;
1097 
1098 .Lctr_use_stack:
1099         subq $(16 * 32), %rsp;
1100         movq %rsp, %rax;
1101 
1102 .Lctr_continue:
1103         vpcmpeqd %ymm15, %ymm15, %ymm15;
1104         vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
1105         vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
1106 
1107         /* load IV and byteswap */
1108         vmovdqu (%rcx), %xmm0;
1109         vmovdqa %xmm0, %xmm1;
1110         inc_le128(%xmm0, %xmm15, %xmm14);
1111         vbroadcasti128 .Lbswap128_mask, %ymm14;
1112         vinserti128 $1, %xmm0, %ymm1, %ymm0;
1113         vpshufb %ymm14, %ymm0, %ymm13;
1114         vmovdqu %ymm13, 15 * 32(%rax);
1115 
1116         /* construct IVs */
1117         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
1118         vpshufb %ymm14, %ymm0, %ymm13;
1119         vmovdqu %ymm13, 14 * 32(%rax);
1120         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1121         vpshufb %ymm14, %ymm0, %ymm13;
1122         vmovdqu %ymm13, 13 * 32(%rax);
1123         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1124         vpshufb %ymm14, %ymm0, %ymm13;
1125         vmovdqu %ymm13, 12 * 32(%rax);
1126         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1127         vpshufb %ymm14, %ymm0, %ymm13;
1128         vmovdqu %ymm13, 11 * 32(%rax);
1129         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1130         vpshufb %ymm14, %ymm0, %ymm10;
1131         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1132         vpshufb %ymm14, %ymm0, %ymm9;
1133         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1134         vpshufb %ymm14, %ymm0, %ymm8;
1135         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1136         vpshufb %ymm14, %ymm0, %ymm7;
1137         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1138         vpshufb %ymm14, %ymm0, %ymm6;
1139         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1140         vpshufb %ymm14, %ymm0, %ymm5;
1141         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1142         vpshufb %ymm14, %ymm0, %ymm4;
1143         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1144         vpshufb %ymm14, %ymm0, %ymm3;
1145         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1146         vpshufb %ymm14, %ymm0, %ymm2;
1147         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1148         vpshufb %ymm14, %ymm0, %ymm1;
1149         add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1150         vextracti128 $1, %ymm0, %xmm13;
1151         vpshufb %ymm14, %ymm0, %ymm0;
1152         inc_le128(%xmm13, %xmm15, %xmm14);
1153         vmovdqu %xmm13, (%rcx);
1154 
1155         /* inpack32_pre: */
1156         vpbroadcastq (key_table)(CTX), %ymm15;
1157         vpshufb .Lpack_bswap, %ymm15, %ymm15;
1158         vpxor %ymm0, %ymm15, %ymm0;
1159         vpxor %ymm1, %ymm15, %ymm1;
1160         vpxor %ymm2, %ymm15, %ymm2;
1161         vpxor %ymm3, %ymm15, %ymm3;
1162         vpxor %ymm4, %ymm15, %ymm4;
1163         vpxor %ymm5, %ymm15, %ymm5;
1164         vpxor %ymm6, %ymm15, %ymm6;
1165         vpxor %ymm7, %ymm15, %ymm7;
1166         vpxor %ymm8, %ymm15, %ymm8;
1167         vpxor %ymm9, %ymm15, %ymm9;
1168         vpxor %ymm10, %ymm15, %ymm10;
1169         vpxor 11 * 32(%rax), %ymm15, %ymm11;
1170         vpxor 12 * 32(%rax), %ymm15, %ymm12;
1171         vpxor 13 * 32(%rax), %ymm15, %ymm13;
1172         vpxor 14 * 32(%rax), %ymm15, %ymm14;
1173         vpxor 15 * 32(%rax), %ymm15, %ymm15;
1174 
1175         call __camellia_enc_blk32;
1176 
1177         movq %r10, %rsp;
1178 
1179         vpxor 0 * 32(%rdx), %ymm7, %ymm7;
1180         vpxor 1 * 32(%rdx), %ymm6, %ymm6;
1181         vpxor 2 * 32(%rdx), %ymm5, %ymm5;
1182         vpxor 3 * 32(%rdx), %ymm4, %ymm4;
1183         vpxor 4 * 32(%rdx), %ymm3, %ymm3;
1184         vpxor 5 * 32(%rdx), %ymm2, %ymm2;
1185         vpxor 6 * 32(%rdx), %ymm1, %ymm1;
1186         vpxor 7 * 32(%rdx), %ymm0, %ymm0;
1187         vpxor 8 * 32(%rdx), %ymm15, %ymm15;
1188         vpxor 9 * 32(%rdx), %ymm14, %ymm14;
1189         vpxor 10 * 32(%rdx), %ymm13, %ymm13;
1190         vpxor 11 * 32(%rdx), %ymm12, %ymm12;
1191         vpxor 12 * 32(%rdx), %ymm11, %ymm11;
1192         vpxor 13 * 32(%rdx), %ymm10, %ymm10;
1193         vpxor 14 * 32(%rdx), %ymm9, %ymm9;
1194         vpxor 15 * 32(%rdx), %ymm8, %ymm8;
1195         write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1196                      %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1197                      %ymm8, %rsi);
1198 
1199         vzeroupper;
1200 
1201         FRAME_END
1202         ret;
1203 ENDPROC(camellia_ctr_32way)
1204 
1205 #define gf128mul_x_ble(iv, mask, tmp) \
1206         vpsrad $31, iv, tmp; \
1207         vpaddq iv, iv, iv; \
1208         vpshufd $0x13, tmp, tmp; \
1209         vpand mask, tmp, tmp; \
1210         vpxor tmp, iv, iv;
1211 
1212 #define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
1213         vpsrad $31, iv, tmp0; \
1214         vpaddq iv, iv, tmp1; \
1215         vpsllq $2, iv, iv; \
1216         vpshufd $0x13, tmp0, tmp0; \
1217         vpsrad $31, tmp1, tmp1; \
1218         vpand mask2, tmp0, tmp0; \
1219         vpshufd $0x13, tmp1, tmp1; \
1220         vpxor tmp0, iv, iv; \
1221         vpand mask1, tmp1, tmp1; \
1222         vpxor tmp1, iv, iv;
1223 
1224 .align 8
1225 camellia_xts_crypt_32way:
1226         /* input:
1227          *      %rdi: ctx, CTX
1228          *      %rsi: dst (32 blocks)
1229          *      %rdx: src (32 blocks)
1230          *      %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1231          *      %r8: index for input whitening key
1232          *      %r9: pointer to  __camellia_enc_blk32 or __camellia_dec_blk32
1233          */
1234         FRAME_BEGIN
1235 
1236         vzeroupper;
1237 
1238         subq $(16 * 32), %rsp;
1239         movq %rsp, %rax;
1240 
1241         vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
1242 
1243         /* load IV and construct second IV */
1244         vmovdqu (%rcx), %xmm0;
1245         vmovdqa %xmm0, %xmm15;
1246         gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
1247         vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
1248         vinserti128 $1, %xmm0, %ymm15, %ymm0;
1249         vpxor 0 * 32(%rdx), %ymm0, %ymm15;
1250         vmovdqu %ymm15, 15 * 32(%rax);
1251         vmovdqu %ymm0, 0 * 32(%rsi);
1252 
1253         /* construct IVs */
1254         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1255         vpxor 1 * 32(%rdx), %ymm0, %ymm15;
1256         vmovdqu %ymm15, 14 * 32(%rax);
1257         vmovdqu %ymm0, 1 * 32(%rsi);
1258 
1259         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1260         vpxor 2 * 32(%rdx), %ymm0, %ymm15;
1261         vmovdqu %ymm15, 13 * 32(%rax);
1262         vmovdqu %ymm0, 2 * 32(%rsi);
1263 
1264         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1265         vpxor 3 * 32(%rdx), %ymm0, %ymm15;
1266         vmovdqu %ymm15, 12 * 32(%rax);
1267         vmovdqu %ymm0, 3 * 32(%rsi);
1268 
1269         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1270         vpxor 4 * 32(%rdx), %ymm0, %ymm11;
1271         vmovdqu %ymm0, 4 * 32(%rsi);
1272 
1273         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1274         vpxor 5 * 32(%rdx), %ymm0, %ymm10;
1275         vmovdqu %ymm0, 5 * 32(%rsi);
1276 
1277         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1278         vpxor 6 * 32(%rdx), %ymm0, %ymm9;
1279         vmovdqu %ymm0, 6 * 32(%rsi);
1280 
1281         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1282         vpxor 7 * 32(%rdx), %ymm0, %ymm8;
1283         vmovdqu %ymm0, 7 * 32(%rsi);
1284 
1285         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1286         vpxor 8 * 32(%rdx), %ymm0, %ymm7;
1287         vmovdqu %ymm0, 8 * 32(%rsi);
1288 
1289         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1290         vpxor 9 * 32(%rdx), %ymm0, %ymm6;
1291         vmovdqu %ymm0, 9 * 32(%rsi);
1292 
1293         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1294         vpxor 10 * 32(%rdx), %ymm0, %ymm5;
1295         vmovdqu %ymm0, 10 * 32(%rsi);
1296 
1297         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1298         vpxor 11 * 32(%rdx), %ymm0, %ymm4;
1299         vmovdqu %ymm0, 11 * 32(%rsi);
1300 
1301         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1302         vpxor 12 * 32(%rdx), %ymm0, %ymm3;
1303         vmovdqu %ymm0, 12 * 32(%rsi);
1304 
1305         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1306         vpxor 13 * 32(%rdx), %ymm0, %ymm2;
1307         vmovdqu %ymm0, 13 * 32(%rsi);
1308 
1309         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1310         vpxor 14 * 32(%rdx), %ymm0, %ymm1;
1311         vmovdqu %ymm0, 14 * 32(%rsi);
1312 
1313         gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1314         vpxor 15 * 32(%rdx), %ymm0, %ymm15;
1315         vmovdqu %ymm15, 0 * 32(%rax);
1316         vmovdqu %ymm0, 15 * 32(%rsi);
1317 
1318         vextracti128 $1, %ymm0, %xmm0;
1319         gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
1320         vmovdqu %xmm0, (%rcx);
1321 
1322         /* inpack32_pre: */
1323         vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
1324         vpshufb .Lpack_bswap, %ymm15, %ymm15;
1325         vpxor 0 * 32(%rax), %ymm15, %ymm0;
1326         vpxor %ymm1, %ymm15, %ymm1;
1327         vpxor %ymm2, %ymm15, %ymm2;
1328         vpxor %ymm3, %ymm15, %ymm3;
1329         vpxor %ymm4, %ymm15, %ymm4;
1330         vpxor %ymm5, %ymm15, %ymm5;
1331         vpxor %ymm6, %ymm15, %ymm6;
1332         vpxor %ymm7, %ymm15, %ymm7;
1333         vpxor %ymm8, %ymm15, %ymm8;
1334         vpxor %ymm9, %ymm15, %ymm9;
1335         vpxor %ymm10, %ymm15, %ymm10;
1336         vpxor %ymm11, %ymm15, %ymm11;
1337         vpxor 12 * 32(%rax), %ymm15, %ymm12;
1338         vpxor 13 * 32(%rax), %ymm15, %ymm13;
1339         vpxor 14 * 32(%rax), %ymm15, %ymm14;
1340         vpxor 15 * 32(%rax), %ymm15, %ymm15;
1341 
1342         CALL_NOSPEC %r9;
1343 
1344         addq $(16 * 32), %rsp;
1345 
1346         vpxor 0 * 32(%rsi), %ymm7, %ymm7;
1347         vpxor 1 * 32(%rsi), %ymm6, %ymm6;
1348         vpxor 2 * 32(%rsi), %ymm5, %ymm5;
1349         vpxor 3 * 32(%rsi), %ymm4, %ymm4;
1350         vpxor 4 * 32(%rsi), %ymm3, %ymm3;
1351         vpxor 5 * 32(%rsi), %ymm2, %ymm2;
1352         vpxor 6 * 32(%rsi), %ymm1, %ymm1;
1353         vpxor 7 * 32(%rsi), %ymm0, %ymm0;
1354         vpxor 8 * 32(%rsi), %ymm15, %ymm15;
1355         vpxor 9 * 32(%rsi), %ymm14, %ymm14;
1356         vpxor 10 * 32(%rsi), %ymm13, %ymm13;
1357         vpxor 11 * 32(%rsi), %ymm12, %ymm12;
1358         vpxor 12 * 32(%rsi), %ymm11, %ymm11;
1359         vpxor 13 * 32(%rsi), %ymm10, %ymm10;
1360         vpxor 14 * 32(%rsi), %ymm9, %ymm9;
1361         vpxor 15 * 32(%rsi), %ymm8, %ymm8;
1362         write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1363                      %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1364                      %ymm8, %rsi);
1365 
1366         vzeroupper;
1367 
1368         FRAME_END
1369         ret;
1370 ENDPROC(camellia_xts_crypt_32way)
1371 
1372 ENTRY(camellia_xts_enc_32way)
1373         /* input:
1374          *      %rdi: ctx, CTX
1375          *      %rsi: dst (32 blocks)
1376          *      %rdx: src (32 blocks)
1377          *      %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1378          */
1379 
1380         xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1381 
1382         leaq __camellia_enc_blk32, %r9;
1383 
1384         jmp camellia_xts_crypt_32way;
1385 ENDPROC(camellia_xts_enc_32way)
1386 
1387 ENTRY(camellia_xts_dec_32way)
1388         /* input:
1389          *      %rdi: ctx, CTX
1390          *      %rsi: dst (32 blocks)
1391          *      %rdx: src (32 blocks)
1392          *      %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1393          */
1394 
1395         cmpl $16, key_length(CTX);
1396         movl $32, %r8d;
1397         movl $24, %eax;
1398         cmovel %eax, %r8d;  /* input whitening key, last for dec */
1399 
1400         leaq __camellia_dec_blk32, %r9;
1401 
1402         jmp camellia_xts_crypt_32way;
1403 ENDPROC(camellia_xts_dec_32way)

/* [<][>][^][v][top][bottom][index][help] */