root/arch/c6x/kernel/setup.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_cpuinfo
  2. early_mem
  3. early_memdma
  4. c6x_add_memory
  5. machine_init
  6. setup_arch
  7. show_cpuinfo
  8. c_start
  9. c_next
  10. c_stop
  11. topology_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  Port on Texas Instruments TMS320C6x architecture
   4  *
   5  *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
   6  *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
   7  */
   8 #include <linux/dma-mapping.h>
   9 #include <linux/memblock.h>
  10 #include <linux/seq_file.h>
  11 #include <linux/clkdev.h>
  12 #include <linux/initrd.h>
  13 #include <linux/kernel.h>
  14 #include <linux/module.h>
  15 #include <linux/of_fdt.h>
  16 #include <linux/string.h>
  17 #include <linux/errno.h>
  18 #include <linux/cache.h>
  19 #include <linux/delay.h>
  20 #include <linux/sched.h>
  21 #include <linux/clk.h>
  22 #include <linux/cpu.h>
  23 #include <linux/fs.h>
  24 #include <linux/of.h>
  25 #include <linux/console.h>
  26 #include <linux/screen_info.h>
  27 
  28 #include <asm/sections.h>
  29 #include <asm/div64.h>
  30 #include <asm/setup.h>
  31 #include <asm/dscr.h>
  32 #include <asm/clock.h>
  33 #include <asm/soc.h>
  34 #include <asm/special_insns.h>
  35 
  36 static const char *c6x_soc_name;
  37 
  38 struct screen_info screen_info;
  39 
  40 int c6x_num_cores;
  41 EXPORT_SYMBOL_GPL(c6x_num_cores);
  42 
  43 unsigned int c6x_silicon_rev;
  44 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
  45 
  46 /*
  47  * Device status register. This holds information
  48  * about device configuration needed by some drivers.
  49  */
  50 unsigned int c6x_devstat;
  51 EXPORT_SYMBOL_GPL(c6x_devstat);
  52 
  53 /*
  54  * Some SoCs have fuse registers holding a unique MAC
  55  * address. This is parsed out of the device tree with
  56  * the resulting MAC being held here.
  57  */
  58 unsigned char c6x_fuse_mac[6];
  59 
  60 unsigned long memory_start;
  61 unsigned long memory_end;
  62 EXPORT_SYMBOL(memory_end);
  63 
  64 unsigned long ram_start;
  65 unsigned long ram_end;
  66 
  67 /* Uncached memory for DMA consistent use (memdma=) */
  68 static unsigned long dma_start __initdata;
  69 static unsigned long dma_size __initdata;
  70 
  71 struct cpuinfo_c6x {
  72         const char *cpu_name;
  73         const char *cpu_voltage;
  74         const char *mmu;
  75         const char *fpu;
  76         char *cpu_rev;
  77         unsigned int core_id;
  78         char __cpu_rev[5];
  79 };
  80 
  81 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
  82 
  83 unsigned int ticks_per_ns_scaled;
  84 EXPORT_SYMBOL(ticks_per_ns_scaled);
  85 
  86 unsigned int c6x_core_freq;
  87 
  88 static void __init get_cpuinfo(void)
  89 {
  90         unsigned cpu_id, rev_id, csr;
  91         struct clk *coreclk = clk_get_sys(NULL, "core");
  92         unsigned long core_khz;
  93         u64 tmp;
  94         struct cpuinfo_c6x *p;
  95         struct device_node *node;
  96 
  97         p = &per_cpu(cpu_data, smp_processor_id());
  98 
  99         if (!IS_ERR(coreclk))
 100                 c6x_core_freq = clk_get_rate(coreclk);
 101         else {
 102                 printk(KERN_WARNING
 103                        "Cannot find core clock frequency. Using 700MHz\n");
 104                 c6x_core_freq = 700000000;
 105         }
 106 
 107         core_khz = c6x_core_freq / 1000;
 108 
 109         tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
 110         do_div(tmp, 1000000);
 111         ticks_per_ns_scaled = tmp;
 112 
 113         csr = get_creg(CSR);
 114         cpu_id = csr >> 24;
 115         rev_id = (csr >> 16) & 0xff;
 116 
 117         p->mmu = "none";
 118         p->fpu = "none";
 119         p->cpu_voltage = "unknown";
 120 
 121         switch (cpu_id) {
 122         case 0:
 123                 p->cpu_name = "C67x";
 124                 p->fpu = "yes";
 125                 break;
 126         case 2:
 127                 p->cpu_name = "C62x";
 128                 break;
 129         case 8:
 130                 p->cpu_name = "C64x";
 131                 break;
 132         case 12:
 133                 p->cpu_name = "C64x";
 134                 break;
 135         case 16:
 136                 p->cpu_name = "C64x+";
 137                 p->cpu_voltage = "1.2";
 138                 break;
 139         case 21:
 140                 p->cpu_name = "C66X";
 141                 p->cpu_voltage = "1.2";
 142                 break;
 143         default:
 144                 p->cpu_name = "unknown";
 145                 break;
 146         }
 147 
 148         if (cpu_id < 16) {
 149                 switch (rev_id) {
 150                 case 0x1:
 151                         if (cpu_id > 8) {
 152                                 p->cpu_rev = "DM640/DM641/DM642/DM643";
 153                                 p->cpu_voltage = "1.2 - 1.4";
 154                         } else {
 155                                 p->cpu_rev = "C6201";
 156                                 p->cpu_voltage = "2.5";
 157                         }
 158                         break;
 159                 case 0x2:
 160                         p->cpu_rev = "C6201B/C6202/C6211";
 161                         p->cpu_voltage = "1.8";
 162                         break;
 163                 case 0x3:
 164                         p->cpu_rev = "C6202B/C6203/C6204/C6205";
 165                         p->cpu_voltage = "1.5";
 166                         break;
 167                 case 0x201:
 168                         p->cpu_rev = "C6701 revision 0 (early CPU)";
 169                         p->cpu_voltage = "1.8";
 170                         break;
 171                 case 0x202:
 172                         p->cpu_rev = "C6701/C6711/C6712";
 173                         p->cpu_voltage = "1.8";
 174                         break;
 175                 case 0x801:
 176                         p->cpu_rev = "C64x";
 177                         p->cpu_voltage = "1.5";
 178                         break;
 179                 default:
 180                         p->cpu_rev = "unknown";
 181                 }
 182         } else {
 183                 p->cpu_rev = p->__cpu_rev;
 184                 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
 185         }
 186 
 187         p->core_id = get_coreid();
 188 
 189         for_each_of_cpu_node(node)
 190                 ++c6x_num_cores;
 191 
 192         node = of_find_node_by_name(NULL, "soc");
 193         if (node) {
 194                 if (of_property_read_string(node, "model", &c6x_soc_name))
 195                         c6x_soc_name = "unknown";
 196                 of_node_put(node);
 197         } else
 198                 c6x_soc_name = "unknown";
 199 
 200         printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
 201                p->core_id, p->cpu_name, p->cpu_rev,
 202                p->cpu_voltage, c6x_core_freq / 1000000);
 203 }
 204 
 205 /*
 206  * Early parsing of the command line
 207  */
 208 static u32 mem_size __initdata;
 209 
 210 /* "mem=" parsing. */
 211 static int __init early_mem(char *p)
 212 {
 213         if (!p)
 214                 return -EINVAL;
 215 
 216         mem_size = memparse(p, &p);
 217         /* don't remove all of memory when handling "mem={invalid}" */
 218         if (mem_size == 0)
 219                 return -EINVAL;
 220 
 221         return 0;
 222 }
 223 early_param("mem", early_mem);
 224 
 225 /* "memdma=<size>[@<address>]" parsing. */
 226 static int __init early_memdma(char *p)
 227 {
 228         if (!p)
 229                 return -EINVAL;
 230 
 231         dma_size = memparse(p, &p);
 232         if (*p == '@')
 233                 dma_start = memparse(p, &p);
 234 
 235         return 0;
 236 }
 237 early_param("memdma", early_memdma);
 238 
 239 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
 240 {
 241         static int ram_found __initdata;
 242 
 243         /* We only handle one bank (the one with PAGE_OFFSET) for now */
 244         if (ram_found)
 245                 return -EINVAL;
 246 
 247         if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
 248                 return 0;
 249 
 250         ram_start = start;
 251         ram_end = start + size;
 252 
 253         ram_found = 1;
 254         return 0;
 255 }
 256 
 257 /*
 258  * Do early machine setup and device tree parsing. This is called very
 259  * early on the boot process.
 260  */
 261 notrace void __init machine_init(unsigned long dt_ptr)
 262 {
 263         void *dtb = __va(dt_ptr);
 264         void *fdt = __dtb_start;
 265 
 266         /* interrupts must be masked */
 267         set_creg(IER, 2);
 268 
 269         /*
 270          * Set the Interrupt Service Table (IST) to the beginning of the
 271          * vector table.
 272          */
 273         set_ist(_vectors_start);
 274 
 275         /*
 276          * dtb is passed in from bootloader.
 277          * fdt is linked in blob.
 278          */
 279         if (dtb && dtb != fdt)
 280                 fdt = dtb;
 281 
 282         /* Do some early initialization based on the flat device tree */
 283         early_init_dt_scan(fdt);
 284 
 285         parse_early_param();
 286 }
 287 
 288 void __init setup_arch(char **cmdline_p)
 289 {
 290         struct memblock_region *reg;
 291 
 292         printk(KERN_INFO "Initializing kernel\n");
 293 
 294         /* Initialize command line */
 295         *cmdline_p = boot_command_line;
 296 
 297         memory_end = ram_end;
 298         memory_end &= ~(PAGE_SIZE - 1);
 299 
 300         if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
 301                 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
 302 
 303         /* add block that this kernel can use */
 304         memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
 305 
 306         /* reserve kernel text/data/bss */
 307         memblock_reserve(PAGE_OFFSET,
 308                          PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
 309 
 310         if (dma_size) {
 311                 /* align to cacheability granularity */
 312                 dma_size = CACHE_REGION_END(dma_size);
 313 
 314                 if (!dma_start)
 315                         dma_start = memory_end - dma_size;
 316 
 317                 /* align to cacheability granularity */
 318                 dma_start = CACHE_REGION_START(dma_start);
 319 
 320                 /* reserve DMA memory taken from kernel memory */
 321                 if (memblock_is_region_memory(dma_start, dma_size))
 322                         memblock_reserve(dma_start, dma_size);
 323         }
 324 
 325         memory_start = PAGE_ALIGN((unsigned int) &_end);
 326 
 327         printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
 328                memory_start, memory_end);
 329 
 330 #ifdef CONFIG_BLK_DEV_INITRD
 331         /*
 332          * Reserve initrd memory if in kernel memory.
 333          */
 334         if (initrd_start < initrd_end)
 335                 if (memblock_is_region_memory(initrd_start,
 336                                               initrd_end - initrd_start))
 337                         memblock_reserve(initrd_start,
 338                                          initrd_end - initrd_start);
 339 #endif
 340 
 341         init_mm.start_code = (unsigned long) &_stext;
 342         init_mm.end_code   = (unsigned long) &_etext;
 343         init_mm.end_data   = memory_start;
 344         init_mm.brk        = memory_start;
 345 
 346         unflatten_and_copy_device_tree();
 347 
 348         c6x_cache_init();
 349 
 350         /* Set the whole external memory as non-cacheable */
 351         disable_caching(ram_start, ram_end - 1);
 352 
 353         /* Set caching of external RAM used by Linux */
 354         for_each_memblock(memory, reg)
 355                 enable_caching(CACHE_REGION_START(reg->base),
 356                                CACHE_REGION_START(reg->base + reg->size - 1));
 357 
 358 #ifdef CONFIG_BLK_DEV_INITRD
 359         /*
 360          * Enable caching for initrd which falls outside kernel memory.
 361          */
 362         if (initrd_start < initrd_end) {
 363                 if (!memblock_is_region_memory(initrd_start,
 364                                                initrd_end - initrd_start))
 365                         enable_caching(CACHE_REGION_START(initrd_start),
 366                                        CACHE_REGION_START(initrd_end - 1));
 367         }
 368 #endif
 369 
 370         /*
 371          * Disable caching for dma coherent memory taken from kernel memory.
 372          */
 373         if (dma_size && memblock_is_region_memory(dma_start, dma_size))
 374                 disable_caching(dma_start,
 375                                 CACHE_REGION_START(dma_start + dma_size - 1));
 376 
 377         /* Initialize the coherent memory allocator */
 378         coherent_mem_init(dma_start, dma_size);
 379 
 380         max_low_pfn = PFN_DOWN(memory_end);
 381         min_low_pfn = PFN_UP(memory_start);
 382         max_pfn = max_low_pfn;
 383         max_mapnr = max_low_pfn - min_low_pfn;
 384 
 385         /* Get kmalloc into gear */
 386         paging_init();
 387 
 388         /*
 389          * Probe for Device State Configuration Registers.
 390          * We have to do this early in case timer needs to be enabled
 391          * through DSCR.
 392          */
 393         dscr_probe();
 394 
 395         /* We do this early for timer and core clock frequency */
 396         c64x_setup_clocks();
 397 
 398         /* Get CPU info */
 399         get_cpuinfo();
 400 
 401 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
 402         conswitchp = &dummy_con;
 403 #endif
 404 }
 405 
 406 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
 407 #define ptr_to_cpu(p) ((long)(p) - 1)
 408 
 409 static int show_cpuinfo(struct seq_file *m, void *v)
 410 {
 411         int n = ptr_to_cpu(v);
 412         struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
 413 
 414         if (n == 0) {
 415                 seq_printf(m,
 416                            "soc\t\t: %s\n"
 417                            "soc revision\t: 0x%x\n"
 418                            "soc cores\t: %d\n",
 419                            c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
 420         }
 421 
 422         seq_printf(m,
 423                    "\n"
 424                    "processor\t: %d\n"
 425                    "cpu\t\t: %s\n"
 426                    "core revision\t: %s\n"
 427                    "core voltage\t: %s\n"
 428                    "core id\t\t: %d\n"
 429                    "mmu\t\t: %s\n"
 430                    "fpu\t\t: %s\n"
 431                    "cpu MHz\t\t: %u\n"
 432                    "bogomips\t: %lu.%02lu\n\n",
 433                    n,
 434                    p->cpu_name, p->cpu_rev, p->cpu_voltage,
 435                    p->core_id, p->mmu, p->fpu,
 436                    (c6x_core_freq + 500000) / 1000000,
 437                    (loops_per_jiffy/(500000/HZ)),
 438                    (loops_per_jiffy/(5000/HZ))%100);
 439 
 440         return 0;
 441 }
 442 
 443 static void *c_start(struct seq_file *m, loff_t *pos)
 444 {
 445         return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
 446 }
 447 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
 448 {
 449         ++*pos;
 450         return NULL;
 451 }
 452 static void c_stop(struct seq_file *m, void *v)
 453 {
 454 }
 455 
 456 const struct seq_operations cpuinfo_op = {
 457         c_start,
 458         c_stop,
 459         c_next,
 460         show_cpuinfo
 461 };
 462 
 463 static struct cpu cpu_devices[NR_CPUS];
 464 
 465 static int __init topology_init(void)
 466 {
 467         int i;
 468 
 469         for_each_present_cpu(i)
 470                 register_cpu(&cpu_devices[i], i);
 471 
 472         return 0;
 473 }
 474 
 475 subsys_initcall(topology_init);

/* [<][>][^][v][top][bottom][index][help] */