root/arch/x86/kernel/process.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. arch_dup_task_struct
  2. exit_thread
  3. flush_thread
  4. disable_TSC
  5. enable_TSC
  6. get_tsc_mode
  7. set_tsc_mode
  8. set_cpuid_faulting
  9. disable_cpuid
  10. enable_cpuid
  11. get_cpuid_mode
  12. set_cpuid_mode
  13. arch_setup_new_exec
  14. switch_to_bitmap
  15. speculative_store_bypass_ht_init
  16. amd_set_core_ssb_state
  17. amd_set_core_ssb_state
  18. amd_set_ssb_virt_state
  19. __speculation_ctrl_update
  20. speculation_ctrl_update_tif
  21. speculation_ctrl_update
  22. speculation_ctrl_update_current
  23. __switch_to_xtra
  24. play_dead
  25. arch_cpu_idle_enter
  26. arch_cpu_idle_dead
  27. arch_cpu_idle
  28. default_idle
  29. xen_set_default_idle
  30. stop_this_cpu
  31. amd_e400_idle
  32. prefer_mwait_c1_over_halt
  33. mwait_idle
  34. select_idle_routine
  35. amd_e400_c1e_apic_setup
  36. arch_post_acpi_subsys_init
  37. idle_setup
  38. arch_align_stack
  39. arch_randomize_brk
  40. get_wchan
  41. do_arch_prctl_common

   1 // SPDX-License-Identifier: GPL-2.0
   2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3 
   4 #include <linux/errno.h>
   5 #include <linux/kernel.h>
   6 #include <linux/mm.h>
   7 #include <linux/smp.h>
   8 #include <linux/prctl.h>
   9 #include <linux/slab.h>
  10 #include <linux/sched.h>
  11 #include <linux/sched/idle.h>
  12 #include <linux/sched/debug.h>
  13 #include <linux/sched/task.h>
  14 #include <linux/sched/task_stack.h>
  15 #include <linux/init.h>
  16 #include <linux/export.h>
  17 #include <linux/pm.h>
  18 #include <linux/tick.h>
  19 #include <linux/random.h>
  20 #include <linux/user-return-notifier.h>
  21 #include <linux/dmi.h>
  22 #include <linux/utsname.h>
  23 #include <linux/stackprotector.h>
  24 #include <linux/cpuidle.h>
  25 #include <linux/acpi.h>
  26 #include <linux/elf-randomize.h>
  27 #include <trace/events/power.h>
  28 #include <linux/hw_breakpoint.h>
  29 #include <asm/cpu.h>
  30 #include <asm/apic.h>
  31 #include <asm/syscalls.h>
  32 #include <linux/uaccess.h>
  33 #include <asm/mwait.h>
  34 #include <asm/fpu/internal.h>
  35 #include <asm/debugreg.h>
  36 #include <asm/nmi.h>
  37 #include <asm/tlbflush.h>
  38 #include <asm/mce.h>
  39 #include <asm/vm86.h>
  40 #include <asm/switch_to.h>
  41 #include <asm/desc.h>
  42 #include <asm/prctl.h>
  43 #include <asm/spec-ctrl.h>
  44 #include <asm/proto.h>
  45 
  46 #include "process.h"
  47 
  48 /*
  49  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  50  * no more per-task TSS's. The TSS size is kept cacheline-aligned
  51  * so they are allowed to end up in the .data..cacheline_aligned
  52  * section. Since TSS's are completely CPU-local, we want them
  53  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  54  */
  55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  56         .x86_tss = {
  57                 /*
  58                  * .sp0 is only used when entering ring 0 from a lower
  59                  * privilege level.  Since the init task never runs anything
  60                  * but ring 0 code, there is no need for a valid value here.
  61                  * Poison it.
  62                  */
  63                 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  64 
  65                 /*
  66                  * .sp1 is cpu_current_top_of_stack.  The init task never
  67                  * runs user code, but cpu_current_top_of_stack should still
  68                  * be well defined before the first context switch.
  69                  */
  70                 .sp1 = TOP_OF_INIT_STACK,
  71 
  72 #ifdef CONFIG_X86_32
  73                 .ss0 = __KERNEL_DS,
  74                 .ss1 = __KERNEL_CS,
  75                 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  76 #endif
  77          },
  78 #ifdef CONFIG_X86_32
  79          /*
  80           * Note that the .io_bitmap member must be extra-big. This is because
  81           * the CPU will access an additional byte beyond the end of the IO
  82           * permission bitmap. The extra byte must be all 1 bits, and must
  83           * be within the limit.
  84           */
  85         .io_bitmap              = { [0 ... IO_BITMAP_LONGS] = ~0 },
  86 #endif
  87 };
  88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  89 
  90 DEFINE_PER_CPU(bool, __tss_limit_invalid);
  91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  92 
  93 /*
  94  * this gets called so that we can store lazy state into memory and copy the
  95  * current task into the new thread.
  96  */
  97 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  98 {
  99         memcpy(dst, src, arch_task_struct_size);
 100 #ifdef CONFIG_VM86
 101         dst->thread.vm86 = NULL;
 102 #endif
 103 
 104         return fpu__copy(dst, src);
 105 }
 106 
 107 /*
 108  * Free current thread data structures etc..
 109  */
 110 void exit_thread(struct task_struct *tsk)
 111 {
 112         struct thread_struct *t = &tsk->thread;
 113         unsigned long *bp = t->io_bitmap_ptr;
 114         struct fpu *fpu = &t->fpu;
 115 
 116         if (bp) {
 117                 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
 118 
 119                 t->io_bitmap_ptr = NULL;
 120                 clear_thread_flag(TIF_IO_BITMAP);
 121                 /*
 122                  * Careful, clear this in the TSS too:
 123                  */
 124                 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 125                 t->io_bitmap_max = 0;
 126                 put_cpu();
 127                 kfree(bp);
 128         }
 129 
 130         free_vm86(t);
 131 
 132         fpu__drop(fpu);
 133 }
 134 
 135 void flush_thread(void)
 136 {
 137         struct task_struct *tsk = current;
 138 
 139         flush_ptrace_hw_breakpoint(tsk);
 140         memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 141 
 142         fpu__clear(&tsk->thread.fpu);
 143 }
 144 
 145 void disable_TSC(void)
 146 {
 147         preempt_disable();
 148         if (!test_and_set_thread_flag(TIF_NOTSC))
 149                 /*
 150                  * Must flip the CPU state synchronously with
 151                  * TIF_NOTSC in the current running context.
 152                  */
 153                 cr4_set_bits(X86_CR4_TSD);
 154         preempt_enable();
 155 }
 156 
 157 static void enable_TSC(void)
 158 {
 159         preempt_disable();
 160         if (test_and_clear_thread_flag(TIF_NOTSC))
 161                 /*
 162                  * Must flip the CPU state synchronously with
 163                  * TIF_NOTSC in the current running context.
 164                  */
 165                 cr4_clear_bits(X86_CR4_TSD);
 166         preempt_enable();
 167 }
 168 
 169 int get_tsc_mode(unsigned long adr)
 170 {
 171         unsigned int val;
 172 
 173         if (test_thread_flag(TIF_NOTSC))
 174                 val = PR_TSC_SIGSEGV;
 175         else
 176                 val = PR_TSC_ENABLE;
 177 
 178         return put_user(val, (unsigned int __user *)adr);
 179 }
 180 
 181 int set_tsc_mode(unsigned int val)
 182 {
 183         if (val == PR_TSC_SIGSEGV)
 184                 disable_TSC();
 185         else if (val == PR_TSC_ENABLE)
 186                 enable_TSC();
 187         else
 188                 return -EINVAL;
 189 
 190         return 0;
 191 }
 192 
 193 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 194 
 195 static void set_cpuid_faulting(bool on)
 196 {
 197         u64 msrval;
 198 
 199         msrval = this_cpu_read(msr_misc_features_shadow);
 200         msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 201         msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 202         this_cpu_write(msr_misc_features_shadow, msrval);
 203         wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 204 }
 205 
 206 static void disable_cpuid(void)
 207 {
 208         preempt_disable();
 209         if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 210                 /*
 211                  * Must flip the CPU state synchronously with
 212                  * TIF_NOCPUID in the current running context.
 213                  */
 214                 set_cpuid_faulting(true);
 215         }
 216         preempt_enable();
 217 }
 218 
 219 static void enable_cpuid(void)
 220 {
 221         preempt_disable();
 222         if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 223                 /*
 224                  * Must flip the CPU state synchronously with
 225                  * TIF_NOCPUID in the current running context.
 226                  */
 227                 set_cpuid_faulting(false);
 228         }
 229         preempt_enable();
 230 }
 231 
 232 static int get_cpuid_mode(void)
 233 {
 234         return !test_thread_flag(TIF_NOCPUID);
 235 }
 236 
 237 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
 238 {
 239         if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 240                 return -ENODEV;
 241 
 242         if (cpuid_enabled)
 243                 enable_cpuid();
 244         else
 245                 disable_cpuid();
 246 
 247         return 0;
 248 }
 249 
 250 /*
 251  * Called immediately after a successful exec.
 252  */
 253 void arch_setup_new_exec(void)
 254 {
 255         /* If cpuid was previously disabled for this task, re-enable it. */
 256         if (test_thread_flag(TIF_NOCPUID))
 257                 enable_cpuid();
 258 
 259         /*
 260          * Don't inherit TIF_SSBD across exec boundary when
 261          * PR_SPEC_DISABLE_NOEXEC is used.
 262          */
 263         if (test_thread_flag(TIF_SSBD) &&
 264             task_spec_ssb_noexec(current)) {
 265                 clear_thread_flag(TIF_SSBD);
 266                 task_clear_spec_ssb_disable(current);
 267                 task_clear_spec_ssb_noexec(current);
 268                 speculation_ctrl_update(task_thread_info(current)->flags);
 269         }
 270 }
 271 
 272 static inline void switch_to_bitmap(struct thread_struct *prev,
 273                                     struct thread_struct *next,
 274                                     unsigned long tifp, unsigned long tifn)
 275 {
 276         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 277 
 278         if (tifn & _TIF_IO_BITMAP) {
 279                 /*
 280                  * Copy the relevant range of the IO bitmap.
 281                  * Normally this is 128 bytes or less:
 282                  */
 283                 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 284                        max(prev->io_bitmap_max, next->io_bitmap_max));
 285                 /*
 286                  * Make sure that the TSS limit is correct for the CPU
 287                  * to notice the IO bitmap.
 288                  */
 289                 refresh_tss_limit();
 290         } else if (tifp & _TIF_IO_BITMAP) {
 291                 /*
 292                  * Clear any possible leftover bits:
 293                  */
 294                 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 295         }
 296 }
 297 
 298 #ifdef CONFIG_SMP
 299 
 300 struct ssb_state {
 301         struct ssb_state        *shared_state;
 302         raw_spinlock_t          lock;
 303         unsigned int            disable_state;
 304         unsigned long           local_state;
 305 };
 306 
 307 #define LSTATE_SSB      0
 308 
 309 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 310 
 311 void speculative_store_bypass_ht_init(void)
 312 {
 313         struct ssb_state *st = this_cpu_ptr(&ssb_state);
 314         unsigned int this_cpu = smp_processor_id();
 315         unsigned int cpu;
 316 
 317         st->local_state = 0;
 318 
 319         /*
 320          * Shared state setup happens once on the first bringup
 321          * of the CPU. It's not destroyed on CPU hotunplug.
 322          */
 323         if (st->shared_state)
 324                 return;
 325 
 326         raw_spin_lock_init(&st->lock);
 327 
 328         /*
 329          * Go over HT siblings and check whether one of them has set up the
 330          * shared state pointer already.
 331          */
 332         for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 333                 if (cpu == this_cpu)
 334                         continue;
 335 
 336                 if (!per_cpu(ssb_state, cpu).shared_state)
 337                         continue;
 338 
 339                 /* Link it to the state of the sibling: */
 340                 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 341                 return;
 342         }
 343 
 344         /*
 345          * First HT sibling to come up on the core.  Link shared state of
 346          * the first HT sibling to itself. The siblings on the same core
 347          * which come up later will see the shared state pointer and link
 348          * themself to the state of this CPU.
 349          */
 350         st->shared_state = st;
 351 }
 352 
 353 /*
 354  * Logic is: First HT sibling enables SSBD for both siblings in the core
 355  * and last sibling to disable it, disables it for the whole core. This how
 356  * MSR_SPEC_CTRL works in "hardware":
 357  *
 358  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 359  */
 360 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 361 {
 362         struct ssb_state *st = this_cpu_ptr(&ssb_state);
 363         u64 msr = x86_amd_ls_cfg_base;
 364 
 365         if (!static_cpu_has(X86_FEATURE_ZEN)) {
 366                 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 367                 wrmsrl(MSR_AMD64_LS_CFG, msr);
 368                 return;
 369         }
 370 
 371         if (tifn & _TIF_SSBD) {
 372                 /*
 373                  * Since this can race with prctl(), block reentry on the
 374                  * same CPU.
 375                  */
 376                 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 377                         return;
 378 
 379                 msr |= x86_amd_ls_cfg_ssbd_mask;
 380 
 381                 raw_spin_lock(&st->shared_state->lock);
 382                 /* First sibling enables SSBD: */
 383                 if (!st->shared_state->disable_state)
 384                         wrmsrl(MSR_AMD64_LS_CFG, msr);
 385                 st->shared_state->disable_state++;
 386                 raw_spin_unlock(&st->shared_state->lock);
 387         } else {
 388                 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 389                         return;
 390 
 391                 raw_spin_lock(&st->shared_state->lock);
 392                 st->shared_state->disable_state--;
 393                 if (!st->shared_state->disable_state)
 394                         wrmsrl(MSR_AMD64_LS_CFG, msr);
 395                 raw_spin_unlock(&st->shared_state->lock);
 396         }
 397 }
 398 #else
 399 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 400 {
 401         u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 402 
 403         wrmsrl(MSR_AMD64_LS_CFG, msr);
 404 }
 405 #endif
 406 
 407 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 408 {
 409         /*
 410          * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 411          * so ssbd_tif_to_spec_ctrl() just works.
 412          */
 413         wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 414 }
 415 
 416 /*
 417  * Update the MSRs managing speculation control, during context switch.
 418  *
 419  * tifp: Previous task's thread flags
 420  * tifn: Next task's thread flags
 421  */
 422 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 423                                                       unsigned long tifn)
 424 {
 425         unsigned long tif_diff = tifp ^ tifn;
 426         u64 msr = x86_spec_ctrl_base;
 427         bool updmsr = false;
 428 
 429         lockdep_assert_irqs_disabled();
 430 
 431         /* Handle change of TIF_SSBD depending on the mitigation method. */
 432         if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 433                 if (tif_diff & _TIF_SSBD)
 434                         amd_set_ssb_virt_state(tifn);
 435         } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 436                 if (tif_diff & _TIF_SSBD)
 437                         amd_set_core_ssb_state(tifn);
 438         } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 439                    static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 440                 updmsr |= !!(tif_diff & _TIF_SSBD);
 441                 msr |= ssbd_tif_to_spec_ctrl(tifn);
 442         }
 443 
 444         /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 445         if (IS_ENABLED(CONFIG_SMP) &&
 446             static_branch_unlikely(&switch_to_cond_stibp)) {
 447                 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 448                 msr |= stibp_tif_to_spec_ctrl(tifn);
 449         }
 450 
 451         if (updmsr)
 452                 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 453 }
 454 
 455 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 456 {
 457         if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 458                 if (task_spec_ssb_disable(tsk))
 459                         set_tsk_thread_flag(tsk, TIF_SSBD);
 460                 else
 461                         clear_tsk_thread_flag(tsk, TIF_SSBD);
 462 
 463                 if (task_spec_ib_disable(tsk))
 464                         set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 465                 else
 466                         clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 467         }
 468         /* Return the updated threadinfo flags*/
 469         return task_thread_info(tsk)->flags;
 470 }
 471 
 472 void speculation_ctrl_update(unsigned long tif)
 473 {
 474         unsigned long flags;
 475 
 476         /* Forced update. Make sure all relevant TIF flags are different */
 477         local_irq_save(flags);
 478         __speculation_ctrl_update(~tif, tif);
 479         local_irq_restore(flags);
 480 }
 481 
 482 /* Called from seccomp/prctl update */
 483 void speculation_ctrl_update_current(void)
 484 {
 485         preempt_disable();
 486         speculation_ctrl_update(speculation_ctrl_update_tif(current));
 487         preempt_enable();
 488 }
 489 
 490 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 491 {
 492         struct thread_struct *prev, *next;
 493         unsigned long tifp, tifn;
 494 
 495         prev = &prev_p->thread;
 496         next = &next_p->thread;
 497 
 498         tifn = READ_ONCE(task_thread_info(next_p)->flags);
 499         tifp = READ_ONCE(task_thread_info(prev_p)->flags);
 500         switch_to_bitmap(prev, next, tifp, tifn);
 501 
 502         propagate_user_return_notify(prev_p, next_p);
 503 
 504         if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 505             arch_has_block_step()) {
 506                 unsigned long debugctl, msk;
 507 
 508                 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 509                 debugctl &= ~DEBUGCTLMSR_BTF;
 510                 msk = tifn & _TIF_BLOCKSTEP;
 511                 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 512                 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 513         }
 514 
 515         if ((tifp ^ tifn) & _TIF_NOTSC)
 516                 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 517 
 518         if ((tifp ^ tifn) & _TIF_NOCPUID)
 519                 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 520 
 521         if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 522                 __speculation_ctrl_update(tifp, tifn);
 523         } else {
 524                 speculation_ctrl_update_tif(prev_p);
 525                 tifn = speculation_ctrl_update_tif(next_p);
 526 
 527                 /* Enforce MSR update to ensure consistent state */
 528                 __speculation_ctrl_update(~tifn, tifn);
 529         }
 530 }
 531 
 532 /*
 533  * Idle related variables and functions
 534  */
 535 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 536 EXPORT_SYMBOL(boot_option_idle_override);
 537 
 538 static void (*x86_idle)(void);
 539 
 540 #ifndef CONFIG_SMP
 541 static inline void play_dead(void)
 542 {
 543         BUG();
 544 }
 545 #endif
 546 
 547 void arch_cpu_idle_enter(void)
 548 {
 549         tsc_verify_tsc_adjust(false);
 550         local_touch_nmi();
 551 }
 552 
 553 void arch_cpu_idle_dead(void)
 554 {
 555         play_dead();
 556 }
 557 
 558 /*
 559  * Called from the generic idle code.
 560  */
 561 void arch_cpu_idle(void)
 562 {
 563         x86_idle();
 564 }
 565 
 566 /*
 567  * We use this if we don't have any better idle routine..
 568  */
 569 void __cpuidle default_idle(void)
 570 {
 571         trace_cpu_idle_rcuidle(1, smp_processor_id());
 572         safe_halt();
 573         trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 574 }
 575 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 576 EXPORT_SYMBOL(default_idle);
 577 #endif
 578 
 579 #ifdef CONFIG_XEN
 580 bool xen_set_default_idle(void)
 581 {
 582         bool ret = !!x86_idle;
 583 
 584         x86_idle = default_idle;
 585 
 586         return ret;
 587 }
 588 #endif
 589 
 590 void stop_this_cpu(void *dummy)
 591 {
 592         local_irq_disable();
 593         /*
 594          * Remove this CPU:
 595          */
 596         set_cpu_online(smp_processor_id(), false);
 597         disable_local_APIC();
 598         mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 599 
 600         /*
 601          * Use wbinvd on processors that support SME. This provides support
 602          * for performing a successful kexec when going from SME inactive
 603          * to SME active (or vice-versa). The cache must be cleared so that
 604          * if there are entries with the same physical address, both with and
 605          * without the encryption bit, they don't race each other when flushed
 606          * and potentially end up with the wrong entry being committed to
 607          * memory.
 608          */
 609         if (boot_cpu_has(X86_FEATURE_SME))
 610                 native_wbinvd();
 611         for (;;) {
 612                 /*
 613                  * Use native_halt() so that memory contents don't change
 614                  * (stack usage and variables) after possibly issuing the
 615                  * native_wbinvd() above.
 616                  */
 617                 native_halt();
 618         }
 619 }
 620 
 621 /*
 622  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 623  * states (local apic timer and TSC stop).
 624  */
 625 static void amd_e400_idle(void)
 626 {
 627         /*
 628          * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 629          * gets set after static_cpu_has() places have been converted via
 630          * alternatives.
 631          */
 632         if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 633                 default_idle();
 634                 return;
 635         }
 636 
 637         tick_broadcast_enter();
 638 
 639         default_idle();
 640 
 641         /*
 642          * The switch back from broadcast mode needs to be called with
 643          * interrupts disabled.
 644          */
 645         local_irq_disable();
 646         tick_broadcast_exit();
 647         local_irq_enable();
 648 }
 649 
 650 /*
 651  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 652  * We can't rely on cpuidle installing MWAIT, because it will not load
 653  * on systems that support only C1 -- so the boot default must be MWAIT.
 654  *
 655  * Some AMD machines are the opposite, they depend on using HALT.
 656  *
 657  * So for default C1, which is used during boot until cpuidle loads,
 658  * use MWAIT-C1 on Intel HW that has it, else use HALT.
 659  */
 660 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 661 {
 662         if (c->x86_vendor != X86_VENDOR_INTEL)
 663                 return 0;
 664 
 665         if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
 666                 return 0;
 667 
 668         return 1;
 669 }
 670 
 671 /*
 672  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 673  * with interrupts enabled and no flags, which is backwards compatible with the
 674  * original MWAIT implementation.
 675  */
 676 static __cpuidle void mwait_idle(void)
 677 {
 678         if (!current_set_polling_and_test()) {
 679                 trace_cpu_idle_rcuidle(1, smp_processor_id());
 680                 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 681                         mb(); /* quirk */
 682                         clflush((void *)&current_thread_info()->flags);
 683                         mb(); /* quirk */
 684                 }
 685 
 686                 __monitor((void *)&current_thread_info()->flags, 0, 0);
 687                 if (!need_resched())
 688                         __sti_mwait(0, 0);
 689                 else
 690                         local_irq_enable();
 691                 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 692         } else {
 693                 local_irq_enable();
 694         }
 695         __current_clr_polling();
 696 }
 697 
 698 void select_idle_routine(const struct cpuinfo_x86 *c)
 699 {
 700 #ifdef CONFIG_SMP
 701         if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 702                 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 703 #endif
 704         if (x86_idle || boot_option_idle_override == IDLE_POLL)
 705                 return;
 706 
 707         if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 708                 pr_info("using AMD E400 aware idle routine\n");
 709                 x86_idle = amd_e400_idle;
 710         } else if (prefer_mwait_c1_over_halt(c)) {
 711                 pr_info("using mwait in idle threads\n");
 712                 x86_idle = mwait_idle;
 713         } else
 714                 x86_idle = default_idle;
 715 }
 716 
 717 void amd_e400_c1e_apic_setup(void)
 718 {
 719         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 720                 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 721                 local_irq_disable();
 722                 tick_broadcast_force();
 723                 local_irq_enable();
 724         }
 725 }
 726 
 727 void __init arch_post_acpi_subsys_init(void)
 728 {
 729         u32 lo, hi;
 730 
 731         if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 732                 return;
 733 
 734         /*
 735          * AMD E400 detection needs to happen after ACPI has been enabled. If
 736          * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 737          * MSR_K8_INT_PENDING_MSG.
 738          */
 739         rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 740         if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 741                 return;
 742 
 743         boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 744 
 745         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 746                 mark_tsc_unstable("TSC halt in AMD C1E");
 747         pr_info("System has AMD C1E enabled\n");
 748 }
 749 
 750 static int __init idle_setup(char *str)
 751 {
 752         if (!str)
 753                 return -EINVAL;
 754 
 755         if (!strcmp(str, "poll")) {
 756                 pr_info("using polling idle threads\n");
 757                 boot_option_idle_override = IDLE_POLL;
 758                 cpu_idle_poll_ctrl(true);
 759         } else if (!strcmp(str, "halt")) {
 760                 /*
 761                  * When the boot option of idle=halt is added, halt is
 762                  * forced to be used for CPU idle. In such case CPU C2/C3
 763                  * won't be used again.
 764                  * To continue to load the CPU idle driver, don't touch
 765                  * the boot_option_idle_override.
 766                  */
 767                 x86_idle = default_idle;
 768                 boot_option_idle_override = IDLE_HALT;
 769         } else if (!strcmp(str, "nomwait")) {
 770                 /*
 771                  * If the boot option of "idle=nomwait" is added,
 772                  * it means that mwait will be disabled for CPU C2/C3
 773                  * states. In such case it won't touch the variable
 774                  * of boot_option_idle_override.
 775                  */
 776                 boot_option_idle_override = IDLE_NOMWAIT;
 777         } else
 778                 return -1;
 779 
 780         return 0;
 781 }
 782 early_param("idle", idle_setup);
 783 
 784 unsigned long arch_align_stack(unsigned long sp)
 785 {
 786         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 787                 sp -= get_random_int() % 8192;
 788         return sp & ~0xf;
 789 }
 790 
 791 unsigned long arch_randomize_brk(struct mm_struct *mm)
 792 {
 793         return randomize_page(mm->brk, 0x02000000);
 794 }
 795 
 796 /*
 797  * Called from fs/proc with a reference on @p to find the function
 798  * which called into schedule(). This needs to be done carefully
 799  * because the task might wake up and we might look at a stack
 800  * changing under us.
 801  */
 802 unsigned long get_wchan(struct task_struct *p)
 803 {
 804         unsigned long start, bottom, top, sp, fp, ip, ret = 0;
 805         int count = 0;
 806 
 807         if (p == current || p->state == TASK_RUNNING)
 808                 return 0;
 809 
 810         if (!try_get_task_stack(p))
 811                 return 0;
 812 
 813         start = (unsigned long)task_stack_page(p);
 814         if (!start)
 815                 goto out;
 816 
 817         /*
 818          * Layout of the stack page:
 819          *
 820          * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
 821          * PADDING
 822          * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
 823          * stack
 824          * ----------- bottom = start
 825          *
 826          * The tasks stack pointer points at the location where the
 827          * framepointer is stored. The data on the stack is:
 828          * ... IP FP ... IP FP
 829          *
 830          * We need to read FP and IP, so we need to adjust the upper
 831          * bound by another unsigned long.
 832          */
 833         top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
 834         top -= 2 * sizeof(unsigned long);
 835         bottom = start;
 836 
 837         sp = READ_ONCE(p->thread.sp);
 838         if (sp < bottom || sp > top)
 839                 goto out;
 840 
 841         fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
 842         do {
 843                 if (fp < bottom || fp > top)
 844                         goto out;
 845                 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
 846                 if (!in_sched_functions(ip)) {
 847                         ret = ip;
 848                         goto out;
 849                 }
 850                 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
 851         } while (count++ < 16 && p->state != TASK_RUNNING);
 852 
 853 out:
 854         put_task_stack(p);
 855         return ret;
 856 }
 857 
 858 long do_arch_prctl_common(struct task_struct *task, int option,
 859                           unsigned long cpuid_enabled)
 860 {
 861         switch (option) {
 862         case ARCH_GET_CPUID:
 863                 return get_cpuid_mode();
 864         case ARCH_SET_CPUID:
 865                 return set_cpuid_mode(task, cpuid_enabled);
 866         }
 867 
 868         return -EINVAL;
 869 }

/* [<][>][^][v][top][bottom][index][help] */