root/arch/x86/include/asm/tlbflush.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. kern_pcid
  2. user_pcid
  3. build_cr3
  4. build_cr3_noflush
  5. nmi_uaccess_okay
  6. cr4_init_shadow
  7. __cr4_set
  8. cr4_set_bits_irqsoff
  9. cr4_clear_bits_irqsoff
  10. cr4_set_bits
  11. cr4_clear_bits
  12. cr4_toggle_bits_irqsoff
  13. cr4_read_shadow
  14. invalidate_other_asid
  15. cr4_set_bits_and_update_boot
  16. invalidate_user_asid
  17. __native_flush_tlb
  18. __native_flush_tlb_global
  19. __native_flush_tlb_one_user
  20. __flush_tlb_all
  21. __flush_tlb_one_kernel
  22. flush_tlb_page
  23. inc_mm_tlb_gen
  24. arch_tlbbatch_add_mm

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 #ifndef _ASM_X86_TLBFLUSH_H
   3 #define _ASM_X86_TLBFLUSH_H
   4 
   5 #include <linux/mm.h>
   6 #include <linux/sched.h>
   7 
   8 #include <asm/processor.h>
   9 #include <asm/cpufeature.h>
  10 #include <asm/special_insns.h>
  11 #include <asm/smp.h>
  12 #include <asm/invpcid.h>
  13 #include <asm/pti.h>
  14 #include <asm/processor-flags.h>
  15 
  16 /*
  17  * The x86 feature is called PCID (Process Context IDentifier). It is similar
  18  * to what is traditionally called ASID on the RISC processors.
  19  *
  20  * We don't use the traditional ASID implementation, where each process/mm gets
  21  * its own ASID and flush/restart when we run out of ASID space.
  22  *
  23  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
  24  * that came by on this CPU, allowing cheaper switch_mm between processes on
  25  * this CPU.
  26  *
  27  * We end up with different spaces for different things. To avoid confusion we
  28  * use different names for each of them:
  29  *
  30  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
  31  *         the canonical identifier for an mm
  32  *
  33  * kPCID - [1, TLB_NR_DYN_ASIDS]
  34  *         the value we write into the PCID part of CR3; corresponds to the
  35  *         ASID+1, because PCID 0 is special.
  36  *
  37  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
  38  *         for KPTI each mm has two address spaces and thus needs two
  39  *         PCID values, but we can still do with a single ASID denomination
  40  *         for each mm. Corresponds to kPCID + 2048.
  41  *
  42  */
  43 
  44 /* There are 12 bits of space for ASIDS in CR3 */
  45 #define CR3_HW_ASID_BITS                12
  46 
  47 /*
  48  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  49  * user/kernel switches
  50  */
  51 #ifdef CONFIG_PAGE_TABLE_ISOLATION
  52 # define PTI_CONSUMED_PCID_BITS 1
  53 #else
  54 # define PTI_CONSUMED_PCID_BITS 0
  55 #endif
  56 
  57 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
  58 
  59 /*
  60  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
  61  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
  62  * use by non-PCID-aware users.
  63  */
  64 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
  65 
  66 /*
  67  * 6 because 6 should be plenty and struct tlb_state will fit in two cache
  68  * lines.
  69  */
  70 #define TLB_NR_DYN_ASIDS        6
  71 
  72 /*
  73  * Given @asid, compute kPCID
  74  */
  75 static inline u16 kern_pcid(u16 asid)
  76 {
  77         VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
  78 
  79 #ifdef CONFIG_PAGE_TABLE_ISOLATION
  80         /*
  81          * Make sure that the dynamic ASID space does not confict with the
  82          * bit we are using to switch between user and kernel ASIDs.
  83          */
  84         BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
  85 
  86         /*
  87          * The ASID being passed in here should have respected the
  88          * MAX_ASID_AVAILABLE and thus never have the switch bit set.
  89          */
  90         VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
  91 #endif
  92         /*
  93          * The dynamically-assigned ASIDs that get passed in are small
  94          * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
  95          * so do not bother to clear it.
  96          *
  97          * If PCID is on, ASID-aware code paths put the ASID+1 into the
  98          * PCID bits.  This serves two purposes.  It prevents a nasty
  99          * situation in which PCID-unaware code saves CR3, loads some other
 100          * value (with PCID == 0), and then restores CR3, thus corrupting
 101          * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
 102          * that any bugs involving loading a PCID-enabled CR3 with
 103          * CR4.PCIDE off will trigger deterministically.
 104          */
 105         return asid + 1;
 106 }
 107 
 108 /*
 109  * Given @asid, compute uPCID
 110  */
 111 static inline u16 user_pcid(u16 asid)
 112 {
 113         u16 ret = kern_pcid(asid);
 114 #ifdef CONFIG_PAGE_TABLE_ISOLATION
 115         ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
 116 #endif
 117         return ret;
 118 }
 119 
 120 struct pgd_t;
 121 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
 122 {
 123         if (static_cpu_has(X86_FEATURE_PCID)) {
 124                 return __sme_pa(pgd) | kern_pcid(asid);
 125         } else {
 126                 VM_WARN_ON_ONCE(asid != 0);
 127                 return __sme_pa(pgd);
 128         }
 129 }
 130 
 131 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
 132 {
 133         VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 134         /*
 135          * Use boot_cpu_has() instead of this_cpu_has() as this function
 136          * might be called during early boot. This should work even after
 137          * boot because all CPU's the have same capabilities:
 138          */
 139         VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
 140         return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
 141 }
 142 
 143 #ifdef CONFIG_PARAVIRT
 144 #include <asm/paravirt.h>
 145 #else
 146 #define __flush_tlb() __native_flush_tlb()
 147 #define __flush_tlb_global() __native_flush_tlb_global()
 148 #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
 149 #endif
 150 
 151 struct tlb_context {
 152         u64 ctx_id;
 153         u64 tlb_gen;
 154 };
 155 
 156 struct tlb_state {
 157         /*
 158          * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
 159          * are on.  This means that it may not match current->active_mm,
 160          * which will contain the previous user mm when we're in lazy TLB
 161          * mode even if we've already switched back to swapper_pg_dir.
 162          *
 163          * During switch_mm_irqs_off(), loaded_mm will be set to
 164          * LOADED_MM_SWITCHING during the brief interrupts-off window
 165          * when CR3 and loaded_mm would otherwise be inconsistent.  This
 166          * is for nmi_uaccess_okay()'s benefit.
 167          */
 168         struct mm_struct *loaded_mm;
 169 
 170 #define LOADED_MM_SWITCHING ((struct mm_struct *)1UL)
 171 
 172         /* Last user mm for optimizing IBPB */
 173         union {
 174                 struct mm_struct        *last_user_mm;
 175                 unsigned long           last_user_mm_ibpb;
 176         };
 177 
 178         u16 loaded_mm_asid;
 179         u16 next_asid;
 180 
 181         /*
 182          * We can be in one of several states:
 183          *
 184          *  - Actively using an mm.  Our CPU's bit will be set in
 185          *    mm_cpumask(loaded_mm) and is_lazy == false;
 186          *
 187          *  - Not using a real mm.  loaded_mm == &init_mm.  Our CPU's bit
 188          *    will not be set in mm_cpumask(&init_mm) and is_lazy == false.
 189          *
 190          *  - Lazily using a real mm.  loaded_mm != &init_mm, our bit
 191          *    is set in mm_cpumask(loaded_mm), but is_lazy == true.
 192          *    We're heuristically guessing that the CR3 load we
 193          *    skipped more than makes up for the overhead added by
 194          *    lazy mode.
 195          */
 196         bool is_lazy;
 197 
 198         /*
 199          * If set we changed the page tables in such a way that we
 200          * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
 201          * This tells us to go invalidate all the non-loaded ctxs[]
 202          * on the next context switch.
 203          *
 204          * The current ctx was kept up-to-date as it ran and does not
 205          * need to be invalidated.
 206          */
 207         bool invalidate_other;
 208 
 209         /*
 210          * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
 211          * the corresponding user PCID needs a flush next time we
 212          * switch to it; see SWITCH_TO_USER_CR3.
 213          */
 214         unsigned short user_pcid_flush_mask;
 215 
 216         /*
 217          * Access to this CR4 shadow and to H/W CR4 is protected by
 218          * disabling interrupts when modifying either one.
 219          */
 220         unsigned long cr4;
 221 
 222         /*
 223          * This is a list of all contexts that might exist in the TLB.
 224          * There is one per ASID that we use, and the ASID (what the
 225          * CPU calls PCID) is the index into ctxts.
 226          *
 227          * For each context, ctx_id indicates which mm the TLB's user
 228          * entries came from.  As an invariant, the TLB will never
 229          * contain entries that are out-of-date as when that mm reached
 230          * the tlb_gen in the list.
 231          *
 232          * To be clear, this means that it's legal for the TLB code to
 233          * flush the TLB without updating tlb_gen.  This can happen
 234          * (for now, at least) due to paravirt remote flushes.
 235          *
 236          * NB: context 0 is a bit special, since it's also used by
 237          * various bits of init code.  This is fine -- code that
 238          * isn't aware of PCID will end up harmlessly flushing
 239          * context 0.
 240          */
 241         struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
 242 };
 243 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
 244 
 245 /*
 246  * Blindly accessing user memory from NMI context can be dangerous
 247  * if we're in the middle of switching the current user task or
 248  * switching the loaded mm.  It can also be dangerous if we
 249  * interrupted some kernel code that was temporarily using a
 250  * different mm.
 251  */
 252 static inline bool nmi_uaccess_okay(void)
 253 {
 254         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 255         struct mm_struct *current_mm = current->mm;
 256 
 257         VM_WARN_ON_ONCE(!loaded_mm);
 258 
 259         /*
 260          * The condition we want to check is
 261          * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
 262          * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
 263          * is supposed to be reasonably fast.
 264          *
 265          * Instead, we check the almost equivalent but somewhat conservative
 266          * condition below, and we rely on the fact that switch_mm_irqs_off()
 267          * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
 268          */
 269         if (loaded_mm != current_mm)
 270                 return false;
 271 
 272         VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
 273 
 274         return true;
 275 }
 276 
 277 #define nmi_uaccess_okay nmi_uaccess_okay
 278 
 279 /* Initialize cr4 shadow for this CPU. */
 280 static inline void cr4_init_shadow(void)
 281 {
 282         this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
 283 }
 284 
 285 static inline void __cr4_set(unsigned long cr4)
 286 {
 287         lockdep_assert_irqs_disabled();
 288         this_cpu_write(cpu_tlbstate.cr4, cr4);
 289         __write_cr4(cr4);
 290 }
 291 
 292 /* Set in this cpu's CR4. */
 293 static inline void cr4_set_bits_irqsoff(unsigned long mask)
 294 {
 295         unsigned long cr4;
 296 
 297         cr4 = this_cpu_read(cpu_tlbstate.cr4);
 298         if ((cr4 | mask) != cr4)
 299                 __cr4_set(cr4 | mask);
 300 }
 301 
 302 /* Clear in this cpu's CR4. */
 303 static inline void cr4_clear_bits_irqsoff(unsigned long mask)
 304 {
 305         unsigned long cr4;
 306 
 307         cr4 = this_cpu_read(cpu_tlbstate.cr4);
 308         if ((cr4 & ~mask) != cr4)
 309                 __cr4_set(cr4 & ~mask);
 310 }
 311 
 312 /* Set in this cpu's CR4. */
 313 static inline void cr4_set_bits(unsigned long mask)
 314 {
 315         unsigned long flags;
 316 
 317         local_irq_save(flags);
 318         cr4_set_bits_irqsoff(mask);
 319         local_irq_restore(flags);
 320 }
 321 
 322 /* Clear in this cpu's CR4. */
 323 static inline void cr4_clear_bits(unsigned long mask)
 324 {
 325         unsigned long flags;
 326 
 327         local_irq_save(flags);
 328         cr4_clear_bits_irqsoff(mask);
 329         local_irq_restore(flags);
 330 }
 331 
 332 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 333 {
 334         unsigned long cr4;
 335 
 336         cr4 = this_cpu_read(cpu_tlbstate.cr4);
 337         __cr4_set(cr4 ^ mask);
 338 }
 339 
 340 /* Read the CR4 shadow. */
 341 static inline unsigned long cr4_read_shadow(void)
 342 {
 343         return this_cpu_read(cpu_tlbstate.cr4);
 344 }
 345 
 346 /*
 347  * Mark all other ASIDs as invalid, preserves the current.
 348  */
 349 static inline void invalidate_other_asid(void)
 350 {
 351         this_cpu_write(cpu_tlbstate.invalidate_other, true);
 352 }
 353 
 354 /*
 355  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
 356  * enable and PPro Global page enable), so that any CPU's that boot
 357  * up after us can get the correct flags.  This should only be used
 358  * during boot on the boot cpu.
 359  */
 360 extern unsigned long mmu_cr4_features;
 361 extern u32 *trampoline_cr4_features;
 362 
 363 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
 364 {
 365         mmu_cr4_features |= mask;
 366         if (trampoline_cr4_features)
 367                 *trampoline_cr4_features = mmu_cr4_features;
 368         cr4_set_bits(mask);
 369 }
 370 
 371 extern void initialize_tlbstate_and_flush(void);
 372 
 373 /*
 374  * Given an ASID, flush the corresponding user ASID.  We can delay this
 375  * until the next time we switch to it.
 376  *
 377  * See SWITCH_TO_USER_CR3.
 378  */
 379 static inline void invalidate_user_asid(u16 asid)
 380 {
 381         /* There is no user ASID if address space separation is off */
 382         if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
 383                 return;
 384 
 385         /*
 386          * We only have a single ASID if PCID is off and the CR3
 387          * write will have flushed it.
 388          */
 389         if (!cpu_feature_enabled(X86_FEATURE_PCID))
 390                 return;
 391 
 392         if (!static_cpu_has(X86_FEATURE_PTI))
 393                 return;
 394 
 395         __set_bit(kern_pcid(asid),
 396                   (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
 397 }
 398 
 399 /*
 400  * flush the entire current user mapping
 401  */
 402 static inline void __native_flush_tlb(void)
 403 {
 404         /*
 405          * Preemption or interrupts must be disabled to protect the access
 406          * to the per CPU variable and to prevent being preempted between
 407          * read_cr3() and write_cr3().
 408          */
 409         WARN_ON_ONCE(preemptible());
 410 
 411         invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
 412 
 413         /* If current->mm == NULL then the read_cr3() "borrows" an mm */
 414         native_write_cr3(__native_read_cr3());
 415 }
 416 
 417 /*
 418  * flush everything
 419  */
 420 static inline void __native_flush_tlb_global(void)
 421 {
 422         unsigned long cr4, flags;
 423 
 424         if (static_cpu_has(X86_FEATURE_INVPCID)) {
 425                 /*
 426                  * Using INVPCID is considerably faster than a pair of writes
 427                  * to CR4 sandwiched inside an IRQ flag save/restore.
 428                  *
 429                  * Note, this works with CR4.PCIDE=0 or 1.
 430                  */
 431                 invpcid_flush_all();
 432                 return;
 433         }
 434 
 435         /*
 436          * Read-modify-write to CR4 - protect it from preemption and
 437          * from interrupts. (Use the raw variant because this code can
 438          * be called from deep inside debugging code.)
 439          */
 440         raw_local_irq_save(flags);
 441 
 442         cr4 = this_cpu_read(cpu_tlbstate.cr4);
 443         /* toggle PGE */
 444         native_write_cr4(cr4 ^ X86_CR4_PGE);
 445         /* write old PGE again and flush TLBs */
 446         native_write_cr4(cr4);
 447 
 448         raw_local_irq_restore(flags);
 449 }
 450 
 451 /*
 452  * flush one page in the user mapping
 453  */
 454 static inline void __native_flush_tlb_one_user(unsigned long addr)
 455 {
 456         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 457 
 458         asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
 459 
 460         if (!static_cpu_has(X86_FEATURE_PTI))
 461                 return;
 462 
 463         /*
 464          * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
 465          * Just use invalidate_user_asid() in case we are called early.
 466          */
 467         if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
 468                 invalidate_user_asid(loaded_mm_asid);
 469         else
 470                 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
 471 }
 472 
 473 /*
 474  * flush everything
 475  */
 476 static inline void __flush_tlb_all(void)
 477 {
 478         /*
 479          * This is to catch users with enabled preemption and the PGE feature
 480          * and don't trigger the warning in __native_flush_tlb().
 481          */
 482         VM_WARN_ON_ONCE(preemptible());
 483 
 484         if (boot_cpu_has(X86_FEATURE_PGE)) {
 485                 __flush_tlb_global();
 486         } else {
 487                 /*
 488                  * !PGE -> !PCID (setup_pcid()), thus every flush is total.
 489                  */
 490                 __flush_tlb();
 491         }
 492 }
 493 
 494 /*
 495  * flush one page in the kernel mapping
 496  */
 497 static inline void __flush_tlb_one_kernel(unsigned long addr)
 498 {
 499         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
 500 
 501         /*
 502          * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
 503          * paravirt equivalent.  Even with PCID, this is sufficient: we only
 504          * use PCID if we also use global PTEs for the kernel mapping, and
 505          * INVLPG flushes global translations across all address spaces.
 506          *
 507          * If PTI is on, then the kernel is mapped with non-global PTEs, and
 508          * __flush_tlb_one_user() will flush the given address for the current
 509          * kernel address space and for its usermode counterpart, but it does
 510          * not flush it for other address spaces.
 511          */
 512         __flush_tlb_one_user(addr);
 513 
 514         if (!static_cpu_has(X86_FEATURE_PTI))
 515                 return;
 516 
 517         /*
 518          * See above.  We need to propagate the flush to all other address
 519          * spaces.  In principle, we only need to propagate it to kernelmode
 520          * address spaces, but the extra bookkeeping we would need is not
 521          * worth it.
 522          */
 523         invalidate_other_asid();
 524 }
 525 
 526 #define TLB_FLUSH_ALL   -1UL
 527 
 528 /*
 529  * TLB flushing:
 530  *
 531  *  - flush_tlb_all() flushes all processes TLBs
 532  *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
 533  *  - flush_tlb_page(vma, vmaddr) flushes one page
 534  *  - flush_tlb_range(vma, start, end) flushes a range of pages
 535  *  - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
 536  *  - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
 537  *
 538  * ..but the i386 has somewhat limited tlb flushing capabilities,
 539  * and page-granular flushes are available only on i486 and up.
 540  */
 541 struct flush_tlb_info {
 542         /*
 543          * We support several kinds of flushes.
 544          *
 545          * - Fully flush a single mm.  .mm will be set, .end will be
 546          *   TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
 547          *   which the IPI sender is trying to catch us up.
 548          *
 549          * - Partially flush a single mm.  .mm will be set, .start and
 550          *   .end will indicate the range, and .new_tlb_gen will be set
 551          *   such that the changes between generation .new_tlb_gen-1 and
 552          *   .new_tlb_gen are entirely contained in the indicated range.
 553          *
 554          * - Fully flush all mms whose tlb_gens have been updated.  .mm
 555          *   will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
 556          *   will be zero.
 557          */
 558         struct mm_struct        *mm;
 559         unsigned long           start;
 560         unsigned long           end;
 561         u64                     new_tlb_gen;
 562         unsigned int            stride_shift;
 563         bool                    freed_tables;
 564 };
 565 
 566 #define local_flush_tlb() __flush_tlb()
 567 
 568 #define flush_tlb_mm(mm)                                                \
 569                 flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL, true)
 570 
 571 #define flush_tlb_range(vma, start, end)                                \
 572         flush_tlb_mm_range((vma)->vm_mm, start, end,                    \
 573                            ((vma)->vm_flags & VM_HUGETLB)               \
 574                                 ? huge_page_shift(hstate_vma(vma))      \
 575                                 : PAGE_SHIFT, false)
 576 
 577 extern void flush_tlb_all(void);
 578 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 579                                 unsigned long end, unsigned int stride_shift,
 580                                 bool freed_tables);
 581 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
 582 
 583 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
 584 {
 585         flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, PAGE_SHIFT, false);
 586 }
 587 
 588 void native_flush_tlb_others(const struct cpumask *cpumask,
 589                              const struct flush_tlb_info *info);
 590 
 591 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
 592 {
 593         /*
 594          * Bump the generation count.  This also serves as a full barrier
 595          * that synchronizes with switch_mm(): callers are required to order
 596          * their read of mm_cpumask after their writes to the paging
 597          * structures.
 598          */
 599         return atomic64_inc_return(&mm->context.tlb_gen);
 600 }
 601 
 602 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
 603                                         struct mm_struct *mm)
 604 {
 605         inc_mm_tlb_gen(mm);
 606         cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
 607 }
 608 
 609 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
 610 
 611 #ifndef CONFIG_PARAVIRT
 612 #define flush_tlb_others(mask, info)    \
 613         native_flush_tlb_others(mask, info)
 614 
 615 #define paravirt_tlb_remove_table(tlb, page) \
 616         tlb_remove_page(tlb, (void *)(page))
 617 #endif
 618 
 619 #endif /* _ASM_X86_TLBFLUSH_H */

/* [<][>][^][v][top][bottom][index][help] */