root/arch/x86/entry/entry_64.S

/* [<][>][^][v][top][bottom][index][help] */
   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  *  linux/arch/x86_64/entry.S
   4  *
   5  *  Copyright (C) 1991, 1992  Linus Torvalds
   6  *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
   7  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
   8  *
   9  * entry.S contains the system-call and fault low-level handling routines.
  10  *
  11  * Some of this is documented in Documentation/x86/entry_64.rst
  12  *
  13  * A note on terminology:
  14  * - iret frame:        Architecture defined interrupt frame from SS to RIP
  15  *                      at the top of the kernel process stack.
  16  *
  17  * Some macro usage:
  18  * - ENTRY/END:         Define functions in the symbol table.
  19  * - TRACE_IRQ_*:       Trace hardirq state for lock debugging.
  20  * - idtentry:          Define exception entry points.
  21  */
  22 #include <linux/linkage.h>
  23 #include <asm/segment.h>
  24 #include <asm/cache.h>
  25 #include <asm/errno.h>
  26 #include <asm/asm-offsets.h>
  27 #include <asm/msr.h>
  28 #include <asm/unistd.h>
  29 #include <asm/thread_info.h>
  30 #include <asm/hw_irq.h>
  31 #include <asm/page_types.h>
  32 #include <asm/irqflags.h>
  33 #include <asm/paravirt.h>
  34 #include <asm/percpu.h>
  35 #include <asm/asm.h>
  36 #include <asm/smap.h>
  37 #include <asm/pgtable_types.h>
  38 #include <asm/export.h>
  39 #include <asm/frame.h>
  40 #include <asm/nospec-branch.h>
  41 #include <linux/err.h>
  42 
  43 #include "calling.h"
  44 
  45 .code64
  46 .section .entry.text, "ax"
  47 
  48 #ifdef CONFIG_PARAVIRT
  49 ENTRY(native_usergs_sysret64)
  50         UNWIND_HINT_EMPTY
  51         swapgs
  52         sysretq
  53 END(native_usergs_sysret64)
  54 #endif /* CONFIG_PARAVIRT */
  55 
  56 .macro TRACE_IRQS_FLAGS flags:req
  57 #ifdef CONFIG_TRACE_IRQFLAGS
  58         btl     $9, \flags              /* interrupts off? */
  59         jnc     1f
  60         TRACE_IRQS_ON
  61 1:
  62 #endif
  63 .endm
  64 
  65 .macro TRACE_IRQS_IRETQ
  66         TRACE_IRQS_FLAGS EFLAGS(%rsp)
  67 .endm
  68 
  69 /*
  70  * When dynamic function tracer is enabled it will add a breakpoint
  71  * to all locations that it is about to modify, sync CPUs, update
  72  * all the code, sync CPUs, then remove the breakpoints. In this time
  73  * if lockdep is enabled, it might jump back into the debug handler
  74  * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
  75  *
  76  * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
  77  * make sure the stack pointer does not get reset back to the top
  78  * of the debug stack, and instead just reuses the current stack.
  79  */
  80 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
  81 
  82 .macro TRACE_IRQS_OFF_DEBUG
  83         call    debug_stack_set_zero
  84         TRACE_IRQS_OFF
  85         call    debug_stack_reset
  86 .endm
  87 
  88 .macro TRACE_IRQS_ON_DEBUG
  89         call    debug_stack_set_zero
  90         TRACE_IRQS_ON
  91         call    debug_stack_reset
  92 .endm
  93 
  94 .macro TRACE_IRQS_IRETQ_DEBUG
  95         btl     $9, EFLAGS(%rsp)                /* interrupts off? */
  96         jnc     1f
  97         TRACE_IRQS_ON_DEBUG
  98 1:
  99 .endm
 100 
 101 #else
 102 # define TRACE_IRQS_OFF_DEBUG                   TRACE_IRQS_OFF
 103 # define TRACE_IRQS_ON_DEBUG                    TRACE_IRQS_ON
 104 # define TRACE_IRQS_IRETQ_DEBUG                 TRACE_IRQS_IRETQ
 105 #endif
 106 
 107 /*
 108  * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
 109  *
 110  * This is the only entry point used for 64-bit system calls.  The
 111  * hardware interface is reasonably well designed and the register to
 112  * argument mapping Linux uses fits well with the registers that are
 113  * available when SYSCALL is used.
 114  *
 115  * SYSCALL instructions can be found inlined in libc implementations as
 116  * well as some other programs and libraries.  There are also a handful
 117  * of SYSCALL instructions in the vDSO used, for example, as a
 118  * clock_gettimeofday fallback.
 119  *
 120  * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
 121  * then loads new ss, cs, and rip from previously programmed MSRs.
 122  * rflags gets masked by a value from another MSR (so CLD and CLAC
 123  * are not needed). SYSCALL does not save anything on the stack
 124  * and does not change rsp.
 125  *
 126  * Registers on entry:
 127  * rax  system call number
 128  * rcx  return address
 129  * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
 130  * rdi  arg0
 131  * rsi  arg1
 132  * rdx  arg2
 133  * r10  arg3 (needs to be moved to rcx to conform to C ABI)
 134  * r8   arg4
 135  * r9   arg5
 136  * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
 137  *
 138  * Only called from user space.
 139  *
 140  * When user can change pt_regs->foo always force IRET. That is because
 141  * it deals with uncanonical addresses better. SYSRET has trouble
 142  * with them due to bugs in both AMD and Intel CPUs.
 143  */
 144 
 145 ENTRY(entry_SYSCALL_64)
 146         UNWIND_HINT_EMPTY
 147         /*
 148          * Interrupts are off on entry.
 149          * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
 150          * it is too small to ever cause noticeable irq latency.
 151          */
 152 
 153         swapgs
 154         /* tss.sp2 is scratch space. */
 155         movq    %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
 156         SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
 157         movq    PER_CPU_VAR(cpu_current_top_of_stack), %rsp
 158 
 159         /* Construct struct pt_regs on stack */
 160         pushq   $__USER_DS                              /* pt_regs->ss */
 161         pushq   PER_CPU_VAR(cpu_tss_rw + TSS_sp2)       /* pt_regs->sp */
 162         pushq   %r11                                    /* pt_regs->flags */
 163         pushq   $__USER_CS                              /* pt_regs->cs */
 164         pushq   %rcx                                    /* pt_regs->ip */
 165 GLOBAL(entry_SYSCALL_64_after_hwframe)
 166         pushq   %rax                                    /* pt_regs->orig_ax */
 167 
 168         PUSH_AND_CLEAR_REGS rax=$-ENOSYS
 169 
 170         TRACE_IRQS_OFF
 171 
 172         /* IRQs are off. */
 173         movq    %rax, %rdi
 174         movq    %rsp, %rsi
 175         call    do_syscall_64           /* returns with IRQs disabled */
 176 
 177         TRACE_IRQS_IRETQ                /* we're about to change IF */
 178 
 179         /*
 180          * Try to use SYSRET instead of IRET if we're returning to
 181          * a completely clean 64-bit userspace context.  If we're not,
 182          * go to the slow exit path.
 183          */
 184         movq    RCX(%rsp), %rcx
 185         movq    RIP(%rsp), %r11
 186 
 187         cmpq    %rcx, %r11      /* SYSRET requires RCX == RIP */
 188         jne     swapgs_restore_regs_and_return_to_usermode
 189 
 190         /*
 191          * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
 192          * in kernel space.  This essentially lets the user take over
 193          * the kernel, since userspace controls RSP.
 194          *
 195          * If width of "canonical tail" ever becomes variable, this will need
 196          * to be updated to remain correct on both old and new CPUs.
 197          *
 198          * Change top bits to match most significant bit (47th or 56th bit
 199          * depending on paging mode) in the address.
 200          */
 201 #ifdef CONFIG_X86_5LEVEL
 202         ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
 203                 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
 204 #else
 205         shl     $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 206         sar     $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 207 #endif
 208 
 209         /* If this changed %rcx, it was not canonical */
 210         cmpq    %rcx, %r11
 211         jne     swapgs_restore_regs_and_return_to_usermode
 212 
 213         cmpq    $__USER_CS, CS(%rsp)            /* CS must match SYSRET */
 214         jne     swapgs_restore_regs_and_return_to_usermode
 215 
 216         movq    R11(%rsp), %r11
 217         cmpq    %r11, EFLAGS(%rsp)              /* R11 == RFLAGS */
 218         jne     swapgs_restore_regs_and_return_to_usermode
 219 
 220         /*
 221          * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
 222          * restore RF properly. If the slowpath sets it for whatever reason, we
 223          * need to restore it correctly.
 224          *
 225          * SYSRET can restore TF, but unlike IRET, restoring TF results in a
 226          * trap from userspace immediately after SYSRET.  This would cause an
 227          * infinite loop whenever #DB happens with register state that satisfies
 228          * the opportunistic SYSRET conditions.  For example, single-stepping
 229          * this user code:
 230          *
 231          *           movq       $stuck_here, %rcx
 232          *           pushfq
 233          *           popq %r11
 234          *   stuck_here:
 235          *
 236          * would never get past 'stuck_here'.
 237          */
 238         testq   $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
 239         jnz     swapgs_restore_regs_and_return_to_usermode
 240 
 241         /* nothing to check for RSP */
 242 
 243         cmpq    $__USER_DS, SS(%rsp)            /* SS must match SYSRET */
 244         jne     swapgs_restore_regs_and_return_to_usermode
 245 
 246         /*
 247          * We win! This label is here just for ease of understanding
 248          * perf profiles. Nothing jumps here.
 249          */
 250 syscall_return_via_sysret:
 251         /* rcx and r11 are already restored (see code above) */
 252         POP_REGS pop_rdi=0 skip_r11rcx=1
 253 
 254         /*
 255          * Now all regs are restored except RSP and RDI.
 256          * Save old stack pointer and switch to trampoline stack.
 257          */
 258         movq    %rsp, %rdi
 259         movq    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 260         UNWIND_HINT_EMPTY
 261 
 262         pushq   RSP-RDI(%rdi)   /* RSP */
 263         pushq   (%rdi)          /* RDI */
 264 
 265         /*
 266          * We are on the trampoline stack.  All regs except RDI are live.
 267          * We can do future final exit work right here.
 268          */
 269         STACKLEAK_ERASE_NOCLOBBER
 270 
 271         SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 272 
 273         popq    %rdi
 274         popq    %rsp
 275         USERGS_SYSRET64
 276 END(entry_SYSCALL_64)
 277 
 278 /*
 279  * %rdi: prev task
 280  * %rsi: next task
 281  */
 282 ENTRY(__switch_to_asm)
 283         UNWIND_HINT_FUNC
 284         /*
 285          * Save callee-saved registers
 286          * This must match the order in inactive_task_frame
 287          */
 288         pushq   %rbp
 289         pushq   %rbx
 290         pushq   %r12
 291         pushq   %r13
 292         pushq   %r14
 293         pushq   %r15
 294 
 295         /* switch stack */
 296         movq    %rsp, TASK_threadsp(%rdi)
 297         movq    TASK_threadsp(%rsi), %rsp
 298 
 299 #ifdef CONFIG_STACKPROTECTOR
 300         movq    TASK_stack_canary(%rsi), %rbx
 301         movq    %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
 302 #endif
 303 
 304 #ifdef CONFIG_RETPOLINE
 305         /*
 306          * When switching from a shallower to a deeper call stack
 307          * the RSB may either underflow or use entries populated
 308          * with userspace addresses. On CPUs where those concerns
 309          * exist, overwrite the RSB with entries which capture
 310          * speculative execution to prevent attack.
 311          */
 312         FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 313 #endif
 314 
 315         /* restore callee-saved registers */
 316         popq    %r15
 317         popq    %r14
 318         popq    %r13
 319         popq    %r12
 320         popq    %rbx
 321         popq    %rbp
 322 
 323         jmp     __switch_to
 324 END(__switch_to_asm)
 325 
 326 /*
 327  * A newly forked process directly context switches into this address.
 328  *
 329  * rax: prev task we switched from
 330  * rbx: kernel thread func (NULL for user thread)
 331  * r12: kernel thread arg
 332  */
 333 ENTRY(ret_from_fork)
 334         UNWIND_HINT_EMPTY
 335         movq    %rax, %rdi
 336         call    schedule_tail                   /* rdi: 'prev' task parameter */
 337 
 338         testq   %rbx, %rbx                      /* from kernel_thread? */
 339         jnz     1f                              /* kernel threads are uncommon */
 340 
 341 2:
 342         UNWIND_HINT_REGS
 343         movq    %rsp, %rdi
 344         call    syscall_return_slowpath /* returns with IRQs disabled */
 345         TRACE_IRQS_ON                   /* user mode is traced as IRQS on */
 346         jmp     swapgs_restore_regs_and_return_to_usermode
 347 
 348 1:
 349         /* kernel thread */
 350         UNWIND_HINT_EMPTY
 351         movq    %r12, %rdi
 352         CALL_NOSPEC %rbx
 353         /*
 354          * A kernel thread is allowed to return here after successfully
 355          * calling do_execve().  Exit to userspace to complete the execve()
 356          * syscall.
 357          */
 358         movq    $0, RAX(%rsp)
 359         jmp     2b
 360 END(ret_from_fork)
 361 
 362 /*
 363  * Build the entry stubs with some assembler magic.
 364  * We pack 1 stub into every 8-byte block.
 365  */
 366         .align 8
 367 ENTRY(irq_entries_start)
 368     vector=FIRST_EXTERNAL_VECTOR
 369     .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
 370         UNWIND_HINT_IRET_REGS
 371         pushq   $(~vector+0x80)                 /* Note: always in signed byte range */
 372         jmp     common_interrupt
 373         .align  8
 374         vector=vector+1
 375     .endr
 376 END(irq_entries_start)
 377 
 378         .align 8
 379 ENTRY(spurious_entries_start)
 380     vector=FIRST_SYSTEM_VECTOR
 381     .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
 382         UNWIND_HINT_IRET_REGS
 383         pushq   $(~vector+0x80)                 /* Note: always in signed byte range */
 384         jmp     common_spurious
 385         .align  8
 386         vector=vector+1
 387     .endr
 388 END(spurious_entries_start)
 389 
 390 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
 391 #ifdef CONFIG_DEBUG_ENTRY
 392         pushq %rax
 393         SAVE_FLAGS(CLBR_RAX)
 394         testl $X86_EFLAGS_IF, %eax
 395         jz .Lokay_\@
 396         ud2
 397 .Lokay_\@:
 398         popq %rax
 399 #endif
 400 .endm
 401 
 402 /*
 403  * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 404  * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 405  * Requires kernel GSBASE.
 406  *
 407  * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 408  */
 409 .macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
 410         DEBUG_ENTRY_ASSERT_IRQS_OFF
 411 
 412         .if \save_ret
 413         /*
 414          * If save_ret is set, the original stack contains one additional
 415          * entry -- the return address. Therefore, move the address one
 416          * entry below %rsp to \old_rsp.
 417          */
 418         leaq    8(%rsp), \old_rsp
 419         .else
 420         movq    %rsp, \old_rsp
 421         .endif
 422 
 423         .if \regs
 424         UNWIND_HINT_REGS base=\old_rsp
 425         .endif
 426 
 427         incl    PER_CPU_VAR(irq_count)
 428         jnz     .Lirq_stack_push_old_rsp_\@
 429 
 430         /*
 431          * Right now, if we just incremented irq_count to zero, we've
 432          * claimed the IRQ stack but we haven't switched to it yet.
 433          *
 434          * If anything is added that can interrupt us here without using IST,
 435          * it must be *extremely* careful to limit its stack usage.  This
 436          * could include kprobes and a hypothetical future IST-less #DB
 437          * handler.
 438          *
 439          * The OOPS unwinder relies on the word at the top of the IRQ
 440          * stack linking back to the previous RSP for the entire time we're
 441          * on the IRQ stack.  For this to work reliably, we need to write
 442          * it before we actually move ourselves to the IRQ stack.
 443          */
 444 
 445         movq    \old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
 446         movq    PER_CPU_VAR(hardirq_stack_ptr), %rsp
 447 
 448 #ifdef CONFIG_DEBUG_ENTRY
 449         /*
 450          * If the first movq above becomes wrong due to IRQ stack layout
 451          * changes, the only way we'll notice is if we try to unwind right
 452          * here.  Assert that we set up the stack right to catch this type
 453          * of bug quickly.
 454          */
 455         cmpq    -8(%rsp), \old_rsp
 456         je      .Lirq_stack_okay\@
 457         ud2
 458         .Lirq_stack_okay\@:
 459 #endif
 460 
 461 .Lirq_stack_push_old_rsp_\@:
 462         pushq   \old_rsp
 463 
 464         .if \regs
 465         UNWIND_HINT_REGS indirect=1
 466         .endif
 467 
 468         .if \save_ret
 469         /*
 470          * Push the return address to the stack. This return address can
 471          * be found at the "real" original RSP, which was offset by 8 at
 472          * the beginning of this macro.
 473          */
 474         pushq   -8(\old_rsp)
 475         .endif
 476 .endm
 477 
 478 /*
 479  * Undoes ENTER_IRQ_STACK.
 480  */
 481 .macro LEAVE_IRQ_STACK regs=1
 482         DEBUG_ENTRY_ASSERT_IRQS_OFF
 483         /* We need to be off the IRQ stack before decrementing irq_count. */
 484         popq    %rsp
 485 
 486         .if \regs
 487         UNWIND_HINT_REGS
 488         .endif
 489 
 490         /*
 491          * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
 492          * the irq stack but we're not on it.
 493          */
 494 
 495         decl    PER_CPU_VAR(irq_count)
 496 .endm
 497 
 498 /*
 499  * Interrupt entry helper function.
 500  *
 501  * Entry runs with interrupts off. Stack layout at entry:
 502  * +----------------------------------------------------+
 503  * | regs->ss                                           |
 504  * | regs->rsp                                          |
 505  * | regs->eflags                                       |
 506  * | regs->cs                                           |
 507  * | regs->ip                                           |
 508  * +----------------------------------------------------+
 509  * | regs->orig_ax = ~(interrupt number)                |
 510  * +----------------------------------------------------+
 511  * | return address                                     |
 512  * +----------------------------------------------------+
 513  */
 514 ENTRY(interrupt_entry)
 515         UNWIND_HINT_IRET_REGS offset=16
 516         ASM_CLAC
 517         cld
 518 
 519         testb   $3, CS-ORIG_RAX+8(%rsp)
 520         jz      1f
 521         SWAPGS
 522         FENCE_SWAPGS_USER_ENTRY
 523         /*
 524          * Switch to the thread stack. The IRET frame and orig_ax are
 525          * on the stack, as well as the return address. RDI..R12 are
 526          * not (yet) on the stack and space has not (yet) been
 527          * allocated for them.
 528          */
 529         pushq   %rdi
 530 
 531         /* Need to switch before accessing the thread stack. */
 532         SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
 533         movq    %rsp, %rdi
 534         movq    PER_CPU_VAR(cpu_current_top_of_stack), %rsp
 535 
 536          /*
 537           * We have RDI, return address, and orig_ax on the stack on
 538           * top of the IRET frame. That means offset=24
 539           */
 540         UNWIND_HINT_IRET_REGS base=%rdi offset=24
 541 
 542         pushq   7*8(%rdi)               /* regs->ss */
 543         pushq   6*8(%rdi)               /* regs->rsp */
 544         pushq   5*8(%rdi)               /* regs->eflags */
 545         pushq   4*8(%rdi)               /* regs->cs */
 546         pushq   3*8(%rdi)               /* regs->ip */
 547         UNWIND_HINT_IRET_REGS
 548         pushq   2*8(%rdi)               /* regs->orig_ax */
 549         pushq   8(%rdi)                 /* return address */
 550 
 551         movq    (%rdi), %rdi
 552         jmp     2f
 553 1:
 554         FENCE_SWAPGS_KERNEL_ENTRY
 555 2:
 556         PUSH_AND_CLEAR_REGS save_ret=1
 557         ENCODE_FRAME_POINTER 8
 558 
 559         testb   $3, CS+8(%rsp)
 560         jz      1f
 561 
 562         /*
 563          * IRQ from user mode.
 564          *
 565          * We need to tell lockdep that IRQs are off.  We can't do this until
 566          * we fix gsbase, and we should do it before enter_from_user_mode
 567          * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
 568          * the simplest way to handle it is to just call it twice if
 569          * we enter from user mode.  There's no reason to optimize this since
 570          * TRACE_IRQS_OFF is a no-op if lockdep is off.
 571          */
 572         TRACE_IRQS_OFF
 573 
 574         CALL_enter_from_user_mode
 575 
 576 1:
 577         ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
 578         /* We entered an interrupt context - irqs are off: */
 579         TRACE_IRQS_OFF
 580 
 581         ret
 582 END(interrupt_entry)
 583 _ASM_NOKPROBE(interrupt_entry)
 584 
 585 
 586 /* Interrupt entry/exit. */
 587 
 588 /*
 589  * The interrupt stubs push (~vector+0x80) onto the stack and
 590  * then jump to common_spurious/interrupt.
 591  */
 592 common_spurious:
 593         addq    $-0x80, (%rsp)                  /* Adjust vector to [-256, -1] range */
 594         call    interrupt_entry
 595         UNWIND_HINT_REGS indirect=1
 596         call    smp_spurious_interrupt          /* rdi points to pt_regs */
 597         jmp     ret_from_intr
 598 END(common_spurious)
 599 _ASM_NOKPROBE(common_spurious)
 600 
 601 /* common_interrupt is a hotpath. Align it */
 602         .p2align CONFIG_X86_L1_CACHE_SHIFT
 603 common_interrupt:
 604         addq    $-0x80, (%rsp)                  /* Adjust vector to [-256, -1] range */
 605         call    interrupt_entry
 606         UNWIND_HINT_REGS indirect=1
 607         call    do_IRQ  /* rdi points to pt_regs */
 608         /* 0(%rsp): old RSP */
 609 ret_from_intr:
 610         DISABLE_INTERRUPTS(CLBR_ANY)
 611         TRACE_IRQS_OFF
 612 
 613         LEAVE_IRQ_STACK
 614 
 615         testb   $3, CS(%rsp)
 616         jz      retint_kernel
 617 
 618         /* Interrupt came from user space */
 619 GLOBAL(retint_user)
 620         mov     %rsp,%rdi
 621         call    prepare_exit_to_usermode
 622         TRACE_IRQS_IRETQ
 623 
 624 GLOBAL(swapgs_restore_regs_and_return_to_usermode)
 625 #ifdef CONFIG_DEBUG_ENTRY
 626         /* Assert that pt_regs indicates user mode. */
 627         testb   $3, CS(%rsp)
 628         jnz     1f
 629         ud2
 630 1:
 631 #endif
 632         POP_REGS pop_rdi=0
 633 
 634         /*
 635          * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
 636          * Save old stack pointer and switch to trampoline stack.
 637          */
 638         movq    %rsp, %rdi
 639         movq    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 640         UNWIND_HINT_EMPTY
 641 
 642         /* Copy the IRET frame to the trampoline stack. */
 643         pushq   6*8(%rdi)       /* SS */
 644         pushq   5*8(%rdi)       /* RSP */
 645         pushq   4*8(%rdi)       /* EFLAGS */
 646         pushq   3*8(%rdi)       /* CS */
 647         pushq   2*8(%rdi)       /* RIP */
 648 
 649         /* Push user RDI on the trampoline stack. */
 650         pushq   (%rdi)
 651 
 652         /*
 653          * We are on the trampoline stack.  All regs except RDI are live.
 654          * We can do future final exit work right here.
 655          */
 656         STACKLEAK_ERASE_NOCLOBBER
 657 
 658         SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 659 
 660         /* Restore RDI. */
 661         popq    %rdi
 662         SWAPGS
 663         INTERRUPT_RETURN
 664 
 665 
 666 /* Returning to kernel space */
 667 retint_kernel:
 668 #ifdef CONFIG_PREEMPTION
 669         /* Interrupts are off */
 670         /* Check if we need preemption */
 671         btl     $9, EFLAGS(%rsp)                /* were interrupts off? */
 672         jnc     1f
 673         cmpl    $0, PER_CPU_VAR(__preempt_count)
 674         jnz     1f
 675         call    preempt_schedule_irq
 676 1:
 677 #endif
 678         /*
 679          * The iretq could re-enable interrupts:
 680          */
 681         TRACE_IRQS_IRETQ
 682 
 683 GLOBAL(restore_regs_and_return_to_kernel)
 684 #ifdef CONFIG_DEBUG_ENTRY
 685         /* Assert that pt_regs indicates kernel mode. */
 686         testb   $3, CS(%rsp)
 687         jz      1f
 688         ud2
 689 1:
 690 #endif
 691         POP_REGS
 692         addq    $8, %rsp        /* skip regs->orig_ax */
 693         /*
 694          * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 695          * when returning from IPI handler.
 696          */
 697         INTERRUPT_RETURN
 698 
 699 ENTRY(native_iret)
 700         UNWIND_HINT_IRET_REGS
 701         /*
 702          * Are we returning to a stack segment from the LDT?  Note: in
 703          * 64-bit mode SS:RSP on the exception stack is always valid.
 704          */
 705 #ifdef CONFIG_X86_ESPFIX64
 706         testb   $4, (SS-RIP)(%rsp)
 707         jnz     native_irq_return_ldt
 708 #endif
 709 
 710 .global native_irq_return_iret
 711 native_irq_return_iret:
 712         /*
 713          * This may fault.  Non-paranoid faults on return to userspace are
 714          * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
 715          * Double-faults due to espfix64 are handled in do_double_fault.
 716          * Other faults here are fatal.
 717          */
 718         iretq
 719 
 720 #ifdef CONFIG_X86_ESPFIX64
 721 native_irq_return_ldt:
 722         /*
 723          * We are running with user GSBASE.  All GPRs contain their user
 724          * values.  We have a percpu ESPFIX stack that is eight slots
 725          * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
 726          * of the ESPFIX stack.
 727          *
 728          * We clobber RAX and RDI in this code.  We stash RDI on the
 729          * normal stack and RAX on the ESPFIX stack.
 730          *
 731          * The ESPFIX stack layout we set up looks like this:
 732          *
 733          * --- top of ESPFIX stack ---
 734          * SS
 735          * RSP
 736          * RFLAGS
 737          * CS
 738          * RIP  <-- RSP points here when we're done
 739          * RAX  <-- espfix_waddr points here
 740          * --- bottom of ESPFIX stack ---
 741          */
 742 
 743         pushq   %rdi                            /* Stash user RDI */
 744         SWAPGS                                  /* to kernel GS */
 745         SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi   /* to kernel CR3 */
 746 
 747         movq    PER_CPU_VAR(espfix_waddr), %rdi
 748         movq    %rax, (0*8)(%rdi)               /* user RAX */
 749         movq    (1*8)(%rsp), %rax               /* user RIP */
 750         movq    %rax, (1*8)(%rdi)
 751         movq    (2*8)(%rsp), %rax               /* user CS */
 752         movq    %rax, (2*8)(%rdi)
 753         movq    (3*8)(%rsp), %rax               /* user RFLAGS */
 754         movq    %rax, (3*8)(%rdi)
 755         movq    (5*8)(%rsp), %rax               /* user SS */
 756         movq    %rax, (5*8)(%rdi)
 757         movq    (4*8)(%rsp), %rax               /* user RSP */
 758         movq    %rax, (4*8)(%rdi)
 759         /* Now RAX == RSP. */
 760 
 761         andl    $0xffff0000, %eax               /* RAX = (RSP & 0xffff0000) */
 762 
 763         /*
 764          * espfix_stack[31:16] == 0.  The page tables are set up such that
 765          * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
 766          * espfix_waddr for any X.  That is, there are 65536 RO aliases of
 767          * the same page.  Set up RSP so that RSP[31:16] contains the
 768          * respective 16 bits of the /userspace/ RSP and RSP nonetheless
 769          * still points to an RO alias of the ESPFIX stack.
 770          */
 771         orq     PER_CPU_VAR(espfix_stack), %rax
 772 
 773         SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 774         SWAPGS                                  /* to user GS */
 775         popq    %rdi                            /* Restore user RDI */
 776 
 777         movq    %rax, %rsp
 778         UNWIND_HINT_IRET_REGS offset=8
 779 
 780         /*
 781          * At this point, we cannot write to the stack any more, but we can
 782          * still read.
 783          */
 784         popq    %rax                            /* Restore user RAX */
 785 
 786         /*
 787          * RSP now points to an ordinary IRET frame, except that the page
 788          * is read-only and RSP[31:16] are preloaded with the userspace
 789          * values.  We can now IRET back to userspace.
 790          */
 791         jmp     native_irq_return_iret
 792 #endif
 793 END(common_interrupt)
 794 _ASM_NOKPROBE(common_interrupt)
 795 
 796 /*
 797  * APIC interrupts.
 798  */
 799 .macro apicinterrupt3 num sym do_sym
 800 ENTRY(\sym)
 801         UNWIND_HINT_IRET_REGS
 802         pushq   $~(\num)
 803 .Lcommon_\sym:
 804         call    interrupt_entry
 805         UNWIND_HINT_REGS indirect=1
 806         call    \do_sym /* rdi points to pt_regs */
 807         jmp     ret_from_intr
 808 END(\sym)
 809 _ASM_NOKPROBE(\sym)
 810 .endm
 811 
 812 /* Make sure APIC interrupt handlers end up in the irqentry section: */
 813 #define PUSH_SECTION_IRQENTRY   .pushsection .irqentry.text, "ax"
 814 #define POP_SECTION_IRQENTRY    .popsection
 815 
 816 .macro apicinterrupt num sym do_sym
 817 PUSH_SECTION_IRQENTRY
 818 apicinterrupt3 \num \sym \do_sym
 819 POP_SECTION_IRQENTRY
 820 .endm
 821 
 822 #ifdef CONFIG_SMP
 823 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR          irq_move_cleanup_interrupt      smp_irq_move_cleanup_interrupt
 824 apicinterrupt3 REBOOT_VECTOR                    reboot_interrupt                smp_reboot_interrupt
 825 #endif
 826 
 827 #ifdef CONFIG_X86_UV
 828 apicinterrupt3 UV_BAU_MESSAGE                   uv_bau_message_intr1            uv_bau_message_interrupt
 829 #endif
 830 
 831 apicinterrupt LOCAL_TIMER_VECTOR                apic_timer_interrupt            smp_apic_timer_interrupt
 832 apicinterrupt X86_PLATFORM_IPI_VECTOR           x86_platform_ipi                smp_x86_platform_ipi
 833 
 834 #ifdef CONFIG_HAVE_KVM
 835 apicinterrupt3 POSTED_INTR_VECTOR               kvm_posted_intr_ipi             smp_kvm_posted_intr_ipi
 836 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR        kvm_posted_intr_wakeup_ipi      smp_kvm_posted_intr_wakeup_ipi
 837 apicinterrupt3 POSTED_INTR_NESTED_VECTOR        kvm_posted_intr_nested_ipi      smp_kvm_posted_intr_nested_ipi
 838 #endif
 839 
 840 #ifdef CONFIG_X86_MCE_THRESHOLD
 841 apicinterrupt THRESHOLD_APIC_VECTOR             threshold_interrupt             smp_threshold_interrupt
 842 #endif
 843 
 844 #ifdef CONFIG_X86_MCE_AMD
 845 apicinterrupt DEFERRED_ERROR_VECTOR             deferred_error_interrupt        smp_deferred_error_interrupt
 846 #endif
 847 
 848 #ifdef CONFIG_X86_THERMAL_VECTOR
 849 apicinterrupt THERMAL_APIC_VECTOR               thermal_interrupt               smp_thermal_interrupt
 850 #endif
 851 
 852 #ifdef CONFIG_SMP
 853 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR       call_function_single_interrupt  smp_call_function_single_interrupt
 854 apicinterrupt CALL_FUNCTION_VECTOR              call_function_interrupt         smp_call_function_interrupt
 855 apicinterrupt RESCHEDULE_VECTOR                 reschedule_interrupt            smp_reschedule_interrupt
 856 #endif
 857 
 858 apicinterrupt ERROR_APIC_VECTOR                 error_interrupt                 smp_error_interrupt
 859 apicinterrupt SPURIOUS_APIC_VECTOR              spurious_interrupt              smp_spurious_interrupt
 860 
 861 #ifdef CONFIG_IRQ_WORK
 862 apicinterrupt IRQ_WORK_VECTOR                   irq_work_interrupt              smp_irq_work_interrupt
 863 #endif
 864 
 865 /*
 866  * Exception entry points.
 867  */
 868 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
 869 
 870 .macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0
 871 
 872         .if \paranoid
 873         call    paranoid_entry
 874         /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
 875         .else
 876         call    error_entry
 877         .endif
 878         UNWIND_HINT_REGS
 879 
 880         .if \read_cr2
 881         /*
 882          * Store CR2 early so subsequent faults cannot clobber it. Use R12 as
 883          * intermediate storage as RDX can be clobbered in enter_from_user_mode().
 884          * GET_CR2_INTO can clobber RAX.
 885          */
 886         GET_CR2_INTO(%r12);
 887         .endif
 888 
 889         .if \shift_ist != -1
 890         TRACE_IRQS_OFF_DEBUG                    /* reload IDT in case of recursion */
 891         .else
 892         TRACE_IRQS_OFF
 893         .endif
 894 
 895         .if \paranoid == 0
 896         testb   $3, CS(%rsp)
 897         jz      .Lfrom_kernel_no_context_tracking_\@
 898         CALL_enter_from_user_mode
 899 .Lfrom_kernel_no_context_tracking_\@:
 900         .endif
 901 
 902         movq    %rsp, %rdi                      /* pt_regs pointer */
 903 
 904         .if \has_error_code
 905         movq    ORIG_RAX(%rsp), %rsi            /* get error code */
 906         movq    $-1, ORIG_RAX(%rsp)             /* no syscall to restart */
 907         .else
 908         xorl    %esi, %esi                      /* no error code */
 909         .endif
 910 
 911         .if \shift_ist != -1
 912         subq    $\ist_offset, CPU_TSS_IST(\shift_ist)
 913         .endif
 914 
 915         .if \read_cr2
 916         movq    %r12, %rdx                      /* Move CR2 into 3rd argument */
 917         .endif
 918 
 919         call    \do_sym
 920 
 921         .if \shift_ist != -1
 922         addq    $\ist_offset, CPU_TSS_IST(\shift_ist)
 923         .endif
 924 
 925         .if \paranoid
 926         /* this procedure expect "no swapgs" flag in ebx */
 927         jmp     paranoid_exit
 928         .else
 929         jmp     error_exit
 930         .endif
 931 
 932 .endm
 933 
 934 /**
 935  * idtentry - Generate an IDT entry stub
 936  * @sym:                Name of the generated entry point
 937  * @do_sym:             C function to be called
 938  * @has_error_code:     True if this IDT vector has an error code on the stack
 939  * @paranoid:           non-zero means that this vector may be invoked from
 940  *                      kernel mode with user GSBASE and/or user CR3.
 941  *                      2 is special -- see below.
 942  * @shift_ist:          Set to an IST index if entries from kernel mode should
 943  *                      decrement the IST stack so that nested entries get a
 944  *                      fresh stack.  (This is for #DB, which has a nasty habit
 945  *                      of recursing.)
 946  * @create_gap:         create a 6-word stack gap when coming from kernel mode.
 947  * @read_cr2:           load CR2 into the 3rd argument; done before calling any C code
 948  *
 949  * idtentry generates an IDT stub that sets up a usable kernel context,
 950  * creates struct pt_regs, and calls @do_sym.  The stub has the following
 951  * special behaviors:
 952  *
 953  * On an entry from user mode, the stub switches from the trampoline or
 954  * IST stack to the normal thread stack.  On an exit to user mode, the
 955  * normal exit-to-usermode path is invoked.
 956  *
 957  * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
 958  * whereas we omit the preemption check if @paranoid != 0.  This is purely
 959  * because the implementation is simpler this way.  The kernel only needs
 960  * to check for asynchronous kernel preemption when IRQ handlers return.
 961  *
 962  * If @paranoid == 0, then the stub will handle IRET faults by pretending
 963  * that the fault came from user mode.  It will handle gs_change faults by
 964  * pretending that the fault happened with kernel GSBASE.  Since this handling
 965  * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
 966  * @paranoid == 0.  This special handling will do the wrong thing for
 967  * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
 968  *
 969  * @paranoid == 2 is special: the stub will never switch stacks.  This is for
 970  * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
 971  */
 972 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0
 973 ENTRY(\sym)
 974         UNWIND_HINT_IRET_REGS offset=\has_error_code*8
 975 
 976         /* Sanity check */
 977         .if \shift_ist != -1 && \paranoid != 1
 978         .error "using shift_ist requires paranoid=1"
 979         .endif
 980 
 981         .if \create_gap && \paranoid
 982         .error "using create_gap requires paranoid=0"
 983         .endif
 984 
 985         ASM_CLAC
 986 
 987         .if \has_error_code == 0
 988         pushq   $-1                             /* ORIG_RAX: no syscall to restart */
 989         .endif
 990 
 991         .if \paranoid == 1
 992         testb   $3, CS-ORIG_RAX(%rsp)           /* If coming from userspace, switch stacks */
 993         jnz     .Lfrom_usermode_switch_stack_\@
 994         .endif
 995 
 996         .if \create_gap == 1
 997         /*
 998          * If coming from kernel space, create a 6-word gap to allow the
 999          * int3 handler to emulate a call instruction.
1000          */
1001         testb   $3, CS-ORIG_RAX(%rsp)
1002         jnz     .Lfrom_usermode_no_gap_\@
1003         .rept   6
1004         pushq   5*8(%rsp)
1005         .endr
1006         UNWIND_HINT_IRET_REGS offset=8
1007 .Lfrom_usermode_no_gap_\@:
1008         .endif
1009 
1010         idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset
1011 
1012         .if \paranoid == 1
1013         /*
1014          * Entry from userspace.  Switch stacks and treat it
1015          * as a normal entry.  This means that paranoid handlers
1016          * run in real process context if user_mode(regs).
1017          */
1018 .Lfrom_usermode_switch_stack_\@:
1019         idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0
1020         .endif
1021 
1022 _ASM_NOKPROBE(\sym)
1023 END(\sym)
1024 .endm
1025 
1026 idtentry divide_error                   do_divide_error                 has_error_code=0
1027 idtentry overflow                       do_overflow                     has_error_code=0
1028 idtentry bounds                         do_bounds                       has_error_code=0
1029 idtentry invalid_op                     do_invalid_op                   has_error_code=0
1030 idtentry device_not_available           do_device_not_available         has_error_code=0
1031 idtentry double_fault                   do_double_fault                 has_error_code=1 paranoid=2 read_cr2=1
1032 idtentry coprocessor_segment_overrun    do_coprocessor_segment_overrun  has_error_code=0
1033 idtentry invalid_TSS                    do_invalid_TSS                  has_error_code=1
1034 idtentry segment_not_present            do_segment_not_present          has_error_code=1
1035 idtentry spurious_interrupt_bug         do_spurious_interrupt_bug       has_error_code=0
1036 idtentry coprocessor_error              do_coprocessor_error            has_error_code=0
1037 idtentry alignment_check                do_alignment_check              has_error_code=1
1038 idtentry simd_coprocessor_error         do_simd_coprocessor_error       has_error_code=0
1039 
1040 
1041         /*
1042          * Reload gs selector with exception handling
1043          * edi:  new selector
1044          */
1045 ENTRY(native_load_gs_index)
1046         FRAME_BEGIN
1047         pushfq
1048         DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1049         TRACE_IRQS_OFF
1050         SWAPGS
1051 .Lgs_change:
1052         movl    %edi, %gs
1053 2:      ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1054         SWAPGS
1055         TRACE_IRQS_FLAGS (%rsp)
1056         popfq
1057         FRAME_END
1058         ret
1059 ENDPROC(native_load_gs_index)
1060 EXPORT_SYMBOL(native_load_gs_index)
1061 
1062         _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
1063         .section .fixup, "ax"
1064         /* running with kernelgs */
1065 .Lbad_gs:
1066         SWAPGS                                  /* switch back to user gs */
1067 .macro ZAP_GS
1068         /* This can't be a string because the preprocessor needs to see it. */
1069         movl $__USER_DS, %eax
1070         movl %eax, %gs
1071 .endm
1072         ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1073         xorl    %eax, %eax
1074         movl    %eax, %gs
1075         jmp     2b
1076         .previous
1077 
1078 /* Call softirq on interrupt stack. Interrupts are off. */
1079 ENTRY(do_softirq_own_stack)
1080         pushq   %rbp
1081         mov     %rsp, %rbp
1082         ENTER_IRQ_STACK regs=0 old_rsp=%r11
1083         call    __do_softirq
1084         LEAVE_IRQ_STACK regs=0
1085         leaveq
1086         ret
1087 ENDPROC(do_softirq_own_stack)
1088 
1089 #ifdef CONFIG_XEN_PV
1090 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1091 
1092 /*
1093  * A note on the "critical region" in our callback handler.
1094  * We want to avoid stacking callback handlers due to events occurring
1095  * during handling of the last event. To do this, we keep events disabled
1096  * until we've done all processing. HOWEVER, we must enable events before
1097  * popping the stack frame (can't be done atomically) and so it would still
1098  * be possible to get enough handler activations to overflow the stack.
1099  * Although unlikely, bugs of that kind are hard to track down, so we'd
1100  * like to avoid the possibility.
1101  * So, on entry to the handler we detect whether we interrupted an
1102  * existing activation in its critical region -- if so, we pop the current
1103  * activation and restart the handler using the previous one.
1104  */
1105 ENTRY(xen_do_hypervisor_callback)               /* do_hypervisor_callback(struct *pt_regs) */
1106 
1107 /*
1108  * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1109  * see the correct pointer to the pt_regs
1110  */
1111         UNWIND_HINT_FUNC
1112         movq    %rdi, %rsp                      /* we don't return, adjust the stack frame */
1113         UNWIND_HINT_REGS
1114 
1115         ENTER_IRQ_STACK old_rsp=%r10
1116         call    xen_evtchn_do_upcall
1117         LEAVE_IRQ_STACK
1118 
1119 #ifndef CONFIG_PREEMPTION
1120         call    xen_maybe_preempt_hcall
1121 #endif
1122         jmp     error_exit
1123 END(xen_do_hypervisor_callback)
1124 
1125 /*
1126  * Hypervisor uses this for application faults while it executes.
1127  * We get here for two reasons:
1128  *  1. Fault while reloading DS, ES, FS or GS
1129  *  2. Fault while executing IRET
1130  * Category 1 we do not need to fix up as Xen has already reloaded all segment
1131  * registers that could be reloaded and zeroed the others.
1132  * Category 2 we fix up by killing the current process. We cannot use the
1133  * normal Linux return path in this case because if we use the IRET hypercall
1134  * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1135  * We distinguish between categories by comparing each saved segment register
1136  * with its current contents: any discrepancy means we in category 1.
1137  */
1138 ENTRY(xen_failsafe_callback)
1139         UNWIND_HINT_EMPTY
1140         movl    %ds, %ecx
1141         cmpw    %cx, 0x10(%rsp)
1142         jne     1f
1143         movl    %es, %ecx
1144         cmpw    %cx, 0x18(%rsp)
1145         jne     1f
1146         movl    %fs, %ecx
1147         cmpw    %cx, 0x20(%rsp)
1148         jne     1f
1149         movl    %gs, %ecx
1150         cmpw    %cx, 0x28(%rsp)
1151         jne     1f
1152         /* All segments match their saved values => Category 2 (Bad IRET). */
1153         movq    (%rsp), %rcx
1154         movq    8(%rsp), %r11
1155         addq    $0x30, %rsp
1156         pushq   $0                              /* RIP */
1157         UNWIND_HINT_IRET_REGS offset=8
1158         jmp     general_protection
1159 1:      /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1160         movq    (%rsp), %rcx
1161         movq    8(%rsp), %r11
1162         addq    $0x30, %rsp
1163         UNWIND_HINT_IRET_REGS
1164         pushq   $-1 /* orig_ax = -1 => not a system call */
1165         PUSH_AND_CLEAR_REGS
1166         ENCODE_FRAME_POINTER
1167         jmp     error_exit
1168 END(xen_failsafe_callback)
1169 #endif /* CONFIG_XEN_PV */
1170 
1171 #ifdef CONFIG_XEN_PVHVM
1172 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1173         xen_hvm_callback_vector xen_evtchn_do_upcall
1174 #endif
1175 
1176 
1177 #if IS_ENABLED(CONFIG_HYPERV)
1178 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1179         hyperv_callback_vector hyperv_vector_handler
1180 
1181 apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1182         hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1183 
1184 apicinterrupt3 HYPERV_STIMER0_VECTOR \
1185         hv_stimer0_callback_vector hv_stimer0_vector_handler
1186 #endif /* CONFIG_HYPERV */
1187 
1188 #if IS_ENABLED(CONFIG_ACRN_GUEST)
1189 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1190         acrn_hv_callback_vector acrn_hv_vector_handler
1191 #endif
1192 
1193 idtentry debug                  do_debug                has_error_code=0        paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
1194 idtentry int3                   do_int3                 has_error_code=0        create_gap=1
1195 idtentry stack_segment          do_stack_segment        has_error_code=1
1196 
1197 #ifdef CONFIG_XEN_PV
1198 idtentry xennmi                 do_nmi                  has_error_code=0
1199 idtentry xendebug               do_debug                has_error_code=0
1200 #endif
1201 
1202 idtentry general_protection     do_general_protection   has_error_code=1
1203 idtentry page_fault             do_page_fault           has_error_code=1        read_cr2=1
1204 
1205 #ifdef CONFIG_KVM_GUEST
1206 idtentry async_page_fault       do_async_page_fault     has_error_code=1        read_cr2=1
1207 #endif
1208 
1209 #ifdef CONFIG_X86_MCE
1210 idtentry machine_check          do_mce                  has_error_code=0        paranoid=1
1211 #endif
1212 
1213 /*
1214  * Save all registers in pt_regs, and switch gs if needed.
1215  * Use slow, but surefire "are we in kernel?" check.
1216  * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1217  */
1218 ENTRY(paranoid_entry)
1219         UNWIND_HINT_FUNC
1220         cld
1221         PUSH_AND_CLEAR_REGS save_ret=1
1222         ENCODE_FRAME_POINTER 8
1223         movl    $1, %ebx
1224         movl    $MSR_GS_BASE, %ecx
1225         rdmsr
1226         testl   %edx, %edx
1227         js      1f                              /* negative -> in kernel */
1228         SWAPGS
1229         xorl    %ebx, %ebx
1230 
1231 1:
1232         /*
1233          * Always stash CR3 in %r14.  This value will be restored,
1234          * verbatim, at exit.  Needed if paranoid_entry interrupted
1235          * another entry that already switched to the user CR3 value
1236          * but has not yet returned to userspace.
1237          *
1238          * This is also why CS (stashed in the "iret frame" by the
1239          * hardware at entry) can not be used: this may be a return
1240          * to kernel code, but with a user CR3 value.
1241          */
1242         SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1243 
1244         /*
1245          * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
1246          * unconditional CR3 write, even in the PTI case.  So do an lfence
1247          * to prevent GS speculation, regardless of whether PTI is enabled.
1248          */
1249         FENCE_SWAPGS_KERNEL_ENTRY
1250 
1251         ret
1252 END(paranoid_entry)
1253 
1254 /*
1255  * "Paranoid" exit path from exception stack.  This is invoked
1256  * only on return from non-NMI IST interrupts that came
1257  * from kernel space.
1258  *
1259  * We may be returning to very strange contexts (e.g. very early
1260  * in syscall entry), so checking for preemption here would
1261  * be complicated.  Fortunately, we there's no good reason
1262  * to try to handle preemption here.
1263  *
1264  * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1265  */
1266 ENTRY(paranoid_exit)
1267         UNWIND_HINT_REGS
1268         DISABLE_INTERRUPTS(CLBR_ANY)
1269         TRACE_IRQS_OFF_DEBUG
1270         testl   %ebx, %ebx                      /* swapgs needed? */
1271         jnz     .Lparanoid_exit_no_swapgs
1272         TRACE_IRQS_IRETQ
1273         /* Always restore stashed CR3 value (see paranoid_entry) */
1274         RESTORE_CR3     scratch_reg=%rbx save_reg=%r14
1275         SWAPGS_UNSAFE_STACK
1276         jmp     .Lparanoid_exit_restore
1277 .Lparanoid_exit_no_swapgs:
1278         TRACE_IRQS_IRETQ_DEBUG
1279         /* Always restore stashed CR3 value (see paranoid_entry) */
1280         RESTORE_CR3     scratch_reg=%rbx save_reg=%r14
1281 .Lparanoid_exit_restore:
1282         jmp restore_regs_and_return_to_kernel
1283 END(paranoid_exit)
1284 
1285 /*
1286  * Save all registers in pt_regs, and switch GS if needed.
1287  */
1288 ENTRY(error_entry)
1289         UNWIND_HINT_FUNC
1290         cld
1291         PUSH_AND_CLEAR_REGS save_ret=1
1292         ENCODE_FRAME_POINTER 8
1293         testb   $3, CS+8(%rsp)
1294         jz      .Lerror_kernelspace
1295 
1296         /*
1297          * We entered from user mode or we're pretending to have entered
1298          * from user mode due to an IRET fault.
1299          */
1300         SWAPGS
1301         FENCE_SWAPGS_USER_ENTRY
1302         /* We have user CR3.  Change to kernel CR3. */
1303         SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1304 
1305 .Lerror_entry_from_usermode_after_swapgs:
1306         /* Put us onto the real thread stack. */
1307         popq    %r12                            /* save return addr in %12 */
1308         movq    %rsp, %rdi                      /* arg0 = pt_regs pointer */
1309         call    sync_regs
1310         movq    %rax, %rsp                      /* switch stack */
1311         ENCODE_FRAME_POINTER
1312         pushq   %r12
1313         ret
1314 
1315 .Lerror_entry_done_lfence:
1316         FENCE_SWAPGS_KERNEL_ENTRY
1317 .Lerror_entry_done:
1318         ret
1319 
1320         /*
1321          * There are two places in the kernel that can potentially fault with
1322          * usergs. Handle them here.  B stepping K8s sometimes report a
1323          * truncated RIP for IRET exceptions returning to compat mode. Check
1324          * for these here too.
1325          */
1326 .Lerror_kernelspace:
1327         leaq    native_irq_return_iret(%rip), %rcx
1328         cmpq    %rcx, RIP+8(%rsp)
1329         je      .Lerror_bad_iret
1330         movl    %ecx, %eax                      /* zero extend */
1331         cmpq    %rax, RIP+8(%rsp)
1332         je      .Lbstep_iret
1333         cmpq    $.Lgs_change, RIP+8(%rsp)
1334         jne     .Lerror_entry_done_lfence
1335 
1336         /*
1337          * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1338          * gsbase and proceed.  We'll fix up the exception and land in
1339          * .Lgs_change's error handler with kernel gsbase.
1340          */
1341         SWAPGS
1342         FENCE_SWAPGS_USER_ENTRY
1343         SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1344         jmp .Lerror_entry_done
1345 
1346 .Lbstep_iret:
1347         /* Fix truncated RIP */
1348         movq    %rcx, RIP+8(%rsp)
1349         /* fall through */
1350 
1351 .Lerror_bad_iret:
1352         /*
1353          * We came from an IRET to user mode, so we have user
1354          * gsbase and CR3.  Switch to kernel gsbase and CR3:
1355          */
1356         SWAPGS
1357         FENCE_SWAPGS_USER_ENTRY
1358         SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1359 
1360         /*
1361          * Pretend that the exception came from user mode: set up pt_regs
1362          * as if we faulted immediately after IRET.
1363          */
1364         mov     %rsp, %rdi
1365         call    fixup_bad_iret
1366         mov     %rax, %rsp
1367         jmp     .Lerror_entry_from_usermode_after_swapgs
1368 END(error_entry)
1369 
1370 ENTRY(error_exit)
1371         UNWIND_HINT_REGS
1372         DISABLE_INTERRUPTS(CLBR_ANY)
1373         TRACE_IRQS_OFF
1374         testb   $3, CS(%rsp)
1375         jz      retint_kernel
1376         jmp     retint_user
1377 END(error_exit)
1378 
1379 /*
1380  * Runs on exception stack.  Xen PV does not go through this path at all,
1381  * so we can use real assembly here.
1382  *
1383  * Registers:
1384  *      %r14: Used to save/restore the CR3 of the interrupted context
1385  *            when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1386  */
1387 ENTRY(nmi)
1388         UNWIND_HINT_IRET_REGS
1389 
1390         /*
1391          * We allow breakpoints in NMIs. If a breakpoint occurs, then
1392          * the iretq it performs will take us out of NMI context.
1393          * This means that we can have nested NMIs where the next
1394          * NMI is using the top of the stack of the previous NMI. We
1395          * can't let it execute because the nested NMI will corrupt the
1396          * stack of the previous NMI. NMI handlers are not re-entrant
1397          * anyway.
1398          *
1399          * To handle this case we do the following:
1400          *  Check the a special location on the stack that contains
1401          *  a variable that is set when NMIs are executing.
1402          *  The interrupted task's stack is also checked to see if it
1403          *  is an NMI stack.
1404          *  If the variable is not set and the stack is not the NMI
1405          *  stack then:
1406          *    o Set the special variable on the stack
1407          *    o Copy the interrupt frame into an "outermost" location on the
1408          *      stack
1409          *    o Copy the interrupt frame into an "iret" location on the stack
1410          *    o Continue processing the NMI
1411          *  If the variable is set or the previous stack is the NMI stack:
1412          *    o Modify the "iret" location to jump to the repeat_nmi
1413          *    o return back to the first NMI
1414          *
1415          * Now on exit of the first NMI, we first clear the stack variable
1416          * The NMI stack will tell any nested NMIs at that point that it is
1417          * nested. Then we pop the stack normally with iret, and if there was
1418          * a nested NMI that updated the copy interrupt stack frame, a
1419          * jump will be made to the repeat_nmi code that will handle the second
1420          * NMI.
1421          *
1422          * However, espfix prevents us from directly returning to userspace
1423          * with a single IRET instruction.  Similarly, IRET to user mode
1424          * can fault.  We therefore handle NMIs from user space like
1425          * other IST entries.
1426          */
1427 
1428         ASM_CLAC
1429 
1430         /* Use %rdx as our temp variable throughout */
1431         pushq   %rdx
1432 
1433         testb   $3, CS-RIP+8(%rsp)
1434         jz      .Lnmi_from_kernel
1435 
1436         /*
1437          * NMI from user mode.  We need to run on the thread stack, but we
1438          * can't go through the normal entry paths: NMIs are masked, and
1439          * we don't want to enable interrupts, because then we'll end
1440          * up in an awkward situation in which IRQs are on but NMIs
1441          * are off.
1442          *
1443          * We also must not push anything to the stack before switching
1444          * stacks lest we corrupt the "NMI executing" variable.
1445          */
1446 
1447         swapgs
1448         cld
1449         FENCE_SWAPGS_USER_ENTRY
1450         SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1451         movq    %rsp, %rdx
1452         movq    PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1453         UNWIND_HINT_IRET_REGS base=%rdx offset=8
1454         pushq   5*8(%rdx)       /* pt_regs->ss */
1455         pushq   4*8(%rdx)       /* pt_regs->rsp */
1456         pushq   3*8(%rdx)       /* pt_regs->flags */
1457         pushq   2*8(%rdx)       /* pt_regs->cs */
1458         pushq   1*8(%rdx)       /* pt_regs->rip */
1459         UNWIND_HINT_IRET_REGS
1460         pushq   $-1             /* pt_regs->orig_ax */
1461         PUSH_AND_CLEAR_REGS rdx=(%rdx)
1462         ENCODE_FRAME_POINTER
1463 
1464         /*
1465          * At this point we no longer need to worry about stack damage
1466          * due to nesting -- we're on the normal thread stack and we're
1467          * done with the NMI stack.
1468          */
1469 
1470         movq    %rsp, %rdi
1471         movq    $-1, %rsi
1472         call    do_nmi
1473 
1474         /*
1475          * Return back to user mode.  We must *not* do the normal exit
1476          * work, because we don't want to enable interrupts.
1477          */
1478         jmp     swapgs_restore_regs_and_return_to_usermode
1479 
1480 .Lnmi_from_kernel:
1481         /*
1482          * Here's what our stack frame will look like:
1483          * +---------------------------------------------------------+
1484          * | original SS                                             |
1485          * | original Return RSP                                     |
1486          * | original RFLAGS                                         |
1487          * | original CS                                             |
1488          * | original RIP                                            |
1489          * +---------------------------------------------------------+
1490          * | temp storage for rdx                                    |
1491          * +---------------------------------------------------------+
1492          * | "NMI executing" variable                                |
1493          * +---------------------------------------------------------+
1494          * | iret SS          } Copied from "outermost" frame        |
1495          * | iret Return RSP  } on each loop iteration; overwritten  |
1496          * | iret RFLAGS      } by a nested NMI to force another     |
1497          * | iret CS          } iteration if needed.                 |
1498          * | iret RIP         }                                      |
1499          * +---------------------------------------------------------+
1500          * | outermost SS          } initialized in first_nmi;       |
1501          * | outermost Return RSP  } will not be changed before      |
1502          * | outermost RFLAGS      } NMI processing is done.         |
1503          * | outermost CS          } Copied to "iret" frame on each  |
1504          * | outermost RIP         } iteration.                      |
1505          * +---------------------------------------------------------+
1506          * | pt_regs                                                 |
1507          * +---------------------------------------------------------+
1508          *
1509          * The "original" frame is used by hardware.  Before re-enabling
1510          * NMIs, we need to be done with it, and we need to leave enough
1511          * space for the asm code here.
1512          *
1513          * We return by executing IRET while RSP points to the "iret" frame.
1514          * That will either return for real or it will loop back into NMI
1515          * processing.
1516          *
1517          * The "outermost" frame is copied to the "iret" frame on each
1518          * iteration of the loop, so each iteration starts with the "iret"
1519          * frame pointing to the final return target.
1520          */
1521 
1522         /*
1523          * Determine whether we're a nested NMI.
1524          *
1525          * If we interrupted kernel code between repeat_nmi and
1526          * end_repeat_nmi, then we are a nested NMI.  We must not
1527          * modify the "iret" frame because it's being written by
1528          * the outer NMI.  That's okay; the outer NMI handler is
1529          * about to about to call do_nmi anyway, so we can just
1530          * resume the outer NMI.
1531          */
1532 
1533         movq    $repeat_nmi, %rdx
1534         cmpq    8(%rsp), %rdx
1535         ja      1f
1536         movq    $end_repeat_nmi, %rdx
1537         cmpq    8(%rsp), %rdx
1538         ja      nested_nmi_out
1539 1:
1540 
1541         /*
1542          * Now check "NMI executing".  If it's set, then we're nested.
1543          * This will not detect if we interrupted an outer NMI just
1544          * before IRET.
1545          */
1546         cmpl    $1, -8(%rsp)
1547         je      nested_nmi
1548 
1549         /*
1550          * Now test if the previous stack was an NMI stack.  This covers
1551          * the case where we interrupt an outer NMI after it clears
1552          * "NMI executing" but before IRET.  We need to be careful, though:
1553          * there is one case in which RSP could point to the NMI stack
1554          * despite there being no NMI active: naughty userspace controls
1555          * RSP at the very beginning of the SYSCALL targets.  We can
1556          * pull a fast one on naughty userspace, though: we program
1557          * SYSCALL to mask DF, so userspace cannot cause DF to be set
1558          * if it controls the kernel's RSP.  We set DF before we clear
1559          * "NMI executing".
1560          */
1561         lea     6*8(%rsp), %rdx
1562         /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1563         cmpq    %rdx, 4*8(%rsp)
1564         /* If the stack pointer is above the NMI stack, this is a normal NMI */
1565         ja      first_nmi
1566 
1567         subq    $EXCEPTION_STKSZ, %rdx
1568         cmpq    %rdx, 4*8(%rsp)
1569         /* If it is below the NMI stack, it is a normal NMI */
1570         jb      first_nmi
1571 
1572         /* Ah, it is within the NMI stack. */
1573 
1574         testb   $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1575         jz      first_nmi       /* RSP was user controlled. */
1576 
1577         /* This is a nested NMI. */
1578 
1579 nested_nmi:
1580         /*
1581          * Modify the "iret" frame to point to repeat_nmi, forcing another
1582          * iteration of NMI handling.
1583          */
1584         subq    $8, %rsp
1585         leaq    -10*8(%rsp), %rdx
1586         pushq   $__KERNEL_DS
1587         pushq   %rdx
1588         pushfq
1589         pushq   $__KERNEL_CS
1590         pushq   $repeat_nmi
1591 
1592         /* Put stack back */
1593         addq    $(6*8), %rsp
1594 
1595 nested_nmi_out:
1596         popq    %rdx
1597 
1598         /* We are returning to kernel mode, so this cannot result in a fault. */
1599         iretq
1600 
1601 first_nmi:
1602         /* Restore rdx. */
1603         movq    (%rsp), %rdx
1604 
1605         /* Make room for "NMI executing". */
1606         pushq   $0
1607 
1608         /* Leave room for the "iret" frame */
1609         subq    $(5*8), %rsp
1610 
1611         /* Copy the "original" frame to the "outermost" frame */
1612         .rept 5
1613         pushq   11*8(%rsp)
1614         .endr
1615         UNWIND_HINT_IRET_REGS
1616 
1617         /* Everything up to here is safe from nested NMIs */
1618 
1619 #ifdef CONFIG_DEBUG_ENTRY
1620         /*
1621          * For ease of testing, unmask NMIs right away.  Disabled by
1622          * default because IRET is very expensive.
1623          */
1624         pushq   $0              /* SS */
1625         pushq   %rsp            /* RSP (minus 8 because of the previous push) */
1626         addq    $8, (%rsp)      /* Fix up RSP */
1627         pushfq                  /* RFLAGS */
1628         pushq   $__KERNEL_CS    /* CS */
1629         pushq   $1f             /* RIP */
1630         iretq                   /* continues at repeat_nmi below */
1631         UNWIND_HINT_IRET_REGS
1632 1:
1633 #endif
1634 
1635 repeat_nmi:
1636         /*
1637          * If there was a nested NMI, the first NMI's iret will return
1638          * here. But NMIs are still enabled and we can take another
1639          * nested NMI. The nested NMI checks the interrupted RIP to see
1640          * if it is between repeat_nmi and end_repeat_nmi, and if so
1641          * it will just return, as we are about to repeat an NMI anyway.
1642          * This makes it safe to copy to the stack frame that a nested
1643          * NMI will update.
1644          *
1645          * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1646          * we're repeating an NMI, gsbase has the same value that it had on
1647          * the first iteration.  paranoid_entry will load the kernel
1648          * gsbase if needed before we call do_nmi.  "NMI executing"
1649          * is zero.
1650          */
1651         movq    $1, 10*8(%rsp)          /* Set "NMI executing". */
1652 
1653         /*
1654          * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1655          * here must not modify the "iret" frame while we're writing to
1656          * it or it will end up containing garbage.
1657          */
1658         addq    $(10*8), %rsp
1659         .rept 5
1660         pushq   -6*8(%rsp)
1661         .endr
1662         subq    $(5*8), %rsp
1663 end_repeat_nmi:
1664 
1665         /*
1666          * Everything below this point can be preempted by a nested NMI.
1667          * If this happens, then the inner NMI will change the "iret"
1668          * frame to point back to repeat_nmi.
1669          */
1670         pushq   $-1                             /* ORIG_RAX: no syscall to restart */
1671 
1672         /*
1673          * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1674          * as we should not be calling schedule in NMI context.
1675          * Even with normal interrupts enabled. An NMI should not be
1676          * setting NEED_RESCHED or anything that normal interrupts and
1677          * exceptions might do.
1678          */
1679         call    paranoid_entry
1680         UNWIND_HINT_REGS
1681 
1682         /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1683         movq    %rsp, %rdi
1684         movq    $-1, %rsi
1685         call    do_nmi
1686 
1687         /* Always restore stashed CR3 value (see paranoid_entry) */
1688         RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1689 
1690         testl   %ebx, %ebx                      /* swapgs needed? */
1691         jnz     nmi_restore
1692 nmi_swapgs:
1693         SWAPGS_UNSAFE_STACK
1694 nmi_restore:
1695         POP_REGS
1696 
1697         /*
1698          * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1699          * at the "iret" frame.
1700          */
1701         addq    $6*8, %rsp
1702 
1703         /*
1704          * Clear "NMI executing".  Set DF first so that we can easily
1705          * distinguish the remaining code between here and IRET from
1706          * the SYSCALL entry and exit paths.
1707          *
1708          * We arguably should just inspect RIP instead, but I (Andy) wrote
1709          * this code when I had the misapprehension that Xen PV supported
1710          * NMIs, and Xen PV would break that approach.
1711          */
1712         std
1713         movq    $0, 5*8(%rsp)           /* clear "NMI executing" */
1714 
1715         /*
1716          * iretq reads the "iret" frame and exits the NMI stack in a
1717          * single instruction.  We are returning to kernel mode, so this
1718          * cannot result in a fault.  Similarly, we don't need to worry
1719          * about espfix64 on the way back to kernel mode.
1720          */
1721         iretq
1722 END(nmi)
1723 
1724 #ifndef CONFIG_IA32_EMULATION
1725 /*
1726  * This handles SYSCALL from 32-bit code.  There is no way to program
1727  * MSRs to fully disable 32-bit SYSCALL.
1728  */
1729 ENTRY(ignore_sysret)
1730         UNWIND_HINT_EMPTY
1731         mov     $-ENOSYS, %eax
1732         sysret
1733 END(ignore_sysret)
1734 #endif
1735 
1736 ENTRY(rewind_stack_do_exit)
1737         UNWIND_HINT_FUNC
1738         /* Prevent any naive code from trying to unwind to our caller. */
1739         xorl    %ebp, %ebp
1740 
1741         movq    PER_CPU_VAR(cpu_current_top_of_stack), %rax
1742         leaq    -PTREGS_SIZE(%rax), %rsp
1743         UNWIND_HINT_REGS
1744 
1745         call    do_exit
1746 END(rewind_stack_do_exit)

/* [<][>][^][v][top][bottom][index][help] */