root/arch/x86/include/asm/segment.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. vdso_encode_cpunode
  2. vdso_read_cpunode
  3. __loadsegment_fs

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 #ifndef _ASM_X86_SEGMENT_H
   3 #define _ASM_X86_SEGMENT_H
   4 
   5 #include <linux/const.h>
   6 #include <asm/alternative.h>
   7 
   8 /*
   9  * Constructor for a conventional segment GDT (or LDT) entry.
  10  * This is a macro so it can be used in initializers.
  11  */
  12 #define GDT_ENTRY(flags, base, limit)                   \
  13         ((((base)  & _AC(0xff000000,ULL)) << (56-24)) | \
  14          (((flags) & _AC(0x0000f0ff,ULL)) << 40) |      \
  15          (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \
  16          (((base)  & _AC(0x00ffffff,ULL)) << 16) |      \
  17          (((limit) & _AC(0x0000ffff,ULL))))
  18 
  19 /* Simple and small GDT entries for booting only: */
  20 
  21 #define GDT_ENTRY_BOOT_CS       2
  22 #define GDT_ENTRY_BOOT_DS       3
  23 #define GDT_ENTRY_BOOT_TSS      4
  24 #define __BOOT_CS               (GDT_ENTRY_BOOT_CS*8)
  25 #define __BOOT_DS               (GDT_ENTRY_BOOT_DS*8)
  26 #define __BOOT_TSS              (GDT_ENTRY_BOOT_TSS*8)
  27 
  28 /*
  29  * Bottom two bits of selector give the ring
  30  * privilege level
  31  */
  32 #define SEGMENT_RPL_MASK        0x3
  33 
  34 /*
  35  * When running on Xen PV, the actual privilege level of the kernel is 1,
  36  * not 0. Testing the Requested Privilege Level in a segment selector to
  37  * determine whether the context is user mode or kernel mode with
  38  * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level
  39  * matches the 0x3 mask.
  40  *
  41  * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV
  42  * kernels because privilege level 2 is never used.
  43  */
  44 #define USER_SEGMENT_RPL_MASK   0x2
  45 
  46 /* User mode is privilege level 3: */
  47 #define USER_RPL                0x3
  48 
  49 /* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
  50 #define SEGMENT_TI_MASK         0x4
  51 /* LDT segment has TI set ... */
  52 #define SEGMENT_LDT             0x4
  53 /* ... GDT has it cleared */
  54 #define SEGMENT_GDT             0x0
  55 
  56 #define GDT_ENTRY_INVALID_SEG   0
  57 
  58 #ifdef CONFIG_X86_32
  59 /*
  60  * The layout of the per-CPU GDT under Linux:
  61  *
  62  *   0 - null                                                           <=== cacheline #1
  63  *   1 - reserved
  64  *   2 - reserved
  65  *   3 - reserved
  66  *
  67  *   4 - unused                                                         <=== cacheline #2
  68  *   5 - unused
  69  *
  70  *  ------- start of TLS (Thread-Local Storage) segments:
  71  *
  72  *   6 - TLS segment #1                 [ glibc's TLS segment ]
  73  *   7 - TLS segment #2                 [ Wine's %fs Win32 segment ]
  74  *   8 - TLS segment #3                                                 <=== cacheline #3
  75  *   9 - reserved
  76  *  10 - reserved
  77  *  11 - reserved
  78  *
  79  *  ------- start of kernel segments:
  80  *
  81  *  12 - kernel code segment                                            <=== cacheline #4
  82  *  13 - kernel data segment
  83  *  14 - default user CS
  84  *  15 - default user DS
  85  *  16 - TSS                                                            <=== cacheline #5
  86  *  17 - LDT
  87  *  18 - PNPBIOS support (16->32 gate)
  88  *  19 - PNPBIOS support
  89  *  20 - PNPBIOS support                                                <=== cacheline #6
  90  *  21 - PNPBIOS support
  91  *  22 - PNPBIOS support
  92  *  23 - APM BIOS support
  93  *  24 - APM BIOS support                                               <=== cacheline #7
  94  *  25 - APM BIOS support
  95  *
  96  *  26 - ESPFIX small SS
  97  *  27 - per-cpu                        [ offset to per-cpu data area ]
  98  *  28 - stack_canary-20                [ for stack protector ]         <=== cacheline #8
  99  *  29 - unused
 100  *  30 - unused
 101  *  31 - TSS for double fault handler
 102  */
 103 #define GDT_ENTRY_TLS_MIN               6
 104 #define GDT_ENTRY_TLS_MAX               (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
 105 
 106 #define GDT_ENTRY_KERNEL_CS             12
 107 #define GDT_ENTRY_KERNEL_DS             13
 108 #define GDT_ENTRY_DEFAULT_USER_CS       14
 109 #define GDT_ENTRY_DEFAULT_USER_DS       15
 110 #define GDT_ENTRY_TSS                   16
 111 #define GDT_ENTRY_LDT                   17
 112 #define GDT_ENTRY_PNPBIOS_CS32          18
 113 #define GDT_ENTRY_PNPBIOS_CS16          19
 114 #define GDT_ENTRY_PNPBIOS_DS            20
 115 #define GDT_ENTRY_PNPBIOS_TS1           21
 116 #define GDT_ENTRY_PNPBIOS_TS2           22
 117 #define GDT_ENTRY_APMBIOS_BASE          23
 118 
 119 #define GDT_ENTRY_ESPFIX_SS             26
 120 #define GDT_ENTRY_PERCPU                27
 121 #define GDT_ENTRY_STACK_CANARY          28
 122 
 123 #define GDT_ENTRY_DOUBLEFAULT_TSS       31
 124 
 125 /*
 126  * Number of entries in the GDT table:
 127  */
 128 #define GDT_ENTRIES                     32
 129 
 130 /*
 131  * Segment selector values corresponding to the above entries:
 132  */
 133 
 134 #define __KERNEL_CS                     (GDT_ENTRY_KERNEL_CS*8)
 135 #define __KERNEL_DS                     (GDT_ENTRY_KERNEL_DS*8)
 136 #define __USER_DS                       (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
 137 #define __USER_CS                       (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
 138 #define __ESPFIX_SS                     (GDT_ENTRY_ESPFIX_SS*8)
 139 
 140 /* segment for calling fn: */
 141 #define PNP_CS32                        (GDT_ENTRY_PNPBIOS_CS32*8)
 142 /* code segment for BIOS: */
 143 #define PNP_CS16                        (GDT_ENTRY_PNPBIOS_CS16*8)
 144 
 145 /* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
 146 #define SEGMENT_IS_PNP_CODE(x)          (((x) & 0xf4) == PNP_CS32)
 147 
 148 /* data segment for BIOS: */
 149 #define PNP_DS                          (GDT_ENTRY_PNPBIOS_DS*8)
 150 /* transfer data segment: */
 151 #define PNP_TS1                         (GDT_ENTRY_PNPBIOS_TS1*8)
 152 /* another data segment: */
 153 #define PNP_TS2                         (GDT_ENTRY_PNPBIOS_TS2*8)
 154 
 155 #ifdef CONFIG_SMP
 156 # define __KERNEL_PERCPU                (GDT_ENTRY_PERCPU*8)
 157 #else
 158 # define __KERNEL_PERCPU                0
 159 #endif
 160 
 161 #ifdef CONFIG_STACKPROTECTOR
 162 # define __KERNEL_STACK_CANARY          (GDT_ENTRY_STACK_CANARY*8)
 163 #else
 164 # define __KERNEL_STACK_CANARY          0
 165 #endif
 166 
 167 #else /* 64-bit: */
 168 
 169 #include <asm/cache.h>
 170 
 171 #define GDT_ENTRY_KERNEL32_CS           1
 172 #define GDT_ENTRY_KERNEL_CS             2
 173 #define GDT_ENTRY_KERNEL_DS             3
 174 
 175 /*
 176  * We cannot use the same code segment descriptor for user and kernel mode,
 177  * not even in long flat mode, because of different DPL.
 178  *
 179  * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
 180  * selectors:
 181  *
 182  *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
 183  *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
 184  *
 185  * ss = STAR.SYSRET_CS+8 (in either case)
 186  *
 187  * thus USER_DS should be between 32-bit and 64-bit code selectors:
 188  */
 189 #define GDT_ENTRY_DEFAULT_USER32_CS     4
 190 #define GDT_ENTRY_DEFAULT_USER_DS       5
 191 #define GDT_ENTRY_DEFAULT_USER_CS       6
 192 
 193 /* Needs two entries */
 194 #define GDT_ENTRY_TSS                   8
 195 /* Needs two entries */
 196 #define GDT_ENTRY_LDT                   10
 197 
 198 #define GDT_ENTRY_TLS_MIN               12
 199 #define GDT_ENTRY_TLS_MAX               14
 200 
 201 #define GDT_ENTRY_CPUNODE               15
 202 
 203 /*
 204  * Number of entries in the GDT table:
 205  */
 206 #define GDT_ENTRIES                     16
 207 
 208 /*
 209  * Segment selector values corresponding to the above entries:
 210  *
 211  * Note, selectors also need to have a correct RPL,
 212  * expressed with the +3 value for user-space selectors:
 213  */
 214 #define __KERNEL32_CS                   (GDT_ENTRY_KERNEL32_CS*8)
 215 #define __KERNEL_CS                     (GDT_ENTRY_KERNEL_CS*8)
 216 #define __KERNEL_DS                     (GDT_ENTRY_KERNEL_DS*8)
 217 #define __USER32_CS                     (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
 218 #define __USER_DS                       (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
 219 #define __USER32_DS                     __USER_DS
 220 #define __USER_CS                       (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
 221 #define __CPUNODE_SEG                   (GDT_ENTRY_CPUNODE*8 + 3)
 222 
 223 #endif
 224 
 225 #ifndef CONFIG_PARAVIRT_XXL
 226 # define get_kernel_rpl()               0
 227 #endif
 228 
 229 #define IDT_ENTRIES                     256
 230 #define NUM_EXCEPTION_VECTORS           32
 231 
 232 /* Bitmask of exception vectors which push an error code on the stack: */
 233 #define EXCEPTION_ERRCODE_MASK          0x00027d00
 234 
 235 #define GDT_SIZE                        (GDT_ENTRIES*8)
 236 #define GDT_ENTRY_TLS_ENTRIES           3
 237 #define TLS_SIZE                        (GDT_ENTRY_TLS_ENTRIES* 8)
 238 
 239 #ifdef CONFIG_X86_64
 240 
 241 /* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */
 242 #define VDSO_CPUNODE_BITS               12
 243 #define VDSO_CPUNODE_MASK               0xfff
 244 
 245 #ifndef __ASSEMBLY__
 246 
 247 /* Helper functions to store/load CPU and node numbers */
 248 
 249 static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node)
 250 {
 251         return (node << VDSO_CPUNODE_BITS) | cpu;
 252 }
 253 
 254 static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node)
 255 {
 256         unsigned int p;
 257 
 258         /*
 259          * Load CPU and node number from the GDT.  LSL is faster than RDTSCP
 260          * and works on all CPUs.  This is volatile so that it orders
 261          * correctly with respect to barrier() and to keep GCC from cleverly
 262          * hoisting it out of the calling function.
 263          *
 264          * If RDPID is available, use it.
 265          */
 266         alternative_io ("lsl %[seg],%[p]",
 267                         ".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */
 268                         X86_FEATURE_RDPID,
 269                         [p] "=a" (p), [seg] "r" (__CPUNODE_SEG));
 270 
 271         if (cpu)
 272                 *cpu = (p & VDSO_CPUNODE_MASK);
 273         if (node)
 274                 *node = (p >> VDSO_CPUNODE_BITS);
 275 }
 276 
 277 #endif /* !__ASSEMBLY__ */
 278 #endif /* CONFIG_X86_64 */
 279 
 280 #ifdef __KERNEL__
 281 
 282 /*
 283  * early_idt_handler_array is an array of entry points referenced in the
 284  * early IDT.  For simplicity, it's a real array with one entry point
 285  * every nine bytes.  That leaves room for an optional 'push $0' if the
 286  * vector has no error code (two bytes), a 'push $vector_number' (two
 287  * bytes), and a jump to the common entry code (up to five bytes).
 288  */
 289 #define EARLY_IDT_HANDLER_SIZE 9
 290 
 291 /*
 292  * xen_early_idt_handler_array is for Xen pv guests: for each entry in
 293  * early_idt_handler_array it contains a prequel in the form of
 294  * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
 295  * max 8 bytes.
 296  */
 297 #define XEN_EARLY_IDT_HANDLER_SIZE 8
 298 
 299 #ifndef __ASSEMBLY__
 300 
 301 extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
 302 extern void early_ignore_irq(void);
 303 
 304 #if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV)
 305 extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
 306 #endif
 307 
 308 /*
 309  * Load a segment. Fall back on loading the zero segment if something goes
 310  * wrong.  This variant assumes that loading zero fully clears the segment.
 311  * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
 312  * failure to fully clear the cached descriptor is only observable for
 313  * FS and GS.
 314  */
 315 #define __loadsegment_simple(seg, value)                                \
 316 do {                                                                    \
 317         unsigned short __val = (value);                                 \
 318                                                                         \
 319         asm volatile("                                          \n"     \
 320                      "1:        movl %k0,%%" #seg "             \n"     \
 321                                                                         \
 322                      ".section .fixup,\"ax\"                    \n"     \
 323                      "2:        xorl %k0,%k0                    \n"     \
 324                      "          jmp 1b                          \n"     \
 325                      ".previous                                 \n"     \
 326                                                                         \
 327                      _ASM_EXTABLE(1b, 2b)                               \
 328                                                                         \
 329                      : "+r" (__val) : : "memory");                      \
 330 } while (0)
 331 
 332 #define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
 333 #define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
 334 #define __loadsegment_es(value) __loadsegment_simple(es, (value))
 335 
 336 #ifdef CONFIG_X86_32
 337 
 338 /*
 339  * On 32-bit systems, the hidden parts of FS and GS are unobservable if
 340  * the selector is NULL, so there's no funny business here.
 341  */
 342 #define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
 343 #define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
 344 
 345 #else
 346 
 347 static inline void __loadsegment_fs(unsigned short value)
 348 {
 349         asm volatile("                                          \n"
 350                      "1:        movw %0, %%fs                   \n"
 351                      "2:                                        \n"
 352 
 353                      _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
 354 
 355                      : : "rm" (value) : "memory");
 356 }
 357 
 358 /* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
 359 
 360 #endif
 361 
 362 #define loadsegment(seg, value) __loadsegment_ ## seg (value)
 363 
 364 /*
 365  * Save a segment register away:
 366  */
 367 #define savesegment(seg, value)                         \
 368         asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
 369 
 370 /*
 371  * x86-32 user GS accessors:
 372  */
 373 #ifdef CONFIG_X86_32
 374 # ifdef CONFIG_X86_32_LAZY_GS
 375 #  define get_user_gs(regs)             (u16)({ unsigned long v; savesegment(gs, v); v; })
 376 #  define set_user_gs(regs, v)          loadsegment(gs, (unsigned long)(v))
 377 #  define task_user_gs(tsk)             ((tsk)->thread.gs)
 378 #  define lazy_save_gs(v)               savesegment(gs, (v))
 379 #  define lazy_load_gs(v)               loadsegment(gs, (v))
 380 # else  /* X86_32_LAZY_GS */
 381 #  define get_user_gs(regs)             (u16)((regs)->gs)
 382 #  define set_user_gs(regs, v)          do { (regs)->gs = (v); } while (0)
 383 #  define task_user_gs(tsk)             (task_pt_regs(tsk)->gs)
 384 #  define lazy_save_gs(v)               do { } while (0)
 385 #  define lazy_load_gs(v)               do { } while (0)
 386 # endif /* X86_32_LAZY_GS */
 387 #endif  /* X86_32 */
 388 
 389 #endif /* !__ASSEMBLY__ */
 390 #endif /* __KERNEL__ */
 391 
 392 #endif /* _ASM_X86_SEGMENT_H */

/* [<][>][^][v][top][bottom][index][help] */