root/arch/x86/pci/olpc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. is_simulated
  2. hdr_addr
  3. pci_olpc_read
  4. pci_olpc_write
  5. pci_olpc_init

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Low-level PCI config space access for OLPC systems who lack the VSA
   4  * PCI virtualization software.
   5  *
   6  * Copyright © 2006  Advanced Micro Devices, Inc.
   7  *
   8  * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
   9  * has some I/O functions (display, southbridge, sound, USB HCIs, etc)
  10  * that more or less behave like PCI devices, but the hardware doesn't
  11  * directly implement the PCI configuration space headers.  AMD provides
  12  * "VSA" (Virtual System Architecture) software that emulates PCI config
  13  * space for these devices, by trapping I/O accesses to PCI config register
  14  * (CF8/CFC) and running some code in System Management Mode interrupt state.
  15  * On the OLPC platform, we don't want to use that VSA code because
  16  * (a) it slows down suspend/resume, and (b) recompiling it requires special
  17  * compilers that are hard to get.  So instead of letting the complex VSA
  18  * code simulate the PCI config registers for the on-chip devices, we
  19  * just simulate them the easy way, by inserting the code into the
  20  * pci_write_config and pci_read_config path.  Most of the config registers
  21  * are read-only anyway, so the bulk of the simulation is just table lookup.
  22  */
  23 
  24 #include <linux/pci.h>
  25 #include <linux/init.h>
  26 #include <asm/olpc.h>
  27 #include <asm/geode.h>
  28 #include <asm/pci_x86.h>
  29 
  30 /*
  31  * In the tables below, the first two line (8 longwords) are the
  32  * size masks that are used when the higher level PCI code determines
  33  * the size of the region by writing ~0 to a base address register
  34  * and reading back the result.
  35  *
  36  * The following lines are the values that are read during normal
  37  * PCI config access cycles, i.e. not after just having written
  38  * ~0 to a base address register.
  39  */
  40 
  41 static const uint32_t lxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
  42         0x0,    0x0,    0x0,    0x0,
  43         0x0,    0x0,    0x0,    0x0,
  44 
  45         0x281022, 0x2200005, 0x6000021, 0x80f808,       /* AMD Vendor ID */
  46         0x0,    0x0,    0x0,    0x0,   /* No virtual registers, hence no BAR */
  47         0x0,    0x0,    0x0,    0x28100b,
  48         0x0,    0x0,    0x0,    0x0,
  49         0x0,    0x0,    0x0,    0x0,
  50         0x0,    0x0,    0x0,    0x0,
  51         0x0,    0x0,    0x0,    0x0,
  52 };
  53 
  54 static const uint32_t gxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
  55         0xfffffffd, 0x0, 0x0,   0x0,
  56         0x0,    0x0,    0x0,    0x0,
  57 
  58         0x28100b, 0x2200005, 0x6000021, 0x80f808,       /* NSC Vendor ID */
  59         0xac1d, 0x0,    0x0,    0x0,  /* I/O BAR - base of virtual registers */
  60         0x0,    0x0,    0x0,    0x28100b,
  61         0x0,    0x0,    0x0,    0x0,
  62         0x0,    0x0,    0x0,    0x0,
  63         0x0,    0x0,    0x0,    0x0,
  64         0x0,    0x0,    0x0,    0x0,
  65 };
  66 
  67 static const uint32_t lxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
  68         0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
  69         0xffffc000,     0x0,    0x0,    0x0,
  70 
  71         0x20811022, 0x2200003, 0x3000000, 0x0,          /* AMD Vendor ID */
  72         0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
  73         0xfe00c000, 0x0, 0x0,   0x30100b,               /* VIP */
  74         0x0,    0x0,    0x0,    0x10e,     /* INTA, IRQ14 for graphics accel */
  75         0x0,    0x0,    0x0,    0x0,
  76         0x3d0,  0x3c0,  0xa0000, 0x0,       /* VG IO, VG IO, EGA FB, MONO FB */
  77         0x0,    0x0,    0x0,    0x0,
  78 };
  79 
  80 static const uint32_t gxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
  81         0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
  82         0x0,    0x0,    0x0,    0x0,
  83 
  84         0x30100b, 0x2200003, 0x3000000, 0x0,            /* NSC Vendor ID */
  85         0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
  86         0x0,    0x0,    0x0,    0x30100b,
  87         0x0,    0x0,    0x0,    0x0,
  88         0x0,    0x0,    0x0,    0x0,
  89         0x3d0,  0x3c0,  0xa0000, 0x0,       /* VG IO, VG IO, EGA FB, MONO FB */
  90         0x0,    0x0,    0x0,    0x0,
  91 };
  92 
  93 static const uint32_t aes_hdr[] = {     /* dev 1 function 2 - devfn = 0xa */
  94         0xffffc000, 0x0, 0x0,   0x0,
  95         0x0,    0x0,    0x0,    0x0,
  96 
  97         0x20821022, 0x2a00006, 0x10100000, 0x8,         /* NSC Vendor ID */
  98         0xfe010000, 0x0, 0x0,   0x0,                    /* AES registers */
  99         0x0,    0x0,    0x0,    0x20821022,
 100         0x0,    0x0,    0x0,    0x0,
 101         0x0,    0x0,    0x0,    0x0,
 102         0x0,    0x0,    0x0,    0x0,
 103         0x0,    0x0,    0x0,    0x0,
 104 };
 105 
 106 
 107 static const uint32_t isa_hdr[] = {  /* dev f function 0 - devfn = 78 */
 108         0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
 109         0xffffff81, 0xffffffc1, 0x0, 0x0,
 110 
 111         0x20901022, 0x2a00049, 0x6010003, 0x802000,
 112         0x18b1, 0x1001, 0x1801, 0x1881, /* SMB-8   GPIO-256 MFGPT-64  IRQ-32 */
 113         0x1401, 0x1841, 0x0,    0x20901022,             /* PMS-128 ACPI-64 */
 114         0x0,    0x0,    0x0,    0x0,
 115         0x0,    0x0,    0x0,    0x0,
 116         0x0,    0x0,    0x0,    0xaa5b,                 /* IRQ steering */
 117         0x0,    0x0,    0x0,    0x0,
 118 };
 119 
 120 static const uint32_t ac97_hdr[] = {  /* dev f function 3 - devfn = 7b */
 121         0xffffff81, 0x0, 0x0,   0x0,
 122         0x0,    0x0,    0x0,    0x0,
 123 
 124         0x20931022, 0x2a00041, 0x4010001, 0x0,
 125         0x1481, 0x0,    0x0,    0x0,                    /* I/O BAR-128 */
 126         0x0,    0x0,    0x0,    0x20931022,
 127         0x0,    0x0,    0x0,    0x205,                  /* IntB, IRQ5 */
 128         0x0,    0x0,    0x0,    0x0,
 129         0x0,    0x0,    0x0,    0x0,
 130         0x0,    0x0,    0x0,    0x0,
 131 };
 132 
 133 static const uint32_t ohci_hdr[] = {  /* dev f function 4 - devfn = 7c */
 134         0xfffff000, 0x0, 0x0,   0x0,
 135         0x0,    0x0,    0x0,    0x0,
 136 
 137         0x20941022, 0x2300006, 0xc031002, 0x0,
 138         0xfe01a000, 0x0, 0x0,   0x0,                    /* MEMBAR-1000 */
 139         0x0,    0x0,    0x0,    0x20941022,
 140         0x0,    0x40,   0x0,    0x40a,                  /* CapPtr INT-D, IRQA */
 141         0xc8020001, 0x0, 0x0,   0x0,    /* Capabilities - 40 is R/O,
 142                                            44 is mask 8103 (power control) */
 143         0x0,    0x0,    0x0,    0x0,
 144         0x0,    0x0,    0x0,    0x0,
 145 };
 146 
 147 static const uint32_t ehci_hdr[] = {  /* dev f function 4 - devfn = 7d */
 148         0xfffff000, 0x0, 0x0,   0x0,
 149         0x0,    0x0,    0x0,    0x0,
 150 
 151         0x20951022, 0x2300006, 0xc032002, 0x0,
 152         0xfe01b000, 0x0, 0x0,   0x0,                    /* MEMBAR-1000 */
 153         0x0,    0x0,    0x0,    0x20951022,
 154         0x0,    0x40,   0x0,    0x40a,                  /* CapPtr INT-D, IRQA */
 155         0xc8020001, 0x0, 0x0,   0x0,    /* Capabilities - 40 is R/O, 44 is
 156                                            mask 8103 (power control) */
 157 #if 0
 158         0x1,    0x40080000, 0x0, 0x0,   /* EECP - see EHCI spec section 2.1.7 */
 159 #endif
 160         0x01000001, 0x0, 0x0,   0x0,    /* EECP - see EHCI spec section 2.1.7 */
 161         0x2020, 0x0,    0x0,    0x0,    /* (EHCI page 8) 60 SBRN (R/O),
 162                                            61 FLADJ (R/W), PORTWAKECAP  */
 163 };
 164 
 165 static uint32_t ff_loc = ~0;
 166 static uint32_t zero_loc;
 167 static int bar_probing;         /* Set after a write of ~0 to a BAR */
 168 static int is_lx;
 169 
 170 #define NB_SLOT 0x1     /* Northbridge - GX chip - Device 1 */
 171 #define SB_SLOT 0xf     /* Southbridge - CS5536 chip - Device F */
 172 
 173 static int is_simulated(unsigned int bus, unsigned int devfn)
 174 {
 175         return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
 176                         (PCI_SLOT(devfn) == SB_SLOT)));
 177 }
 178 
 179 static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
 180 {
 181         uint32_t addr;
 182 
 183         /*
 184          * This is a little bit tricky.  The header maps consist of
 185          * 0x20 bytes of size masks, followed by 0x70 bytes of header data.
 186          * In the normal case, when not probing a BAR's size, we want
 187          * to access the header data, so we add 0x20 to the reg offset,
 188          * thus skipping the size mask area.
 189          * In the BAR probing case, we want to access the size mask for
 190          * the BAR, so we subtract 0x10 (the config header offset for
 191          * BAR0), and don't skip the size mask area.
 192          */
 193 
 194         addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);
 195 
 196         bar_probing = 0;
 197         return (uint32_t *)addr;
 198 }
 199 
 200 static int pci_olpc_read(unsigned int seg, unsigned int bus,
 201                 unsigned int devfn, int reg, int len, uint32_t *value)
 202 {
 203         uint32_t *addr;
 204 
 205         WARN_ON(seg);
 206 
 207         /* Use the hardware mechanism for non-simulated devices */
 208         if (!is_simulated(bus, devfn))
 209                 return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
 210 
 211         /*
 212          * No device has config registers past 0x70, so we save table space
 213          * by not storing entries for the nonexistent registers
 214          */
 215         if (reg >= 0x70)
 216                 addr = &zero_loc;
 217         else {
 218                 switch (devfn) {
 219                 case  0x8:
 220                         addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
 221                         break;
 222                 case  0x9:
 223                         addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
 224                         break;
 225                 case  0xa:
 226                         addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
 227                         break;
 228                 case 0x78:
 229                         addr = hdr_addr(isa_hdr, reg);
 230                         break;
 231                 case 0x7b:
 232                         addr = hdr_addr(ac97_hdr, reg);
 233                         break;
 234                 case 0x7c:
 235                         addr = hdr_addr(ohci_hdr, reg);
 236                         break;
 237                 case 0x7d:
 238                         addr = hdr_addr(ehci_hdr, reg);
 239                         break;
 240                 default:
 241                         addr = &ff_loc;
 242                         break;
 243                 }
 244         }
 245         switch (len) {
 246         case 1:
 247                 *value = *(uint8_t *)addr;
 248                 break;
 249         case 2:
 250                 *value = *(uint16_t *)addr;
 251                 break;
 252         case 4:
 253                 *value = *addr;
 254                 break;
 255         default:
 256                 BUG();
 257         }
 258 
 259         return 0;
 260 }
 261 
 262 static int pci_olpc_write(unsigned int seg, unsigned int bus,
 263                 unsigned int devfn, int reg, int len, uint32_t value)
 264 {
 265         WARN_ON(seg);
 266 
 267         /* Use the hardware mechanism for non-simulated devices */
 268         if (!is_simulated(bus, devfn))
 269                 return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
 270 
 271         /* XXX we may want to extend this to simulate EHCI power management */
 272 
 273         /*
 274          * Mostly we just discard writes, but if the write is a size probe
 275          * (i.e. writing ~0 to a BAR), we remember it and arrange to return
 276          * the appropriate size mask on the next read.  This is cheating
 277          * to some extent, because it depends on the fact that the next
 278          * access after such a write will always be a read to the same BAR.
 279          */
 280 
 281         if ((reg >= 0x10) && (reg < 0x2c)) {
 282                 /* write is to a BAR */
 283                 if (value == ~0)
 284                         bar_probing = 1;
 285         } else {
 286                 /*
 287                  * No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
 288                  * CACHE_LINE_SIZE, or PM registers.
 289                  */
 290                 if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
 291                                 (reg != PCI_LATENCY_TIMER) &&
 292                                 (reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
 293                         printk(KERN_WARNING "OLPC PCI: Config write to devfn"
 294                                 " %x reg %x value %x\n", devfn, reg, value);
 295         }
 296 
 297         return 0;
 298 }
 299 
 300 static const struct pci_raw_ops pci_olpc_conf = {
 301         .read = pci_olpc_read,
 302         .write = pci_olpc_write,
 303 };
 304 
 305 int __init pci_olpc_init(void)
 306 {
 307         printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n");
 308         raw_pci_ops = &pci_olpc_conf;
 309         is_lx = is_geode_lx();
 310         return 0;
 311 }

/* [<][>][^][v][top][bottom][index][help] */